2D Resistivity Survey for Placer Prospecting, Klaza River, Yukon

Report Prepared for:

Stefan Ostermaier

PO Box 31441 RPO Main St.

Whitehorse, YT, Y1A 6K8

BOREAL

August 22, 2018

Prepared by: David Storm, Boreal GeoSciences

P.O. Box 31402 Stn Main, Whitehorse, YT, Y1A 6K8, 867-456-4343

Contents

1. Location and Access
2. Crew
3. Fieldwork – Schedule
4. Geophysical Methods
4.1. Resistivity
5. Use of Geophysical Method4
5.1. Instrumentation
5.1.1. Resistivity/IP Instrumentation
5.2. Data Acquisition
5.2.1. Resistivity Data Acquisition
5.3. Data Processing
5.3.1. Resistivity Data Processing
6. Resistivity Survey Map
7. Bedrock Geology Map7
8. Resistivity Profiles
8.1. Line 01 Profile9
8.1.1. Line 01 Interpretation
8.2. Line 02 Profile
8.2.1. Line 02 Interpretation
9. Recommendations
Qualifications
Confirmation
Costs
Appendix
Works Cited19
Resistivity of Common Earth Materials20

1. Location and Access

This geophysical investigation, using 2D Resistivity was done at Klaza River for Stefan Ostermaier.

Geophysical work was conducted to prospect the ground for placer interests. The program was focused on measuring and interpreting the following subsurface characteristics:

- Depth and topography of paleochannels
- Stratigraphy of surficial sediments
- Location, size and geometry of benches

The resistivity survey consisted of two survey lines. The survey area is located in Mount Nansen Area 60km west of Carmacks, Yukon Territory.

The survey area was accessed via the Mt Nansen mining road.

List of Properties

Grant Number	Owner
IW00624	Stefan Ostermaier

2. Crew

Resistivity crew:	David Storm and Matthew Grant, Boreal GeoSciences
Support, Documentation:	Heidi Kulcheski, Boreal GeoSciences
Line planning:	David Storm, Stefan Ostermaier

3. Fieldwork – Schedule

Fieldwork: The resistivity survey was conducted August 12-13th, 2018.

Processing, Interpretation and Documentation of Resistivity data was done August 12 – 14th, 2018.

4. Geophysical Methods

4.1. Resistivity

Resistivity is a material property that measures how strongly a material opposes the flow of electric current. The purpose of resistivity surveys is to measure the subsurface resistivity distribution. The resistivity of earth materials is related to mineral species, fluid content, porosity, and degree of water saturation. Resistivity measurements are commonly performed by injecting current through the ground with two current electrodes and measuring the resultant voltage difference between to potential

electrodes. The equipment used in this study is designed to measure layer interfaces in depths from 1m to 100m by varying the spacing between electrodes.

5. Use of Geophysical Method

5.1. Instrumentation

5.1.1. Resistivity/IP Instrumentation

For this survey a lightweight, custom-built 2D RESISTIVITY imaging system with rapid data acquisition was used. The system includes¹:

"4 POINT LIGHT" EARTH RESISTIVITY METER²

128 ELECTRODE CONTROL MODULES³

128 STAINLESS STEEL ELECTRODES⁴

640m MULTICORE CABLE: CONNECTOR SPACING: 5m⁵

This system weighs approximately 120 kg which is about one third of regular standard equipment. It can be run with a 12V lead battery. The equipment facilitates high mobility and rapid data acquisition with a small crew.

5.2. Data Acquisition

5.2.1. Resistivity Data Acquisition

The data acquisition is carried out by the automatic activation of 4-point-electrodes. Several thousand measurements are taken, one every 1-2 seconds. The AC transmitter current of 0.26 to 30 Hz is amplified by the electrode control modules, up to a maximum of 100mA and 400V peak to peak. The voltage measured at the receiver electrodes (M, N) is also amplified. In this resistivity survey the Wenner - Schlumberger array was used. The Wenner - Schlumberger array is appropriate to image horizontal layers with high resolution and is ideal for placer prospecting.

The 2D Resistivity imaging system used for this survey, allows measurements with a depth of up to 80-100m. An electrode spacing of 5m was used, resulting in a horizontal measuring resolution of 2.5m. This spacing has proven itself reliable in the determination of bedrock topography and sedimentary stratigraphy for placer investigation under most environmental conditions.

¹ In this survey 32, 96, and 128 electrodes were used

² Constructed and produced by LGM (Germany)

³ Ditto

⁴ Constructed and produced by GEOANALYSIS.DE (Germany)

5.3. Data Processing

5.3.1. Resistivity Data Processing

The measured Resistivity data is processed with the RES2DINV inversion program⁶.

The inversion program is known to produce a few artefacts that are due to the mathematics used.

- "smearing down" this is a noticeable extension of features towards the bottom edge of the profile sometimes with a transition
- "extreme lower corners" one or both lower corners of the profile show extremely high or low values (see line 2 lower right hand side)
- Edges continue a high or low reading, can occur with smearing down. A surface feature with a significantly different resistivity value can result in a thin band along the edge.
- Rounding down layers at edges, similar to "smear down." A surface feature is extended to the edge at the start of end of the profile, this can lead to the assumption that a potential paleochannel was just missed by the measuring line.
- Edges with extreme values.
- "doubling highs with lows" is a common occurrence especially in permafrost areas where high
 resistivity values occur naturally. The algorithm tries to 'balance' the high or low with a low or
 high usually underneath but occasionally side by side. It does not distort the shape of the
 structures but it can lead to faulty assumptions during interpretation if not kept in mind.

One of the most important tasks during the processing of the raw data is the minimization of these artefacts to make the interpretation easier.

⁶ Produced by GEOTOMO SOFTWARE (Malaysia)

6. Resistivity Survey Map

7. Bedrock Geology Map

Bedrock Geology continued:

DMF1:	metamorphic - intermediate to mafic volcanic and volcaniclastic rocks
LKfP:	plutonic - quartz-feldspar porphyry
MgSR:	metamorphic - Hbl-bearing metagranodiorite, metadiorite and metatonalite
mKgW:	plutonic - Bt-Hbl granodiorite, Hbl quartz diorite and Hbl diorite
mKN:	volcanic - massive aphyric or feldspar-phyric andesite to dacite flows
PDS1:	metamorphic - quartzite, psammite, pelite and marble; minor greenstone and amphibolite
PDS2:	metamorphic - light grey to buff weathering marble

8. Resistivity Profiles

8.1. Line 01 Profile

Line 01 2D Resistivity, Wenner-Schlumberger array 96 Electrodes: spacing 5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display: 1.0 Data acquisition: 12 August 2018

Interpretation

This 2D Resistivity measuring result is an interpretation of geophysical data. We recommend the verification of the profile interpretation with test pits, drilling, or shafting.

PO Box 31402 Stn Main, Whitehorse, YT, Y1A 6K8 Phone 867 456 4343 (Office) info@borealgeosciences.ca / www.borealgeosciences.ca

8.1.1. Line 01 Interpretation

The profile shows an overburden layer of 5 to 17m thickness that is thawed on the north-western part of the profile and frozen on the south-eastern end of the profile.

From the start of the profile to 350m the overburden is thawed with a thickness of 5 to 17m. The overburden layer shows moderately high resistivity values (green). The resistivity range is from about 600 Ohm*m to in excess of 1500 Ohm*m and represents values typical for alluvial gravels at the lower end and probably coarser gravels on the higher end of the range of resistivity values. The higher resistivity values are thought to be due to coarser gravels with less fine sediments such as silt or clay in the gravel matrix. Alternatively, the higher resistivity values could be due to partially frozen overburden this is however not thought to be likely. The bedrock in this area shows a number of depressions and highs; between 80m and 100m a 17m deep depression is identified in the bedrock topography. Between 150m and 170m the bedrock rises to within 5m of the surface. From 210m to 310m the bedrock shows a 10 to 12m deep channel with two depressions at 230m with 12m and at 270m with 10m. Both depressions show a gravel layer with higher resistivity values underneath a 5m thick layer of lower resistivity overburden.

Throughout the thawed section of the profile areas with low resistivity values (light blue) can be identified within the topmost 5m of the overburden, these areas are thought to represent recent deposits of fine sediments consisting mostly of silt (field observation).

From 350m to the end of the profile the overburden is frozen and shows high resistivity values (red) that are consistent with frozen gravels. The bedrock interface appears to have two depressions in the frozen section; one at 370m to 395m with a depth to bedrock of up to 14m and a second one at 410m to 450m with a depth of up to 16m. However, the interpretation of the second depression in the frozen section of the

profile is less certain, one reason is a slight indication of some 'smear down' (see 5.3.1 Resistivity Data Processing) so the depth of the depression might be less than indicated in the profile. Secondly the width of the depression is uncertain due the end of the line and therefore the edge of the profile.

The bedrock shows two qualities in the profile: One a very low resistivity bedrock (blue) and a moderately high resistivity bedrock in the frozen section. The surficial geology map calls the bedrock metamorphic and gives the following list "cl-bi-schist/amphibolite/hb-gneiss/ac-pg-cl-bischist/pg-ac-cl-chist/phyllite/quartzite/ultramafics". Schists could very well be the reason for the very low resistivity bedrock. The southwestern part of the profile is in a different bedrock according to the geology map; plutonic "granodiorite/quartz diorite" which would explain the higher resistivity values in the frozen section of the profile. However, it seems curious that the exact transition from thawed to frozen overburden is also the transition from one kind of bedrock to the other (see Line02). One explanation could be that the bedrock is not actually a different type but that the permafrost extends deep into the bedrock so that the permafrost can be seen in the elevated resistivity values. One observation that supports this fact is that the resistivity in the bedrock that is assumed to be solid (deeper than 30m) shows moderately high resistivity values that are still lower than the frozen overburden. If we assume a schist bedrock this is reasonable since a number of phyllosilicates may be present in schist and can show some electrical conductivity. A second fact in support of this theory is that most schists decompose into clay and there is a band of lower resistivity between the frozen overburden and the assumed solid bedrock. This is thought to be due to clay minerals that have a polarized surface and show some conductivity even when frozen.

8.2. Line 02 Profile

Line 02 2D Resistivity, Wenner-Schlumberger array 96 Electrodes: spacing 5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display: 1.0 Data acquisition: 13 August 2018

Interpretation

This 2D Resistivity measuring result is an interpretation of geophysical data. We recommend the verification of the profile interpretation with test pits, drilling, or shafting.

PO Box 31402 Stn Main, Whitehorse, YT, Y1A 6K8 Phone 867 456 4343 (Office) info@borealgeosciences.ca / www.borealgeosciences.ca

8.2.1. Line 02 Interpretation

The profile shows overburden of 4-16m thickness. On the southern part of the profile the overburden is frozen. It is thawed in the middle section and on the northern third the overburden is partly frozen.

Between the start of the profile and 165m the interpreted overburden shows heterogeneous resistivity values ranging from 600 Ohm*m (light green) to 6000 Ohm*m (red). The low resistivity values from 600 Ohm*m to 1500 Ohm*m (green) are interpreted as thawed gravels. The overburden with resistivity values ranging from 2600 Ohm*m to 6000 Ohm*m (brown to red) are thought to represent mostly frozen overburden. With the resistivity values in between being a mix of thawed and frozen material. The exception to this is the 4m thick surface layer at 25 - 60m and 90 - 100m which is thought to be mostly dry overburden with little fine material such as clay or silt. At 60m a 16m deep channellike structure is seen in the profile. At 90m the overburden shows a resistivity high with 6000 Ohm*m (red) which is interpreted as permafrost, alternatively this could be a paleochannel with coarse dry gravels.

At 100 - 160m the profile shows a possible 37m deep channel. This is however thought to be unlikely. There is no indication of a deep channel in Profile 01 which is downstream, although with an absolute elevation of 995m (MAMSL) at the bottom of the channel it would still be possible since that is also the elevation of bedrock in Profile 01. The more likely and favored interpretation is that the bedrock is partly decomposed to a depth of 30 - 40m below surface and in areas with permafrost we see resistivity values of up to 6000 Ohm*m. This interpretation is consistent with Profile 01 where we see this phenomenon towards the end of the profile.

In the section from 160 - 350m the overburden is thawed and 4 - 10m thick. The resistivity values from 600 Ohm*m to 2000 Ohm*m indicate gravels of varying water content. Of particular interest is the 10m deep depression at 205m as well as the 8m deep depression at 305m.

From 350m to the end of the profile the overburden is frozen. At 420m a 16m deep channel offers the best prospects for placer mining.

The bedrock in the profile shows the same low resistivity values as in Profile 01 and is consistent with some type of schist.

9. Recommendations

We recommend that the depressions in bedrock be physically tested to verify that they are gold bearing. Of particular interest are the bedrock depressions at 90m, 180m 220m and 260m as well as 430m in Profile 01 and 60m, 300m and 420m in Profile 02.

90m in Profile 01 should be the main priority since it is a deep channel that is thawed which should be favorable for mining. The deep channels at 420/430m in the frozen section of the profiles should also be investigated.

Additionally, it is recommended that more resistivity lines and or a magnetic survey be done to give a more complete picture of where on the lease the channels are located, since the two lines in this survey can only be an isolated spotlight on each location.

Qualifications

Company qualifications:

At Boreal GeoSciences we are committed to providing a service that is consistent, professional, and of the highest quality.

Our teams experience lies in the fields of geophysics, geology, chemistry and software engineering. This combination along with 10 + years working in the field with placer resistivity services gives us a unique and integrated approach to interpretation of data that enables us to provide the client with results that have proven to be exceptionally accurate.

We have completed a vast number of geophysical projects for a variety of different clients and our demonstrated success over the years has earned us an excellent reputation in this industry.

We use the latest editions of application and processing software, as well as state-of-the-art geophysical and survey instrumentation which we have refined and customized to best suit remote northern geography and its many challenges. Our custom lightweight equipment allows us to work in remote locations with minimal equipment and leaves the area as pristine as it was found.

Client	Year(s) Worked	Location
10796 Yukon Ltd.	2009	Yukon
44236 Yukon Inc.	2015	Yukon
44995 Yukon Inc.	2011	Yukon
913439 Alberta Inc.	2010	BC
Al Dendys	2011	BC
Alex Loo	2015	BC
Allen & Shannon Radford	2011, 2013	Yukon
All-In Exploration Solutions Inc.	2012	Yukon
Andre Jeanson	2014	Yukon
Angel Jade Mines Ltd.	2014	BC
Aurchem Exploration Ltd.	2008	Yukon
Aurek Holdings Ltd	2011, 2012	Yukon
Bens Contracting & Rental	2014	Yukon
Black Canyon Gold Corp.	2010	BC
Bob Van Mannen	2011	Yukon
Bonnyville Oilfield Service & Supply Ltd	2012, 2014, 2016	Yukon
Brian Scott	2012	BC
BTK Mining Inc.	2011, 2012, 2013, 2015	BC
Buckeye Land & Minerals Inc.	2017	Alaska, BC
Canaan Gold Resources Inc	2011, 2012	Yukon
Carol McBride	2012	Yukon

Experience/Publications:

Cliff Krahn	2014	BC
Constellation Mines Ltd	2015, 2016	Yukon
Dan Klippert	2011, 2012	Yukon
Dan Norn	2011	BC
Dan Perron	2011	BC
Deason Holdings	2018	BC
Diamond Tooth Resources	2012, 2013	Yukon
Dredge Master Gold Ltd.	2008	Yukon
Duncan Creek Golddusters Ltd.	2011, 2012	Yukon
Dwayne Deesing	2014	Yukon
Enviro Earth	2016	BC
Enviro-Gold Investments Ltd.	2012	Yukon
Eric Anderson	2016	BC
Fine Gold Resources Ltd	2015	Yukon
Gem Steele Edmonton Ltd.	2009, 2010, 2011, 2012, 2015	Yukon
Gold Miners Group Inc.	2011	Yukon
Goldspike Exploration	2014	Yukon
H.C. Mining Ltd.	2009, 2010, 2012, 2013	Yukon
Hans Algotsson	2009	Yukon
Heather Pilsworth	2014	Yukon
Heisey Ventures Inc.	2007	Yukon
Interior Gold Inc.	2011	BC
Jean Lukan	2017	Yukon
Johnson Exploration	2011	Yukon
Jonathan Ganter Mining	2010	BC
Kim Klippert	2010	Yukon
La Tierra Resouces Ltd.	2009, 2010, 2011, 2012	Yukon
Len Pike	2017	Yukon
Manuele Martushev	2017	Yukon
Marleen Crawford	2017	Yukon
Mel Zeiler	2010, 2011	Yukon, BC
Northern Exposures Inc.	2010	Yukon
O.H. Transport Inc.	2010	Yukon
Otter Creek Mines Ltd	2011, 2014, 2016	BC
Otter Creek Resources Ltd	2011, 2012, 2014	BC
Paul Philips	2013	Yukon
Paydirt Holdings	2016	Yukon
Peninsula Cutting & Coring Inc.	2012	Yukon
RKG Exploration	2012	Yukon
Robert Carpenter	2016	BC
Rod G. Smith	2015	Yukon

Ron S. Berdahl	2014	Yukon
Ruby Gold Ltd.	2011	BC
Stephen and Greg Keen	2014	BC
Stephen Swaim	2012, 2013	Yukon
Taiga Mining Company	2017, 2018	Alaska
Tara Christie	2011	Yukon
Thomas Courtright	2012	Yukon
TIC Exploration Ltd.	2010, 2016	Yukon, BC
Victor Casavant	2013	BC
Walsh & Sons Mining Corp.	2011	Yukon
Yukon Geological Survey	2010	Yukon
Zenith Mineral Resources Ltd	2014, 2015	BC

Confirmation

I have interpreted the data and prepared this report entitled **2D Resistivity Survey for Placer Prospecting in the Klaza River area, Yukon**. The surveys were carried out by Boreal GeoSciences of Whitehorse, Yukon Territory.

~~

David Storm, Boreal GeoSciences

INVOICE

P.O. Box 31402 RPO Main Whitehorse, Yukon, Y1A 6K8 info@borealgeosciences.ca

TO Stefan Ostermaier

INVOICE NO. 18YT-O(07)-111 DATE August 22, 2018

JOB	Location	PAY	MENT TERMS		
2D Resistiviy	Mara Diana Valan	Davr	mont is Due un		agint
Survey	Klaza River, Yukon	Pay	Payment is Due upon Receipt		
Qty	Description		Init Price		TOTAL
	Mob/Demob				
		\$	0.65	\$	-
	Sub Total Mob/Demob			\$	-
	Geophysical Survey				
	Geoelectrical 2D Resistivity Imaging System: 96 Electrodes	6 Elect	trode		
	Control Modules, 475m multi-core cable, PC, GPS altimeter				
2.0	Field days, Equip, Operator & Field Tech (rate reduced)	\$	1,500.00	\$	3,000.00
2.0	Days for Meals - 2 persons \$55.00 each/day	\$	110.00	\$	220.00
2.0	Accomodations - (in camp)			\$	200.00
2.0	Daily Rate - Ford F350 Diesel Pickup \$ 130.00				260.00
	Daily Rate - Onsite Analysis, Interpretation, Processing				
	& Preparation of Formal Report			\$	500.00
	Sub Total Geophysical Survey			\$	3,816.16
Please	transfor funds to				
536510	Yukon Inc (DBA Boreal GeoSciences)		SUBTOTAL	\$	3.816.16
ScotiaB	ank, 212 Main St, Whitehorse	G.S.T.	(5%)	\$	190.81
Yukon,	Y1A 2B1		TOTAL CDN \$	\$	4.006.97
Iransit: 70920 Account: 0171611 Swift Code NOSCCATT				Ŧ	.,
Account					
	THANK YOU FOR YOUR BUSIN	IESS!			

GST #74597 7710 RT0001

Appendix

Works Cited

Loke, M.H. "Tutorial : 2-D and 3-D electrical imaging surveys." Geotomo Software, 2015.

Map Layers

Energy, Mines and Resources, Yukon 2017

Geomatics Yukon, 2017

Resistivity of Common Earth Materials⁷

GPS

Profile 01

Electrode	Location	GPS-Coordinates	GPS-	Post
No.	in Profile	UTM Zone 8	Accuracy	[*]
	[m]	NAD 83	[m]	
1	0	369971 6891548	3	*
2	5	369974 6891547	3	
3	10	369977 6891546	3	
4	15	369983 6891543	3	
5	20	369988 6891542	3	
6	25	369993 6891540	3	
7	30	369998 6891538	3	
8	35	370002 6891537	3	
9	40	370007 6891536	3	
10	45	370012 6891531	3	
11	50	370016 6891530	3	
12	55	370022 6891531	3	
13	60	370027 6891528	3	
14	65	370031 6891525	3	
15	70	370036 6891523	3	
16	75	370041 6891522	3	
17	80	370046 6891520	3	
18	85	370051 6891519	3	
19	90	370055 6891517	3	
20	95	370060 6891518	3	
21	100	370064 6891517	3	
22	105	370070 6891516	3	
23	110	370074 6891514	3	
24	115	370078 6891512	3	
25	120	370083 6891511	3	
26	125	370088 6891510	3	
27	130	370093 6891509	3	
28	135	370097 6891508	3	
29	140	370103 6891507	3	
30	145	370107 6891506	3	
31	150	370112 6891505	3	
32	155	370117 6891503	3	
33	160	370122 6891500	3	
34	165	370127 6891498	3	
35	170	370131 6891495	3	
36	175	370135 6891494	3	
37	180	370140 6891494	3	
38	185	370145 6891493	3	
39	190	370150 6891491	3	
40	195	370155 6891491	3	
41	200	370159 6891489	3	
42	205	370163 6891486	3	

Electrode	Location	GPS-Coordinates	GPS-	Post
NO.	[m]	NAD 83	[m]	["]
43	210	370167 6891484	3	
44	215	370172 6891483	3	
45	220	370177 6891482	3	
46	225	370182 6891482	3	
47	230	370187 6891481	3	
48	235	370192 6891480	3	
49	240	370196 6891476	3	
50	245	370200 6891474	3	
51	250	370205 6891472	3	
52	255	370209 6891471	3	
53	260	370215 6891471	3	
54	265	370219 6891468	3	
55	270	370224 6891466	3	
56	275	370229 6891466	3	
57	280	370234 6891464	3	
58	285	370239 6891464	3	
59	290	370244 6891463	3	
60	295	370249 6891461	3	
61	300	370253 6891459	3	
62	305	370258 6891458	3	
62	210	270262 6801457	2	
64	215	270268 6801456	2	
65	220	270272 6901454	2	
66	320	270272 6801454	2	
67	325	370277 0691452	2	
67	225	370282 0891430	2 2	
68	335	370280 0891448	3	
69 70	340	370291 0891445	3	
70	345	370295 6891443	3	
71	350	370300 6891441	3	
72	355	370305 6891439	3	
73	360	370309 6891438	3	
74	365	370314 6891436	3	
75	370	370319 6891435	3	
76	375	370324 6891434	3	
//	380	370329 6891433	3	
/8	385	370334 6891433	3	
79	390	370338 6891432	3	
80	395	370343 6891431	3	
81	400	370348 6891430	3	
82	405	370353 6891429	3	
83	410	370357 6891428	3	
84	415	370362 6891427	3	
85	420	370367 6891425	3	
86	425	370372 6891424	3	
87	430	370377 6891422	3	

Electrode No.	Location in Profile [m]	GPS-Coordinates UTM Zone 8 NAD 83	GPS- Accuracy [m]	Post [*]
88	435	370382 6891420	3	
89	440	370386 6891418	3	
90	445	370390 6891416	3	
91	450	370395 6891414	3	
92	455	370399 6891412	3	
93	460	370404 6891410	3	
94	465	370409 6891408	3	
95	470	370414 6891406	3	
96	475	370419 6891406	3	*

Profile 02

Electrode No.	Location in Profile	GPS-Coordinates UTM Zone 8	GPS- Accuracy	Post [*]
	[m]	NAD 83	[m]	
1	0	370974 6892297	3	*
2	5	370974 6892293	3	
3	10	370975 6892287	3	
4	15	370976 6892282	3	
5	20	370978 6892278	3	
6	25	370978 6892273	3	
7	30	370979 6892267	3	
8	35	370981 6892262	3	
9	40	370982 6892257	3	
10	45	370984 6892253	3	
11	50	370985 6892248	3	
12	55	370986 6892243	3	
13	60	370987 6892239	3	
14	65	370988 6892234	3	
15	70	370989 6892229	3	
16	75	370991 6892224	3	
17	80	370992 6892220	3	
18	85	370994 6892215	3	
19	90	370995 6892210	3	
20	95	370996 6892206	3	
21	100	370998 6892201	3	
22	105	370999 6892196	3	
23	110	371001 6892191	3	
24	115	371002 6892187	3	
25	120	371003 6892181	3	
26	125	371004 6892176	3	
27	130	371005 6892172	3	
28	135	371006 6892167	3	
29	140	371007 6892162	3	
30	145	371008 6892157	3	

Electrode	Location	GPS-Coordinates	GPS-	Post
NO.	[m]	NAD 83	[m]	LJ
31	150	371009 6892152	3	
32	155	371010 6892147	3	
33	160	371012 6892142	3	
34	165	371013 6892137	3	
35	170	371014 6892132	3	
36	175	371015 6892127	3	
37	180	371017 6892122	3	
38	185	371018 6892118	3	
39	190	371019 6892113	3	
40	195	371020 6892107	3	
41	200	371022 6892103	3	
42	205	371023 6892098	3	
43	210	371024 6892093	3	
44	215	371025 6892088	3	
45	220	371026 6892084	3	
46	225	371027 6892079	3	
47	230	371028 6892074	3	
48	235	371029 6892069	3	
49	240	371029 6892063	3	
50	245	371031 6892059	3	
51	250	371032 6892055	3	
52	255	371032 6892050	3	
53	260	371033 6892044	3	
54	265	371035 6892039	3	
55	270	371036 6892034	3	
56	275	371037 6892029	3	
57	280	371039 6892025	3	
58	285	371039 6892020	3	
59	290	371040 6892016	3	
60	295	371041 6892010	3	
61	300	371042 6892004	3	
62	305	371044 6891999	3	
63	310	371045 6891994	3	
64	315	371046 6891989	3	
65	320	371047 6891984	3	
66	325	371047 6891980	3	
67	330	371048 6891976	3	
68	335	371049 6891972	3	
69	340	371050 6891967	3	
70	345	371051 6891962	3	
71	350	371051 6891958	3	
72	355	371052 6891953	3	
73	360	371053 6891948	3	
74	365	371054 6891943	3	
75	370	371055 6891938	3	

Electrode No.	Location in Profile	GPS-Coordinates UTM Zone 8	GPS- Accuracy	Post [*]
	[m]	NAD 83	[m]	
76	375	371056 6891933	3	
77	380	371057 6891928	3	
78	385	371057 6891923	3	
79	390	371058 6891918	3	
80	395	371059 6891913	3	
81	400	371060 6891908	3	
82	405	371061 6891904	3	
83	410	371062 6891899	3	
84	415	371063 6891894	3	
85	420	371064 6891890	3	
86	425	371066 6891885	3	
87	430	371067 6891880	3	
88	435	371068 6891875	3	
89	440	371068 6891870	3	
90	445	371069 6891865	3	
91	450	371070 6891861	3	
92	455	371071 6891856	3	
93	460	371072 6891851	3	
94	465	371073 6891845	3	
95	470	371073 6891840	3	
96	475	371074 6891835	3	*