Geophysical and Drone imaging Report

On Soda and Spud Creek Placer Prospecting Leases

Dawson Mining District

Soda Creek Lease No.: ID01289
Owner: Miville-Louie Fournier 100%

Spud Creek Lease No.: ID01288
Owner: Miville-Jacques Fournier 100%

Prepared by: Isaac Fage
GroundTruth Exploration Inc.

Location: 508400E, 7039375N
NTS Mapsheet: 115N/407
Report Date: 3 June 2016
Table of Contents

Contents

Summary ... 3

1.0 History .. 3

2.0 Survey location and description .. 3

3.0 Geology .. 5

4.0 Survey Objective ... 6

5.0 GPR system and basic principle ... 6

6.0 Drone System ... 7

7.0 Results and interpretation ... 8

8.0 Project Expenses .. 17

9.0 Statement of Qualifications ... 17

10.0 Conclusions and recommendations .. 18
Summary
A high resolution GPR survey was conducted in conjunction with a UAV drone aerial photography survey on each of the Soda and Spud Creek placer leases located in the Dawson Mining District on NTS Mapsheet 115N/07. A total of 4 cross creek profiles were surveyed on each lease and UAV Drone coverage was surveyed on the full extent of both leases GPR profiles indicated depth to bedrock. Drill testing is necessary to verify depths. The UAV drone survey was successful in producing a high quality imagery and topography model of each lease to define next exploration targets.

1.0 History
Soda and Spud creeks had one limited program of drill testing on each creek near the mouth. The drilling was done by Hilker in the 1980s. Drilling results returned gold on both creeks. No further work has been reported since this activity.

2.0 Survey location and description
Soda and Spud creeks are adjacent and both flow West into the Ladue River. They are located approximately located 90 km South-West of Dawson. It would be accessible by road in summer by way of historic road that would require some maintenance to be useable. It is currently accessible by helicopter only. See figure 1 for location.
Figure 1 – Location of Soda and Spud Creek Leases.
3.0 Geology

The Minneapolis creek placer lease is underlain by a YGS mapped unit CPK1. It is comprised of quartzite/schist/amphibolite. See figure 2 below for property geology.

Figure 2: Bedrock Geology
4.0 Survey Objective
The main objectives of the survey was to map depth to bedrock, and to delineate any buried channel that exists along the creek. Alluvial gold is expected to be concentrated at the base of the gravels and the bedrock. To accomplish the above objectives 2D radar sections were surveyed to detect reflectors which correlate with the bedrock interface. The objective of the UAV drone survey is A) to provide a high resolution topographic surface in order to aid in determination of creek features, and B) to provide high resolution aerial photography.

5.0 GPR system and basic principle
Ground penetrating radar(GPR) works like seismic, in that it is based on transmitting energy to the ground and measuring the time taken for the energy to be reflected back at geological targets, be they localised ore-bodies or geological interfaces/boundaries. Instead of seismic or shock waves, GPR transmits electromagnetic energy of high frequency compared to other geophysical methods. It is a very high resolution technique that is very site specific, for example it works very well where the target is within a host rock that has a higher electrical resistivity compared to the target itself, and where there are no conductive surficial layers to absorb radar energy before reaching the target. Another important factor is that radar energy can be scattered and not captured optimally if the reflecting geology or target is not consolidated or of a certain geometry. In conductive settings GPR is a fast high resolution method, can be operated by a single person and can supplement other geophysical methods very well. Depth of penetration can be a few to hundreds of meters in electrically resistive soils and rocks. For this particular project, the “snake” UltraGPR supplied by Groundradar (see www.groundradar.com) was used. The system works together with a differential GPS (RTK-DGPS) for data positioning and a portable data logger.

![UltraGPR 30MHz system](image)
6.0 Drone System

The Drone survey is typically conducted by one trained operator and one spotter. The lead operator is responsible for coordinating efficient operation of survey and ensuring optimal data quality, the spotter is responsible for maintaining visual contact with the drone, monitoring the radio, and looking for flight path conflicts.

The following equipment is used for the completion of the survey:

- **UAV Drone:** Ebee UAV ‘Drone’ with internal GPS and radio link
- **Camera:** Cannon 16 megapixel camera
- **Base Station:** Panasonic Toughbook laptop with radio link
- **Power Generation:** 1000watt Honda generator (for battery charging)
- **GPS units:** 2x Promark3 GPS receivers (if GCPs are collected)
- **Radios:** VHF radio with aircraft frequencies
- **Processing:** Laptop computer with adequate RAM
- **Software:** Emotion software for flight planning/monitoring
 Postflight Terra3D for image Orthorectification

The survey is completed in the field according to the following procedure:
- Survey is planned using Emotion software prior to departing for field.
- Spatial resolution, footprint, number of planned flights and launch location is determined.
- Operator arrives onsite and sets up base station, UAV unit and ensures adequate launch and landing path is available.
- Prior to launch, operator calls out on Aircraft frequencies to notify Drone survey in progress. Through duration of survey, operator calls out every 5 minutes to notify aircraft of survey in progress.
- Operator Hand launches aircraft and flies survey as planned with number of required flights and maintains visual contact with the UAV
- Data is downloaded from drone after each flight and inspected for quality.
- After survey, all imagery and drone data files are Orthorectified using Postflight Terra 3D software package.

The collected data is downloaded in the field after every flight and checked for integrity. This allows any low quality imagery to be identified and resurveyed while onsite. The drone imagery data is processed every evening by the lead operator in the field using Postflight Terra 3D software provided by Sensefly. The initial orthorectified image product is generated by an automated process. This image is then cleaned up manually within the Postflight software by visually checking for low quality portions of the image and selecting another overlapping image for that location. The final cleaned image and DEM product is the result of this manual QC process. The final Image and DEM are georeferenced to NAD83 UTM projection. A final QC report is generated automatically with the final cleaned product.
7.0 Results and interpretation

The GPR 2D sections show a signal character change in the upper and lower sections. Verification by way of drill testing is needed to further interpret the data. The radargrams have been symbolized using a Red-Green-Blue color ramp to highlight reflectors and the main transition zone. The upper layer is interpreted as surficial sediments consisting of organic permafrost overlying gravels. Results from the survey show inconsistent reflectors and data dropouts in areas of interest. It is difficult to determine true depth to bedrock from this survey.
Figure 5: Soda Survey Locations with Historic Drilling

Figure 6: Soda Historic Drill
Figures 8-11: Soda GPR Radargram sections
Figure 12: Spud Survey Locations

Figure 13: Historic Spud Drilling
Figure 14: Detail Figure of Spud Survey with GPR/Drone/Historic Drilling
Figure 15-18 – Spud Creek Radargram sections 16-01,
8.0 Project Expenses

<table>
<thead>
<tr>
<th>Invoice for work on Soda Lease:</th>
<th>Invoice for work on Spud Lease:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID01288: May 12/2016 Survey Expenses</td>
<td>ID01288: May 12/2016 Survey Expenses</td>
</tr>
<tr>
<td>3 mile lease:</td>
<td>3 mile lease:</td>
</tr>
<tr>
<td>GPR Survey:</td>
<td>GPR Survey:</td>
</tr>
<tr>
<td>GPR Operator - $450/day (1/2 day)</td>
<td>$450/day (1/2 day)</td>
</tr>
<tr>
<td>GPR Unit - $300/day (1/2 day)</td>
<td>$150</td>
</tr>
<tr>
<td>GPR Processing 4 profiles @ $60</td>
<td>$240</td>
</tr>
<tr>
<td>Interpretation - 4h * $75</td>
<td>$300</td>
</tr>
<tr>
<td>Report - $500 (split on Soda/Spud)</td>
<td>$250</td>
</tr>
<tr>
<td>Drone Operator $500</td>
<td>$500</td>
</tr>
<tr>
<td>Assistant Operator $350</td>
<td>$350</td>
</tr>
<tr>
<td>Drone $500</td>
<td>$500</td>
</tr>
<tr>
<td>Processing 6 flights @ $100</td>
<td>$600</td>
</tr>
<tr>
<td>Total Invoice: $5,115</td>
<td>Total Invoice: $5,115</td>
</tr>
</tbody>
</table>

9.0 Statement of Qualifications

I, Isaac Fage have continuously been involved in Mineral Exploration since 2004. I hold an advanced diploma in Remote Sensing and GIS from the Centre of Geographic Sciences in Lawrencetown, Nova Scotia. I have overseen the survey work described in this report on the Soda and Spud Creek placer leases.

Dated this 3rd day of June, 2016 in Dawson, YT.

Respectfully submitted

Isaac Fage
10.0 Conclusions and recommendations

The UAV Drone survey provided excellent quality data for targeting and planning to advance exploration activity on the Soda and Spud placer leases. The GPR work conducted was done to determine depth to bedrock. The reflectors outlined by the survey did not clearly define bedrock depth and it is not recommended to use this tool for further work on the lease. Alternatively, DC Resistivity is recommended as a more suitable method to interpret depth to bedrock in these creeks. Drilling is recommended as historic drill results were encouraging and no follow up was done.