

PO Box 31441 RPO Main Street, Whitehorse, YT, Y1A 6K8 Phone: (867)456-4343 / Fax: (867)456-4243 info@arctic-geophysics.com www.arctic-geophysics.com

2D Resistivity Survey for Placer Gold Prospecting at Congdon Creek, Yukon

Survey and Report prepared for:

Tic Exploration Ltd.

Box 31450 Whitehorse YT. Y1A 6K8

Whitehorse Mining District Placer Claims

CONG 23 P510036, CONG 24 P510037, CONG 25 P510038

NTS MAPSHEET 115Q02 (Congdon Creek)

Location (UTM): 627463 6780534

Survey Performed February 11-15, 2016

OWNER: Tic Exploration Ltd.

CONSULTANT:Arctic Geophysics Inc.PO Box 31441 RPO Main St, Whitehorse, YT, Y1A 6K8AUTHOR:Pearce Luck, Arctic Geophysics Inc.

DATE SUBMITTED: February 25th, 2016

Table of Contents

	1
2. Crew	1
3. Fieldwork – Schedule	1
4. Geophysical Method	1
5. Use of Geophysical Method	3
5.1. Instrumentation	3
5.2. Data Acquisition	3
5.3. Processing	4
5.4. Inversion Quality	4
5.5. Interpretation	4
6. Profile image	4
7. Line Arrangement	4
8. Considerations – Winter Survey 2016 - Congdon Creek	4
9. Survey Map	6
10. Results	7
10.1 Line 01 Resistivity Profile	7
10.1 Line 02 Resistivity Profile	8
10.1 Line 03 Resistivity Profile	9
10.1 Line 04 Resistivity Profile	
11. Profile Interpretations	
11. 1 Line 01	
	11
11.1 Line 01	11
11.1 Line 01 11.2 Line 02	11
11.1 Line 01 11.2 Line 02 11.3 Line 03	
11.1 Line 01 11.2 Line 02 11.3 Line 03 11.4 Line 04	
11.1 Line 01 11.2 Line 02 11.3 Line 03 11.4 Line 04 12. Data Quality (winter condition specific)	
 11.1 Line 01. 11.2 Line 02. 11.3 Line 03. 11.4 Line 04. 12. Data Quality (winter condition specific) 13. Conclusion. 	
 11.1 Line 01. 11.2 Line 02. 11.3 Line 03. 11.4 Line 04. 12. Data Quality (winter condition specific) 13. Conclusion. 14. Recommendations 	
 11.1 Line 01. 11.2 Line 02. 11.3 Line 03. 11.4 Line 04. 12. Data Quality (winter condition specific) 13. Conclusion. 14. Recommendations 15. Qualifications 	
 11.1 Line 01	
 11.1 Line 01. 11.2 Line 02. 11.3 Line 03. 11.4 Line 04. 12. Data Quality (winter condition specific)	
 11.1 Line 01. 11.2 Line 02. 11.3 Line 03. 11.4 Line 04. 12. Data Quality (winter condition specific) 13. Conclusion. 14. Recommendations 15. Qualifications Confirmation Costs Appendix 	
 11.1 Line 01	11 11 11 12 13 13 13 13 13 13 13 13 14 15 16 17 17 17
11.1 Line 01 11.2 Line 02 11.3 Line 03 11.4 Line 04 12. Data Quality (winter condition specific) 13. Conclusion 14. Recommendations 15. Qualifications Confirmation Costs Appendix Work Cited Resistivity of Common Earth Materials	11 11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13

Line 03	
Line 04	24

1. Location and Access

This geophysical investigation, using 2D Resistivity, was done at the Congdon Creek claim group for Tic Exploration Ltd.

The 2D Resistivity profiles were conducted to prospect the ground for placer gold mining interests. The geophysical prospecting program was focused on measuring and interpreting the following subsurface characteristics:

- 1. Depth of surficial sediment/bedrock interface
- 2. Thickness of surficial gravel layers

The ground was tested with four 315m long survey lines. The fieldwork was done on February 11-15, 2016.

The survey area is located in the Whitehorse Mining District of Yukon, 20 km south of Destruction Bay on the Alaska Highway.

The survey area was reached via a 2 km spur road off the Alaska Highway, followed by 2.5 km hike on foot along Congdon Creek.

List of claims

Tenure Number	Claim Name	Claim/Lease Owner
P510036	Cong 23	Tic Exploration Ltd.
P510037	Cong 24	Tic Exploration Ltd.
P510038	Cong 25	Tic Exploration Ltd.

2. Crew

Geophysical team:	Pearce Luck, Arctic Geophysics Inc.
	Elijah Istchenko, Arctic Geophysics Inc.
Support, Documentation:	Heidi Kulcheski, Arctic Geophysics Inc.
	Stefan Ostermaier, Arctic Geophysics Inc.
Line planning:	Tic Exploration Ltd. and Arctic Geophysics Inc.

3. Fieldwork – Schedule

Fieldwork: February 11-15, 2016

Processing, Interpretation: February 12-23, 2016

4. Geophysical Method

Resistivity is a material property that measures how strongly a material opposes the flow of electric current. It is typically measured in ohm·m. The purpose of resistivity surveys is to

measure the subsurface resistivity distribution. The resistivity of earth materials is related to mineral species, fluid content, porosity, and degree of water saturation. Resistivity measurements are commonly performed by injecting current through the ground with two current electrodes and measuring the resultant voltage difference between to potential electrodes. The equipment used in this study is designed to measure layer interfaces in depths from 1m to 100m by varying the spacing between electrodes.

Resistivity/IP measuring station, Stefan Ostermaier, Arctic Geophysics Inc., Atlin, BC 2013

5. Use of Geophysical Method

5.1. Instrumentation

For this survey a lightweight, *custom-built* 2D RESISTIVITY imaging system with rapid data acquisition was used. The system includes:

- "4 POINT LIGHT" EARTH RESISTIVITY METER¹
- 64 ELECTRODE CONTROL MODULES²
- 64 STAINLESS STEEL ELECTRODES³
- 320m MULTICORE CABLE: CONNECTOR SPACING: 5m⁴

This system weighs approximately 120 kg which is about one third of regular standard equipment. It is powered with a 12V lead battery. The equipment facilitates high mobility and rapid data acquisition with a small crew.

5.2. Data Acquisition

Resistivity

The data acquisition is carried out by the automatic activation of 4-point-electrodes. Several thousand measurements are taken, one every 1-2 seconds. The AC transmitter current of 0.26 to 30 Hz is amplified by the electrode control modules, up to a maximum of 100mA and 400V peak to peak. The voltage measured at the receiver electrodes (M, N) is also amplified. In this resistivity survey the **Wenner-Schlumberger-array** was used. The Schlumberger array is appropriate to image horizontal layers as is ideal for placer prospecting.

The 2D Resistivity imaging system, used for this survey, allows measurements with a depth of approximately 60m. An electrode spacing of 5m was used, resulting in a horizontal measuring resolution of 2.5m. This spacing has proven itself reliable in the determination of bedrock topography and sedimentary stratigraphy for placer investigation under most environmental conditions.

⁴ Ditto

¹ Constructed and produced by LGM (Germany)

² Ditto

³ Constructed and produced by GEOANALYSIS.DE (Germany)

5.3. Processing

Resistivity

The measured data was processed with the **RES2DINV** inversion program⁵. The inversion (calculated) results determine a model for the subsurface whose response agrees with the measured data subject to certain restrictions and within acceptable limits

5.4. Inversion Quality

The agreement between the measured results and inversion apparent resistivity results is described in terms of RMS error (Root-Mean-Square error). The RMS error is defined as:

RMS error =
$$100 \sqrt{\frac{1}{n} \sum_{i=1}^{n} (R_{a_i} - R_{c_i})^2}$$

Where R_a is apparent resistivity and R_c is the resistivity determined by the inversion.

5.5. Interpretation

Using high quality data the interpretation of the Resistivity model conforms closely to fact and produces a data structure in the model that is most plausible. The resistivity profile is the basic source for the interpretation of placer-related subsurface aspects of overburden and bedrock.

6. Profile image

In the Resistivity profile the interpreted layer interfaces are marked with a black line. The **graphical markings** showing the interpreted layer interfaces (black line) in the profiles are done according to the data structure in the profile itself. The sections have no vertical exaggeration.

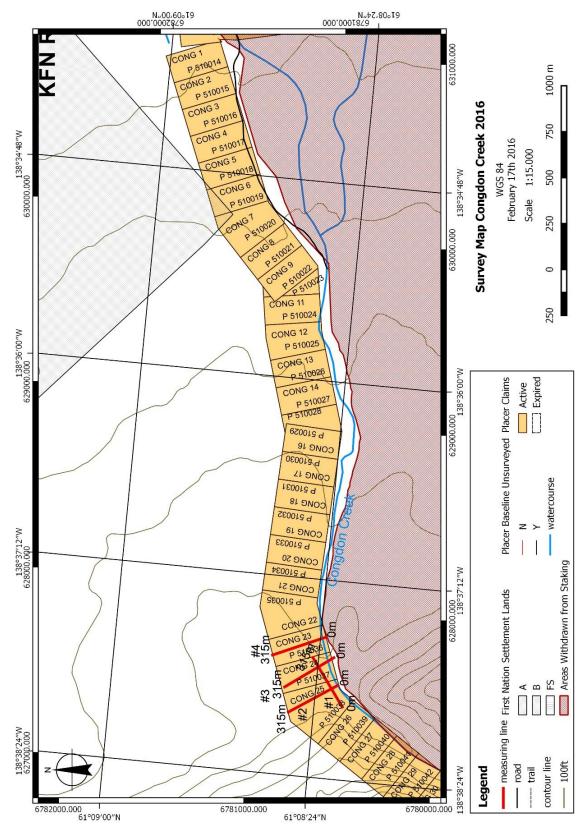
7. Line Arrangement

The line locations were designated by Al Dendys and Arctic Geophysics Inc. Line cutting was not performed in preparation for this survey.

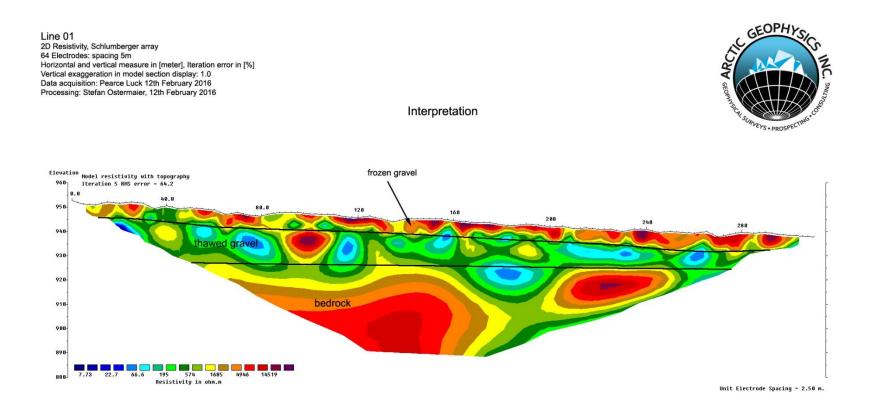
8. Considerations – Winter Survey 2016 - Congdon Creek

Resistivity studies are not ideal in winter conditions however in this case there were time constraints that made it necessary to survey at this time of year. The survey area consisted of a gravel floodplain and treed area. The floodplain extends 80m to 120m North of the Kluane National Park boundary. North-northwest of the floodplain is an area of brush containing

⁵ Produced by GEOTOMO SOFTWARE (Malaysia)


abundant spruce and willows. At the time of surveying, the floodplain was covered in approximately 45cm of snow. The creek and gravel floodplain were frozen solid. Electrode placement in solid ice in some areas was unavoidable; this resulted in less than ideal contact with the ground.

The surficial and bedrock geology of Congdon Creek encountered in this study can be broadly divided into three groups. These include frozen gravel, thawed gravel, and bedrock. The frozen gravel is composed of gravel and ice; it has a range in resistivity values from 1685 to more than 14519 ohm·m (orange to purple). Locally, this frozen surface later also includes a thin cover of frozen topsoil. The thawed gravel is composed of thawed gravel which is saturated with groundwater; its resistivity values range from 22.7 to 1685 ohm·m (blue to green). The bedrock in this study is area ranges from 1685-14519 ohm·m (yellow to purple).


The measuring station was located at the 120m marker on Line 02 in the treed area. Photo taken February 13, 2016. Looking north-northwest.

9. Survey Map

10. Results

10.1 Line 01 Resistivity Profile

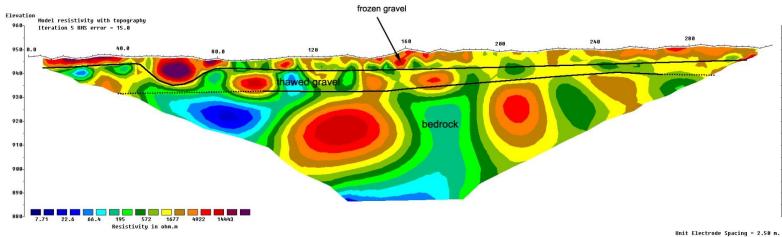
This 2D Resistivity measuring result is an interpretation of geophysical data. We recommend the verification of the profile interpretation with test pits, drilling, or shafting.

10.1 Line 02 Resistivity Profile

Line 02 2D Resistivity, Schlumberger array 64 Electrodes: spacing 5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display: 1.0 Data acquisition: Pearce Luck 13th February 2016 Processing: Stefan Ostermaier, 13th February 2016

frozen gravel Elevation Model resistivity with topography Iteration 5 RMS error = 13.8 970 160 280 240 288 120 960-40.0 177 80.0 950 948hawed gravel 930bedrock 920-910-900 7.73 22.7 66.6 195 573 1682 4985 14480 Resistivity in ohm.m 898-Unit Electrode Spacing = 2.50 m.

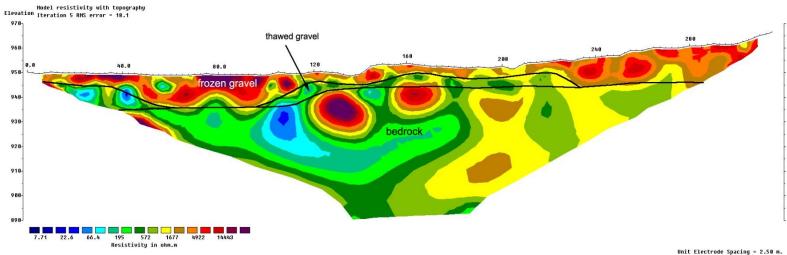
Interpretation


This 2D Resistivity measuring result is an interpretation of geophysical data. We recommend the verification of the profile interpretation with test pits, drilling, or shafting.

10.1 Line 03 Resistivity Profile

Line 03 2D Resistivity, Schlumberger array 64 Electrodes: spacing 5m Horizontal and vertical measure in [meter], Iteration error in [%] Vertical exaggeration in model section display: 1.0 Data acquisition: Pearce Luck 14th February 2016 Processing: Stefan Ostermaier, 14th February 2016

Interpretation


This 2D Resistivity measuring result is an interpretation of geophysical data. We recommend the verification of the profile interpretation with test pits, drilling, or shafting.

10.1 Line 04 Resistivity Profile

Line 04 2D Resistivity, Schlumberger array 64 Electrodes: spacing 5m Vertical exaggeration in model section display: 1.0 Data acquisition: Pearce Luck 15th February 2016 Processing: Stefan Ostermaier, 15th February 2016

GEOPHY VEYS . PROSPEC

Interpretation

This 2D Resistivity measuring result is an interpretation of geophysical data. We recommend the verification of the profile interpretation with test pits, drilling, or shafting.

11. Profile Interpretations

11.1 Line 01

Line 01 was oriented approximately parallel to and lies in the floodplain of Congdon Creek. It extends 315m from the edge of the steep v-shaped valley from which the creek originates. The section is looking north-northwest. Three layers are distinguished by contrasting resistivity values. The topmost approximately 5-7m comprise frozen gravel (orange to purple). This is corroborated by the field crew, who encountered frozen-solid ground with abundant cobble to boulder sized rocks.

Underlying the frozen gravel is a layer of thawed, water saturated gravel (blue to green). It is approximately 14m thick at the 50m marker and thins to 7m thick at the 275m marker. The two layers of gravel form a wedge shape which thickens towards the relatively steep grades in the west. The combined thickness of these gravel layers decreases from approximately 20m at the 50m marker to 13m at the 275m marker. This geometry indicates the gravels were deposited as an alluvial fan.

11.2 Line 02

Line 02 was oriented perpendicular to Congdon Creek, transecting 315m of floodplain and treed terrain. The frozen gravel layer is approximately 5m thick between the 0m to 100m markers. At 100m the frozen layer thickens slightly to about 7m at the transition from floodplain to treed terrain. From 100m to the end of the survey line topsoil covers the frozen layer. North of the 185m marker the frozen layer thickens to 27m deep, where it is expected to meet bedrock.

At 40m along Line 02 it intersects Line 01 (120m marker). Line 01 was interpreted to be approximately 18m deep to bedrock at this intersection. The depth to bedrock is expected to be approximately 18m deep from the 40m marker to the 100m marker, where it thickens, reaching a maximum depth of 28m at the 145m marker. The surficial sediments from the 0m-100m markers were thinned by stream erosion by Congdon Creek.

11.3 Line 03

The frozen layer is approximately 4m thick from the 0m to the 50m markers. Between 50m and 80m along the survey line the frozen layer thickens to a maximum of 12m. This feature comprises the frozen creek and its underling saturated gravels; thick ice was observed in this interval. From the 8m marker to the end of the survey line the frozen layer varies from 4-8m thick. At 100m along Line 03 it intersects with Line 01 (260m marker). Line 01 was interpreted to be approximately 13m deep to bedrock at this intersection. The depth to bedrock is expected to be 13m at the 140m marker, becoming more shallow to the North to a minimum depth of 10m at the 245m marker.

11.4 Line 04

The frozen layer is 5m deep from the 0-35m markers. Between the 35m and 120m markers the depth of frozen material is expected to increase to a maximum of 13m, directly overlying bedrock between the 65m and 95m markers. The frozen layer thins to a thickness of 5m from the 120m-220m markers.

From 235m to the end of the survey line the surficial sediments are expected to be frozen down to bedrock. The depth of bedrock is approximately 13m from the 0m-115m markers. From the 115m-210m markers the depth to bedrock is ranges from 5-8m. From 210m to the end of the survey line the depth to bedrock ranges from 10-14m.

Resistivity line on The Congdon Creek floodplain, February 12, 2016. Looking east from the measuring station of Line 01 (200m marker).

12. Data Quality (winter condition specific)

Relatively high RMS errors were encountered in the inversion profiles. Line 01 has an RMS error of 64.2%, Line 02 has 13.8%, Line 03 has 15.0%, and Line 04 has 18.1%. The most significant source of error on this survey was poor contact between electrodes and the ground. On parts of the frozen floodplain the survey line crossed over a frozen creek. Electrodes had to be driven into solid ice in these locations, resulting in less than ideal contact. The full length of Line 01 was located on the floodplain and encountered more ice than the other lines. As a result, Line 01 has the highest RMS error.

Under ideal conditions the RMS error could be reduced by increasing the number of measurements. This process also increases the time duration of the survey. Time pressures on this survey included working in winter conditions (digging through snow and hammering electrodes in to frozen gravel and ice), remote access to the specified survey location travelling on foot (2.5km from road access), and limited daylight (reasonable visibility between 9:00am and 6:00pm). For these reasons lengthening the time duration of the survey was not feasible.

The quality of data is considered by the author to be adequate for the purposes of this report. The structures and types of surficial sediments have been identified with confidence. The depths of layer thicknesses, depths of layer interfaces, and depths to bedrock described should be accurate to within several metres.

13. Conclusion

This survey successfully determined the depth to bedrock across four resistivity lines. The wedgeshaped geometry of Line 01 suggests that where Congdon Creek exits the v-shaped valley it deposited stream gravels in an alluvial fan. Line 02 indicates that stream erosion has significantly eroded the gravels in the Congdon Creek floodplain in the vicinity of this alluvial fan. To the East, Lines 03 and 04 have depths to bedrock that decrease beyond the extent of the floodplain.

14. Recommendations

It is recommended that the results of this survey are tested by drilling or digging of test pits. Specifically, the depth to bedrock at the 60m, 120m, and 260m markers of Line 01. Drilling at these locations would confirm the alluvial fan geometry. Such a formation could be highly prospective for placer gold mining. Drilling the 120m and 260m markers would also corroborate the interpreted depth to bedrock of Line 03 and Line 04, which intersect Line 01 at these locations.

15. Qualifications

Pearce Luck, Geologist (GIT), Arctic Geophysics Inc.

PO Box 31441 RPO Main St, Whitehorse, YT, Y1A 6K8 867-456-4343 / pearce.luck@arctic-geophysics.com

Work Experience

Arctic Geophysics Inc.	Whitehorse, YT
Geological Consultant	May 2015-present
British Columbia Geological Survey	Victoria, BC
Geological Assistant	September 2013-May 2015
Miocene Metals Ltd	Pemberton, BC
Geologic Field Assistant	May-June 2012
SI Geophysics Itd	Izok Camp NII/Nakusp BC

SJ Geophysics Ltd Geophysical Technician Izok Camp, NU/Nakusp, BC June-August 2011

Publications

Luck, P. and Simandl, G.J., 2014. Portable X-ray fluorescence in stream sediment chemistry and indicator mineral surveys, Lonnie carbonatite complex, British Columbia. In: Geological Fieldwork 2013, BC Geological Survey Paper 2014-1, pp. 169-182.

Fajber, R., Simandl, G.J., and Luck, P., 2015. Exploration for carbonatite-hosted niobiumtantalum deposits using biogeochemical methods (orientation survey), Blue River area, British Columbia, Canada. Proceedings of the 47th Forum on the Geology of Industrial Minerals, held May 15-17 in Champaign, Illinois, In Press.

Education

University of Victoria BSc (Honours) Earth Science Victoria, BC Graduated 2013

Confirmation

I have interpreted the data and prepared this report entitled **2D Resistivity Survey for Placer Gold Prospecting at Congdon Creek, Yukon** for assessment credit, the survey was carried out by Arctic Geophysics Inc. of Whitehorse, Yukon Territory

Pearce Luck

Pluck

Costs

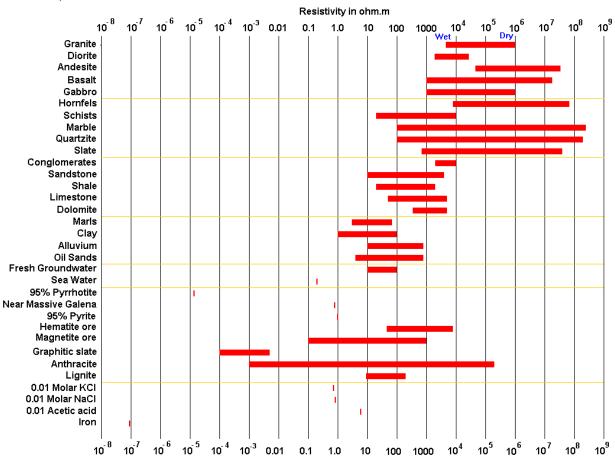
PO Box 31441 RPO Main Street, Whitehorse, YT, Y1A 6K8 Ph: (867) 456-4343 Fx: (867)456-4243 info@arctic-geophysics.com www.arctic-geophysics.com

Attr: Sam / Al Dendys Tic Exploration Ltd. Box 31450 Whitehorse, Yukon, Y1A 6K8 INVOICE

Invoice No : 2016-T-02-0101 Date : 2/23/16

Job:		Payment Terms	
Congdon Creel	1	Invoices are due upon receipt	
CONG 25 P51003	6, CONG 24 P510037, CONG 25 P510038		
Quantity	Description		Amount
1	Mob/Demob Costs		
1 day	Mobilize/Prep gear/truck etc (Winter Project)		\$500.00
1 trip	Airfare - Geologist		\$770.00
2 days	Ford Diesel F350 4x4 Pickup Truck @ \$120.00 day		\$240.00
2 x .5 days	Travel Time - Whse to Dbay (2 persons) @ 75% of Survey	Rate	\$1,312.50
877 kms	From Odometer - Begin to end Survey @ .55 km		\$482.35
2 days	Meals - Travel - 2 persons @ \$75.00/day/person		\$300.00
	Total Mob/Demob Costs		\$3,604.85
	Geophysical Survey Costs		
4 days	Geoelectrical 2D Resistivity Custom Imaging System:		\$7,000.00
	96 Electrodes, 6 Electrode Control Modules, 475m multi-	core Cable, Laptops	
	GPS, Altimeter, 2 person crew @ \$1750.00 day		
2 x .5 days	Additional Survey Work / difficult winter conditions @ sta	indard daily rate	\$1,750.00
4 days	Meals - 2 persons @ \$75.00/day/person		\$600.00
4 days	Ford Diesel F350 4x4 Pickup Truck @ \$120.00 day		\$480.00
1.5 days	Data Analysis, Interpretation, Processing & Formal Assess	ment Report @ 75% of Survey Rate	\$1,968.75
Extra time	Additional hours over and above standard (10 hrs) - 12-14 hr da	ys, 4 km round trip from survey site to pick up (i.e. 16kms to	
	hike in to both bring gear in and out on backpacks + survey day	trips), waist deep snow, brushing & clearing	\$1,000.00
Other	Snowshoe rentals - freight to bring up snowshoes and ot	her chainsaw/gas etc 189.00 + 60.00	\$249.00
	Total Survey Costs		\$13,047.75
		Subtotal	\$16,652.60
		G.S.T. (5%) #846363216RT0001	832.63
		TOTAL SURVEY COST	\$ 17,485.23
		Less Advance Payment	\$ (7,200.00)
THANK YOU	WE APPRECIATE YOUR BUSINESS!	TOTAL DUE	\$ 10,285.23

Please make all checks payable to ARCTIC GEOPHYSICS INC.


Advance or Final Payments can be made by Bank Transfer/direct deposit

Please contact the office (867)456-4343 or info@arctic-geophysics.com for Banking Information

Appendix

Work Cited

Loke , M.H., 2015. Tutorial : 2-D and 3-D electrical imaging surveys

Resistivity of Common Earth Materials

From Loke (2015).

GPS Data

Line 01

Electrode	Location in	GPS Coordinates	GPS Accuracy	Post
No.	Profile [m]	UTM	[m]	
		NAD83		
1	0	627463 ;6780534	3m	х
2	5	627466 ;6780537	3m	
3	10	627470 ;6780540	3m	
4	15	627474 ;6780546	3m	
5	20	627478 ;6780548	3m	
6	25	627481 ;6780551	3m	
7	30	627486 ;6780554	3m	
8	35	627489 ;6780558	3m	
9	40	627493 ;6780561	3m	
10	45	627498 ;6780564	3m	
11	50	627501 ;6780566	3m	
12	55	627505 ;6780569	3m	
13	60	627509 ;6780571	3m	
14	65	627512 ;6780575	3m	
15	70	627516 ;6780578	3m	
16	75	627521 ;6780581	3m	
17	80	627524 ;6780584	3m	
18	85	627528 ;6780586	3m	
19	90	627531 ;6780589	3m	
20	95	627535 ;6780593	3m	
21	100	627538 ;6780596	3m	
22	105	627543 ;6780599	3m	
23	110	627547 ;6780602	3m	
24	115	627551 ;6780605	3m	
25	120	627555;6780608	3m	
26	125	627558 ;6780611	3m	
27	130	627562 ;6780614	3m	
28	135	627566 ;6780617	3m	
29	140	627570 ;6780620	3m	
30	145	627574 ;6780623	3m	
31	150	627578; 6780626	3m	
32	155	627582 ;6780629	3m	
33	160	627586 ;6780632	3m	
34	165	627589 ;6780635	3m	
35	170	627593 ;6780639	3m	
36	175	627597 ;6780642	3m	
37	180	627601 ;6780645	3m	
38	185	627605 ;6780648	3m	
39	190	627609 ;6780651	3m	
40	195	627613 ;6780655	3m	
41	200	627616 ;6780657	3m	
42	205	627619 ;6780661	3m	

Electrode	Location in	GPS Coordinates	GPS Accuracy	Post
No.	Profile [m]	UTM	[m]	
		NAD83		
43	210	627624 ;6780664	3m	
44	215	627628;6780667	3m	
45	220	627632 ;6780671	3m	
46	225	627636;6780675	3m	
47	230	627640 ;6780678	3m	
48	235	627644 ;6780681	3m	
49	240	627649 ;6780684	3m	
50	245	627652 ;6780686	3m	
51	250	627656 ;6780689	3m	
52	255	627661 ;6780692	3m	
53	260	627664 ;6780694	3m	
54	265	627667 ;6780698	3m	
55	270	627671 ;6780700	3m	
56	275	627675 ;6780704	3m	
57	280	627679 ;6780707	3m	
58	285	627683;6780710	3m	
59	290	627687 ;6780714	3m	
60	295	627691 ;6780716	3m	
61	300	627695 ;6780719	3m	
62	305	627699 ;6780721	3m	
63	310	627703 ;6780724	3m	
64	315	627706 ;6780727	3m	х

Line 02

Electrode	Location in	GPS Coordinates	GPS Accuracy	Post
No.	Profile [m]	UTM	[m]	
	^	NAD83	<u> </u>	
1	0	627576;6780573	3m	Х
2	5	627574 ;6780578	3m	
3	10	627571 ;6780582	3m	
4	15	627568 ;6780587	3m	
5	20	627565 ;6780591	3m	
6	25	627563 ;6780595	3m	
7	30	627560 ;6780600	3m	
8	35	627558 ;6780604	3m	
9	40	627555 ;6780609	3m	
10	45	627552 ;6780613	3m	
11	50	627549 ;6780617	3m	
12	55	627546 ;6780620	3m	
13	60	627543 ;6780625	3m	
14	65	627540 ;6780628	3m	
15	70	627537 ;6780632	3m	
16	75	627534 ;6780637	3m	
17	80	627531 ;6780641	3m	
18	85	627529 ;6780645	3m	
19	90	627526 ;6780648	3m	
20	95	627524 ;6780649	3m	
21	100	627521 ;6780654	3m	
22	105	627519 ;6780657	3m	
23	110	627515 ;6780663	3m	
24	115	627512 ;6780666	3m	
25	120	627510 ;6780668	3m	
26	125	627506 ;6780673	3m	
27	130	627502 ;6780677	3m	
28	135	627499 ;6780681	3m	
29	140	627496 ;6780684	3m	
30	140	627494 ;6780688	3m	
31	145	627491 ;6780692	3m	
31	155	627486 ;6780696		
		,	3m 2m	
33 34	160	627483 ;6780700	3m 2m	
	165	627480 ;6780703 627478 ;6780707	3m	
35	170	•	3m	
36	175	627474 ;6780711	3m	
37	180	627471 ;6780715	3m	
38	185	627468 ;6780719	3m	
39	190	627464 ;6780724	3m	
40	195	627462 ;6780728	3m	
41	200	627459 ;6780731	3m	
42	205	627457 ;6780736	3m	
43	210	627454 ;6780739	3m	

Electrode	Location in	GPS Coordinates	GPS Accuracy	Post
No.	Profile [m]	UTM	[m]	
		NAD83		
44	215	627453 ;6780743	3m	
45	220	627449 ;6780747	3m	
46	225	627446 ;6780750	3m	
47	230	627443 ;6780754	3m	
48	235	627440 ;6780757	3m	
49	240	627439 ;6780761	3m	
50	245	627436 ;6780766	3m	
51	250	627434 ;6780770	3m	
52	255	627431 ;6780773	3m	
53	260	627429 ;6780778	3m	
54	265	627425 ;6780783	3m	
55	270	627423 ;6780786	3m	
56	275	627419 ;6780790	3m	
57	280	627417 ;6780795	3m	
58	285	627414 ;6780799	3m	
59	290	627412 ;6780803	3m	
60	295	627409 ;6780806	3m	
61	300	627406 ;6780811	3m	
62	305	627403 ;6780814	3m	
63	310	627399 ;6780818	3m	
64	315	627396 ;6780822	3m	x

Line 03				
Electrode	Location in	GPS Coordinates	GPS Accuracy	Post
No.	Profile [m]	UTM	[m]	
		NAD83		
1	0	627722 ;6780615	3m	х
2	5	627720 ;6780619	3m	
3	10	627717 ;6780623	3m	
4	15	627714 ;6780627	3m	
5	20	627711 ;6780632	3m	
6	25	627708 ;6780636	3m	
7	30	627705 ;6780641	3m	
8	35	627702 ;6780645	3m	
9	40	627699 ;6780650	3m	
10	45	627696 ;6780654	3m	
11	50	627693 ;6780658	3m	
12	55	627690 ;6780661	3m	
13	60	627687 ;6780666	3m	
14	65	627684 ;6780670	3m	
15	70	627681 ;6780674	3m	
16	75	627677 ;6780677	3m	
17	80	627674 ;6780681	3m	
18	85	627671 ;6780685	3m	
19	90	627668 ;6780689	3m	
20	95	627665 ;6780692	3m	
21	100	627662 ;6780696	3m	
22	105	627658 ;6780697	3m	
23	110	627656; 6780701	3m	
24	115	627653 ;6780706	3m	
25	120	627651 ;6780710	3m	
26	125	627648 ;6780714	3m	
27	130	627644 ;6780719	3m	
28	135	627641 ;6780722	3m	
29	140	627639 ;6780726	3m	
30	145	627637 ;6780730	3m	
31	150	627635 ;6780734	3m	
32	155	627630 ;6780738	3m	
33	160	627627;6780742	3m	
34	165	627624 ;6780746	3m	
35	170	627620 ;6780750	3m	
36	175	627618;6780754	3m	
37	180	627614 ;6780757	3m	
38	185	627612;6780762	3m 2m	
39	190	627607 ;6780765	3m	
40	195	627604 ;6780768	3m 2m	
41	200	627601;6780773	3m	
42	205	627599 ;6780775	3m 2m	
43	210	627596 ;6780779	3m	

Electrode	Location in	GPS Coordinates	GPS Accuracy	Post
No.	Profile [m]	UTM	[m]	
		NAD83		
44	215	627591 ;6780782	3m	
45	220	627588 ;6780785	3m	
46	225	627585 ;6780788	3m	
47	230	627582 ;6780794	3m	
48	235	627577 ;6780797	3m	
49	240	627575 ;6780801	3m	
50	245	627572 ;6780804	3m	
51	250	627569 ;6780809	3m	
52	255	627566 ;6780812	3m	
53	260	627562 ;6780816	3m	
54	265	627561 ;6780819	3m	
55	270	627557 ;6780824	3m	
56	275	627553 ;6780827	3m	
57	280	627551 ;6780831	3m	
58	285	627549 ;6780835	3m	
59	290	627546 ;6780839	3m	
60	295	627540 ;6780844	3m	
61	300	627539 ;6780847	3m	
62	305	627536 ;6780851	3m	
63	310	627532 ;6780855	3m	
64	315	627530 ;6780859	3m	х

Line 04						
Electrode	Location in	GPS Coordinates	GPS Accuracy	Post		
No.	Profile [m]	UTM	[m]			
NAD83						
1	0	627829 ;6780670	3m	х		
2	5	627827 ;6780675	3m			
3	10	627825 ;6780680	3m			
4	15	627823 ;6780685	3m			
5	20	627821 ;6780690	3m			
6	25	627819 ;6780694	3m			
7	30	627817 ;6780699	3m			
8	35	627814 ;6780703	3m			
9	40	627812 ;6780707	3m			
10	45	627810 ;6780712	3m			
11	50	627808 ;6780715	3m			
12	55	627806; 6780721	3m			
13	60	627803 ;6780725	3m			
14	65	627801 ;6780729	3m			
15	70	627799 ;6780734	3m			
16	75	627797 ;6780738	3m			
17	80	627795 ;6780742	3m			
18	85	627793 ;6780747	3m			
19	90	627791 ;6780752	3m			
20	95	627789 ;6780756	3m			
21	100	627787 ;6780761	3m			
22	105	627785 ;6780766	3m			
23	110	627783 ;6780770	3m			
24	115	627781 ;6780775	3m			
25	120	627779 ;6780780	3m			
26	125	627776 ;6780784	3m			
27	130	627774 ;6780788	3m			
28	135	627772 ;6780792	3m			
29	140	627771 ;6780797	3m			
30	145	627769 ;6780800	3m			
31	150	627767 ;6780805	3m			
32	155	627766 ;6780811	3m			
33	160	627761 ;6780815	3m			
34	165	627760 ;6780818	3m			
35	170	627759 ;6780823	3m			
36	175	627755 ;6780829	3m			
37	180	627752 ;6780832	3m			
38	185	627751 ;6780837	3m			
39	190	627749 ;6780841	3m			
40	195	627747 ;6780846	3m			
41	200	627744 ;6780850	3m			
42	205	627740 ;6780853	3m			
43	210	627739 ;6780856	3m			

Electrode	Location in	GPS Coordinates	GPS Accuracy	Post
No.	Profile [m]	UTM	[m]	
		NAD83		
44	215	627737 ;6780862	3m	
45	220	627735 ;6780867	3m	
46	225	627733 ;6780871	3m	
47	230	627731 ;6780875	3m	
48	235	627728 ;6780880	3m	
49	240	627724 ;6780883	3m	
50	245	627723 ;6780887	3m	
51	250	627722 ;6780893	3m	
52	255	627719 ;6780898	3m	
53	260	627716 ;6780902	3m	
54	265	627713 ;6780907	3m	
55	270	627711 ;6780911	3m	
56	275	627709 ;6780916	3m	
57	280	627706 ;6780918	3m	
58	285	627703 ;6780923	3m	
59	290	627702 ;6780928	3m	
60	295	627700 ;6780933	3m	
61	300	627698 ;6780936	3m	
62	305	627697 ;6780940	3m	
63	310	627695 ;6780943	3m	
64	315	627692 ;6780948	3m	x