Assessment Report on the Gold Run Property

GR-1 to 2	YC60638 to YC60639								
GR-3 to 12	YC60640 to YC60649								
GR-13 to 14	YC60650 to YC60651								
GR-15 to 16	YC62966 to YC62967								
GR-17 to 18	YC62968 to YC62969								
GR-19 to 26	YC62970 to YC62977								
GR-27 to 39	YC93792 to YC93804								
GR-40	YC93805								
GR-41	YC93806								
GR-42	YC93807								
GR-43	YC93808								
GR-44	YC93809								

GR 1-44 Quartz Claims

Work Period September 14th to September 2019

Located In

Dawson Mining District On NTS 115-O-10

63° 44' Latitude, 138° 44' Longitude

Ву

Janelle Smith BSc (Hons Geol) MAIG

January 26, 2020

Table of Contents

ocation and Access	3
Claim Status	4
Гороgraphy and Vegetation –	4
Regional Geology –	5
Property Geology	8
Sample Variance	. 11
History and Previous Work –	. 12
Current Work	.14
Soil Sampling	.14
Rock Sampling	.14
2019 Season Results	.18
Soil Sampling	.18
Rock Sampling	.18
Conclusions and Recommendations	.24
References	.25
Appendix 1 Statement of Qualifications	.26
Appendix 2 Soil Sample Descriptions	.28
Appendix 3 2019 Rock Sample Locations and Descriptions	.31
Appendix 4 Assay Certificates	.32
Appendix 5 Statement of Expenditures	.32

Location and Access

The GR claims are in the Dawson Mining District, on NTS map sheet 115-O-10, west of Gold Run Creek between tributaries Laskey Creek/Gulch and 71 Pup. A well- developed network of gravel roads provides excellent access from Dawson City to the numerous placer mines located along Gold Run Creek. The roads are usually easily passable from May 15th to October 15th. Total distance from Dawson City via the Upper Bonanza Creek road and Sulphur Creek road is about 75 kilometers (65 min); via Hunker Creek road and Dominion Creek road is about 85 kilometers (65 min). Access from the Gold Run creek road to the Doron Zone trench sites (Figure 2) is best achieved by foot, with ATV access possible along an existing excavator access trail.

Figure 1. Gold Run location map.

Claim Status

The 44 quartz claims comprising the Gold Run Property are 100% owned by prospector Bernie Kreft and are subject of a 2019 option agreement with Taku Gold Corp. Claim status Is presented in Table 1 and a claim map in Figure 2.

Claim Name	Claim Number	Owner	Expiry Date
GR-1 to 2	YC60638 to YC60639	Bernard Kreft 100%	2022 January 4 th
GR-3 to 12	YC60640 to YC60649	Bernard Kreft 100%	2022 January 4 th
GR-13 to 14	YC60650 to YC60651	Bernard Kreft 100%	2022 January 4 th
GR-15 to 16	YC62966 to YC62967	Bernard Kreft 100%	2022 January 4 th
GR-17 to 18	YC62968 to YC62969	Bernard Kreft 100%	2022 January 4 th
GR-19 to 26	YC62970 to YC62977	Bernard Kreft 100%	2022 January 4 th
GR-27 to 32	YC93792 to YC93797	Bernard Kreft 100%	2022 January 4 th
GR-32 to 39	YC93798 to YC93804	Bernard Kreft 100%	2021January 4 th
GR-40	YC93805	Bernard Kreft 100%	2022 January 4 th
GR-41	YC93806	Bernard Kreft 100%	2021 January 4 th
GR-42	YC93807	Bernard Kreft 100%	2022 January 4th
GR-43	YC93808	Bernard Kreft 100%	2021 January 4th
GR-44	YC93809	Bernard Kreft 100%	2022 January 4th

Table 1 Claim Status

Topography and Vegetation -

The property lies on the Klondike Plateau which is characterized by low rolling hills dissected by deeply incised valleys. This region experienced strong surficial weathering during the early and mid-Tertiary, and was unaffected by the most recent continental glaciation. As a result bedrock exposures are extremely limited with the effects of surface weathering extending to depths of as much as 80 meters or more.

Elevations range from a low of about 620 meters on Gold Run Creek at the southeast corner of the property to a high of 1040 meters along the ridge between Gold Run and Sulphur Creek (Figure 3). The property is below tree line, higher elevations are covered by mixed spruce, birch, poplar and brush, with tree cover generally increasing at lower elevations and on south facing slopes, with brush and stunted trees predominating on north facing slopes and in areas of permafrost or poor drainage.

Overburden and regolith averages two meters in thickness, necessitating the use of mechanized trenching to expose bedrock. Permafrost is widespread on north facing slopes and to a lesser extent on east facing slopes, and sporadically occurs in other areas. Although snow cover is mostly gone by mid-May, frost does not leave the ground sufficiently for exploration purposes until about mid-June.

Figure 2 Claim map Gold Run showing claim labels. Source Taku Gold, 2020.

Regional Geology

The property is within the Yukon-Tanana Terrane (YTT) a north west trending belt of Proterozoic to upper Paleozoic polyphase deformed metasedimentary, metavolcanics and meta-plutonic rocks.

Also known as the Tintina Gold Belt this terrane is an under-explored, yet highly prospective package of rocks, as witnessed by the recent significant discoveries at White Gold, Coffee, and Pogo. The potential for orogenic and other bulk-tonnage gold targets has been recognized in the Yukon portion of the TGB

with the area south of Dawson receiving considerable attention from numerous companies, including majors such as, Kinross, Newmont, Teck, Kennecott and Phelps Dodge as well as a plethora of junior exploration companies. Maps of the regional Geology are provided as Figures 3 and 4.

Figure3. . Geological map of the Klondike District. KSD = King Solomon Dome; MD = Midnight Dome; DM = Dominion Mountain; MB = Mount Bronson. Source Mackenzie, 2007.

Figure 4. Regional Geology –after YGS, 2018.

Property Geology

Rocks on the property consist of a mixed sequence of chlorite-quartz +/- sericite +/- muscovite +/biotite schist with rare coarse-grained amphibolite interbeds. Lithological variations occur on a scale of meters to tens of meters and are a product of differences in original rock-type and differences in alteration.

Mapping by Mortensen (in Mackenzie et al., 2007) shows the Property to be cut by a regional thrust fault (The Gold Run fault), which is shallowly southwest dipping and trends northwestward along the northeast part of the property. The Kentucky shaft (Figure 5) was sunk in the hanging wall of the Gold Run fault.

A strong north-west trending magnetic low, featured on regional aeromagnetic data, cuts through the Property (Figure 6). This magnetic low is interpreted to represent the position of a buried fault. The magnetic low underlies soil and rock gold geochemical anomalies at the Doron and Doron North showings(Figure 6).

Two main types of quartz veins are common on the property: foliaform and discordant. Foliaform (leaflike semi-layer parallel) veins are discontinuous along strike and range up to 0.3m in thickness. No gold values, visible sulphide or evidence of alteration are seen in, or associated with foliaform quartz veins.

Discordant veins are common within Gold Run trenches. These are NW trending, generally vertical, and cross-cut foliation. Discordant veins are typically 2 to 10 centimeters in width and are commonly limonitic with trace amounts of pyrite. Pyritized, carbonatized, silicified and sericitized alteration zones adjacent to these quartz veins are consistently anomalous in gold, with a chip sample of weakly pyritized and iron-carbonate altered schist Iron-carbonate alteration and pyritization is discernible for up to 3.0 meters from the margins of single veins, while in areas where several veins occur together, continuous alteration zones at least 20 meters wide have been noted (Trench 07-4).

Figure 5. Property Geology. After YGS 2018.

Figure 6 Regional 1:250k aeromagnetic residual TMI map in Gold Run area, source YGS 2018.

Sample Variance

Exploration work at many of the Klondike hard-rock properties has documented the presence of visible gold, often as 1 millimeter in diameter or larger chunks, within the vein and alteration zones. Little systematic work is available in the public domain to document the characteristics of this coarse gold "problem" specifically as it relates to sampling and assaying in the Klondike.

Work by Kreft during the 2004 field season at the King Solomon Dome/Hunker Dome/JAE property (AR09479) encountered numerous significant variations highlighted by work at the Hunker Dome trench, where an interval of 40.67 ppm Au over 0.7 meters of schist was re-sampled and returned 660 ppb Au over the same 0.7 meter interval. Similar problems were noted in samples taken from the Sheba East trench, where Barramundi (AR 093711, 1996) had identified a quartz vein grading 32 ppm Au, but a subsequent sample of the same vein at the same site (Kreft 2004) returned 280 ppb Au. Similar issues occurred with duplicate splits from the same sample where assay differences of 10 times or more were not uncommon.

Generally, if a sample is altered and/or mineralized, and upon assay contains anomalous gold values (+100 ppb) it will likely need to be subjected to a metallic screen analyses to determine a grade that can be viewed with confidence. Standard fire assay techniques will screen out (remove) large gold pieces (+80 mesh) from a sample prior to analysis. Erratically disseminated free gold just small enough to pass the mesh size on a standard fire assay is a potential cause of variable results from duplicate splits of the same sample. The greatest sample variations appear to be within samples of veins or samples of wall-rock that contain veins, indicating that most of the free gold is associated with veining. Metallic screen assays completed on samples consisting of, or containing, quartz vein material, have consistently returned higher grades than grades returned from regular fire assaying of the same sample. The table below summarizes select assaying methods completed on various samples from the Gold Run Project.

	-			0		
Sample ID	Int.	Initial Assay	Duplicate Split	Interval Re-sample	Metallics Assay	Lithology
2009-3-28	0.09m	4.66 ppm Au	7.24 ppm Au			vein
2009-3-27	0.04m	0.283 ppm Au	0.905 ppm Au			vein
2007-3-09	1.90m	0.704 ppm Au	8.1 ppm Au			vein+wallrock
2009-1-36	0.06m	25.4 ppm Au		15.9 ppm Au		vein
2007-1-05	0.06m	10.4 ppm Au			26.9 ppm Au	vein
2007-1-01	0.30m	7.15 ppm Au	5.95 ppm Au			wallrock
2007-4-01	0.06m	3.79 ppm Au			12.3 ppm Au	vein
2007-5-01	0.08m	0.674 ppm Au		0.565 ppm Au	1.32 ppm Au	vein

 Table 2 Duplicate/Replicate Sampling and Screen Fire Comparative Assay

History and Previous Work

Three main showings are on the claims: Devine (Doron), Kentucky West, and Doron NW. The Doron has had the most exploration in recent times.

Exploration for the source of the placer gold in the Klondike has continued sporadically since 1897. Although numerous significant discoveries such as Lone Star and Hunker Dome were made, the source of the majority of the placer gold remains an enigma likely due to thick overburden, abundant vegetative cover and a variable thickness of regolith all conspiring to make historical methods of prospecting of limited use and effect. Recent discoveries within the Klondike placer goldfields have come about mainly through the usage of soil geochemistry with follow-up by mechanized trenching and RC or diamond drilling.

Hard-rock exploration in the vicinity of the Gold Run Project began in 1897. The historical focus on this area was undoubtedly because the extremely rich portion of the Gold Run placer paystreak begins in the vicinity of Laskey Creek (GSC Mem. 284 pp. 98-99). Placer gold recovered from this area of Gold Run Creek is generally small (20 mesh to 120 mesh) bright and rough with some quartz attached (YPMI 1998-2002 p.112), suggesting a local source. Compositional studies of placer and lode gold during 2005 (YEG 2005, p.249 Mortenson et.al.) led to the conclusion that "a major gold source existed in this area".

At Kentucky Lode (Debicki R.L., 1985, Bedrock Geology of The Klondike Area, INAC) an adit and several shafts explore several NW trending veins up to 2.4 meters wide and grading up to 7.9 g/t Au. Mineralization consists of minor pyrite. Wall rock is weakly altered and pyritic. Four grab samples by Wealth Resources of material from the adit dump contained up to 1.55 ppm Au. No anomalous values for pathfinder elements were returned.

At Kentucky West (Debicki R.L., 1985, Bedrock Geology of The Klondike Area, INAC) a large shaft with headframe and several pits explore a 125° trending quartz vein up to 1.5 meters in width. Although no results were reported, early newspaper articles were quite promotional and reported a three point five meter wide vein with significant gold mineralization over a 300 meter strike length.

At Doron there are a series of pits and a small shaft. Debicki (1985), who mapped the Klondike, named these workings Kentucky Lode. The showing consists of rusty quartz veins, up to 40 centimeters in width, cutting weakly altered wall rock. No results are reported.

At the Teck placer mine operations in 1989 exposed a near vertical 320° trending vein and gouge zone a grab of this material returned grades of up to 59.1 g/t Au and 187.5 pm Ag. (AR #093219).

During the period 1985-1994 Lisle Gatenby of Doron Exploration and Wealth Resources collected 92 soil samples and carried out limited mapping and rock sampling in the area from Kentucky Lode to Kentucky West. Gatenby's 1994, (AR #091664) 92 soil samples taken along claim baselines that were oriented approximately due north and extended through the Kentucky Lode, Lass and Doron showings. Anomalous results included two spot values of up to 43 ppb Au from Kentucky Lode, a single point of 57 ppb Au at Lass, and a small cluster of anomalous values with up to 124 ppb Au approximately 500 meters north of Kentucky Lode.

Doron's 1985 work (AR #092603) consisted of 800 soil samples (only 400 analyzed) taken at 25-meter intervals on lines 100 meters apart. This work was centered on the ridge top from Kentucky West to Doron. Although the sample lines were oriented NNW or at a slight angle to the strike of mineralization, four

significant spot anomalies (244-858 ppb Au), as well as a 500 meter by 200 meter open-ended cluster of anomalous samples ranging from 20-57 ppb Au were located to the north-east of Kentucky West.

Southam (1994), (AR #093219) collected 256 soil samples taken from an irregular shaped grid with sample intervals at 50m on NE-SW lines spaced 250m apart. This work covered the area from Kentucky Lode to Doron and defined two narrow NW trending anomalous zones with up to 845 ppb Au extending from Kentucky Lode to the direction of Doron. A spot anomaly of 340 ppb Au was located 300 meters NE of the narrow NW trending zones.

Kreft (2007, YEIP 2007-020) attempted to locate previously reported anomalies, specifically the portion of the Wealth and Doron prospects that were on un-staked ground. Kreft staked claims and collected 94 soil samples. Further work included the excavation of five trenches and the collection of 57 channel samples and four grab samples.

The soil sampling by Kreft helped define numerous anomalies with values of up to 864 ppb Au. These anomalies provided the impetus for a five trench 124 linear meter trenching program. Trench channel samples resulted in the definition of 15 distinct anomalous zones with values of up to 2,242 ppb Au over 18.2 meters, including 9,060 ppb Au over 1.8 meters (Trench #4). Highly anomalous gold values were found to occur within narrow (<10cm) quartz and quartz-carbonate veins (up to 19,900 ppb Au over 3cm Trench #2) and associated pyritized and iron-carbonate altered wall-rock. Sections with no obvious nearby veining (up to 2,210 ppb Au over 0.9m Trench #3) were also found to be anomalous. One pin-head sized piece of visible gold was observed within a narrow vein in Trench #5, a sample of this vein and minor wall rock returned 674 ppb Au over 8cm.

Kreft (2008, YEIP 2008-016) conducted soil sampling in several areas of the property. Soil sampling further defined gold anomalies in the area of the Doron Zone trenches and indicated the potential for gold mineralization at Kentucky West and Doron NW. In the same field season rock sampling was undertaken within the existing trenches to check the effect of coarse gold on assay results. The results of quartz vein samples indicated that standard fire assay results of quartz vein samples typically return ½ to ½ of the values that a metallic screen analyses yields. However, there was no significant variation of results between fire assays and metallic screens on wall rock samples from the same trench.

Kreft 2009 (YEIP 2009-014) conducted soil sampling at Doron, Kentucky West and at the northwest edge of the property. Soils in the vicinity of the Doron Zone consisted of two lines designed to test for northwest strike extents to the mineralization encountered in 2007 trenching. Sampling conditions were severely hampered by the presence of widespread frost, which precluded sampling of the target soil horizon at nearly all sample sites. Sampled medium consisted of a mélange of generally B horizon material with some A horizon and possibly some C horizon. Although values encountered during 2009 are reduced in tenor as compared to 2007 and 2008 results, this "muting" of results can easily be explained by the reduction in sample medium quality. Considering sample quality, results appear to indicate that the mineralization encountered by trenches 07-05, 09-01, 09-03, 09-06, 09-07 07-01, 07-02, and 07-03 likely remains open to the northwest, and that mineralization in trenches 07-04 and 09-02 possibly remains open to the northwest.

Soil sampling near the northwest edge of the property consisted of a single line of 27 samples taken at 30-meter intervals, designed to provide a preliminary test of this un-explored area. Sampling conditions were good, with the top of the C-horizon easily reached at all sites. Results returned a 131 ppb gold anomaly occurring as a single point near the central portion of the line.

Soil sampling at Kentucky West consisted of a single line of nine samples taken at 25-meter intervals, designed to provide a cross-cut through the area defined as anomalous by sampling in 2007 and 2008. Sampling conditions were good, with the top of the C-horizon easily reached at all sites. Results returned no anomalous values, suggesting that either previous anomalous results were a result of error, or that previous sampling (which was in B-horizon material) encountered material with an ultimate source farther up-hill than the 2009 sampling which was from well within the C-horizon. Irrespective of sample depth and the effects of downslope dispersion, given the approximate eastwest orientation of the line potential for north to north-west striking mineralization, is limited in this area.

In 2009 a total of seven trenches were excavated. These trenches targeted gold in soil geochemical anomalies defined in earlier sampling programs. The best results and locations of the trenches is given in Table 2.

Trench Code	UTM East	UTM North	Length	Target	Samples	Best Result
GRT09-01	613240	7069730	42.1m	249 ppb soil	39	25.4 ppm Au over 0.04m
GRT09-02	613145	7069730	74.5m	200 ppb soil	26	14.7 ppm Au over 1.9m
GRT09-03	613199	7069733	66.0m	56 ppb soil	28	0.330 ppm over 14.6m
GRT09-04	611277	7069180	21.8m	58 ppb soil	16	0.047 ppm over 1.6m
GRT09-05	612128	7070168	24.5m	147 ppb soil	15	0.153 ppm over 0.5m
GRT09-06	613163	7069717	7.6m	join T2, T3	11	2.87 ppm Au over 1.3m
GRT09-07	613202	7069711	23.3m	655 ppb soil	13	0.155 ppm Au over 0.7m

Table 3 2009 Trench Results

In 2011 Kreft optioned the property to Kestrel (AR095974). Kestrel collected a total of 1,569 geochemical soil samples during the period June 20 to July 26, 2011. Results expanded the existing gold soil anomalies at Doron, Doron NW and outlined a new area with anomalous gold in soil values to 85 ppb Au at the approximate centre of the property. Kestrel also defined a NW trending approximately 2.1km long x 0.2km wide base metal anomaly with up to 1,184 ppm Zn, 237 ppm Pb and 240 ppm Cu that may be stratigraphically controlled. The new area of anomalous gold in soil at the centre of the property coincides with soil values of up to 1,135 ppb Au at 611101 E 7069983N (Figure 6) found on page 30 of 76 in report AR094507 by Adamson and Thomas 2004, for KSL Limited, and was the focus for the 2018 field program.

Work during the 2018 field season by Kreft was designed to provide detailed soil sampling and prospecting coverage in the areas of a gold in soil anomalies discovered by Kestrel in 2011.

Follow up identified scattered moderate to highly anomalous Zn-Pb-Cu values throughout the area, in the centre of the property, confirming the presence of the anomalous base metal trend identified by Kestrel in this same area. A minor amount of iron-carbonate altered and quartz veined chlorite schist, similar in nature to the alteration typically found in the area of the Doron trenches was found in a frost heave just downhill from a 55 ppb Au soil anomaly.

Anomalous base metal values and scattered gold in soil values of up to 55 ppb were identified by the 2018 fieldwork. These results partially confirmed the presence of historical anomalies reported for this area (Kestrel 2011, and KSL AR094507). Significant frost (likely permafrost) was encountered by this program and further exploration programs in this area will need to be designed with this in mind.

The results of the 2018 field season recommended additional work for the Gold Run Project. Much of the historical trench sampling focused on quartz veins and associated iron-carbonate altered haloes while recent work in the Klondike by the author and Klondike Gold Corp has identified significant gold values within schist with no obvious veins or alteration. This recent development suggests the historical Doron Zone trenches should be re-evaluated and possibly resampled especially in areas where significant gold soil anomalies were trenched but no veining was encountered, and only limited sampling was completed. Prospecting and trenching to follow up the Kestrel base metal soil anomaly and gold soil anomalies within the Doron, Doron NW, Kentucky West and 2018 work areas was also recommended.

In 2018 prospecting rock samples were sourced from occasional float as well as small hand dug prospecting pits. Late June fieldwork consisted of an attempt to prospect and sample the area of the new gold in soil anomaly discovered by Kestrel which is located on the north facing slopes in the approximate centre of the property. This work was hindered by widespread frost and no samples were collected.

A second sampling and prospecting attempt was made in this area in early September. Although likely close to peak thaw for this region, there was still significant amounts of permafrost present and many of the soil sample sites yielded predominantly B-horizon material with limited amounts of C-horizon

Current Work

Soil Sampling

In 2019, 66 soil sample were collected on five lines for a total of 1.5-line kilometers (Figures 8 and 9) at the Doron showing. Soils were taken using handheld augers at an average depth of from 45-70cm. Soil sample sites were marked in the field using flagging inscribed with the sample code and tied to nearby trees or brush. Soil sample material was placed in industry standard paper packets then packaged and dispatched to Bureau Veritas soils were prepped by SS80 (sieve 100g of soil to -80 mesh and analyzed using FA430 (30g Au fire assay) and AQ300 (35 element ICP with 0.5g sample size).

Rock Sampling

In 2019 four rock samples were collected from the Doron showing. Rock sample sites marked in the field by flagging inscribed with the sample code wrapped to rocks representative of the material sampled. Rock samples were placed in industry standard poly sample bags. All samples were analyzed by Bureau Veritas, with rocks prepped using PRP70-250 (crush 70% to 10 mesh and pulverize a 250g split). All samples were analyzed using FA430 (30g Au fire assay) and AQ300 (35 element ICP with 0.5g sample size). Rock sample locations are shown on Figure 10.

Figure 8. 2019 Gold Run sample sites

Figure 9. 2019 Gold Run sample sites with sample ID.

Figure 10. 2019 Gold Run rock sample sites with sample ID.

2019 Season Results

Soil Sampling

In 2019 the 66 soil samples collected from the Doron zone returned a mean of 25 ppb Au with a median value of 16 ppb Au. Descriptive statistics are presented in Table 4. The 2019 gold in soil results are presented on Figure 11. A compilation of gold in soil results from 2007 to 2019 is presented as Figure 12.

Mean	25.3
Median	16
Mode	14
Sample Variance	659.9
Range	161
Minimum	7
Maximum	168
Count	66

Table 4. 2019 Soil Samples Descriptive Statistics ppb Au

Rock Sampling

In 2019 four rock samples were collected from the Doron showing, the Au ppm results are given in Table 5 and are shown on Figure 13. A rock sample compilation including results from 2007 to 2019 is presented as Figure 14.

Table 5 2019 Gold Run rock results

BGRR19-01	Rock	613180.000000	7069729.000000	2019	0.0130
BGRR19-02	Rock	613180.000000	7069729.000000	2019	0.0240
BGRR19-03	Rock	613070.000000	7069597.000000	2019	0.4620
BGRR19-04	Rock	613219.000000	7069751.000000	2019	2.0000

Figure 11. 2019 Gold Run soil sample sites results Au ppb

Figure 12. Gold Run soil sample Au ppb compilation with TMI magnetics.

Figure 13. 2019 Gold Run rock sample sites.

Figure 14. 2019 Gold Run rock sample Au ppm results.

Figure 15. Gold Run rock compilation Au ppm results

Conclusions and Recommendations

The 2019 field program at Gold Run Creek, designed to test for northwest extensions to the gold vein swarm at the Doron Zone, returned elevated to highly anomalous gold in soil values to 168 ppb. Although 2019 soil sampling results are typically in the 15 to 30 ppb gold range, and historical soil sample results from areas of known veining at the Doron Zone are typically in the 50 to 650 ppb Au range, it is unclear whether the reduced gold values from the 2019 program are a result of reduced mineralization or increased overburden thickness and occasional permafrost on the north facing slope where 2019 sampling occurred. The ground conditions may have diluted or masked gold in soil response. Limited rock sampling returned values up to 16.4 ppm Au in an area where historical trench samples had returned only weakly anomalous values.

Further work is warranted. Preliminary work should consist of detailed sampling and prospecting to expand upon existing anomalies at Doron NW, Kentucky West and in the area of the alteration and soil values encountered by the 2018 field program. Work at the Doron Zone, which is currently the main area of interest, should consist of a single 325-meter-long trench excavated through the 300-meter-wide vein swarm. All quartz veins greater than 0.25cm should be sampled individually with enough material collected to allow for a metallic screen analysis, while wallrock should be channel sampled and subjected to a 50 g fire assay. Testing for northwest extensions to the Doron Zone is also a high priority and can either be accomplished by excavator trenching or by GT Probe. Although excavator trenching is preferred due to the ability to complete geological mapping and collect larger more representative samples, the presence of late frost in this area would mean that trenching for northwest extensions should not occur until late July while GT Probe could take place concurrently with the rest of the work which could begin in late June.

An estimated budget of \$55,000 will be required to complete the detailed sampling and prospecting as well as two phases of excavator trenching and detailed rock sampling.

Alternatively, the Doron Zone vein swarm could be subjected to a RC drilling program consisting of a fence of five ENE oriented 125m deep holes at -50° across the 300-meter-wide zone as well as 3 similarly sized and oriented exploratory holes to test for northwest extensions. This program would result in 1,000 meters of RC drilling with an all-in (assays, drilling, geological oversight) cost of approximately \$110,000 which when combined with the detailed sampling and prospecting of existing anomalies at Doron NW, Kentucky West and in the area of the alteration and soil values encountered by the 2018 field program, would result in a total budget of \$130,000.

References

- Adamson, R.G., and Thomas, C.M., 2001. Assessment Report for the renewal of KSL, STRIKE, and HIT claims. Yukon Assessment Report #94268.
- Adamson, R.G., and Thomas, C.M., 2002. Assessment Report for the renewal of HIT claims 47-83. Yukon Assessment Report #94270.
- Adamson, R.G., and Thomas, C.M., 2003. Assessment Report (Geochemical and Geological Surveys) for the renewal of HIT claims (7-18, 25-35, 40-54, 57-65, & 67-81) and STRIKE claims (14-31). Yukon Assessment Report #94355.
- Adamson, R.G., and Thomas, C.M., 2004. Assessment Report for the renewal of the BRY 1-13, MY 1-32, HIT 7 to18, 25 to 35, 47 to 52, 57 to63 and 70-79) and STRIKE 1-31claims, Gold Run Creek. Yukon Assessment Report #94507.
- Aurora Geosciences Ltd. and Bruce, J.O., 2017. Reprocessing of Yukon magnetic data for NTS 115O. Yukon Geological Survey, Open File 2017-42
- Davidson, G.S, and Wallis, J., 1987. Preliminary evaluation report, BTTA 1-32 claims. Yukon Assessment Report #92079.
- Debicki, R.L., 1985. Bedrock geology and mineralization of the Klondike area (west), 115O/9, 10, 11, 14, 15, 16, and 116B/2, scale 1:50,000. Indian and Northern Affairs Canada, Exploration and Geological Services Division, Open File map with marginal notes.
- Gatenby, L.B., 1984. Geochemical soil survey on the Lass Group of 16 claims in the Dawson Mining Division, Yukon Territory. Yukon Assessment Report # 91664.
- Kreft, B., 2008. Trenching and Sampling Report on the Laskey Project. Yukon Exploration Incentive Program (YEIP) Report 2008-016.
- Kreft, B., 2010. Trenching and Sampling Report on the GR 1-44 Quartz Claims. Yukon Assessment Report.
- Kreft, B., 2018. Prospecting and Sampling Report on the GR 1-44 Quartz Claims. Yukon Assessment Report.
- Lueck, B, and Davidson, G.S., 1988. Assessment Report on the Gold Run Ridge property. Yukon Assessment Report #92603.
- MacKenzie, D.J., Craw, D., Mortensen, J.K., and Liverton, T., 2007. Structure of schist in the vicinity of the Klondike goldfield, Yukon. In: Yukon Exploration and Geology 2006, D.S. Emond, L.L. Lewis and L.H. Weston (eds.), Yukon Geological Survey, p. 197-212.
- Mortensen, J.K., 1996. Geological compilation maps of the northern Stewart River map area, Klondike and Sixtymile districts (115N/15, 16; 115O/13, 14 and parts of 115O/15, 16). Scale 1:50,000. Indian and Northern Affairs Canada Open File 1996-1(G).
- Southam, P., 1994. Geochemical Report on the G. Hawk claims. Wealth Resources. Yukon Assessment Report # 93219.

Appendix 1 Statement of Qualifications

Certificate of Qualifications

I, Janelle Smith, having my place of residence at 1704 – 1020 Harwood St Vancouver, British Columbia, V6E 4R1 do hereby certify that:

- I obtained a Bachelor of Science Degree (Geology) from the University of New England New South Wales Australia. I have been continuously engaged as a Geologist since 1986 and am a Member in good standing of the Australian Institute of Geoscientists (4640). I am a "qualified person" as defined in Section 1.2 in and for the purposes of National Instrument 43-101;
- 2. I have not visited the Gold Run property.
- 3. I am the person, responsible for the contents of this technical report entitled "Assessment Report of 2019 Surface Work on the Gold Run Property in the Dawson Mining District, Yukon, NTS Sheet 115O-10, 63°44'N. Lat., 138 44'W. Long.," based on my professional experience, a review of relevant reports and maps made available to me from government and corporate sources and my oversight of work programs described in the report.
- 4. I am not aware of any material fact or material change with respect to the subject matter of the report that is not disclosed in the report which, by its omission, makes the report misleading;
- 5. I hold no shares in Taku Gold Corp.;
- 6. I hold no direct interest in the McQ property as a result of my prior involvement with the property; and
- 7. I have read, and this report has not been prepared for the purposes, nor in full compliance with, National Instrument 43-101 and according to Form 43-101F1.

Respectfully submitted October 25, 2019.

(s) "Janelle Smith"

Janelle Smith (MAIG)

Appendix 2 Soil Sample Descriptions

Sample	Type					CUPPM	7nDDM	MnDDM	۸cDDM	VDDM	Ca%	D%		CrDDM	Ma%	BaDDM	Ti%	۸۱%	Description
Sample		NADOJETN	NADOSNIIN	AUFFINI	AUFFD	CUFFIN			ASELINI	VEENN	Ca /o	F /0		CIFFIN	wy /o	Darrivi	11/0	AI /0	into weakly rusty
																			lim c almost righ awav hole
																			bottomed c
																			comprised in
																			chlorite schist relativelv
BGRD19-	0.1	040007	7000045	0.077		10	- 4		-	50	0.07	0.070	10	0	4.04	101	0.04	0	unaltered 1/2
01	Soll	613227	7069815	0.077	11	40	/4	903	5	50	0.27	0.073	10	9	1.24	164	0.01	2	auger chlorite schist at
																			top of hole with
																			moderate lim c
BGRD19-																			horizon at bottom approx
02	Soil	613215	7069796	0.063	63	34	91	1260	8	58	0.3	0.089	11	10	1.34	101	0.01	2	3/4 auger
																			poss
																			decomposed calcite boudin a
000040																			bit of rust at
8GRD19- 03	Soil	613200	7069776	0.012	12	36	84	2245	13	103	0.3	0.061	5	30	2.56	43	0.01	3.1	bottom of hole 3/4 auger
																			mixed chlorite
04	Soil	613187	7069756	0.059	59	65	77	974	6	40	0.24	0.076	8	18	1.06	105	0.01	1.8	auger
																			rocky c increasing
																			chlorite schist
BGRD19-																			some qtz 1/2 auger lim at
05	Soil	613171	7069735	0.015	15	61	71	1363	6	46	0.32	0.067	11	12	1.15	107	0.01	1.9	depth
RGRS-01	Soil	613182	7069842	0.022	22	25	67	558	5	44	0.27	0.068	9	10	1.34	172	0.01	2.2	c some rust
RGRS-02	Soil	613169	7069821	0.016	16	26	73	578	5	60	0.29	0.06	7	16	0.93	139	0.02	1.7	less rust
RGRS-03	Soil	613153	7069798	0.017	17	32	78	1024	6	82	0.24	0.054	8	18	1.24	174	0.03	2.2	c some rust
RGRS-04	Soll	613139	7069782	0.029	29	43	81	1191	6	01 75	0.33	0.077	10	43	1.79	210	0.02	2.5	as above
RGRS-06	Soil	613112	7069739	0.032	18	45	71	1176	6	70	0.30	0.075	10	42	1.19	168	0.02	2.2	really rusty
	001	010112	1003133	0.010	10			1170	0	10	0.21	0.000	10	20	1.00	100	0.02	2.0	rust with large
RGRS-07	Soil	613095	7069717	0.015	15	54	76	873	6	63	0.35	0.067	9	40	1.31	218	0.02	2.3	qtz frag
RGRS-08	Soil	613084	7069695	0.042	42	59	74	1190	6	56	0.31	0.047	8	38	1.44	238	0.03	2.5	as per 06
RGRS-09	Soil	613068	7069676	0.08	80	62	63	819	11	57	0.2	0.044	10	41	1.75	162	0.02	2.5	as above
RGRS-10	Soil	613053	7069654	0.035	35	32	55	727	8	55	0.29	0.059	10	34	1.11	199	0.04	2.2	as above
RGRS-11	Soli	613038	7069637	0.075	75	24	41	841	8	51	0.24	0.063	12	26	1.42	225	0.04	2.4	as per 03
	Soil	613027	7069615	0.023	23	16	40	1042	3 12	40	0.24	0.07	10	17	1.29	100	0.01	2.4	
RGRS-14	Soil	612995	7009595	0.005	24	10	43 61	1043	5	66	0.3	0.002	12	9	1.30	122	0.01	2.4	as per 00
RGRS-15	Soil	612982	7069556	0.024	168	10	27	657	23	35	0.34	0.00	14	39	1.23	173	0.02	3.3	as per 06
RGRS-16	Soil	612845	7069644	0.013	13	12	37	476	6	42	0.22	0.054	22	10	0.47	174	0.02	1.2	as per 01
RGRS-17	Soil	612860	7069668	0.054	54	19	40	470	6	52	0.23	0.057	15	15	0.64	227	0.02	1.5	as above
RGRS-18	Soil	612874	7069687	0.035	35	17	37	360	5	45	0.24	0.054	14	13	0.89	218	0.02	1.9	as per 02
RGRS-19	Soil	612889	7069706	0.014	14	26	38	304	6	43	0.21	0.041	15	13	0.85	190	0.02	1.9	as above
RGRS-20	Soil	612902	7069729	0.016	16	18	42	434	6	49	0.39	0.043	11	17	0.69	223	0.03	1.7	as above
RGRS-21	Soil	612917	7069750	0.016	16	22	42	324	5	50	0.32	0.061	12	20	0.79	199	0.04	2	as above
RGRS-22	Soil	612931	7069769	0.014	14	31	57	569	6	68	0.36	0.072	12	16	0.82	183	0.03	1.8	as per 05
RGRS-23	Soil	612944	7069784	0.011	11	38	68	525	6	67	0.35	0.056	11	20	0.94	243	0.03	1.9	as per 03
RGRS-24	Soil	612958	7069811	0.014	14	24	48	321	7	47	0.35	0.056	13	28	1.2	233	0.03	2	frz b/c
RGRS-25	Soil	612975	7069831	0.016	16	23	50	300	6	50	0.37	0.053	13	23	0.69	262	0.05	1.6	frz b/c
RGRS-26	Soil	612993	7069851	0.009	9	22	49	269	7	47	0.33	0.053	13	32	0.8	224	0.04	1.7	frz b/c

RGRS-27	Soil	613011	7069871	0.015	15	23	52	300	7	49	0.35	0.058	13	24	0.64	241	0.05	1.6	frz b/c
RGRS-28	Soil	613024	7069891	0.02	20	18	48	252	6	45	0.34	0.049	13	25	0.66	249	0.05	1.6	frz b/c
RGRS-29	Soil	613035	7069912	0.024	24	18	56	257	6	47	0.32	0.049	12	24	0.62	248	0.05	1.6	frz b/c
RGRS-30	Soil	613046	7069932	0.011	11	21	54	297	6	46	0.34	0.05	12	25	0.66	244	0.04	1.6	frz b/c
																			field duplicate
RGRS-31	Soil	Duplicate	Duplicate	0.024	24	26	67	556	5	46	0.29	0.071	10	25	0.68	240	0.04	1.6	RGRS-01
		·																	large rusty spots
LGRD-01	Soil	613137	7069873	0.019	19	30	66	516	6	60	0.36	0.064	11	17	0.9	153	0.03	1.7	in soll, brwn/rust/green
																			large rusty spots
LGRD-02	Soil	613124	7069850	0.014	14	31	61	475	7	57	0.33	0.049	11	25	1.07	214	0.03	2.1	ın soll, brwn/rust/areen
							-												large rusty spots
I GRD-03	Soil	613111	7069828	0.013	13	23	53	349	5	53	0.28	0 029	11	31	0 99	220	0.04	19	in soil, brwn/rust/areen
20.12.00		0.0111		0.010				0.0			0.20	0.020			0.00		0.01		large rusty spots
I GRD-04	Soil	613096	7069810	0.014	14	22	49	327	6	50	0.35	0.041	11	25	0.82	221	0.05	18	in soil, brwn/rust/areen
LOND UT	0011	010000	1000010	0.011			10	021	Ŭ	00	0.00	0.011			0.02		0.00	1.0	large rusty spots
	Soil	613083	7060786	0.012	12	23	50	20/	6	48	0.20	0.032	11	27	0.70	240	0.04	17	in soil, brwn/rust/green
LOND-00	0011	010000	1003100	0.012	12	20		204			0.20	0.002		21	0.75	240	0.04	1.7	large rusty spots
	Soil	613064	7060760	0.014	14	34	56	308	6	54	0.27	0.035	11	34	0.84	221	0.04	17	in soil,
LGND-00	3011	013004	7009709	0.014	14		50	520	0	54	0.27	0.035		54	0.04	221	0.04	1.7	brown/black with
LGRD-07	Soil	613047	7069751	0.013	13	31	53	338	6	50	0.24	0.044	11	40	0.96	254	0.06	1.9	rust
LGRD-08	Soil	613024	7069729	0.023	23	36	58	386	8	55	0.3	0.045	13	44	1	202	0.04	1.8	rust
LGRD-09	Soil	613020	7069709	0.012	12	24	43	315	7	47	0.26	0.044	14	29	0.95	255	0.05	2	tan
LGRD-10	Soil	613005	7069687	0.041	41	23	41	329	8	45	0.29	0.05	14	25	0.7	323	0.05	1.7	borwn/green/rust
LGRD-11	Soil	612991	7069668	0.008	8	26	45	363	9	50	0.29	0.05	15	22	0.7	300	0.04	1.7	brown/green
LGRD-12	Soil	612977	7069648	0.023	23	20	44	570	7	55	0.32	0.066	11	25	0.7	359	0.05	1.8	brown/rust/green
LGRD-13	Soil	612961	7069627	0.011	11	20	39	313	7	44	0.19	0.024	17	17	1.11	257	0.04	2.3	brown/rust/green
LGRD-14	Soil	612946	7069606	0.015	15	17	37	449	7	44	0.25	0.039	16	19	0.71	305	0.04	1.8	brown/rust/green
LGRD-15	Soil	612932	7069587	0.008	8	12	24	224	5	17	0.06	0.015	28	19	0.77	256	0.03	1.9	rusty
LGRD-16	Soil	612892	7069614	0.012	12	17	34	298	7	38	0.16	0.024	19	10	0.57	172	0.01	1.4	rusty
LGRD-17	Soil	612908	7069637	0.007	7	13	37	371	5	44	0.2	0.037	13	14	0.77	224	0.03	1.6	tan/green
LGRD-18	Soil	612920	7069655	0.007	7	19	38	429	6	51	0.3	0.056	14	14	0.96	208	0.03	1.8	brown/green/rust
LGRD-19	Soil	612934	7069675	0.016	16	15	40	578	4	52	0.27	0.058	13	17	0.89	259	0.04	2	brown/green/rust
LGRD-20	Soil	612950	7069700	0.01	10	22	45	355	8	50	0.3	0.056	14	16	1.02	210	0.04	2	brown
LGRD-21	Soil	612966	7069718	0.025	25	23	44	479	8	48	0.37	0.067	15	22	0.72	286	0.05	1.8	brown/green
LGRD-22	Soil	612979	7069738	0.016	16	76	58	586	7	56	0.31	0.055	9	22	0.73	294	0.04	1.9	brown/green
LGRD-23	Soil	612995	7069755	0.016	16	57	58	453	5	54	0.28	0.054	10	23	1.29	207	0.04	2.2	brown/green/rust
LGRD-24	Soil	613008	7069778	0.013	13	28	50	388	6	51	0.34	0.055	9	23	1.2	195	0.04	2	brown/green/rust
LGRD-25	Soil	613023	7069796	0.011	11	31	57	302	5	51	0.21	0.036	9	63	1.16	163	0.04	1.9	brown/green/rust
LGRD-26	Soil	613038	7069818	0.019	19	47	64	420	7	57	0.34	0.053	10	52	1.05	159	0.05	1.9	brown/green/rust
LGRD-27	Soil	613046	7069845	0.008	8	28	57	318	7	51	0.28	0.051	11	46	1.16	202	0.06	1.9	brown/green/rust
LGRD-28	Soil	613066	7069859	0.033	33	41	69	450	7	57	0.31	0.061	10	31	0.83	235	0.06	1.7	brown/rust
LGRD-29	Soil	613078	7069883	0.01	10	28	65	343	6	48	0.32	0.064	10	27	1.03	214	0.05	2	brown/green/rust
LGRD-30	Soil	613093	7069904	0.014	14	27	65	284	8	50	0.43	0.072	12	26	0.91	197	0.04	1.7	<u> </u>

Appendix 3 2019 Rock Sample Locations and Descriptions

SAMPLE	Easting	Northing			WGHT	FA430	AQ300									
	Zone 7N,	Zone 7N,														
NUMBER	NAD83	NAD83	ТҮРЕ	DESCRIPTION	Wgt	Au ppm	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As
				irregular white quartz lenses to 3-4 cm												
				nosted by Fe carbonate, sericite altered												
				quartz-ankerite knots 0.4-0.6 cm minor												
				limonite knots after pyrite, lensoid soft.												
				black chlorite? patches 2 cm by 3 cm in												
				host; BK says looks like rocks along Gold												
BGRR19-01	613180	7069729	grab	Run Fault	1.24	0.013	<1	62	<3	60	<0.3	6	29	3277	5.01	<2
				Fe -Mn carbonate altered schist with 5%												
				pyrite as fine aggregates and fine (2 mm												
				size) calcite stringers cut by 0.6 cm white												
				quartz vein locally with concentric												
				banding around small rounded clasts due												
BGRR19-02	613180	7069729	grah	in quartz near margins	0.47	0.024	<1	300	<3	75	0.5	4	15	957	4 15	<2
DOMAID 02	015100	1005725	5100	grab of 1-2 cm white guartz veins from	0.47	0.024	1	500	~5	75	0.5		15	557	4.15	~2
				trench with central 2 mm wide Mn ribbon												
				in Fe carbonate, sericite altered schist;												
				wallrock margins are somewhat pitted												
				with stronger Fe carbonate alteration,												
				calcrete coating; BK says "looks like												
BGRR19-03	613070	7069597	grab	typical 5-7 g/t Au veins"	1.45	0.462	1	2	<3	17	<0.3	3	6	967	2.68	11
				similar to BGRR19-03, 0.6-0.7 cm white												
				quartz veins with ankente knots and												
				Mn ribbons in Fe carbonate, sericite												
				altered schist with minor oxidized cubic												
BGRR19-04	613219	7069751	grab	pyrite; calcrete coating	1.04	>10.000	2	13	6	35	2.4	4	13	1321	3.1	93

Appendix 4 Assay Certificates Sent Electronically

Appendix 5 Statement of Expenditures

Cost Statement

Wages Bernie Kreft 1.5 man days x \$400/day	=	\$600.00
Wages Justin Kreft 1.5 man days x \$350/day	=	\$525.00
Wages Jarret Kreft 1.5 man days x \$350/day	=	\$525.00
Food, field and camp 4.5 man days \$100/day	=	\$450.00
Bureau Veritas Assays (4 rock samples and 67 soil samples by FA430 and AQ300)	= \$	1,913.12
4x4 Truck from Whitehorse to Dawson/property and return 1,244km x \$0.6/km	=	\$746.40
Report Preparation Janelle Smith	= <u>\$</u>	1,800.00
TOTAL	= \$	6,559.52