2019 ASSESSMENT REPORT

GEOLOGICAL MAPPING, ROCK AND SILT GEOCHEMICAL SAMPLING, UPPER RACKLA PROPERTY

YD55201 – YD55260, BOP 1-60; YD55469 – YD55513, BOP 69-105; YD55684, BOP 106; YD55515 – YD55520, BOP 107-112; YE31957 – YE31976, BOP 113-132

> N.T.S. 106C/05 and 106D/08 MAYO MINING DISTRICT

Property Centre: 64°21'33" N 134° 0'55" W

WORK PERFORMED:

August 9 to August 13, 2019

Prepared for: Kootenay Silver Inc.

Report prepared by: Aurora Geosciences Ltd.

TECHNICAL REPORT 2019 Assessment Report Upper Rackla Property

YD55201 – YD55260, BOP 1-60; YD55469 – YD55513, BOP 69-105; YD55684, BOP 106; YD55515 – YD55520, BOP 107-112; YE31957 – YE31976, BOP 113-132 MAYO MINING DISTRICT **YUKON, CANADA**

> Kootenay Silver Inc. Suite 1650 - 1075 West Georgia Street. Vancouver, British Columbia V6E 3C9 Tel: 604-601-5650

> > Aurora Geosciences Ltd. 34A Laberge Rd Whitehorse, Yukon Y1A 5T6 Tel: 867.668-7672 Fax: 867.393-3577 www. aurorageosciences.com

Effective date: November 28, 2019

Author Carl Schulze, P.Geo.

TABLE OF CONTENTS

1	SUMMARY1						
2	INTE	ODUCTION	3				
	2.1	INTRODUCTION	3				
	2.2	Terms, Definitions and Units					
3	PRO	PERTY DESCRIPTION AND LOCATION	4				
	3.1	LOCATION AND DESCRIPTION	Л				
	3.1	MINERAL TENURE AND UNDERLYING AGREEMENTS					
	3.3	ENVIRONMENTAL LIABILITIES AND PERMITTING					
4		ESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY					
	4.1	TOPOGRAPHY, ELEVATION AND VEGETATION					
	4.2	Access					
	4.3	LOCAL RESOURCES	0				
	4.4	CLIMATE	0				
5	HIST	ORY	1				
6	GEO	LOGY	1				
	6.1	REGIONAL GEOLOGY	1				
	6.2	PROPERTY GEOLOGY					
	6.3	MINERALIZATION					
7	WO	RK PROGRAM					
	VV (.)						
'							
,	7.1	ROCK SAMPLE RESULTS	8				
,	7.1 7.2	ROCK SAMPLE RESULTS	8 15				
,	7.1 7.2 7.3	Rock Sample Results Silt Sampling program Crew and Equipment, Silt Sampling Program	8 15 21				
,	7.1 7.2 7.3 <i>7.3</i> .1	Rock Sample Results Silt Sampling program Crew and Equipment, Silt Sampling Program <i>Grid and Line Specifications</i>					
	7.1 7.2 7.3	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM. CREW AND EQUIPMENT, SILT SAMPLING PROGRAM. Grid and Line Specifications Survey Specifications.					
,	7.1 7.2 7.3 <i>7.3.1</i> <i>7.3.2</i>	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM CREW AND EQUIPMENT, SILT SAMPLING PROGRAM Grid and Line Specifications Survey Specifications Sampling Discussion					
1	7.1 7.2 7.3 7.3.2 7.3.2 7.3.2	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM. CREW AND EQUIPMENT, SILT SAMPLING PROGRAM. Grid and Line Specifications Survey Specifications Sampling Discussion. Analysis					
1	7.1 7.2 7.3 7.3.2 7.3.2 7.3.3 7.3.4	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM. CREW AND EQUIPMENT, SILT SAMPLING PROGRAM. Grid and Line Specifications Survey Specifications Sampling Discussion. Analysis					
1	7.1 7.2 7.3 7.3.2 7.3.2 7.3.3 7.3.4 7.3.5	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM CREW AND EQUIPMENT, SILT SAMPLING PROGRAM Grid and Line Specifications Survey Specifications Sampling Discussion Analysis Preliminary Data Products PROSPECTING, ROCK SAMPLING, GEOLOGICAL MAPPING					
1	7.1 7.2 7.3 7.3.2 7.3.2 7.3.2 7.3.4 7.3.5 7.4 7.4.1 7.4.1	ROCK SAMPLE RESULTS					
,	7.1 7.2 7.3 7.3.2 7.3.3 7.3.4 7.3.5 7.4 7.4	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM CREW AND EQUIPMENT, SILT SAMPLING PROGRAM Grid and Line Specifications Survey Specifications Sampling Discussion Analysis Preliminary Data Products PROSPECTING, ROCK SAMPLING, GEOLOGICAL MAPPING Crew and Equipment Prospecting Methodology Prospecting Discussion					
,	7.1 7.2 7.3 7.3.2 7.3.2 7.3.2 7.3.4 7.3.5 7.4 7.4.1 7.4.2 7.4.3 7.4.2	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM CREW AND EQUIPMENT, SILT SAMPLING PROGRAM Grid and Line Specifications Survey Specifications Sampling Discussion Analysis Preliminary Data Products PROSPECTING, ROCK SAMPLING, GEOLOGICAL MAPPING Crew and Equipment Prospecting Methodology Prospecting Discussion Analysis					
	7.1 7.2 7.3 7.3.2 7.3.3 7.3.4 7.3.5 7.4 7.4.1 7.4.2 7.4.3	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM CREW AND EQUIPMENT, SILT SAMPLING PROGRAM Grid and Line Specifications Survey Specifications Sampling Discussion Analysis Preliminary Data Products PROSPECTING, ROCK SAMPLING, GEOLOGICAL MAPPING Crew and Equipment Prospecting Methodology Prospecting Discussion Analysis					
8	7.1 7.2 7.3 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.4.1 7.4.2 7.4.3 7.4.2 7.4.5	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM CREW AND EQUIPMENT, SILT SAMPLING PROGRAM Grid and Line Specifications Survey Specifications Sampling Discussion Analysis Preliminary Data Products PROSPECTING, ROCK SAMPLING, GEOLOGICAL MAPPING Crew and Equipment Prospecting Methodology Prospecting Discussion Analysis					
	7.1 7.2 7.3 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.4.1 7.4.2 7.4.3 7.4.2 7.4.5	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM. CREW AND EQUIPMENT, SILT SAMPLING PROGRAM. Grid and Line Specifications Survey Specifications Sampling Discussion Analysis Preliminary Data Products Prospecting Methodology Prospecting Discussion Analysis					
	7.1 7.2 7.3 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.4 7.4.2 7.4.2 7.4.2 7.4.2 7.4.2 7.4.2 7.4.2 7.4.2 7.4.2	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM. CREW AND EQUIPMENT, SILT SAMPLING PROGRAM. Grid and Line Specifications Survey Specifications. Sampling Discussion. Analysis Preliminary Data Products PROSPECTING, ROCK SAMPLING, GEOLOGICAL MAPPING. Crew and Equipment. Prospecting Methodology. Prospecting Discussion. Analysis Prospecting Discussion. Analysis Prospecting Methodology. Prospecting Discussion. Analysis PROSPECTING Discussion.					
	7.1 7.2 7.3 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.4 7.3.2 7.4.2 7.4.2 7.4.2 7.4.3 7.4.4 7.4.5 INTE 8.1 8.2	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM					
8	7.1 7.2 7.3 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.4 7.3.2 7.4.2 7.4.2 7.4.2 7.4.3 7.4.4 7.4.5 INTE 8.1 8.2	ROCK SAMPLE RESULTS SILT SAMPLING PROGRAM CREW AND EQUIPMENT, SILT SAMPLING PROGRAM					

10	REFERENCES	28

LIST OF FIGURES

FIGURE 1: PROPERTY LOCATION MAP	6
FIGURE 2: CLAIM TENURE MAP (NOVEMBER, 2019	0
FIGURE 3: REGIONAL GEOLOGY MAP, UPPER RACKLA AREA	
FIGURE 4: REGIONAL GEOLOGY LEGEND	3
FIGURE 5: PROPERTY GEOLOGY MAP, 2019 PROGRAM	5
FIGURE 6: SAMPLE 1903612: MASSIVE GALENA (>20% PB, 405 G/T AG), FREDDY SHOWING	6
FIGURE 7: SAMPLE R1903555 (6.69% CU), MILES SHOWING	7
FIGURE 8: BANDED QUARTZ-CARBONATE VEINING (0.423% CU, 0.485% PB), MILES SHOWING	
FIGURE 9: ROCK SAMPLE LOCATIONS, 2019 PROGRAM	10
FIGURE 10: CU VALUE RANGES, 2019 ROCK SAMPLING PROGRAM	11
FIGURE 11: PB SAMPLE VALUE RANGES, 2019 ROCK SAMPLING PROGRAM	12
FIGURE 12: ZN SAMPLE VALUE RANGES, 2019 ROCK SAMPLING PROGRAM	13
FIGURE 13: AG SAMPLE VALUE RANGES, 2019 ROCK SAMPLING PROGRAM	14
FIGURE 14: SILT SAMPLE LOCATIONS, 2019 PROGRAM	16
FIGURE 15: CU SAMPLE VALUE RANGES, 2019 SILT SAMPLING PROGRAM	
FIGURE 16: PB SAMPLE VALUE RANGES, 2019 SILT SAMPLING PROGRAM	
FIGURE 17: ZN SAMPLE VALUE RANGES, 2019 SILT SAMPLING PROGRAM	19
FIGURE 18: AG SAMPLE VALUE RANGES, 2019 SILT SAMPLING PROGRAM	20

LIST OF TABLES

5
21
21
22
22
23
23

APPENDICES

Appendix I	STATEMENT OF QUALIFICATIONS
APPENDIX II	SILT SAMPLE DESCRIPTIONS AND DATA
APPENDIX III	ROCK SAMPLE DESCRIPTIONS AND DATA
APPENDIX IV	GEOLOGICAL STATION DATA AND DESCRIPTIONS
APPENDIX V	Original Assay certificates
Appendix V	

1 SUMMARY

In April 2019, Kootenay Silver Inc. (Kootenay) commissioned Aurora Geosciences Ltd (Aurora) to stake the BOP 1-132 claim block, comprising the Upper Rackla property, in central Yukon. In August 2019, Kootenay contracted Aurora to conduct a three-day preliminary program of geological mapping, prospecting, rock and silt geochemical sampling across prospective areas of the claim block. The crew comprised a project geologist and junior geologist employed by Aurora, and a professional prospector employed by Kootenay. The property was accessed daily by helicopter from the village of Mayo.

The Upper Rackla property is located at 64°21'33" N 134°00'55" W, on NTS sheets 106C/05 and 106D/08. The property is geographically centered 125 km NE of Mayo, Yukon. As of August 2019, the property comprised 132 full Yukon quartz mining claims covering 2,756.2 Ha (6,807 acres). All claims are 100% owned by Kootenay. There are no underlying agreements, royalties or encumbrances, or environmental liabilities on the property. No significant past exploration has occurred in the immediate property area, although high-grade polymetallic mineralization has been identified and explored at the North Rackla Project, staked by Cantex Mine Development Corp. (Cantex) in 2012. The main North Rackla showing is located about 19 km northeast of the northeast corner of the BOP claim block.

The Upper Rackla property is characterized by rugged, locally inaccessible terrain, with elevations ranging from just under 915 m along the Rackla River to 1,830 m in the south-central property area. The property is affected by a dry-summer sub-arctic climate, with warm summers, very cold winters, and fairly light precipitation which is somewhat dependant on elevation. The field season extends from mid-June to mid-September, with some variance due to elevation.

The Upper Rackla property is located along the southern margin of the Proterozoic Ancient North American Continent, comprising layered rocks, mainly sediments, deposited along the western flank of western Laurentia. The oldest basal sedimentary stratigraphy is the Wernecke Supergroup, a 13-km thick Mesoproterozoic assemblage. From oldest to youngest, the Wernecke Supergroup comprises the Fairchild Lake, Quartet and Gillespie stratigraphic groups, of which the Quartet and Gillespie groups underlie the BOP block. The Quartet Group comprises fine clastic sediments with minor interbeds of orange-weathering dolostone. The Gillespie Lake Group comprises fine grained siliciclastic - carbonate admixtures, overlain by gentle slope carbonate rocks fringed by a stromatolitic reef complex, then by intercalated carbonate - siliciclastic rocks and in turn by carbonate shelf rocks. All Wernecke Supergroup units have been intruded by the 1.32 Ba Hart River Formation diorite to gabbro dykes.

Mapping in 2019, indicated most of the property area is underlain by Quartet group fine grained clastic rocks. A fault-bounded NE-SW trending sigmoidal unit of Gillespie Group dolostone, including stromatolitic horizons, extends across the property area. Aerially extensive units of dioritic to gabbroic dykes and intrusions occur in northern and western areas and include a coeval unit of mafic volcanic rocks in the northwestern area.

Several east-west and ENE - WSW trending faults were identified, one marking the southwestern boundary of the Gillespie Lake dolostone unit. Shear zones are mainly east-west striking and steeply south-dipping, indicating a property-scale structural lineation. Bedding measurements are highly variable, indicating complex folding, particularly in central areas.

Three mineralized showings: the Freddy, Miles and Blue Ridge showings were discovered in 2019. The Freddy showing, located along the south wall of a cirque in the west-central property area, comprises

replacement-style massive galena and sphalerite within a brecciated lens of Quartet Group calcareous siltstone to mudstone. Grab sampling returned values up to 87 ppm copper (Cu), > 20.0% lead (Pb), 1.51% zinc (Zn) and 405 g/t silver (Ag).

The Miles showing, located towards the west property boundary, is comprised of quartz vein to vein breccia-hosted clotty to semi-massive chalcopyrite and galena, with minor late massive silver-bearing galena veins within Hart River Formation mafic volcanic rocks. Composite grab sampling returned values up to 6.685% Cu, 0.251% Pb, 0.101% Zn and 89.0 g/t Ag from quartz-chalcopyrite veining, and a value of >20.0% Pb and 1,014 g/t Ag from silver-bearing galena veining.

Sampling of the Blue Ridge showing, hosted by Quartet Group fine clastic sediments with minor carbonate interbeds in the south-central property area, returned values up to 3,288 ppm (0.329%) Cu, 7,757 ppm Pb, 9,969 ppm Zn and 20.0 g/t Ag. A value of 1.156% Cu was returned from a separate sample within the zone. Minor polymetallic mineralization was identified elsewhere across the property.

Three stream silt geochemical surveys were completed; the first along "Davis Creek" (local name) in the northwest quadrant, and two along upper forks of a stream in the south-central area. Davis Creek, the catchment area of which hosts the Freddy showing, was selected due to strongly anomalous metal values from RGS stream sediment sampling. The 2019 survey returned anomalous Cu values throughout its extent, strongly anomalous Pb values along its lower extent, and strongly anomalous Zn values from the central extent. More subdued but slightly elevated Cu, Pb and Zn values were returned from the southern traverses.

A preliminary age relationship of mineralization was established, comprising early replacement style Pb-Zn sulphide mineralization followed by quartz-chalcopyrite veining superimposed by centimetre-style silver-bearing galena veining. The lack of mid-late Cretaceous Tintina Gold Belt intrusive rocks indicates a probable orogenic setting for mineralization.

A program of property-wide geological mapping, rock sampling and prospecting, ridge-and-spur and contour soil geochemical sampling, and stream sediment sampling is recommended for 2020. This would involve four field personnel, comprising two geologists and two field technicians, and would be helicopter-supported by daily set outs from Mayo. The program would be completed in nine field days. Total estimated costs, including mobilization, two weather days, assaying, contingency and report writing, are approximately CDN\$190,550.

2 INTRODUCTION

2.1 INTRODUCTION

This assessment report summarizes the preliminary results of a geochemical silt surveying, geological mapping and prospecting program conducted on Kootenay Silver Inc's Upper Rackla property. A total of 29 silt samples and 47 rock samples were collected during three days of field operations (August 10-12, 2019), with an additional two days for mobilization and demobilization.

This report was written to satisfy the assessment requirements under the mining regulations of the Energy, Mines and Resources, Government of Yukon and filed with the Mayo Mining Recorder. Mr. Carl Schulze, PGeo, is the Qualified Person for the project and was on site for the entire duration of the project.

2.2 TERMS, DEFINITIONS AND UNITS

All costs contained in this report are in Canadian dollars (CDN\$) unless indicated otherwise. Distances are reported in millimetres (mm), centimetres (cm), metres (m) and kilometres (km). Weights are reported in grams (g) or kilograms (kg). Units of area are measured in hectares (ha), of which 1 hectare is 100 m², and equivalent to 2.47 acres (ac). Some historical distances are reported in feet (ft) or miles (mi), and historical weights in troy ounces (oz.) or pounds (lbs). Temperatures are reported in degrees Celsius (°C), whereby 0°C is the freezing point of water.

The term "GPS" refers to "Global Positioning System" with co-ordinates reported in UTM NAD 83 projection, Zone 8.

A "reference sample" is a sample of known concentration of specific metals. A "standard sample", is a type of reference sample, in this case with known concentrations of copper (Cu), molybdenite (Mo), silver (Ag) and gold (Au), with the Certified Value or "Recommended Value" determined from an average of results from several independent laboratories. These are utilized to determine the accuracy of laboratory analysis. Another sample type is a "blank sample", of known very low, normally sub-detection metal grades, that tests for the degree of contamination, if any, occurring through the analytical process.

A "ton" refers to a short ton, or 2,000 lbs. A "tonne" (t) refers to a metric tonne, which is 1,000 kg or 2,204 lbs. The term "ppm" refers to parts per million, which is equivalent to grams per metric tonne (g/t); the term "ppb" refers to parts per billion. Some historic grades are reported in "oz./ton" which is ounces per short ton. "Ma" refers to million years. The symbol "%" refers to weight percent unless otherwise stated.

ICP-AES stands for "inductively coupled plasma atomic emission spectroscopy". ICP-ES stands for "Inductively coupled plasma emission spectroscopy", and AA stands for "atomic absorption". "QA/QC" refers to "Quality Assurance/ Quality Control".

Elemental abbreviations used in this report are:

Au: Gold	Mn: Manganese
Ag: Silver	Mo: Molybdenum
Al: Aluminum	Na: Sodium
As: Arsenic	Nb: Niobium
B: Boron	Ni: Nickel
Ba: Barium	P: Phosphorous
Be: Beryllium	Pb: Lead
Bi: Bismuth	Pd: Palladium
Ca: Calcium	Pt: Platinum
Cd: Cadmium	Rb: Rubidium
Ce: Cerium	Re: Rhenium
Co: Cobalt	S: Sulphur
Cr: Chromium	Sb: Antimony
Cs: Cesium	Sc: Scandium
Cu: Copper	Se: Selenium
Fe: Iron	Sn: Tin
Ga: Gallium	Sr: Strontium
Ge: Germanium	Ta: Tantalum
Hf: Hafnium	Te: Tellurium
Hg: Mercury	Th: Thorium
In: Indium	Ti: Titanium
K: Potassium	TI: Thallium
La: Lanthanum	U: Uranium
Li: Lithium	V: Vanadium
Mg: Magnesium	W: Tungsten
Y: Yttrium	Zn: Zinc
Zr: Zirconium	

3 PROPERTY DESCRIPTION AND LOCATION

3.1 LOCATION AND DESCRIPTION

The Upper Rackla property is located at 64°21′33″ N 134°00′55″ W, on NTS sheets 106C/05 and 106D/08 (Figure 1). The property is geographically centered 125 km NE of Mayo, Yukon, and about 415 km ENE of Whitehorse, Yukon. As of August 10, 2019, the property comprised 132 full Yukon quartz mining claims as a single 11 x 12-unit block covering 2,756.2 Ha (6,807 acres).

3.2 MINERAL TENURE AND UNDERLYING AGREEMENTS

All claims were commissioned to be staked directly by Kootenay Silver Inc., (Kootenay) and are 100% owned by Kootenay. There are no underlying agreements, royalties or encumbrances on the property.

Table 1 lists the claim status as of October 31, 2019.

Table 1: Claim Status, BOP 1-132 claims

Grant Numbers	Claim Names	Expiry Date
YD55201-YD55222	BOP 1-22	2023-04-26
YD55223-YD55232	BOP 23-32	2024-04-26
YD55233	BOP 33	2023-04-26
YD55234	BOP 34	2024-04-26
YD55235 - YD55244	BOP 35-44	2023-04-26
YD55245 - YD55260	BOP 45-60	2024-04-26
YD55469 - YD55470	BOP 61-62	2024-04-26
YD55471 - YD55474	BOP 63-66	2023-04-26
YD55475 - YD55491	BOP 67-83	2024-04-26
YD55492 - YD55496	BOP 84-88	2023-04-26
YD55497 - YD55512	BOP 89-104	2024-04-26
YD55513	BOP 105	2023-04-26
YD55684	BOP 106	2023-04-26
YD55515 - YD55518	BOP 107-110	2023-04-26
YD55519 - YD55520	BOP 111-112	2024-04-26
YE31957 - YD31970	BOP 113-126	2024-04-26
YE31971 - YE31976	BOP 127-132	2023-04-26

3.3 Environmental Liabilities and Permitting

There are no known environmental liabilities associated with the property. At present, no permits are in place for exploration on the Upper Rackla property. Activities completed during the 2019 program did not require permitting.

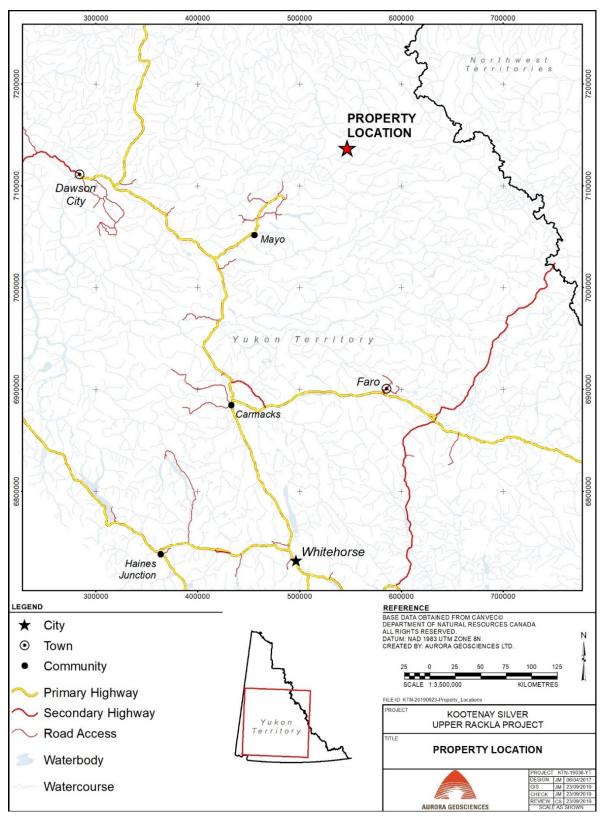


Figure 1: Property Location map

	54400	0	5450	00	546	<u>000</u>	54	47000	,	548000	_	549000		55000	0 551000		LEGEND
7141000					2	D	N	+			~	++		+	+	7141000	Mineral Claims
		M				, r	~~	\mathcal{P}			20	20	Y2	2	177		Active Claims
00	hLM		SAL (4			A					A	<u>}</u>	Y	0	8	Pending Claims
7140000				BOP 10 YDE5210	BOP 8/-	BOP 6 YD55206	BOP 4 YD55204	BOP 2 YD55202	BOP 11 YD55211	BOP 13 YD 55213	BOP 15 YD55215	BOP-17 YD55217	80P 19 YD65218	BØP 21 YD55221	(+)	7140000	\sim Contour
				BOP 9 YD55209	BOP 7 YD55207	BOP 5 YD55205	BOP 3 YD55203	BOP 1 YD55201	BOP 12 YD 55212	BOP-14 YD55214	BOP 16 YD55216	BOP 18 YD55218	BOP 20 YD55220	BOP 22 YD55222			~~~ Watercourse
7139000	<u>II</u>			BOP 32 YD 55232	BOP 30 YD55230	BOP 28 YD 55228	BOP 26 YD55226	BOP 24	BOP 33 YD55233	809/35 YD55235	BOP 37 YD55237	BOP 39 YD55239	BOP 41 YD55241	BOP 43 YD55243		0006	尘 🐇 Wetland
713			Les (BOP 31	BOP 29	BOP 27	BOP 25	BOP 23			BOP 38	BOP 40	BOP 42	BOP-44	3	713	S Waterbody
		San		YD55231	YD55229		YD55225	YD55223	BOP 34 XD55234	BOP 36 YD55236	YD 55238	YD55240	YD55242	YD55244			Vegetation- Wooded Area
7138000	S.			BOP 54 YD 55254	BOP 52 YD55252	BOR 58 YD55258	BOP 48 YD 55248	BOP 46 YD55246	BOP 55 YD 55255	BOP 57 YD 55257	BOP 59 YD55259	BOP 61 YD55469	BOP 63 YD 55471	BOP 65 YD55473	×	7138000	
7	X			BOP 53 YD55253	BOP 51 YD55251	BOP 49 YD 55249	BOP 47 YD55247	80P 45 YD 55245	BOP 56 YD55256	BOP 58 YD55258	BOP 60 YD55260	80P 62 YD 55470	BOP 64 YD 55472	BOP 66 YD55474		×	
00	F		X	BOP 76 YD55484	BOP 74 YD55482	BOP 72 YD55480	BOP 70 YD55478	BOP 68 YD55476	BOP 77 YD55485	BOP 79	BOP/81/ YD55489	BOP 83 YD55491	BOP 85 YD55493	BOP 87 YD55495		376	
7137000	X			BOP 75 YD 55483	BOP 73 YD 55481	BOP 71	BOP 69 YD55477	BOP 67 YD55475	BOP 78 YD55486	BOP 80 YD 55488	BOP 82 YD55490	BOP 84 YD55492	BOP 86 YD55494	BOP 88 YD55496		7137000	
/		R		BOR 98	BOP 96	YD55479 BOP 94	BOP 92	BOP 90	BOR 99		BOP 103		411	BOP 109	14441555		
000		$\langle \rangle$		YD55506	YD55504		YD55500	YD55498	YD.55507	YD55509	YD55511	YD55513	YD55515				REFERENCE NTS 50K MAP SHEETS: 106C05, 106D08
7136000	1		Xt	BOP 97 YD55505	BOP 95 YD 55503	BOP 93 YD55501	BOP 91 YD55499	BOP 89 YD55497	BOP 100 YD 55508	BOP-102 7055510	BOP 104 YD55512	BOP 106 YD55684	BOP 108 YD55516	BOP 110 YD55518		7136	BASE DATA OBTAINED FROM CANVEC© DEPARTMENT OF NATURAL RESOURCES CANADA ALL RIGHTS RESERVED. DATUM: NAD 1983 CSRS UTM ZONE 8N
	H		Z	BOP 120 YE31964		BOP 116 YE31960	BOP-114 YE31958	BOP 112 YD 55520	BOP 121 YE31965	BOP 123 YE31967	BOP 125 YE31969	BOP 127 YE31971		BOP 131 YE31975			CREATED BY: AURORA GEOSCIENCES LTD. 0.5 0 0.5 1 1.5 2
7135000	K	KZ	15×	BOP/119	BOP 117	BOR 115	BOP 113	BOP 111 YD55519	BOP 122 YE31966		BOP 126	80 P 1 28 /YE31972		BOP 152 YE31976	K to	7135000	SCALE 1:50,000 KILOMETRES
11		Ê	ANA .	YE31963	YE31961	YE31959	YE31957	10,0019							S	F	KOOTENAY SILVER INC
0	B		JL2							21	P	11	5	12h		16.	BOP 1-132 CLAIMS
7134000		HUG	XX	H				¥Æ	11	SIS		4	X	SHI		7134000	PROJECT KTN-19038-YT DESIGN JM 0004/2017
	54400	0	5450	00	546	5000	54	47000		548000	6	549000	1	55000	0 551000	W	DESIGN JM 0004/2017 GIS DF 1811/2019 CHECK JM 18/11/2019 CHECK JM 18/11/2019 REVIEW CS 18/11/2019 REVIEW CS 18/11/2019

Figure 2: Claim Tenure Map (November, 2019

4 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

4.1 TOPOGRAPHY, ELEVATION AND VEGETATION

The Upper Rackla property covers a mountainous area bounded on all sides by subalpine stream valleys, including the Rackla River along the northern boundary. The property is characterized by rugged, locally inaccessible terrain, although much of the eastern and southern area is marked by fairly moderate terrain. Elevations range from just under 915m (3,000 feet) along the Rackla River up to 1,830 m (6,000 feet) in the south-central property area. Lowland areas along property boundaries are covered by subalpine boreal forest, comprising subalpine fir, black and white spruce, and poplar along drier south and westfacing slopes. Areas from about 1,220 m to 1,450 m (4,000 – 4,750 feet) are covered by intermittent buckbrush and shrubby vegetation, while areas above 1,450 m are marked by alpine tundra or are unvegetated.

4.2 ACCESS

The property can be reached by helicopter from the Mayo airport, with potential for fuel depots to be established along the Silver Trail extending from the village of Mayo to Keno City, or along local access roads extending north or east from Keno City.

During the 2019 program, the property was accessed by a Hughes 520 helicopter contracted from Fireweed Helicopters Ltd. at Dawson City, Yukon. Supplies and personnel were driven from Whitehorse to Mayo on August 9^{th} , returning on August 13^{th} . The helicopter flew from Dawson City to Mayo on August 9^{th} and provided daily set outs and pickups from Mayo during August 10 - 12, returning to Dawson on the evening of August 12. The helicopter remained on site during the day to facilitate movement of personnel.

4.3 LOCAL RESOURCES

The property is large enough to host mining and mineral processing infrastructure and has sufficient water from several small streams to service diamond drilling operations. The village of Mayo (area population 496, Yukon Bureau of Statistics) is road-accessible via the Silver Trail (Yukon Highway 11) extending from the North Klondike Highway. The town has an available work force, including some local tradespeople and heavy equipment operators. Mayo also provides adequate grocery and some hardware and fuel services, as well as accommodations. The town also hosts a serviced airport and government services, including the Mayo mining recording office for the Mayo district. Helicopter services are intermittently available during the field season.

4.4 CLIMATE

The property is affected by a dry-summer sub-arctic climate (Wikipedia, 2019). Average Mayo July high and low temperatures are 22.8° C and 9.4° C, respectively, and average January temperatures are -18.0° C and -28.2° C, respectively. Total annual precipitation averages 313.5 mm, with 203.8 mm rain and 160.6 cm snow. The climate at the property is cooler and wetter than that of Mayo, with increasing precipitation and decreasing temperatures with elevation. The field season extends from mid-June to mid-September, with some variance due to elevation.

5 HISTORY

No previous private-sector exploration has been documented for the BOP 1-132 block, although numerous proximal polymetallic occurrences have undergone exploration. The area has undergone regional geological mapping by the Yukon Geological Survey. It has also undergone stream sediment sampling under the "Regional Geochemical Survey" (RGS) program. This survey revealed several geochemically anomalous values for base metals, particularly along Davis Creek in the northwest property area (Section 7.2).

6 GEOLOGY

6.1 **REGIONAL GEOLOGY**

The Upper Rackla property is located along the southern margin of the Proterozoic Ancient North American Continent. This comprises layered rocks, predominantly sediments, deposited along the western flank of western Laurentia, a craton represented by the Canadian Shield (Israel et al).

The oldest basal sedimentary stratigraphy is comprised of the Wernecke Supergroup, a 13-km thick assemblage deposited in the Mesoproterozoic from about 1.84 Ba to >1.4 Ga (Delaney, 1985). The Wernecke Supergroup is divided into three major groups; from oldest to youngest, these are the Fairchild Lake Group, the Quartet Group and the Gillespie Group. Delaney (1985) has subdivided the Fairchild Lake Group into five formations, the first three comprising fine grained basinal sediments supplied by a major river, the fourth consisting of shallow marine shelf sediments, and the fifth deposited in an anoxic basin fringed by a carbonate shelf. The overlying Quartet Group is a 5-km thick sequence comprising siltstone, mudstone, fine sandstone and claystone (Delaney) with minor interbeds of orange-weathering dolostone towards the top of the sequence (Colpron et al, 2016). The Quartet Group is overlain by the 4-km thick Gillespie Lake Group, comprising seven formations. The lower four of these are composed of fine grained siliciclastic – carbonate admixtures that were deposited in a progressively deepening basin. The fifth is comprised of carbonate rocks deposited in a gentle slope environment fringed by a stromatolitic reef complex. This is overlain by intercalated carbonate - siliciclastic rocks and in turn overlain by rocks deposited on a carbonate shelf (Delaney).

All Wernecke Supergroup units have been intruded by later Ectasian-aged Hart River Formation (about 1.32 Ga) diorite to gabbro dykes, emplaced during a period of crustal extension (Israel et al). Minor felsic dykes of unknown age also occur within the Wernecke Supergroup. The Pinguicula Group, a 2.5-km sequence comprising sandstone interbedded with dolostone, siltstone and shale deposited on an erosional surface, overlies Wernecke Supergroup rocks. Neoproterozoic (<1.0 Ga) carbonates, sandstones and siltstone of the Mackenzie Mountains Supergroup overlie the Pinguicula Group in the eastern part of the Ancient North American Continent.

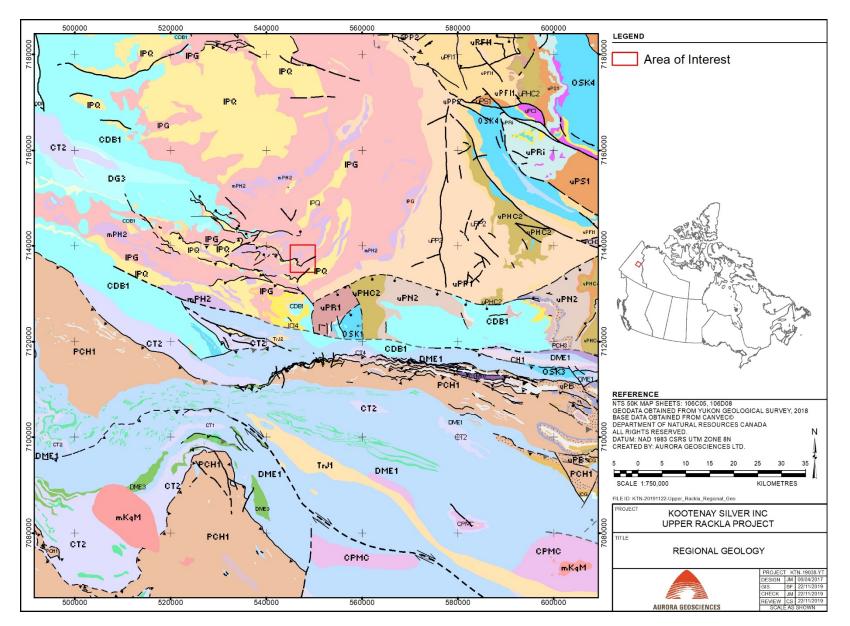
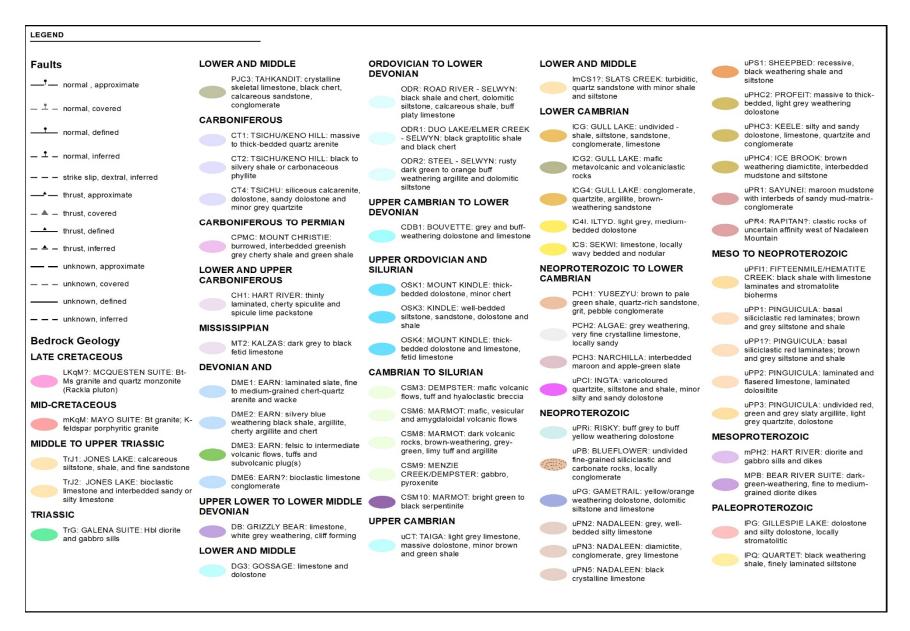



Figure 3: Regional Geology Map, Upper Rackla area

Figure 4: Regional Geology Legend

6.2 PROPERTY GEOLOGY

Mapping in 2019, combined with geological mapping by the Yukon Geological Survey (YGS), indicates the majority of the property area is underlain by siltstone, mudstone and shale, with minor conglomerate of the Quartet group (Figure 5). A fault-bounded northeast-southwest trending sigmoidal unit of Gillespie Group dolomitic sandstone to dolostone, including stromatolitic horizons, extends across the property area. Aerially extensive units of dioritic to gabbroic dykes and intrusions occur in northern and western areas. Mapping in 2019 indicates the presence of coeval reddish-brown carbonate-altered mafic flow rocks in the northwestern area near Davis Creek (local name). A narrow felsic dyke is located in the west-central property area.

Several east-west and ENE – WSW trending faults were identified in the property area, one of which marks the southwestern boundary of the Gillespie Lake dolostone unit. Another broadly arcuate fault marks the southern terminus of a gabbroic unit, indicating faulting post-dates mafic dyke emplacement. Shear orientations throughout the property are east-west striking and steeply south-dipping to vertical, indicating a structural lineation throughout the property area. Bedding measurements are highly variable in the west-central property area, indicating complex folding, but are more consistently east striking, south dipping, to ESE-WNW striking, SW dipping in southern and eastern areas. Directly south of Davis Creek, bedding exhibits a younging orientation to the west, although this may vary with fold orientation. Foliation measurements are typically east-west striking and steeply south dipping.

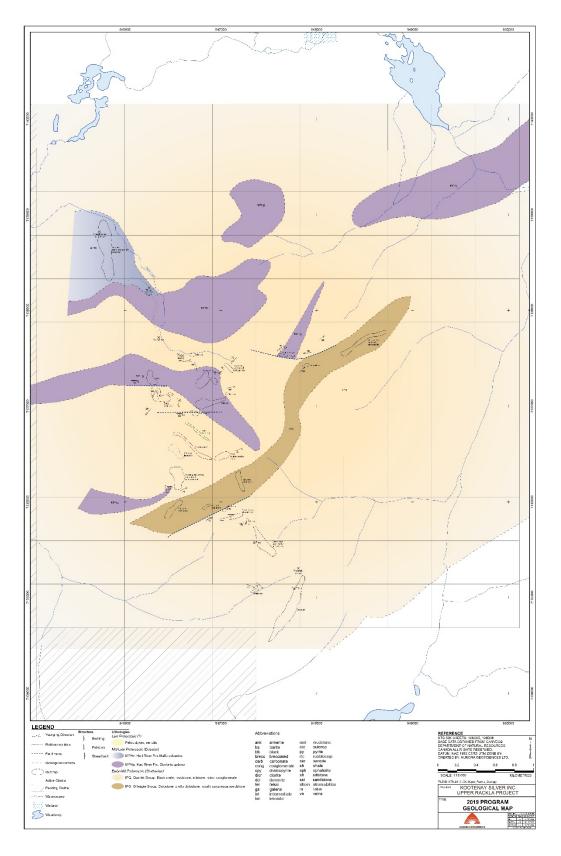


Figure 5: Property Geology map, 2019 Program

6.3 **MINERALIZATION**

The 2019 program led to discovery of three mineralized showings: the Freddy, Miles and Blue Ridge showings. The Freddy showing, extending across a length of 33 m, is comprised of replacement-style fine grained massive to semi-massive galena and sphalerite within brecciated calcareous siltstone to mudstone (Figure 6). The showing is hosted by a calcareous lens within Quartet Group fine clastic sediments, directly adjacent to a sill of fine grained, amygdaloidal basalt, possibly representing a subvolcanic gabbro. Replacement-style massive sulphides occur as breccia clasts up to 1 cm in length, and as bands up to 3 cm in width. Stringer and disseminated style mineralization also occur. Sulphide mineralization is associated with strong silicification and minor calcite and carbonate veining.

Figure 6: Sample 1903612: massive galena (>20% Pb, 405 g/t Ag), Freddy Showing

The Miles showing is comprised of clotty to semi-massive chalcopyrite, clotty galena, and azurite and malachite within quartz vein and vein breccia hosted by Hart River Formation dolomitized mafic volcanic rocks (Figure 7). Lesser centimeter-scale massive galena was also identified. The showing also includes areas of banded quartz-dolomite veining with disseminated to semi-banded chalcopyrite (Figure 8). Although the known aerial extent is very limited, time constraints did not allow for comprehensive exploration of the target.

Figure 7: Sample R1903555 (6.69% Cu), Miles Showing

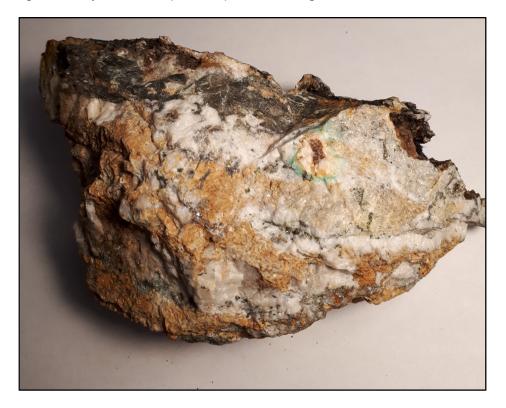


Figure 8: Banded quartz-carbonate veining (0.423% Cu, 0.485% Pb), Miles Showing

The Blue Ridge showing is comprised of several rock grab samples returning anomalous Pb, Zn, Cu \pm Ag values returned over 900 metres along a ridge in the south-central property area. The showing is located within Quartet Group light grey to pale green thin bedded shale, with mineralization specifically hosted within or proximal to carbonate lenses to 30 cm in width. Carbonate lenses are commonly brecciated and have undergone dolomitization and silicification. Sulphide mineralization comprises disseminated and fracture-filling galena, sphalerite and chalcopyrite.

Minor occurrences of chalcopyrite and galena have been identified throughout the project area. The south wall of the cirque, hosting the Freddy showing, also hosts an occurrence of clotty sphalerite and lesser chalcopyrite within quartz-carbonate veining near the headwaters of Davis Creek. Abundant large talus float quartz vein boulders with disseminated and fracture-filling chalcopyrite were identified along the south side of Davis Creek.

7 WORK PROGRAM

In 2019, a three-person crew conducted a reconnaissance-style program of geological mapping, prospecting, rock and silt geochemical sampling across prospective areas of the property. The program was helicopter-supported daily from Mayo, and the crew stayed at local lodgings in Mayo. The program took place over a three-day period from Aug 10 - 12, with two additional days for mobilization and demobilization. The specific areas targeted were: Davis Creek, draining the northwest quadrant of the property, and the upper branches of a west-flowing stream along the south property boundary. Three silt sample traverses were completed along these drainages. Prospecting focused mainly along the upper reaches of Davis Creek, a drainage in the east-central area, and ridgelines in the central and south-central project areas.

The catchment area of Davis Creek underwent intensive prospecting and rock sampling, particularly the cirque marking the upper limit of the catchment area. A total of 25 rock samples were acquired from this area. Two rock samples were taken from the east branch catchment of the southern stream, nine from the ridgeline or upper catchment of the west branch of this stream, and one from the next catchment to the west. Nine samples were also retrieved from ridgelines and upper areas of another catchment in the east-central area.

Geological mapping was also completed across the northwest and south-central catchment areas. Rock grab and composite grab samples were taken where warranted in the field. Rock sampling and geological mapping were completed concurrently with silt sampling.

7.1 ROCK SAMPLE RESULTS

A total of 47 rock samples were acquired in 2019. The highest grade Pb and Zn values were returned from the Freddy showing, which comprises replacement-style massive sulphide mineralization within calcareous siltstone to mudstone. Sample results showed a very high variability in Pb: Zn ratios, as well as in Ag and Cu content. Sample #1903612 returned 87 ppm Cu, > 20.0% Pb, 1.51% Zn and 405 g/t Ag, while Sample #1903635 returned 577 ppm Cu, 1,941 ppm (0.194%) Pb, >20.0% Zn and 21.9 g/t Ag. Samples enriched in Zn show a strong correlation with elevated Cd values and anomalous to strongly anomalous Hg values. The high variability indicates a zonation or banding of sulphide mineralization. Figure 9 shows rock sample locations and Figures 10 through 13 show the value ranges for Cu, Pb, Zn and Ag, respectively.

Anomalous base metal values were also returned from samples taken elsewhere within the cirque hosting the Freddy showing and the headwaters of Davis Creek. Sampling of Hart River Group diorite dykes and proximal fine clastic sediments, about 500m east of the Freddy showing, returned values ranging from 14 ppm Cu, 106 ppm Pb, 171 ppm Zn and 0.4 g/t Ag from Sample #1903605, up to 2,628 ppm (0.263%) Cu, 624 ppm Pb, 1.27% Zn and 2.6 g/t Ag. Sampling of large quartz talus float boulders along the south wall of the cirque returned values of 128 ppm Cu, 2,917 ppm Pb, 730 ppm Zn and 1.9 g/t Ag (Sample #1903548), and 3,389 ppm Cu, 61 ppm Pb, 86 ppm Zn and 2.2 g/t Ag (Sample #1903547).

The Miles showing is comprised mainly of quartz-chalcopyrite veining in fractured to brecciated mafic volcanics. Grab and composite grab sampling returned values from 0.857% Cu, 0.176% Pb, 0.112% Zn and 47.6% Ag (Sample #1903556), up to 6.685% Cu, 0.2508% Pb, 0.1011% Zn and 89.0 g/t Ag (Sample #1903555). The showing includes a "select composite grab" sample of a centimeter-scale galena vein, returning values of 608 ppm Cu, >20.0% Pb, 188 ppm Zn and 1,014 g/t Ag (Sample #1903667).

Sampling along the Blue Ridge showing, also returned a very pronounced range of base metal values, as well as a pronounced range in base metal ratios. Values for Cu range from 3 up to 11,560 ppm (1.156%), values for Pb range from 103 up to 7,757 ppm, values for Zn range from 106 up to 9,969 ppm and values for Ag range from <0.3 up to 20.0 g/t. The majority of samples were taken slightly downslope along the southwest flank of the ridge, which forms the catchment area of the western fork of the stream where stream silt sampling was also completed (Figures 9 - 13).

Sampling along the eastern ridgeline returned only sporadic anomalous base metal and Ag values, including: 1.561% Cu and 4.4 g/t Ag from Sample #1903623, 4.8 g/t Ag from Sample #1903624, and 3,846 ppm Cu and 8.5% Ag from Sample #1903625. Low to background Au values were returned across the property.

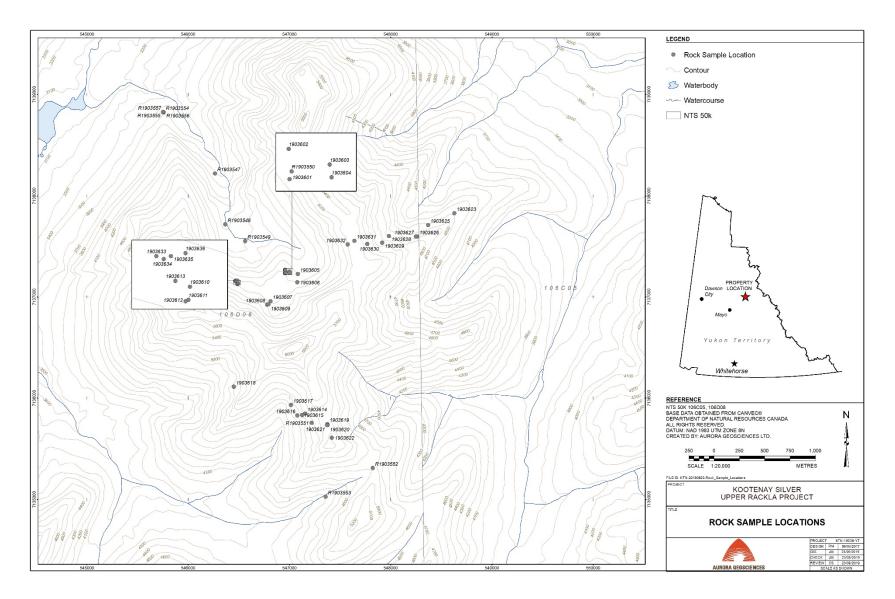


Figure 9: Rock Sample locations, 2019 Program

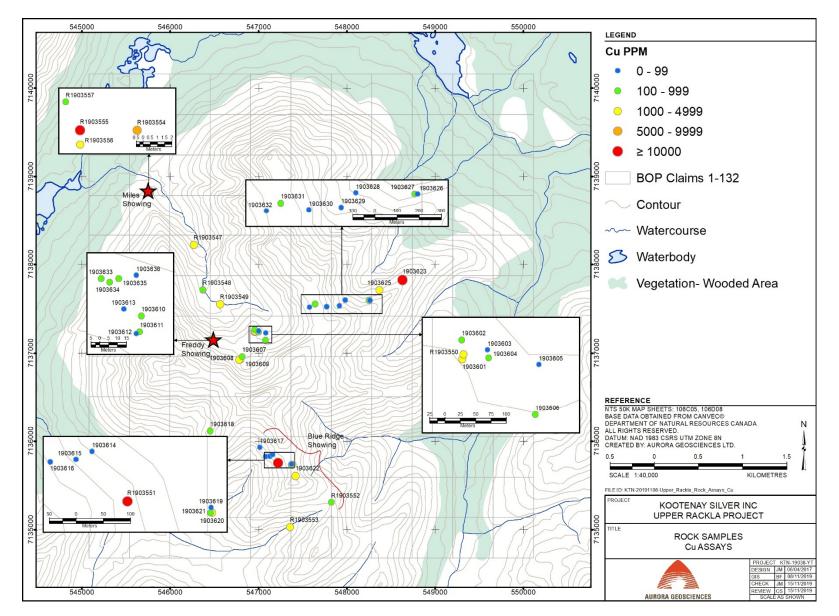


Figure 10: Cu Value ranges, 2019 rock sampling program

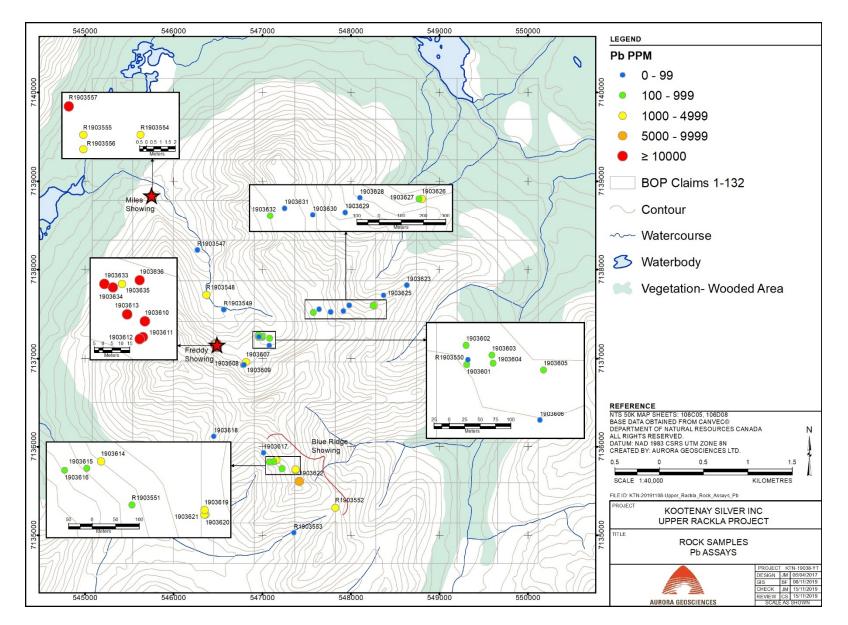


Figure 11: Pb sample value ranges, 2019 rock sampling program

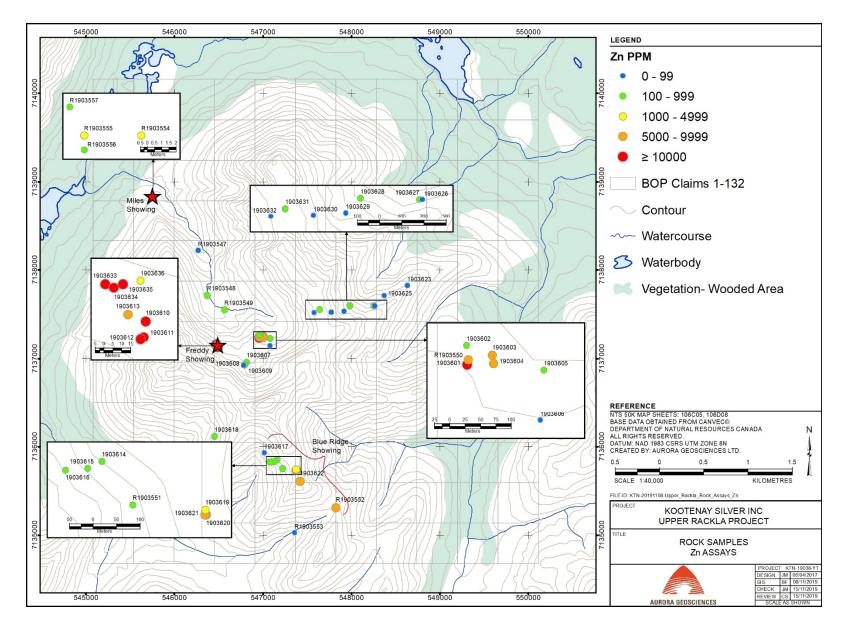


Figure 12: Zn sample value ranges, 2019 rock sampling program

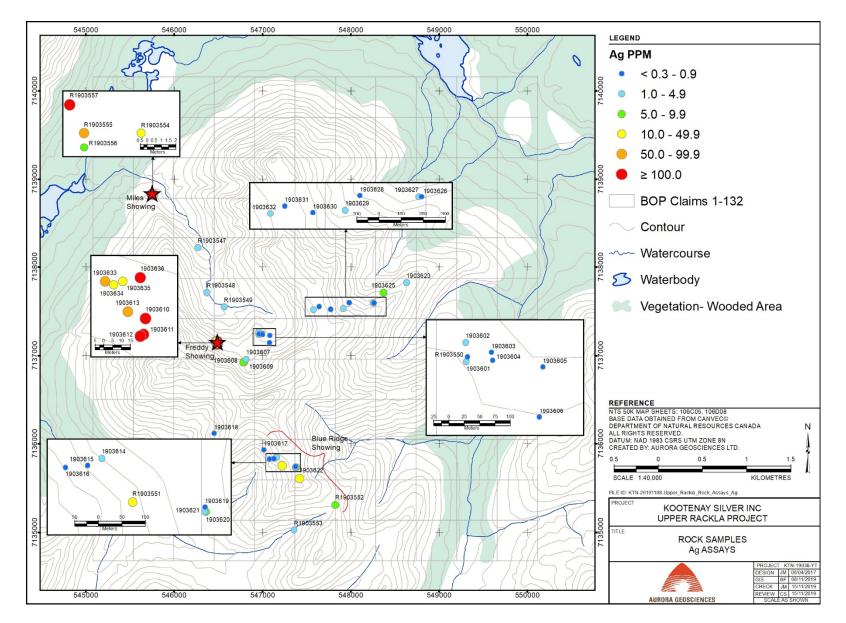


Figure 13: Ag sample value ranges, 2019 rock sampling program

7.2 SILT SAMPLING PROGRAM

A total of 29 silt geochemical samples were taken in 2019 (Figure 14). Sampling along Davis Creek revealed consistently anomalous Cu, Pb and Zn values (Figures 15 through 17), although Ag values were only slightly elevated (Figure 18). Copper values were uniformly anomalous along the mainstem, ranging from 208 to 305 ppm (Figure 15). Values for Pb show a progressive downstream increase, ranging from 74 ppm towards the source to 392 ppm along its lower extent, with a moderate increase in values from the lowermost four samples (Figure 16). Values for Zn along the mainstem range from 773 to 1,594 ppm, and show a progressive increase, reaching a maximum in the central extent, and decreasing slightly downstream of that. Sampling from a left tributary, downslope from the Freddy showing, returned a value of 2,322 ppm Zn. Values for Ag along the mainstem ranged from 0.4 g/t to 0.9 g/t, and the Ag value for a left tributary draining the Freddy showing area was 1.4 g/t Ag.

Values for Cu, Pb, Zn and Ag from silt sampling along the southern streams were much more subdued than for Davis Creek. Along the west fork, values for Cu range from 39 - 53 ppm, values for Pb range from 27 - 31 ppm, values for Zn range from 77 - 113 ppm, and values for Ag range from <0.3 - 0.5 g/t (Figures 15 - 18). Along the east fork, values for Cu range from 35 - 94 ppm, values for Pb range from 19 - 75 ppm, values for Zn range from 97 - 165 ppm, and values for Ag range from <0.3 - 0.8 g/t. Although these base metal and Ag metal values are at, or slightly above, crustal abundance averages, no significantly anomalous values were returned. The values likely reflect high background metal values in the area.



Figure 14: Silt sample locations, 2019 program

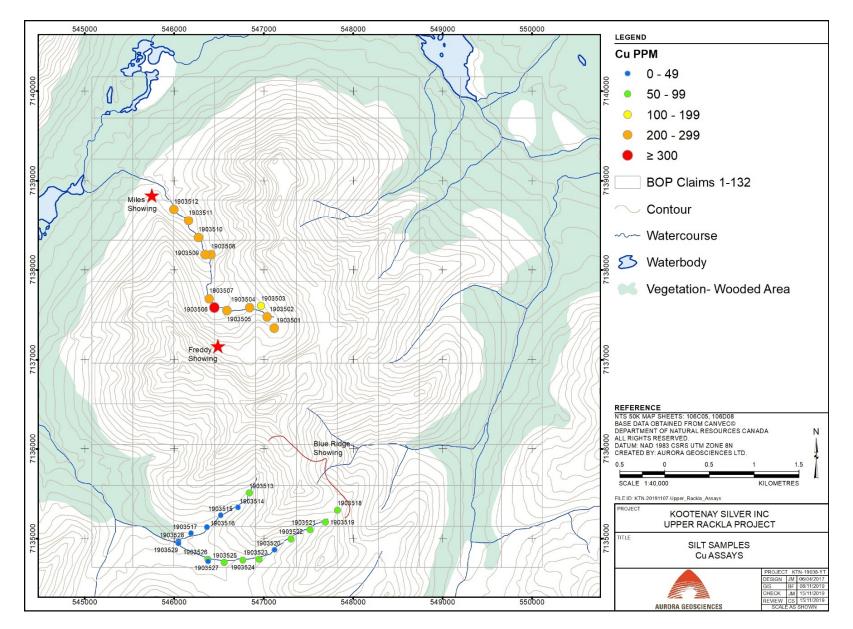


Figure 15: Cu sample value ranges, 2019 silt sampling program

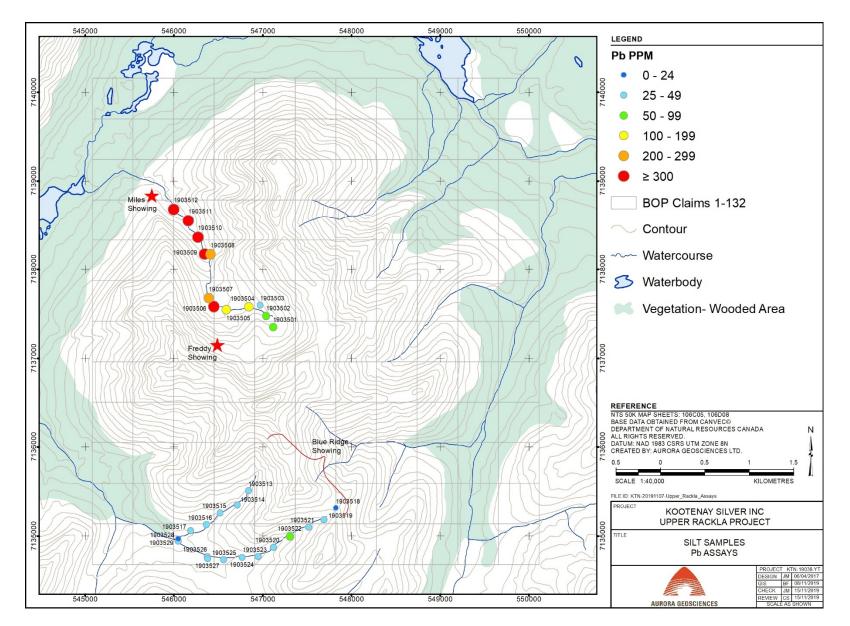


Figure 16: Pb sample value ranges, 2019 silt sampling program

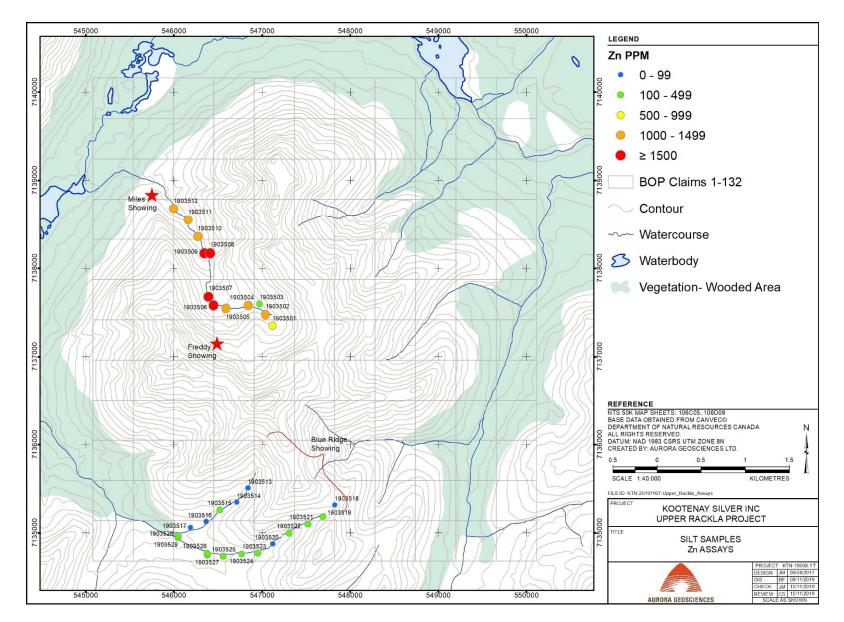


Figure 17: Zn sample value ranges, 2019 silt sampling program

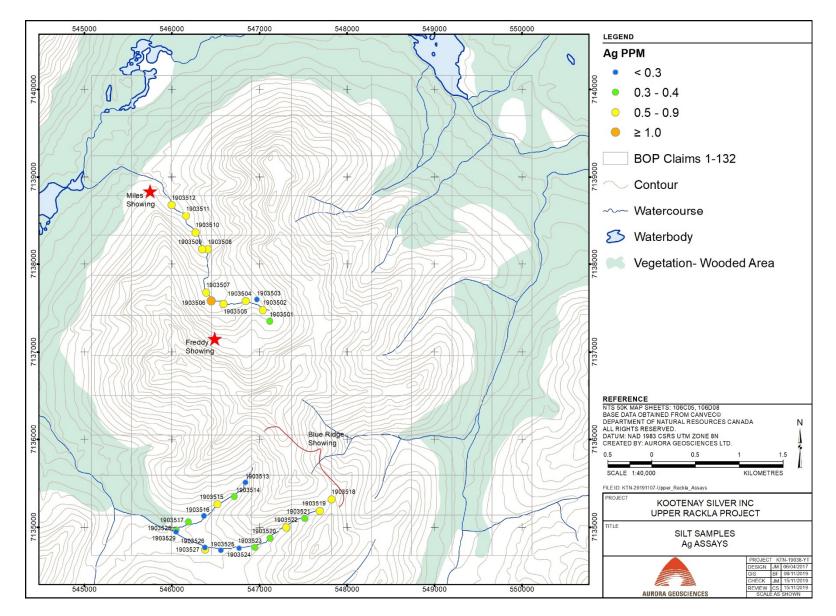


Figure 18: Ag sample value ranges, 2019 silt sampling program

7.3 CREW AND EQUIPMENT, SILT SAMPLING PROGRAM

The following crew members conducted the 2019 prospecting, rock and silt sampling program on the Upper Rackla property:

Table 2: 2019 crew, Upper Rackla silt sampling project

Carl Schulze	Geologist, Project Manager,	August 9 - 13, 2019
Davin Hofmann	Geologist	August 9 - 13, 2019
Shawn Kennedy	Prospector (Kootenay Silver)	August 9 - 13, 2019

The crew was equipped with the following instruments and equipment:

Data Processing	1	Computer: geologist's software package
Survey Equipment	4	Sampling tools including "geotools"
		Sampling supplies including rock sample
		"poly" bags, soil bags (Hubco type),
		shipment bags (rice type) and assay tag
		books
	4	Non-differential GPS, Suuntu MC-2
		compasses
Communication	4	Handheld VHF radios
	1	SAT phone – Iridium
	1	Garmin "InReach" communication device
Safety	4	Bear Safety (Bangers, Spray)
Support	1	Office box and equipment repair tools

7.3.1 Grid and Line Specifications

Silt samples were obtained on a systematic basis, at roughly 250-metre intervals along the stream "mainstem" and tributaries. If a confluence occurred within 50m of the upcoming 250-metre interval, samples were taken from both the mainstem and the tributary, far enough upstream of the confluence along both streams to ensure no cross-contamination occurred.

7.3.2 Survey Specifications

At each site, stream sediment material was taken from several sub-sites to comprise a single sample.

All samples were described in the field utilizing the following parameters: Sample name, sample location (UTM-NAD 83), width and steepness of stream, colour, whether sample was of "mossmat", percent fines (<2 mm), presence of significant concentration of organics, date, sampler, and comments where applicable. At each site, a picture of the sampled material and a picture of the sample site were taken.

7.3.3 Sampling Discussion

Due to the limited three-day time frame of the program, targeted selection of particular streams for silt sampling and areas prospective for rock sampling was undertaken. Three streams were selected based

on zinc (Zn), copper (Cu) and lead (Pb) values from RGS stream silt sampling near their outflows into larger water courses. The first was a stream draining the northwestern property area, and the other two were the west and east forks of a stream draining the south-central property area (Figure 14). A total of 12 silt samples was collected from the northwestern stream, 10 were taken from the west fork, and 7 were taken from the east fork of the southern stream.

7.3.4 Analysis

Silt samples were submitted for analysis to the Whitehorse prep lab of Bureau Veritas Commodities Canada Ltd. (BV). Silt samples were dried at 60°C and sieved to -180 microns (80-mesh), retaining both fractions. "Pulps" were then sent to the Vancouver lab of BV for fire assay and multi-element ICP-ES analysis. There, a 0.5g split underwent 1:1:1 aqua regia digestion and analyzed by ICP-ES for the following 33 elements: Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W, S, Hg, Tl, Ga and Sc. A separate 30g split underwent fire assay fusion for Au, Pt and Pd, and was then analyzed by ICP-ES.

A standard sample immediately followed by a blank sample, all supplied by Canadian Resource Laboratories of Langley, British Columbia, were placed into the sample sequence at approximately 20-sample intervals. A total of 2 "Standard" samples and 2 blank samples of reference material were inserted into the silt sample stream. Table 3 lists the types of standards utilized.

Table 4: QAQC materials used in the 2019 silt sampling program

QAQC Type	Identifier
Standard	CDN-ME-1308
Blank	CDN-BL-10

Reference material "standard" CDN-ME-1308 provided known values for Au, Ag, Cu, Pb and Zn. All values returned for these fell within the 2-standard deviation (2SD) range, confirming reliability of results. Blank sample material was provided for Au, Ag, Pt and Pd, and all values returned were below the known values of <0.01 g/t for Au, Pt and Pd, and <0.5 g/t for Ag. Values for Cu, Zn and Pb were not provided, although all were at crustal abundance "background" levels.

7.3.5 Preliminary Data Products

Digital copies of all silt sample location data have been supplied in.xlsx file format within this report. Detailed silt and rock location maps have also been supplied digitally.

7.4 PROSPECTING, ROCK SAMPLING, GEOLOGICAL MAPPING

7.4.1 Crew and Equipment

The following crew members conducted the 2019 prospecting, geological mapping, rock and silt sampling program on the Upper Rackla property:

Table 5: 2019 Crew, Upper Rackla prospecting program

Carl Schulze	Geologist, Project Manager,	August 9 - 13, 2019
Davin Hofmann	Geologist	August 9 - 13, 2019
Shawn Kennedy	Prospector (Kootenay Silver)	August 9 - 13, 2019

The crew was equipped with the following instruments and equipment:

Data Processing	1	Computer: geologist's software package
Survey Equipment	4	Sampling tools including "geotools"
		Sampling supplies including rock sample
		"poly" bags, soil bags (Hubco type),
		shipment bags (rice type) and assay tag
		books
	4	Non-differential GPS, Suunto MC-2
		compasses
Communication	4	Handheld VHF radios
	1	SAT phone – Iridium
	1	Garmin "InReach" communication device
Safety	4	Bear Safety (Bangers, Spray)
Support	1	Office box and equipment repair tools

7.4.2 Prospecting Methodology

Rock sampling, of both outcrop and proximal talus float, was completed where applicable, with particular focus on mineralized and/or altered rock outcrop or float. Where multiple pieces of very similar float occur in a small area, "composite grab" samples were taken to obtain a more representative sample. A 0.3-metre chip sample was taken at one location towards the outflow of the northwestern stream.

At each site, rock samples were described utilizing the following criteria: sample location (UTM, NAD 83), sample type (grab, composite grab, etc.), length (if chip sample), material sampled (outcrop, rubblecrop, float, etc.), sample description, colour, rock type (descriptive), protolith, percent quartz vein, percent sulphides, sulphide texture, oxidation degree, degree of carbonate alteration, degrees of other alteration types, structural features, and comments, if any. Samples taken by Mr. Kennedy were described as to location (UTM, NAD 83), elevation and detailed description under "Comments".

Samples were placed in poly bags in the field and labelled and sealed with a cable tie (Zap Strap). A representative sample was taken at many sample sites. The field location was marked by flagging tape with an attached "butter tag" and included a sample number. A photograph of the sample site and a close-up of the actual sample were taken.

A standard sample immediately followed by a blank sample, all supplied by Canadian Resource Laboratories of Langley, British Columbia, were placed into the sample stream at approximately 20-sample intervals. A total of 3 Standard samples and 3 blank samples were inserted into the sample stream. Table 3 lists the types of standards utilized.

Table 7: QAQC materials used in the 2019 prospecting program

QAQC Type	Identifier
Standard	CDN-ME-1308
Blank	CDN-BL-10

"Standard" reference material analysis returned one Cu value slightly exceeding the upper 2SD limit, indicating Cu values from that branch may slightly over-estimate true values. All other Cu values, and all

Pb, Zn and Ag values, were within the 2SD ranges per respective element. Blank sample material was provided for Au, Ag, Pt and Pd, and all values returned were below the known values of <0.01 g/t for Au, Pt and Pd, and <0.5 g/t for Ag. Values for Cu, Zn and Pb were not provided, although all were at crustal abundance "background" levels.

7.4.3 Prospecting Discussion

Prospecting and rock sampling revealed several targets with potential for follow-up work. Results are described in Section 7.1.

7.4.4 Analysis

Rock samples were crushed so that 90% passed through a 2mm screen, then split and pulverized to obtain a 250g sample of which 85% passed through a 75-micron (μ) screen (prep code PRP90-250). Then, a 0.5g sample underwent 33-element ICP-ES analysis by 1:1:1 Aqua Regia digestion for: Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W, S, Hg, Tl, Ga and Sc. (Prep code AQ300). Also, a 50g sample underwent Au, platinum (Pt) and palladium (Pd) analysis by lead collection fire assay by ICP (Prep code FA350). "Overlimits" for Cu, Pb, Zn and Ag underwent subsequent analysis of a 0.5g sample by aqua regia digestion (Prep code AR404).

7.4.5 Preliminary Data Products

Digital copies of all sample location data have been supplied in .xlsx file formats with this report. Detailed rock sample location maps have also been supplied digitally in addition to the maps included in the report.

8 INTERPRETATION AND CONCLUSIONS

8.1 INTERPRETATIONS

Preliminary geological mapping was done only across southern and northwestern property areas and cannot be considered as representative of the property. Mapping in 2019 indicates the property is underlain mainly by Quartet Group fine clastic sediments, with a NE – SW trending sigmoidal unit of Gillespie Group dolomites and carbonates extending across the central area. This does not conform to regional mapping which indicates Gillespie Group sediments are dominant in the property area. Previous regional mapping identified minor carbonate units within upper portions of the Quartet Group, which may correspond with the small carbonate lenses in the Davis Creek cirque.

Rock sampling led to discovery of two mineralized showings, the Freddy and Miles showings, and one area of anomalous base metal values from rock sampling, called the Blue Ridge showing. The Freddy showing, identified in two sites across 33 metres, comprises massive to stringer-hosted silver-bearing galena ± sphalerite mineralization, with lesser chalcopyrite. Sulphide mineralization at the northwestern exposure of the Freddy showing is somewhat more vein-associated. Host rocks in the cirque are dominantly Quartet Group fine clastic sediments with narrow lenses of calcareous sediments. These lenses are the host units for replacement-style mineralization marking the Freddy showing.

Sample results from the Freddy showing reveal a very high range in all combinations of ratios of Cu, Pb and Zn, and values for Ag, Hg and Cd correspond somewhat more closely with those of Zn. The northwestern site is slightly more enriched in Zn, whereas the southeastern site has somewhat enhanced Pb values. This indicates a high degree of banding or zonation within the showing area. The Upper Rackla

River area is known to host polymetallic veining, as opposed to Sedex or VMS-style mineralization. Mineralized banding is likely the result of several pulses of hydrothermal fluids with varying metal ion content, resulting in multiple bands of sulphide mineralization, each with a distinct mineralogy.

The Miles showing is hosted by dolomitized red-brown weathering mafic volcanic rocks, and has a very limited aerial extent, although further exploration is required to confirm its extent. The mineralogy is dominated by quartz vein-hosted chalcopyrite, with subordinate galena and sphalerite. The showing includes examples of banded quartz-carbonate veining with thin-banded sulphides, largely along the margins of the individual centimetre-scale quartz bands. The mineralogy is distinct from the Freddy showing, although both showings indicate multiple pulses of metal-bearing fluids. A late galena-bearing vein occurs along a small shear zone visible in several boulders. Although its age relationship has not been confirmed, it appears to post-date quartz-chalcopyrite vein emplacement.

At the Blue Ridge showing, several thin brecciated carbonate lenses, to 30 cm in width, host fracturecontrolled and disseminated chalcopyrite, galena and sphalerite. Anomalous base metal values elsewhere along the ridge are hosted by quartz-carbonate veining, which may include the carbonate "lenses". Ratios of Cu: Pb ± Zn are considerably higher than at the Freddy showing.

Silt geochemical sampling returned strongly anomalous Cu, Pb and Zn values throughout the extent of Davis Creek. Values for Zn are highest along the central part of the watercourse, downstream of the Freddy showing, although the significant lateral extent of the anomalous silt values indicates the presence of further zinc occurrences. Values for Pb are highest considerably downstream of the Freddy showing, indicating the presence other Pb-bearing mineral occurrences along the lower extent of the creek. A strongly anomalous Pb value from a "left" tributary draining the south flank, and a subdued Pb value from a "right" tributary indicate the south wall of the cirque is the most prospective, including unexplored portions between the Freddy and Miles showings.

The 2019 program led to the determination of a preliminary age relationship of the varying mineralized settings. Replacement-style Pb-Zn-Ag mineralization was emplaced during early pulses of fluid movement, mainly in reactive calcareous beds, closely followed by emplacement of vein-associated Pb-Zn-Ag mineralization. Vein-hosted chalcopyrite-dominated sulphide assemblages and associated hydrous copper carbonates, including metre-scale quartz-chalcopyrite veining, were emplaced during a subsequent phase. This was followed by a late pulse of massive silver-bearing galena veining, to date located only at the Miles showing.

The widespread distribution of base-metal ± silver mineralization throughout the Upper Rackla to upper Wind River areas indicates a district to regional-scale base metal mineralizing event of significant temporal duration. A lack of proximal Tintina Gold Belt intrusions indicates polymetallic mineralization is of orogenic origin. RGS stream sediment sampling returned elevated to anomalous Cu-Pb-Zn-Ag values from all drainages within the BOP 1-132 claim block, indicating potential for further mineralized occurrences throughout the property. Highly anomalous values from Davis Creek indicate its catchment area, particularly the southern and eastern cirque walls, is the most prospective to host polymetallic mineralization.

8.2 CONCLUSIONS

The following conclusions can be made from the results of the 2019 program:

- The BOP 1-132 claims are underlain mainly by Quartet Group fine clastic sediments with minor carbonate interbeds. A NE-SW trending sigmoidal unit of Gillespie Group dolomitic rocks, locally stromatolitic, and calcareous sediments occurs in the central property area. All units are crosscut by Hart River Group diorite to gabbro dykes and sills.
- The small calcareous units and lenses within the Quartet group clastic sediments provide the host for replacement-style massive to stringer-style silver-bearing galena-chalcopyrite mineralization. This is the setting for the Freddy showing along the south wall of the Davis Creek cirque.
- Silt geochemical results indicate the south wall of the Davis Creek cirque is the most prospective for base metal mineralization. The downstream, northwestern portion may have the highest mineral potential.
- The Miles showing, comprising quartz-chalcopyrite veining, is of limited aerial extent, although further work is required to confirm this. This is a distinct setting from the Freddy showing.
- The 2019 program was able to establish a preliminary age relationship of mineralization. Replacement style Pb-Zn sulphide mineralization is cut by vein-style Pb-Zn sulphides, which may have been roughly coeval. Quartz-chalcopyrite veining may have been emplaced subsequently to this, in turn followed by centimetre-style silver-bearing galena veining.
- Elevated Cu, Pb, Zn ± Ag values from RGS indicate potential for polymetallic mineralization throughout the BOP 1-132 block. The Davis Creek drainage, particularly the south wall of the Davis Creek cirque, is the most prospective.
- A lack of proximal Tintina Gold Belt intrusions indicates mineralization is of orogenic origin.

9 **RECOMMENDATIONS**

9.1 **RECOMMENDATIONS**

A program of property-wide geological mapping, rock sampling, prospecting, ridge-and-spur and contour soil geochemical sampling, and stream sediment sampling is recommended for 2020. This would include three days of intensive prospecting, geological mapping and rock sampling along the south wall of the Davis Creek cirque.

The program is recommended to comprise four field personnel, consisting of two geologists and two field technicians, supported by a B-2 A-Star helicopter conducting daily set outs from Mayo. Some savings could be incurred if lodging farther to the northeast can be secured. The program is recommended to be completed in a total of nine field days, with two additional weather days and two mobilization days to and from Mayo.

Total estimated costs, including contingency and report writing, are approximately CDN\$188,800.00

9.2 RECOMMENDED BUDGET

Type of Expense	Ρ	roposed cost
Personnel, including preparation and wrap-up costs	\$	39,980.00
Helicopter, including fuel	\$	66,411.00
Sampling, including "reference material"	\$	19,878.00
Accommodations, meals and groceries	\$	11,300.00
Truck rental, truck fuel and expediting	\$	6,710.00
Other rentals	\$	2,665.00
Field office supplies	\$	600.00
Filing Fees	\$	3,300.00
GIS and digitizing	\$	2,550.00
Field total:	\$	153,394.00
Field report	\$	2,500.00
Assessment report, incl. data compilation, drafting	\$	8,100.00
Sub-total	\$	163,994.00
10% contingency	\$	16,399.40
10% mark-up, third party payment	\$	10,148.90
Estimated total	\$	190,542.30

10 REFERENCES

Colpron, M., Israel, S., Murphy, D., Pigage, L., and Moynihan, D., 2016: Open File 2016-1; Yukon Bedrock geology map 2016: Yukon Geology Survey, Energy, Mines and Resources, Government of Yukon.

Delaney, G.D., 1985. The Middle Proterozoic Wernecke Supergroup, Wernecke Mountains, Yukon Territory. Unpublished PhD thesis, University of Western Ontario, London, Ontario.

Hart, C., The Geological Framework of the Yukon Territory, Yukon Geological Survey

Israel, S., Colpron, M., Roots, C., and Fraser, T. "Overview of Yukon Geology". Yukon Geological Survey.

Websites

Cantex Mine Development Corp: <u>http://cantex.ca/wp-content/uploads/2019/11/2019-11-05-</u> <u>Exploration-update.pdf</u>

Wikipedia, 2019 (Mayo, Yukon): <u>https://en.wikipedia.org/wiki/Mayo, Yukon</u>

Yukon Geological Survey: <u>https://mapservices.gov.yk.ca/GeoYukon/</u>

Yukon Mining Recorder: <u>http://www.yukonminingrecorder.ca/</u>

Effective Date: November 28, 2019

Respectfully submitted, Aurora Geosciences Ltd.

Carl Schulze

Carl Schulze, B.Sc., P.Geo. Project Manager Appendix I

Statement of Qualifications

I, Carl Schulze, BSc, with business and residence addresses in Whitehorse, Yukon Territory do hereby certify that:

- 1. I am a graduate of Lakehead University with a B.Sc. degree in Geology obtained in 1984.
- I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia (registration number 25393), Association of Professional Geoscientists of Ontario (registration no. 1966) and with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists (NAPEG, registration number L3359).
- 3. I have been employed in mineral exploration as a geologist since 1984, primarily on projects in the Yukon Territory, Northwest Territories, Nunavut, Alaska and British Columbia.
- 4. I supervised the work described in this report and wrote this report.
- 5. I have no interest, direct or indirect, nor do I hope to receive any interest, direct or indirect, from Silver Range Resources or any of its properties.

Dated this 28th day of November 2019, in Whitehorse, Yukon Territory.

Respectfully Submitted,

Carl Schulze

Carl M. Schulze, BSc. P. Geo.

Appendix II

Silt Sample Descriptions and Data Kootenay Silver Inc. Aurora Geosciences Ltd.

Silt Sample Descriptions, 2019 Field Program, BOP 1-132 claims KTN-19070-YT (Kootenay Silver, Inc.)

Sample ID	UTM Easting	UTM Northing	Zone	Stream Grade	Stream Width (m)	Colour	% Fines	Date	Sampler	Comments
1903501	547118	7137350	8 8	Gentle	1.0	light brown	90	10-Aug	DH/CS	Mossmat sample
1903502	547039	7137477	' 8	Gentle		med brown	90	10-Aug	DH/CS	Mossmat sample
1903503	546971	7137598		Gentle			>95	10-Aug		Tributary from north
1903504	546842	7137579	8	Moderate-steep	1.2	med brown	85	10-Aug	DH/CS	Mossmat sample
1903505	546587	7137548	8 8	Moderate	1.0	dark brown		10-Aug	DH/CS	Mossmat sample
1903506	546450	7137582	. 8	Moderate-steep	0.3	light brown	>95	10-Aug	DH/CS	Trib, S side, largely mossmat
1903507	546391	7137678	8 8	Gentle-mod	2.5	dark brown	70	10-Aug	DH/CS	Mossmat sample
1903508	546411	7138171		Moderate	1.5	dark brown	65	10-Aug	DH/CS	High organics, mossmat sample
1903509	546345	7138171	. 8	Moderate		dark brown	65	10-Aug	DH/CS	High organics, mossmat sample
1903510	546269	7138362	. 8	Moderate-steep	2.5	light brown	70	10-Aug	DH/CS	Mossmat, sparse silt
1903511	546160	7138552	. 8	Gentle-mod	3.0	light brown	70	10-Aug	DH/CS	High organics, mossmat sample
1903512	545997	7138679	8	Moderate-steep	2.5	med brown	55	10-Aug	DH/CS	Mossmat, moderate organics
1903513	546840	7135507	' 8	Steep		light brown	40			Mossmat, near headwaters
1903514	546715	7135348	8 8	Moderate	0.4	light brown	55	11-Aug	DH/CS	Mossmat, possibly mixed with soil
1903515	546521	7135261	. 8	Gentle	0.4	light brown	50	11-Aug	DH/CS	Mossmat
1903516	546363	7135129	8	Gentle		med brown	40	11-Aug	DH/CS	Mossmat, mainly coarse sand to gravel
1903517	546190	7135060	8	Gentle-mod	0.2	dark brown	65	11-Aug	DH/CS	Mossmat
1903518	547825			Mod-steep	0.3	dark brown	45	Ŭ		Dry
1903519	547690	7135185	8	Moderate	0.4	dark brown	70	0		Mossmat, intermittent small waterfalls
1903520	547121	7134876	6 8	Moderate		light brown	60	11-Aug	DH/CS	Mossmat, shale fragments
1903521	547515	7135100	8	Steep	0.6	dark brown	70	11-Aug	DH/CS	Mossmat
1903522	547307	7134998	8 8	Steep	0.5	dark brown	60	11-Aug	DH/CS	Rare silt in crevasses in outcrop
1903523	546947	7134769		Gentle-mod		med brown	40	11-Aug	DH/CS	Mossmat, 40% organics
1903524	546768	7134760	8	Gentle-mod	1.5	med brown	50	11-Aug	DH/CS	Dry, mossmat, high organics
1903525	546558	7134736	6 8	Gentle	0.8	grey-brown	50	11-Aug	DH/CS	Mossmat
1903526	546374	7134771	. 8	Gentle	0.3	med-brown	80	11-Aug	DH/CS	Abundant silt
1903527	546377	7134748		Moderate-gentle	0.5	med-brown	85	11-Aug	DH/CS	Tributary; mossmat, mod-high organics
1903528	546046	7134969	8	Gentle	0.3	med-brown	90	- 0		Distributary, boggy
1903529	546046	7134947	8	Gentle	0.4	med-brown	75	11-Aug	DH/CS	Fairly high organics
1903530									DH/CS	Standard CDN ME1308
1903531									DH/CS	CDN BL 10
1903532									DH/CS	Standard CDN ME1308
1903533									DH/CS	CDN BL 10

Appendix III

Rock Sample Descriptions and Data Kootenay Silver Inc. Aurora Geosciences Ltd.

Rock Sample descriptions, 2019 Program, Upper Rackla Project KTN-19070-YT (Kootenay Silver, Inc.)

Sample ID U	TM Easting* UTM	M Northing*	Zone Ele	vation (m) Sample Type	Width (m)	Sample Descrip	Lithology	Modification	Colour	Carb (1-3)	Silica (1-3)	Alt 1 Other Alt	Mineral 1	Amt (%) Min 2	Amt (%)	Other min	Amt (%)	Date	Sampler	Comments
R1903550	546961	7137243		1471 C. Grab		Rcrop	Diorite	Veined	green-grey	C2	\$1	Ph1	Chalco		1 Sphalerite		3 Galena	trace	10-Aug	CS	15% Qz-ankerite veining, clotty and vein-assoc chalco.
R1903549	546564	7137551	8	C. Grab		Prox float	Qz-Ank vein	Vuggy, fractured				L1	Chalco	>1	Bornite	tr			10-Aug	DH/CS	90% quartz, fracture-controlled and vuggy sulphides
R1903548	546367	7137715	8	Grab		Talus	Qz vein	Vuggy, banded	tan-orange	C2	S3	L3	Chalco		2 Galena	>1			10-Aug	CS	Protolith uncertain (siltstone?), Veined and banded galena
R1903547	546265	7138221	8	Select C Grab		Talus	Qz-Ank vein	Vuggy	tan-white			L2	Chalco		2 Bornite	<1	Arseno	trace	10-Aug	CS	Quartz-ankerite vein in diorite
R1903546				Blank																	CDN-BL-10
R1903545				Standard																	CDN-ME-1308
R1903551	547221	7135754	8	Select C Grab		Sparse talus	Shale	Veined	Green/brown			L3	Chalco	>1	Malachite	mod			11-Aug	CS	Foliation-parallel dogtooth quartz veining
R1903552	547824	7135309	8	Grab		Prox float		Vn stockwork	grey	C1			Chalco		1 Galena		1 Sphalerite	<1	11-Aug	CS	Sphalerite in dark grey quartz flooding
R1903553	547358	7135026	8	Grab		Prox float	Qz Vein	brecciated	grey/ white	C1-2		L1	Chalco	<1	Sphalerite	tr	Mal	mod	11-Aug		Quartz vein breccia, strong late fracturing
R1903554	545758	7138826	8	Chip	0.3	Rcrop	Qz vein	banded	tan/green				Chalco		5 Galena	<1			12-Aug	CS	Clotty, banded Chalco, coarse grained, replacement-style galena
R1903555	545754	7138826	8	C. Grab		Rcrop	Qz vein	Vuggy	green			L3	Chalco	2	20 Bornite	>1	Az, Mal	Strong	12-Aug		Semi-massive chalcopyrite
R1903556	545754	7138825	8	Grab		Rcrop	Qz vein	fractured	tan/white			L1	Chalco		3 Bornite	>1	Galena	>1	12-Aug		25% dolomite/ankerite. Clotty, banded and fracture-controlled sulphides
R1903557	545753	7138828	8	Select C Grab		Rcrop	Qz-galena vein	Vuggy	blue-grey			L3	Galena	4	10 Py	<1			12-Aug	CS	Probably small veinvuggy-massive galena
1903601	546959	7137235	8	1484 Grab/ C. Grab		Outcrop	Diorite	Qz-carb vein	tan-orange	C2-3		L1							10-Aug	SK	6-8" qtz-carb vein with patchy ZnS in diorite unit
																					Same OC; 6" zone of strongly foliated diorite with dark grey 'braiding' carb-ser alt'n, brassy
1903602	546958	7137266	8	1473 Grab/ C. Grab		Outcrop	Diorite		light grey	C1		Ph1-2 L2	Pyrite		5				10-Aug	SK	seams of Py, some boxworks, rusty weathering
																					Similar greyish sericitic alt'n as last, thin qtz-carbonate (orange) veins with
1903603	547000	7137250	8	1466 Grab/ C. Grab		Outcrop	Siltstone?	Veined	light grey	C2	S1	Ph1 L1	Chalco		Sphalerite		Galena		10-Aug	SK	Py+Cpy+ZnS+PbS
																					Float; Bx'd slightly silicified black mud, graphitic in part, similar qtz-carb veins as above with
1903604	547002	7137237	8	1474 Grab/ C. Grab		Float	Mudstone	brecciated	Black		S2	L2	Malachite		Sphalerite		Galena		10-Aug	SK	Cu stain, clotty coarse ZnS+PbS, pieces to 30 cm
																					SC? Very hard/silicified black graphitic mud, graphitic slips, rusty cm scale qtz veins with
1903605	547084	7137226	8	1441 Grab/ C. Grab		Subcrop?	Mudstone	Qz Veined	Black		S2-3	L1	Pyrite	tr	Sphalerite	tr			10-Aug	SK	some Py and trace ZnS
1903606	547078	7137144	8	1475 Grab/ C. Grab		Outcrop	Mudstone	Fine grained	grey			L1	Chalco	<1	Malachite	tr			10-Aug	SK	Black mud footwall to intrusive 'sill'(?) with fracture Cpy and malachite stain
																					SC of sheared gabbro, sericitic alt'n, thin veinlets with Cpy, malachite and PbS, greyish light
1903607	546814	7136959	8	1520 Grab/ C. Grab		Subcrop	Gabbro	sheared	light grey	1	S2	1 1	Chalco	<1	Galena	<1		1	10-Aug	SK	purple qtz, some epidote, pieces to 30 cm
					1				1 ,			1 1		1		1	1	1			EW trending, steeple S dipping sheared black mud, malachite stain, Py and Cpy over a 60
1903608	546781	7136925	8	1537 Grab/ C. Grab		Outcrop	Mudstone	sheared	grey				Chalco		1 Malachite	mod	Pv		10-Aug	SK	cm exposure, black muds to the south have the same fabric
1903609	546794	7136928	8	1529 Grab/ C. Grab		Outcrop		sheared	light grey				Chalco	1	1 Malachite	tr	.,	1	10-Aug		Same as last along strike
			-										0		-						Zone of bx n in black carbonaceous/graphitic muds adjacent to amygdaloidal sill, massive
																					PbS+ZnS+/-Py/Cpy, some calcite/carb veins, sulphide clasts in breccia to 1 cm, bands/seams
																					of mineralization to 3 cm, cherty/siliceous/albitic(?) alt'n, bx'n may be depositional ie early
1903610	546491	7137137		1470 Grab/ C. Grab		Outeren	Mudstone	Carbonacoour	blue-grey	~			Galena	>10	Sphalerite		20 Chalco	trace	10-Aug		mineral?
1903610	546490	7137128	8	1476 Select grab		Outcrop Outcrop	Mudstone	Carbonaceous	blue-grey	02			Galena	210	Sphalerite Sphalerite		5 Chalco	trace	10-Aug 10-Aug	5N SV	Part of above, selective grab
1903612	546488	7137128	0	1473 Select grab		Outcrop	Mudstone	Carbonaceous	blue-grey	02			Galena	>30	Sphalerite		2	uace	10-Aug		Part of above, selective grab
1905012	340400	/15/12/	0	1473 Select grab		Outcrop	wuustone	Carbonaceous	blue-grey	C2			Galeria	250	sphalence		3		10-Aug	21	Same zone as 610-612, finely disseminated fine grained PbS and trace ZnS in
1903613	546481	7137141		1477 Grab/ C. Grab		Outcrop	Mudstone	Carbonaceous	hiling and in	~			Galena		2 Sphalerite				10-Aug		altered/siliceous mud
1903613	546481	/13/141	ð	1477 Grab/ C. Grab		Outcrop	Mudstone	Carbonaceous	blue-grey	12			Galena		2 Sphalerite	tr			10-Aug		Dominantly thin bdd grey mud with irregular thin qtz veins infilling a fairly dry/cruddy bx,
	547156	7135846		1602 Grab/ C. Grab		Outcrop	Mudstone	Veined		C4									11-Aug		
1903614	347130	/155640	•	1602 Grab/ C. Grab		Outcrop	wuustone	veineu	grey	C1				_					11-Aug	21	minor carb, very little sulphide in this package, 45 cm bx 90/90 Semicont OC, frequent bx fills with qtz-carb, this one has angular shale fragments in a
																					sugary gtz-carb vein matrix with limonite boxworks and Fe stain, these breccias cut the
						a .															
1903615	547126 547079	7135831	8	1580 Grab/ C. Grab		Outcrop Outcrop	Mudstone	Qz-carb veins	grey	C2		L1-2		_					11-Aug	SK	strat with no offset, minor 'z' folds, some pretty strong cleavage
1903616	547079	7135827	8	1546 Grab/ C. Grab		Outcrop	Mudstone	Laminated	grey	0				_					11-Aug	SK	Same unit (tan, thin bdd, planar lam silt/mud) cut by a 45 cm bx w/Fe carb
																					Greenish gritty unit, big blocks of milky qtz with some Fe staining and trace Cpy,
1903617	547016	7135930	8	1542 Grab/ C. Grab			Grits	Oz veined	white-green	C1		L1	Chalco	tr					11-Aug		openspace, some Fe carb, within a larger 'greasy' sheared zone
1903618	546452	7136115	8	1549 Grab/ C. Grab		Float?	Diorite	med-fine grained	grey			Ph2	Chalco	tr					11-Aug	SK	Sericite/pyrite altered diorite with trace diss Cpy Light grey to pale green thin bdd shale with carbonate lenses to 30 cm, lenses are
																					Light grey to pale green thin bud shale with carbonate lenses to 50 cm, lenses are
																					commonly bx'd and altered to a hard pale green/grey (dol+sil?), with clotty disseminated
1903619	547375	7135743	8	1651 Grab/ C. Grab		Rubblecrop	Shale	carb lenses	light grey	C2			Galena		1 Sphalerite		1 Chalco	trace	11-Aug		and fracture PbS+ZnS+Cpy
1903620	547377	7135733	8	1652 Grab/ C. Grab		Rubblecrop		carb lenses	light grey	C2			Galena	1	1 Sphalerite	I	1 Chalco	<1	11-Aug		Same as last, 4" lense
1903621	547374	7135733	8	1652 Grab/ C. Grab		Rubblecrop		carb lenses	light grey	C2			Galena	-	1 Sphalerite			trace	11-Aug		Same as 619, 8" lense
1903622	547419	7135607	8	1672 Grab/ C. Grab		Rubblecrop		carb lenses	light grey	C2			Galena	-	1 Sphalerite	l	1 Chalco	1	11-Aug		Same as 619, 8" lense
1903623	548630	7137825	8	1371 Grab/ C. Grab		Rubblecrop	Dolostone	Stromatolitic	buff	C2-3			Chalco	-	3 Galena	>1	-	I	12-Aug	SK	Stromatalic buff dol and dark shale with qtz-carb vein with Cpy
1903624			8	Grab/ C. Grab	1	Rubblecrop	Dolostone		white			-							12-Aug		
1903625	548370	7137709	8	1360 Grab/ C. Grab	1	Float	Qz Vein	boxwork	tan			L2-3		-	-		-	I	12-Aug	SK	Qtz vein float with good limonite, soft ball size
							L .			l		1 1	L	1	1	1		1			2.5 m wide boulder of stromatalitic dolomite unit with dark weathering bands, fractures
1903626	548263	7137595	8	1415 Grab/ C. Grab		Float	Dolostone	Stromatolitic	buff	C2-3			Chalco	tr	Galena	tr			12-Aug		with qtz-carb+PbS and Cpy, some diss mineralization
1903627	548250	7137595	8	1416 Grab/ C. Grab		Float	Mudstone	graphitic	black	I			Pyrite		-				12-Aug		Float; sheared graphitic mud with qtz carbonate and massive Py, pieces to 50 cm
1903628	547982	7137600	8	1456 Grab/ C. Grab		Float	Quartz vein?	brecciated	white/tan			L2			1				12-Aug		Limonitic/bleached qtz bx float to 30 cm
1903629	547916	7137534	8	1509 Grab/ C. Grab		Outcrop	Shale	sheared	light grey			L1							12-Aug		Graphitic shear with rusty openspace qtz veins over 50 cm, 260/60
1903630	547769	7137523	8	1616 Grab/ C. Grab		Float	Diorite	Veined	buff			L1							12-Aug	SK	Float boulders to 1 m of bleached limonitic diorite with sugary qtz veins
Т									1	I –						I –		1 -			Carbonate altered/silicified diorite contact with black shale, thin qtz veins with Cpy+PbS +
1903631	547642	7137553	8	1679 Grab/ C. Grab		Rubblecrop	Diorite	Fine grained	blue-grey	C2			Chalco	tr	Galena	tr			12-Aug	SK	Ba?
								-	1								1				Float train with blocks to 2 m of milled qtz bx with argillic/limonitic sections with strong
1903632	547576	7137517	8	1642 Grab/ C. Grab		Float	Quartz vein	brecciated	buff			A2 L1							12-Aug	SK	boxworks and a yellowish hue
																					Black mud becoming silicified with fracture ZnS+PbS, sulphide stringers, rock is totally
1903633	546468	7137158	8	1469 Grab/ C. Grab		Outcrop	Mudstone	Foliated	black-grey	1	S1-2	1 1	Sphalerite	1	6 Galena	1 1	10	1	12-Aug	SK	'baked'
1903634	546473	7137156	8	1465 Grab/ C. Grab		Rubblecrop	Mudstone	Veined	light grey	C2			Sphalerite	15-18	Galena	1	4	1	12-Aug	SK	Creamy siliceous vein with massive PbS-ZnS in matrix
1903635	546478	7137158	8	1456 Grab/ C. Grab		Outcrop		Foliated	grey	C2	1	1 1	Sphalerite		Galena	<1		1	12-Aug		Fractures and stringers of massive ZnS-PbS within sericite alt'd flow
				2.000 0.000	1 1					1	1	1 1	-	1		1		1			Totally silicified sediments and sedimentary bx(?) hosting stringer and disseminated ZnS-
1903636	546488	7137160	8	1449 Grab/ C. Grab		Outcrop	Siltstone	Foliated	erev	1	\$2	1 1	Sphalerite	1	1 Galena	-	20	1	12-Aug	SK	PbS-base of outcrop
1903637	310100	, 13, 100	- ĭ	Standard		= = .c. op			01				sprinerite	1		1		1	/ 345		CDN-ME-1308
1903638				Blank	1				1	1			+	+		1	1	1	-		CDN-BL-10
1903638				Standard					1				1	1	1			1			CDN-ME-1308
1903640				Blank	1				1	1			+	+		1	1	1	-		CDN-BL-10
			1	Digitik			1		1	1	1	<u> </u>	1		-	1		1			

Appendix IV

Geology Station Data and Descriptions Kootenay Silver Inc. Aurora Geosciences Ltd.

KTN-19070-YT Geology Waypoint Descrip U Rackla

2019 Program

NB. Excludes sample locations

Waypoint ID	UTM Easting	UTM Northing	Waypoint Descrip	Lithology	Modification	Colour	Structural type	Struct meas.	Struct type 2	Struct meas. 2	Carb alt (1-3)	Other Alt	Date	Sampler
WPUR001	547100	7137402	Outcrop	Shale	Thin-med bedded	Grey	Bedding	225 -75				L2	10-Aug	CS
WPUR002	546706	7137552	Outcrop	Silt - Mudstone	Thin bedded	Grey	Bedding	160 -50	Younging	WSW			10-Aug	CS
WPUR003	547290	7135824	Outcrop	Silt - Mudstone	Thin bedded		Bedding	085 -70	F2 Foliation	Crenulated	C1		11-Aug	CS
WPUR004	547815	7135092	Outcrop	Shale	Fine fissile texture	green-grey	Foliation	095 -55					11-Aug	CS
WPUR005	547375	7135047	Outcrop	Shale - mudstone	Mod-strong foliation	Grey	Foliation	110 -65	Bedding	130 -25			11-Aug	CS

Appendix V

Original Assay Certificates

MINERAL LABORATORIES Canada

www.bureauveritas.com/um

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project:	KTN-19070-YT
Shipment ID:	
P.O. Number	
Number of Samples:	55
SAMPLE DISPOSA	L

STOR-PLP	Store After 90 days Invoice for Storage
STOR-RJT	Store After 60 days Invoice for Storage

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

WHI19000376.1 SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
PRP90-250	47	Crush (>90%), split and pulverize 250g rock to 200 mesh			WHI
AQ300	53	1:1:1 Aqua Regia digestion ICP-ES analysis	0.5	Completed	VAN
SHP01	53	Per sample shipping charges for branch shipments			VAN
FA350	53	50g lead collection fire assay analysis by ICP	50	Completed	VAN
EN002	53	Environmental disposal charge-Fire assay lead waste			VAN
SLBHP	6	Sort, label and box pulps			WHI
AR404	13	Aqua Regia Digestion 0.5g / 200 mL (SCH)	0.5	Completed	VAN

ADDITIONAL COMMENTS

Aurora Geosciences Ltd. (Whitehorse) Invoice To: 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada

CC:

Jim McDonald

JEFFREY CANNON Geochemistry Denartment Super-

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client: Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road

Whitehorse Yukon Y1A 5Y9 Canada

Submitted By:	Carl Schulze
Receiving Lab:	Canada-Whitehorse
Received:	August 14, 2019
Report Date:	September 03, 2019
Page:	1 of 3

Client: Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada KTN-19070-YT Report Date: September 03, 2019 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 2 of 3 Page: Part: 1 of 3 CERTIFICATE OF ANALYSIS WHI19000376.1 Method WGHT AQ300 Analyte Cu Pb Zn Ni Co Mn Th Sr Cd Sb Bi ٧ Р Wgt Мо Ag Fe As Са La Unit % % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm MDL 2 2 0.01 1 1 3 1 0.3 1 1 2 0.01 1 0.5 3 3 1 0.01 0.001 R1903545 59 198 74 Rock Pulp 0.12 127 4157 5581 4373 48.9 199 25 1640 5.60 559 4 82 32.6 3 3.43 0.065 R1903546 Rock Pulp 0.12 4 20 <3 30 < 0.3 7 3 591 2.49 <2 <2 31 <0.5 <3 <3 23 0.79 0.039 5 R1903547 Rock 1.23 <1 3389 61 86 2.2 29 26 1431 2.25 34 <2 10 < 0.5 3 1169 15 2.70 0.012 2 R1903548 Rock 0.95 71 25 771 4 07 80 15 0 34 0 004 <1 128 2917 730 19 <2 2 22 4 02 -1

R1903548	Rock	0.95	<1	128	2917	730	1.9	71	25	771	4.07	80	<2	2	1.5	22	4	83	0.34	0.004	<1
R1903549	Rock	0.96	<1	2132	49	122	4.2	8	6	1739	1.52	358	<2	31	<0.5	4	9	13	5.92	0.004	8
R1903550	Rock	1.30	<1	1269	91	6657	0.9	25	23	2313	3.06	15	<2	38	19.5	4	<3	33	4.60	0.015	2
R1903551	Rock	0.51	2	>10000	103	196	13.5	27	16	361	9.58	56	<2	2	<0.5	<3	7	2	0.02	0.009	4
R1903552	Rock	0.94	2	717	2765	5395	5.1	7	16	>10000	3.57	8	<2	121	16.3	4	13	6	5.12	0.028	11
R1903553	Rock	0.78	<1	1735	25	23	1.4	6	4	534	1.10	<2	<2	3	<0.5	<3	<3	3	0.03	0.005	5
R1903554	Rock	0.79	<1	8569	1761	1120	47.6	10	3	1109	3.12	8	<2	6	2.6	51	13	42	1.99	0.005	1
R1903555	Rock	0.78	<1	>10000	2508	1011	89.0	23	9	702	9.96	4	<2	2	1.5	6	78	119	0.69	0.014	5
R1903556	Rock	1.05	<1	4234	4850	630	8.7	14	6	2554	2.76	4	<2	35	1.9	4	<3	35	6.37	0.002	2
R1903557	Rock	0.83	<1	608	>10000	188	>100	1	2	29	1.20	43	<2	<1	4.6	867	597	7	0.02	0.002	<1
1903600	Rock	L.N.R.																			
1903601	Rock	0.68	<1	2628	624	>10000	2.6	45	33	2947	3.46	9	<2	92	34.9	6	<3	7	7.14	0.014	1
1903602	Rock	0.80	3	130	431	611	2.0	144	83	67	6.73	349	<2	2	0.6	3	<3	77	0.12	0.043	2
1903603	Rock	0.86	<1	45	640	9693	0.9	76	39	932	2.24	43	3	40	23.4	5	<3	30	5.02	0.037	2
1903604	Rock	0.48	13	207	919	8757	0.7	7	8	648	0.82	11	5	15	32.9	4	<3	24	0.98	0.095	9
1903605	Rock	0.51	3	14	106	171	0.4	4	1	96	0.68	9	<2	3	<0.5	<3	<3	5	0.27	0.038	<1
1903606	Rock	0.54	31	603	8	88	0.9	135	17	209	4.07	8	7	7	<0.5	<3	<3	120	0.45	0.201	40
1903607	Rock	0.92	<1	383	2743	408	1.6	20	12	1428	2.30	<2	<2	18	1.4	<3	<3	71	2.03	0.020	1
1903608	Rock	0.61	8	2850	83	83	5.1	47	22	345	5.07	10	6	2	<0.5	<3	<3	98	0.34	0.132	18
1903609	Rock	0.65	7	3631	25	131	5.6	52	33	823	6.17	9	26	30	0.8	<3	<3	122	7.96	0.597	19
1903610	Rock	0.87	1	745	>10000	>10000	>100	85	347	854	3.08	18	3	43	380.8	146	<3	61	4.22	0.027	<1
1903611	Rock	0.65	7	134	>10000	>10000	>100	16	31	256	0.89	2	4	8	67.4	216	<3	34	0.67	0.058	<1
1903612	Rock	0.56	1	87	>10000	>10000	>100	24	32	154	0.57	4	<2	5	35.7	407	<3	17	0.68	0.027	<1
1903613	Rock	0.57	2	15	>10000	7344	56.2	21	23	65	0.98	8	<2	2	18.0	32	<3	88	0.15	0.069	14
1903614	Rock	0.46	<1	3	1596	154	1.8	36	21	405	3.68	6	6	2	<0.5	<3	<3	26	0.06	0.029	16
1903615	Rock	0.52	2	77	172	107	<0.3	75	20	1559	5.42	90	5	2	<0.5	20	<3	21	0.01	0.022	28
1903616	Rock	0.34	4	82	102	106	<0.3	29	13	1462	5.06	7	9	2	<0.5	<3	<3	17	0.03	0.037	27

Client: Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada KTN-19070-YT Report Date: September 03, 2019 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 2 of 3 Part: 2 of 3 Page: CERTIFICATE OF ANALYSIS WHI19000376.1 Method AQ300 FA350 FA350 FA350 AR404 AR404 AR404 Analyte Ва Ti Na w s Hg ТΙ Ga Sc Pt Cu Pb Cr Mg в AI κ Au Pd Ag Unit % % % % % % ppm % ppm ppm % ppm ppm ppm ppm ppm ppb ppb ppb ppm MDL 2 2 1 0.01 1 0.001 20 0.01 0.01 0.01 2 0.05 1 5 5 5 3 2 0.001 0.01 R1903545 2 <5 139 Rock Pulp 62 1.95 179 0.092 <20 1.48 0.09 0.26 14 2.00 <5 <5 1309 32 R1903546 Rock Pulp 14 0.52 58 0.080 <20 1.05 0.06 0.08 <2 0.05 <1 <5 <5 <5 4 <3 3 R1903547 Rock 3 1.29 20 < 0.001 <20 0.45 0.01 0.20 <2 0.54 <1 <5 <5 <5 17 5 9 R1903548 18 0.07 38 0.001 < 0.01 0.07 <2 < 0.05 <1 <5 <5 7 9 <3 10 Rock <20 0.61

										_			-	-		-	-				
R1903549	Rock	<1	0.34	7	<0.001	<20	0.31	0.01	0.02	<2	0.27	<1	<5	<5	12	25	<3	2			
R1903550	Rock	21	2.19	149	0.002	<20	0.81	<0.01	0.29	<2	0.28	2	<5	<5	15	4	8	6			
R1903551	Rock	4	0.03	25	<0.001	<20	0.28	<0.01	0.10	2	1.10	<1	<5	<5	<5	41	<3	<2	12	1.566	0.01
R1903552	Rock	8	1.43	83	<0.001	<20	0.41	0.02	0.10	<2	0.12	4	<5	<5	<5	9	<3	4			
R1903553	Rock	3	0.12	25	0.001	<20	0.30	0.01	0.11	<2	0.06	<1	<5	<5	<5	5	<3	<2			
R1903554	Rock	<1	1.57	10	0.002	<20	0.62	0.02	0.04	<2	0.98	2	<5	<5	<5	9	<3	4			1
R1903555	Rock	3	2.15	7	0.004	<20	1.87	<0.01	0.04	14	3.00	<1	<5	5	9	41	8	17	82	6.685	0.24
R1903556	Rock	11	3.44	133	0.006	<20	0.44	0.02	0.07	<2	0.64	<1	<5	<5	29	8	<3	3			
R1903557	Rock	3	0.04	5	<0.001	<20	0.06	<0.01	<0.01	<2	>10	2	<5	<5	<5	35	7	4	1014	0.061	>20
1903600	Rock	L.N.R.			1																
1903601	Rock	3	2.93	17	<0.001	<20	0.17	<0.01	0.15	<2	0.62	2	<5	<5	20	4	4	8	2	0.253	0.06
1903602	Rock	12	0.49	37	0.007	<20	0.99	<0.01	0.56	<2	5.78	<1	<5	<5	6	28	24	28			
1903603	Rock	9	2.16	30	0.002	<20	0.40	<0.01	0.36	<2	0.60	2	<5	<5	13	4	17	20			
1903604	Rock	3	0.35	27	0.002	<20	0.37	<0.01	0.28	<2	0.29	2	<5	<5	<5	4	<3	4			
1903605	Rock	3	0.13	11	<0.001	<20	0.13	<0.01	0.09	<2	0.16	<1	<5	<5	<5	5	<3	3			ſ
1903606	Rock	21	2.92	34	0.006	<20	3.30	<0.01	0.44	<2	< 0.05	<1	<5	6	<5	13	<3	<2			
1903607	Rock	3	0.98	18	0.177	1082	1.58	0.03	0.04	<2	<0.05	<1	<5	6	<5	9	8	10			1
1903608	Rock	22	3.26	6	0.005	<20	3.04	<0.01	<0.01	<2	0.24	<1	<5	6	<5	7	<3	5			
1903609	Rock	29	4.58	4	0.030	<20	4.14	<0.01	<0.01	<2	0.58	<1	<5	13	14	9	4	29			
1903610	Rock	32	0.68	31	0.003	<20	0.80	<0.01	0.14	<2	8.66	35	<5	6	<5	44	8	16	98	0.076	9.10
1903611	Rock	14	0.06	67	0.001	<20	0.19	<0.01	0.13	<2	4.47	9	<5	<5	<5	21	<3	8	198	0.011	19.31
1903612	Rock	17	0.05	48	0.002	<20	0.14	<0.01	0.12	<2	7.00	3	<5	<5	<5	26	8	<2	405	0.009	>20
1903613	Rock	34	0.55	38	0.006	<20	0.92	<0.01	0.39	<2	1.73	2	<5	<5	7	15	26	27	57	<0.001	8.11
1903614	Rock	22	1.28	235	0.002	<20	1.97	<0.01	0.29	<2	<0.05	<1	<5	<5	<5	4	<3	<2			
1903615	Rock	10	0.06	92	0.002	<20	0.47	<0.01	0.28	<2	<0.05	<1	<5	<5	6	3	<3	2			
1903616	Rock	11	0.13	59	0.002	<20	0.65	<0.01	0.35	<2	<0.05	<1	<5	<5	<5	4	<3	<2			

			Client:	Aurora Geoscience 34A Laberge Road Whitehorse Yukon Y1A 5Y9 C	·	rse)
B U R E A U VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	KTN-19070-YT		
Bureau Veritas	s Commodities Canada Ltd.		Report Date:	September 03, 2019		
•	essy St Vancouver British Col	umbia V6P 6E5 Canada				
PHONE (604)	253-3158		Page:	2 of 3	Part:	3 of 3
CERTIF	FICATE OF ANAL	YSIS		WHI1	9000376.1	

	Method	AR404
	Analyte	Zn
	Unit	%
	MDL	0.01
R1903545	Rock Pulp	
R1903546	Rock Pulp	
R1903547	Rock	
R1903548	Rock	
R1903549	Rock	
R1903550	Rock	
R1903551	Rock	0.02
R1903552	Rock	
R1903553	Rock	
R1903554	Rock	
R1903555	Rock	0.10
R1903556	Rock	
R1903557	Rock	0.02
1903600	Rock	
1903601	Rock	1.27
1903602	Rock	
1903603	Rock	
1903604	Rock	
1903605	Rock	
1903606	Rock	
1903607	Rock	
1903608	Rock	
1903609	Rock	
1903610	Rock	16.47
1903611	Rock	3.64
1903612	Rock	1.51
1903613	Rock	0.73
1903614	Rock	
1903615	Rock	
1903616	Rock	

Client: Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: KTN-19070-YT VERITAS Canada Report Date: September 03, 2019 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 3 of 3 Part: 1 of 3 Page: **CERTIFICATE OF ANALYSIS** WHI19000376.1 Method WGHT AQ300 Analyte Wgt Мо Cu Pb Zn Ag Ni Co Mn Fe As Th Sr Cd Sb Bi v Са Ρ Unit % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm % ppm MDL 3 2 0.01 2 2 3 3 0.01 0.001 0.01 1 1 1 0.3 1 1 1 0.5 1 23 1903617 Rock 0.48 <1 63 77 49 < 0.3 8 2 113 1.67 11 3 3 < 0.5 9 <3 8 0.01 0.010 8.05 1903618 Rock 0.47 <1 513 26 120 0.9 53 36 706 <2 <2 11 < 0.5 <3 <3 335 2.07 0.049 1903619 Rock 0.66 <1 70 2372 4332 0.9 14 19 >10000 6.77 4 <2 158 19.3 3 <3 9 9.92 0.022 1903620 Rock 0.66 <1 1405 4070 9181 5.2 21 42 >10000 5.83 11 3 65 38.7 5 7 14 4.48 0.020 Rock 0.72 <1 138 3376 5660 1.3 15 27 >10000 6.74 9 <2 168 27.2 <3 <3 13 10.30 0.021 1903621 5 0.51 <1 3288 7757 9969 20.0 27 >10000 4.42 <2 35.4 5 41 1903622 Rock 16 87 15 4.08 0.053 Rock 1 >10000 4 <2 <0.5 <3 2 1903623 0.48 48 62 4.4 12 14 3555 5.33 41 <3 9.79 0.006 Rock 0.55 <1 5180 26 5 <2 5 1903624 54 4.8 3 3231 3.46 <2 158 <0.5 3 <1 11.17 < 0.001 1903625 Rock 0.54 3 3846 18 8 8.5 16 14 229 8.82 104 <2 1 < 0.5 <3 <3 <1 0.03 0.002 <' 1903626 Rock 0.83 <1 79 1306 36 0.4 5 3 3959 2.88 2 <2 50 <0.5 <3 <3 1 12.29 0.006 12

1903627

1903628

1903629

1903630

1903631

1903632

1903633

1903634

1903635

1903636

1903637

1903638

1903639

1903640

1903641

Rock

Rock Pulp

Rock Pulp

Rock Pulp

Rock Pulp

Rock

0.97

0.67

0.81

0.53

0.50

0.85

0.59

1.35

0.62

0.50

0.12

0.12

0.12

0.12

L.N.R.

4

9

3

<1

<1

<1

5

9

3

13

125

123

L.N.R.

4

4

127

16

46

78

229

21

577

4047

3973

L.N.R.

20

20

181

9

10

5

<3

377

144 >10000 >10000

305 >10000 >10000

5580

5368

L.N.R.

<3

<3

8 >10000

1941 >10000

144

657

8

17

194

23

3834

4241

4193

L.N.R.

31

30

4.0

1.9

0.6

< 0.3

65.6

30.7

21.9

>100

47.6

< 0.3

48.7

< 0.3

L.N.R.

1.8

< 0.3

247

126

18

13

57

29

97

178

15

194

189

L.N.R.

7

7

6

207

38

4

6

28

5

43

169

481

4

24

4

24

3

L.N.R.

829

1375

80

37

44

141

759

963

36

1597

584

1574

563

L.N.R.

1300

25.69

10.14

1.02

0.58

6.82

2.33

1.07

2.03

4.21

0.45

5.46

2.50

5.36

2.40

L.N.R.

284

67

22

123

12

182

19

27

535

<2

532

<2

L.N.R. L.N.R.

3

4

<2

<2

<2

<2

<2

<2

<2

3

<2

4

3

<2

3

2

6

2

3

<1

18

5

1

43

23

2

82

31

80

29

L.N.R.

< 0.5

< 0.5

<0.5

< 0.5

0.5

< 0.5

110.1

267.9

616.2

8.6

31.7

<0.5

31.3

< 0.5

L.N.R.

14

<3

<3

43

<3

9

64

79

123

106

57

<3

56

<3

L.N.R.

65

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

L.N.R.

122

147

4

8

155

21

36

25

64

11

194

23

192

22

L.N.R.

1.13

0.12

0.05

0.02

4.90

0.01

0.18

5.10

3.93

0.14

3.35

0.77

3.31

0.73

L.N.R.

0.028

0.038

0.019

0.007

0.033

0.014

0.039

0.055

0.014

0.067

0.063

0.039

0.062

0.037

L.N.R.

11

<1

<1

72

72

L.N.R

Client: Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: KTN-19070-YT VERITAS Canada Report Date: September 03, 2019 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 3 of 3 Part: 2 of 3 Page: CERTIFICATE OF ANALYSIS WHI19000376.1 Method AQ300 AQ300 AQ300 AQ300 AQ300 AQ300 FA350 AR404 AQ300 AQ300 AQ300 AQ300 AQ300 AQ300 AQ300 AQ300 FA350 FA350 AR404 AR404 Analyte w Cr Mg Ba Ti в AI Na κ s Hg тι Ga Sc Au Pt Pd Ag Cu Pb Unit % ppm % ppm ppm % % % ppm % ppm ppm ppm ppm ppb ppb ppb ppm % % MDL 0.01 0.001 20 0.01 0.01 0.01 2 0.05 5 5 2 3 2 2 0.001 0.01 1 1 1 5 1903617 Rock 7 0.02 15 0.001 <20 0.25 0.01 0.14 <2 < 0.05 <1 <5 <5 <5 3 <3 5 1903618 Rock 38 4.87 23 0.029 <20 5.03 < 0.01 0.13 <2 0.05 <1 <5 17 27 3 21 22 1903619 Rock 8 3.15 30 < 0.001 <20 0.46 0.01 0.14 <2 0.41 3 <5 <5 <5 4 <3 2 7 1903620 Rock 11 1.56 41 0.001 <20 1.07 < 0.01 0.10 <2 0.99 <5 5 <5 8 <3 <2 Rock 11 3.10 0.001 <20 0.72 0.01 0.08 <2 0.63 4 <5 <5 <5 5 <3 <2 1903621 26 5 14 2.18 130 <20 <2 0.72 <5 6 <5 19 <2 1903622 Rock 0.003 1.48 0.01 0.18 <3 Rock 2 4.16 < 0.001 <20 0.16 < 0.01 0.14 4 0.32 <1 <5 <5 <3 <2 0.0 1903623 14 <5 8 6 1.561 7 0.01 <2 <1 4 2 1903624 Rock <1 5.45 < 0.001 <20 < 0.01 0.02 0.08 <5 <5 <5 <3 1903625 Rock 3 0.02 8 <0.001 <20 0.04 < 0.01 0.02 <2 < 0.05 <1 <5 <5 <5 13 <3 <2

1903626

1903627

1903628

1903629

1903630

1903631

1903632

1903633

1903634

1903635

1903636

1903637

1903638

1903639

1903640

1903641

Rock

Rock Pulp

Rock Pulp

Rock Pulp

Rock Pulp

Rock

1

79

12

5

7

48

5

27

11

31

13

62

14

61

14

L.N.R.

5.69

2.27

0.09

0.02

0.01

3.47

0.01

0.34

0.09

0.48

0.03

1.90

0.52

1.87

0.50

L.N.R.

12

10

10

8

14

52

20

8

12

16

251

58

256

54

L.N.R.

134

< 0.001

0.004

0.001

< 0.001

0.001

0.002

0.001

0.003

0.002

0.002

0.001

0.091

0.076

0.089

0.073

L.N.R.

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

<20

L.N.R.

0.14

3.00

0.75

0.14

0.39

1.99

0.32

0.40

0.20

0.57

0.25

1.45

1.04

1.42

1.00

L.N.R.

<0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

<0.01

< 0.01

0.09

0.06

0.09

0.06

L.N.R.

0.12

0.16

0.13

0.08

0.04

0.18

0.32

0.17

0.09

0.08

0.19

0.26

0.08

0.25

0.08

L.N.R.

<2

<2

<2

<2

<2

<2

<2

<2

<2

*

<2

9

<2

9

<2

L.N.R.

< 0.05

< 0.05

< 0.05

0.11

< 0.05

0.52

3.10

6.18

>10

2.46

1.93

0.05

1.91

0.05

L.N.R.

>10

<1

<1

<1

<1

<1

<1

<1

8

27

>50

1

2

2

L.N.R. L.N.R.

<1

<1

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

5

<5

<5

<5

<5

<5

<5

<5

<5

<5

L.N.R.

<5

10

24

<5

<5

15

<5

<5

<5

<5

<5

<5

<5

<5

<5

L.N.R.

3

3

5

5

5

36

9

32

47

12

6

2

954

1403

L.N.R.

77

<3

8

14

<3

3

16

5

17

5

7

<3

25

<3

36

<3

L.N.R.

<2

9

14

<2

5

17

11

17

5

10

<2

104

<2

6

155

L.N.R.

67

30

21

109

0.014

0.030

0.060

< 0.001

6.74

2.42

0.19

13.4

			Client:	Aurora Geoscience 34A Laberge Road Whitehorse Yukon Y1A 5Y9 C	•	rse)
B U R E A U VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	KTN-19070-YT		
Bureau Veritas	s Commodities Canada Ltd.		Report Date:	September 03, 2019		
•	essy St Vancouver British Col	umbia V6P 6E5 Canada				
PHONE (604)	253-3158		Page:	3 of 3	Part:	3 of 3
CERTIF	FICATE OF ANAL	YSIS		WHI1	9000376.1	

	Method Analyte Unit MDL	AR404 Zn % 0.01
1903617	Rock	0.01
1903618	Rock	
1903619	Rock	
1903620	Rock	
1903621		
	Rock	
1903622	Rock	
1903623	Rock	<0.01
1903624	Rock	
1903625	Rock	
1903626	Rock	
1903627	Rock	
1903628	Rock	
1903629	Rock	
1903630	Rock	
1903631	Rock	
1903632	Rock	
1903633	Rock	3.89
1903634	Rock	11.96
1903635	Rock	>20
1903636	Rock	0.34
1903637	Rock Pulp	
1903638	Rock Pulp	
1903639	Rock Pulp	
1903640	Rock Pulp	
1903641	Rock	

Client: Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um VERITAS Canada Project: KTN-19070-YT Report Date: September 03, 2019 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 1 of 2 1 of 3 Page: Part: QUALITY CONTROL REPORT WHI19000376.1 Method WGHT AQ300 Analyte Ρ Wgt Мо Cu Pb Zn Ag Ni Co Mn Fe As Th Sr Cd Sb Bi v Са Lá Unit % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm % ppm MDL 0.01 1 3 1 0.3 1 1 2 0.01 2 2 1 0.5 3 3 0.01 0.001 1 1 **Pulp Duplicates** R1903548 Rock 0.95 128 2917 730 1.9 71 25 771 4.07 80 <2 2 1.5 22 4 83 0.34 0.004 <1 <1 REP R1903548 QC <1 126 2861 714 1.8 24 763 4.01 79 <2 2 1.4 22 <3 81 0.34 0.004 70 <1 R1903555 Rock 0.78 <1 >10000 2508 1011 89.0 23 9 702 9.96 4 <2 2 1.5 6 78 119 0.014 0.69 REP R1903555 QC 1903612 Rock 0.56 1 87 >10000 >10000 >100 24 32 154 0.57 4 <2 5 35.7 407 <3 17 0.68 0.027 <1 RFP 1903612 QC Rock 1903624 0.55 <1 54 5180 26 4.8 5 3 3231 3.46 <2 <2 158 < 0.5 5 3 <1 11.17 < 0.001 REP 1903624 QC <1 53 5035 25 4.7 5 3 3176 3.43 <2 <2 155 <0.5 5 4 <1 11.02 < 0.001 1903627 Rock 0.97 4 127 181 144 4.0 247 207 829 25.69 284 <2 6 <0.5 14 65 122 1.13 0.028 REP 1903627 QC 1903633 Rock 0.59 5 144 >10000 >10000 65.6 29 43 141 1.07 19 <2 1 110.1 64 <3 36 0.18 0.039 REP 1903633 QC 1903636 Rock 0 50 13 8 >10000 3834 >100 15 4 36 0 45 3 4 2 86 106 <3 11 0.14 0.067 REP 1903636 QC Core Reject Duplicates 1903616 Rock 0.34 4 82 102 106 < 0.3 13 1462 5.06 7 9 2 < 0.5 <3 <3 17 0.03 0.037 27 29 DUP 1903616 QC 4 83 86 104 < 0.3 31 13 1531 5.73 7 6 2 <0.5 <3 <3 21 0.04 0.037 27 **Reference Materials** STD BVGEO01 Standard 10 4461 193 1716 3.3 24 711 3.80 117 13 55 25 73 0.072 24 166 5.9 <3 1.33 STD DS11 Standard 15 147 137 339 18 78 13 1002 3 13 43 7 66 21 8 11 49 1.05 0.069 17 7 STD DS11 Standard 15 142 353 1.7 1039 2.2 8 11 50 0.073 18 151 80 13 3.16 44 69 1.07

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

51

54

57

143

147

153

0.5

0.5

0.4

63

64

63

26

27

26

514

535

541

3.28

3.30

3.32

35

35

36

8

8

10

35

35

35

<0.5

<0.5

0.5

4

3

3

<3

<3

<3

21

22

22

2.93

3.04

3.04

0.037

0.038

0.039

15

15

16

<1

<1

<1

113

116

119

STD OREAS134B

STD OREAS133A

STD OREAS134B

STD OREAS133A

STD OREAS262

STD OREAS262

STD OREAS262

Standard

Standard

Standard

Standard

Standard

Standard

Standard

Client: Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um VERITAS Canada Project: KTN-19070-YT Report Date: September 03, 2019 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 1 of 2 2 of 3 Page: Part: QUALITY CONTROL REPORT WHI19000376.1 Method AQ300 FA350 FA350 FA350 AR404 AR404 AR404 Hg Analyte w Cr Mg Ba Ti в AI Na κ s TL Ga Sc Au Pt Pd Ag Cu Pb Unit % % % ppm % ppm % ppm % ppm % ppm ppm ppm ppm ppb ppb ppb ppm % 2 MDL 1 0.01 1 0.001 20 0.01 0.01 0.01 2 0.05 1 5 5 5 3 2 2 0.001 0.01 **Pulp Duplicates** R1903548 Rock 18 0.07 38 0.001 <20 0.61 < 0.01 0.07 <2 < 0.05 <5 <5 7 9 <3 10 <1 REP R1903548 QC 19 0.06 37 0.001 <20 0.60 < 0.01 0.07 <2 < 0.05 <1 <5 <5 7 R1903555 Rock 3 2.15 7 0.004 <20 1.87 < 0.01 0.04 14 <1 <5 5 9 41 8 17 82 6.685 0.24 3.00 REP R1903555 QC 39 6 16 Rock 1903612 17 0.05 48 0.002 <20 0.14 < 0.01 0.12 <2 7.00 3 <5 <5 <5 26 8 <2 405 0.009 >20 QC RFP 1903612 402 0.008 >20 Rock 5.45 1903624 <1 7 <0.001 <20 < 0.01 0.02 0.01 <2 0.08 <1 <5 <5 <5 4 <3 2 REP 1903624 QC <1 5.35 7 < 0.001 <20 < 0.01 0.02 0.01 <2 0.08 <1 <5 <5 <5 1903627 Rock 79 2.27 10 0.004 <20 3.00 < 0.01 0.16 <2 >10 <1 <5 <5 10 77 8 9 REP 1903627 QC 85 8 7 1903633 Rock 27 0.34 20 0.003 <20 0.40 < 0.01 0.17 <2 3.10 8 <5 <5 <5 9 17 17 67 0.014 6.74 REP 1903633 QC 67 0.013 6.76 1903636 Rock 13 0.03 16 0.001 <20 0.25 < 0.01 0 1 9 <2 2 46 1 <5 <5 <5 12 <3 <2 109 < 0.001 13.41 REP 1903636 QC 11 <3 <2 Core Reject Duplicates 1903616 Rock 11 0.13 59 0.002 <20 0.65 < 0.01 0.35 <2 < 0.05 <5 <5 <5 4 <3 <2 <1 DUP 1903616 QC 14 0.16 73 0.001 <20 0.99 < 0.01 0.50 <2 < 0.05 <1 <5 <5 <5 4 <3 4 **Reference Materials** STD BVGEO01 Standard 174 345 0.231 <20 2.37 0.18 0.90 3 0.68 <5 8 5 1.31 <1 STD DS11 2 Standard 53 0.84 420 0.093 <20 1 17 0.07 0 4 0 0.28 <1 <5 <5 <5 STD DS11 Standard 61 0.093 3 0.29 <5 0.85 442 <20 1.20 0.08 0.41 <1 <5 <5 STD OREAS134B Standard 205 0.132 13.48 4.98 STD OREAS133A Standard 98 0.032 STD OREAS134B Standard 205 0.129 13.62

98

0.031

5.05

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

<20

<20

<20

1.29

1.32

1.36

0.07

0.07

0.07

0.30

0.30

0.33

<2

<2

<2

0.26

0.27

0.27

<5

<5

<5

<1

<1

<1

<5

<5

5

<5

<5

<5

0.003

0.002

0.003

STD OREAS133A

STD OREAS262

STD OREAS262

STD OREAS262

Standard

Standard

Standard

Standard

37

38

45

1.16

1.18

1.19

255

256

260

			Client:	Aurora Geosciences I 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Cana	·	rse)
B U R E A U V E R I T A S	MINERAL LABORATORIES Canada Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	KTN-19070-YT September 03, 2019		
9050 Shaughn PHONE (604)	essy St Vancouver British Columbia V6 253-3158	P 6E5 Canada	Page:	1 of 2	Part:	3 of 3
QUALI	TY CONTROL REPOR	RT		WHI190	000376.1	

	Method Analyte Unit MDL	AR404 Zr % 0.01
Pulp Duplicates	WDL	0.0
R1903548	Rock	
REP R1903548	QC	
R1903555	Rock	0.10
REP R1903555	QC	0.110
1903612	Rock	1.51
REP 1903612	QC	1.50
1903624	Rock	
REP 1903624	QC	
1903627	Rock	
REP 1903627	QC	
1903633	Rock	3.89
REP 1903633	QC	3.89
1903636	Rock	0.34
REP 1903636	QC	
Core Reject Duplicates		
1903616	Rock	
DUP 1903616	QC	
Reference Materials		
STD BVGEO01	Standard	
STD DS11	Standard	
STD DS11	Standard	
STD OREAS134B	Standard	17.60
STD OREAS133A	Standard	10.65
STD OREAS134B	Standard	17.92
STD OREAS133A	Standard	10.82
STD OREAS262	Standard	
STD OREAS262	Standard	
STD OREAS262	Standard	

												Clien	t:	Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada								
B U R E A U VERITAS	MINERAL LABORATOR Canada	RIES		www	bureau	ıveritas	s.com/ι	ım				Projec	:	KTN-	19070-YT							
Burgau Varita	s Commodities Canada L	ta										Report	Date:	Septe	mber 03,	2019						
					.																	
•	nessy St Vancouver Britis	sh Colum	bia V6F	- 6E5 (Janada																	
PHONE (604)	253-3158											Page:		2 of 2					Par	t: 1 o	of 3	
QUALI	TY CONTROL	REP	POR	Т												WF	4119	000	376.	1		
		WGHT	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	
		Wgt	Мо	Cu		Zn	Ag			Mn	Fe	As	Th	Sr	Cd	Sb	Bi	v	Ca	Р		
		kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	
		0.01	1	1	3	1	0.3	1	1	2	0.01	2	2	1	0.5	3	3	1	0.01	0.001	1	
STD PD05	Standard																					
STD PD05	Standard																					
STD PD05	Standard																					
STD PG04	Standard																					
STD PG04	Standard																					
STD PG04	Standard																					
STD BVGEO0	1 Expected		10.8	4415	187	1741	2.53	163	25	733	3.7	121	14.4	55	6.5	2.2	25.6	73	1.3219	0.0727	25.9	
STD DS11 Exp			13.9	156	138	345	1.71	81.9	14.2	1055	3.2082	42.8	7.65	67.3	2.37	7.2	12.2	50	1.063	0.0701	18.6	
STD OREAS262 Ex	-			118	56	154	0.45	62	26.9	530	3.284	35.8	9.33	36	0.61	3.39		22.5	2.98	0.04	15.9	
STD OREAS134B E																						
STD OREAS133A E	Expected																					
STD PD05 Exp	pected																					
STD PG04 Exp	pected																					
BLK	Blank		<1	<1		<1	<0.3		<1	<2	<0.01	<2	<2	<1	<0.5	<3	<3	<1	<0.01	<0.001	<1	
BLK	Blank		<1	<1	<3	<1	<0.3		<1	<2	<0.01	<2	<2	<1	<0.5	<3	<3	<1	<0.01	<0.001	<1	
BLK	Blank		<1	<1	<3	<1	<0.3	<1	<1	<2	<0.01	<2	<2	<1	<0.5	<3	<3	<1	<0.01	<0.001	<1	
BLK	Blank																					
BLK	Blank																					
BLK	Blank																					
BLK	Blank																					
BLK	Blank																					
Prep Wash																						
ROCK-WHI	Prep Blank	<u> </u>	<1	2		30	<0.3		3	500	1.90	<2	2		<0.5	<3	<3	24	0.66	0.040		
ROCK-WHI	Prep Blank		1	2	<3	26	<0.3	<1	3	471	1.88	<2	2	24	<0.5	<3	<3	23	0.65	0.038	6	

												Clien	t:	Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada								
BUREAU VERITAS	MINERAL LABORATOR Canada	RIES		www	.bureau	iveritas	.com/u	ım				Project			9070-YT							
Bureau Veritas	Commodities Canada Lt	td.										Report	Date:	Septe	mber 03,	2019						
9050 Shaughne	essy St Vancouver Britis	h Colum	bia V6F	P 6E5 (anada																	
PHONE (604) 2				020 0	Janada							Deget		0 of 0					Dort	2.0	£ 2	
												Page:		2 of 2					Part	2 0	13	
QUALIT	Y CONTROL	REP	POR	Т												WF	4119	000	376.	1		
		AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	FA350	FA350	FA350	AR404	AR404	AR404	
		Cr	Mg	Ва	Ti	в	AI	Na	к	w	s	Hg	ті	Ga	Sc	Au	Pt	Pd	Ag	Cu	Pk	
		ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppm	%	%	
		1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5	2	3	2	2	0.001	0.01	
STD PD05	Standard															538	452	629				
STD PD05	Standard															529	448	616				
STD PD05	Standard															522	439	614				
STD PG04	Standard															1018	931	1254				
STD PG04	Standard															1024	956	1271				
STD PG04	Standard															1009	939	1234				
STD BVGEO01	Expected	171	1.2963	340	0.233		2.347	0.1924	0.89	3.5	0.6655			7.37	5.97							
STD DS11 Expe	ected	61.5	0.85	417	0.0976	6	1.129	0.0694	0.4	2.9	0.2835	0.3	4.9	4.7	3.1							
STD OREAS262 Exp	pected	41.7	1.17	248	0.003		1.204	0.071	0.312		0.253			3.73	3.24							
STD OREAS134B Ex	xpected																		204	0.1363	13.3	
STD OREAS133A Ex	xpected																		96.9	0.0324	4.86	
STD PD05 Expe	ected															519	430	596				
STD PG04 Expe	ected															996	910	1210				
BLK	Blank	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<1	<5	<5	<5							
BLK	Blank	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<1	<5	<5	<5							
BLK	Blank	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<1	<5	<5	<5							
BLK	Blank																		<2	<0.001	<0.02	
BLK	Blank																		<2	<0.001	<0.01	
BLK	Blank															3	<3	2				
BLK	Blank															3	<3	<2				
BLK	Blank															3	<3	3				
Prep Wash																						
ROCK-WHI	Prep Blank	3	0.47	67	0.086	<20	0.87	0.08	0.09	<2	<0.05	<1	<5	<5	<5	3	<3	6				
ROCK-WHI	Prep Blank	2	0.43	67	0.090	<20	0.85	0.10	0.10	<2	<0.05	<1	<5	6	<5	3	<3	5		-		

			Client:	Aurora Geosciences 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Cana	·	rse)
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	KTN-19070-YT September 03, 2019		
9050 Shaughr PHONE (604)	essy St Vancouver British Columbia \ 253-3158	V6P 6E5 Canada	Page:	2 of 2	Part:	3 of 3
QUALI	TY CONTROL REPO	RT		WHI19	000376.1	

		AR404
		Zn
		%
		0.01
STD PD05	Standard	
STD PD05	Standard	
STD PD05	Standard	
STD PG04	Standard	
STD PG04	Standard	
STD PG04	Standard	
STD BVGEO01 Expected		
STD DS11 Expected		
STD OREAS262 Expected		
STD OREAS134B Expected		17.7
STD OREAS133A Expected		10.6
STD PD05 Expected		
STD PG04 Expected		
BLK	Blank	<0.01
BLK	Blank	<0.01
BLK	Blank	
BLK	Blank	
BLK	Blank	
Prep Wash		
ROCK-WHI	Prep Blank	
ROCK-WHI	Prep Blank	

MINERAL LABORATORIES Canada

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project: Shipment ID:	KTN-19070-YT
P.O. Number Number of Samples:	33
SAMPLE DISPOS	AL

STOR-PLP	Store After 90 days Invoice for Storage
STOR-RJT-SOIL	Store Soil Reject - RJSV Charges Apply

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

www.bureauveritas.com/um

Client: Aurora Geosciences Ltd. (Whitehorse) 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada

Submitted By:	Carl Schulze
Receiving Lab:	Canada-Whitehorse
Received:	August 14, 2019
Report Date:	August 30, 2019
Page:	1 of 3

WHI19000377.1

Number of Procedure Code Description Test Report Lab Code Samples Wgt (g) Status DY060 33 Dry at 60C WHI SS80 29 Dry at 60C sieve 100g to -80 mesh WHI FA330 33 30 Fire assay fusion Au Pt Pd by ICP-ES Completed VAN EN002 33 Environmental disposal charge-Fire assay lead waste VAN AQ300 0.5 33 1:1:1 Aqua Regia digestion ICP-ES analysis Completed VAN SVRJT 29 Save all or part of Soil Reject WHI SHP01 33 Per sample shipping charges for branch shipments VAN SLBHP 4 Sort, label and box pulps WHI

ADDITIONAL COMMENTS

Aurora Geosciences Ltd. (Whitehorse) Invoice To: 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada

CC: Jim McDonald

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

													Clier	nt:	34A	Laberge	Road	iences A 5Y9 Ca		White	horse)
B U R E A U VE R I T A S	MINERAL LAB	ORATOR	IES		www	.bureau	veritas	s.com/ı	um				Projec	ct:	KTN	-19070-Y	Υ					
Bureau Veritas	eau Veritas Commodities Canada Ltd.														Augu	ust 30, 20)19					
•	essy St Vancou	ver Britis	h Colum	ibia V6I	P 6E5 (Canada																
PHONE (604) 2	253-3158												Page:		2 of 3	3				Pa	rt: 1	of 2
CERTIF	ICATE C	PF AN	JALY	′SIS													W	HI19	9000	377	.1	
		Method	FA330	FA330	FA330	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
		Analyte	Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Th	Sr	Cd	Sb	Bi	v	Ca
		Unit	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
		MDL	2	3	2	1	1	3	1	0.3	1	1	2	0.01	2	2	1	0.5	3	3	1	0.01
1903501	Silt		13	5	19	10	275	74	773	0.4	118	40	3130	4.68	30	<2	20	3.5	<3	<3	64	6.94
1903502	Silt		12	6	10	10	287	97	1354	0.5	148	44	3069	5.34	35	<2	19	4.4	<3	<3	71	4.64
1903503	Silt		8	6	16	6	115	48	376	<0.3	47	19	940	4.24	19	<2	15	1.7	<3	<3	95	0.52
1903504	Silt		12	8	17	13	282	107	1331	0.6	163	45	2997	5.69	45	2	19	4.8	<3	<3	73	4.09
1903505	Silt		12	5	11	12	274	140	1418	0.6	154	41	2875	5.60	45	3	18	5.2	<3	<3	77	3.76

1.4

0.8

0.9

0.9

0.9

0.8

0.8

<0.3

0.4

0.5

<0.3

0.4

0.8

0.6

0.4

0.4

0.7

0.4

< 0.3

<0.3

<0.3

0.5

0.4

0.3

46.6

6.15

5.53

5.18

4.88

4.95

4.94

4.75

3.45

3.03

3.15

2.84

2.52

2.38

2.37

2.97

3.65

3.72

3.61

3.75

3.57

3.47

2.94

2.49

2.51

5.13

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

<2

8.5

5.9

6.3

6.9

6.0

5.0

3.9

<0.5

<0.5

< 0.5

<0.5

<0.5

<0.5

0.5

<0.5

0.5

0.6

<0.5

<0.5

<0.5

<0.5

1.0

<0.5

0.6

33.0

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

0.73

1.75

2.03

1.32

0.96

1.02

0.88

0.19

0.58

0.60

0.52

0.63

0.98

1.22

0.36

0.59

0.70

0.43

0.34

0.39

0.37

0.70

0.60

0.57

3.26

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Silt

Soil

Rock Pulp

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<3

<1

<1

			Client:	Aurora Geoscier 34A Laberge Road Whitehorse Yukon Y1A 5	nces Ltd. (Whiteho Y9 Canada	rse)
BUREAU VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	KTN-19070-YT		
Bureau Veritas	Commodities Canada Ltd.		Report Date:	August 30, 2019		
•	essy St Vancouver British Columbi	a V6P 6E5 Canada				
PHONE (604) 2	253-3158		Page:	2 of 3	Part:	2 of 2
CERTIF	ICATE OF ANALYS	SIS		WH	119000377.1	

	Method	AQ300															
	Analyte	Р	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	S	Hg	ті	Ga	Sc
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
1903501 Silt		0.075	13	25	4.71	79	0.027	<20	1.41	<0.01	0.05	<2	<0.05	<1	<5	6	6
1903502 Silt		0.093	16	31	3.46	99	0.024	<20	1.71	<0.01	0.08	<2	0.06	<1	<5	6	8
1903503 Silt		0.113	14	45	1.25	294	0.029	<20	2.58	<0.01	0.09	<2	0.06	<1	<5	7	7
1903504 Silt		0.104	18	32	3.18	118	0.023	<20	1.83	<0.01	0.08	<2	0.07	<1	<5	7	8
1903505 Silt		0.106	19	33	3.10	116	0.026	<20	1.87	<0.01	0.09	<2	0.07	<1	<5	7	8
1903506 Silt		0.162	23	36	1.72	84	0.021	<20	2.72	<0.01	0.13	<2	0.14	<1	<5	6	9
1903507 Silt		0.115	23	38	2.48	91	0.030	<20	2.32	<0.01	0.10	<2	0.08	<1	<5	7	8
1903508 Silt		0.098	20	38	2.61	89	0.033	<20	2.16	<0.01	0.09	<2	0.07	<1	<5	8	8
1903509 Silt		0.101	18	46	2.36	82	0.032	<20	2.21	<0.01	0.09	<2	0.08	<1	<5	8	8
1903510 Silt		0.094	19	48	2.37	82	0.037	<20	2.30	<0.01	0.09	<2	0.08	<1	<5	7	9
1903511 Silt		0.093	18	54	2.59	90	0.041	<20	2.40	<0.01	0.10	<2	0.09	<1	<5	8	8
1903512 Silt		0.087	18	53	2.52	75	0.042	<20	2.38	<0.01	0.09	<2	0.08	<1	<5	7	8
1903513 Silt		0.080	20	24	0.56	121	0.015	<20	1.55	<0.01	0.10	<2	<0.05	<1	<5	<5	<5
1903514 Silt		0.092	16	26	0.69	191	0.013	<20	1.58	<0.01	0.10	<2	0.08	<1	<5	<5	<5
1903515 Silt		0.089	17	25	0.76	208	0.014	<20	1.46	<0.01	0.11	<2	0.07	<1	<5	<5	<5
1903516 Soil		0.086	16	23	0.74	176	0.012	<20	1.33	<0.01	0.10	<2	0.07	<1	<5	<5	<5
1903517 Soil		0.092	14	24	0.70	192	0.012	<20	1.27	<0.01	0.09	<2	0.09	<1	<5	<5	<5
1903518 Soil		0.151	17	34	0.73	95	0.017	<20	1.89	0.01	0.09	<2	0.17	<1	<5	<5	<5
1903519 Soil		0.165	16	36	0.71	107	0.013	<20	2.04	<0.01	0.09	<2	0.24	<1	<5	<5	<5
1903520 Soil		0.094	16	24	0.62	188	0.010	<20	1.65	<0.01	0.10	<2	0.08	<1	<5	<5	<5
1903521 Soil		0.103	19	32	0.89	132	0.015	<20	2.23	<0.01	0.10	<2	0.10	<1	<5	<5	<5
1903522 Soil		0.093	19	31	1.04	148	0.015	<20	2.21	<0.01	0.14	<2	0.11	<1	<5	<5	6
1903523 Soil		0.073	21	28	1.02	113	0.015	<20	1.93	<0.01	0.11	<2	0.06	<1	<5	5	<5
1903524 Soil		0.070	21	27	1.03	124	0.014	<20	1.95	<0.01	0.10	<2	<0.05	<1	<5	<5	<5
1903525 Soil		0.062	20	27	0.97	125	0.015	<20	1.85	<0.01	0.10	<2	<0.05	<1	<5	<5	<5
1903526 Soil		0.082	19	27	0.98	116	0.014	<20	1.88	<0.01	0.10	<2	<0.05	<1	<5	<5	<5
1903527 Soil		0.150	13	30	0.66	332	0.014	<20	1.93	<0.01	0.09	<2	0.10	<1	<5	<5	<5
1903528 Soil		0.092	14	26	0.64	275	0.016	<20	1.40	<0.01	0.08	<2	0.07	<1	<5	<5	<5
1903529 Soil		0.100	15	27	0.71	205	0.017	<20	1.61	<0.01	0.09	<2	0.08	<1	<5	<5	<5
1903530 Rock	Pulp	0.061	74	60	1.90	295	0.088	<20	1.45	0.08	0.26	7	1.93	2	<5	7	<5

											Clie	nt:	34A	Laberge	Road	ences		White	horse))
BUREAU MINERAL LABORAT VERITAS Canada	DRIES		www	.burea	uverita	s.com/ı	um				Proje	ct:	KTN	-19070-Y	T					
Bureau Veritas Commodities Canada	Ltd.										Repo	rt Date:	Augu	ist 30, 20	19					
9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada																				
PHONE (604) 253-3158											Page		3 of 3	3				Pa	irt: 1	of 2
CERTIFICATE OF A	NALY	/SIS													W	HI19	9000	377	.1	
Meth	od FA330	FA330	FA330	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
Anal	te Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Th	Sr	Cd	Sb	Bi	v	Са
L	nit ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%
M	DL 2	3	2	1	1	3	1	0.3	1	1	2	0.01	2	2	1	0.5	3	3	1	0.01
1903531 Rock Pulp	5	<3	3	4	19	<3	28	<0.3	7	4	568	2.37	<2	<2	29	<0.5	<3	<3	21	0.74

3.28

0.74

Rock Pulp

Rock Pulp

<3

<3

47.0

<0.3

5.12

2.36

<2

32.9

<0.5

<3

<3

<3

			Client:	34A Laberge Road	Aurora Geosciences Ltd. (Whitehors 34A Laberge Road Whitehorse Yukon Y1A 5Y9 Canada					
BUREAU VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	KTN-19070-YT						
Bureau Veritas	Commodities Canada Ltd.		Report Date:	August 30, 2019						
•	essy St Vancouver British Colu	imbia V6P 6E5 Canada								
PHONE (604) 2	253-3158		Page:	3 of 3	Part:	2 of 2				
CERTIF	ICATE OF ANAL	YSIS		V	VHI19000377.1					

	Method	AQ300															
	Analyte	Р	La	Cr	Mg	Ва	Ti	В	AI	Na	κ	w	S	Hg	ті	Ga	Sc
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
1903531	Rock Pulp	0.036	5	15	0.49	55	0.069	<20	1.00	0.06	0.07	<2	0.05	<1	<5	<5	<5
1903532	Rock Pulp	0.061	73	60	1.89	364	0.087	20	1.43	0.08	0.26	8	1.95	2	<5	7	<5
1903533	Rock Pulp	0.036	5	16	0.48	55	0.068	<20	0.97	0.06	0.07	<2	<0.05	<1	<5	<5	<5

												Clien	t:	34A L	ora Ge aberge R horse Yul	oad		•	Vhiteh	orse)	
BUREAU VERITAS Bureau Veritas	MINERAL LABORATOR Canada			www.	bureau	veritas	.com/u	Im				Project Report			9070-YT t 30, 201	9					
	essy St Vancouver Britis		oia V6P	6E5 C	anada							Page:		1 of 1					Part	: 1 of	[:] 2
QUALIT	Y CONTROL	REP	ORT	Г												WH	1119	000	377.	1	
	Method	FA330	FA330	FA330	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
	Analyte	Au	Pt	Pd	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Th	Sr	Cd	Sb	Bi	v	Ca
	Unit	ppb	ppb	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%

2

3

<2

<2

7

8

7.65

9.33

<2

1

15

14

13

65

35

67.3

36

<1

0.5

5.9

<0.5

<0.5

2.2

0.7

2.37

0.61

<0.5

3

3

<3

<3

7

<3

7.2

3.39

<3

3

<3

<3

<3

10

<3

12.2

<3

2

77

11

11

41

35

42.8

35.8

<2

1

98

33

32

47

21

50

<1

22.5

0.01

1.75

0.60

0.57

1.02

2.90

1.063

2.98

<0.01

2

14

19

6

519

519

996

4

1022

MDL

Silt

QC

Silt

QC

Standard

Standard

Standard

Standard

Blank

Blank

Pulp Duplicates 1903507

REP 1903507

REP 1903515

Reference Materials STD DS11

STD DS11 Expected

STD OREAS262 Expected

STD PD05 Expected

STD PG04 Expected

STD OREAS262

STD PD05

STD PG04

BLK

BLK

1903515

3

3

7

<3

439

927

430

910

<3

2

15

28

8

609

1245

596

1210

7

1

12

2

2

14

<1

13.9

<1

1

289

48

46

145

117

156

118

<1

3

284

31

31

130

54

138

56

<3

1

1514

113

110

332

149

345

154

<1

0.3

0.8

0.5

0.4

1.6

0.5

1.71

0.45

< 0.3

1

121

28

28

75

61

81.9

62

<1

1

41

13

13

12

26

14.2

26.9

<1

2

1575

1135

1116

1004

532

530

<2

1055 3.2082

0.01

5.53

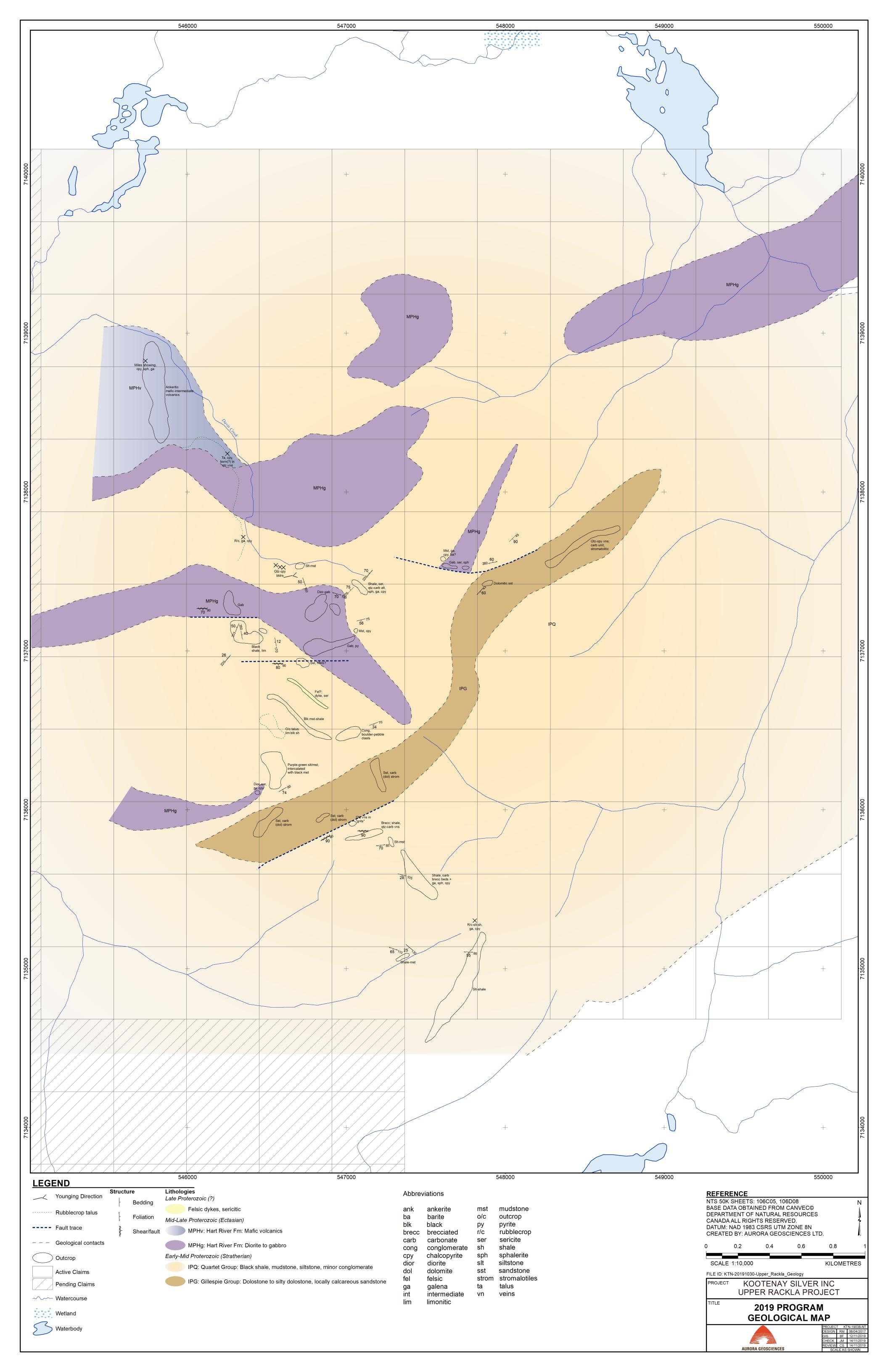
3.15

3.08

3.02

3.21

3.284


< 0.01

			Client:	Aurora Geoscient 34A Laberge Road Whitehorse Yukon Y1A 5Y9	·	rse)
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada s Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	KTN-19070-YT August 30, 2019		
9050 Shaughr PHONE (604)	nessy St Vancouver British Columbia 253-3158	V6P 6E5 Canada	Page:	1 of 1	Part:	2 of 2
QUALI	TY CONTROL REPO	RT		WHI	19000377.1	

	Method	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300	AQ300
	Analyte	Р	La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	s	Hg	ті	Ga	Sc
	Unit	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	%	ppm	ppm	ppm	ppm
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.01	0.01	2	0.05	1	5	5	5
Pulp Duplicates																	
1903507	Silt	0.115	23	38	2.48	91	0.030	<20	2.32	<0.01	0.10	<2	0.08	<1	<5	7	8
REP 1903507	QC																
1903515	Silt	0.089	17	25	0.76	208	0.014	<20	1.46	<0.01	0.11	<2	0.07	<1	<5	<5	<5
REP 1903515	QC	0.085	17	25	0.74	204	0.014	<20	1.44	<0.01	0.10	<2	0.07	<1	<5	<5	<5
Reference Materials																	
STD DS11	Standard	0.067	16	57	0.82	420	0.087	<20	1.14	0.07	0.39	2	0.28	<1	<5	<5	<5
STD OREAS262	Standard	0.037	15	42	1.17	245	0.003	<20	1.27	0.07	0.30	<2	0.26	<1	<5	<5	<5
STD PD05	Standard																
STD PG04	Standard																
STD DS11 Expected		0.0701	18.6	61.5	0.85	417	0.0976	6	1.129	0.0694	0.4	2.9	0.2835	0.3	4.9	4.7	3.1
STD OREAS262 Expected		0.04	15.9	41.7	1.17	248	0.003		1.204	0.071	0.312		0.253			3.73	3.24
STD PD05 Expected																	
STD PG04 Expected																	
BLK	Blank	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.01	<0.01	<2	<0.05	<1	<5	<5	<5
BLK	Blank																

Appendix VI

Figure 5, 100% size Kootenay Silver Inc. Aurora Geosciences Ltd.

Appendix VI

Statement of Expenditures

Rock Samples: 53 @ \$52.64/sample:	\$ 2,790.58
Silt Samples: 33 @ \$50.00/sample:	\$ 1,650.00
Standard samples*:	\$ 261.58
Personnel: Project Geologist: 7 days @ \$900/day:	\$ 6,300.00
Personnel: Junior Geologist: 5 days @ \$600/day:	\$ 3,000.00
Personnel: Prospector: 7 days @ \$750/day:	\$ 5,250.00
Helicopter, incl. fuel: 9.1 hrs @ \$1,721.87/hr*:	\$15,669.00
Accommodations, meals and groceries*:	\$ 2,588.75
Truck rental: 5 days @ \$250/day:	\$ 1,250.00
Truck fuel*:	\$ 132.76
Field supplies*:	\$ 131.65
Travel, prospector*:	\$ 660.00
Field gear rentals: 5 days @205/day:	\$ 1,025.00
Report writing, including digitization and GIS:	<u>\$ 7,550.00</u>
Total:	\$48,258.74

*Includes 10% surcharge