ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

1016 – 510 West Hastings Street Vancouver, B.C. V6B 1L8

Telephone: 604-688-2568 Fax: 604-688-2578

ASSESSMENT REPORT

describing

GEOLOGICAL MAPPING, SOIL GEOCHEMICAL SAMPLING AND DIAMOND DRILLING

Field work performed from May 31 to June 27, 2018

at the

SALOON PROPERTY

Salloon 1-16 YF47076-YF47091 17-52 YF41357-YF41392 Balloon 1-215 YF56301-YF56515

NTS 105E/01 and 105E/08 Latitude 61°14'N; Longitude 134°15'W

located in the

Whitehorse Mining District Yukon Territory

prepared by

Archer, Cathro & Associates (1981) Limited

for

STRATEGIC METALS LTD.

by

J. Morton, B.Sc., P.Geo.

May 2019

CONTENTS

Pl	ROPERTY LOCATION, CLAIM DATA AND ACCESS	1			
Н	ISTORY AND PREVIOUS WORK	2			
G	EOMORPHOLOGY AND CLIMATE	6			
R	EGIONAL GEOLOGY	7			
Pl	ROPERTY GEOLOGY	9			
M	INERALIZATION	10			
S	OIL GEOCHEMISTRY	13			
D	IAMOND DRILLING	13			
G	GEOPHYSICAL AND LIDAR SURVEYS				
D	ISCUSSION AND CONCLUSIONS	18			
R	EFERENCES	20			
	TABLES				
<u>No.</u>	<u>Description</u>	Page			
I	Exploration History of the Saloon Property	4			
II	Regional Lithological Units	8			
III	Soil Geochemical Thresholds	14			
IV	1993 Diamond Drill Hole Data	15			
V	2016 Diamond Drill Hole Data	15			
VI	1993 and 2016 Diamond Drilling Assay Highlights	15			
VII	2018 Diamond Drill Hole Data	16			

INTRODUCTION

1

FIGURES

No.	<u>Description</u>	Follows Page
1	Property Location	1
2	Claim Locations	1
3	Historical Workings	4
4	Tectonic Setting	7
5	Regional Geology	7
6	Property Geology	9
7	Copper Rock Geochemistry	10
8	Gold Rock Geochemistry	10
9	Silver Rock Geochemistry	10
10	2018 Soil Sample Locations	13
11	Copper Soil Geochemistry	13
12	Gold Soil Geochemistry	13
13	Drill Hole Locations – Plan View	16
14	Drill Section A – A'	16
15	LiDAR Interpretation	18
	<u>APPENDICES</u>	
I	STATEMENT OF QUALIFICATIONS	
II	STATEMENT OF EXENDITURES	
III	CERTIFICATES OF ANALYSIS	
IV	GEOLOGICAL AND GEOTECHNICAL LOGS	

PHOTOS

<u>No.</u>	<u>Description</u>	<u>Page</u>
1	Looking Northwest at the Stampede Zone – Main Exposure	10
2	Looking Northwest at the Cowboy Showing	12

INTRODUCTION

The Saloon property covers several copper-gold±silver prospects at the southern end of the Livingstone Creek placer gold camp, in southern Yukon. It is wholly owned by Strategic Metals Ltd.

This report describes geological mapping, soil geochemical sampling and diamond drilling, which were conducted from May 31 to June 27, 2018. Archer, Cathro & Associates (1981) Limited managed the program on behalf of Strategic Metals. The author supervised and participated in the exploration program and interpreted all resulting data. The author's Statement of Qualifications is provided in Appendix I, and a Statement of Expenditures is located in Appendix II.

PROPERTY LOCATION, CLAIM DATA AND ACCESS

The Saloon property consists of 267 contiguous mineral claims located in southern Yukon at latitude 61°14' north and 134°15' west on NTS map sheets 105E/01 and 105E/08 (Figure 1). The property covers an area of approximately 5280 hectares (52.80 km²). The claims are registered with the Whitehorse Mining Recorder in the name of Archer, Cathro, which holds them in trust for Strategic Metals. Individual claim locations are shown in Figure 2 and claim registration information is tabulated below:

Claim Name	Grant Number	Expiry Date*
Salloon 1-16	YF47076-YF47091	June 24, 2030
Salloon 17-52	YF41357-YF41392	June 24, 2030
Balloon 1-215	YF56301-YF56515	June 24, 2026

The Saloon property lies about 68 km northeast of Whitehorse, the nearest supply centre. The Livingstone Trail, a winter-only trail suitable for tracked vehicles, provides access to placer gold mining operations in the Livingstone Creek area, which is centred approximately 16 km north of the property. Loon Lakes, which are partly covered by the property, are suitable for float-equipped fixed-wing aircraft.

In 2018, personnel, equipment and supplies were mobilized to and from the property using a Bell 206B and an AStar B3 operated by Capital Helicopters, and a De Havilland DHC-2 Beaver and Cessna 206 operated by Alpine Aviation.

The property is located within the traditional territories of the Kwanlin Dün First Nation and Ta'an Kwäch'än Council. In July 2017, Ecofor Consulting Ltd. conducted a Heritage Resource Impact Assessment in order to determine the potential impacts of mineral exploration on the Salloon 1-52 claims. The proposed areas for drilling and trenching were found to have limited potential for heritage resources, and no further heritage resource work was recommended.

HISTORY AND PREVIOUS WORK

The Saloon prospect is one of the first mineral occurrences discovered in the Yukon, and was first identified by prospectors from the Livingstone Creek placer gold camp. The earliest record of exploration in the Saloon area is from about 1900 to 1912, on mineral claims that were staked prior to 1900. Two closely-spaced adits, reportedly up to 115 m long, were driven on a 10 m wide, iron- and copper-stained rock exposure (Bostock and Lees, 1938). They are now referred to as the Upper and Lower adits, based on their relative elevations. There is little historical documentation on the Upper Adit; however, the Lower Adit, which had collapsed by 1931, was rumoured to have intersected a 25 m wide mineralized zone yielding average grades of 2.0 to 2.5% copper (INAC, 1972 and Sevensma, 1974). Descriptions of the two adits matches field observations of historical workings that are located at the northern end of a 300 m by 250 m area of copper-gold±silver mineralization, now referred to as the Stampede Zone. This zone also covers a prominent, gossanous outcrop located 150 m to the south, which is referred to as the Main Exposure.

No further work is documented until 1943, when the prospect was restaked by John Stenbraten. Stenbraten performed extensive hand trenching and drove a 5 m long adit, referred to as the Western Adit, on a second structure, west of the Main Exposure.

In 1954 and 1955, McLeod-Shuttlecock Gold Mines Ltd. staked the Zula and Saki claims, which likely covered the Stampede Zone. The company carried out further trenching, and between 1955 and 1956, drilled three x-ray holes, totalling approximately 39 m. Results of this work are not documented, and the claims were allowed to lapse.

In 1969, Quested Mining Corp. staked the Beaver and Mink claims, which covered the area of the Stampede Zone, and subsequently optioned them to Colorado Corporation. Later that year, Colorado Corporation performed line cutting, soil geochemical sampling, detailed geological mapping, hand trenching, and ground-based magnetometer and induced polarization (IP) surveying (Sevensma, 1970). Soil sampling identified two copper±silver geochemical anomalies – one in the area of the Stampede Zone and another 360 m to the northwest – returning peak values of 1800 ppm copper and 3.0 ppm silver. Magnetometer surveying was abandoned due to instrument failure, while IP surveying identified six chargeability anomalies on the property (Sevensma, 1974). The results of the IP survey is summarized in the Geophysical and LiDAR Surveys section below. The claims were subsequently allowed to lapse.

In 1972, the Loon Lake Syndicate staked the Rip and Lynx claims, which covered part of the current Saloon property, and between 1974 and 1975, the syndicate carried out line cutting, geological mapping, prospecting and geochemical sampling (Sevensma, 1974). Soil sampling expanded the previously identified geochemical anomalies, while prospecting identified a new showing, the Gun Show Showing, located 550 m north-northeast of the Stampede Zone. A rock sample collected from the new showing assayed 0.11% copper and 1.6 g/t silver. This work also identified a strongly gossanous outcrop, spotted by helicopter, approximately one kilometre north of the Stampede Zone (Sevensma, 1976).

In 1978, the Loon Lake Syndicate re-located the northerly gossanous outcrop, which is now referred to as the Cowboy Showing, and performed blast trenching at the Stampede Zone and Cowboy Showing. A representative sample from the Cowboy Showing assayed 0.35% copper, with gold and silver values below detection limits, while a float sample, collected 100 m to the north, returned 0.55% copper, 0.34 g/t gold and 1.36 g/t silver. At the Stampede Zone, five rock samples collected from blast trenches yielded an average grade of 0.83% copper, 2.02 g/t gold and 3.63 g/t silver. In addition to this work, the syndicate collected 19 contour-controlled soil samples immediately north-northwest of the Cowboy Showing, at approximately 16 m spacings. All of the soil samples yielded elevated values for copper, with a peak value of 504 ppm (Sevensma, 1978). Following this work, the claims were allowed to lapse.

In 1984, Archer Cathro briefly investigated the historical workings on the property. The company collected chip samples from the Main Exposure and rock samples from waste dumps below the historical adits. A strongly mineralized rock sample, collected from a dump at the Upper Adit, assayed 10.37% copper, 44.57 g/t gold and 144 g/t silver, while a more representative sample returned 7.40% copper, 11.31 g/t gold and 17.5 g/t silver. Continuous chip samples from the Main Exposure yielded weighted average grades of 0.01% copper and 1.37 g/t gold over 2.4 m and 0.3% copper and 0.34 g/t gold over 18 m (Carne and Halleran, 1986).

In 1985, Archer Cathro staked the Loon claims and sold them to Silverquest Resources Ltd. In 1986, Silverquest performed geological mapping, prospecting and geochemical sampling. This work identified two new showings: the Bar Showing, which is located 550 m west-southwest of the Cowboy Showing, and the Deputy Showing, which is located 200 m northeast of the Cowboy Showing. Rocks collected from the Bar and Deputy showings yielded 0.17 and 0.13 g/t gold, respectively (Carne and Halleran, 1986).

During the 1985 program, another representative rock sample was collected from the waste dump at the Upper Adit, which assayed 3.4% copper, 5.49 g/t gold and 13.0 g/t silver. At the Cowboy Zone, a sample of pyritic quartz returned 0.69 g/t gold. Soil sampling identified three gold-in-soil anomalies: one covering the area of the Stampede Zone, another encompassing a 100 m by 400 m area immediately east of the Stampede Zone and the third covering a similarly sized area approximately 400 m west-northwest of the Stampede Zone (Carne and Halleran, 1986).

In 1992, the claims were transferred to Cash Resources Ltd. In 1993, Cash Resources performed a total of 116.43 m of diamond drilling in two, westerly oriented holes, which assumed the mineralization at the Main Exposure is controlled by a near vertical structure. The best intercept was from the top of hole 93-2, which returned a weighted average grade of 0.49% copper, 0.16 g/t gold and 2.0 g/t silver over 24.06 m. Both holes were abandoned due to poor ground conditions (Eaton, 1993), and the claims were subsequently allowed to lapse.

In June and July 2016, Strategic Metals staked the Salloon 1-52 claims, which covered all of the historical mineral occurrences, and later that year conducted geological mapping, rock geochemical sampling and 113.08 m of diamond drilling in a single hole. Two continuous chip samples collected at the Main Exposure, taken to confirm the tenor of historical results, returned weighted average grades of 0.11% copper, 0.57 g/t gold and 3.9 g/t silver over 20 m and 0.08% copper, 0.59 g/t gold and 2.7 g/t silver over 6 m. Rock sampling at the Upper Adit reproduced

the strong, historically reported copper and gold grades, while a sample collected from the waste dumps outside John Stenbraten's Western Adit assayed 2.78% copper, 0.83 g/t gold and 27.5 g/t silver (Mitchell, 2017).

The 2016 drill hole was oriented easterly and tested the down-dip extension of the Main Exposure, assuming a moderately east-dipping stratigraphic control. This hole cut several intervals of significant mineralization, including an intercept of 0.40% copper, 0.05 g/t gold and 128.5 g/t silver over 30.23 m, but was abandoned due to poor ground conditions. A complete report pertaining to this work can be found in Mitchell (2017), while results from this work and the 1993 program are summarized in the Diamond Drilling section below.

In March 2017, Strategic Metals staked the Balloon 1-215 claims in order to cover prospective geological units and anomalous stream sediment samples northwest and south of the Salloon claims. That summer, the company performed geological mapping, prospecting, LiDAR surveying, rock and soil geochemical sampling and completed a Heritage Resource Impact Assessment. Several historical mineral occurrences were relocated, and prospecting resulted in the discovery of the Rodeo Showing, where rock samples returned up to 1.25% copper and 3.44 g/t gold. Soil sampling highlighted multiple areas of anomalous copper and gold geochemistry, while LiDAR surveying identified numerous topographic features associated with the local structural fabric (Morton, 2018).

Table I summarizes the work performed and results obtained by exploration programs conducted since 1969, and Figure 3 illustrates the locations of historical workings and mineral occurrences on the property.

Table I – Exploration History of the Saloon Property

Year of Work (Assessment Report)	Owner/ Operator	Claims	Work Performed	Results	
1970 (060013)	Colorado Corporation	Beaver- Mink	Line cutting, soil geochemical sampling, detailed geological mapping, hand trenching, and magnetometer and induced polarization (IP) surveys	IP survey outlined six anomalies, but no documentation of any other work was reported.	
1974 (061185)	Loon Lake Syndicate	Lynx	Line cutting and soil geochemical sampling	Outlined a 370 by 580 m area of strong copper geochemistry over the Main Exposure and several broad highs to the north-northwest of it.	

				The Gun Show Showing
1975 (090093)	Loon Lake Syndicate	Lynx	Trail and line cutting, soil sampling, prospecting and geological mapping	discovered north of the Main Exposure, comprising a six metre thick highly oxidized horizon hosting pyrite with trace chalcopyrite. A sample from of this material graded 0.11% copper and 1.6 g/t silver.
1978 (091131)	Loon Lake Syndicate	Lyny geochemical sai		Blasting was undertaken at the Main Exposure and the Cowboy Showing. Five rock samples taken from the Main Exposure averaged 2.02 g/t gold, 0.83% copper and 3.64 g/t silver. One rock sample was collected from the Cowboy Showing and returned 0.35% copper.
1984 (N/A)	Archer, Cathro & Associates Ltd.	None	Rock geochemical sampling	Strongly mineralized specimens collected from the Upper Adit dumps returned up to 44.57 g/t gold, 10.37% copper and 144.0 g/t silver, while a more representative sample graded 11.31 g/t gold, 7.4% copper and 17.5 g/t silver.
1986 (091887)	Silverquest Resources Ltd.	Loon	Soil geochemical sampling, geological mapping and prospecting	Specimens collected from adit dumps at the Stampede Zone graded 5.49 g/t gold, 3.4% copper and 13.0 g/t silver. Three additional areas of mineralization were outlined to the north and northwest of the Main Exposure. Samples from these areas ranged from 0.17 to 0.77 g/t gold and were not analyzed for other elements of interest.
1993 (093151)	Cash Resources Ltd.	Loon	Diamond Drilling	Two diamond drill holes totalling 116.43 m, directed toward the Main Exposure. The best intercept averaged 0.49% copper and 0.16 g/t gold over 24.06 m, while the other hole was abandoned due to bad ground conditions.

2016 (096985)	Strategic Metals Ltd.	Salloon	Rock and soil geochemical sampling, geological mapping and diamond drilling	One diamond drill hole, directed toward the Main Exposure, totalling 113.08 m. The best intercept averaged 0.40% copper, 0.05 g/t gold and 128.5 g/t silver over 30.23 m. The hole was abandoned due to poor ground conditions.
2017 (N/A)	Strategic Metals Ltd.	Salloon	Geological mapping, prospecting, heritage studies, LiDAR surveying and rock and soil geochemical sampling	Several old showings and adits were relocated, as well as a new showing, the Rodeo Showing, where rock samples returned up to 1.25% copper and 3.44 g/t gold. Soil sampling highlighted multiple areas of anomalous copper and gold, and LiDAR surveying identified numerous topographic features of interest.

GEOMORPHOLOGY AND CLIMATE

The Saloon property straddles the southern Semenof Hills to the west and Big Salmon Range to the east, which are parts of the Yukon Plateau. It covers the north and west shores of Loon Lakes and a steep-sided, flat-topped ridge, which is drained by creeks that flow north into the Big Salmon River and south into the Teslin River. Both rivers are parts of the Yukon River watershed.

The property is located entirely below treeline, with elevations ranging from approximately 880 m to 1425 m above sea level (asl). Vegetation on the ridge top comprises mature stands of balsam and spruce, with contrasting flora covering the western and eastern slopes. The western side of the ridge is heavily timbered with spruce, giving way to stunted black spruce and swamp grasses in the adjacent valley. The eastern slope, bordering the U-shaped valley occupied by Loon and Fish creeks, is sparsely treed by balsam and jack pine, with a thick undergrowth of slide alder and poplar, moss-covered talus, small scree slopes and isolated cliffs. This slope is somewhat unstable and shows evidence of several small, recent landslides.

The area has been affected by numerous glacial advances, with the predominant north-northwest trending glacial and glaciofluvial features related to the most recent McConnell advance in the Late Pleistocene. Much of the property is mantled with till, moraine and outwash deposits that vary from a few centimetres to several metres thick. Volcanic ash from eruptions at Mt. Churchill in southeastern Alaska, at about 103 and 740 AD, occurs as thin, discontinuous layers within the A soil horizon.

The climate at the Saloon property is typical of northern continental regions with long, cold winters, truncated fall and spring seasons and short, mild summers. Although summers are relatively mild, snowfall can occur in any month. The property is mostly snow free from early June to late September.

REGIONAL GEOLOGY

The Saloon property covers a portion of the Big Salmon Fault Zone – an enigmatic system of northwest trending faults that forms the boundary between Quesnellia and Yukon-Tanana terranes (Figure 4).

Between 1929 and 1935, the Laberge area was mapped by the Geological Survey of Canada (GSC) – Bostock et al., 1938. In 1984, the GSC published a revised 1:250,000 scale geological map of the Laberge (105E) map sheet (Tempelman-Kluit, 1984). Regional-scale geological maps appear on the Yukon Geological Survey (YGS) website, which is periodically updated when new information becomes available (YGS, 2018). In 2017, the YGS refined the sedimentary stratigraphy on map sheet 105E/08, immediately north of the Saloon property (Colpron, 2017). The regional geology, illustrated on Figure 5 and described below, is based on mapping performed by the YGS.

The property covers an approximately 3.5 km wide system of northwest trending faults, referred to as the Big Salmon Fault Zone. The fault zone is thought to comprise several dextral strike-slip faults that may be related to the d'Abaddie Fault Zone, located about 15 km to the northeast (Colpron, personal communication, 2018). Both fault zones may be associated with the much larger, dextral strike-slip Teslin Fault, which lies approximately seven kilometres west of the property. The Big Salmon and d'Abbadie faults bound the Livingstone Creek gold camp, and may play an important role for mineral deposition in this area. A number of east-northeast trending faults have also been mapped in the Saloon area. Some of these faults have produced small offsets on northwest trending structures.

Most of the Saloon property is underlain by rocks assigned to Yukon-Tanana terrane – a pericratonic terrane that records the evolution of a Late Devonian to Middle Permian continental arc and back-arc system. Yukon-Tanana is defined by four tectonic assemblages of regional extent: a basal siliciclastic assemblage of continental-margin affinity (Snowcap Assemblage), overlain by three unconformity-bounded, Mid- to Late Paleozoic volcanic and volcaniclastic successions of continental arc and back-arc character (Finlayson, Klinkit and Klondike assemblages). The four assemblages have been subjected to four, and locally five, episodes of deformation and are variably metamorphosed up to amphibolite facies.

The eastern-most edge of the Big Salmon Fault Zone crosses the southeastern part of the property. West of this boundary, the bulk of the Saloon property is underlain by Loon Lake Formation rocks of the Finlayson Assemblage. To the east, Snowcap Assemblage is overlain by the Mendocina, Last Peak and Livingstone Creek formations, which are tentatively assigned to Finlayson Assemblage (Colpron, 2017).

In the Saloon area, intrusions of tonalite and granodiorite gneiss of the Mississippian Simpson Range Plutonic Suite cut both Snowcap and Finlayson assemblages, and are exposed east and northeast of the property. The largest of these intrusions is located approximately four kilometres east of the property and comprises an elongate, 3 km by 20 km body of gneissic granite and granodiorite. A small, foliated, biotite-hornblende granodiorite intrusion, belonging to the Minto Plutonic Suite (LTrEJgM), lies about two kilometres east of Loon Lakes.

On the western margin of the Saloon property, a sliver of Quesnellia terrane is structurally juxtaposed against Loon Lake Formation by a splay fault of the Big Salmon Fault Zone, referred to as the Moose Creek Fault. Quesnellia terrane is characterized by Late Paleozoic island-arc assemblages and overlying, Triassic aged, continental arc assemblages, which formed along the western margin of ancestral North America.

Quesnellia stratigraphy comprises a thick, continuous, subvertical to steeply dipping sedimentary and volcano-sedimentary package, with top indicators mostly to the southwest. Basement rocks belonging to the Pennsylvanian-aged Boswell Formation are overlain to the east by an undeformed and unmetamorphosed volcano-sedimentary sequence of the Upper Devonian to Mississippian-aged Moose Formation and thickly bedded fragmental volcanic rocks of the Upper Triassic Semenof Formation (Simard and Devine, 2003).

The main lithological units are described in Table II below.

Table II – Regional Lithological Units (after YGS, 2018)

Map Suite	Age	Map Unit	Description
•		Quesnellia	a Terrane
Semenof	Late Triassic to Early	uTJSc	Limestone.
Formation	Jurassic	uTJSv	Basalt, andesite.
		uCBs	Slate, phyllite, greywacke and chert.
Boswell	Late	uCBv	Altered basalt and volcanic breccia.
Formation	Carboniferous	uCBc	Limestone.
		uDMMv	Basalt and greenstone.
		Yukon Tana	ana Terrane
Sulphur Creek Suite	Mid-Permian	PqS	Foliated quartz monzonite gneiss.
Klinkit	Carboniferous	CKv	Intermediate to mafic volcanic rocks.
Assemblage	Carbonnerous	CKs	Clastic rocks.
Simpson Range Suite	Late Devonian to	MqSR	Foliated granite and granodiorite.
Grass Lakes Suite	Mississippian	DMgG	Augen granite.
		DMFu	Serpentine and metagrabbro.
Finlayson	Devonian to	DMFc	Carbonate and marble.
Assemblage	Mississippian	DMFs	Siliciclastic and metavolcaniclastic rocks.
		DMFbp	Carbonaceous phyllite, quartzite and chert.

		DMFv	Mafic volcanic rocks.
	Lata	PDSv	Amphibolite.
Snowcap Assemblage	Late Proterozoic and Paleozoic	PDSbp	Marble.
		PDSc	Marble.
		PDSs	Metaclastic rocks and quartzite.

PROPERTY GEOLOGY

Property-scale geological mapping on the Saloon property is hampered by thick vegetation and overburden cover. Limited mapping was completed over the Saloon area in 1970 by Colorado Corporation (Sevensma, 1970) and amended in 1974 and 1975 by the Loon Lake Syndicate (Sevensma, 1976). In 1986, Silverquest expanded on and updated the earlier geological map (Carne and Halleran, 1986). In 2016, 2017 and 2018, Strategic Metals performed minor mapping on the property in an attempt to correlate the previous work, which was performed prior to the advent of GPS technology; however, due to the lack of control in areas of ambiguous topography, this work was only partially successful at resolving the discrepancies on the historical maps. The following summary, and the property geology depicted on Figure 6, is based on Strategic Metals' work, as well as observations made by other exploration geologists who have worked on the property at various times.

The Saloon project is almost entirely underlain by interbedded and variably calcareous Loon Lake Formation sedimentary and volcanic rocks that have been metamorphosed to at least greenschist facies. This package is cut by a number of small diorite plugs, dykes and sills in the area of the Stampede Zone and 200 m west of the Cowboy Zone, and by other mafic and lesser felsic dykes elsewhere on the property. While mapping by previous workers has subdivided Loon Lake Formation into a number of discrete sub-units, this work has been unable to developing a cohesive stratigraphy, due to the paucity of outcrop on the property and the complex structural setting.

Bedding and bedding-parallel foliation on the property predominantly dip 55° to 75° to the northeast and southwest, which indicates a broad, northwest trending anticline, the axis of which is located between the Stampede Zone and the Cowboy Showing (Sevensma, 1970). Cursory geological interpretation suggests that the mineralization at the Stampede Zone may be developed within the thickened hinge of a tight, parallel syncline, and that other mineralized zones on the property may be located at specific stratigraphic levels along the fold limbs. Alternatively, mineralization on the property may be focused along a system of structures related to the Big Salmon Fault Zone. The geometry of quartz veins in the area of the Stampede Zone indicate an oblique, dextral sense of shear.

Several strands of the northwest trending Big Salmon Fault Zone dissect the property, and numerous, prominent topographic linears likely mark secondary structures. One prominent topographic depression is located immediately west of the Stampede Zone. It may extend north over a distance of 1.5 km, where it is marked by a long, north trending, swampy meadow, located immediately west of the Cowboy Showing. To the south of the Cowboy Showing, this structure is cross-cut by a northeast trending fault, referred to as the Cow Fault.

MINERALIZATION

The Saloon property is located at the southern end of the Livingstone Creek placer gold camp and hosts copper, gold and silver mineralization. It covers the Salloon (105E 003) mineral occurrence and surrounds the Sylvia (105E 020) mineral occurrence.

Strategic Metals has identified five named showings, the Bar, Cowboy, Cowgirl, Deputy and Rodeo showings, and one zone, the Stampede Zone, in the southern part of the property. (Zones are showings where drilling or underground workings have confirmed the depth extent of mineralization). A seventh historical prospect, the Gun Show Showing, has not been relocated.

In 2016, Strategic Metals collected 14 rock samples from the Stampede Zone, including 12 chip samples, in order to confirm historical results. In 2017, the company collected another 45 rock samples, including 16 chip samples. Results for copper, gold and silver for rock samples taken in 2017 are illustrated thematically on Figures 7 to 9, respectively.

The **Stampede Zone** covers a 300 m by 250 m area on a south-facing slope, which overlooks Upper Loon Lake (Photo 1). It encompasses the Main Exposure as well as historical pits, trenches and adits, including the adits referred to as the Western Adit, the Upper Adit and the Lower Adit.

Photo 1 – Looking northwest at the Stampede Zone – Main Exposure

Since 1955, most of the work on the property has been directed toward the Main Exposure. It is an approximately 30 m by 30 m, gossanous and malachite-stained outcrop of strongly silicified schist and overprinting quartz veins, hosting disseminated chalcopyrite, pyrite and rare galena within west-dipping, foliaform horizons. In 1978, five representative rock samples, collected from blast trenches at the Main Exposure, yielded an average grade of 0.83% copper, 2.02 g/t

gold and 3.64 g/t silver (Sevensma, 1978). In 1984, chip sampling across the exposure returned a weighted average grade of 0.30% copper and 0.34 g/t gold over 18 m (Carne and Halleran, 1986). Confirmatory chip sampling in 2016 yielded 0.11% copper 0.57 g/t gold and 3.89 g/t silver over 20 m (Mitchell, 2017). A collapsed, north-directed adit, with no appreciable waste dump, is located immediately west of the exposure and is marked by old timbers. Diamond drill results from the area of the Main Exposure are discussed in the Diamond Drilling section below.

Two collapsed, west-directed adits are located about 150 m north of the Main Exposure – the Upper Adit and the Lower Adit. Both are marked by old timbers and abandoned tools. The Upper Adit appears to have targeted an approximately one metre wide quartz vein, which occupies a local, west-northwest trending, synformal fold hinge. A select rock sample, collected in 1985, from a waste dump outside of the adit, assayed 10.37% copper, 44.57 g/t gold and 144.00 g/t silver (Carne and Halleran, 1986), while a composite sample from the dump, collected in 2016, returned 7.72% copper, 8.78 g/t gold and 12.45 g/t silver (Mitchell, 2017). In 2017, a chip sample across the quartz vein yielded 0.79% copper, 4.63 g/t gold and 2.53 g/t silver over one metre (Morton, 2018). The Lower Adit lies 30 m east of the Upper Adit, and has been almost completely overgrown with vegetation. It was rumoured to have intersected a 25 m wide mineralized zone that yielded average grades of 2.0 to 2.5% copper (INAC, 1972 and Sevensma, 1974). In 2018, a diamond drill hole was directed toward the two adits. The results are discussed in the Diamond Drilling section below.

Another collapsed, historical adit, driven in 1943 and called the Western Adit, is located 140 m west-northwest of the Main Exposure. The adit was directed at moderately southeast-dipping, vein-hosted and foliaform mineralization in a silicified schist, and was reportedly five metres long. In 2016, a composite sample collected from the waste dump outside the adit assayed 2.78% copper, 0.72 g/t gold and 27.50 g/t silver (Mitchell, 2017). A chip sample collected in 2017, from an outcrop about 15 m south of the adit, returned 1.90% copper, 4.01 g/t gold and 30.7 g/t silver over 1.2 m.

The **Bar Showing** is located one kilometre northwest of the Stampede Zone, and covers an approximately 20 m by 25 m area of rusty outcrop and talus on a steep, west-facing slope. The showing is poorly described in historical reports, but is believed to have been relocated by Strategic Metals. In 2017, a float sample collected from under a west-dipping outcrop of pyritic schist, with encrusting malachite, yielded 0.51% copper and trace gold and silver values. Chip samples across the outcrop returned only weakly elevated values for all elements of interest.

The **Cowboy Showing** lies approximately 1.2 km north-northeast of the Stampede Zone, and covers a 15 m by 25 m, gossanous and malachite-stained outcrop, similar in appearance to the Main Exposure (Photo 2). It was first identified by air in 1975, and revisited by Loon Lake Syndicate in 1978 and Silverquest Resources in 1986. Like the Stampede Zone, mineralization at the Cowboy Showing comprises disseminated chalcopyrite and pyrite in southwest-dipping, strongly silificied, foliaform horizons and overprinting quartz veins.

Photo 2 – Looking northwest at the Cowboy Showing

In 1978, a representative sample of blasted rock returned 0.35% copper, with trace gold and silver values, while a nearby piece of float assayed 0.55% copper, 0.34 g/t gold and 1.37 g/t silver (Sevensma, 1978). A sample of pyritic quartz vein, collected in 1986, yielded 0.69 g/t gold, with no results reported for copper or silver (Carne and Halleran, 1986). In 2017, chip samples across the Cowboy Showing returned a weighted average grade of 0.20% copper, with background gold and silver values, over five metres. A subcrop sample collected from under a rusty outcrop located approximately 75 m to the north, and comprising chalcopyrite-bearing, smoky quartz, yielded 0.53% copper, 0.79 g/t gold and 2.71 g/t silver.

In 2017, prospecting 130 m north of the Cowboy Showing resulted in the discovery of mineralized outcrop in an area that had historically returned anomalous rock values, and is now referred to as the **Cowgirl Showing**. A rock sample from this area, collected in 1986 with no description, returned 0.27 g/t gold (Carne and Halleran, 1986), while a 2017 sample, comprising rusty weathering, white quartz with masses of fine grained pyrite and chalcopyrite, yielded 0.09% copper and background values for gold and silver.

The **Deputy Showing** was relocated by Strategic Metals in 2017. It lies about 200 m northeast of the Cowboy Showing, and covers a small talus float train of mineralized quartz and rusty chlorite-sericite schist, which may be sourcing from outcrop located 30 m uphill. In 1986, a rock sample collected from this area, with no description, returned 0.77 g/t gold (Carne and Halleran, 1986). In 2017, a roughly 30 cm³, strongly mineralized quartz boulder, collected in the float train, yielded 1.90% copper, 0.23 g/t gold and 18.45 g/t silver. A chip sample taken across the uphill outcrop, comprising pale grey-green, strongly fractured, silica-flooded schist with overprinting quartz veins, encrusting malachite and disseminated, fine grained chalcopyrite, returned 0.19% copper, 0.38 g/t gold and 2.28 g/t silver over 3 m.

The **Rodeo Showing** was discovered in 2017, and is located 500 m north-northwest of the Cowboy Showing. The showing covers an approximately 15 m by 15 m outcrop of green, carbonate-altered, strongly fractured chlorite schist hosting sparse, irregular clots of fine grained chalcopyrite. A rock sample from the outcrop assayed 0.92% copper, 2.1 g/t gold and 0.7 g/t silver, while a float sample collected immediately downhill yielded 1.25% copper, 3.44 g/t gold and 2.75 g/t silver.

The **Gun Show Showing** was identified in 1975 and is reportedly located 350 m north-northeast of the Stampede Zone. It has not been relocated by Strategic Metals, but is described as a six metre thick, steeply south-dipping, highly oxidized bedrock exposure, hosting residual pyrite and minor chalcopyrite. In 1975, a rock sample from the outcrop returned 0.11% copper, trace gold and 1.6 g/t silver (Sevensma, 1976).

SOIL GEOCHEMISTRY

In 1988, the GSC performed regional stream sediment sampling across the Laberge map sheet (Hornbrook and Friske, 1989). One sample, from a creek located on an upland plateau and along the surface trace of the Moose Creek Fault, approximately 2.75 km northwest of the Stampede Zone, returned strongly anomalous values for gold (29 ppb) and silver (477 ppb) and a moderately anomalous value for copper (72.2 ppm).

Soil geochemical surveys conducted on the Saloon property prior to 2017 covered only the southern portion of the property, and included grid and contour soil sampling at varying sample spacings. Soil samples collected in the 1970s were only analyzed for copper, while samples taken in 1986 were only run for gold.

In 2017, Strategic Metals collected 1193 grid and contour soil samples from the central part of the property. On the ridge-top, reconnaissance-scale grid soil sampling was performed along 12 sample lines, which were oriented northeast and spaced 400 m apart. Another, more closely spaced grid was completed at the southern end of the ridge, on south-facing slopes that underlie the seven mineralized showings and zones. Contour soil sampling was performed along a 6.8 km long line, west of and parallel with Fish Creek, part-way between the ridge-top and the floor of the valley.

In 2018, Strategic Metals collected 27 soil samples, from a 100 m by 100 m grid, in order to better define an area of anomalous geochemistry within the reconnaissance-scale grid. The 2018 sample locations are plotted on Figure 10, while results for copper and gold from the 2017 and 2018 programs are illustrated thematically on Figures 11 to 12, respectively. Certificates of Analysis for the 2018 samples are provided in Appendix III.

Soil sample locations were recorded using hand-held GPS units. Sample sites are marked by aluminum tags inscribed with the sample numbers and affixed to 0.5 m wooden lath that were driven into the ground. Soil samples were collected from 20 to 40 cm deep holes dug by handheld auger. The soil samples were sent to ALS Minerals in Whitehorse, where they were dried and screened to -180 microns. The fine fractions were then shipped to ALS Minerals in

North Vancouver where they were analyzed for 51 elements using an aqua regia digestion followed by inductively coupled plasma combined with mass spectroscopy and atomic emission spectroscopy (ME-MS41). An additional 30 g charge was further analyzed for gold by fire assay with inductively coupled plasma and atomic emission spectroscopy finish (Au-ICP21).

Anomalous thresholds and peak values for all soil samples collected to date on the property are listed in Table III.

Anomalous Thresholds Element Weak **Moderate** Strong Very Strong Peak $\geq 20 < 50$ $\geq 50 < 100$ $\geq 100 < 200$ ≥ 200 Copper (ppm) 3730 Gold (ppb) $\geq 5 < 10$ $\geq 10 < 20$ \geq 20 < 50 ≥ 50 191

Table III – Soil Geochemical Thresholds

In the southern part of the property, copper- and gold-in-soil response is elevated in three large clusters that are broadly coincident with the known mineral occurrences. The three clusters are referred to as Anomaly A, Anomaly B and Anomaly C.

Anomaly A covers a 1250 m by 350 m area that encompasses the Stampede Zone and the reported location of the Gun Show Showing. It includes the peak copper-in-soil value, (3730 ppm), which is located in the immediate vicinity of the Main Adit, and covers an area of strongly to very strongly anomalous copper- and gold-in-soil values in the area of Gun Show Showing. Anomalous soil samples in the area of the Gun Show Showing and to the northeast have not been followed up by prospecting.

Anomaly B covers the Bar Showing and an area of elevated copper-in-soil to the north. Soil samples collected in this area have yielded values of up to 534 ppm copper and 68 ppb gold.

Anomaly C comprises a 1250 m by 450 m area that covers the Cowboy, Cowgirl, Deputy and Rodeo showings, as well as a cluster of strongly to very strongly elevated copper-in-soil values to the north, nearer to the valley floor. Soil samples collected in the vicinity of the Rodeo Showing returned copper-in-soil values of up to 531 ppm and gold-in-soil values of up to 29 ppb.

Moderate to very strong copper and gold spot anomalies have also been identified in several other areas on the property. The peak gold-in-soil response (191 ppb) is located within a small cluster of anomalous samples located 4.1 km northwest of the Stampede Zone, in an area of thick vegetation. The cluster is referred to as the Bronco Gold Anomaly. In 2018, grid soil samples collected over and to the north of the anomalous cluster yielded only background values for gold.

Late Pleistocene glaciation was locally directed to the north-northwest, exposing localized outcrops on steep, south-facing slopes and depositing a veneer of till on ridge tops. Valley floors are blanketed by glacial-fluvial and glacial-lacustrine sediments. The glacially related overburden likely supress the soil geochemical response in many parts of the property.

DIAMOND DRILLING

In 1993, Cash Resources completed two diamond drill holes with BTW equipment, totalling 116.43 m at two drill sites (Eaton, 1993). The holes tested westward beneath the Main Exposure to a maximum depth of 53.34 m. Data for these holes are listed in Table IV.

Table IV – 1993 Diamond Drill Hole Data

Drill Hole	Easting	Northing	Elev (m)	Azimuth	Angle	Depth (m)
93-1	543022	6784559	1020	270	-50	63.09
93-2	542999	6784562	1024	270	-55	53.34

Hole 93-1 did not intersect significant mineralization and was abandoned in bad ground. Hole 93-2 was collared on the eastern edge of the Main Exposure and cut 24.06 m of intensely sericite- and clay-altered, silica-flooded rock that averaged 0.49% copper, 0.16 g/t gold and 2.0 g/t silver (Eaton, 1993). Core recovery in this hole was poor.

In 2016, Strategic Metals drilled a 113.08 m hole, with NQ equipment, which was designed to scissor holes 93-1 and 93-2, to confirm that mineralization dips moderately west and sub-parallel to the earlier holes. Key data concerning the 2016 drill hole is listed in Table V.

Table V – 2016 Diamond Drill Hole Data

Drill Hole	Easting	Northing	Elev (m)	Azimuth	Angle	Depth (m)
SAL-16-01	542923	6784573	1073	090	-45	113.08

Diamond drilling in 1993 and in 2016 was designed to test beneath the Main Exposure. Mineralization in drill core, comprising clots and disseminations of pyrite, chalcopyrite and an unidentified, dark black mineral, is hosted within highly fractured, silica-flooded and quartz-carbonate veined, medium grey-green schist. Chlorite and sericite alteration is pervasive, and is accompanied by sparse, sub-millimetre wide, limonitic, carbonate stringers and intense crackle breccias. Pyritiferous, medium grey-green gouge makes up most of the recovered core. Due to the gougey and clay-rich nature of the rock, core recovery was poor (averaging about 55%). The 1993 and 2016 drill highlights are compiled in Table VI.

Table VI – 1993 and 2016 Diamond Drilling Assay Highlights

Hole	From	To	Interval	Copper	Silver	Gold
	(m)	(m)	(m)	(%)	(g/t)	(g/t)
93-02	0	24.06	24.06	0.49	2.0	0.16
SAL-16-01	3.05	9.14	6.09	0.16	0.82	0.01
	36.52	66.75	30.23	0.40	128.5	0.05
Including	39.76	50.29	10.53	1.01	81.9	0.12
and	54.86	66.75	11.89	0.07	253.7	0.02

79.25	80.77	1.52	0.41	749.0	Trace
99.06	100.64	11.58	0.39	2.5	0.08

Drilling in 2016 was unable to reproduce the moderately elevated gold values obtained from chip samples collected from surface; however, silver and copper values in the hole was much higher than those from surface. Much of the silver was recovered from the screened fraction, which suggests that it occurs as native silver. The best interval from SAL-16-01 graded 0.40% copper, 128.46 g/t silver and 0.05 g/t gold over 30.23 m, including 10.53 m of 1.01% copper, 81.9 g/t silver and 0.12 g/t gold and 11.89 m of 0.07% copper, 253.7 g/t silver and 0.02 g/t gold. This interval includes a 4.57 m zone where no core was recovered, and zero values were assigned for averaging purposes. Two other mineralized intervals were cut deeper in the hole, with the deepest interval ending just before the hole was lost, due to poor ground conditions.

In 2018, Strategic Metals completed a total of 285.0 m of diamond drilling in three holes. Two of the holes (SAL-18-01 and SAL-18-02) were drilled from the same pad, located 64 m west of the 2016 drill collar. The third hole (SAL-18-03) was collared 143 m to the north, and directed toward the Upper and Lower adits. Figure 13 depicts the 1993, 2016 and 2018 drill holes in plan view, while Figure 14 illustrates drill holes 93-1, 93-2, SAL-16-01, SAL-18-01 and SAL-18-02 in cross-section. Certificates of Analyses are provided in Appendix III, while Geological and Geotechnical Logs are given in Appendix IV. Key data concerning the 2016 drill holes are shown on Table VII.

Table VII – 2018 Diamond Drill Hole Data

Drill Hole	Easting	Northing	Azimuth	Angle	Depth (m)
SAL-18-01	542860	6784588	90	-50	134.11
SAL-18-02	542860	6784588	90	-90	42.67
SAL-18-03	542855	6784731	90	-50	108.2

Drill core was logged, processed and stored on the property. All holes were sampled top to bottom, and the core was split with one-half bagged and sent for analysis and the other half returned to the core boxes. Drill core was processed in batches of up to 40 samples, with each batch including two standard, one blank, one duplicate and one coarse reject duplicate samples. All core samples were sent to ALS Minerals in Whitehorse, where they were crushed to 70% passing 2 mm before a 250 g split was pulverized to 85% passing 70 microns. Splits of the pulverized fractions were then sent to ALS Minerals in North Vancouver, where they were analyzed for 51 elements using an aqua regia digestion followed by inductively coupled plasma combined with mass spectroscopy and atomic emission spectroscopy (ME-MS41). An additional 30 g charge was further analyzed for gold by fire assay with inductively coupled plasma and atomic emission spectroscopy finish (Au-ICP21).

Hole SAL-18-01 was designed to intersect the down-dip extension of mineralization encountered in SAL-16-01. It cut variably brecciated, calcareous, quartz-chlorite-sericite schist and strongly fractured meta-sandstone. Most of the core was oxidized and rubbly, hosting only minor pyrite and chalcopyrite in veinlets, clots and foliaform ribbons. Results for copper, gold and silver were generally low, with the best interval returning a weighted average grade of 0.12% copper

over 12.15 m, including 0.15% copper over 7.85 m. The hole was terminated in a gouge zone and did not reach its target depth.

Hole SAL-18-02 was drilled vertically, from the same pad as SAL-18-01. It was designed to test surface mineralization in the Western Adit area, as well as the bedrock geometry of the Stampede Zone. The hole cut 42.7 m of oxidized, rubbly schist and meta-sandstone, before being lost due to poor ground conditions. The best interval was from the top of the hole, which graded 0.13% copper over 10.67 m.

Hole SAL-18-03 was drilled 143 m north of SAL-18-01 and SAL-18-02, and was directed toward the Upper and Lower adits. It cut sandy limestone, chlorite schist and meta-sandstone, becoming increasingly gougey and pyritic toward the bottom of the hole. The geochemical response for all elements was low, and the hole was lost before it could reach its target depth.

GEOPHYSICAL AND LIDAR SURVEYS

In 1970, McPhar Geophysics Ltd., on behalf of Colorado Corporation, completed ground magnetometer and IP surveys over part of the Saloon property. The survey covered the Stampede Zone and the Bar, Gun Show and Cowboy showings. Allegedly, the geophysical report was not made available to Colorado Corporation and the outlines of the IP anomalies depicted in the company's 1970 report, as well as subsequent reports, were produced from field sketches submitted by McPhar Geophysics.

The IP survey outlined three north to northwest trending and three northeast trending chargeability anomalies. The anomalies follow the main structural trends identified on the property, with arcuate north-northwest trends in the vicinity of the Stampede Zone, and northeast trends near the Cow Fault further north. The IP anomalies coincide with soil geochemical Anomalies A and B and could represent unidentified mineralized zones covered by vegetation and/or till.

In 2016, the YGS performed airborne versatile time domain electromagnetic (VTEM) and horizontal magnetic gradiometer geophysical surveys immediately north of the Saloon property over the Livingstone Creek placer gold camp. These surveys outlined the Big Salmon and d'Abbadie faults as northwest- and north trending regional features and illustrate a predominantly northwest transposition of steeply to moderately dipping structures. Northnortheast striking brittle structures were identified near the placer creeks. These brittle structures are known to host quartz veins with elevated gold contents, including some with visible gold (Colpron et al, 2016).

In August 2017, an airborne LiDAR survey was flown over the entire Saloon property by Eagle Mapping of Port Coquitlam, British Columbia. A total of 53 km² was flown using a Piper Navajo aircraft and a Riegl 1560 laser. LiDAR is a remote sensing technology that uses laser light to measure distance and is therefore able to produce accurate, detailed surface models quickly and at reduced costs over conventional photogrammetric mapping. The LiDAR survey provides a bare-earth view of the ground below the canopy of vegetation in order to enhance structural and stratigraphic interpretation, and identify outcrops.

The survey shows curvilinear features near the Stampede Zone that support the syncline model. It also highlighted a number of topographic features that appear to coincide with north to northwest trending structures, including a well-defined feature extending 7.2 km northwest from the Bar Showing, which is coincident with a segment of the Big Salmon Fault Zone (Figure 14).

DISCUSSION AND CONCLUSIONS

The Saloon property is located at the southern end of the Livingstone Creek placer gold camp. It covers several copper-gold±-silver occurrences over a 1.8 km strike length, including the Stampede Zone, which is one of the first bedrock prospects discovered in the Yukon. In 2016, a one-hole diamond drill program, directed toward a prominent, gossanous outcrop referred to as the Main Exposure, returned significant copper and silver intercepts from top to bottom, including 0.40% copper and 128.46 g/t silver over 30.23 m.

In 2018, Strategic Metals completed 285 m of diamond drilling in three drill holes. Two of the holes were designed to test the down-dip projection of mineralization intersected in the 2016 drill hole. A third hole, located 143 m north of the Main Exposure, targeted two historical adits. All of these holes were terminated in bad ground, short of their target depth. They were barren or only weakly mineralized, and did not replicate the results from nearby drill or outcrop samples.

The property is located entirely below tree line, and is underlain by interbedded sedimentary and volcanic rocks that have been deformed and metamorphosed to at least greenschist facies. In the area of the Main Exposure, these units have been variably silicified, sericitized and brecciated. Geological mapping on the property has been hampered by a lack of outcrop, and establishing lithological correlations across drill holes has been challenged by the complex structural setting, as well as poor core recovery.

Since 2016, Strategic Metals has successfully relocated a number of other historical mineral occurrences on the property, and identified an important new showing, the Rodeo Showing, where rock samples returned up to 1.25% copper, 3.44 g/t gold and 2.75 g/t silver. Soil sampling in 2017 highlighted multiple areas of anomalous copper and gold geochemical response, in spite of the nearly pervasive glacial overburden, while LiDAR surveying identified numerous topographic features associated with the local structural fabric (Figure 15).

Further work on the Saloon property should continue to evaluate undrilled showings and areas where anomalous geochemical results have been obtained. Reconnaissance-scale soil geochemical coverage should be extended to the north, while detailed geological mapping with an emphasis on structure should be performed in the areas of known mineralization, in order to resolve the geometry of the mineralized system.

Respectfully submitted,

ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

J. Morton, B.Sc., P.Geo.

REFERENCES

- Bobstock, H.S. and Lees, E.J.
 - Laberge map-area, Yukon; Geological Survey of Canada, Memoir 217, 1938; 32 pages (1 sheet), doi:10.4095/101644.
- Carne, R.C. and Halleran, W.H.
 - 1986 Assessment report describing geochemical and geological surveys; prepared for Silverquest Resources Ltd.
- Colpron, M.
 - 2017 Revised geological map of Livingstone Creek area (NTS 105E/8); Yukon Geological Survey, Open File 2017-1, scale 1:50,000.
 - 2017 Personal communications.
- Colpron, M., Hildes, D., Casselman, S., and Bond, J.
 - 2016 Geophysical constraints on the geology and mineral potential of the Livingstone Creek area, south-central Yukon; Yukon Geoscience Forum.
- Colpron, M. and Nelson, J. L.
 - 2011 A digital atlas of terranes for the Northern Cordillera; Yukon Geological Survey and BC Geology Survey, BCGS GeoFile 2011-11 http://www.geology.gov.yk.ca/pdf/CanCord_terranes_2011.pdf
- Eaton, W.D.
 - 1993 Assessment report on Diamond Drilling; prepared for Cash Resources Ltd.
- Gordey, S.P. and Makepeace, A.J.
 - Yukon Digital Geology, version 2.0, S.P. Gordey and A.J. Makepeace (comp); Geological Survey of Canada, Open File 1749 and Yukon Geological Survey, Open File 2003-9 (D).
- Hornbrook, E.H.W., Friske
 - 1989 National Geochemical Reconnaissance stream sediment and water geochemical data, southern central Yukon (105E); GSC Open File 1960.
- **INAC**
- 1972 Mineral Industry Report 1969 70, D.B. Craig and P. Laporte, (eds). Indian Affairs and Northern Development, Northern Economic Development Branch, p.119-120.
- Mitchell, A.
 - Assessment report describing rock geochemical sampling, geological mapping and diamond drilling at the Salloon property; prepared by Archer, Cathro & Associates (1981) Limited on behalf of Strategic Metals Ltd.

Morton, J.

Assessment report describing geological mapping, prospecting, geochemical sampling and heritage studies at the Saloon property; prepared by Archer, Cathro & Associates (1981) Limited on behalf of Strategic Metals Ltd.

Sevensma, P.H.

- 1970 Assessment report on geological and geochemical program; prepared for Colorado Corporation.
- 1974 Assessment report on the Lynx Group; prepared for Loon Lake Syndicate.
- 1976 Assessment report on the Lynx Group; prepared for Loon Lake Syndicate.
- 1978 Assessment report on geochemical and trenching; prepared for Loon Lake Syndicate.

Simard, R.-L. and Devine, F.

2003 Preliminary geology of the southern Semenof Hills, central Yukon (105E/1,7,8 In: Yukon Exploration and Geology 2002, Emond, D.S. and Lewis, L.L. (eds.), Indian & Northern Affairs Canada/Department of Indian & Northern Development: Exploration & Geological Services Division, p. 213-222.

Templeman-Kluit, D.J.

1984 Reconnaissance Geology of Lake Laberge (105E) and Carmacks (115I), Yukon Territory; Geological Survey of Canada Open File 1101.

Yukon Geological Survey

Yukon Digital Bedrock Geology found at http://www.geology.gov.yk.ca/update_yukon_bedrock_geology_map.html, accessed: [May 2018]

APPENDIX I STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Jack Morton, with business addresses in Whitehorse, Yukon Territory and Vancouver, British Columbia and residential address in Vancouver, British Columbia, hereby certify that:

- 1. I graduated from Simon Fraser University in 2013 with a B.Sc. in Earth Science.
- 2. From 2007 to present, I have been actively engaged in mineral exploration in Nevada, Yukon Territory, British Columbia, and Northwest Territories.
- 3. I am a Professional Geologist (P.Geo.) with the Association of Professional Engineers and Geoscientists of British Columbia (License Number 45807).
- 4. I supervised the field program and have interpreted all data resulting from this work.

J. Morton, B.Sc., P.Geo.

APPENDIX II

STATEMENT OF EXPENDITURES

Statment of Expenditures Saloon Property January 21, 2019

Expenses

Field room and board	166 Mandays	\$ 100.00 /per day	\$ 16,600.00
Capital Helicopters, as attach	hed		\$ 36,602.15
Alpine Aviation, as attached			\$ 30,006.00
Platinum Diamond Drilling, a	as attached		\$ 77,210.45
ALS Chemex, as attached			\$ 6,480.61
			\$ 166,899.21

Total 2018 expenditures \$ 166,899.21

APPENDIX III

CERTIFICATES OF ANALYSIS

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

ALS Canada Ltd.

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 023 www.alsglobal.com/geochemistry

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-JUL-2018

Account: MTT

CERTIFICATE WH18148001

Project: SALOON

This report is for 27 Soil samples submitted to our lab in Whitehorse, YT, Canada on 22-JUN-2018.

The following have access to data associated with this certificate:

HEATHER BURRELL ANDREW CARNE JACK MORTON SCOTT NEWMAN

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
SCR-41	Screen to -180um and save both

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21 ME-MS41	Au 30g FA ICP-AES Finish Ultra Trace Aqua Regia ICP-MS	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Page: 2 - A
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 8-JUL-2018
Account: MTT

Project: SALOON

(ALS	,								CE	RTIFIC	ATE O	F ANAL	YSIS	WH181	48001	
Sample Description	Method	WEI-21	Au-ICP21	ME-MS41												
	Analyte	Recvd Wt.	Au	Ag	AI	As	Au	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOD	0.02	0.001	0.01	0.01	0.1	0.02	10	10	0.05	0.01	0.01	0.01	0.02	0.1	1
ZZ114411		0.24	<0.001	0.04	0.45	0.6	<0.02	<10	30	0.10	0.04	0.31	0.02	6.95	1.5	2
ZZ114412		0.33	<0.001	0.04	0.43	1.8	<0.02	<10	40	0.10	0.14	0.07	0.10	10.70	1.2	9
ZZ114413		0.28	0.009	0.17	1.29	5.1	<0.02	<10	150	0.48	0.19	0.26	0.39	25.5	5.2	25
ZZ114414		0.41	<0.001	0.07	1.71	6.8	<0.02	<10	110	0.34	0.11	0.44	0.35	19.75	11.4	25
ZZ114415		0.43	0.001	0.14	1.08	8.0	<0.02	<10	130	0.33	0.16	0.24	0.19	27.2	7.1	22
ZZ114416		0.48	0.002	0.17	1.28	6.9	<0.02	<10	110	0.40	0.30	0.39	0.12	45.2	7.6	33
ZZ114417		0.30	<0.001	0.13	1.36	2.7	<0.02	<10	170	0.41	0.20	0.52	0.14	34.3	7.1	45
ZZ114418		0.29	0.001	0.09	1.47	7.3	<0.02	<10	140	0.45	0.25	0.30	0.12	58.3	10.5	42
ZZ114419		0.45	<0.001	0.05	0.94	4.9	<0.02	<10	70	0.21	0.14	0.19	0.40	20.1	6.6	18
ZZ114420		0.46	0.001	0.07	1.78	7.4	<0.02	<10	140	0.26	0.12	0.33	0.44	21.3	14.9	31
ZZ114421		0.14	<0.001	0.16	1.73	6.1	<0.02	<10	110	0.43	0.13	0.90	0.22	23.1	13.4	162
ZZ114422		0.31	<0.001	0.14	1.50	6.4	<0.02	<10	90	0.36	0.20	0.17	0.38	21.7	7.1	30
ZZ114423		0.39	<0.001	0.09	1.31	7.2	<0.02	<10	60	0.26	0.16	0.21	0.17	18.20	7.7	29
ZZ114424		0.36	<0.001	0.09	2.18	5.9	<0.02	<10	120	0.38	0.17	0.26	0.23	20.2	8.5	32
ZZ114425		0.26	0.003	0.32	0.36	0.4	<0.02	<10	30	0.08	0.05	0.07	0.10	3.63	1.5	7
ZZ114426		0.26	<0.001	0.05	0.60	2.6	<0.02	<10	60	0.13	0.13	0.24	0.13	11.20	4.6	10
ZZ114427		0.38	0.001	0.16	1.63	5.9	<0.02	<10	170	0.55	0.16	0.88	0.17	22.3	9.7	30
ZZ114428		0.37	0.003	0.15	1.37	7.3	<0.02	<10	120	0.37	0.18	0.73	0.44	35.5	12.4	32
ZZ114429		0.29	<0.001	0.13	1.68	6.3	<0.02	<10	200	0.76	0.22	0.28	0.26	31.6	8.0	30
ZZ114430		0.48	<0.001	0.04	1.71	9.0	<0.02	<10	90	0.55	0.27	0.06	0.10	67.4	12.8	35
ZZ114431		0.42	<0.001	0.04	1.39	6.1	<0.02	<10	70	0.30	0.25	0.09	0.09	41.9	7.4	37
ZZ114432		0.59	0.001	0.22	1.49	6.4	<0.02	<10	130	0.62	0.24	0.60	0.35	41.4	11.8	33
ZZ114433		0.25	0.001	0.22	1.16	7.1	<0.02	<10	160	0.38	0.14	1.06	0.74	23.4	10.3	28
ZZ114434		0.34	0.002	0.22	1.15	5.3	<0.02	<10	140	0.42	0.16	0.93	0.64	25.1	9.5	29
ZZ114435		0.39	<0.001	0.07	1.28	5.5	<0.02	<10	60	0.19	0.19	0.16	0.25	15.70	6.3	20
ZZ114436		0.26	<0.001	0.48	0.42	0.5	<0.02	<10	40	0.10	0.05	0.06	0.07	4.45	1.0	5
ZZ114437		0.40	<0.001	0.06	0.75	2.6	<0.02	<10	60	0.16	0.18	0.08	0.18	12.10	2.2	13

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Page: 2 - B
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 8-JUL-2018
Account: MTT

Project: SALOON

(763	,								CE	RTIFIC	ATE O	F ANAL	YSIS	WH181	48001	
Sample Description	Method	ME-MS41														
	Analyte	Cs	Cu	Fe	Ga	Ge	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%
	LOD	0.05	0.2	0.01	0.05	0.05	0.02	0.01	0.005	0.01	0.2	0.1	0.01	5	0.05	0.01
ZZ114411		0.14	4.3	0.53	2.34	<0.05	<0.02	0.01	<0.005	0.02	3.2	1.3	0.09	44	0.40	0.02
ZZ114412		0.48	5.0	0.68	3.45	<0.05	<0.02	0.01	0.007	0.03	5.2	1.6	0.07	49	0.42	0.02
ZZ114413		1.15	32.7	1.87	4.84	<0.05	<0.02	0.04	0.021	0.04	13.3	9.5	0.34	273	0.66	0.01
ZZ114414		0.86	28.8	3.30	6.61	0.05	0.06	0.03	0.020	0.04	8.4	16.6	0.75	545	0.89	0.01
ZZ114415		0.75	24.4	1.97	4.06	0.05	<0.02	0.03	0.015	0.05	13.3	7.0	0.36	355	1.47	0.02
ZZ114416		0.61	35.8	2.50	3.52	0.11	<0.02	0.05	0.018	0.07	23.6	10.4	0.59	343	0.78	<0.01
ZZ114417		0.90	39.9	1.96	3.97	0.10	0.06	0.11	0.014	0.04	17.8	11.2	0.54	569	0.50	0.01
ZZ114418		0.48	23.8	2.85	4.15	0.11	0.03	0.03	0.014	0.07	28.7	12.0	0.76	502	0.61	<0.01
ZZ114419		0.71	22.8	2.07	4.10	0.09	0.02	0.02	0.012	0.06	9.5	7.0	0.37	567	0.99	0.01
ZZ114420		1.26	37.7	3.20	5.82	0.10	0.02	0.02	0.019	0.05	9.2	17.0	0.90	1640	0.84	<0.01
ZZ114421		0.62	33.4	2.69	5.38	0.10	0.02	0.04	0.024	0.06	12.7	8.4	1.30	963	0.48	0.01
ZZ114422		1.32	17.1	3.00	5.22	0.09	0.03	0.02	0.021	0.07	10.2	16.1	0.42	481	0.90	<0.01
ZZ114423		0.87	17.6	2.47	4.50	0.09	0.04	0.03	0.018	0.06	8.9	11.9	0.53	350	0.83	<0.01
ZZ114424		1.06	24.1	2.91	5.28	0.09	0.05	0.02	0.022	0.05	9.8	15.4	0.67	316	0.81	<0.01
ZZ114425		0.34	7.5	0.52	1.74	0.08	<0.02	0.02	0.006	0.02	1.8	1.4	0.07	84	0.33	0.01
ZZ114426		0.73	8.1	1.35	3.54	0.08	<0.02	0.03	0.007	0.04	4.7	3.6	0.17	1140	0.76	0.01
ZZ114427		1.07	43.8	2.31	4.68	0.09	0.04	0.05	0.020	0.05	10.4	11.3	0.58	726	0.82	<0.01
ZZ114428		0.64	42.7	2.51	4.23	0.12	0.05	0.04	0.017	0.07	18.6	12.7	0.77	1670	1.16	<0.01
ZZ114429		1.23	27.0	2.52	4.85	0.10	<0.02	0.03	0.021	0.07	16.1	12.1	0.50	958	1.22	<0.01
ZZ114430		0.60	23.9	3.08	4.28	0.11	<0.02	0.02	0.017	0.06	29.8	13.2	0.65	649	0.54	<0.01
ZZ114431		0.84	16.2	2.36	5.00	0.10	<0.02	0.02	0.014	0.06	20.3	10.9	0.48	298	0.64	<0.01
ZZ114432		0.87	46.1	2.23	4.67	0.10	0.05	0.05	0.018	0.07	21.0	14.0	0.61	263	1.12	<0.01
ZZ114433		0.58	34.2	2.44	3.48	0.08	0.04	0.09	0.013	0.05	11.9	11.1	0.50	1480	0.90	<0.01
ZZ114434		0.57	34.0	2.11	3.44	0.08	0.05	0.09	0.015	0.05	12.9	11.0	0.52	498	0.66	<0.01
ZZ114435		1.02	15.9	2.43	7.08	0.07	0.03	0.01	0.016	0.04	7.9	10.5	0.44	259	0.81	<0.01
ZZ114436		0.34	7.5	0.50	1.77	0.05	<0.02	0.02	0.005	0.02	2.2	1.1	0.03	26	0.25	0.01
ZZ114437		0.89	8.7	1.31	5.12	0.06	<0.02	0.02	0.009	0.03	6.0	5.2	0.14	129	0.83	<0.01

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Page: 2 - C
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 8-JUL-2018
Account: MTT

Project: SALOON

(763)	,								CE	RTIFIC	ATE O	F ANAL	YSIS	WH181	48001	
Sample Description	Method	ME-MS41														
	Analyte	Nb	Ni	P	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th
	Units	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm							
	LOD	0.05	0.2	10	0.2	0.1	0.001	0.01	0.05	0.1	0.2	0.2	0.2	0.01	0.01	0.2
ZZ114411		0.26	1.4	690	1.6	0.8	<0.001	0.03	0.08	0.3	0.2	<0.2	17.5	<0.01	<0.01	<0.2
ZZ114412		0.59	3.2	160	5.0	4.4	<0.001	<0.01	0.13	0.7	0.4	0.4	7.0	<0.01	0.01	<0.2
ZZ114413		0.86	15.4	560	8.0	9.3	<0.001	0.02	0.31	1.7	0.6	0.5	21.0	<0.01	0.02	0.3
ZZ114414		1.55	17.5	460	4.9	6.9	<0.001	<0.01	0.38	4.1	0.3	0.5	36.3	<0.01	0.04	1.4
ZZ114415		0.46	21.1	460	7.5	7.1	<0.001	<0.01	0.66	1.6	0.6	0.4	18.1	<0.01	0.03	0.3
ZZ114416		0.34	25.9	910	16.0	6.4	<0.001	0.03	0.54	2.4	<0.2	0.3	19.3	<0.01	0.02	1.7
ZZ114417		0.68	23.6	830	13.3	6.2	<0.001	0.06	0.27	3.5	0.4	0.4	23.6	<0.01	0.01	3.0
ZZ114418		0.39	31.7	690	15.0	8.9	<0.001	0.03	0.41	1.8	<0.2	0.2	18.1	<0.01	0.01	3.4
ZZ114419		0.60	11.6	460	7.0	12.2	<0.001	0.03	0.44	1.5	0.2	0.3	15.1	<0.01	0.02	0.4
ZZ114420		0.54	19.4	510	5.5	12.5	<0.001	0.03	0.62	2.7	<0.2	0.4	21.3	<0.01	0.02	0.5
7Z114421		0.45	107.5	1080	7.6	9.0	<0.001	0.06	0.23	2.9	0.2	0.3	34.4	<0.01	0.02	0.7
7Z114422		1.59	15.1	410	9.0	12.0	<0.001	0.02	0.42	2.2	<0.2	0.6	13.3	<0.01	0.02	1.9
7Z114423		1.45	19.4	830	7.7	6.4	<0.001	0.02	0.49	2.5	<0.2	0.4	13.0	<0.01	0.02	2.8
7Z114424		1.50	19.7	390	6.1	6.0	<0.001	0.01	0.40	3.6	0.2	0.5	18.6	<0.01	0.01	2.6
7Z114425		0.07	3.0	610	2.0	2.7	<0.001	0.04	0.07	0.1	<0.2	0.2	8.4	<0.01	<0.01	<0.2
ZZ114426		0.31	5.4	580	5.4	10.6	<0.001	0.05	0.21	0.4	<0.2	0.3	18.3	<0.01	0.01	<0.2
ZZ114427		0.65	18.2	1190	6.7	8.6	<0.001	0.07	0.44	2.0	0.4	0.4	49.5	<0.01	0.01	0.7
ZZ114428		0.69	28.4	700	10.6	6.8	0.001	0.04	0.47	3.6	0.4	0.3	38.8	<0.01	0.02	3.2
ZZ114429		0.34	19.3	1540	9.9	23.2	<0.001	0.09	0.47	0.8	0.3	0.4	23.4	<0.01	0.02	0.3
ZZ114430		0.31	29.5	440	19.1	8.7	<0.001	0.02	0.45	1.2	<0.2	0.2	6.0	<0.01	0.01	1.8
ZZ114431		0.52	21.7	340	13.2	10.5	<0.001	0.02	0.30	1.0	0.2	0.5	9.1	<0.01	0.01	0.4
ZZ114432		0.82	33.9	730	14.7	8.8	0.001	0.04	0.67	3.3	1.2	0.4	39.7	<0.01	0.03	2.7
ZZ114433		0.45	25.4	800	8.0	10.7	0.002	0.09	0.52	2.1	1.4	0.2	58.7	<0.01	0.02	1.1
ZZ114434		0.46	25.4	820	8.8	11.5	0.001	0.10	0.41	2.2	1.2	0.2	52.1	<0.01	0.01	1.3
ZZ114435		1.71	11.2	360	6.8	6.8	<0.001	0.01	0.37	2.5	0.2	0.7	16.0	<0.01	0.02	1.3
ZZ114436		0.07	1.8	280	1.8	1.7	<0.001	0.01	0.06	0.2	<0.2	0.2	7.4	<0.01	0.01	<0.2
ZZ114437		1.09	5.1	210	6.2	5.3	<0.001	0.01	0.22	1.0	<0.2	0.6	7.9	<0.01	0.02	0.2

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST

Plus Appendix Pages Finalized Date: 8-JUL-2018 Account: MTT

Total # Pages: 2 (A - D)

Page: 2 - D

Project: SALOON

VANCOUVER BC V6B 1L8

CERTIFICATE OF ANALYSIS WH18148001

								<u> </u>	
	Method Analyte Units	ME-MS41 Ti %	ME-MS41 TI ppm	ME-MS41 U ppm	ME-MS41 V ppm	ME-MS41 W ppm	ME-MS41 Y ppm	ME-MS41 Zn ppm	ME-MS41 Zr ppm
Sample Description	LOD	0.005	0.02	0.05	1	0.05	0.05	2	0.5
ZZ114411		0.035	0.02	1.83	15	<0.05	1.41	10	<0.5
ZZ114411 ZZ114412		0.055	0.02	0.24	27	0.16	1.41	12	<0.5 <0.5
ZZ114412 ZZ114413		0.032	0.04	0.24	44	0.10	6.94	46	<0.5
ZZ114413 ZZ114414		0.153	0.05	0.40	81	0.28	4.60	55	2.1
ZZ114415		0.042	0.08	0.45	37	0.17	4.79	45	<0.5
ZZ114416		0.026	0.06	0.82	31	0.13	9.10	70	<0.5
ZZ114417		0.026	0.10	1.87	26	0.08	14.00	51	1.7
ZZ114418		0.021	0.05	0.68	30	0.08	5.48	70	0.9
ZZ114419		0.068	0.05	0.40	48	0.14	2.52	58	0.6
ZZ114420		0.079	0.07	0.75	71	0.14	4.36	96	0.6
ZZ114421		0.027	0.06	0.98	52	0.10	11.90	63	0.7
ZZ114422		0.093	0.07	0.46	60	0.31	2.34	76	1.0
ZZ114423		0.091	0.06	0.44	53	0.22	2.83	46	1.7
ZZ114424		0.107	0.08	0.51	62	0.21	3.77	48	1.8
ZZ114425		0.010	0.03	0.23	15	0.05	0.72	12	<0.5
ZZ114426		0.041	0.06	0.38	35	0.10	0.98	25	<0.5
ZZ114427		0.038	0.07	4.60	47	0.16	6.86	61	0.9
ZZ114428		0.066	0.07	2.01	44	0.13	9.84	82	1.8
ZZ114429 ZZ114430		0.021 0.012	0.09 0.09	1.39 0.50	41 28	0.13 0.10	6.42 3.75	100 61	<0.5 <0.5
ZZ114431 ZZ114432		0.029 0.031	0.08 0.10	0.51 7.97	38 35	0.17 0.13	2.65 10.60	45 80	<0.5 1.6
ZZ114432 ZZ114433		0.031	0.10	5.00	29	0.13	7.08	107	1.1
ZZ114433		0.027	0.07	3.31	28	0.13	7.22	109	1.4
ZZ114435		0.111	0.07	0.39	62	0.19	2.17	39	1.3
ZZ114436		0.012	0.03	0.22	13	0.05	0.79	7	<0.5
ZZ114437		0.073	0.06	0.31	38	0.19	1.58	23	<0.5

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

Project: SALOON

) Total # Appendix Pages: 1 Finalized Date: 8-JUL-2018 Account: MTT

Page: Appendix 1

CERTIFICATE OF ANALYSIS WH18148001

П									
	CERTIFICATE COMMENTS								
	ANALYTICAL COMMENTS								
	Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g).								
Applies to Method:	ME-MS41								
	LABORATORY ADDRESSES								
Annellan de Mardhard	Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada.								
Applies to Method:	LOG-22 SCR-41 WEI-21								
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au-ICP21 ME-MS41								

2103 Dollarton Hwy
North Vancouver BC V7H 0A7

ALS Canada Ltd.

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com/geochemistry

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST

VANCOUVER BC V6B 1L8

Page: 1
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 14-JUL-2018

Account: MTT

CERTIFICATE WH18150464

Project: Saloon-Batch 3

This report is for 40 Drill Core samples submitted to our lab in Whitehorse, YT,

Canada on 25-JUN-2018.

The following have access to data associated with this certificate:

HEATHER BURRELL ANDREW CARNE JACK MORTON SCOTT NEWMAN

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging - ClientBarCode
CRU-QC	Crushing QC Test
CRU-31	Fine crushing - 70% < 2mm
PUL-QC	Pulverizing QC Test
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% < 75 um
LOG-23	Pulp Login - Rcvd with Barcode
LOG-21d	Sample logging - ClientBarCode Dup
SPL-21d	Split sample - duplicate
PUL-31d	Pulverize Split - duplicate

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	
Ag-OG62	Ore Grade Ag - Four Acid	ICP-AES
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Pb-OG62	Ore Grade Pb - Four Acid	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST

Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 14-JUL-2018
Account: MTT

Page: 2 - A

VANCOUVER BC V6B 1L8
Project: Saloon-Batch 3

CERTIFICATE OF ANALYSIS WH	118150464
----------------------------	-----------

									<u> </u>	-KTIFIC	******	0130404				
Sample Description	Method	WEI-21	Au-ICP21	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Recvd Wt.	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
K293532		5.49	0.017	0.28	4.50	13.3	510	1.40	0.68	1.64	0.07	49.0	15.0	53	0.83	318
K293533		8.04	0.039	0.23	4.46	12.0	740	1.61	0.91	1.09	0.09	47.9	13.5	58	0.99	534
K293534		2.50	0.020	0.28	4.10	10.5	610	1.57	0.72	1.21	0.07	40.3	8.8	33	0.92	465
K293535		3.06	0.017	0.40	4.90	10.2	550	1.44	0.59	1.40	0.07	52.3	10.3	34	0.91	89.1
K293536		2.15	0.012	1.91	4.47	9.2	240	0.77	0.71	1.76	0.06	40.7	15.7	28	0.64	946
K293537		0.12	1.510	30.8	7.05	141.5	130	0.66	10.05	5.88	34.2	28.1	100.0	114	1.75	6780
K293538		2.36	0.009	0.52	2.77	15.9	930	0.87	0.60	1.41	0.05	39.6	3.0	28	0.75	361
K293539		1.19	0.021	0.06	3.75	15.9	360	1.06	0.91	2.33	0.05	38.6	9.6	24	1.12	189.0
K293540		2.65	<0.001	0.07	5.34	14.9	410	1.23	0.21	0.15	0.03	58.7	12.6	44	1.46	33.1
K293541		4.64	<0.001	0.06	6.55	29.6	400	1.86	0.16	2.31	0.06	84.0	15.7	47	1.72	32.2
K293542		2.42	0.006	0.09	9.46	53.4	830	3.79	0.67	0.15	0.02	108.5	6.5	66	4.05	41.6
K293543		6.58	<0.001	0.01	5.95	6.1	410	1.92	0.15	1.74	0.02	87.6	6.7	38	1.78	14.5
K293544		5.58	<0.001	0.04	4.46	9.9	280	1.26	0.17	6.64	<0.02	77.0	6.0	26	1.15	15.0
K293545		4.27	0.021	0.11	6.19	13.5	500	2.19	0.31	1.66	<0.02	118.5	7.2	39	2.08	21.2
K293546		<0.02	0.024	0.09	6.27	13.6	500	2.30	0.33	1.70	<0.02	122.0	7.3	40	2.13	23.3
K293547		5.89	0.001	0.05	5.89	17.2	440	2.17	0.21	1.85	<0.02	85.2	7.0	35	1.81	18.3
K293548		1.82	<0.001	<0.01	0.28	0.9	20	0.17	0.02	32.4	0.02	1.69	0.4	1	<0.05	1.5
K293549		7.51	<0.001	0.05	2.83	11.7	180	0.77	0.09	1.93	0.07	47.2	3.2	19	0.70	5.7
K293550		5.90	0.038	0.10	4.45	33.3	400	1.44	0.23	1.76	0.17	65.7	6.3	31	1.66	41.4
K293551		8.24	0.003	0.02	3.20	19.2	220	0.83	0.10	2.49	0.03	48.5	3.7	19	0.85	9.8
K293552		7.98	0.001	0.03	4.73	14.6	360	1.34	0.12	1.15	0.02	64.5	5.8	28	1.46	12.4
K293553		6.83	0.006	0.05	3.24	14.6	190	0.88	0.17	2.50	0.02	47.5	4.4	20	0.97	61.9
K293554		4.31	0.002	0.06	3.00	22.1	190	0.83	0.27	3.07	<0.02	47.5	3.6	24	0.82	102.0
K293555		8.52	0.006	0.04	4.52	36.4	300	1.40	0.21	2.29	0.03	64.1	7.3	30	1.35	32.3
K293556		2.45	0.003	0.06	6.18	12.2	460	1.60	0.18	0.92	<0.02	63.2	5.2	41	1.56	66.1
K293557		5.50	<0.001	0.03	3.07	5.7	280	0.99	0.10	0.54	<0.02	38.9	3.4	27	1.06	44.1
K293558		4.12	0.003	0.02	3.79	5.4	310	1.08	0.17	0.50	<0.02	46.7	4.6	29	1.15	34.0
K293559		1.68	0.001	0.03	3.35	5.2	260	0.99	0.18	0.59	<0.02	40.2	4.4	26	1.00	27.3
K293560		6.14	0.003	0.09	7.13	15.3	510	1.97	0.17	1.38	<0.02	71.8	14.7	52	2.05	179.0
K293561		5.81	0.003	0.07	4.13	2.8	200	0.87	0.09	0.49	<0.02	49.3	3.6	33	0.77	171.5
K293562		2.64	0.004	0.02	3.48	14.4	150	0.62	0.13	0.19	<0.02	48.4	4.9	30	0.59	22.7
K293563		2.87	0.015	0.05	7.35	11.6	710	2.66	0.47	0.14	<0.02	82.4	10.5	54	2.80	78.2
K293564		7.91	0.004	0.03	5.98	8.6	500	1.68	0.14	0.49	<0.02	70.0	6.4	45	1.61	77.4
K293565		2.40	0.001	0.04	7.27	13.3	830	2.58	0.23	0.63	<0.02	87.9	12.0	58	2.73	88.6
K293566		0.26	0.252	>100	5.53	240	550	0.78	5.34	1.44	<1.02	17.45	12.1	61	0.87	6150
K293567		8.95	0.001	0.13	6.04	9.9	540	1.80	0.17	0.35	0.02	74.6	9.1	46	1.91	266
K293568		5.40	<0.001	0.03	7.47	5.9	310	1.18	0.20	0.82	<0.02	44.6	11.7	14	1.10	37.4
K293569		6.89	<0.001	0.03	4.07	3.7	200	0.76	0.12	0.72	0.02	42.3	6.0	19	0.68	21.0
K293570		4.45	0.002	0.06	5.04	6.4	200	0.69	0.23	0.41	<0.02	42.1	7.8	20	0.70	183.0
K293571		4.91	0.071	0.21	2.45	5.3	120	0.41	0.34	0.46	<0.02	46.1	3.1	21	0.41	1045

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Plus Appendix Pages
Finalized Date: 14-JUL-2018
Account: MTT

Total # Pages: 2 (A - D)

Page: 2 - B

(ALS)	,								CE	RTIFIC	ATE O	FANAL	YSIS	WH181	50464	ı
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
K293532 K293533 K293534 K293535		3.00 2.37 2.55 2.47 4.16	12.80 12.75 12.05 13.20 11.50	0.07 0.08 0.06 0.07 <0.05	1.9 2.1 2.0 2.4 1.3	0.064 0.063 0.055 0.041 0.063	1.31 1.61 1.45 1.38 0.63	21.4 20.6 17.7 21.5 17.0	17.0 11.3 15.0 16.9 21.7	0.86 0.65 0.72 0.68 1.00	478 309 345 423 443	0.74 0.65 2.04 1.33 1.05	0.39 0.35 0.20 0.89 0.62	8.9 7.2 6.9 10.8 7.0	27.5 31.3 20.3 23.4 21.1	330 360 350 250 440
K293536		9.41	12.80	0.09	0.9	2.65	1.00	14.3	9.1	2.17	882	60.0	0.82	2.9	364	670
K293537		1.37	8.18	<0.05	1.9	0.045	1.05	16.3	7.9	0.62	320	0.96	0.13	9.9	9.7	140
K293538		3.09	11.55	0.05	2.0	0.057	0.97	15.7	21.8	1.08	516	0.37	0.26	9.5	14.8	280
K293539		2.50	13.95	0.05	2.3	0.035	1.83	19.9	10.7	1.03	301	0.25	0.91	10.8	23.3	260
K293540		3.63	17.55	0.08	2.8	0.049	2.34	37.5	15.3	1.47	572	0.32	0.70	18.7	28.6	310
K293541 K293542 K293543 K293544 K293545 K293546		4.32 3.04 1.76 2.54 2.56	29.8 18.10 12.95 18.80 19.65	0.08 0.14 0.10 0.08 0.13 0.11	3.5 3.4 3.1 4.4 4.6	0.105 0.052 0.038 0.066 0.067	4.97 2.34 1.56 2.85 2.85	52.1 39.8 33.0 52.2 52.8	16.0 10.6 5.9 9.2 9.5	1.47 1.22 0.82 0.43 0.65 0.66	208 342 753 302 307	0.59 0.17 0.26 0.28 0.27	0.70 0.08 0.66 1.10 0.60 0.61	23.7 21.7 18.9 29.5 30.3	15.4 16.9 12.2 15.3 16.2	540 240 180 240 260
K293547		3.04	18.90	0.11	3.5	0.054	2.38	38.7	10.1	0.72	319	0.34	0.63	24.0	16.1	220
K293548		0.10	0.95	<0.05	0.1	<0.005	0.10	1.3	1.1	1.21	101	<0.05	0.13	0.5	<0.2	70
K293549		0.96	8.00	0.06	2.5	0.021	0.95	19.4	4.1	0.24	253	0.18	0.67	13.1	6.3	120
K293550		1.39	14.60	0.08	2.6	0.040	2.14	27.7	6.9	0.43	292	0.24	0.37	18.4	13.7	150
K293551		0.99	9.33	0.06	2.6	0.022	1.12	19.9	4.2	0.27	330	0.18	0.84	15.2	6.7	130
K293552		1.90	13.95	0.08	3.1	0.032	1.88	25.5	7.3	0.54	217	0.19	0.66	18.0	14.3	180
K293553		1.36	9.57	0.05	2.6	0.029	1.12	19.5	5.0	0.38	336	0.23	0.68	15.5	7.8	170
K293554		0.77	8.98	0.05	2.2	0.042	1.21	19.5	3.5	0.25	385	0.19	0.61	13.6	6.0	110
K293555		1.68	13.60	0.09	2.8	0.035	1.89	26.6	6.1	0.46	342	0.38	0.64	18.4	12.4	190
K293556		3.25	17.10	0.08	2.1	0.057	2.19	26.5	11.3	0.96	292	0.19	0.91	9.5	21.2	170
K293557		1.61	8.92	0.05	1.2	0.037	1.34	15.4	6.4	0.51	191	0.13	0.13	5.0	14.4	270
K293558		1.79	11.55	0.06	1.4	0.039	1.48	18.4	7.8	0.66	203	0.13	0.50	5.9	17.9	240
K293559		1.66	9.72	0.05	1.4	0.030	1.27	15.8	6.6	0.57	217	0.19	0.47	5.0	15.7	180
K293560		3.82	21.2	0.09	2.3	0.072	2.42	32.8	17.7	1.46	405	0.17	1.47	10.5	33.2	360
K293561		1.69	10.95	0.06	1.8	0.032	0.97	20.1	7.8	0.60	182	0.14	1.55	5.5	11.6	110
K293562		0.95	8.04	0.05	1.8	0.025	0.77	19.3	4.2	0.30	94	0.31	1.62	4.4	7.3	110
K293563		3.03	21.1	0.09	2.8	0.056	3.33	38.1	17.3	1.30	207	0.32	0.77	11.5	27.2	290
K293564		2.32	17.10	0.08	2.7	0.055	2.03	31.5	12.1	0.90	214	0.13	1.52	9.1	28.9	180
K293565		2.83	22.2	0.11	2.6	0.066	3.38	38.9	15.2	1.13	211	0.18	0.77	12.8	32.3	1550
K293566		5.75	12.80	0.07	1.5	0.457	1.13	7.4	14.1	1.11	1720	24.8	1.63	3.2	29.1	460
K293567		2.53	16.90	0.09	2.4	0.056	2.35	33.4	11.7	0.85	225	0.31	1.04	8.4	23.3	260
K293568		6.34	18.60	0.07	1.4	0.046	1.55	18.4	25.8	2.95	585	0.38	1.02	5.2	13.2	670
K293569		2.90	10.75	0.07	1.3	0.028	0.94	17.6	13.2	1.06	303	0.22	0.63	3.4	11.0	260
K293570		2.92	11.70	0.06	1.4	0.033	0.90	17.6	13.8	0.68	169	0.40	1.36	3.6	19.9	260
K293571		1.49	5.47	0.06	1.0	0.053	0.53	21.0	5.4	0.30	145	0.31	0.78	2.5	9.5	100

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST

Plus Appendix Pages Finalized Date: 14-JUL-2018 Account: MTT

Total # Pages: 2 (A - D)

Page: 2 - C

VANCOUVER BC V6B 1L8
Project: Saloon-Batch 3

CERTIFICATE OF ANALYSIS WH18150464

Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1
K202E22		45.0	FC 1	-0.000	0.24	0.27	10.6	.1	1.1	27.6	0.64	-0.0E	0.46	0.400	0.25	4.7
K293532		15.2	56.1	<0.002	0.34	0.37	10.6	<1 1	1.4	37.6	0.61	< 0.05	8.16	0.198	0.25	1.7
K293533		57.6	69.6	<0.002	0.67	0.55	8.2 7.4	1	1.4	30.7	0.49	< 0.05	8.33	0.236	0.32	1.6 2.1
K293534		41.3	62.5	0.003	0.56	0.42		•	1.3	23.7	0.48	< 0.05	7.41	0.167	0.29	
K293535		16.6	58.8	0.003	0.41	0.37	8.1	<1	1.5	28.1	0.73	< 0.05	9.80	0.201	0.25	1.8
K293536		6.3	26.0	<0.002	0.47	0.36	11.1	<1	0.9	39.7	0.45	<0.05	5.18	0.208	0.13	1.6
K293537		8500	41.2	0.018	6.25	33.1	13.2	13	7.2	155.0	0.23	0.74	3.74	0.196	2.56	8.9
K293538		10.5	45.8	0.002	0.28	0.57	3.5	<1	1.3	47.7	0.63	< 0.05	7.52	0.099	0.20	1.4
K293539		5.4	40.9	0.003	0.72	0.28	9.4	<1	1.2	60.6	0.62	< 0.05	7.62	0.155	0.21	1.4
K293540		9.7	80.0	<0.002	0.02	0.32	9.1	<1	1.5	22.5	0.79	< 0.05	10.60	0.228	0.41	1.6
K293541		4.4	100.5	<0.002	0.03	0.42	15.8	<1	2.2	99.4	1.29	0.05	13.00	0.289	0.46	2.1
K293542		14.8	208	<0.002	0.17	1.15	16.7	<1	4.0	72.7	1.67	< 0.05	27.9	0.322	1.05	4.7
K293543		5.0	103.5	< 0.002	0.05	0.31	8.6	<1	2.6	72.5	1.49	< 0.05	15.50	0.264	0.51	2.1
K293544		6.5	70.2	< 0.002	0.11	0.29	6.2	<1	2.0	243	1.35	< 0.05	12.30	0.192	0.36	2.2
K293545		15.6	121.0	< 0.002	0.37	0.49	8.7	<1	3.0	70.7	1.97	< 0.05	22.0	0.261	0.57	2.9
K293546		17.8	125.5	< 0.002	0.37	0.55	9.0	<1	3.2	73.5	2.03	< 0.05	22.4	0.264	0.61	3.0
K293547		12.6	107.5	<0.002	0.12	0.44	8.2	<1	2.8	82.0	1.66	< 0.05	15.95	0.257	0.50	2.4
K293548		0.7	2.7	< 0.002	0.01	0.07	0.3	1	0.2	83.6	< 0.05	< 0.05	0.24	0.005	0.03	0.2
K293549		10.7	40.8	< 0.002	0.04	0.26	2.6	<1	1.2	75.2	0.98	< 0.05	9.01	0.121	0.19	1.4
K293550		19.2	98.5	< 0.002	0.08	0.61	5.7	<1	2.4	74.6	1.32	< 0.05	10.60	0.190	0.46	2.2
K293551		7.1	53.4	< 0.002	0.08	0.27	3.3	<1	1.4	97.3	1.12	< 0.05	9.98	0.144	0.24	1.5
K293552		5.3	83.5	<0.002	0.07	0.29	5.2	<1	1.9	49.9	1.27	< 0.05	11.80	0.194	0.38	2.3
K293553		4.3	48.0	< 0.002	0.13	0.32	3.4	<1	1.5	96.1	1.17	< 0.05	10.35	0.145	0.20	1.5
K293554		3.7	53.3	< 0.002	0.09	0.38	3.2	<1	1.4	112.0	0.97	< 0.05	9.20	0.131	0.22	1.4
K293555		7.0	81.9	< 0.002	0.05	0.31	5.6	<1	2.0	82.4	1.31	< 0.05	11.20	0.194	0.38	2.2
K293556		5.1	95.1	< 0.002	0.02	0.28	8.3	<1	1.8	36.2	0.70	< 0.05	12.25	0.234	0.41	1.1
K293557		1.4	59.3	<0.002	0.03	0.21	6.4	<1	1.0	19.4	0.36	<0.05	6.97	0.131	0.29	0.6
K293558		2.4	67.9	< 0.002	0.02	0.22	7.6	<1	1.2	28.6	0.42	< 0.05	8.83	0.158	0.33	0.7
K293559		3.2	56.4	< 0.002	0.02	0.20	6.3	<1	1.0	30.1	0.37	0.05	8.17	0.136	0.27	0.7
K293560		5.8	110.0	< 0.002	0.04	1.95	16.5	<1	2.4	71.0	0.75	0.06	12.00	0.329	0.51	1.7
K293561		2.3	41.6	< 0.002	0.05	0.20	4.7	<1	1.0	39.6	0.41	< 0.05	9.82	0.154	0.20	1.1
K293562		3.8	32.6	<0.002	0.17	0.20	3.4	<1	0.9	31.4	0.34	<0.05	10.40	0.130	0.16	1.3
K293563		7.7	138.5	< 0.002	0.06	0.47	10.9	<1	2.2	20.7	0.81	0.05	15.20	0.275	0.70	2.2
K293564		2.9	89.5	< 0.002	0.03	0.25	8.4	<1	1.7	41.7	0.67	< 0.05	13.20	0.239	0.43	1.8
K293565		3.7	150.5	< 0.002	0.04	0.33	11.9	<1	2.4	49.0	0.94	< 0.05	13.05	0.325	0.72	3.2
K293566		>10000	24.8	0.010	2.33	446	11.6	1	2.0	193.5	0.19	1.36	1.90	0.237	0.49	1.4
K293567		9.7	101.0	<0.002	0.12	0.60	8.1	<1	1.8	34.7	0.64	<0.05	13.40	0.224	0.51	2.0
K293568		5.3	64.5	< 0.002	0.06	0.34	17.0	<1	1.4	44.0	0.34	0.07	6.15	0.335	0.31	1.0
K293569		1.9	39.1	< 0.002	0.08	0.21	7.9	<1	0.8	30.0	0.25	0.05	7.23	0.158	0.20	1.0
K293570		2.1	37.6	< 0.002	0.11	0.25	8.0	<1	0.9	32.9	0.25	< 0.05	7.87	0.175	0.17	1.9
K293571		2.9	22.2	< 0.002	0.41	0.20	2.5	1	0.5	25.0	0.17	< 0.05	7.22	0.076	0.11	0.7

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1014 F10 W HASTINGS ST

CERTIFICATE OF ANALYSIS WH18150464

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 2 - D
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 14-JUL-2018
Account: MTT

Method Method Method V W Prime Depth D											0. 7	.,	 11101	
Nample Description Units			ME MS61	ME MS41	ME MS61	ME MS61	ME MS61	Ag 0662	Ph OG62					
Sample Description Units UOD ppm % K293532 71 2.5 6.8 40 70.8 8 2.8 2.3 6.3 49 70.8 8 2.8 2.3 6.3 49 72.4 8 2.8 2.8 6.3 49 72.4 8 7.8 6.1 42 40.2 8 8 1.9 70.0 1.0 40.2 8 8 1.9 70.0 3.2 71.0 8 8 1.1 42 40.2 8 8 1.1 1.8 70.0 3.2 71.0 8 71.0 8 71.0 8 71.0 8 71.0 8 71.0 8 71.0 8 71.0 8 71.0 8 72.0 8 72.0 8 72.0 8 72.0 8 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								-						
Sample Description LOD 1 0.1 0.1 0.1 2 0.5 1 0.001 K293532 71 2.5 6.8 40 70.8 K293533 5 5 0.2 2 6.5 5 5 0.6 6.8 40 70.8 K293533 5 5 0.2 2 6.5 5 5 0.6 6.8 40 70.8 K293533 6 0.5 5 0.6 5 5 0.6 6 6 0.6 5 0.6 6 6 0.6 6 0		Analyte												
K293532 71 2.5 6.8 40 70.8 K295533 58 2.1 6.6 55 80.6 K295533 58 2.1 6.6 55 80.6 80 2.3 6.3 49 72.4 K293535 51 6.3 6.9 54 84.6 84.6 K293537 86 6.5 13.9 7940 27.4 M0.2 K293537 87 6.5 13.9 7940 27.4 M0.2	Sample Description	LOD												
K293533 58 2.1 6.6 55 80.6 K293534 69 2.3 6.3 49 72.4 K293535 51 6.3 6.9 54 84.6 K293536 89 19.6 6.1 42 40.2		LOD	'	0.1	0.1	2	0.5		0.001					
K293534 69 2.3 6.3 49 72.4 K2935356 89 19.6 6.1 42 40.2 K293537 S87 6.5 13.9 7940 27.4 Feb. 1 Feb. 203537 S87 6.5 13.9 7940 27.4 Feb. 203538 19 37.8 5.1 23 66.1 Feb. 22 Feb. 1 Feb. 22					6.8		70.8							
K293535 51 6.3 6.9 54 84.6 K293536 89 19.6 6.1 42 40.2 K293537 387 6.5 13.9 7940 27.4 K293539 63 1.8 7.0 32 71.0 K293540 61 1.6 10.1 45 78.9 K293541 96 1.1 18.7 60 98.3 K293542 78 1.4 18.1 62 111.5 K293544 30 1.0 15.5 40 105.5 K293544 30 1.0 15.5 40 105.5 K293540 43 1.7 14.7 56 158.0 K293547 41 1.4 14.2 63 12.8 K293548 2 0.1 2.6 3 2.8 K293550 30 1.9 10.3 70 90.8 K293552 29 1.1 11.4 <					6.6									
X293536 89 19.6 6.1 42 40.2 X293537 387 6.5 13.9 7940 27.4 X293538 19 37.8 5.1 23 66.1 X293539 63 1.8 7.0 32 71.0 X293540 61 1.6 10.1 45 78.9 X293541 96 1.1 18.7 60 39.3 X293542 78 1.4 18.1 62 111.5 X293543 42 1.4 14.3 58 112.5 X293545 43 1.6 14.1 54 151.5 X293547 41 1.4 12.6 63 126.0 X293547 41 1.4 12.6 3 2.8 X293549 15 0.9 8.4 2.8 74.9 X293551 17 1.1 9.0 20 80.6 X293552 29 1.1 11.4														
K293537 387 6.5 13.9 7940 27.4 K293538 19 37.8 5.1 23 66.1 K293539 63 1.8 7.0 32 71.0 K293540 61 1.6 10.1 45 78.9 K293542 78 1.4 18.1 62 111.5 K293543 42 1.4 14.3 58 112.5 K293544 30 1.0 15.5 40 105.5 K293544 30 1.0 15.5 40 105.5 K293545 43 1.7 14.7 56 158.0 K293546 43 1.7 14.7 56 158.0 K293547 41 1.4 12.6 63 12.8 K293549 15 0.9 8.4 28 7.49 K293551 17 1.1 9.0 20 80.6 K293553 18 1.1 9.7														
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	〈293536		89	19.6	6.1	42	40.2							
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	(293537		387	6.5	13.9	7940	27.4							
\$\begin{array}{c c c c c c c c c c c c c c c c c c c														
K293540							71.0							
C293542	(293540		61	1.6	10.1	45	78.9							
\$\ \text{\$\cupstack}{\cupstack}\$ \$42	(293541		96	1.1	18.7	60	99.3							
R293543	(293542		78	1 4	18 1	62	111.5							
X293544														
K293545														
K293546 43 1.7 14.7 56 158.0 K293547 41 1.4 12.6 63 126.0 K293548 2 0.1 2.6 3 2.8 K293549 15 0.9 8.4 2.8 74.9 K293550 30 1.9 10.3 70 90.8 K293551 17 1.1 9.0 20 80.6 K293552 29 1.1 11.4 40 103.5 K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293555 29 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 <td></td>														
K293547 41 1.4 12.6 63 126.0 K293548 2 0.1 2.6 3 2.8 K293549 15 0.9 8.4 2.8 74.9 K293550 30 1.9 10.3 70 90.8 K293551 17 1.1 9.0 20 80.6 K293552 29 1.1 11.4 40 103.5 K293553 18 1.1 9.7 18 84.5 K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 67.5 K293564 48 2.4 7.1 26 92.3														
K293548 2 0.1 2.6 3 2.8 K293549 15 0.9 8.4 28 74.9 K293550 30 1.9 10.3 70 90.8 K293551 17 1.1 9.0 20 80.6 K293552 29 1.1 11.4 40 103.5 K293553 18 1.1 9.7 11 74.2 K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2														
K293549 15 0.9 8.4 28 74.9 K293550 30 1.9 10.3 70 90.8 K293551 17 1.1 9.0 20 80.6 K293552 29 1.1 11.4 40 103.5 K293553 18 1.1 9.7 18 84.5 K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293561 31 1.1 6.0 41 81.5 K293561 31 1.1 6.0 41 81.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293566 81 0.5 13.7 5170 45.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
K293550 30 1.9 10.3 70 90.8 K293551 17 1.1 9.0 20 80.6 K293552 29 1.1 11.4 40 103.5 K293553 18 1.1 9.7 11 74.2 K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8														
K293551 17 1.1 9.0 20 80.6 K293552 29 1.1 11.4 40 103.5 K293553 18 1.1 9.7 18 84.5 K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3														
K293552 29 1.1 11.4 40 103.5 K293553 18 1.1 9.7 18 84.5 K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8<														
K293553 18 1.1 9.7 18 84.5 K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 <td></td>														
K293554 18 1.0 7.7 11 74.2 K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293566 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293568 197 1.6 7.3 55 45.6														
K293555 29 1.5 9.3 24 92.0 K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293568 197 1.6 7.3 55 45.6														
K293556 45 1.5 6.2 26 65.5 K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293557 25 1.0 4.0 19 37.2 K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293558 33 1.6 4.7 19 44.9 K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293559 29 1.5 4.2 17 42.5 K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293560 98 2.1 10.6 41 81.5 K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293561 31 1.1 6.0 15 57.5 K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293562 22 1.0 4.4 10 52.0 K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293563 61 1.7 8.3 36 93.2 K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293564 48 2.4 7.1 26 92.3 K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293565 64 2.5 12.7 35 98.1 K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293566 81 0.5 13.7 5170 45.0 100 0.994 K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6														
K293567 47 1.5 6.8 31 79.7 K293568 197 1.6 7.3 55 45.6								400	0.004					
K293568 197 1.6 7.3 55 45.6								100	0.994					
K 293569														
K293570 86 1.5 4.9 22 46.8	(293570													
K293571 19 0.5 3.0 12 30.9	(293571		19	0.5	3.0	12	30.9							

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

Project: Saloon-Batch 3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 14-JUL-2018

Account: MTT

CERTIFICATE OF ANALYSIS WH18150464

Applies to Method: Applie	
Applies to Method: ME-MS61 LABORATORY ADDRESSES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. CRU-31 CRU-QC LOG-21 LOG-23 PUL-31 PUL-31d SPL-21 SPL-21d WEI-21 Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applies to Method: Ag-OG62 Au-ICP21 ME-MS61	
Applies to Method: Applies to Method: Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. CRU-31	
Applies to Method: CRU-31 LOG-23 PUL-31 PUL-31d SPL-21 Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applies to Method: Ag-OG62 Au-ICP21 ME-MS61	
LOG-23 PUL-31 PUL-31d SPL-21 SPL-21d WEI-21 Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applies to Method: Ag-OG62 Au-ICP21 ME-MS61	
SPL-21 SPL-21d WEI-21 Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applies to Method: Ag-OG62 Au-ICP21 ME-MS61	LOG-21d
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Applies to Method: Ag-OG62 Au-ICP21 ME-MS61	PUL-QC
Applies to Method: Ag-OG62 Au-ICP21 ME-MS61	
Applies to Method: Ag-OG62 Au-ICP21 ME-MS61	
	ME-OG62

HEATHER BURRELL

SCOTT NEWMAN

2103 Dollarton Hwy North Vancouver BC V7H 0A7

ALS Canada Ltd.

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com/geochemistry

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST

VANCOUVER BC V6B 1L8

Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 14-JUL-2018

Account: MTT

Page: 1

CERTIFICATE WH18150470

Project: Saloon-Batch 4 This report is for 25 Drill Core samples submitted to our lab in Whitehorse, YT, Canada on 25-JUN-2018. The following have access to data associated with this certificate:

ANDREW CARNE

JACK MORTON

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-21	Sample logging - ClientBarCode
CRU-QC	Crushing QC Test
CRU-31	Fine crushing - 70% < 2mm
PUL-QC	Pulverizing QC Test
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% < 75 um
LOG-23	Pulp Login - Rcvd with Barcode

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	
Ag-OG62	Ore Grade Ag - Four Acid	ICP-AES
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Pb-OG62	Ore Grade Pb - Four Acid	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016 - 510 W HASTINGS ST

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

Page: 2 - A
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 14-JUL-2018
Account: MTT

									CE	RTIFIC	ATE O	F ANAL	YSIS	WH181	50470	
Sample Description	Method Analyte Units	WEI-21 Recvd Wt. kg	Au-ICP21 Au ppm	ME-MS61 Ag ppm	ME-MS61 AI %	ME-MS61 As ppm	ME-MS61 Ba ppm	ME-MS61 Be ppm	ME-MS61 Bi ppm	ME-MS61 Ca %	ME-MS61 Cd ppm	ME-MS61 Ce ppm	ME-MS61 Co ppm	ME-MS61 Cr ppm	ME-MS61 Cs ppm	ME-MS61 Cu ppm
	LOD	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
K293572		7.59	0.001	<0.01	3.16	4.5	160	0.57	0.07	0.55	< 0.02	45.0	2.0	23	0.58	7.1
K293573		2.45	0.010	0.04	8.37	15.4	720	2.34	0.16	0.75	< 0.02	79.2	10.1	54	2.80	69.1
K293574		3.49	< 0.001	0.06	5.64	12.7	440	1.59	0.20	0.84	< 0.02	65.6	7.2	39	3.13	43.5
K293575		5.62	0.001	14.45	3.83	15.9	220	0.93	0.22	1.11	< 0.02	47.8	7.1	23	1.44	104.0
K293576		0.26	0.264	>100	5.61	240	410	0.66	4.72	1.50	24.5	18.15	11.0	61	0.84	6110
K293577		7.07	< 0.001	0.09	3.90	15.3	180	1.08	0.22	3.56	0.03	50.3	5.3	21	1.46	36.3
K293578		3.49	0.006	0.11	5.78	27.4	340	1.83	0.30	1.69	< 0.02	90.2	9.4	35	2.42	49.0
K293579		2.18	0.007	0.08	5.55	25.3	300	1.63	0.27	2.31	0.05	85.4	8.3	34	2.43	43.6
K293580		5.28	0.006	0.31	5.01	42.5	270	1.55	0.34	3.70	< 0.02	85.7	7.7	30	1.94	35.4
K293581		7.34	0.007	0.04	4.78	40.6	250	1.45	0.39	2.56	< 0.02	74.9	8.5	31	2.28	31.2
K293582		7.17	0.001	0.03	2.62	5.5	110	0.60	0.18	2.13	<0.02	46.4	2.5	18	0.61	77.9
K293583		0.13	1.470	29.0	7.20	132.5	120	0.55	8.58	6.12	33.4	27.4	93.1	112	1.67	6730
K293584		7.87	< 0.001	0.04	3.30	11.9	120	0.75	0.14	2.42	0.02	47.1	8.7	46	0.61	56.0
K293585		4.00	0.001	0.04	2.41	8.2	90	0.68	0.15	4.14	0.02	33.0	5.8	30	0.49	46.0
K293586		5.15	0.002	0.05	3.45	15.4	180	1.01	0.23	2.86	0.02	57.2	3.9	21	1.24	79.1
K293587		3.88	<0.001	0.01	0.13	<0.2	70	0.07	0.02	33.1	<0.02	1.13	0.5	1	< 0.05	4.0
K293588		4.81	0.009	0.14	3.87	6.8	160	1.16	0.41	1.62	0.06	52.0	7.7	37	1.21	345
K293589		2.98	0.001	0.05	5.02	8.8	230	1.15	0.18	4.33	< 0.02	70.4	5.1	31	1.13	209
K293590		3.22	0.006	0.03	6.87	9.6	170	1.14	0.48	0.89	< 0.02	79.9	20.6	73	1.66	6.6
K293591		2.42	0.015	0.06	3.78	19.3	40	0.41	1.52	1.19	< 0.02	66.3	43.5	42	0.24	59.8
K293592		5.61	0.008	0.05	8.56	18.6	370	1.82	0.78	0.83	<0.02	99.2	28.9	145	2.68	11.4
K293593		5.92	0.008	0.03	7.95	15.0	490	1.86	0.37	0.81	< 0.02	82.7	18.1	72	2.08	7.3
K293594		2.70	0.005	0.36	3.70	6.8	140	0.74	0.20	0.79	< 0.02	29.3	6.5	29	0.60	5.1
K293595		2.04	0.013	0.83	4.35	18.8	250	1.08	0.70	1.13	< 0.02	58.9	16.3	42	1.95	11.9
K293596		7.27	0.004	0.31	8.93	15.5	460	1.96	0.43	1.43	< 0.02	96.5	22.7	51	2.22	20.3

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1014 F10 W HASTINGS ST

CERTIFICATE OF ANALYSIS WH18150470

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

Page: 2 - B
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 14-JUL-2018
Account: MTT

			SERTIFICATE OF AWARTSIS									W1110130476				
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
K293572		1.16	6.91	0.05	1.6	0.018	0.78	20.0	5.7	0.32	150	0.17	1.08	3.5	6.7	170
K293573		3.71	20.7	0.10	2.7	0.077	3.49	39.5	22.3	1.05	334	0.37	0.27	10.2	27.7	460
K293574		2.47	13.95	0.08	1.9	0.045	2.09	30.5	14.7	0.77	246	0.19	0.20	7.7	20.9	320
K293575		2.07	9.22	0.05	1.6	0.033	1.18	21.5	11.6	0.57	235	0.32	0.18	9.2	14.6	320
K293576		5.86	11.30	0.06	1.3	0.430	1.16	8.6	12.6	1.14	1720	22.3	1.67	3.3	26.1	470
K293577		1.42	9.93	0.07	2.3	0.048	1.19	23.0	8.7	0.49	675	0.26	0.25	18.7	8.4	170
K293578		2.56	15.25	0.09	3.1	0.058	2.27	44.3	13.5	0.76	297	0.29	0.19	21.4	16.9	240
K293579		2.55	14.10	0.10	2.8	0.050	2.07	41.7	13.1	0.74	427	0.26	0.25	21.4	15.5	230
K293580		2.54	12.20	0.08	2.2	0.051	1.85	42.5	13.0	0.77	830	0.26	0.15	15.4	13.6	240
K293581		2.32	12.35	0.08	2.6	0.045	1.74	36.8	14.4	0.72	406	0.62	0.21	18.7	14.4	180
K293582		1.14	6.55	0.05	1.9	0.027	0.75	21.4	6.1	0.31	302	0.35	0.38	14.8	5.1	170
K293583		9.61	11.05	0.07	0.7	2.39	1.05	15.6	8.0	2.24	888	51.6	0.84	3.1	370	680
K293584		2.52	9.48	0.06	1.8	0.043	0.78	21.9	8.6	0.91	379	0.58	0.35	18.4	21.3	560
K293585		1.46	6.12	0.05	1.4	0.029	0.58	15.0	6.8	0.39	555	0.44	0.35	12.7	12.7	290
K293586		1.48	9.12	0.06	2.1	0.036	1.28	26.6	6.2	0.37	347	0.29	0.30	14.1	8.6	160
K293587		0.14	0.33	<0.05	0.1	<0.005	0.04	1.1	2.0	2.06	114	0.05	0.04	0.2	0.4	80
K293588		2.14	10.45	0.06	2.2	0.064	1.16	24.6	10.4	0.69	306	0.42	0.25	11.6	15.6	310
K293589		2.21	12.85	0.07	2.9	0.058	1.60	33.3	9.6	0.55	629	0.24	0.55	16.8	12.0	180
K293590		4.46	17.75	0.09	2.5	0.046	1.03	39.8	16.2	1.67	448	0.94	1.11	12.1	48.1	870
K293591		2.63	6.85	0.09	1.3	0.014	0.20	33.0	8.1	0.77	296	1.09	1.16	3.3	33.2	230
K293592		5.30	21.0	0.11	2.1	0.057	2.12	51.0	21.6	1.66	505	0.83	0.46	8.4	67.6	550
K293593		3.49	20.2	0.11	2.0	0.062	2.75	42.2	17.7	1.02	492	0.79	0.19	8.7	46.4	430
K293594		1.66	7.44	<0.05	1.4	0.025	0.74	14.5	8.8	0.52	305	0.58	0.91	3.2	13.9	130
K293595		2.25	10.45	0.07	1.5	0.042	1.38	29.0	12.2	0.75	326	0.98	0.40	3.8	26.3	140
K293596		4.80	21.6	0.11	2.3	0.069	2.50	49.8	23.0	1.38	793	1.36	1.33	11.2	40.9	740

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

Page: 2 - C
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 14-JUL-2018
Account: MTT

									CERTIFICATE OF ANALYSIS WH18150470							
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOD	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
K293572 K293573 K293574 K293575 K293576		1.3 1.8 2.1 7.6 >10000	32.5 147.0 92.0 52.0 24.8	0.002 0.003 <0.002 0.002 0.015	0.07 0.17 0.11 0.10 2.37	0.22 0.46 0.39 0.46 466	3.2 14.6 8.7 5.4 11.4	1 <1 <1 <1 2	0.7 2.1 1.6 1.3 1.9	31.0 28.8 37.4 53.4 191.5	0.26 0.71 0.53 0.60 0.19	<0.05 <0.05 <0.05 <0.05 1.08	8.00 14.25 11.45 9.42 1.91	0.103 0.309 0.205 0.126 0.245	0.14 0.69 0.43 0.26 0.51	1.2 3.8 1.5 1.5
K293577		9.3	54.3	0.002	0.09	0.70	4.7	<1	1.6	82.5	1.20	<0.05	10.85	0.164	0.25	2.0
K293578		6.7	98.5	0.002	0.33	0.76	7.9	<1	2.5	59.8	1.45	<0.05	15.75	0.238	0.45	2.4
K293579		6.8	89.9	<0.002	0.34	0.66	7.6	<1	2.3	66.5	1.39	<0.05	14.30	0.240	0.40	2.4
K293580		8.8	83.5	0.002	0.68	0.81	7.3	1	1.8	67.3	1.01	<0.05	13.60	0.177	0.37	2.5
K293581		6.6	77.8	0.002	0.47	0.79	6.1	<1	1.9	76.3	1.32	<0.05	12.45	0.202	0.34	2.5
K293582		2.8	32.5	<0.002	0.19	0.31	2.3	<1	1.2	53.0	1.06	<0.05	9.09	0.112	0.16	1.4
K293583		8620	40.9	0.017	6.37	29.4	12.6	12	6.5	149.0	0.24	0.69	3.30	0.204	2.36	5.3
K293584		7.3	33.8	0.002	0.15	0.33	5.2	1	1.5	68.0	1.19	<0.05	8.59	0.304	0.15	1.3
K293585		5.0	24.5	<0.002	0.15	0.30	3.4	<1	1.2	95.7	0.83	<0.05	6.94	0.175	0.12	1.1
K293586		6.3	58.0	<0.002	0.25	0.47	4.2	<1	1.9	82.0	0.90	<0.05	9.79	0.141	0.25	1.5
K293587		1.0	0.9	<0.002	0.01	0.11	0.4	1	<0.2	77.2	<0.05	<0.05	0.10	0.010	<0.02	0.1
K293588		9.1	51.7	0.002	0.29	0.39	8.4	<1	1.4	53.9	0.76	0.07	8.30	0.177	0.22	1.5
K293589		3.7	70.0	<0.002	0.10	0.28	6.4	<1	1.9	150.5	1.13	<0.05	14.75	0.242	0.32	2.1
K293590		5.0	45.6	0.004	0.88	0.58	12.5	1	1.9	69.6	0.75	<0.05	12.05	0.391	0.19	2.7
K293591		6.0	9.0	0.005	1.32	0.56	4.7	<1	0.6	78.8	0.24	0.11	6.89	0.119	0.06	1.5
K293592		6.5	92.7	0.003	0.90	0.64	20.6	<1	1.9	69.5	0.59	0.09	14.65	0.268	0.37	2.4
K293593		5.9	115.0	0.004	0.55	0.33	20.0	1	1.8	58.4	0.58	0.08	15.00	0.254	0.48	2.3
K293594		3.0	32.2	0.002	0.34	0.22	4.9	<1	0.6	42.8	0.23	<0.05	8.54	0.104	0.18	1.3
K293595		6.8	61.7	0.002	1.05	0.62	7.6	1	1.0	56.8	0.28	0.10	8.86	0.124	0.26	2.7
K293596		12.5	101.0	0.003	0.56	0.60	21.3	<1	2.4	83.3	0.78	0.11	14.85	0.340	0.45	2.4

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST

Plus Appendix Pages Finalized Date: 14-JUL-2018 Account: MTT

Total # Pages: 2 (A - D)

Page: 2 - D

VANCOUVER BC V6B 1L8
Project: Saloon-Batch 4

CEDTIFICATE	OF ANALYSIS	WH18150470
CERTIFICATE	UF ANALTSIS	WIT 10 13U4/U

								-	
	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	Ag-OG62	Pb-OG62	
	Analyte	V	W	Υ	Zn	Zr	Ag	Pb	
	Units	ppm	ppm	ppm	ppm	ppm	ppm	%	
Sample Description	LOD	1	0.1	0.1	2	0.5	1	0.001	
K293572		22	0.6	4.1	10	50.6			
K293573		104	1.6	9.3	37	111.5			
K293574		50	1.5	6.2	29	67.6			
K293575		35	129.0	6.1	21	57.4			
K293576		81	0.6	12.5	5190	40.9	100	1.015	
K293577		24	0.9	9.4	25	81.2			
K293578		41	1.6	8.9	62	112.5			
K293579		40	1.6	9.4	72	102.0			
K293580		35	3.5	9.7	19	76.5			
K293581		32	1.1	9.7	19	86.1			
K293582		13	0.6	5.8	7	63.5			
K293583		393	6.1	12.6	8020	23.4			
K293584		47	1.0	6.8	28	61.7			
K293585		26	0.7	6.6	13	46.8			
K293586		22	8.0	6.8	18	73.9			
K293587		3	<0.1	2.0	5	2.0			
K293588		55	1.6	6.6	33	75.8			
K293589		36	1.6	9.3	26	100.0			
K293590		80	2.2	8.7	47	93.7			
K293591		30	1.2	7.1	19	48.8			
K293592		97	2.0	8.4	61	74.6			
K293593		76 26	1.6 3.8	8.1 3.8	55 17	72.8 48.1			
K293594 K293595		39	3.6 9.4	5.8	17 25	46.1 58.9			
		97	3.6	11.4	54	89.5			
K293596		97	3.0	11.4	54	69.5			

ALS Canada Ltd.

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

Project: Saloon-Batch 4

CERTIFICATE OF ANALYSIS WH18150470

Page: Appendix 1

Account: MTT

Total # Appendix Pages: 1

Finalized Date: 14-JUL-2018

		CERTIFICATE COM	IMENTS	
Applies to Method:	REE's may not be totally soluble in t ME-MS61		TICAL COMMENTS	
Applies to Method:	Processed at ALS Whitehorse located CRU-31 PUL-31		ATORY ADDRESSES orse, YT, Canada. LOG-21 SPL-21	LOG-23 WEI-21
Applies to Method:	Processed at ALS Vancouver located Ag-OG62 Pb-OG62	at 2103 Dollarton Hwy, No Au-ICP21	rth Vancouver, BC, Canada. ME-MS61	ME-OG62

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsqlobal.com/geochemistry

C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

To: STRATEGIC METALS LTD.

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-JUL-2018

Account: MTT

CERTIFICATE WH18147998

Project: SALOON-BATCH 2

This report is for 40 Drill Core samples submitted to our lab in Whitehorse, YT,

Canada on 22-JUN-2018.

The following have access to data associated with this certificate:

HEATHER BURRELL ANDREW CARNE JACK MORTON SCOTT NEWMAN

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-21	Sample logging - ClientBarCode						
CRU-QC	Crushing QC Test						
CRU-31	Fine crushing - 70% <2mm						
PUL-QC	Pulverizing QC Test						
SPL-21	Split sample - riffle splitter						
PUL-31	Pulverize split to 85% <75 um						
LOG-23	Pulp Login - Rcvd with Barcode						
LOG-21d	Sample logging - ClientBarCode Dup						
SPL-21d	Split sample - duplicate						
PUL-31d	Pulverize Split - duplicate						

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS61	48 element four acid ICP-MS	
Ag-OG62	Ore Grade Ag - Four Acid	ICP-AES
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Pb-OG62	Ore Grade Pb - Four Acid	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

CERTIFICATE OF ANALYSIS WH18147998

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-JUL-2018 Account: MTT

								<u> </u>								
Sample Description	Method Analyte Units	WEI-21 Recvd Wt. kg	Au-ICP21 Au ppm	ME-MS61 Ag ppm	ME-MS61 AI %	ME-MS61 As ppm	ME-MS61 Ba ppm	ME-MS61 Be ppm	ME-MS61 Bi ppm	ME-MS61 Ca %	ME-MS61 Cd ppm	ME-MS61 Ce ppm	ME-MS61 Co ppm	ME-MS61 Cr ppm	ME-MS61 Cs ppm	ME-MS61 Cu ppm
	LOD	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
K293492		3.35	0.009	0.36	2.51	6.4	110	0.49	0.34	0.63	0.47	27.6	8.4	38	0.33	667
K293493		5.32	0.008	0.23	3.11	3.2	170	0.59	0.12	0.33	0.07	46.5	2.2	28	0.54	559
K293494		2.59	0.007	0.61	3.02	5.2	170	0.84	0.25	0.42	0.35	46.8	4.3	30	0.48	1110
K293495		1.63	0.031	0.39	5.00	39.9	120	0.83	2.17	0.84	0.08	47.3	26.8	25	0.40	374
K293496		1.31	0.005	0.32	2.82	9.6	200	1.09	0.77	1.21	0.05	31.3	8.2	27	0.69	216
K293497		2.80	0.008	0.18	3.56	8.6	280	1.62	0.70	1.03	0.09	40.2	9.7	45	0.88	183.0
K293498		6.09	0.002	0.03	5.51	6.3	120	1.37	0.15	4.34	0.03	71.2	28.9	261	0.40	48.0
K293499		3.54	0.008	0.25	4.33	5.4	200	1.03	0.15	5.49	0.03	52.5	11.2	57	0.90	104.0
K293500		2.78	< 0.001	< 0.01	8.35	<0.2	1540	1.80	0.06	3.13	0.08	126.0	13.5	13	4.79	17.9
K293501		2.40	< 0.001	0.02	3.84	0.3	170	0.69	0.10	14.20	< 0.02	44.0	5.9	27	0.89	5.8
K293502		3.50	<0.001	0.13	2.55	0.7	220	0.61	0.07	4.98	<0.02	31.0	5.7	44	0.60	8.9
K293503		1.90	< 0.001	0.66	3.00	1.1	190	0.87	0.10	6.46	0.02	38.7	15.5	136	0.80	23.9
K293504		0.98	< 0.001	1.54	4.90	1.4	130	1.09	0.10	8.61	0.04	53.3	27.9	255	0.92	35.6
K293505		6.35	< 0.001	3.82	4.68	2.0	190	1.01	0.11	3.71	0.05	46.9	7.1	44	0.51	30.8
K293506		3.01	0.004	99.5	4.75	2.9	230	1.04	0.19	3.51	0.02	47.3	7.8	51	0.60	141.5
K293507		8.29	0.005	0.09	5.01	2.7	80	0.99	0.18	6.16	0.06	51.2	43.9	369	0.40	81.9
K293508		6.60	0.001	0.09	4.81	3.8	390	1.36	0.14	4.26	0.06	49.2	31.6	283	1.33	78.7
K293509		0.13	1.290	30.8	7.21	132.5	120	0.65	10.50	6.02	35.3	31.0	93.6	121	1.68	6730
K293510		5.32	0.002	0.14	5.78	8.7	140	0.96	0.35	3.08	0.03	64.6	26.7	191	0.28	57.1
K293511		6.25	0.002	0.08	5.59	4.0	360	1.35	0.20	3.77	< 0.02	74.0	30.2	253	0.52	56.0
K293512		2.24	<0.001	0.05	4.79	2.9	350	1.05	0.15	3.11	<0.02	61.5	8.2	43	0.59	4.4
K293513		5.31	< 0.001	0.03	3.47	2.6	110	0.50	0.13	11.95	< 0.02	48.6	8.7	29	0.20	10.5
K293514		< 0.02	< 0.001	0.04	3.54	2.5	110	0.47	0.13	12.25	0.02	50.0	8.2	27	0.19	11.1
K293515		6.84	< 0.001	0.01	3.74	2.0	160	0.65	0.13	8.36	< 0.02	43.9	7.1	28	0.44	3.8
K293516		5.26	<0.001	0.03	4.32	1.3	330	1.35	0.11	2.97	< 0.02	55.4	7.6	38	1.70	8.8
K293517		6.61	<0.001	0.01	3.81	2.0	160	0.87	0.17	6.80	< 0.02	52.0	8.8	33	0.52	11.9
K293518		1.87	< 0.001	< 0.01	0.13	<0.2	40	0.09	0.02	32.7	< 0.02	1.44	1.2	2	< 0.05	2.2
K293519		5.66	0.008	0.03	4.58	2.6	260	1.13	0.18	7.76	0.03	47.1	9.0	35	0.90	15.7
K293520		2.95	0.025	0.06	7.04	9.7	310	1.55	0.45	2.62	0.02	46.6	17.1	48	2.00	69.8
K293521		0.26	0.293	>100	5.62	251	350	0.71	4.95	1.47	25.1	18.80	11.3	65	0.84	6140
K293522		3.86	0.001	0.12	5.18	4.8	310	1.32	0.14	5.15	0.02	58.3	8.9	37	1.20	60.5
K293523		4.31	< 0.001	0.03	5.45	3.5	280	1.32	0.13	2.96	< 0.02	43.4	11.8	25	1.12	19.3
K293524		2.23	< 0.001	0.08	4.34	7.9	330	1.39	0.36	3.26	0.03	70.5	6.2	31	1.22	87.8
K293525		6.77	0.005	0.33	5.33	18.8	80	0.61	0.29	8.82	0.02	9.13	38.5	461	0.22	1295
K293526		4.06	0.001	0.38	5.33	26.9	110	0.64	0.32	8.95	0.03	10.10	37.9	625	0.29	1260
K293527		4.58	<0.001	0.14	6.25	26.3	280	1.36	0.22	6.94	0.03	44.7	24.8	381	0.90	434
K293528		4.54	0.033	1.18	5.89	26.3	470	1.67	0.85	1.34	0.08	97.5	6.1	58	1.71	2440
K293529		9.12	0.001	0.16	2.17	16.3	140	0.60	0.34	2.39	0.02	37.4	2.3	32	0.62	373
K293530		6.29	0.002	0.36	2.85	17.5	220	0.90	0.60	2.07	0.02	54.0	2.9	24	0.83	397
K293531		2.17	0.003	0.12	3.67	10.2	370	1.13	0.43	1.19	0.03	69.7	4.1	26	1.02	110.5

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

CERTIFICATE OF ANALYSIS WH18147998

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-JUL-2018 Account: MTT

								<u> </u>								
	Method Analyte Units	ME-MS61 Fe %	ME-MS61 Ga ppm	ME-MS61 Ge ppm	ME-MS61 Hf ppm	ME-MS61 In ppm	ME-MS61 K %	ME-MS61 La ppm	ME-MS61 Li ppm	ME-MS61 Mg %	ME-MS61 Mn ppm	ME-MS61 Mo ppm	ME-MS61 Na %	ME-MS61 Nb ppm	ME-MS61 Ni ppm	ME-MS61 P ppm
Sample Description	LOD	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
K293492		2.23	7.12	0.08	1.1	0.046	0.46	11.9	10.4	0.73	185	0.37	0.45	4.9	14.8	170
K293493		1.02	7.99	0.07	1.7	0.047	0.77	22.1	5.9	0.26	90	0.24	0.95	4.5	7.0	100
K293494		1.61	8.88	0.07	1.5	0.076	0.72	24.0	6.7	0.40	148	0.77	0.80	4.9	12.0	140
K293495		6.21	15.55	0.13	1.6	0.062	0.49	23.3	16.4	1.78	284	0.71	0.72	8.4	26.4	410
K293496		1.50	7.56	0.08	1.5	0.036	0.77	13.6	9.7	0.64	261	0.32	0.36	6.7	12.3	190
K293497		1.57	10.30	0.07	1.7	0.040	1.17	19.8	13.0	0.66	239	0.57	0.41	8.9	17.8	330
K293498		4.95	17.55	0.11	1.1	0.054	0.35	33.6	19.1	3.36	880	0.60	1.14	14.4	201	950
K293499		2.48	11.55	0.08	1.6	0.038	0.74	25.4	14.6	1.24	728	0.71	0.93	7.7	39.7	320
K293500		5.08	19.35	0.19	4.6	0.048	2.34	63.1	12.4	1.69	465	2.39	1.78	46.9	19.1	2830
K293501		1.80	9.23	0.08	1.6	0.024	0.49	21.2	12.7	0.92	924	0.29	0.97	6.4	15.2	340
K293502		1.49	6.83	0.06	1.0	0.018	0.58	13.2	6.9	0.81	461	0.90	0.49	5.0	24.2	310
K293503		2.49	8.84	0.09	0.9	0.034	0.48	16.5	9.7	1.75	789	0.59	0.37	7.6	99.6	500
K293504		3.20	14.90	0.12	1.0	0.070	0.30	24.8	22.5	1.44	1010	0.72	0.17	17.3	142.0	1140
K293505		1.66	10.90	0.09	2.0	0.030	0.50	22.3	7.0	0.69	479	1.02	2.01	6.6	24.3	170
K293506		1.81	11.60	0.09	2.0	0.025	0.56	22.5	7.6	0.74	439	1.07	1.89	7.3	32.8	200
K293507		6.39	17.60	0.12	1.1	0.070	0.14	23.2	19.4	4.62	1340	1.07	0.45	21.7	303	1300
K293508		5.31	16.05	0.11	1.0	0.060	0.86	22.7	12.1	3.38	884	0.71	0.06	17.0	228	990
K293509		9.52	12.25	0.14	0.7	2.59	1.04	15.9	8.5	2.21	891	57.9	0.84	2.9	370	700
K293510		5.01	17.75	0.10	1.4	0.050	0.25	30.2	22.2	3.09	719	0.70	1.55	14.7	138.5	840
K293511		5.02	18.45	0.12	2.0	0.066	0.77	34.8	18.4	3.45	830	0.76	0.86	17.1	178.5	920
K293512		2.60	12.90	0.10	1.6	0.036	0.93	29.4	12.7	1.36	393	0.13	1.38	7.2	23.6	220
K293513		1.62	7.86	0.08	1.5	0.033	0.30	22.3	8.1	0.85	801	0.23	1.64	5.0	14.3	290
K293514		1.62	7.95	0.07	1.7	0.033	0.29	23.6	8.2	0.83	822	0.18	1.71	5.2	13.4	280
K293515		1.79	8.71	0.07	1.6	0.035	0.44	18.8	9.6	0.99	723	0.25	1.22	5.1	14.9	250
K293516		2.28	11.55	0.09	1.7	0.037	1.12	26.0	11.3	0.91	459	0.09	0.47	7.7	19.2	260
K293517		1.77	9.58	0.08	1.4	0.030	0.57	24.5	7.6	0.93	813	1.53	1.41	6.8	18.2	230
K293518		0.11	0.34	0.05	0.1	<0.005	0.04	1.3	1.2	1.65	115	< 0.05	0.04	0.2	0.4	70
K293519		2.31	10.80	0.07	1.3	0.035	0.98	21.5	9.9	1.20	934	0.25	1.19	5.9	16.3	380
K293520		5.14	16.20	0.08	1.2	0.045	1.17	22.1	22.7	2.84	874	0.31	1.06	6.5	28.8	680
K293521		5.80	12.15	0.07	1.3	0.434	1.16	8.2	12.4	1.13	1760	21.7	1.66	3.2	29.0	470
K293522		2.43	13.20	0.07	1.6	0.039	1.17	27.8	11.1	1.48	777	0.27	0.66	7.6	19.0	300
K293523		3.46	13.85	0.10	1.2	0.044	1.03	20.3	16.6	2.09	687	0.22	0.91	5.9	16.5	460
K293524		1.76	12.00	0.09	2.3	0.052	1.86	34.1	7.8	0.53	572	0.29	0.45	14.3	12.4	190
K293525		5.73	11.15	0.07	0.4	0.136	0.39	4.5	34.2	5.27	1400	0.22	0.15	0.9	176.5	310
K293526		5.65	11.70	0.06	0.4	0.101	0.53	5.1	35.9	5.34	1380	0.19	0.01	0.8	216	290
K293527		4.52	14.80	0.10	1.1	0.077	1.53	21.1	24.1	3.07	1100	0.12	0.62	6.2	117.0	320
K293528		2.46	17.00	0.14	2.4	0.150	2.58	49.9	9.0	0.76	250	0.45	0.53	14.7	15.8	290
K293529		0.74	5.82	0.08	1.6	0.034	0.86	17.2	3.3	0.31	292	0.33	0.34	10.6	5.9	130
K293530		1.05	7.91	0.13	2.2	0.052	1.20	26.4	4.4	0.32	295	0.27	0.32	13.5	6.4	150
K293531		1.41	10.60	0.15	2.5	0.052	1.47	33.9	6.1	0.43	243	0.32	0.33	16.9	8.3	310

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

CERTIFICATE OF ANALYSIS WH18147998

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-JUL-2018 Account: MTT

								CERTIFICATE OF ANALISIS WITTOTA								790		
Sample Description	Method Analyte Units LOD	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1		
K293492		33.4	19.1	<0.002	0.41	0.31	6.1	1	0.7	33.4	0.32	<0.05	4.48	0.107	0.08	0.7		
K293493		36.2	31.8	< 0.002	0.23	0.30	3.4	1	0.8	28.3	0.32	< 0.05	8.42	0.122	0.14	1.0		
K293494		27.6	29.1	<0.002	0.44	0.25	4.0	1	1.0	27.5	0.33	0.05	6.35	0.114	0.13	0.9		
K293495		39.6	19.7	<0.002	2.56	0.53	10.4	1	1.2	41.5	0.53	0.23	6.21	0.210	0.08	1.2		
K293496		29.5	31.4	< 0.002	0.39	0.28	4.4	1	0.8	42.1	0.46	0.08	5.56	0.127	0.13	0.9		
K293497		40.9	51.5	<0.002	0.49	0.46	6.2	1	1.0	52.8	0.59	<0.05	6.02	0.200	0.19	1.1		
K293498		7.1	14.9	<0.002	0.31	0.76	15.1	1	1.7	138.0	0.96	0.05	7.00	0.706	0.06	1.2		
K293499		5.8	32.1	<0.002	0.34	0.33	7.6	1	1.3	127.0	0.55	0.05	8.41	0.234	0.14	1.6		
K293500		11.0	45.2	< 0.002	0.06	0.14	12.1	1	1.2	533	2.01	< 0.05	10.40	0.563	0.23	2.5		
K293501		4.1	20.5	< 0.002	0.18	0.21	5.9	1	1.1	303	0.46	< 0.05	7.58	0.170	0.08	1.9		
K293502		1.9	23.5	<0.002	0.21	0.20	5.0	1	0.8	106.0	0.34	<0.05	4.96	0.153	0.08	1.0		
K293503		1.9	20.1	< 0.002	0.15	0.18	8.5	<1	0.9	118.0	0.51	< 0.05	4.56	0.359	0.07	1.2		
K293504		5.3	12.8	< 0.002	0.18	0.89	17.4	1	1.6	195.0	1.09	< 0.05	3.82	0.983	0.13	2.4		
K293505		4.8	20.4	< 0.002	0.11	0.17	5.2	1	1.1	114.5	0.47	< 0.05	8.47	0.202	0.09	1.2		
K293506		3.2	22.6	0.004	0.15	0.18	5.8	<1	1.2	105.5	0.53	< 0.05	9.34	0.228	0.15	1.4		
K293507		2.9	6.0	0.002	0.29	0.29	19.2	1	1.5	199.0	1.30	<0.05	3.27	1.280	0.03	0.6		
K293508		2.6	37.0	< 0.002	0.24	0.30	15.9	1	1.7	147.5	1.08	< 0.05	5.70	0.923	0.18	0.7		
K293509		8600	36.3	0.017	6.43	32.8	12.5	14	7.0	155.0	0.20	0.64	3.33	0.206	2.17	5.1		
K293510		6.7	10.3	< 0.002	0.37	0.24	14.8	1	1.8	124.0	0.95	0.09	7.43	0.732	0.04	1.3		
K293511		3.4	32.8	< 0.002	0.33	0.26	16.0	1	1.8	115.5	1.14	0.06	7.62	0.880	0.11	1.1		
K293512		2.5	41.4	<0.002	0.20	0.17	7.6	1	1.4	105.5	0.52	<0.05	10.00	0.203	0.16	1.1		
K293513		2.7	12.2	< 0.002	0.24	0.11	5.5	<1	0.8	293	0.37	< 0.05	7.01	0.142	0.04	1.6		
K293514		2.5	11.8	< 0.002	0.24	0.10	5.4	<1	0.8	305	0.37	< 0.05	7.23	0.142	0.04	1.6		
K293515		2.8	18.1	< 0.002	0.23	0.15	6.2	1	0.9	220	0.38	< 0.05	7.51	0.146	0.08	1.5		
K293516		4.1	49.2	< 0.002	0.13	0.15	7.7	<1	1.4	102.5	0.55	< 0.05	9.20	0.219	0.17	1.5		
K293517		4.3	22.1	<0.002	0.17	0.14	7.1	1	1.2	212	0.49	0.06	8.18	0.196	0.08	1.3		
K293518		<0.5	1.0	< 0.002	< 0.01	0.06	0.3	1	< 0.2	79.0	< 0.05	< 0.05	0.16	0.007	< 0.02	0.2		
K293519		6.4	37.2	< 0.002	0.28	0.21	9.1	1	1.2	258	0.43	0.08	7.37	0.234	0.15	1.2		
K293520		7.5	50.7	< 0.002	1.27	0.31	14.6	1	1.4	193.0	0.45	0.25	7.17	0.376	0.16	2.5		
K293521		>10000	24.5	0.008	2.38	470	11.3	2	1.9	196.5	0.21	1.05	1.74	0.243	0.46	1.2		
K293522		11.2	45.9	<0.002	0.21	0.53	9.2	1	1.6	257	0.55	<0.05	10.40	0.252	0.16	2.1		
K293523		3.4	42.7	< 0.002	0.17	0.19	11.5	1	1.2	147.5	0.42	0.05	6.77	0.284	0.14	1.1		
K293524		7.8	81.2	< 0.002	0.03	0.28	5.9	1	1.7	110.0	0.96	0.05	10.60	0.190	0.31	1.7		
K293525		3.9	14.4	< 0.002	0.13	0.18	43.3	1	0.4	282	0.06	< 0.05	0.64	0.215	0.06	0.4		
K293526		4.9	18.6	< 0.002	0.17	0.24	48.8	1	0.5	277	0.05	< 0.05	0.55	0.194	0.06	0.3		
K293527		3.1	65.4	<0.002	0.09	0.30	33.4	1	1.2	216	0.42	<0.05	6.42	0.249	0.23	0.9		
K293528		4.4	109.0	< 0.002	0.37	0.49	10.2	1	2.3	54.6	1.00	< 0.05	14.90	0.236	0.43	2.1		
K293529		3.2	34.4	< 0.002	0.11	0.24	2.8	1	1.0	84.1	0.72	< 0.05	6.54	0.092	0.16	1.2		
K293530		4.8	51.0	< 0.002	0.14	0.32	3.5	<1	1.3	75.4	0.88	< 0.05	8.41	0.126	0.22	1.6		
K293531		5.7	61.3	< 0.002	0.15	0.36	4.6	<1	1.6	41.0	1.07	< 0.05	9.72	0.149	0.25	1.7		
		Ī																

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

CERTIFICATE OF ANALYSIS WH18147998

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 8-JUL-2018 Account: MTT

								<u></u>	
Sample Description	Method Analyte Units LOD	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME-MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Ag-OG62 Ag ppm 1	Pb-OG62 Pb % 0.001	
	LOD	'	0.1	0.1	2	0.3	'	0.001	
K293492		40	1.2	2.8	123	34.8			
K293493		19	1.2	3.4	30	56.8			
K293494		27	1.3	3.4	119	47.2			
K293495		94	2.4	5.3	66	60.7			
K293496		34	3.4	5.1	25	55.7			
K293497		48	2.7	6.2	41	70.1			
K293498		117	3.0	13.9	59	38.0			
K293499		45	2.0	8.6	27	63.7			
K293500		132	1.1	18.8	64	224			
K293501		28	0.5	8.8	20	58.5			
K293502		29	1.0	5.9	18	36.8			
K293503		61	3.5	9.9	33	32.1			
K293504		156	7.7	19.6	82	34.0			
K293505		34	27.1	8.0	27	68.8			
K293506		39	440	8.3	24	72.8			
K293507		188	2.5	18.1	89	33.0			
K293508		138	2.3	13.9	68	33.8			
K293509		387	5.6	12.6	8090	25.5			
K293510		123	2.7	20.2	68	45.7			
K293511		137	2.3	16.2	55	71.2			
K293512		41	0.9	6.3	25	58.2			
K293513		25	0.5	9.7	16	56.9			
K293514		24	0.6	10.0	16	61.0			
K293515		27	8.0	9.9	16	52.6			
K293516		40	0.7	10.4	31	63.9			
K293517		33	0.6	12.3	27	54.5			
K293518		2	<0.1	2.1	4	1.9			
K293519		63	8.0	12.2	30	46.0			
K293520		137	1.4	13.6	53	40.2			
K293521		82	0.6	12.6	5260	48.2	101	0.985	
K293522		61	1.0	14.4	30	58.8			
K293523		92	0.9	11.8	36	37.7			
K293524		31	2.3	8.7	26	84.0			
K293525		236	8.0	8.2	56	11.9			
K293526		221	0.7	7.0	52	11.3			
K293527		156	1.6	8.4	42	35.9			
K293528		50	2.3	8.2	27	91.2			
K293529		15	0.7	5.2	9	57.8			
K293530		19	1.4	5.9	12	71.1			
K293531		25	1.5	6.6	16	74.0			

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

Project: SALOON-BATCH 2

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8-JUL-2018

Account: MTT

CERTIFICATE OF ANALYSIS WH18147998

		CERTIFICATE CO	MMENTS	
		ANAL	YTICAL COMMENTS	
Applies to Method:	REE's may not be totally s ME-MS61	soluble in this method.		
		LABO	RATORY ADDRESSES	
	Processed at ALS Whiteho	orse located at 78 Mt. Sima Rd, White	ehorse, YT, Canada.	
Applies to Method:	CRU-31	CRU-QC	LOG-21	LOG-21d
	LOG-23	PUL-31	PUL-31d	PUL-QC
	SPL-21	SPL-21d	WEI-21	
	Processed at ALS Vancou	ver located at 2103 Dollarton Hwy, N	lorth Vancouver, BC, Canada.	
Applies to Method:	Ag-OG62	Au-ICP21	ME-MS61	ME-OG62
	Pb-OG62			

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Page: 1
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 8-JUL-2018

Account: MTT

CERTIFICATE WH18148000

Project: SALOON-BATCH 1

This report is for 40 Drill Core samples submitted to our lab in Whitehorse, YT, Canada on 22-JUN-2018.

The following have access to data associated with this certificate:

HEATHER BURRELL ANDREW CARNE JACK MORTON SCOTT NEWMAN

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-21	Sample logging - ClientBarCode							
CRU-QC	Crushing QC Test							
CRU-31	Fine crushing - 70% < 2mm							
PUL-QC	Pulverizing QC Test							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize split to 85% < 75 um							
LOG-23	Pulp Login - Rcvd with Barcode							
LOG-21d	Sample logging - ClientBarCode Dup							
SPL-21d	Split sample - duplicate							
PUL-31d	Pulverize Split - duplicate							

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au-ICP21 ME-MS61	Au 30g FA ICP-AES Finish 48 element four acid ICP-MS	ICP-AES

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Page: 2 - A
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 8-JUL-2018
Account: MTT

(ALS	,								CE	RTIFIC	ATE O	F ANAL	YSIS	WH181	48000)
Sample Description	Method	WEI-21	Au-ICP21	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Recvd Wt.	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOD	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
K293451		4.29	0.005	0.31	6.83	7.5	520	2.05	0.14	0.64	0.04	100.5	7.9	48	2.07	134.5
K293452		0.88	<0.001	1.51	3.95	7.2	300	1.11	0.20	2.21	0.03	32.4	6.6	40	1.29	28.0
K293453		3.83	0.003	0.17	3.80	15.6	200	0.92	0.24	3.77	<0.02	54.2	5.8	34	0.80	136.0
K293454		4.36	<0.001	0.06	4.70	18.8	10	0.49	0.07	7.16	0.04	17.50	41.8	563	0.06	30.6
K293455		0.89	<0.001	0.05	3.95	17.8	10	0.31	0.08	11.05	0.05	5.80	35.3	511	<0.05	67.3
K293456		5.32	0.001	0.17	3.76	6.8	100	0.53	0.19	4.26	0.02	31.6	9.3	107	0.38	437
K293457		2.86	0.005	0.27	3.62	24.8	140	0.61	0.40	4.61	0.02	33.0	14.1	355	0.57	1060
K293458		0.13	1.595	29.8	6.66	130.5	150	0.50	8.79	5.86	33.4	28.2	85.3	122	1.53	6500
K293459		6.77	0.001	0.20	2.39	23.5	120	0.51	0.32	5.02	0.03	42.2	2.1	18	0.62	145.5
K293460		6.08	0.002	0.39	2.94	19.4	200	0.82	0.29	1.49	0.02	47.0	2.2	26	0.94	357
K293461 K293462 K293463 K293464 K293465		1.56 4.81 5.76 8.04 7.35	0.003 0.021 <0.001 <0.001 0.001	0.28 0.28 0.08 1.22 0.04	3.82 7.82 2.63 2.13 2.19	27.8 90.2 30.1 22.9 17.3	220 630 180 120 130	1.01 2.86 0.72 0.54 0.54	0.48 1.47 0.22 0.23 0.25	5.20 0.93 1.94 2.39 3.14	<0.02 <0.02 <0.02 0.02 <0.02	62.8 129.5 45.1 38.4 41.1	4.0 9.7 2.0 1.7	27 56 22 21 21	1.02 2.92 0.85 0.56 0.65	212 577 144.0 170.5 71.7
K293466		<0.02	0.002	0.07	2.21	16.6	130	0.55	0.26	3.19	<0.02	39.6	1.7	23	0.62	76.7
K293467		4.25	<0.001	0.14	2.66	15.6	200	0.90	0.29	0.74	<0.02	45.6	2.8	24	0.88	263
K293468		2.25	0.185	0.12	8.52	54.3	750	3.09	2.85	0.49	0.03	160.5	15.0	64	3.09	139.5
K293469		3.14	0.007	0.17	4.90	29.0	340	1.51	0.57	2.51	<0.02	75.8	5.7	34	1.61	201
K293470		5.83	0.010	0.19	3.36	56.8	190	0.84	1.11	3.46	0.06	58.7	8.6	23	0.97	837
K293472		1.77	<0.001	<0.01	0.11	<0.2	20	0.05	2.27	32.5	<0.02	1.41	0.7	2	0.05	4.4
K293473		2.73	0.024	1.37	3.91	46.0	260	0.89	1.38	2.13	0.03	47.3	19.4	22	1.07	4750
K293474		2.02	0.008	1.92	4.72	12.3	1290	0.88	0.46	3.33	0.04	46.9	9.0	29	1.66	1120
K293475		1.69	0.009	0.28	4.58	10.5	430	1.17	0.46	1.28	<0.02	61.5	6.0	31	2.90	445
K293476		5.69	0.031	0.55	5.81	17.6	520	1.59	1.26	0.52	0.06	118.5	10.0	42	1.54	1275
K293477		0.26	0.293	99.6	5.39	246	480	0.66	4.63	1.43	24.8	17.65	10.8	63	0.85	5870
K293478		2.62	0.024	0.28	5.46	27.4	510	1.77	0.97	0.23	0.03	92.2	8.3	38	1.59	260
K293479		1.50	0.021	0.26	5.97	19.3	560	2.01	0.89	0.20	0.03	112.5	7.6	45	1.75	386
K293480		2.26	0.020	0.44	4.34	13.1	370	1.38	0.91	0.42	0.03	78.3	6.8	31	1.04	526
K293481		5.53	0.053	0.47	4.72	10.8	330	1.11	0.74	1.72	0.03	61.5	15.0	41	1.30	866
K293482		7.41	0.004	0.12	5.28	6.1	390	1.24	0.29	0.44	<0.02	54.8	5.7	40	1.24	69.2
K293483		10.10	0.011	0.17	6.41	8.6	530	1.51	0.32	0.44	0.03	59.4	10.8	38	1.45	157.5
K293484		9.18	0.008	0.27	6.07	8.1	460	1.59	0.53	0.66	0.08	45.6	9.0	28	1.19	209
K293485		5.89	0.004	0.11	4.26	8.6	260	0.96	0.28	0.93	0.02	42.1	7.8	89	0.95	119.5
K293486		3.00	0.006	0.16	6.69	6.6	280	1.24	0.66	1.25	<0.02	59.2	20.7	80	1.32	168.0
K293487		4.75	<0.001	0.04	4.26	3.8	220	0.88	0.19	1.93	0.03	45.0	11.0	45	0.77	63.4
K293488		8.50	0.010	0.23	6.16	19.7	390	1.50	1.05	1.01	<0.02	71.6	25.4	54	1.22	75.4
K293489		4.63	0.004	0.20	8.10	9.6	360	1.48	0.57	0.81	0.02	97.3	26.7	70	1.14	179.5
K293490		8.15	0.018	0.23	7.83	21.0	280	1.15	1.40	1.70	0.02	23.5	30.3	24	0.95	159.5
K293491		3.23	0.011	0.11	5.15	22.9	240	1.05	0.66	0.74	<0.02	38.1	29.0	53	0.89	76.0

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) **LIMITED**

1016-510 W HASTINGS ST **VANCOUVER BC V6B 1L8**

Plus Appendix Pages Finalized Date: 8-JUL-2018

Total # Pages: 2 (A - D)

Account: MTT

Page: 2 - B

(ALS)	,								CE	RTIFIC	ATE O	ANAL	YSIS	WH181	48000	
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOD	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
K293451		3.61	18.25	0.17	2.4	0.066	2.90	47.9	12.5	1.02	323	0.27	0.51	17.8	23.0	280
K293452		2.71	10.90	0.13	1.7	0.034	1.63	14.9	8.1	0.66	394	0.28	0.21	13.4	15.4	120
K293453		1.85	9.64	0.16	2.3	0.039	1.20	26.4	7.1	0.62	474	0.40	0.93	15.0	12.2	180
K293454		5.32	8.45	0.13	1.0	0.034	0.04	8.3	15.6	7.72	1220	0.20	0.58	3.9	231	270
K293455 K293456 K293457 K293458 K293459		4.73 2.78 2.68 9.23 0.78	8.22 8.99 10.65 6.04	0.11 0.12 0.13 0.16 0.14	0.3 1.4 1.2 0.8 1.8	0.042 0.061 0.080 2.40 0.028	0.01 0.56 0.91 0.98 0.87	2.6 14.5 15.5 14.1 20.6	9.4 10.5 6.8 2.6	6.57 1.65 1.67 2.11 0.19	1400 605 577 862 450	0.14 0.32 0.34 56.9 0.47	0.01 1.04 0.46 0.81 0.58	9.1 7.9 2.7 11.8	33.0 65.1 356 3.7	230 260 200 670 130
K293460		1.04	8.11	0.15	2.1	0.040	1.35	23.1	4.0	0.24	199	0.37	0.22	13.3	5.3	150
K293461		1.44	9.46	0.19	2.4	0.052	1.53	31.7	4.5	0.27	552	0.37	0.56	18.4	8.9	200
K293462		2.71	22.8	0.24	3.6	0.102	4.32	64.9	11.4	0.68	231	0.78	0.10	22.5	20.0	480
K293463		0.88	7.09	0.17	2.2	0.028	1.24	21.9	3.6	0.25	238	0.30	0.21	16.5	4.2	120
K293464		0.73	5.81	0.17	1.9	0.028	0.85	18.9	3.1	0.17	253	0.35	0.35	11.8	3.5	110
K293465		0.75	5.95	0.19	2.2	0.024	0.91	20.4	4.6	0.18	306	0.29	0.22	11.2	3.3	110
K293466		0.77	5.76	0.17	2.1	0.023	0.90	20.0	4.1	0.18	308	0.33	0.23	11.1	3.3	110
K293467		1.07	7.31	0.20	1.9	0.044	1.30	23.2	5.0	0.21	158	0.35	0.05	11.1	5.7	120
K293468		3.24	27.2	0.33	4.0	0.116	4.57	79.3	13.4	0.65	136	1.11	0.07	27.9	25.6	390
K293469		2.06	13.90	0.22	2.6	0.058	2.18	37.7	9.8	0.42	366	0.75	0.32	20.7	13.7	230
K293470		1.73	9.31	0.20	2.4	0.066	1.17	29.1	8.7	0.30	553	0.76	0.40	17.1	9.4	290
K293472		0.13	0.35	0.16	0.1	0.005	0.03	1.3	1.1	1.88	118	0.08	0.04	0.2	0.2	60
K293473		2.85	9.78	0.18	1.9	0.263	1.39	23.6	11.4	0.58	360	0.69	0.13	11.8	11.2	270
K293474		3.12	11.05	0.16	1.7	0.082	1.41	23.0	14.4	1.02	547	1.57	0.19	9.8	11.1	410
K293475		2.31	12.20	0.19	2.0	0.054	1.79	30.4	8.1	0.66	266	0.46	0.07	9.0	13.6	270
K293476		3.77	20.3	0.23	2.9	0.117	2.11	59.6	14.0	0.53	124	0.52	0.13	15.2	18.9	630
K293477		5.63	11.45	0.13	1.5	0.432	1.12	8.5	10.6	1.10	1660	21.7	1.60	3.2	27.5	450
K293478		2.72	18.45	0.19	3.2	0.079	2.20	47.0	9.6	0.43	97	0.71	0.22	20.4	12.3	240
K293479		3.11	20.1	0.22	3.5	0.089	2.39	57.4	12.7	0.46	93	0.78	0.18	21.4	10.6	250
K293480		2.31	14.95	0.22	2.8	0.071	1.62	40.9	9.1	0.45	114	0.52	0.19	15.3	9.3	210
K293481		2.48	12.45	0.17	1.8	0.081	1.36	30.9	13.7	0.64	418	0.44	0.66	7.6	20.7	290
K293482		1.90	14.00	0.17	2.1	0.043	1.79	27.4	9.2	0.44	141	0.24	0.82	8.4	15.0	160
K293483		3.16	16.45	0.21	2.0	0.054	2.32	29.9	9.7	1.01	204	0.40	0.69	7.5	18.5	410
K293484		3.53	14.80	0.17	1.5	0.047	2.02	23.5	12.3	1.33	252	0.43	0.69	5.5	15.3	450
K293485		2.20	10.45	0.16	2.0	0.034	1.25	21.0	9.0	0.95	266	0.21	0.88	4.8	25.1	170
K293486		5.20	18.05	0.11	1.9	0.085	1.38	28.5	22.4	1.79	563	0.43	1.06	8.3	40.4	440
K293487		3.33	10.95	0.10	1.3	0.060	1.09	21.4	12.6	1.55	514	0.31	0.75	4.3	18.9	320
K293488		3.65	17.15	0.12	2.5	0.070	1.92	34.2	10.2	1.35	319	0.57	1.10	8.2	24.9	350
K293489		6.97	24.8	0.15	2.2	0.091	1.76	47.0	22.0	2.97	424	0.61	1.27	8.9	38.5	690
K293490		6.79	18.35	0.08	0.8	0.065	1.28	10.6	27.0	2.79	517	0.59	1.86	4.9	17.0	820
K293491		5.73	15.40	0.09	2.0	0.044	1.16	18.5	21.0	2.07	286	0.34	0.36	7.6	31.5	370

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD.
C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED
1016-510 W HASTINGS ST

Page: 2 - C
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 8-JUL-2018
Account: MTT

VANCOUVER BC V6B 1L8
Project: SALOON-BATCH 1

(ALS)	,								CE	RTIFIC	ATE O	FANAL	YSIS	WH181	148000	
Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOD	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
K293451		2.8	119.5	<0.002	0.02	0.30	9.6	<1	2.5	28.9	1.12	<0.05	15.00	0.260	0.52	1.8
K293452		4.1	70.0	<0.002	0.10	0.21	6.5	<1	1.4	92.7	0.84	0.07	9.79	0.192	0.33	1.3
K293453		2.5	50.9	<0.002	0.06	0.26	6.4	<1	1.5	116.0	1.00	<0.05	8.88	0.171	0.22	1.8
K293454		4.6	1.4	<0.002	0.03	0.13	38.8	<1	0.6	279	0.27	<0.05	2.73	0.218	<0.02	0.8
K293455		4.0	0.2	<0.002	0.03	0.10	37.5	<1	0.3	453	<0.05	<0.05	0.45	0.180	<0.02	0.4
K293456		2.3	23.8	<0.002	0.09	0.18	12.4	<1	0.7	120.0	0.60	<0.05	4.54	0.145	0.09	0.9
K293457		2.5	37.9	<0.002	0.18	0.23	15.9	<1	0.9	135.5	0.52	<0.05	4.16	0.161	0.14	1.0
K293458		8370	25.7	0.013	6.15	30.0	10.2	12	6.7	145.0	0.20	0.63	2.86	0.199	2.30	5.0
K293459		6.9	37.8	<0.002	0.10	0.23	2.3	<1	1.1	162.5	0.83	<0.05	6.82	0.094	0.17	1.4
K293460		3.8	55.0	<0.002	0.11	0.23	2.9	<1	1.4	43.8	0.97	<0.05	8.00	0.118	0.26	1.5
K293461 K293462 K293463 K293464 K293465		4.1 8.0 2.5 2.9 2.8	62.9 176.5 53.6 36.8 39.8	<0.002 <0.002 <0.002 <0.002 <0.002	0.12 0.50 0.16 0.12 0.10	0.30 0.69 0.27 0.18 0.21	4.3 11.5 2.5 1.9 1.9	<1 <1 <1 <1 <1	1.6 3.4 1.3 1.1	143.5 27.5 50.3 69.7 93.2	1.21 1.36 1.06 0.78 0.72	<0.05 <0.05 <0.05 <0.05 <0.05	10.35 19.35 8.28 6.65 6.95	0.172 0.276 0.114 0.086 0.090	0.32 0.83 0.24 0.17 0.19	2.1 3.8 1.5 1.1 1.2
K293466		2.7	38.2	<0.002	0.09	0.22	1.9	<1	1.0	94.9	0.75	<0.05	6.90	0.089	0.18	1.2
K293467		2.0	53.8	<0.002	0.08	0.21	2.7	<1	1.2	13.9	0.79	<0.05	7.68	0.113	0.25	1.4
K293468		15.0	182.5	<0.002	0.64	0.85	14.1	<1	3.9	19.9	1.71	0.06	22.4	0.345	0.89	3.7
K293469		4.8	89.7	<0.002	0.11	0.52	6.2	<1	2.1	69.1	1.21	<0.05	12.40	0.206	0.42	2.9
K293470		10.7	52.9	<0.002	0.49	4.61	3.9	<1	1.5	83.0	1.06	0.12	9.30	0.142	0.24	2.1
K293472		0.5	1.1	<0.002	<0.01	0.24	0.2	<1	<0.2	74.9	<0.05	<0.05	0.15	0.006	<0.02	0.1
K293473		9.7	59.9	<0.002	1.11	0.64	6.9	<1	1.4	54.2	0.78	0.12	6.94	0.197	0.25	1.9
K293474		4.0	57.7	<0.002	0.48	0.56	10.1	<1	1.5	101.0	0.60	<0.05	6.29	0.233	0.27	1.6
K293475		4.0	73.9	<0.002	0.47	0.49	7.1	<1	1.5	64.4	0.62	0.17	8.72	0.190	0.37	1.9
K293476		12.4	88.0	<0.002	1.00	0.78	9.7	<1	3.2	29.6	1.03	<0.05	13.70	0.220	0.39	2.2
K293477		9950	26.1	0.010	2.27	448	10.3	2	2.0	186.5	0.20	1.20	1.78	0.236	0.49	1.3
K293478		31.9	93.2	<0.002	0.85	1.39	8.1	<1	2.8	17.1	1.22	<0.05	14.30	0.212	0.41	1.9
K293479		25.9	98.6	<0.002	0.68	1.05	9.2	<1	3.0	20.5	1.36	0.05	16.80	0.232	0.42	2.1
K293480		143.0	68.9	<0.002	0.53	0.56	6.8	<1	2.3	23.6	0.96	0.06	11.60	0.174	0.35	1.7
K293481		29.6	58.3	<0.002	0.64	0.31	8.0	1	1.4	55.3	0.49	0.12	8.14	0.197	0.26	1.3
K293482		8.3	78.1	<0.002	0.17	0.22	6.4	<1	1.5	31.4	0.61	<0.05	9.93	0.204	0.36	1.4
K293483		9.5	97.3	<0.002	0.32	0.28	12.7	<1	1.6	38.3	0.52	0.06	9.47	0.261	0.41	1.7
K293484		37.3	84.9	<0.002	0.35	0.32	14.2	<1	1.4	46.2	0.37	0.07	7.02	0.266	0.39	1.3
K293485		8.6	54.9	<0.002	0.25	0.36	9.0	1	1.0	42.6	0.35	0.06	8.05	0.149	0.20	0.9
K293486		20.5	61.1	<0.002	0.41	0.28	18.6	<1	1.4	72.5	0.57	0.06	11.25	0.253	0.25	1.6
K293487		5.2	48.2	<0.002	0.24	0.19	11.5	<1	0.9	60.0	0.31	<0.05	6.51	0.160	0.18	0.8
K293488		79.3	83.9	<0.002	1.11	0.31	11.1	1	1.6	49.1	0.58	0.17	12.55	0.211	0.35	2.1
K293489		44.6	75.6	<0.002	0.86	0.32	21.3	<1	1.9	49.9	0.61	0.08	11.05	0.363	0.32	2.2
K293490		40.7	50.3	<0.002	1.02	0.54	24.3	<1	1.2	101.5	0.30	0.59	2.46	0.379	0.23	0.8
K293491		29.9	52.1	<0.002	1.38	0.26	16.1	<1	1.4	39.2	0.52	0.13	8.19	0.196	0.20	1.5

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST

CERTIFICATE OF ANALYSIS

Plus Appendix Pages Finalized Date: 8-JUL-2018 **VANCOUVER BC V6B 1L8**

Page: 2 - D

Account: MTT

Total # Pages: 2 (A - D)

WH18148000

	1					
	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	V	W	Υ	Zn	Zr
	Units	ppm	ppm	ppm	ppm	ppm
Sample Description	LOD	1	0.1	0.1	2	0.5
K2024E1		E1	2.0	0.0	40	77.0
K293451		51	3.8	9.9	48	77.9
K293452		33	9.9	7.9	38	68.0
K293453		39	1.5	9.4	21	78.7
K293454		183	0.4	8.6	68	24.2
K293455		182	0.2	7.3	51	8.5
K293456		98	0.9	6.9	21	40.3
K293457		106	1.6	6.3	22	38.6
K293458		385	6.5	11.2	7840	23.7
K293459		13	2.2	6.8	12	53.6
K293460		18	2.9	5.3	15	59.3
K293461		25	2.2	9.1	12	79.7
K293461		63	2.4	9.6	32	120.0
K293463		15	0.8	5.8	10	62.9
K293464		12	6.6	5.4	9	56.1
K293465		12	0.7	5.9	10	63.5
K293466		12	0.7	5.8	9	63.1
K293467		17	1.1	4.6	14	62.3
K293468		72	3.1	11.0	40	145.5
K293469		36	2.7	7.6	22	85.1
K293470		22	0.9	8.7	31	79.2
K293472		2	<0.1	2.3	4	2.1
K293473		62	1.3	6.9	27	61.1
K293474		98	20.0	8.3	29	56.2
K293475		59	2.7	5.8	23	60.9
K293476		55	3.2	8.0	30	95.4
K293477		81	0.6	12.8	4960	51.1
K293478		48	2.5	5.9	24	101.5
K293479		54	2.9	6.3	23	107.5
K293480		40	2.0	5.5	18	92.6
K293481		52	2.7	6.3	37	68.4
K293482		38	1.5	5.0	26	69.8
K293482 K293483		106	2.2	5.7	48	73.4
K293483 K293484		136	2.4	5.7	40 52	73.4 54.0
		48	2.4 1.2	5.2 4.5	52 22	54.0 53.1
K293485						
K293486		105	2.0	6.9	49	69.0
K293487		74	1.2	5.6	24	45.7
K293488		79	1.8	6.6	28	94.3
K293489		155	2.4	7.6	60	81.0
K293490		236	2.1	7.3	56	29.9
K293491		102	1.9	4.5	43	67.0

^{*****} See Appendix Page for comments regarding this certificate *****

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

1016-510 W HASTINGS ST **VANCOUVER BC V6B 1L8**

Project: SALOON-BATCH 1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8-JUL-2018

Account: MTT

CERTIFICATE OF	ANALYSIS	WH18148000
CLICATE OF	AINAL I 313	WIII 10 1 1 0 0 0 0

Т			
	CERTIFICATE C	COMMENTS	
	ΛΛ	IALYTICAL COMMENTS	
	REE's may not be totally soluble in this method.	THE THORE CONTINUE TO	
Applies to Method:	ME-MS61		
	ΙΔI	BORATORY ADDRESSES	
	Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Wi		
Applies to Method:	CRU-31 CRU-QC	LOG-21	LOG-21d
	LOG-23 PUL-31	PUL-31d	PUL-QC
	SPL-21 SPL-21d	WEI-21	
	Processed at ALS Vancouver located at 2103 Dollarton Hwy	y, North Vancouver, BC, Canada.	
Applies to Method:	Au-ICP21 ME-MS61	,	

APPENDIX IV GEOLOGICAL AND GEOTECHNICAL LOGS

Saloon - Saloon

Grid East	Grid North	Easting	Northing	Elevation	Depth (m)
		542860	6784588		134.11

ZONE:	Unknown
SECTION:	

	SURVEY								
Depth (m)	Azimuth	Dip	Method						

TARGET: Main Zone

SUMMARY								
From (m)	To (m)	Interval (m)	Rock Type					
0.4	3.13	2.73	QBS					
3.13	3.31	0.18	QV					
3.31	5.22	1.91	SST					
5.22	9.14	3.92	QBS					
9.14	13.71	4.57	SST					
13.71	20.4	6.69	SST					
20.4	22.69	2.29	QBS					
22.69	30.64	7.95	SST					
30.64	30.8	0.16	QBS					
30.64	32.36	1.72	SST					
32.36	33.52	1.16	QBS					
33.52	34.01	0.49	SST					
34.01	34.33	0.32	QBS					
34.33	35.78	1.45	SST					
35.78	36.1	0.32	QBS					
36.1	38.21	2.11	SST					

HOLE: SAL-18-001

CLAIM:

Contractor: Beaudoin

Drill: 1

Core Size: NTW

Casing Depth: 95m, Out

Drilling Dates: -

Geology Logged By: J. Morton

SAMPLES								
Numbers:	K293451 to K293470, K293472 to K293523							
Total:	72							
Batch:	001, 002							
Certificates:	WH18147998, WH18148000							

COMMEN.

Hole abandoned at 134.11 due to difficult ground conditions.

42.8	4.59	FLR
44.94	2.14	QBS
45.72	0.78	QBS
46.34	0.62	SST
49.24	2.9	QBS
52.13	2.89	QBS
55.56	3.43	QBS
55.66	0.1	QV
61.01	5.35	QBS
62.25	1.24	QBS
67.73	5.48	SST
74.16	6.43	QBS
80.85	6.69	QBS
81.3	0.45	QBS
85.43	4.13	FLR
92	6.57	QBS
93.52	1.52	GAB
98.3	4.78	QBS
99.48	1.18	FLR
115.22	15.74	QBS
118.87	3.65	SST
134.11	15.24	QBS
	44.94 45.72 46.34 49.24 52.13 55.56 55.66 61.01 62.25 67.73 74.16 80.85 81.3 85.43 92 93.52 98.3 99.48 115.22 118.87	44.94 2.14 45.72 0.78 46.34 0.62 49.24 2.9 52.13 2.89 55.56 3.43 55.66 0.1 61.01 5.35 62.25 1.24 67.73 5.48 74.16 6.43 80.85 6.69 81.3 0.45 85.43 4.13 92 6.57 93.52 1.52 98.3 4.78 99.48 1.18 115.22 15.74 118.87 3.65

SAL-18-001

Saloon Archer, Cathro Unknown Zone

RESOURCES	⊞ BOX LC	g
Box Number	From (m)	To (m)
1	0	5.22
2	5.22	10.57
3	10.57	19.66
4	19.66	23.54
5	23.54	25.99
6	25.99	29.52
7	29.52	33.52
8	33.52	37.09
9	37.09	43.47
10	43.47	47.24
11	47.24	51.87
12	51.87	55.66
13	55.66	59.56
14	59.56	63.54

63.54

67.27

71.35

74.86

78.67

82.16

86.79

90.77

94.51

99.8

102.21

105.75

109.83

113.62

116.78

120.19

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

67.27

71.35

74.86

78.67

82.16

86.79

90.77

94.51

99.8

102.21

105.75

109.83

113.62

116.78

120.19

123.91

Box Number	From (m)	To (m)
31	123.91	127.58
32	127.58	131.44
33	131.44	134.11

Box Number	From (m)	To (m)
---------------	----------	--------

SAL-18-001

Description Description									1111110	WII ZOII	_		
0.40 3.13 2.73 QBS FG Green, chlorite-sericite schist, brecciated in places and healed in a chlorite matrix. Quartz sweats < 1 cm wide, sparse ad foliaform hosting thin hairline ribbons of limonite and CPY and PY and rare clots of blck manganese (?). BX Cp 0.1	Fro		Interv	Rock	Grai	Description		0	Te	Alte	Int	3	
and healed in a chlorite matrix. Quartz sweats < 1 cm wide, sparse ad foliaform hosting thin hairline ribbons of limonite and CPY and PY and rare clots of blck manganese (?). BX	m (m)	⁻ o (m)	⁄al (m)	Туре	n Size		Shade	Colour	exture	ration	ensity	ineral	Conc.
3.13 3.31 0.18 QV Quartz-carbonate vein, moderately fractured with carbonate, limonite and sericite in fractures as well as sparse CPY and chalcocite (rimming). Patches of dark, smokey quartz with unknown mineralization (XRF it!) WH MA SER 11 Cp 0.1 3.31 5.22 1.91 SST MG Metasandstone. Strongly silica-flooded, pale green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veinlets abudant clots of black manganese and lesser fine graied CPY. LT GN FR 0XI 11 Cp 0.1 LT GN FR 0XI 11 Cp 0.1	0.40	3.13	2.73	QBS	FG	and healed in a chlorite matrix. Quartz sweats < 1 cm wide, sparse ad foliaform hosting thin hairline ribbons of limonite and CPY and PY and rare clots							
3.13 3.31 0.18 QV Quartz-carbonate vein, moderately fractured with carbonate, limonite and sericite in fractures as well as sparse CPY and chalcocite (rimming). Patches of dark, smokey quartz with unknown mineralization (XRF it!) WH MA SER 11 Cp 0.1 3.31 5.22 1.91 SST MG Metasandstone. Strongly silica-flooded, pale green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veinlets abudant clots of black manganese and lesser fine graied CPY. LT GN FR OXI 11 Cp 0.1 LT GN FR OXI 11 Cp 0.1								ļ 	BX	ļ		Ср	0.1
3.13 3.31 0.18 QV Quartz-carbonate vein, moderately fractured with carbonate, limonite and sericite in fractures as well as sparse CPY and chalcocite (rimming). Patches of dark, smokey quartz with unknown mineralization (XRF it!) WH MA SER 11 Cp 0.1 OXI 21 CC 0.1 CHL 21 3.31 5.22 1.91 SST MG Metasandstone. Strongly silica-flooded, pale green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veinlets approximately 1-2 cm wide. Carbonate veins host abudant clots of black manganese and lesser fine graied CPY. LT GN FR OXI 11 Cp 0.1 5.22 9.14 3.92 QBS FG Same lithology as 0.40-3.13 m, with patches of				ļ				 	FO			Sp	0.1
carbonate, limonite and sericite in fractures as well as sparse CPY and chalcocite (rimming). Patches of dark, smokey quartz with unknown mineralization (XRF it!) WH MA SER 1I Cp 0.1 OXI 2I CC 0.1 CHL 2I 3.31 5.22 1.91 SST MG Metasandstone. Strongly silica-flooded, pale green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veins host abudant clots of black manganese and lesser fine graied CPY. LT GN FR OXI 1I Cp 0.1 5.22 9.14 3.92 QBS FG Same lithology as 0.40-3.13 m, with patches of							MD	GN	FR	OXI	21	Ру	0.1
3.31 5.22 1.91 SST MG Metasandstone. Strongly silica-flooded, pale green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veins host abudant clots of black manganese and lesser fine graied CPY. LT GN FR OXI 11 Cp 0.1 5.22 9.14 3.92 QBS FG Same lithology as 0.40-3.13 m, with patches of	3.13	3.31	0.18	QV		carbonate, limonite and sericite in fractures as well as sparse CPY and chalcocite (rimming). Patches of dark, smokey quartz with unknown							
3.31 5.22 1.91 SST MG Metasandstone. Strongly silica-flooded, pale green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veins host abudant clots of black manganese and lesser fine graied CPY. LT GN FR OXI 11 Cp 0.1 5.22 9.14 3.92 QBS FG Same lithology as 0.40-3.13 m, with patches of								WH	MA	SER	11	Ср	0.1
3.31 5.22 1.91 SST MG Metasandstone. Strongly silica-flooded, pale green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veins host abudant clots of black manganese and lesser fine graied CPY. LT GN FR OXI 11 Cp 0.1 5.22 9.14 3.92 QBS FG Same lithology as 0.40-3.13 m, with patches of							ļ	ļ 		 			
green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veins host abudant clots of black manganese and lesser fine graied CPY. LT GN FR OXI 11 Cp 0.1 5.22 9.14 3.92 QBS FG Same lithology as 0.40-3.13 m, with patches of										ļ		CC	0.1
5.22 9.14 3.92 QBS FG Same lithology as 0.40-3.13 m, with patches of	3.31	5.22	1.91	SST	MG	green (patchy) metasandstone with fine to medium grains of dark, rounded quartz cut by a network of en echelon hairline fractures with quartz hosting limonite and 3 carbonate veinlets approximately 1-2 cm wide. Carbonate veins host abudant clots of black manganese and lesser fine							
							LT	GN	FR	OXI	11	Ср	0.1
dark and light chlorite.	5.22	9.14	3.92	QBS	FG	Same lithology as 0.40-3.13 m, with patches of dark and light chlorite.							
MD GN FO OXI 1I							MD	GN	FO	OXI	11		
9.14 13.71 4.57 SST MG Same lithology as 3.31-5.22 m with patches and veinlets of quartz with limonite on selvages and patchy CPY and chalcocite rimming and coating dissminated grains of limonite.	9.14	13.71	4.57	SST	MG	veinlets of quartz with limonite on selvages and patchy CPY and chalcocite rimming and coating							
LT GN OXI 1I Cp 0.1							LT	GN		OXI	11	Ср	0.1
CC 0.1												CC	0.1

							1					
From (m)	To (m)	Interval (m)	Rock Type	Grain Size	Description	Shade	Colour	Texture	Alteration	Intensity	Mineral	Conc.
13.71	20.40	6.69	SST	MG	Weakly to moderately fractured, relatively unmetamorphosed, medium grey sedimentary rock cut by numerous quartz veinlets and fractures. Hosting limonite and chlorite and manganese (?). Encrusting malachite at the top of the interval. Smokey dark grains of quartz, fine to medium grained. 8 cm of strongly oxidized gouge at 15.24-15.32 m becoming increasingly silica-flooded down interval with patchy limonite staining in last 33 cm.							
							 		OXI	21		
						MD	GY	FR			MI	0.1
20.40	22.69	2.29	QBS	FG	Weakly foliated and fractured chlorite schist, similar to 0.40-3.13 m. Numerous quartz veinlets and hairline fractures with limonite on selvages and rare clots of chalcocite rimming fine grained CPY.							
						MD	GN	FR			Ср	0.1
								FO				
22.69	30.64	7.95	SST	MG	Same lithology as 13.71-20.40 m with no gouge or encrusting malachite. Contains patchy hemotite staining throughout, quartz clasts up to 5 mm in diametre, thin hairline fractures throughout hosting sericite and hematite and very fine grained CPY and chalcocite and limonite. Sparse quartz veinlets up to 1 cm wide sometimes with small clots of dark black managnese (also encrusting gashes).							
									OXI	11	CC	0.1
						MD	GY	FR			Ср	0.1
30.64	32.36	1.72	SST	MG	Moderately fractured same lithology as 22.60 to 30.64 m. Disseminated frine grained limonite througout.							
						MD	GY	FR	OXI	21		
32.36	33.52	1.16	QBS	MG	Strongly fractured chlorite-sericite schist with sparse vugs filled with limonite and carbonate. Thin ribbons of dark, rusty oxide and oxide on all surfaces.	DK	GN	FO	OXI	21		
						MD	GN	FO	OXI	21		
i							÷	FR	Ť		ļi	

Fro		Interv	Rock	Grai	Description		0	Te	Alte	Int	3	
From (m)	To (m)	Interval (m)	Rock Type	Grain Size		Shade	Colour	Texture	Alteration	Intensity	Mineral	Conc.
33.52	34.01	0.49	SST	MG	Strongly brecciated, medium grained metasandstone with round smokey quartz grains and numerous quartz-sericite veinlets and oxide on fracture surfaces. No visible sulphide mineralization.							
			·			MD	GY	FR	OXI	11	ļ 	
								ВХ				
34.01	34.33	0.32	QBS	MG	Gougey, chlorite schist, moderately oxidized with orange limonite throughout. Crumbly, no visible sulphides.							
						MD	GN	FR				
								FO	OXI	31		
34.33	35.78	1.45	SST	MG	Weakly fractured rock with the same lithology as 33.52-34.01. Trace CPY rimmed by chalcocite in quartz-carbonate veinlets.							
						LT	GY		OXI	11	Ср	0.1
											CC	0.1
35.78	36.10	0.32	QBS	MG	Same lithology as 34.01 to 34.33				OVI	21		
36.10	38.21	2.11	ССТ	MG	Strongly fractured and silica-flooded with limonite				OXI	21		
30.10	30.21	2.11	331	IVIG	and carbonate in fractures with abundant ribbons of foliaform chalcocite and within the ribbons clots of very fine grained CPY. Pale grey.							
						LT	GY		ОХІ	11	Ср	0.5
											CC	1
38.21	42.80	4.59	FLR		Light to dark grey, clay-rich gouge and rubble. Poor recovery.					1		
42.80	44.94	2.14	QBS	MG	Strongly fractured and thoroughly oxidized chlorite schist with the same lithology as 34.01-34.33 m. Strongly clay-altered with sparse encrusting of malachite, abundant fracture-filled with limonite, sparse < 1 cm wide quartz veinlets (also numerous black hairline fractures) and patchy, sooty black mineralization.							
						DK	GN	FR	OXI	41		
44.94	45.72	0.78	QBS	MG	Orange, thoroughly oxidized chlorite schist rubble (?).							
									OXI	51		
45.72	46.34	0.62	SST	MG	Rock with same lithology as 36.10-38.21 m.							
						LT	GY		OXI	21	Ср	0.1

From (m)	Tc	Interval (m)	Rock Type	Grain Size	Description	S	Cc	Тех	Alteration	Intensity	Mir	0
ı (m	To (m)	(m	Туре	Size		Shade	Colour	Texture	atior	nsit	Mineral	Conc.
			(0	(D		(D	7	(D		<	CC -	0.3
46.34	49.24	2.90	QBS	MG	Majority is thoroughly oxidized chlorite schist rubble and gouge with rare patches of malachite and disseminated dendritic manganese and limonite on fractures throughout.							
						MD	GN					
49.24	52.13	2.89	QBS	MG	Strongly fractured, medium grained metasandstone with smokey quartz grains. No silica-flooding, sericite and limonite on fractures. Clots of chalcocite, trace pyrite is rare and abudant, millimetre-scale quartz veinlets.							
						LT	GY		OXI	21	CC Cp	0.1
52.13	55.56	3.43	QBS	MG	Becoming less fractured and much more clayaltered and chlorite-bearing down interval. Gradational contact into a pale green, weakly foliated quartz-sericite-chlorite schist. Oxide on fracture surfaces, sericite in fractures and sparse quartz veinlets < 1 cm containing fine grained limonite.							
						LT	GN	FO	OXI	11		
								FR				
55.56	55.66	0.10	QV		White quartz rubble with limonite							
									OXI	11		
55.66	61.01	5.35	QBS	MG	Silica-flooded schist, brecciated, limonite and sericite in fractures. Trace clots of black manganese (?) and dark rimming, fine grained CPY. Ending in rubble in limonite gouge.							
						LT	GY	ВХ	ОХІ	21	СС	0.1
								FR			Ср	0.1
61.01	62.25	1.24	QBS	MG	Strongly fractured and broken, dark green chlorite schist with a limonite matrix. No visible sulphides.							
						DK	GN	FR	ОХІ	31		
62.25	67.73	5.48	SST	MG	Intensely silica-flooded and fractured quartzite?? With moderate clots of chlorite and black manganese, sericite and limonite in fractures. Trace disseminated pyrite throughout. Fracture network at multiple orientations. Rare patches and ribbons of PY and GN.							
						LT	GY	FR	OXI	21	Ру	0.1
										1	Gn	0.1

Fro		Inten	Rock	Grain	Description		0	Te	Alte	Int	<	
From (m)	To (m)	Interval (m)	Rock Type	in Size		Shade	Colour	Texture	Alteration	Intensity	Mineral	Conc.
67.73	74.16	6.43	QBS	MG	Weakly fractured meedium green chlorite schist, gougey in parts with sericite in fractures. No visible sulphides.							
						MD	GN	FO				
							ļ	FR				
74.16	80.85	6.69	QBS	MG	Intensely silica flooded schist (?) moderately fractured and rubbly with sericite in fractures. Trace CP in fractures and rare clots of black manganese (?) un-oxidized.							
						LT	GY	FR			Ср	0.1
80.85	81.30	0.45	QBS	MG	Gougey chlorite schist with the same lithology as 67.73-74.16 m.							
						DK	GN	FR				
							† 	FO				
81.30	85.43	4.13	FLR		Quartz-rich rubble and gouge.							
85.43	92.00	6.57	QBS	MG	Well foliated schist, weakly fractured with sericite in fractures, gougey and rubbly in sections with small sections of patchy silica flooding. Trace disseminated pyrite and pyrite in clots. Unoxidized.							
						MD	GN	FO			Ру	0.1
							†	FR				
92.00	93.52	1.52	GAB	MG	Dark green amygdaloydal gabbro dyke with sparses, randomly dispersed amygdules of calcite up to 5 mm in diametre. No mineralization. Chlorite-rich.							
93.52	98.30	4.78	QBS	MG	Silica-flooded rubbly chlorite-schist with trace disseminated pyrite. Weakly fractured with sericite in fractures. No oxide.							
						LT	GY	FR			Ру	0.1
						ļ	† 	FO	ł			
98.30	99.48	1.18	FLR		Pale green clayey gouge.							
99.48	115.22	15.74	QBS	MG	Medium green, clorite schist, calcareous, well foliated, gougey in sections with sparse disseminated fine grained pyrite. Quartz veins at 102.11-102.36 m, 107.94-107.08, 109.52-109.99, 113.08-113.67. White, fine quartz-carbonate with trace fine grained pyrite or clots in fractures.							
						MD	GN	FO			Ру	0.1

From (m)	To (m)	Interval (m)	Rock Type	Grain Size	Description	Shade	Colour	Texture	Alteration	Intensity	Mineral	Conc.
115.22	118.87	3.65	SST	MG	White and green, wavy banded/foliated calcareous quartz-chlorite-scheist with few fractures that are well healted, trace disseminated pyrite and rare ribbons of black ironrich chlorite(?). Mostly quartz!							
						MD	GN	FO			Ру	0.1
								FR				
118.87	134.11	15.24	QBS	MG	Strongly fractured, calcareous, folicated, medium green chlorite schist with moderate foliaform quartz (mostly chlorite). Clay-altered, trace disseminated fine grained pyrite throughout. Becoming more and more clay altered down hole. EOH in gouge (hole abandoned because of gouge). Between 130.10 to 130.25 white quartz carbonate rubble with moderate patches of sooty, very fine grained pyrite.							
								FR				
						MD	GN	FO			Ро	0.1

SAL-18-001

From (m) To (m) Interval (m) Recovery (m) Recovery (m) Recovery (m) Recovery (m) Recovery (m) Reactivity Weathering Comments 0.00 1.52 1.52 1.52 100 0.00 0 0R 1H 3W 1.52 3.04 1.52 1.15 76 0.24 16 0R 3H 2W 3.04 4.57 1.53 1.39 91 0.26 17 2R 3H 2W 4.57 6.09 1.52 1.1 72 0.42 28 3R 3H 1W 6.09 7.62 1.53 1.53 100 0.55 36 3R 4H 1W 7.62 9.14 1.52 0.49 32 0.00 0 3R 3H 2W	
1.52 3.04 1.52 1.15 76 0.24 16 0R 3H 2W 3.04 4.57 1.53 1.39 91 0.26 17 2R 3H 2W 4.57 6.09 1.52 1.1 72 0.42 28 3R 3H 1W 6.09 7.62 1.53 1.53 100 0.55 36 3R 4H 1W 7.62 9.14 1.52 0.49 32 0.00 0 3R 3H 2W	
3.04 4.57 1.53 1.39 91 0.26 17 2R 3H 2W 4.57 6.09 1.52 1.1 72 0.42 28 3R 3H 1W 6.09 7.62 1.53 1.53 100 0.55 36 3R 4H 1W 7.62 9.14 1.52 0.49 32 0.00 0 3R 3H 2W	
4.57 6.09 1.52 1.1 72 0.42 28 3R 3H 1W 6.09 7.62 1.53 1.53 100 0.55 36 3R 4H 1W 7.62 9.14 1.52 0.49 32 0.00 0 3R 3H 2W	
6.09 7.62 1.53 1.53 100 0.55 36 3R 4H 1W 7.62 9.14 1.52 0.49 32 0.00 0 3R 3H 2W	
7.62 9.14 1.52 0.49 32 0.00 0 3R 3H 2W	
7.62 9.14 1.52 0.49 32 0.00 0 3R 3H 2W	
7.02 3.14 1.32 0.43 32 0.00 0 3N 3H 2W	
9.14 10.66 1.52 1.52 100 0.00 0 3R 3H 2W	
10.66 12.19 1.53 1.46 95 0.32 21 3R 4H 1W	
12.19 13.71 1.52 1.51 99 0.12 8 3R 4H 2W	
13.71 15.24 1.53 1.41 92 0.00 0 3R 4H 2W	
15.24 16.76 1.52 1.52 100 0.38 25 2R 4H 1W	
16.76 18.28 1.52 1.52 100 0.10 7 1R 3H 2W	
18.28 19.81 1.53 1.53 100 0.14 9 2R 2H 3W	
19.81 21.34 1.53 1.53 100 0.00 0 2R 2H 3W	
21.34 22.86 1.52 1.52 100 0.51 34 1R 3H 1W	
22.86 24.38 1.52 1.52 100 0.97 64 1R 3H 1W	
24.38 25.91 1.53 1.53 100 0.98 64 2R 4H 3W	
25.91 27.43 1.52 1.52 100 0.48 32 1R 4H 3W	
27.43 28.95 1.52 1.52 100 0.13 9 2R 3H 1W	
28.95 30.48 1.53 1.53 100 0.00 0 1R 3H 2W	
30.48 32.00 1.52 1.39 91 0.00 0 1R 3H 1W	
32.00 33.52 1.52 1.5 99 0.41 27 2R 3H 3W	
33.52 35.05 1.53 1.53 100 0.26 17 2R 3H 2W	
35.05 36.58 1.53 1.53 100 0.44 29 1R 3H 2W	
36.58 38.10 1.52 1.52 100 0.31 20 2R 3H 1W	
38.10 39.62 1.52 1.52 100 1.10 72 2R 1H 4W	
38.10 39.62 1.52 1.52 100 1.10 72 2R 1H 4W	
39.62 41.15 1.53 1.53 100 0.10 7 OR 1H 2W	

From (m)	To (m)	Interval (m)	Recovery (m)	Recovery %	RQD	RQD %	Reactivity	Hardness	Weathering	Comments
41.15	42.67	1.52	0.74	49	0.70	46	OR	1H	2W	
42.67	44.19	1.52	1.52	100	0.00	0	OR	3H	1W	
44.19	45.72	1.53	1.53	100	0.10	7	OR	2H	3W	
45.72	47.24	1.52	1.52	100	0.82	54	OR	3H	3W	
47.24	48.76	1.52	1.52	100	0.50	33	OR	2H	2W	
48.76	50.29	1.53	1.42	93	0.27	18	OR	3H	3W	
50.29	51.81	1.52	1.52	100	0.81	53	OR	4H	2W	
51.81	53.34	1.53	1.47	96	0.74	48	OR	4H	1W	
53.34	54.86	1.52	1.52	100	0.11	7	1R	3H	1W	
54.86	56.38	1.52	1.52	100	0.21	14	OR	2H	2W	
56.38	57.91	1.53	1.53	100	0.47	31	OR	3H	2W	
57.91	59.43	1.52	1.52	100	0.46	30	1R	3H	2W	
59.43	60.96	1.53	1.25	82	0.27	18	2R	3H	1W	
60.96	62.48	1.52	1.52	100	0.13	9	2R	3H	1W	
62.48	64.00	1.52	1.52	100	0.00	0	2R	2H	1W	
64.00	65.53	1.53	1.53	100	0.26	17	1R	4H	1W	
65.53	67.05	1.52	1.52	100	0.73	48	2R	3H	1W	
67.05	68.58	1.53	1.44	94	0.44	29	OR	3H	1W	
68.58	70.10	1.52	1.52	100	0.75	49	1R	3H	1W	
70.10	71.63	1.53	1.53	100	0.40	26	1R	2H	1W	
71.63	73.15	1.52	1.52	100	0.00	0	1R	2H	1W	
73.15	74.68	1.53	1.53	100	0.00	0	OR	4H	1W	
74.68	76.20	1.52	1.52	100	0.00	0	OR	4H	1W	
76.20	77.72	1.52	1.52	100	0.00	0	OR	3H	1W	
77.72	79.25	1.53	1.53	100	0.00	0	1R	5H	1W	
79.25	80.77	1.52	1.52	100	0.00	0	OR	4H	1W	
80.77	82.82	2.05	1.52	74	0.00	0	OR	3H	1W	
82.82	83.82	1.00	0.41	41	0.00	0	OR	3H	1W	
83.82	85.34	1.52	1.52	100	0.00	0	OR	3H	1W	
85.34	86.87	1.53	1.53	100	0.35	23	OR	3H	1W	
86.87	88.39	1.52	1.53	101	0.00	0	3R	2H	1W	

From (m)	To (m)	Interval (m)	Recovery (m)	Recovery %	RQD	RQD %	Reactivity	Hardness	Weathering	Comments
88.39	89.92	1.53	1.53	100	0.00	0	2R	3H	1W	
89.92	91.44	1.52	1.52	100	0.00	0	1R	3H	1W	
91.44	92.96	1.52	1.52	100	0.56	37	OR	4H	1W	
92.96	94.48	1.52	1.52	100	0.18	12	3R	4H	1W	
94.48	96.01	1.53	1.53	100	0.00	0	3R	3H	1W	
96.01	97.54	1.53	1.53	100	0.12	8	3R	3H	1W	
97.54	99.06	1.52	1.52	100	0.00	0	3R	3H	1W	
99.06	100.58	1.52	1.44	95	0.00	0	3R	3H	1W	
100.58	102.19	1.61	1.53	95	0.00	0	2R	2H	1W	
102.19	103.63	1.44	1.52	106	0.35	24	3R	3H	1W	
103.63	105.16	1.53	1.53	100	0.69	45	2R	1H	1W	
105.16	106.68	1.52	1.52	100	0.00	0	3R	1H	1W	
106.68	108.20	1.52	1.52	100	0.00	0	2R	1H	1W	
108.20	109.73	1.53	1.53	100	0.00	0	3R	1H	1W	
109.73	111.25	1.52	1.53	101	0.20	13	3R	4H	1W	
111.25	112.78	1.53	1.53	100	0.20	13	2R	3H	1W	
112.78	114.30	1.52	1.52	100	0.14	9	3R	3H	1W	
114.30	115.82	1.52	1.52	100	0.17	11	3R	3H	4W	
115.82	117.35	1.53	1.53	100	0.19	12	4R	4H	1W	
117.35	118.87	1.52	1.52	100	0.65	43	4R	4H	1W	
118.87	120.39	1.52	1.52	100	0.00	0	4R	2H	1W	
120.39	121.92	1.53	1.3	85	0.00	0	4R	2H	1W	
120.39	121.92	1.53	1.3	85	0.00	0	4R	1H	1W	
121.92	123.44	1.52	1.11	73	0.00	0	4R	1H	1W	
123.44	124.97	1.53	1.19	78	0.00	0	4R	3H	1W	
124.97	126.49	1.52	1.52	100	0.00	0	4R	3H	1W	
126.49	128.02	1.53	1.53	100	0.00	0	4R	3H	1W	
128.02	129.54	1.52	1.43	94	0.00	0	3R	2H	1W	
129.54	131.06	1.52	1.52	100	0.00	0	2R	1H	1W	
131.06	132.59	1.53	1.48	97	0.00	0	1R	1H	1W	
132.59	134.11	1.52	1.52	100	0.00	0	1R	1H	1W	

From (m)	To (m)	Interval (m)	Recovery (m)	Recovery %	RQD	RQD %	Reactivity	Hardness	Weathering	Comments
132.59	134.11	1.52	1.52	100	0.00	0	1R	1H	1W	

Saloon Archer, Cathro
Unknown Zone Associates (1981) Limited

									OTIKIT	own zone –			T) Lilling
From (m)	To (m)	Interval (m)	Rock Type	Recovery (m)	Recovery %	Sample Number	Not Sampled	BatchName	Batch Class	Standard	Blank	1/4 Dup	Coarse Dup
3.04	3.31	0.27	QBS	0.26	96	K293452		S18-001	RED				
3.31	5.22	1.91	QV, SST	1.15	60	K293453		S18-001	RED				
5.22	7.62	2.40	SST, QBS	1.41	59	K293454		S18-001	RED				
7.62	9.14	1.52	QBS	1.52	100	K293455		S18-001	RED				
9.14	12.19	3.05	QBS, SST	2.98	98	K293456		S18-001	RED				
12.19	13.71	1.52	SST	1.51	99	K293457		S18-001	RED				
13.71	16.76	3.05	SST, SST	2.93	96	K293459		S18-001	RED				
16.76	19.81	3.05	SST	3.05	100	K293460		S18-001	RED				
19.81	20.40	0.59	SST	0.51	86	K293461		S18-001	RED				
20.40	22.69	2.29	SST, QBS	1.53	67	K293462		S18-001	RED				
22.69	24.38	1.69	QBS, SST	1.47	87	K293463		S18-001	RED				
24.38	27.43	3.05	SST	3.05	100	K293464		S18-001	RED				
27.43	30.48	3.05	SST	3.05	100	K293465		S18-001	RED				
27.43	30.48	3.05	SST	3.05	100	K293466		S18-001	RED				•
30.48	32.36	1.88	SST	1.22	65	K293467		S18-001	RED				
32.36	33.52	1.16	QBS, SST	0.88	76	K293468		S18-001	RED				
33.52	35.02	1.50	QBS, SST	1.50	100	K293469		S18-001	RED				
35.02	37.09	2.07	SST	1.81	87	K293470		S18-001	RED				
37.09	38.21	1.12	SST	0.86	77	K293473		S18-001	RED				
38.21	41.15	2.94	SST, FLR	0.70	24	K293474		S18-001	RED				
41.15	42.80	1.65	FLR	1.65	100	K293475		S18-001	RED				

From (m)	To (m)	Interval (m)	Rock Type	Recovery (m)	Recovery %	Sample Number	Not Sampled	BatchName	Batch Class	Standard	Blank	1/4 Dup	Coarse Dup
42.80	44.94	2.14	FLR, QBS	1.71	80	K293476		S18-001	RED				
44.94	45.72	0.78	QBS, QBS	0.76	97	K293478		S18-001	RED				
44.94	45.72	0.78	QBS, QBS	0.76	97	K293479		S18-001	RED			•	
45.72	46.34	0.62	QBS, SST	0.62	100	K293480		S18-001	RED				
46.34	49.24	2.90	SST, QBS	1.67	58	K293481		S18-001	RED				
49.24	51.81	2.57	QBS, QBS	1.94	75	K293482		S18-001	RED				
51.81	54.86	3.05	QBS	2.99	98	K293483		S18-001	RED				
54.86	57.91	3.05	QBS	3.05	100	K293484		S18-001	RED				
57.91	61.01	3.10	QBS	3.04	98	K293485		S18-001	RED				
61.01	62.25	1.24	QBS, QBS	1.12	90	K293486		S18-001	RED				
62.25	64.00	1.75	QBS, SST	1.75	100	K293487		S18-001	RED				
64.00	67.05	3.05	SST	3.05	100	K293488		S18-001	RED				
67.05	68.58	1.53	SST	1.44	94	K293489		S18-001	RED				
68.58	71.63	3.05	QBS	3.05	100	K293490		S18-001	RED				
71.63	74.16	2.53	QBS	1.70	67	K293491		S18-001	RED				
74.16	76.20	2.04	QBS, QBS	1.58	77	K293492		S18-002	BLUE				
76.20	79.25	3.05	QBS	3.05	100	K293493		S18-002	BLUE				
79.25	80.77	1.52	QBS	1.52	100	K293494		S18-002	BLUE				
80.77	81.34	0.57	QBS	0.57	100	K293495		S18-002	BLUE				
81.34	83.82	2.48	FLR	2.48	100	K293496		S18-002	BLUE				
83.82	85.43	1.61	FLR	0.92	57	K293497		S18-002	BLUE				
85.43	88.39	2.96	FLR, QBS	2.96	100	K293498		S18-002	BLUE				
88.39	91.44	3.05	QBS	3.05	100	K293499		S18-002	BLUE				

From (m)	To (m)	Interval (m)	Rock Type	Recovery (m)	Recovery %	Sample Number	Not Sampled	BatchName	Batch Class	Standard	Blank	1/4 Dup	Coarse Dup
91.44	92.00	0.56	QBS	0.56	100	K293500		S18-002	BLUE				
92.00	93.52	1.52	QBS, GAB	1.20	79	K293501		S18-002	BLUE				
93.52	96.01	2.49	GAB, QBS	1.11	45	K293502		S18-002	BLUE				
96.01	98.30	2.29	QBS	2.29	100	K293503		S18-002	BLUE				
98.30	99.48	1.18	QBS, FLR	1.18	100	K293504		S18-002	BLUE				
99.48	102.11	2.63	FLR, QBS	1.05	40	K293505		S18-002	BLUE				
99.48	102.11	2.63	FLR, QBS	1.05	40	K293506		S18-002	BLUE			•	
102.11	105.16	3.05	QBS	3.05	100	K293507		S18-002	BLUE				
105.16	108.20	3.04	QBS	3.04	100	K293508		S18-002	BLUE				
108.20	111.25	3.05	QBS	3.05	100	K293510		S18-002	BLUE				
111.25	114.30	3.05	QBS	3.05	100	K293511		S18-002	BLUE				
114.30	115.22	0.92	QBS	0.90	98	K293512		S18-002	BLUE				
115.22	117.35	2.13	QBS, SST	1.79	84	K293513		S18-002	BLUE				
117.35	120.39	3.04	SST	3.04	100	K293515		S18-002	BLUE				
120.39	123.44	3.05	QBS	3.05	100	K293516		S18-002	BLUE				
123.44	126.49	3.05	QBS	2.71	89	K293517		S18-002	BLUE				
123.44	126.49	3.05	QBS	2.71	89	K293518		S18-002	BLUE				
126.49	129.54	3.05	QBS	2.96	97	K293519		S18-002	BLUE				
129.54	131.06	1.52	QBS	1.52	100	K293520		S18-002	BLUE				
131.06	132.59	1.53	QBS	1.48	97	K293522		S18-002	BLUE				
132.59	134.11	1.52	QBS	1.52	100	K293523		S18-002	BLUE				

I I a leas a service

Saloon - Saloon

Grid East	Grid North	Easting	Northing	Elevation	Depth (m)
		542860	6784588		42.67

	SURVEY	
SECTION:		
ZUIVE:	Ulikilowii	

	SUR	VEY	
Depth (m)	Azimuth	Dip	Method

TARGET: Main Zone

	SUMI	MARY	
From (m)	To (m)	Interval (m)	Rock Type
0	1.52	1.52	OVB
1.52	10.85	9.33	SST
10.85	21.46	10.61	SST
21.46	26.44	4.98	QBS
26.44	36.58	10.14	QBS
36.58	42.67	6.09	SST

HOLE: SAL-18-002

CLAIM:

Contractor: Beaudoin

Drill: 1

Core Size: NTW

Casing Depth: 42.67m, Out

Drilling Dates: -

Geology Logged By: J. Morton

	SAMPLES
Numbers:	0.1, K293524 to K293539
Total:	17
TOtal.	17
Batch:	001, 002, 003
Certificates:	WH18147998, WH18150464

COMMENTS

Hole abandoned at 42.67m. Drillers had pulled the rods and could not get back down to bottom. No downhole survey.

Saloon Archer, Cathro
Unknown Zone

To (m) From (m) Box Number

To (m) From (m) Box Number

Box Number	From (m)	To (m)
1	0	6.15
2	6.15	10.46
3	10.46	14.98
4	14.98	18.49
5	18.49	23.37
6	23.37	27.55
7	27.55	32.08
8	32.08	38.3
9	38.3	42.67

										I I		
		ni	_Z		Description				>			
Froi	_	(erv	OCK	arai:		10	0	\exists	lte	Int	≤	
From (m)	To (m)	Interval (m)	Rock Type	Grain Size		Shad	Colour	Texture	Alteration	Intensity	Mineral	Conc.
n)	n)		эe	ze		de	<u> </u>	Te	on	ţ	<u>a'</u>	IC.
0.00	1.52	1.52	OVB		overburden.							
1.52	10.85	9.33	SST	MG	Medium grey, un-foliated metasandstone with							
					disseminated fine grained limonite throughout							
					(replacing what?). Weakly fractured with fractures filled with limonite and chlorite. Rare							
					wavy quartz veinlets < 1 cm wide hosting sparse							
					clots of very fine grained CPY. Trace malachite							
					encrusting fracture surfaces. Becoming							
					increasingly brecciated and silica flooded at the							
					bottom of the interval and weakly sericite altered.							
10.55	24.5	40.51		F.0		MD	GY	FR	OXI	21	Ср	0.1
10.85	21.46	10.61	SST	FG	Strongly silicified, pale grey sandstone (?) with							
					abundant smokey quartz veinlets that are < 1 cm wide hosting clots of CPY and chalcocite.							
					Dendritic manganese and encrusting malachite							
					and hematite on fractures. Chlorite in fractures.							
					White quartz veins between 12.15 and 12.58							
					with trace CPY and chalcocite in fractures.							
							¦ ¦ ∤	ļ		 	CC	0.1
						LT	GY				Ср	0.1
21.46	26.44	4.98	QBS	FG	Orange, limonitic, strongly oxidized chlorite schist							
					rubble with rare encrusting of malachite in							
					fracture surfaces and sparse black manganese on fracture surfaces. Strongly fractured.							
					Tractare sarraces. Strongly tractarea.	LT	OR	FR	OXI	41		
26.44	36.58	10.14	QBS	MG	Medium grey moderately fractured, wavy foliated		J.,		J/11			
20.44	30.38	10.14	QD3	IVIO	quartz-sericite schist with hairline fractures filled							
					with limonite and sericite and pyrite. Becoming							
					strongly oxidized down interval and more rubbly.							
					Patches of dendritic manganese on fractures.							
					Quartz-carbonate vein at 28.39 to 28.60 m							
					fracture with limonite and sericite in fractures, but no visible sulphide mineralization.							
					actio visible sulpline fillicialization.							
								FR				
						MD	GY	FO	OXI	31		
36.58	42.67	6.09	SST	FG	Fractured and weakly foliated, light grey							
					metasandstone rubble hosting trace disseminated							
					pyrite and rare smokey quartz veinlets.							
							ļ					
								FO				

From (m)	To (m)	Interval (m)	Rock Type	Description Grain Size	Shade	Colour	Texture	Alteration	Intensity	Mineral	Conc.
					LT	GY	FR		11	Ру	0.1

Comments Comments											Unknown Zone — Associates (1991) Emilia
1.52 3.05 1.53 1.53 100 0.26 17 0R 4H 3W 3.05 4.57 1.52 1.04 68 0.00 0 0R 4H 2W 4.57 6.10 1.53 1.52 99 0.77 50 4R 3H 2W 6.10 7.62 1.52 1.52 100 1.03 68 4R 3H 4W 7.62 9.14 1.52 1.52 100 1.52 100 4R 4H 2W 9.14 10.67 1.53 1.04 68 0.11 7 2R 3H 2W 10.67 1.53 1.04 68 0.11 7 2R 3H 2W 12.19 1.52 1.12 74 0.00 0 2R 3H 2W 12.19 1.52 1.53 1.17 76 0.32 21 1R 4H 1W 13.72 15.24 1.52 1.52 100 1.51 13 18 4H	From (m)	To (m)	Interval (m)	Recovery (m)	Recovery %	RQD	RQD %	Reactivity	Hardness	Weathering	Comments
3.05 4.57 1.52 1.04 68 0.00 0 0R 4H 2W 4.57 6.10 1.53 1.52 99 0.77 50 4R 3H 2W 6.10 7.62 1.52 1.52 100 1.03 68 4R 3H 4W 7.62 9.14 1.52 1.52 100 1.52 100 4R 4H 2W 9.14 10.67 1.53 1.04 68 0.11 7 2R 3H 2W 10.67 12.19 1.52 1.12 74 0.00 0 2R 3H 2W 12.19 13.72 1.53 1.17 76 0.32 21 1R 4H 1W 13.72 15.23 1.52 100 0.50 33 1R 4H 1W 15.24 16.76 1.52 1.52 100 1.11 73 1R 4H 1W 16.76 18.29 1.53 1.53 100 0.00 0 1R <td>0.00</td> <td>1.52</td> <td>1.52</td> <td>0.7</td> <td>46</td> <td>0.00</td> <td>0</td> <td>4R</td> <td>3H</td> <td>3W</td> <td></td>	0.00	1.52	1.52	0.7	46	0.00	0	4R	3H	3W	
4.57 6.10 1.53 1.52 99 0.77 50 4R 3H 2W 6.10 7.62 1.52 1.52 100 1.03 68 4R 3H 4W 7.62 9.14 1.52 1.52 100 4R 4H 2W 9.14 10.67 1.53 1.04 68 0.11 7 2R 3H 2W 10.67 12.19 1.52 1.12 74 0.00 0 2R 3H 2W 12.19 13.72 1.53 1.17 76 0.32 21 1R 4H 1W 13.72 15.24 1.52 100 0.50 33 1R 4H 1W 15.24 16.76 1.52 1.52 100 0.50 33 1R 4H 1W 16.76 18.29 1.53 1.53 100 0.00 0 1R 4H 1W 18.29 19.81 1.52 1.52 100 0.00 0 1R 4H 1W <td>1.52</td> <td>3.05</td> <td>1.53</td> <td>1.53</td> <td>100</td> <td>0.26</td> <td>17</td> <td>OR</td> <td>4H</td> <td>3W</td> <td></td>	1.52	3.05	1.53	1.53	100	0.26	17	OR	4H	3W	
6.10 7.62 1.52 1.52 1.00 1.03 68 4R 3H 4W 7.62 9.14 1.52 1.52 100 1.52 100 4R 4H 2W 9.14 10.67 1.53 1.04 68 0.11 7 2R 3H 2W 10.67 12.19 1.52 1.12 74 0.00 0 2R 3H 2W 12.19 13.72 1.53 1.17 76 0.32 21 1R 4H 1W 13.72 15.24 1.52 1.52 100 0.50 33 1R 4H 1W 15.24 15.52 1.52 100 1.11 73 1R 4H 1W 16.76 18.29 1.53 1.53 100 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 1W 22.86 24.38 1.52 1.52 100 0.00 0	3.05	4.57	1.52	1.04	68	0.00	0	OR	4H	2W	
7.62 9.14 1.52 1.52 100 1.52 100 4R 4H 2W 9.14 10.67 1.53 1.04 68 0.11 7 2R 3H 2W 10.67 12.19 1.52 1.12 74 0.00 0 2R 3H 2W 12.19 13.72 1.53 1.17 76 0.32 21 1R 4H 1W 13.72 15.24 1.52 1.52 100 0.50 33 1R 4H 1W 15.24 16.76 1.52 1.52 100 1.11 73 1R 4H 1W 16.76 18.29 1.53 1.53 100 0.00 0 1R 5H 1W 18.29 19.81 1.52 1.52 100 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 5H 3W 21.34 22.86 1.52 1.52 100 0.00 <	4.57	6.10	1.53	1.52	99	0.77	50	4R	3H	2W	
9.14	6.10	7.62	1.52	1.52	100	1.03	68	4R	3H	4W	
10.67 12.19 1.52 1.12 74 0.00 0 2R 3H 2W 12.19 13.72 1.53 1.17 76 0.32 21 1R 4H 1W 13.72 15.24 1.52 1.52 100 0.50 33 1R 4H 1W 15.24 16.76 1.52 1.52 100 0.00 0 1R 4H 1W 16.76 18.29 1.53 1.53 100 0.00 0 1R 5H 1W 18.29 19.81 1.52 1.52 100 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 3W 21.34 22.36 1.52 0.61 40 0.00 0 1R 5H 3W 22.86 24.38 1.52 1.52 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 <	7.62	9.14	1.52	1.52	100	1.52	100	4R	4H	2W	
12.19 13.72 1.53 1.17 76 0.32 21 1R 4H 1W 13.72 15.24 1.52 1.52 1.00 0.50 33 1R 4H 1W 15.24 16.76 1.52 1.52 100 1.11 73 1R 4H 1W 16.76 18.29 1.53 1.53 100 0.00 0 1R 5H 1W 18.29 19.81 1.52 1.52 100 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 3W 21.34 22.86 1.52 0.61 40 0.00 0 1R 5H 3W 22.86 24.38 1.52 1.52 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20	9.14	10.67	1.53	1.04	68	0.11	7	2R	3H	2W	
13.72 15.24 1.52 1.52 100 0.50 33 1R 4H 1W 15.24 16.76 1.52 1.52 100 1.11 73 1R 4H 1W 16.76 18.29 1.53 1.53 100 0.00 0 1R 5H 1W 18.29 19.81 1.52 1.52 100 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 3W 21.34 22.86 1.52 0.61 40 0.00 0 1R 5H 3W 22.86 24.38 1.52 1.52 100 0.00 0 2R 5H 3W 24.38 25.91 1.53 1.53 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 28.96 30.48 1.52 1.16 76 0.00	10.67	12.19	1.52	1.12	74	0.00	0	2R	3H	2W	
15.24 16.76 1.52 1.52 100 1.11 73 1R 4H 1W 16.76 18.29 1.53 1.53 100 0.00 0 1R 5H 1W 18.29 19.81 1.52 1.52 100 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 3W 21.34 22.86 1.52 0.61 40 0.00 0 1R 5H 3W 22.86 24.38 1.52 1.52 100 0.00 0 1R 5H 3W 24.38 25.91 1.53 1.53 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00	12.19	13.72	1.53	1.17	76	0.32	21	1R	4H	1W	
16.76 18.29 1.53 1.53 100 0.00 0 1R 5H 1W 18.29 19.81 1.52 1.52 100 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 3W 21.34 22.86 1.52 0.61 40 0.00 0 1R 5H 3W 22.86 24.38 1.52 1.52 100 0.00 0 2R 5H 3W 24.38 25.91 1.53 1.53 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 38.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 <	13.72	15.24	1.52	1.52	100	0.50	33	1R	4H	1W	
18.29 19.81 1.52 1.52 100 0.00 0 1R 4H 1W 19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 3W 21.34 22.86 1.52 0.61 40 0.00 0 1R 5H 3W 22.86 24.38 1.52 1.52 100 0.00 0 2R 5H 3W 24.38 25.91 1.53 1.53 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 28.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 2W 33.53 1.53 0.4 26 0.00 0 1R<	15.24	16.76	1.52	1.52	100	1.11	73	1R	4H	1W	
19.81 21.34 1.53 1.07 70 0.00 0 1R 4H 3W 21.34 22.86 1.52 0.61 40 0.00 0 1R 5H 3W 22.86 24.38 1.52 1.52 100 0.00 0 2R 5H 3W 24.38 25.91 1.53 1.53 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 28.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 5W 32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00	16.76	18.29	1.53	1.53	100	0.00	0	1R	5H	1W	
21.34 22.86 1.52 0.61 40 0.00 0 1R 5H 3W 22.86 24.38 1.52 1.52 100 0.00 0 2R 5H 3W 24.38 25.91 1.53 1.53 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 28.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 5W 32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00 0 1R 4H 3W 35.05 36.58 1.53 0.93 61 0.00	18.29	19.81	1.52	1.52	100	0.00	0	1R	4H	1W	
22.86 24.38 1.52 1.52 100 0.00 0 2R 5H 3W 24.38 25.91 1.53 1.53 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 28.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 5W 32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00 0 1R 3H 4W 35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00	19.81	21.34	1.53	1.07	70	0.00	0	1R	4H	3W	
24.38 25.91 1.53 1.53 100 0.00 0 1R 5H 3W 25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 28.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 5W 32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00 0 1R 3H 4W 35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	21.34	22.86	1.52	0.61	40	0.00	0	1R	5H	3W	
25.91 27.43 1.52 1.52 100 1.20 79 1R 5H 1W 27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 28.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 5W 32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00 0 1R 3H 4W 35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	22.86	24.38	1.52	1.52	100	0.00	0	2R	5H	3W	
27.43 28.96 1.53 1.53 100 0.32 21 1R 4H 1W 28.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 5W 32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00 0 1R 3H 4W 35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	24.38	25.91	1.53	1.53	100	0.00	0	1R	5H	3W	
28.96 30.48 1.52 1.16 76 0.00 0 1R 4H 1W 30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 5W 32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00 0 1R 3H 4W 35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	25.91	27.43	1.52	1.52	100	1.20	79	1R	5H	1W	
30.48 32.00 1.52 1.28 84 0.00 0 1R 4H 5W 32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00 0 1R 3H 4W 35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	27.43	28.96	1.53	1.53	100	0.32	21	1R	4H	1W	
32.00 33.53 1.53 0.4 26 0.00 0 1R 4H 2W 33.53 35.05 1.52 1.27 84 0.00 0 1R 3H 4W 35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	28.96	30.48	1.52	1.16	76	0.00	0	1R	4H	1W	
33.53 35.05 1.52 1.27 84 0.00 0 1R 3H 4W 35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	30.48	32.00	1.52	1.28	84	0.00	0	1R	4H	5W	
35.05 36.58 1.53 0.93 61 0.00 0 1R 4H 3W 36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	32.00	33.53	1.53	0.4	26	0.00	0	1R	4H	2W	
36.58 38.10 1.52 1.25 82 0.00 0 1R 4H 3W	33.53	35.05	1.52	1.27	84	0.00	0	1R	3H	4W	
	35.05	36.58	1.53	0.93	61	0.00	0	1R	4H	3W	
38.10 39.62 1.52 0.8 53 0.00 0 1R 4H 2W	36.58	38.10	1.52	1.25	82	0.00	0	1R	4H	3W	
	38.10	39.62	1.52	0.8	53	0.00	0	1R	4H	2W	
39.62 41.15 1.53 0.76 50 0.00 0 1R 2H 2W	39.62	41.15	1.53	0.76	50	0.00	0	1R	2H	2W	
41.15 42.67 1.52 0.38 25 0.00 0 1R 2H 1W	41.15	42.67	1.52	0.38	25	0.00	0	1R	2H	1W	

Saloon Archer, Cathro
Unknown Zone Associates (1981) Limited

									0	own zone =			
From (m)	To (m)	Interval (m)	Rock Type	Recovery (m)	Recovery %	Sample Number	Not Sampled	BatchName	Batch Class	Standard	Blank	1/4 Dup	Coarse Dup
0.00	3.05	3.05	-QC-	2.23	73	K293524		S18-002	BLUE				
0.00	0.00	0.00	-QC-	0.00	0	K293537		S18-003	YELLOW	ME-16			
0.10	0.10	0.00	OVB	0.10	0	0.1		S00-0001	S00- 0001				
3.05	6.10	3.05	SST	2.56	84	K293525		S18-002	BLUE				
6.10	7.62	1.52	SST	1.52	100	K293526		S18-002	BLUE				
7.62	10.85	3.23	SST	3.23	100	K293527		S18-002	BLUE				
10.85	13.72	2.87	SST, SST	2.86	100	K293528		S18-002	BLUE				
13.72	16.76	3.04	SST	3.04	100	K293529		S18-002	BLUE				
16.76	19.81	3.05	SST	3.05	100	K293530		S18-002	BLUE				
19.81	22.86	3.05	SST	1.68	55	K293531		S18-002	BLUE				
22.86	25.01	2.15	QBS	2.15	100	K293532		S18-003	YELLOW				
25.01	28.96	3.95	QBS	3.95	100	K293533		S18-003	YELLOW				
28.96	30.48	1.52	QBS	1.16	76	K293534		S18-003	YELLOW				
30.48	33.53	3.05	QBS	1.68	55	K293535		S18-003	YELLOW				
33.53	36.58	3.05	QBS	2.20	72	K293536		S18-003	YELLOW				
36.58	39.62	3.04	QBS, SST	2.05	67	K293538		S18-003	YELLOW				
39.62	42.67	3.05	SST	1.14	37	K293539		S18-003	YELLOW				

Saloon - Saloon

Grid East	Grid North	Easting	Northing	Elevation	Depth (m)
		542855	6784731		108.2

ZONE:	Unknown	
SECTION:		

SURVEY						
Depth (m)	Azimuth	Dip	Method			

TARGET:

SUMMARY						
From (m)	To (m)	Interval (m)	Rock Type			
0	2.12	2.12	OVB			
2.12	3.95	1.83	LST			
3.95	5.63	1.68	QBS			
5.63	9.75	4.12	LST			
9.75	10.12	0.37	MST			
10.12	11.31	1.19	SST			
11.31	26.54	15.23	QBS			
26.54	26.91	0.37	DAC			
26.91	30.55	3.64	SST			
30.55	34.19	3.64	SST			
34.19	38.38	4.19	SST			
38.38	40.21	1.83	QBS			
40.21	42.48	2.27	SST			
42.48	43.12	0.64	VOL			
43.12	48.21	5.09	QBS			
48.21	51.2	2.99	VOL			

HOLE: SAL-18-003

CLAIM:

Contractor: Beaudoin

Drill: 1

Core Size: NTW

Casing Depth:

Drilling Dates: Jun 19 - Jun 22, 2018

Geology Logged By: J. Morton

	SAMPLES					
Numbers:	K293540 to K293596					
Total:	57					
Batch:	003, 004					
Certificates:	WH18150464, WH18150470					

COMMENTS

SAL-18-003 ended at the approximate level of the Main Adit. Rods got stuck at 108.20 m and the drillers could not get them out. In the process of trying they broke the tower. No downhole survey.

51.2	53.87	2.67	QBS
53.87	61.71	7.84	SST
61.71	62.58	0.87	QBS
62.58	71.41	8.83	FLR
71.41	71.63	0.22	QBS
71.63	76.68	5.05	FLR
76.68	78.98	2.3	QBS
78.98	84.94	5.96	SST
84.94	85.34	0.4	QBS
85.34	86.97	1.63	SST
86.97	94.07	7.1	SST
94.07	99.84	5.77	FLR
99.84	103.63	3.79	QBS
103.63	103.87	0.24	FLR
103.87	104.19	0.32	QBS
104.19	108.2	4.01	QBS

Saloon Archer, Cathro Unknown Zone

To (m)
From (m)
Box
Number

Box Number	From (m)	To (m)
er ×	<u> </u>	<u>n</u>

Box Number	From (m)	To (m)
1	0	4.52
2	4.52	8.17
3	8.17	11.93
4	11.93	15.66
5	15.66	19.3
6	19.3	22.84
7	22.84	25.86
8	25.86	29.5
9	29.5	33.12
10	33.12	36.38
11	36.38	39.62
12	39.62	43.26
13	43.26	47.24
14	47.24	51
15	51	54.92
16	54.92	58.39
17	58.39	62.6
18	62.6	67.26
19	67.26	71.8
20	71.8	76.69
21	76.69	79.62
22	79.62	83.89
23	83.89	86.97
24	86.97	91.25
25	91.25	94.68
26	94.68	99.68
27	99.68	103.66
28	103.66	108.2

								TIKITO	WII ZON			
From (m)	To (m)	Interval (m)	Rock Type	Grain Size	Description	Shade	Colour	Texture	Alteration	Intensity	Mineral	Conc.
0.00	2.12	2.12	1.5		Overburden.	Ф		m		<		.,
0.00	2.12	2.12	ОУБ		Overburden.				T			
2.12	3.95	1.83	LST	MG	Light grey, medium grained limestone (sandy limestone) with fractures coated with limonite and carbonate. Trace disseminated fine grained pyrite.				OXI	31		
						LT	GY	FR	OXI	21	Ру	0.1
3.95	5.63	1.68	QBS	MG	Orange weathering, medium green, orange chlorite schist with dark red oxide (hematite) on fracture surfaces.							
						MD	GN	FR	OXI	31	1	
5.63	9.75	4.12	LST	MG	Rock with same lithology as 2.12-3.95 m							
						LT	GY		OXI	21		
9.75	10.12	0.37	MST	FG	Soft pale green, non-calcareous pyritic mudstone with dark limonite on fracture surfaces.							
						LT	GN	FR	OXI	21	Ру	0.1
10.12	11.31	1.19	SST	MG	Medium grey, non-calcareous metasandstone, weakly fractured with limonite in fractures and disseminated pyrite throughout.							
						MD	GY	FR	OXI	11	Ру	0.1
11.31	26.54	15.23	QBS	MG	Pale grey, moderately fractured and foliated quartz-sericite schist with brick red hematite in fractures and numereous 1 cm wide smokey quartz-carbonate veinlets hosting abundant clots of dark black mineralization. In terbedded with narrow (< 1 cm) intervals of rubbly, strongly oxidized chlorite schist.							
						LT	GY	FO	OXI	11		
								FR				
26.54	26.91	0.37	DAC	CG	Pale grey-green, coarse grained quartz-eye dacite dyke (?) with moderate < 1 cm cross-cutting quartz veinlets with some veinlets hosting moderate black mineralization and trace fine grained chalcopyrite cut by later un-mineralized veinlets.							
						LT	GN		ļ			
						LT	GY				Ср	0.1

					Description		1			1 1 1 1		
Fro		Interval (m)	Roc	Gra	·			_	Alte	Int	<	
From (m)	To (m)	val (r	Rock Type	Grain Size		Shade	Colour	Texture	Alteration	Intensity	Mineral	Conc
						de	5	re	'n	\ 	<u>ai</u>	C.
26.91	30.55	3.64	SST	MG	Dark grey, moderately foliated and moderately fractured metasandstone, non-calcareous with medium sized grains of smokey quartz. Hosting rare clots of sooty fine grained pyrite with							
					hematite halos, trace clots of chalcopyrite and abundant mm-scale quartz veinlets with limonite on selvages. Gradational into unit below.							
						DK	GY	FO FR	OXI	11	Cp Py	0.1 0.1
30.55	34.19	3.64	SST	MG	Medium grey-green, medium grained sandstone.	DK	O I		OXI		· y	0.1
					Weakly foliated and weakaly fractured with limonitic hairline fractures and rare < 1 cm wide dark quartz-carbonate veinlets. Some of the interval consists of limonitic rubble. Also contains a 10 cm wide section of coarse grained gritty sandstone.							
						MD	GN	FR		 		
						MD	GY	FO	OXI	21		
34.19	38.38	4.19	SST	MG	Light grey, silica flooded, moderately fractured sandstone (?) with limonitic hairline fractures throughout and no visible sulphide mineralization.							
						LT	GY		OXI	11		
38.38	40.21	1.83	QBS	MG	Light green, foliated chlorite schist with rare < 5 mm foliaform bands of carbonate. No visible sulphides.							
						LT	GY		İ	: ! !	Ср	0.1
40.21	42.48	2.27	SST	CG	Light grey, very siliceous coarse grained metasandstone (?) cut by numerous < 1 cm quartz veinlets hosting dark clots of black chlorite (?) and trace chalcopyrite and disseminated dendritic manganese on fracture surfaces.							
						LT	GY				Ср	0.1
42.48	43.12	0.64	VOL	FG	Black, fine grained, metavolcanic with patches of light green silica flooding, weakly foliated and fractured with limonite in harline fractures and < 5 mm wide quartz veinlets. No visible sulphides.							
							i i i	FR	 	 - 		
40.15	46.51		0.55			DK	BK	FO	OXI	11		
43.12	48.21	5.09	QBS	MG	Rock with the same litholgy as 38.38-40.21 m with trace malachite on fracture surfaces.							
						LT	GN	FO		1		

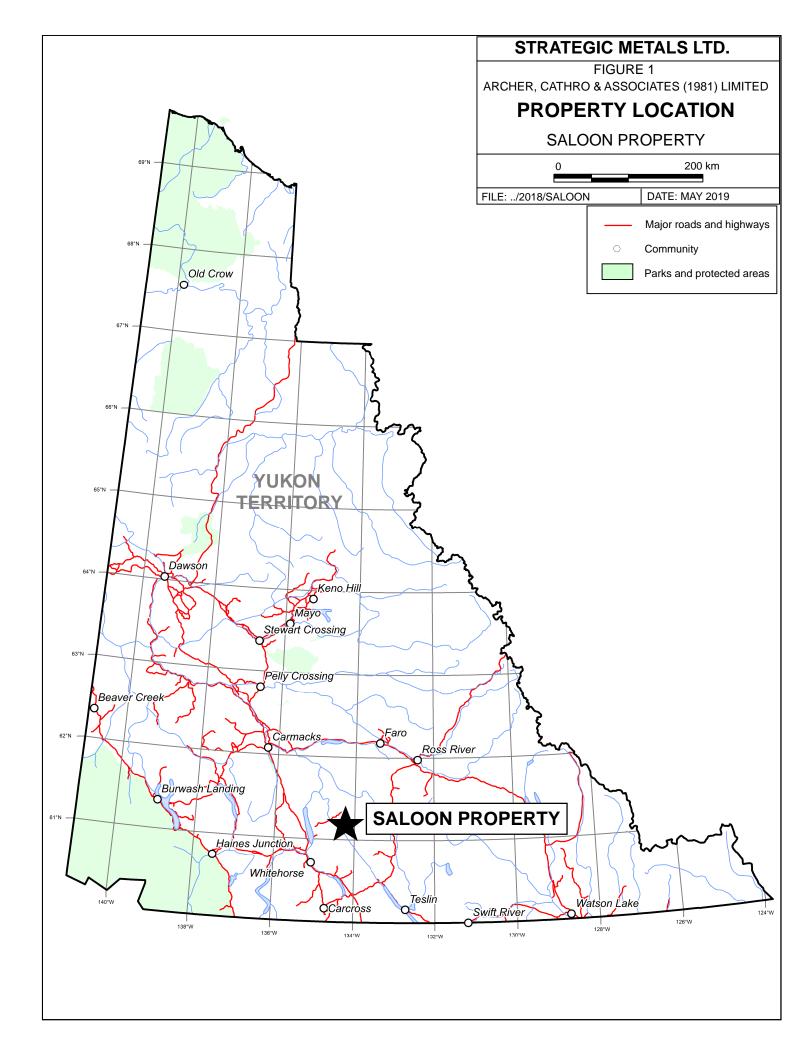
					Description							
From (m)	To (m)	Interval (m	Rock Type	Grain Size	Description	Shade	Colour	Texture	Alteration	Intensity	Mineral	Conc
48.21	51.20	2.99		FG	Rock with the same lithology as 42.48-43.12 m with t race fine grained chalcopyrite in quartz veinlets.			()				•
						DI	, DV	FO	071			0.4
51.20	53.87	2.67	QBS	MG	Weakly foliated, medium green chlorite schist of the same type previously, oxidized on fracture surfaces.	DK	BK	FR	OXI	11	Ср	0.1
						MD	GN	FO	OXI	11		
53.87	61.71	7.84	SST	FG	Strongly fractured and brecciated silica-flooded light grey-green metasandstone (?) cut by abundant quartz veinlets that are up to 2 cm wide, generally hosting rare clots of very fine grained chalcopyrite with a few veinlets of massive, sooty pyrite and chalcopyrite, hairline fractures containing sericite, chlorite and limonite. Grades into quartz-eye volcanic sandstone at 59.56 m and then into strongly banded silica at 60.96 m. Sharp contact into: chlorite schist below.							
						LT	GY	FO			Ру	0.3
						LT	GN	FR	OXI	21	Ср	0.1
61.71	62.58	0.87	QBS	MG	Dark green chlorite schist, well foliated with no visible sulphides.							
						DK	GN	FO				
62.58	71.41	8.83	FLR	CG	Medium grey-green clayey, chloritic gouge and rubble.							
						DK	GN	FO				
71.41	71.63	0.22	QBS	MG	Medium grey-green, intensely fractured, gougey chlorite schist (?).							
						MD	GY	FR				
71.63	76.68	5.05	FLR	CG	Rock with the same lithology as 62.58-71.41 m.							
76.68	78.98	2.30	QBS	MG	Rock with the same lithology as 71.41-71.63 m.							
						MD	GY	FR				
78.98	84.94	5.96	SST	FG	Light grey, coarse grained metasandstone with large rounded quartz grains becoming fine grained to massive and increasingly crystalline. Fractured down the interval. Cut by mm-scale quartz ceinlets and increasing amounts of patchy and ribbon-like dark chlorite down interval with trace clots of chalcopyrite replacing chlorite. Sericite in fractures.							

		In	77		Description				+			
Fror	_	Interval (m)	Rock Type	Grain Size		(0	0	Te	Alteration	Inte	≦.	
From (m)	To (m)	al (m	Тур	n Siz		Shade	Colour	Texture	atio	Intensity	Mineral	Conc.
1)	2	<u>n</u>	Ō	.e		ļ			j j	~	1	
04.04	85.34	0.40	ODC	N.4.C	Dealessials the same little days at 74 44 74 62 mg	LT	GY	FR			Ср	0.1
84.94	85.34	0.40	QBS	IVIG	Rock with the same lithology as 71.41+7163 m.							
85.34	86.97	1.63	SST	FG	Light grey-green siliceous rubble.							
						LT	GY		†			
						LT	GN					
86.97	94.07	7.10	SST	FG	Rubbly, strongly fractured, light grey, silica flooded metasandstone (?) with numerous < 1 cm wide quartz veinlets and ribbons of medium grained, black mineralization, rare clots of fine grained pyrite, hairline fractures containing sericite and limonite. 89.92-90.55 m comprises white-grey calcareous gouge with sparse clots of orange limonite.							
						LT	GY		OXI	11	Ру	0.1
94.07	99.84	5.77	FLR	FG	Dark grey-black, pyritic chlorite gouge and medium grey quartz-carbonate breccia.							
						MD	GY	ВХ			Ру	1
						DK	ВК		†			
99.84	103.63	3.79	QBS	MG	Strongly silicified, medium grey-green chlorite schistbreccia with sparse limonite in a toothy quartz matrix. Breccia is clast-supported, trace disseminated and fine grained chalcopyrite in quartz matrix.							
						MD	GN					
						MD	GY	ВХ			Ср	0.1
103.63	103.87	0.24	FLR	FG	Black, pyritic chlorite gouge.							
						DK	ВК	ВХ			Ру	1
103.87	104.19	0.32	QBS	MG	Rock with the same lithology as 99.84-103.63 m.							
						MD	GN		İ		Ì	
						MD	GY	ВХ				
104.19	108.20	4.01	QBS	MG	Medium green chlorite schist, well foliated, weakly calcareous, no visible sulphides.							
						MD	GN	FO				

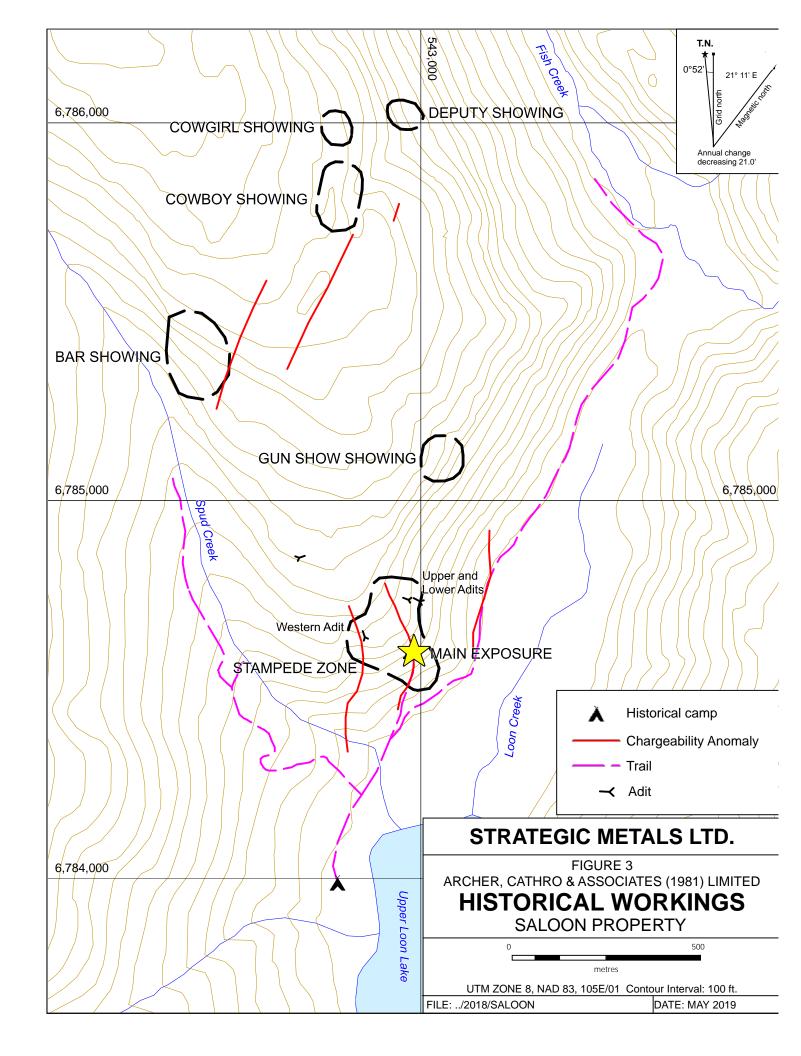
Total Tota											Unknown Zone Associates (1981) Limite
1.52 3.05 1.53 1.53 100 0.14 9 1R 1H 2W 3.05 4.57 1.52 1.52 100 0.00 0 2R 2H 3W 4.57 6.10 1.53 1.53 100 0.57 37 1R 3H 2W 6.10 7.62 1.52 1.52 100 0.94 62 1R 3H 1W 7.62 9.14 1.52 1.52 100 1.12 74 3R 3H 2W 9.14 10.67 1.53 1.53 100 0.72 47 3R 3H 2W 10.67 12.19 1.52 1.52 100 0.13 9 0R 2H 3W 12.19 13.72 1.53 1.45 95 0.52 34 2R 3H 2W 13.72 15.24 1.52 1.52 100 0.63 41 0R 5H 2W 16.76 18.29 1.53 1.53 100 0.63 4	From (m)	To (m)	Interval (m)	Recovery (m)	Recovery %	RQD	RQD %	Reactivity	Hardness	Weathering	Comments
3.05 4.57 1.52 1.52 100 0.00 0 2R 2H 3W 4.57 6.10 1.53 1.53 100 0.57 37 1R 3H 2W 4.57 6.10 1.53 1.53 100 0.57 37 1R 3H 2W 6.10 7.62 1.52 1.52 100 0.94 62 1R 3H 1W 7.62 9.14 1.52 1.52 100 1.12 74 3R 3H 2W 9.14 10.67 1.53 1.53 100 0.72 47 3R 3H 2W 10.67 12.19 1.52 1.52 100 0.13 9 0R 2H 3W 12.19 13.72 1.53 1.45 95 0.52 34 2R 3H 2W 13.72 15.24 1.52 1.52 100 0.63 41 0R 5H 2W 16.76 18.29 1.53 1.53 100 0.31	0.00	1.52	1.52	0.71	47	0.00	0	1R	1H	3W	
4.57 6.10 1.53 1.53 100 0.57 37 1R 3H 2W 4.57 6.10 1.53 1.53 100 0.57 37 1R 3H 2W 6.10 7.62 1.52 1.52 100 0.94 62 1R 3H 1W 7.62 9.14 1.52 1.52 100 1.12 74 3R 3H 2W 9.14 10.67 1.53 1.53 100 0.72 47 3R 3H 2W 10.67 12.19 1.52 1.52 100 0.13 9 0R 2H 3W 12.19 13.72 1.53 1.45 95 0.52 34 2R 3H 2W 13.72 15.24 1.52 1.52 100 0.63 41 0R 5H 2W 15.24 16.76 1.52 1.53 100 0.63 41 0R 5H 2W 18.29 19.81 1.52 1.53 101 0.14 <	1.52	3.05	1.53	1.53	100	0.14	9	1R	1H	2W	
4.57 6.10 1.53 1.53 100 0.57 37 1R 3H 2W 6.10 7.62 1.52 1.52 100 0.94 62 1R 3H 1W 7.62 9.14 1.52 1.52 100 1.12 74 3R 3H 2W 9.14 10.67 1.53 1.53 100 0.72 47 3R 3H 2W 10.67 12.19 1.52 1.52 100 0.13 9 OR 2H 3W 12.19 13.72 1.53 1.45 95 0.52 34 2R 3H 2W 13.72 15.24 1.52 1.52 100 0.17 11 4R 4H 1W 15.24 16.76 1.52 1.52 100 0.63 41 0R 5H 2W 18.29 1.53 1.53 100 0.31 20 3R 4H 2W 19.81 21.34 1.53 1.53 100 0.91 59 <t< td=""><td>3.05</td><td>4.57</td><td>1.52</td><td>1.52</td><td>100</td><td>0.00</td><td>0</td><td>2R</td><td>2H</td><td>3W</td><td></td></t<>	3.05	4.57	1.52	1.52	100	0.00	0	2R	2H	3W	
6.10 7.62 1.52 1.52 100 0.94 62 1R 3H 1W 7.62 9.14 1.52 1.52 100 1.12 74 3R 3H 2W 9.14 10.67 1.53 1.53 100 0.72 47 3R 3H 2W 10.67 12.19 1.52 1.52 100 0.13 9 0R 2H 3W 12.19 13.72 1.53 1.45 95 0.52 34 2R 3H 2W 13.72 15.24 1.52 1.52 100 0.17 11 4R 4H 1W 15.24 16.76 1.52 1.52 100 0.63 41 0R 5H 2W 16.76 18.29 1.53 1.53 100 0.31 20 3R 4H 2W 19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59	4.57	6.10	1.53	1.53	100	0.57	37	1R	3H	2W	
7.62 9.14 1.52 1.52 100 1.12 74 3R 3H 2W 9.14 10.67 1.53 1.53 100 0.72 47 3R 3H 2W 10.67 12.19 1.52 1.52 100 0.13 9 0R 2H 3W 12.19 13.72 1.53 1.45 95 0.52 34 2R 3H 2W 13.72 15.24 1.52 1.52 100 0.17 11 4R 4H 1W 15.24 16.76 1.52 1.52 100 0.63 41 0R 5H 2W 16.76 18.29 1.53 1.53 100 0.31 20 3R 4H 2W 18.29 19.81 1.52 1.53 101 0.14 9 2R 4H 1W 19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59	4.57	6.10	1.53	1.53	100	0.57	37	1R	3H	2W	
9.14	6.10	7.62	1.52	1.52	100	0.94	62	1R	3H	1W	
10.67 12.19 1.52 1.52 100 0.13 9 0R 2H 3W 12.19 13.72 1.53 1.45 95 0.52 34 2R 3H 2W 13.72 15.24 1.52 1.52 100 0.17 11 4R 4H 1W 15.24 16.76 1.52 1.52 100 0.63 41 0R 5H 2W 16.76 18.29 1.53 1.53 100 0.31 20 3R 4H 2W 18.29 19.81 1.52 1.53 101 0.14 9 2R 4H 1W 19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59 39 0R 5H 1W 22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28	7.62	9.14	1.52	1.52	100	1.12	74	3R	3H	2W	
12.19 13.72 1.53 1.45 95 0.52 34 2R 3H 2W 13.72 15.24 1.52 1.52 100 0.17 11 4R 4H 1W 15.24 16.76 1.52 1.52 100 0.63 41 0R 5H 2W 16.76 18.29 1.53 1.53 100 0.31 20 3R 4H 2W 18.29 1.981 1.52 1.53 101 0.14 9 2R 4H 1W 19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59 39 0R 5H 1W 22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96	9.14	10.67	1.53	1.53	100	0.72	47	3R	3H	2W	
13.72 15.24 1.52 1.52 100 0.17 11 4R 4H 1W 15.24 16.76 1.52 1.52 100 0.63 41 0R 5H 2W 16.76 18.29 1.53 1.53 100 0.31 20 3R 4H 2W 18.29 19.81 1.52 1.53 101 0.14 9 2R 4H 1W 19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59 39 OR 5H 1W 22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 <td>10.67</td> <td>12.19</td> <td>1.52</td> <td>1.52</td> <td>100</td> <td>0.13</td> <td>9</td> <td>OR</td> <td>2H</td> <td>3W</td> <td></td>	10.67	12.19	1.52	1.52	100	0.13	9	OR	2H	3W	
15.24 16.76 1.52 1.52 100 0.63 41 0R 5H 2W 16.76 18.29 1.53 1.53 100 0.31 20 3R 4H 2W 18.29 19.81 1.52 1.53 101 0.14 9 2R 4H 1W 19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59 39 0R 5H 1W 22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 <td>12.19</td> <td>13.72</td> <td>1.53</td> <td>1.45</td> <td>95</td> <td>0.52</td> <td>34</td> <td>2R</td> <td>3H</td> <td>2W</td> <td></td>	12.19	13.72	1.53	1.45	95	0.52	34	2R	3H	2W	
16.76 18.29 1.53 1.53 100 0.31 20 3R 4H 2W 18.29 19.81 1.52 1.53 101 0.14 9 2R 4H 1W 19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59 39 0R 5H 1W 22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 27.43 28.96 1.53 1.53 100 0.00 0 2R 4H 2W 28.96 30.48 1.52 1.52 100 0.47 31 3R 4H 1W 30.48 32.00 1.52 1.52 100 0.47	13.72	15.24	1.52	1.52	100	0.17	11	4R	4H	1W	
18.29 19.81 1.52 1.53 101 0.14 9 2R 4H 1W 19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59 39 0R 5H 1W 22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 27.43 28.96 1.53 1.53 100 0.00 0 2R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 100 0.00 0	15.24	16.76	1.52	1.52	100	0.63	41	OR	5H	2W	
19.81 21.34 1.53 1.53 100 0.91 59 2R 5H 1W 21.34 22.86 1.52 1.52 100 0.59 39 0R 5H 1W 22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 27.43 28.96 1.53 1.53 100 0.00 0 2R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	16.76	18.29	1.53	1.53	100	0.31	20	3R	4H	2W	
21.34 22.86 1.52 1.52 100 0.59 39 0R 5H 1W 22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 27.43 28.96 1.53 1.53 1.00 0.00 0 2R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	18.29	19.81	1.52	1.53	101	0.14	9	2R	4H	1W	
22.86 24.38 1.52 1.52 100 0.29 19 1R 4H 3W 24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 27.43 28.96 1.53 1.53 100 0.00 0 2R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	19.81	21.34	1.53	1.53	100	0.91	59	2R	5H	1W	
24.38 25.92 1.54 1.53 99 0.28 18 1R 4H 1W 25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 27.43 28.96 1.53 1.53 100 0.00 0 2R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	21.34	22.86	1.52	1.52	100	0.59	39	OR	5H	1W	
25.92 27.43 1.51 1.51 100 0.96 64 3R 4H 2W 27.43 28.96 1.53 1.53 100 0.00 0 2R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	22.86	24.38	1.52	1.52	100	0.29	19	1R	4H	3W	
27.43 28.96 1.53 1.53 100 0.00 0 2R 4H 2W 28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	24.38	25.92	1.54	1.53	99	0.28	18	1R	4H	1W	
28.96 30.48 1.52 1.52 100 0.86 57 1R 5H 1W 30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	25.92	27.43	1.51	1.51	100	0.96	64	3R	4H	2W	
30.48 32.00 1.52 1.52 100 0.47 31 3R 4H 1W 32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	27.43	28.96	1.53	1.53	100	0.00	0	2R	4H	2W	
32.00 33.53 1.53 1.53 100 0.00 0 2R 4H 1W	28.96	30.48	1.52	1.52	100	0.86	57	1R	5H	1W	
	30.48	32.00	1.52	1.52	100	0.47	31	3R	4H	1W	
33.53 35.05 1.52 1.52 100 0.00 0 1R 3H 1W	32.00	33.53	1.53	1.53	100	0.00	0	2R	4H	1W	
	33.53	35.05	1.52	1.52	100	0.00	0	1R	3H	1W	
35.05 36.58 1.53 1.53 100 0.35 23 1R 3H 1W	35.05	36.58	1.53	1.53	100	0.35	23	1R	3H	1W	
36.58 38.10 1.52 1.52 100 0.31 20 1R 4H 1W	36.58	38.10	1.52	1.52	100	0.31	20	1R	4H	1W	
38.10 39.62 1.52 1.52 100 0.26 17 3R 4H 1W	38.10	39.62	1.52	1.52	100	0.26	17	3R	4H	1W	
39.62 41.15 1.53 1.53 100 0.36 24 1R 4H 1W	39.62	41.15	1.53	1.53	100	0.36	24	1R	4H	1W	
41.15 42.67 1.52 1.52 100 0.84 55 3R 5H 1W	41.15	42.67	1.52	1.52	100	0.84	55	3R	5H	1W	

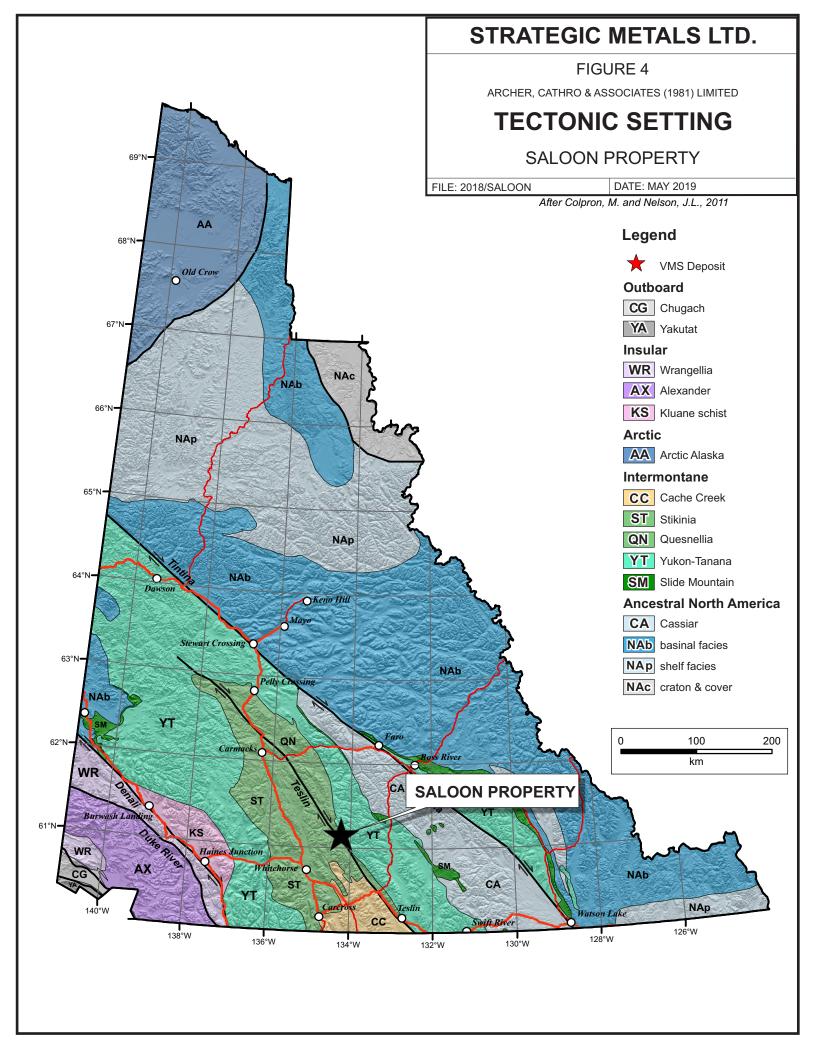
From (m)	To (m)	Interval (m)	Recovery (m)	Recovery %	RQD	RQD %	Reactivity	Hardness	Weathering	Comments
42.67	44.20	1.53	1.53	100	0.79	52	2R	3H	1W	
44.20	45.72	1.52	1.52	100	0.52	34	2R	3H	1W	
45.72	47.24	1.52	1.52	100	0.49	32	1R	3H	1W	
47.24	48.77	1.53	1.53	100	0.96	63	OR	4H	1W	
48.77	50.29	1.52	1.52	100	0.83	55	OR	4H	1W	
50.29	51.82	1.53	1.53	100	0.43	28	OR	4H	1W	
51.82	53.34	1.52	1.52	100	0.00	0	OR	3H	1W	
53.34	54.86	1.52	1.52	100	0.25	16	OR	3H	1W	
54.86	56.39	1.53	1.53	100	0.61	40	OR	3H	1W	
56.39	57.91	1.52	1.52	100	0.49	32	OR	4H	2W	
57.91	59.44	1.53	1.53	100	1.27	83	OR	4H	1W	
59.44	60.96	1.52	1.52	100	0.95	63	OR	4H	1W	
60.96	62.48	1.52	1.52	100	####	####	OR	4H	1W	
62.48	64.01	1.53	0.54	35	0.00	0	OR	1H	1W	
64.01	65.53	1.52	1.12	74	0.00	0	OR	1H	1W	
65.53	67.06	1.53	1.53	100	0.00	0	OR	1H	1W	
67.06	68.58	1.52	1.32	87	0.00	0	1R	1H	1W	
68.58	70.10	1.52	1.39	91	0.00	0	OR	1H	1W	
70.10	71.63	1.53	1.53	100	0.00	0	1R	2H	1W	
71.63	73.15	1.52	0.36	24	0.00	0	OR	1H	1W	
73.15	74.68	1.53	1.21	79	0.00	0	4R	3H	1W	
74.68	76.20	1.52	1.52	100	0.40	26	2R	2H	1W	
76.20	77.72	1.52	1.52	100	0.23	15	OR	1H	1W	
77.72	79.25	1.53	1.53	100	0.71	46	OR	4H	1W	
79.25	80.77	1.52	1.52	100	0.35	23	OR	4H	1W	
80.77	82.30	1.53	1.53	100	0.00	0	OR	2H	1W	
82.30	85.82	3.52	1.52	43	0.26	7	OR	3H	1W	
85.82	86.87	1.05	1.53	146	0.00	0	2R	4H	1W	
86.87	88.39	1.52	1.1	72	0.00	0	2R	4H	1W	
88.39	89.92	1.53	1.53	100	0.00	0	1R	2H	1W	
89.92	91.44	1.52	1.53	101	0.00	0	1R	2H	1W	

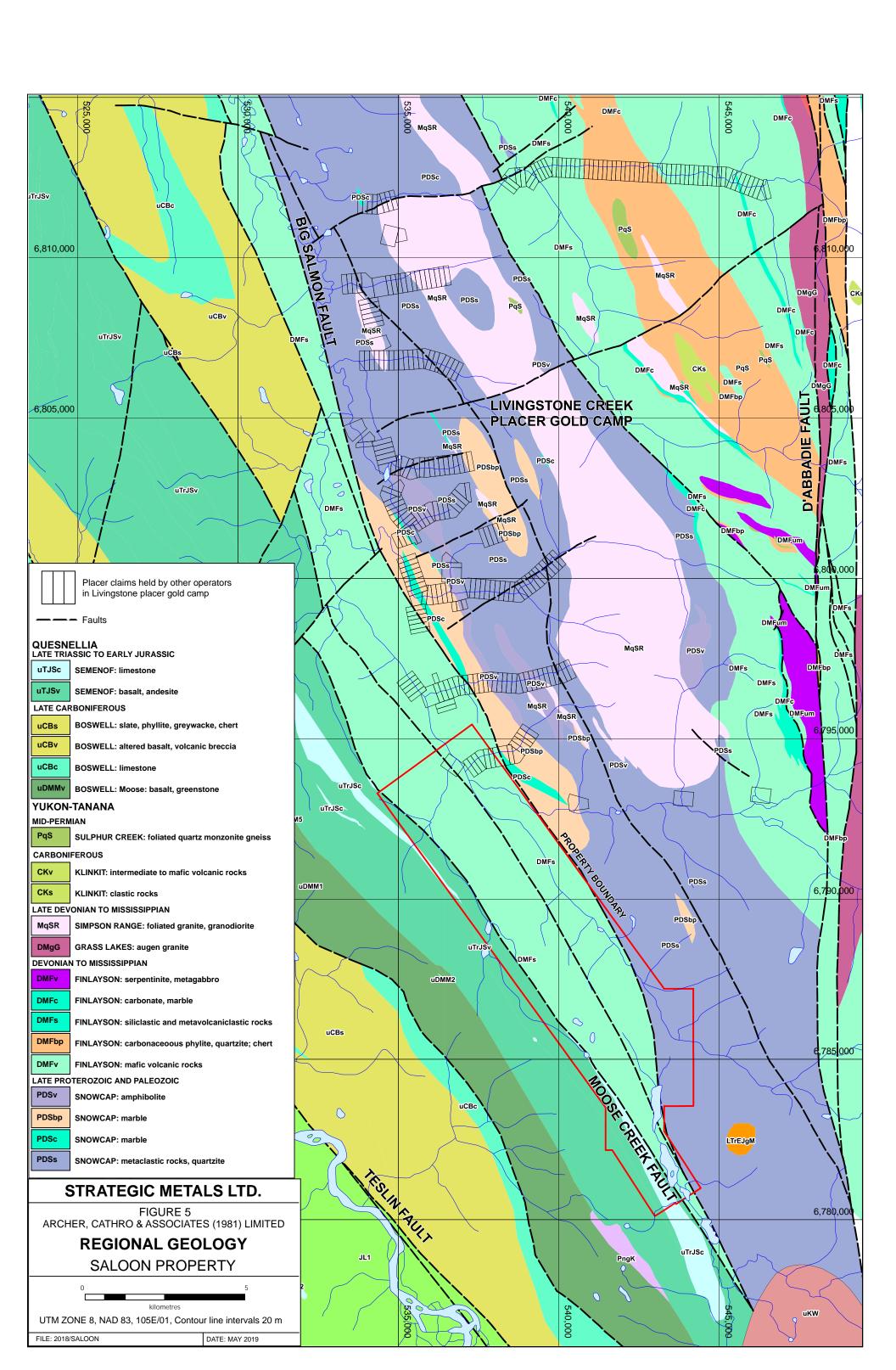
From (m)	To (m)	Interval (m)	Recovery (m)	Recovery %	RQD	RQD %	Reactivity	Hardness	Weathering	Comments
91.44	92.96	1.52	1.52	100	0.00	0	1R	2H	1W	
92.96	94.49	1.53	1.53	100	0.24	16	3R	2H	1W	
94.49	96.01	1.52	0.76	50	0.13	9	1R	1H	1W	
96.01	97.54	1.53	1.11	73	0.25	16	1R	1H	1W	
97.54	99.06	1.52	1.42	93	0.93	61	2R	1H	1W	
99.06	100.58	1.52	1.52	100	0.58	38	1R	2H	1W	
100.58	102.11	1.53	1.53	100	0.57	37	1R	2H	1W	
102.11	103.63	1.52	1.4	92	0.00	0	1R	2H	1W	
103.63	105.16	1.53	0.83	54	0.36	24	OR	3H	1W	
105.16	106.68	1.52	1.39	91	0.82	54	OR	2H	1W	
106.68	108.20	1.52	1.19	78	0.11	7	OR	1H	1W	



Saloon Archer, Cathro
Unknown Zone Associates (1981) Limited


From (m)	To (m)	Interval (m)	Rock Type	Recovery (m)	Recovery %	Sample Number	Not Sampled	BatchName	Batch Class	Standard	Blank	1/4 Dup	Coarse Dup
0.00	0.00	0.00	-QC-	0.00	0	K293566		S18-003	YELLOW	ME-15			
0.00	0.00	0.00	-QC-	0.00	0	K293576		S18-004	GREEN	ME-15			
0.00	0.00	0.00	-QC-	0.00	0	K293583		S18-004	GREEN	ME-16			
0.00	0.00	0.00	-QC-	0.00	0	K293587		S18-004	GREEN		•		
0.00	2.12	2.12	-QC-	1.03	49	K293540		S18-003	YELLOW				
0.00	0.00	0.00	-QC-	0.00	0	K293548		S18-003	YELLOW		•		
2.12	3.95	1.83	OVB, LST	1.28	70	K293541		S18-003	YELLOW				
3.95	5.63	1.68	LST, QBS	1.12	67	K293542		S18-003	YELLOW				
5.63	7.62	1.99	QBS, LST	1.88	94	K293543		S18-003	YELLOW				
7.62	9.75	2.13	LST	2.00	94	K293544		S18-003	YELLOW				
9.75	11.31	1.56	LST, MST	1.54	99	K293545		S18-003	YELLOW				
9.75	11.31	1.56	LST, MST	1.54	99	K293546		S18-003	YELLOW				•
11.31	13.72	2.41	SST, QBS	1.61	67	K293547		S18-003	YELLOW				
13.72	16.76	3.04	QBS	3.04	100	K293549		S18-003	YELLOW				
16.76	19.81	3.05	QBS	3.05	100	K293550		S18-003	YELLOW				
19.81	22.86	3.05	QBS	3.05	100	K293551		S18-003	YELLOW				
22.86	25.92	3.06	QBS	3.05	100	K293552		S18-003	YELLOW				
25.92	28.96	3.04	QBS	3.04	100	K293553		S18-003	YELLOW				


From (m)	To (m)	Interval (m)	Rock Type	Recovery (m)	Recovery %	Sample Number	Not Sampled	BatchName	Batch Class	Standard	Blank	1/4 Dup	Coarse Dup
28.96	30.48	1.52	SST	1.52	100	K293554		S18-003	YELLOW				
30.48	33.53	3.05	SST	3.05	100	K293555		S18-003	YELLOW				
33.53	34.19	0.66	SST	0.63	95	K293556		S18-003	YELLOW				
34.19	36.58	2.39	SST, SST	1.78	74	K293557		S18-003	YELLOW				
36.58	38.10	1.52	SST	1.52	100	K293558		S18-003	YELLOW				
36.58	38.10	1.52	SST	1.52	100	K293559		S18-003	YELLOW			•	
38.10	40.21	2.11	SST	1.78	84	K293560		S18-003	YELLOW				
40.21	42.48	2.27	QBS, SST	1.79	79	K293561		S18-003	YELLOW				
42.48	43.12	0.64	SST, VOL	0.58	91	K293562		S18-003	YELLOW				
43.12	44.20	1.08	QBS, VOL	0.65	60	K293563		S18-003	YELLOW				
44.20	47.24	3.04	QBS	3.04	100	K293564		S18-003	YELLOW				
47.24	48.21	0.97	QBS	0.76	78	K293565		S18-003	YELLOW				
48.21	51.20	2.99	QBS, VOL	2.94	98	K293567		S18-003	YELLOW				
51.20	53.87	2.67	QBS, VOL	1.83	69	K293568		S18-003	YELLOW				
53.87	56.39	2.52	QBS, SST	2.20	87	K293569		S18-003	YELLOW				
56.39	57.91	1.52	SST	1.52	100	K293570		S18-003	YELLOW				
57.91	59.44	1.53	SST	1.53	100	K293571		S18-003	YELLOW				
59.44	61.71	2.27	SST	1.98	87	K293572		S18-004	GREEN				
61.71	62.58	0.87	QBS, SST	0.82	94	K293573		S18-004	GREEN				


From (m)	To (m)	Interval (m)	Rock Type	Recovery (m)	Recovery %	Sample Number	Not Sampled	BatchName	Batch Class	Standard	Blank	1/4 Dup	Coarse Dup
62.58	65.53	2.95	FLR, QBS	1.20	41	K293574		S18-004	GREEN				
65.53	68.58	3.05	FLR	2.85	93	K293575		S18-004	GREEN				
68.58	71.63	3.05	FLR	2.92	96	K293577		S18-004	GREEN				
71.63	74.68	3.05	QBS, FLR	1.57	51	K293579		S18-004	GREEN				
71.63	74.68	3.05	QBS, FLR	1.57	51	K293578		S18-004	GREEN				
74.68	76.68	2.00	FLR	1.78	89	K293580		S18-004	GREEN				
76.68	79.25	2.57	FLR, QBS	2.42	94	K293581		S18-004	GREEN				
79.25	82.30	3.05	SST	3.05	100	K293582		S18-004	GREEN				
82.30	85.34	3.04	SST	3.04	100	K293584		S18-004	GREEN				
85.34	86.97	1.63	QBS, SST	1.08	66	K293585		S18-004	GREEN				
86.97	89.92	2.95	SST, SST	2.04	69	K293586		S18-004	GREEN				
89.92	92.96	3.04	SST	3.04	100	K293588		S18-004	GREEN				
92.96	94.07	1.11	SST	1.11	100	K293589		S18-004	GREEN				
94.07	96.01	1.94	FLR, SST	1.94	100	K293590		S18-004	GREEN				
96.01	97.54	1.53	FLR	1.11	73	K293591		S18-004	GREEN				
97.54	99.84	2.30	FLR	2.30	100	K293592		S18-004	GREEN				
99.84	102.11	2.27	FLR, QBS	2.27	100	K293593		S18-004	GREEN				
102.11	103.63	1.52	QBS	1.40	92	K293594		S18-004	GREEN				
103.63	105.16	1.53	QBS, FLR	0.83	54	K293595		S18-004	GREEN				
105.16	108.20	3.04	QBS	2.58	85	K293596		S18-004	GREEN				

