2018 ASSESSMENT REPORT on the GOLD HILL & KENO-LIGHTNING CLAIMS KENO SILVER PROJECT, YUKON

NTS: 105M/14 & 15

Gold Hill 63°94'N. Latitude, 135°19'W. Longitude Keno-Lightning 63°55'N. Latitude, 135°5'W. Longitude Mayo Mining District

> Claims work applied to: Refer to Table 2

Period of Work: Gold Hill: July 1st to July 2nd, 2018 Keno-Lightning: July 28th to August 1st, 2018

Suite 904 - 409 Granville Street Vancouver, BC V6C 1T2

> **Prepared by:** Paige A. Ahrens, B.Sc. Junior Geologist, MMG

> > April 12th, 2019

1 Summary

The Keno Silver Project included in this report ('the Project') is centered approximately 465 km by road northeast of the city of Whitehorse and 60 km by road northeast of the town of Mayo and depending upon the location within the claim block, Keno City is located between 4 and 20 km away (Figure 1). The following claim groups comprise a portion of the Keno Silver Project, which was filed on in 2019, and the results of that work is contained within this report.

Claim Group	No. of Claims	Ownership	Work Filed	Filing Date
Gold Hill	1	Metallic Minerals Corp100%	1 Diamond Drill Hole	March, 2019
Keno-Lightning	366	Metallic Minerals Corp100%	2 Diamond Drill Holes	March, 2019

Three diamond drill holes were filed for assessment work on the listed claims. **Table 1** summarizes the location of the drill holes and the respective filing. **Table 2** summarizes how the work done on these claims is being applied to the claims listed.

The 2018 Gold Hill diamond drilling program was designed to test the down-dip continuity of a trenched vein, proposed to be a splay of the Porcupine-Kinman Vein, exposed during the 2017 field season. Between July 1st and July 2nd, 2018, one diamond drill hole (GH18-002) totalling 41m was completed, returning 17.1 g/t Ag, 0.13 % Pb, 0.19 % Zn and 4.39 % Fe over a 1.70 m interval.

The 2018 Caribou Hill diamond drilling program was designed to test the down-dip continuity of highgrade shoots of the shallow-dipping Caribou Vein identified in 2011. Additionally, the proposed Caribou drilling served as an infill program, aiming to combine previous years drilling results to create a vein intercept pattern on a twenty-meter scale adequate for a NI43-101 compliant inferred resource estimation. Between July 28th and August 1st, 2018, two diamond drill holes (CH18-039 & -040) totalling 211m were completed. Hole CH18-039 returned 136 g/t Ag, 0.54 % Pb, 0.65 % Zn, 1.00 % Mn, and 22.4 % Fe over a 2.0 m interval of breccia. Hole CH18-040 returned 183 g/t Ag, 0.69 % Zn, 1.00 % Mn and 11.2 % Fe over a 0.30 m interval. Continuing down-hole, CH18-040 returned 73.3 g/t Ag, 0.21 g/t Au, 1.81 % Pb, 2.45 % Zn, 1.00 % Mn, and 26.4 % Fe over a 0.35 m interval.

Table of Contents

1		Sum	mary.		2
2		Intro	oducti	on	5
3		Qua	lified I	Persons & Personnel	7
4		Prop	oerty [Description	8
	4.1	1	Locat	ion & Access	8
	4.2	2	Land	Tenure	9
	4.3	3	Regio	onal & Property Geology1	1
		4.3.2	1	Regional Geology1	1
		4.3.2	2	Mineralization Style	2
		4.3.3	3	Property Geology & Lithology1	2
		4.3.4	4	Mineralization Targets1	2
	4.4	4	Work	 History1 	3
5		Gold	l Hill C	Claim	.5
	5.1	1	Local	Geology1	5
	5.2	2	Work	 History	.5
	5.3	3	2018	Assessment Work	.6
6		Kend	o-Ligh	tning Claims Group1	.8
	6.1	1	Local	Geology	.8
	6.2	2	Work	< History	9
	6.3	3	2018	Assessment Work	0
7	-	Data	Colle	ection	4
•	7.1	1	Meth	odology	4
	7.2	2	OA/C	2)C & Security	4
8		Inte	rpreta	tions & Conclusions	4
•	8.1	1	Gold	Hill Claim	4
	8.2	2	Keno	-lightning Claims Group	4
9		Bibli	ogran		5
10)	State	ement	t of Oualifications	6
Â	ope	endix	I. Sta	tement of Expenditures	-
A	pe	endix	II. Ba	tch Sheets & Assay Certificates	
Ap	ре	endix	III. Di	rill Logs	
A	ppe	endix	IV. D	rilling Invoices	

List of Tables

Table 1. Diamond Drill Holes (DDH) filed for Assessment Work.

- Table 2. Filings included in the Gold Hill and Keno-Lightning assessment report.
- Table 3. 2018 Keno Silver Project Personnel.
- **Table 4**. Claims included in the Keno-Lightning grouping.
- **Table 5.** Summary of Keno Silver Project 2017 exploration work.
- **Table 6.** Gold Hill 2018 DDH program specifications.
- Table 7. Drill hole GH18-002 geochemical assay results.
- Table 8.
 Caribou Hill 2018 DDH program specifications.
- Table 9. Drill hole CH18-039 geochemical assay results.
- Table 10. Drill hole CH18-040 geochemical assay results.

List of Figures

- Figure 1. Location of the Keno Silver Project, Yukon.
- Figure 2. Keno-Lightning and Gold Hill claims filed for 2018 Assessment Work on the Keno Silver Project.
- Figure 3. Keno Silver District geology.
- Figure 4. Gold Hill (Murray 11) Claim local geology.
- Figure 5. Drill hole GH18-002 cross section.
- Figure 6. Keno-Lightning (Murray 3) Claim local geology.
- Figure 7. Keno-Lightning claims filed for 2018 Assessment Work.
- Figure 8. Drill hole CH18-039 cross section.
- Figure 9. Drill hole CH18-040 cross section.

2 Introduction

Three diamond drill holes were filed for assessment work on the listed claims. **Table 1** summarizes the location of the drill holes and the respective filing. **Table 2** summarizes how the work done on these claims is being applied to the claims listed. The 2018 Gold Hill diamond drilling program was designed to test the down-dip continuity of a trenched vein, proposed to be a splay of the Porcupine-Kinman Vein, exposed during the 2017 field season. The 2018 Caribou Hill diamond drilling program was designed to test the down-dip continuity of high-grade shoots of the shallow-dipping Caribou Vein identified in 2011. Additionally, the proposed Caribou drilling served as an infill program, aiming to combine previous years drilling results to create a vein intercept pattern on a twenty-meter scale adequate for a NI43-101 compliant inferred resource estimation.

Filing	Prospect	Claim Name	Grant No.	Hole ID	Easting	Northing
Gold Hill	Gold Hill	Murray 11	YC39969	GH18-002	490717	7090626
Keno-Lightning	Caribou Hill	Murray 3	YC39002	CH18-039	492856	7091049
Keno-Lightning	Caribou Hill	Murray 3	YC39002	CH18-040	492855	7090926

 Table 1. Diamond Drill Holes (DDH) filed for Assessment Work.

The following claim groups comprise a portion of the Keno Silver Project, which was filed on in 2019, and the results of that work is contained within this report (Table 2).

Claim Name(s)	Grant No.(s)	No. of Claims	Current Expiry	New Expiry	Years Filed/Claim	Work Required	Work Completed
Murray 11	YC39969	1	2021-12-01	2025-12-01	4	\$400.00	\$11,979.28
		1					\$11,979.28
		No. of	Current	New	Years	Work	Work
Claim Name(s)	Grant No.(s)	Claims	Expiry	Expiry	Filed/Claim	Required	Completed
Gram 1-24	YC52446-469	24	2020-11-01	2021-11-01	1	\$2,400.00	\$2,400.00
Isabel	59029	1	2021-12-01	2022-12-01	1	\$100.00	\$100.00
Isabel 2	62326	1	2021-12-01	2022-12-01	1	\$100.00	\$100.00
Isabel 3-4	62993-94	2	2021-12-01	2022-12-01	1	\$200.00	\$200.00
Livi 1-11	YE55981-991	11	2021-12-01	2022-12-01	1	\$1,100.00	\$1,100.00
Livi 12-211	YF57312-511	200	2021-12-01	2022-12-01	1	\$20,000.00	\$20,000.00
Livi 212-227	YE10712-727	16	2021-12-01	2022-12-01	1	\$1,600.00	\$1,600.00
Livi 236-239	YE10736-739	4	2021-12-01	2022-12-01	1	\$400.00	\$400.00
M 41-44	YE41541544	4	2021-12-01	2022-12-01	1	\$400.00	\$400.00
M 53-72	YE41553-572	20	2021-12-01	2022-12-01	1	\$2,000.00	\$2,000.00
M 75-88	YE41575-588	14	2021-12-01	2022-12-01	1	\$1,400.00	\$1,400.00
M Fr. 45-51	YE41545-551	7	2021-12-01	2022-12-01	1	\$700.00	\$700.00
MMG 11	YE55811	1	2022-12-22	2023-12-22	1	\$100.00	\$100.00
MMG 154-180	YE55954-980	27	2022-01-03	2023-01-03	1	\$2,700.00	\$2,700.00
MMG 3-4	YE55803-804	2	2022-12-22	2023-12-22	1	\$200.00	\$200.00
MMG 7	YE55807	1	2022-12-22	2023-12-22	1	\$100.00	\$100.00
MMG Fr. 1-2	YE55801-802	2	2022-12-22	2023-12-22	1	\$200.00	\$200.00
Taf	YC39574	1	2021-12-01	2022-12-01	1	\$100.00	\$100.00
TEACH 1-9	YE70944-952	9	2021-12-01	2022-12-01	1	\$900.00	\$900.00
Union	12811	1	2021-12-01	2022-12-01	1	\$100.00	\$100.00
		366				\$36,600.00	\$36,000.00

 Table 2. Filings included in the Gold Hill and Keno-Lightning assessment report.

The work was prepared to satisfy requirements for Assessment Report filing by the Yukon Mining Recorder, Ministry of Energy, Mines and Resources, Government of Yukon. The work was carried out and funded by Metallic Minerals Corp and its contractors.

This report is based on the observations and information collected by the author, other geologists, and technicians during the 2018 Keno Silver Project field program. In preparation for this report, the author used Government of Yukon and Government of Canada geological maps, geological records, and claim maps, as well as the mineral assessment work reports from the Mayo Mining District area which have been filed with the Yukon Mining Recorder by various companies. Information sourced from previous reports and publications is listed under References.

3 Qualified Persons & Personnel

The 2018 Keno Silver project exploration program was conducted by, and under the supervision of Scott Petsel, P.Geo (the Qualified Person for the program in the context of National Instrument 43-101) and Debbie James, P.Geo. *Table 3* below lists all employees and contractors who worked on the Keno Silver Project and indicates if they worked specifically on the Gold Hill and/or Keno-Lightning claims.

Personnel	Position	Responsibilities
Geologists		
Scott Petsel, P.Geo	Vice President Exploration	Keno Silver Project management, Qualified Person
Debbie James, B.Sc, P.Geo	Project Manager & Sr. Geologist	Keno Silver Project management
Stuart Morris, P.Geo	Modeller & Sr. Geologist	Geologic modelling, drill program planning
Jacob Longridge, Ph.D, P.Geo	Geologist	Core logging, field mapping, geochemical analysis Core logging, geoteching, field mapping, drill
Barry Penner, M.Sc candidate	Geologist	program planning Core logging, geoteching, pad staking, drill program
Rex Turna, B.Sc	Drill Geologist	planning & execution Core logging, geoteching, field assistant, soil
Paige Ahrens, B.Sc	Junior Geologist	sampling, data input & reporting
Samantha Dyck, B.Sc, Adv Dip GIS	GIS Specialist	Data input, reporting, GIS
Local Hires		
Patrick Livingstone	Laborer/Field Assistant	Soil sampling, geoteching, core-cutting, construction
Scott Buchanan	Laborer/Field Assistant	Soil sampling
Adam Sharman	Laborer/Field Assistant	Soil sampling, geoteching, core-cutting, construction
Kayla Trudeau	Laborer/Field Assistant	Soil sampling, geoteching, core-cutting, data input
Cooks		
Jayne Dagostin	Cook	Food logistics & preparation for Keno Silver crew
Donna Magee	Bull cook/Cleaning Services	Food logistics & preparation
Beth Hunt	Relief Cook	Food logistics & preparation
Contractors	Service	Headquarters
Boart Longyear	Diamond Drilling	Salt Lake City, Utah
Heli Dynamics Ltd.	Helicopter Services	Whitehorse, Yukon
Annuk Expediting & Logistics	Expediting	Whitehorse, Yukon
Mammoth Exploration Ltd.	Soil Sampling	Whitehorse, Yukon
Acme Analytical Laboratories Ltd.	Sample Preparation	Whitehorse, Yukon
Acme Analytical Laboratories Ltd.	Sample Analytics	Vancouver, BC
Total North Communications Ltd.	Radio Communications	Whitehorse, Yukon
J&B Contracting	Bulldozer & Excavator	Mayo, Yukon
Winston	Machine Operator	Mayo, Yukon
Brian Diduik	Machine Operator	Courtenay, B.C

Table 3. 2018 Keno Silver Project Personnel.

*Names in **bold** indicates that they worked specifically on the Gold Hill and/or Keno-Lightning claims.

4 Property Description

4.1 Location & Access

The Keno Silver Project included in this report ('the Project') is centered approximately 465 km by road northeast of the city of Whitehorse and 60 km by road northeast of the town of Mayo and depending upon the location within the claim block, Keno City is located between 4 and 20 km away (Figure 1). Mayo is situated on the Silver Trail Highway, a paved all-weather highway running from Whitehorse to Mayo. From Mayo, the Silver Trail continues to Keno City, but turns to gravel just east of Mayo. Subsidiary unpaved roads provide access to a large portion of the Project. The Project is located within the Mayo Mining District and the following claim groups were filed on in 2018 (Table 3).

Figure 1. Location of the Keno Silver Project, Yukon.

4.2 Land Tenure

The Gold Hill prospect discussed in this report refers to Murray 11, a 13-hectare claim currently 100% owned by Metallic Minerals Corp. The Gold Hill area is located 6.5 km northeast of Keno City accessible by the well-maintained Sign Post Summit Road, or alternatively, the Keno 700 Road (Figure 2).

The Caribou Hill prospect is part of the Keno-Lightning grouping; a 693 claims grouping of Metallic Minerals Corp.'s Keno Silver Project. Within the Keno-Lightning claims grouping a smaller sub-set of 366 claims had work filed on them. The claims with work filed on them in 2019 comprise approximately 6,548 hectares, located 6.0-19.5 km northeast to southeast of Keno City. Access to the eastern portion of the Keno-Lightning claims required helicopter transport and traverse. The Caribou Hill prospect in this report refers to Murray 3, a 20.7-hectare claim located 8.5 km northeast of Keno City, accessible by a network of well-maintained 4x4 roads (Figure 2).

Claim Name(s)	Grant No.(s)	Ownership	No. of Claims	Current Expiry	New Expiry
Aho 1-20	YC57784-67503	MMG-100%	20	2024-12-01	
AHO 21-56	YD11271-22800	MMG-100%	36	2024-12-01	
Blanche	YC00365	MMG-100%	1	2024-12-01	
Blanche Fr	YF46472	MMG-100%	1	2024-12-01	
Gram 1-24	YC52446-52469	MMG-100%	24	2020-11-01	2021-11-01
Gram 25-42	YC68104-68121	MMG-100%	18	2020-11-01	2021-11-01
HORN-SILVER	59334	MMG-100%	1	2024-12-01	
Isabel	59029	MMG-100%	1	2021-12-01	2022-12-01
Isabel 2	62326	MMG-100%	1	2021-12-01	2022-12-01
Isabel 3-4	62993-94	MMG-100%	2	2021-12-01	2022-12-01
Livi 1-11	YE55981-55991	MMG-100%	11	2021-12-01	2022-12-01
Livi 12-211	YF57312-57511	MMG-100%	200	2021-12-01	2022-12-01
Livi 212-227	YE10712-10727	MMG-100%	16	2021-12-01	2022-12-01
Livi 236-239	YE10736-739	MMG-100%	4	2021-12-01	2022-12-01
Louis 1-28	YF46473-46500	MMG-100%	28	2024-12-01	
M 41-44	YE41541-41544	MMG-100%	4	2021-12-01	2022-12-01
M 53-72	YE41553-41572	MMG-100%	20	2021-12-01	2022-12-01
M 75-88	YE41575-41588	MMG-100%	14	2021-12-01	2022-12-01
M Fr. 45-51	YE41545-41551	MMG-100%	7	2021-12-01	2022-12-01
Maja 14, 15-24	YC39543, YC39878-39887	MMG-100%	11	2024-12-01	
Maja 1-8	YC38992-38999	MMG-100%	8	2024-12-01	
Maja 25-36	YC57465-57476	MMG-100%	12	2024-12-01	
Maja 9-13	YC39004-39008	MMG-100%	5	2024-12-01	
MMG 154-180	YE55954-55980	MMG-100%	27	2022-01-03	2023-01-03
MMG 3-4,	YE55803-55804	MMG-100%	2	2022-12-22	2023-12-22
MMG 7, 11	YE55807, YE55811	MMG-100%	2	2022-12-22	2023-12-22
MMG Fr. 1-2	YE55801-55802	MMG-100%	2	2022-12-22	2023-12-22
Murray 12-17	YC56160-56165	MMG-100%	6	2024-12-01	
Murray 3-4	YC39002-39003	MMG-100%	2	2024-12-01	
Murray 5-10	YC39963-39968	MMG-100%	6	2024-12-01	
Silver Basin #7-8	55466-67	MMG-100%	2	2024-12-01	
Ski 1-46	YC39009-39454	MMG-100%	46	2024-12-01	
Ski 47-48	YC39888-39889	MMG-100%	2	2024-12-01	
Ski 49-58	YC56166-56175	MMG-100%	10	2024-12-01	
Ski 59-90	YC67504-67535	MMG-100%	32	2024-12-01	
Ski 91-188	YC68194-68331	MMG-100%	98	2024-12-01	
Taf	YC39574	MMG-100%	1	2021-12-01	2022-12-01
TEACH 1-9	YE70944-70952	MMG-100%	9	2021-12-01	2022-12-01
Union	12811	MMG-100%	1	2021-12-01	2022-12-01
			693		(366)

Table 4	. Claims	included in	the Kend	-Lightning	grouping.
---------	----------	-------------	----------	------------	-----------

4.3 Regional & Property Geology

4.3.1 Regional Geology

The Keno Silver District is located within Neoproterozoic to late-Paleozoic slope-to-basin facies strata of the epicratonic Selwyn Basin. Selwyn Basin strata are characterized by off-shelf deep water clastic rocks (shale, chert, basinal limestone), and are bound by the Mackenzie Platform to the northeast and truncated by the Tintina fault to the southwest (Pigage, 2006).

Northeast directed compression during the Jurassic and early-Cretaceous resulted in thrust faulting, the development of open to tight-similar folds within relatively incompetent Selwyn Basin strata, and greenschist facies metamorphism. Widespread granitic magmatism during the early to mid-Cretaceous led to the formation of at least five main intrusive suits between 112 Ma and 90 Ma and a younger suite at 65 Ma. Strike-slip faulting along the Tintina Fault zone during the late Cretaceous and early-Tertiary displaced the western margin of the Selwyn Basin at least 450 km west into what is now Alaska.

The project is underlain by highly deformed rocks of Mississippian Keno Hill Quartzite and dominantly clastic metasedimentary rocks of the Devono-Mississippian Earn Group, with lesser Mississippian felsic volcanic schist, all of which are intruded by Triassic dolerites (greenstones) and Cretaceous aplite sills and dykes. Deformation of the host rocks, which is characterized by intense foliation, appears to be

related to displacement along the Tombstone thrust fault, located northeast of the property. North- to northeast- and northwest-trending faults are evident throughout the area. Refer to Figure 3.

4.3.2 Mineralization Style

Keno Hill type silver deposits consist of high-grade silver veins typically 1-5 meters width grading from 200 g/t to >5000 g/t Ag, with associated lead and zinc sulphides. The largest individual deposits in the district which range from ten to one-hundred million ounces of contained silver, are associated with northeast trending, southeast dipping fault/vein structures which form major ore shoots in the preferred host rocks: quartzite and greenstone (Cathro, 2006). To date, there are twelve known mineralized trends in the Keno Hill silver district, eight of which continue through the eastern portion of the district, which hosts Metallic Minerals' Keno Silver Project. Lesser explored parts of the district, particularly the eastern portion of the Keno Silver Project, have similar geologic settings and host historic producing mines and mineralized prospects with the potential to host significant new mineral resources.

4.3.3 Property Geology & Lithology

Locally, stratigraphy within the Keno mining camp has been divided into three units; the upper-Proterozoic to lower-Cambrian Hyland Group (Yuseyu Formation), Mississippian Keno Hill Quartzite and Devono-Mississippian Earn Group, often referred to as the Upper Schist, Central Quartzite and Lower Schist packages, respectively.

The Hyland Group comprises graphitic schist and phyllite, thin bedded quartzite, quartz mica-schist, calcareous schist and both minor limestone and quartz-sericite schist. It was thrust over the Keno Hill Quartzite during the Jurassic to early-Cretaceous compression along the Robert Service Thrust.

The Keno Hill Quartzite contains variably bedded quartzite, massive quartzite and minor graphitic phyllite, schist and calcareous-schist; it is divided into two units; the upper Sourdough Member and the lower Basal Quartzite. The latter unit is historically more productive and is thickest at the Homestake claims within the Keno Silver Project. Narrow bands of the Basal Quartzite also underlie the Silver Basin, Caribou, Faith and Duncan prospects.

The Earn Group contains graphitic schist and phyllite, argillite, thin-bedded quartzite, calcareous schist, slate and sericite schist, as well as two bands of bedded quartzite with lesser phyllite and graphitic schist. The stratigraphy principally strikes east-west and dips 20° to 30° south. Metamorphosed diorite and gabbro (colloquially greenstone) sills and lenses are conformable with stratigraphy.

4.3.4 Mineralization Targets

Silver mineralization is the dominant economic target in the district, yet gold +/- silver, tungsten and tin deposits exist at the periphery of some high-grade silver deposits and in areas overlying the Hyland Group rocks. Silver mineralization in the Keno district is representative of clastic metasedimentary hosted silver-lead-zinc enriched polymetallic quartz veins. Typically, mineralization is expressed as quartz-carbonate-sulphide veins, with silver minerals most commonly hosted as inclusions in galena. Wall-rock alteration, which consists of sericitization, silicification and pyritization, is typically of limited extent; <1m width. Regional faults, fault sets, and fractures are an important ore control, and veins are typically associated with second order structure which postdates deformation and metamorphism. Significant deposits are restricted to, and dependant upon, competent lithologies.

Two stages of vein mineralization have been recognized in the district. First stage mineralization included quartz, pyrite +/- arsenopyrite, with trace gold and sulphosalts in vein faults. Second stage mineralization is defined by siderite, galena, sphalerite, pyrite, freibergite and pyrargyrite, typical of deposits within the central Keno Hill district. Silver mineralization is hosted by two sets of vein faults; longitudinal veins striking 035° to 080° and transverse veins striking 000° to 035°. Both sets dip between 50° and 80° to the southeast. Historically, longitudinal veins are the main producers of silver due to their significant strike extent. However, transverse veins, which represent dilatational zones between enechelon longitudinal faults, often contain small deposits of very high-grade.

Gold mineralization is hosted within quartz-arsenopyrite veins in quartzite and schist and is interpreted to be associated with the emplacement of Cretaceous Tombstone suite granitoid intrusions. This style of mineralization is characteristic of intrusion related gold system and is found elsewhere in the Tintina gold belt. In the overlying Hyland Group, gold mineralization is associated with limey beds, aplite dykes and appears to follow the same northeast trending structures as silver mineralization in the district.

4.4 Work History

1898	Placer gold discovery in Duncan Creek brought prospectors from the Klondike goldfields.
1902	Mayo township established
1903	Argentiferous galena discovered at Silver King and mined 1913-1917.
1918	Argentiferous galena discovered on Keno Hill
1919	Keno Hill Ltd staked claims on Keno Hill. Grades had to be more than 125 oz/t to be
	economic, cost of horse transport to Mayo the same as to smelters in US.
1920	Keno City established.
1921	Treadwell Yukon Company acquired claims at Sadie Ladue on Keno Hill.
1925	Treadwell established mill at Sadie Ladue. Bulldozers significantly reduced the cost of ore haulage.
1927	Treadwell acquired Lucky Queen high grade mine
1932	All operations suspended during Depression
1934	Treadwell Yukon acquired all the Keno Hill Ltd properties.
1924	Elsa vein discovered on Galena Hill, re-opening of Silver King and discovery of Hector–
	Calumet and optioned by Treadwell Yukon.
1935	Mill moved to Elsa and mining continued until 1941 when all work ceased, and
	equipment was sold to US Army for construction of Alaska Highway during World War II.
	Livingstone Wernecke had led Yukon Treadwell and produced 44 Moz silver with 80%
	milled at 60 oz/t and 20% hand-sorted at 340 oz/t. 60% of production came from Keno
	Hill.
1946	Treadwell Yukon assets purchased by Keno Hill Mining Company, later named United
	Keno Hill Mines (UKHM), and mill began re-operating. Power was generated from coal
	mine purchased in Carmacks, and transport was improved by the government building
	the Whitehorse – Mayo road.
1951	New discoveries at Hector-Calumet led to construction of a town and a new mill built at
	Elsa, with power supplied from a new hydro plant in Mayo. UKHM's success bought new
	companies to the district and another mill was built at Mackeno near Christal Lake.
1950	Zinc recovery became economic.
1963	New exploration
1970	Discovery of the Husky deposit just as the Hector-Calumet was closing.
1972	Husky Mine commenced production.

- 1977 Economics became uncertain due to fluctuations in silver price, open pit mining commenced unsuccessfully.
- *1982 1989* Small scale tribute mining continued until UKHM closed.
- 1990 -1998 Dominion Mineral Resources and Sterling Frontier Properties acquired 32% of UKHM, conducted exploration but were unsuccessful in reopening mines; rights reverted to UKHM, but environmental liabilities and site maintenance drove UKHM bankrupt. Federal government inherited assets.
- 2006 Alexco Resource Corp purchased the UKHM property.
- 2010 Metallic Minerals predecessor Monster Mining acquired Keno Hill claims.
- 2017 Exploration & Work History Highlights
 - Metallic Minerals added to its land position, nearly tripling its total Keno Hill Silver District holdings to 166 square kilometres.
 - Between May 8th and Sept 7th, 2017 fourteen diamond drill holes (DDH) were drilled on the Keno Silver Project. In addition, ground geophysics (magnetic and VLF), mapping, prospecting, soil and rock sampling and the collection of satellite imagery were completed.

Exploration Work	Target Areas	Specifics
Ground Geophysics	Caribou, Homestake, Silver Queen	129-line km, magnetic and VLF
Satellite Photography	Regional (Keno District)	50 cm/pixel, 1m contours
Soil Sampling	Caribou , Homestake, Divide, Vanguard, Duncan, Bounty, Silver Queen, Vancouver	2149 samples, XRF (n=1208), Lab Assay (n=1653)
	Caribou, Faith, Homestake, Bounty,	
Trenching	Gold Hill	18 trenches totalling 493 m
Diamond Drilling	Caribou, Homestake, Duncan	14 holes totalling 1320 m
RAB Drilling	Homestake	3 holes totalling 61 m

 Table 5. Summary of Keno Silver Project 2017 exploration work.

5 Gold Hill Claim

5.1 Local Geology

Figure 4. Gold Hill (Murray 11) Claim local geology.

The Murray 11 claim is underlain by Keno Hill Basal Quartzite to the northwest and Earn Group Quartz-Sericite Schist to the southeast. The stratigraphy principally strikes east-west and dips 20° to 30° south. The Porcupine-Kinman Vein transects the claim, roughly approximating the change in lithology. Two inferred splays of the main vein have historically been the focus of trenching and drilling, resulting in the discovery of a discontinuous galena-bearing quartz vein, with an additional meter of mineralized wallrock breccia.

5.2 Work History

1919	Gold Hill claims (Lot 26) was staked by M. Mitchie.
1920	Yukon Gold Company secured option on several claims, including the Gold Hill claim (Bostock, 1957).
1921	A hand dug trench was located c.2016 on the west-southwest margin of the claim.
1971	UKHM performed overburden drilling on Gold Hill and neighbouring claims (13 holes
	total; 7 on Gold Hill). Evidence of concurrent road building and trenching (not reported).
Pre-2005	One diamond drill hole casing located c.2016 (not reported).
2005	Gold Hill re-staked as Murry 11 by M. Bindig.
2016	J.Pautler and B.Harris prospect claim for historic workings; discover aforementioned

hand-trenching and drill casing

2017 Metallic Minerals Corp. conducted machine trenching targeting a geochemical Pb-Zn soil anomaly, resulting in 20m exposure of a discontinuous galena-bearing vein, with an additional meter of weak breccia mineralization on the footwall. A high-grade channel sample returned 2,509 g/t Ag and 68% Pb.

5.3 2018 Assessment Work

The Gold Hill prospect discussed in this report refers to Murray 11 (Grant No. YC39969), a 13 hectare claim currently 100% owned by Metallic Minerals Corp (Figure 4). Between July 1st and July 2nd, 2018, one diamond drill hole (GH18-002) totalling 41m was completed by Boart Longyear, who drilled with a Zinex A5 core drill using HQ core size (Table 6). Other work was completed on the Gold Hill target (Murray 11), however, only a portion of the 2018 drilling is discussed because it is the only work filed for assessment. A Caterpillar 230 excavator and two D7 bulldozers were used to build drill sites and access roads as well as to move the drills. Machine trenching was also conducted on the claim. Equipment was provided on contract from J & B Contracting of Mayo, Yukon. Refer to Appendix III for Drill Logs, and Appendix V for Drill Database.

Hole ID	Start Date	End Date	Duration (days)	Length (m)	Easting	Northing	Elevation	Azimuth	Dip
GH18-001	30-06-18	01-07-18	2	45	490717	7090626	1809	330	-60
GH18-002	01-07-18	02-07-18	2	41	490717	7090626	1809	300	-60
GH18-003	02-07-18	04-07-18	3	74	490696	7090601	1806	330	-60
GH18-004	04-07-18	06-07-18	3	35	490693	7090601	1806	300	-50
4 holes			10 days	195 m					

 Table 6. Gold Hill 2018 DDH program specifications.

Drill Hole Summary: GH18-002

The 2018 Gold Hill diamond drilling program was designed to test the down-dip continuity of the trenched vein, proposed to be a splay of the Porcupine-Kinman Vein, exposed during the 2017 field season. Holes GH18-001 and -002 were designed to directly test down-dip continuity, whereas holes GH18-003 and -004 were designed to test the southwest extension of the trenched vein, in addition to delineating the geometry of the contact between the overlying Keno Hill Basal Quartzite and the underlying Earn Group Quartz-Sericite Schist.

Hole GH18-002 is composed of alternating FQZ1 and FQZ2. Three structures were intersected, two of which were graphitic fault gouge at 18.7-20.0 m and 31.4-31.45 m down-hole depth. The third structure intersected was a brecciated vein of quartz clasts cemented with limonite and trace amounts of mm-scale sphalerite at 25.8-29.0 m down-hole depth. The strongest mineralization, intercepted at 18.70-20.40 m down-hole depth, was hosted by foliated quartzite returning 17.1 g/t Ag, 0.13 % Pb, 0.19 % Zn and 4.39 % Fe over a 1.70 m interval (Table 7).

It is interpreted that GH18-002 intersected the trenched vein at 18.7 m down-hole depth. The vein is projected to run shallower than previously predicted, due to a smaller extent of mineralization or a change in vein geometry yet to be determined.

Figure 5. Drill hole GH18-002 cross section.

 Table 7. Drill hole GH18-002 geochemical assay results.

Sample ID	From (m)	To (m)	Width (m)	Au g/t	Ag g/t	Pb %	Zn %	Cu %	Mn %	Fe %
1497280	17.90	18.70	0.80	0.00025	0.4	0.00333	0.1761	0.00259	0.3973	3.18
1497282	18.70	20.40	1.70	0.00025	17.1	0.13424	0.1861	0.00291	0.7704	4.39
1497283	20.40	20.80	0.40	0.00025	2.4	0.03471	0.0802	0.00081	0.2112	1.66
1497285	20.80	21.65	0.85	0.00025	4.8	0.04569	0.0482	0.00163	0.0409	2.72
1497286	21.65	22.30	0.65	0.00025	1.2	0.01438	0.0466	0.00036	0.4127	2.22
1497287	22.30	24.20	1.90	0.00050	1.0	0.00909	0.0305	0.00029	0.2424	1.50
1497289	24.20	25.80	1.60	0.00140	0.2	0.00376	0.0659	0.00037	1.0000	5.44
1497291	25.80	27.10	1.30	0.00025	5.0	0.08413	0.0788	0.00101	0.0937	3.10
1497293	27.10	27.60	0.50	0.00025	3.1	0.08936	0.0460	0.00110	0.1433	2.23
1497294	27.60	29.00	1.40	0.00350	2.0	0.05269	0.0425	0.00190	0.0490	2.25
1497296	29.00	31.00	2.00	0.00025	0.4	0.00711	0.0055	0.00060	0.0082	0.97
1497298	31.00	31.45	0.45	0.01800	3.1	0.02851	0.0093	0.00076	0.0054	1.65
1497299	31.45	32.35	0.90	0.00025	1.1	0.00626	0.0200	0.00172	0.0332	1.64
1497300	32.35	33.00	0.65	0.00025	0.2	0.00691	0.1578	0.00807	0.3570	8.50

6 Keno-Lightning Claims Group

6.1 Local Geology

Figure 6. Keno-Lightning (Murray 3) Claim local geology.

The Murray 3 claim is entirely underlain by Mississippian Keno Hill Basal Quartzite, bounded by Earn Group Quartz-Sericite Schist. The stratigraphy hosting the Caribou Vein is oriented on average 139/38° SW, differing from the more common district scale east-west strike which dips 20° to 30° south. The Caribou Vein transects the claim striking north-south, dipping variably to the east and is cross-cut by multiple post-mineralization fault veins striking northeast-southwest.

6.2 Work History

MinFile Occurrence (105M 062) SEGSWORTH aka Caribou Hill

1919	Silver discovered in Keno Hill District; Staked as Caribou (12842) by J. Fawcett
1920	Explored with a 13.7 m adit by Yukon Gold Corp.
1924	Restaked by Fawcett as Caribou (16536)
1926-28	Treadwell Yukon Corp. Ltd. explored with 40.2 m of drifting and mined 78.9 tonnes assaying on average 6102.7 g/t Ag and 70% Pb from an east-trending longitudinal-type vein.
1952	Optioned to United Keno Hill Mines Ltd. which explored with an 8.2 m adit and
	bulldozer trenching of a transverse vein.
1960	Leased by R.L. Segsworth (40%) and E.H. Barker (60%), no work documented.
1976	Purchased by Conwest, no work documented
1979-80	Canada Tungsten Mg Corp. Ltd. performed mapping and geochemical sampling
1986	Optioned to Dawson Eldorado Mines Ltd. which uncovered a 1.5 m wide vein containing
	lenses of mineralization assaying up to 8571.2 g/t Ag over 0.3 m
2005-06	Restaked by M. Bindig, along with 120 other claims, who performed prospecting and geochemical soil sampling
2007-08	Optioned to Monster Mining Corp. (formerly Northex Ventures) which performed 646 m
	of diamond drilling, 504 m of RAB drilling and machine trenching. Highlights of the 2008 diamond drilling include 1.67 m at 239 g/t Ag including 0.32 m at 1036 g/t Ag (08CH005) and 2.96 m of 71.8 g/t Ag (08CH006).
2010	Monster Mining Corp. performed 1201 m of diamond drilling and trench and soil geochemical sampling. Chip samples from trench CH08-01 returned 2.0 m of 2,953 g/t Ag, 1.01 g/t Au and 8.11 % Pb from an oxidized, gossanous breccia zone. A high-grade grab sample returned 4708 g/t Ag, 1.13 g/t Au, 34.1 % Pb and 5.73 % Zn.
2016	Monster Mining Corp. changes name to Metallic Minerals Corp.
2017	Metallic Minerals Corp. performed 747 m of diamond drilling in six holes. Highlights of the 2017 drilling include 1.6 m returning 1,405 Ag g/t, 26% Pb, 3.7% Zn and 0.28 g/t Au (CH017-023). Ground geophysics, trenching and soil geochemical sampling were also performed on the claim.

6.3 2018 Assessment Work

Figure 7. Keno-Lightning claims filed for 2018 Assessment Work.

The Caribou Hill target is part of the Keno-Lightning filing. Between July 28th and August 1st, 2018, two diamond drill holes (CH18-039 & -040) totalling 211m were completed by Boart Longyear, who drilled with a Zinex A5 core drill using HQ core size (Table 8). Other work was completed on the Caribou Hill target (Murray 3) and across the Keno-Lightning filing, however, only a portion of the 2018 drilling is discussed because it is the only work filed for assessment. A Caterpillar 230 excavator and two Caterpillar D7 bulldozers were used to build drill sites and access roads as well as to move the drills. Equipment was provided on contract from J & B Contracting of Mayo, Yukon.

The 2018 Caribou Hill diamond drilling program was designed to test the down-dip continuity of highgrade shoots of the shallow-dipping Caribou Vein identified in 2011. Additionally, the proposed Caribou drilling served as an infill program, aiming to combine previous years drilling results to create a vein intercept pattern on a twenty-meter scale adequate for a NI43-101 compliant inferred resource estimation.

Hole ID	Start Date	End Date	Duration (days)	Length (m)	Easting	Northing	Elevation	Azimuth	Dip
CH18-029	10-07-18	10-07-18	1	26	492850	7091117	1796	275	-60
CH18-030	11-07-18	12-07-18	2	66	492850	7091117	1796	275	-60
CH18-031	12-07-18	13-07-18	2	54	492850	7091126	1796	312	-75
CH18-032	14-07-18	15-07-18	2	74	492891	7091133	1805	275	-69
CH18-033	16-07-18	18-07-18	3	76	492878	7091087	1794	275	-69
CH18-034	18-07-18	20-07-18	3	68.15	492859	7091031	1778	275	-69
CH18-035	20-07-18	22-07-18	3	86	492887	7091046	1787	275	-69
CH18-036	23-07-18	24-07-18	2	77	492876	7090999	1766	275	-69
CH18-037	24-07-18	26-07-18	3	74	492885	7091202	1807	0	-90
CH18-038	26-07-18	28-07-18	3	98	492922	7091155	1813	275	-69
CH18-039	28-07-18	30-07-18	3	131	492856	7091049	1782	283	-60
CH18-040	30-07-18	01-08-18	3	80	492855	7090926	1752	275	-69
CH18-041	01-08-18	02-08-18	2	47	492830	7090902	1743	275	-69
13 holes			32 days	957.15 m					

 Table 8. Caribou Hill 2018 DDH program specifications.

Drill Hole Summary: CH18-039

Hole CH18-039 tested the down-dip extension of the Caribou Vein east of holes CH17-026 and -027. Hole CH18-039 is composed of alternating FQZ1 and FQZ2 at 10's meter-scale. Repeating units of graphitic phyllite, at the same scale and relative frequency, are also interpreted to be Keno Hill Basal Quartzite. Five fault structures were delineated by the presence of fissile graphitic fault gouge and slickensides. Two of these fault zones hosted brecciated material at 48.5-50.5 m and 91.15-92.4 m down-hole depth. The strongest mineralization, between 48.5-50.5 m, consists of subangular-quartz clast-supported breccia with a strongly limonitic matrix (healed rock flour due to faulting), grading into heavily oxidized matrix-supported breccia. This 2.0 m interval of breccia returned 136 g/t Ag, 0.54 % Pb, 0.65 % Zn, 1.00 % Mn, and 22.4 % Fe (Table 9).

Figure 8. Drill hole CH18-039 cross section.

 Table 9. Drill hole CH18-039 geochemical assay results.

Sample ID	From (m)	To (m)	Width (m)	Au g/t	Ag g/t	Pb %	Zn %	Cu %	Mn %	Fe %
1497387	35.40	36.34	0.94	0.00120	0.9	0.00434	0.0088	0.00070	0.0071	2.11
1497388	46.80	48.50	1.70	0.00580	6.2	0.04834	0.2255	0.00195	1.0000	2.80
1497390	48.50	50.50	2.00	0.18620	136.0	0.54052	0.6560	0.01797	1.0000	22.43
1497392	50.50	53.00	2.50	0.02070	20.6	0.03385	0.0068	0.00027	0.0101	0.67
1497393	64.87	66.06	1.19	0.00025	5.3	0.01772	0.0516	0.00451	0.0332	2.81
1497394	66.06	66.85	0.79	0.00025	2.8	0.00572	0.0644	0.00641	0.0767	3.31
1497395	66.85	68.28	1.43	0.00280	1.4	0.00205	0.0571	0.00994	0.0334	3.20
1497396	91.15	92.40	1.25	0.00110	0.7	0.00281	0.1147	0.00615	0.0263	3.80
1497397	98.15	99.22	1.07	0.01500	4.3	0.02820	0.1824	0.01319	0.4448	6.40
1497399	99.22	100.62	1.40	0.00290	4.4	0.01816	0.0994	0.00923	0.2003	2.34

Drill Hole Summary: CH18-040

Hole CH18-040 extended exploration of the Caribou Vein at its southern extent to a down-hole depth of 80 m. Hole CH18-040 is composed of alternating FQZ1 and FQZ2 at 10's meter-scale. Repeating units of graphitic phyllite, at a similar scale and relative frequency, are also interpreted to be Keno Hill Basal Quartzite. Low-grade mineralization was intersected at 43.85-44.50 m down-hole depth within a weakly brecciated zone hosting fine grained euhedral sphalerite (2%) and pyrite (1%) with hematite-rich veinlets. The brecciated material at 43.85 meters returned 183 g/t Ag, 0.69 % Zn, 1.00 % Mn and 11.2 %

Fe over a 0.30 m interval. Continuing down-hole, a 0.35 m interval at 44.15 meters returned 73.3 g/t Ag, 0.21 g/t Au, 1.81 % Pb, 2.45 % Zn, 1.00 % Mn, and 26.4 % Fe (Table 10).

Figure 9. Drill hole CH18-040 cross section.

 Table 10. Drill hole CH18-040 geochemical assay results.

Sample ID	From (m)	To (m)	Width (m)	Au g/t	Ag g/t	Pb %	Zn %	Cu %	Mn %	Fe %
1497116	42.10	43.10	1.00	0.00540	7.3	0.11031	0.0233	0.00158	0.0744	1.01
1497118	43.10	43.40	0.30	0.03370	4.2	0.03501	0.0126	0.00047	0.0218	0.64
1497119	43.40	43.85	0.45	0.00190	7.6	0.10339	0.0796	0.00090	0.1216	1.86
1497120	43.85	44.15	0.30	0.07560	183.0	0.16556	0.6877	0.02399	1.0000	11.23
1497121	44.15	44.50	0.35	0.20990	73.3	1.81000	2.4500	0.00500	1.0000	26.35
1497123	44.50	45.50	1.00	0.01170	4.2	0.11339	0.1582	0.00043	0.4253	2.39
1497124	45.50	46.35	0.85	0.02670	23.4	0.43334	0.3311	0.00325	0.9022	3.29
1497125	46.35	55.10	8.75	0.00060	1.5	0.03034	0.0246	0.00057	0.0153	0.94
1497127	55.10	55.40	0.30	0.00400	14.3	0.38751	0.2071	0.00229	1.0000	2.15
1497129	55.40	56.00	0.60	0.00480	5.5	0.26288	0.0422	0.00086	0.5228	1.11
1497130	56.00	56.55	0.55	0.01550	15.8	0.48528	0.8020	0.00251	1.0000	7.57
1497132	56.55	57.30	0.75	0.00025	2.8	0.04545	0.0515	0.00077	0.0403	1.11

7 Data Collection

7.1 Methodology

Drilling was completed with a skid-mounted drill utilizing HQ3 (61.1 mm) diameter core. All drill core was cleaned, photographed and measured for core recovery and RQD. The core was logged and marked by the logging geologist for sampling by sawing or splitting. Sample intervals were chosen based on changes in mineralization, alteration and lithology. All sample batches included commercial standards and limestone blanks which were inserted at the logging geologists' discretion. Each sample was split with one half of the core being sent for analysis and the other half returned to the core box for future reference and/or resampling stored at Homestake in core racks.

7.2 QA/QC & Security

Diamond drill core was transported at the end of each shift to core logging and processing areas located at the Homestake core yard. The core was logged, and select intervals were sawn using a diamond saw, placed with their sample tag into a labeled plastic bag, then sealed and placed into a labeled rice bag for shipment. One half of the sample was submitted for analysis, the other half remains on site. The rice bags were delivered by Annuk Expediting & Logistics to Bureau Veritas' Whitehorse preparation facility where they were crushed and pulped, then sent internally to their Vancouver analytical facility for analysis. Sample security was maintained by Metallic Minerals Corp. and Annuk Expediting & Logistics personnel from the field to the preparation facility in Whitehorse, at which time sample security was assumed by Bureau Veritas. Samples were submitted to the lab with standards, blanks and field duplicates for quality assurance and quality control at the laboratory. Quality control samples were inserted at regular intervals in every hole, and particularly after a vein zone to detect contamination.

A 30g split of each crushed, sieved, and split sample was analyzed for 36 elements using an Aqua Regia digestion with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled Plasma-mass spectrometry (ICP-MS) (*AQ202*). Samples with over limit silver (> 100 ppm Ag) and gold (>500 ppb Au) were re-analyzed using a 30-gram fire assay fusion with a gravimetric finish (*FA530-Ag, Au*). Over-limit lead and zinc samples were analyzed by multi-acid digestion and atomic absorption spectrometry (*MA404*) or titration (*GC516, GC8917*). Laboratory-inserted blanks (analytical and method), standards and duplicates (pulp and preparation) verify internal quality assurance and quality control procedures.

8 Interpretations & Conclusions

8.1 Gold Hill Claim

The Gold Hill target is interpreted as a splay of the Porcupine-Kinman Vein. It is interpreted that drill hole GH18-002 intersected the splay at 18.7 m down-hole depth. The vein is projected to run shallower than previously predicted, due to a smaller extent of mineralization or a change in vein geometry yet to be determined.

8.2 Keno-Lightning Claims Group

The Caribou target is interpreted as a Keno-type high-grade system with sporadic bonanza grades. Drill holes CH18-039 and CH18-040 reinforced the interpretation that the vein system remains open at depth, and along strike in both north and south directions.

9 Bibliography

- Becker, T.C., 2000. Expatriate Resources Ltd., Keno Hill Area, Yukon. Yukon Mining Assessment Report 094140.
- Bostock, H.S., 1957. Geological Survey of Canada Memoir 284 Yukon Territory Selected Field Reports of the Geological Survey of Canada 1898 to 1933.
- Boyle, R.W., 1965. Geology, Geochemistry, and Origins of the Lead-Zinc-Silver Deposits of the Keno Hill-Galena Hill Area, Yukon Territory. Geological Survey of Canada: Bulletin 111, p. 56-57.
- Boyle, R.W., Illsley, C.T. & R.N. Green, 1955. A geochemical investigation of the heavy metal content of the streams in the Keno Hill-Galena Hill area, Yukon Territory. Geological Survey of Canada.
- Cathro, R.J., 2006. Great Mining Camps of Canada 1. The History and Geology of the Keno Hill Silver Camp, Yukon Territory: Geoscience Canada. 33:103-134.
- Croteau, F.L., 1968. Fort George Mining and Exploration Ltd., Jun/68. Prospectus Report.
- Ecofor, 2018. Heritage Resource Overview Assessment: Class 3 Quartz Exploration: Keno Silver Project.
- Fekete, M. & B. Dubois, 2012. 2011 Surface Work on the Keynote Property. Yukon Mining Assessment report 095914.
- Noel, G. A., 1955. Northwestern Explorations Limited, Parent Creek Area, Yukon. Yukon Mining Assessment Report 017466.
- O'Connor, L., Lippoth, R., & M.A. Stammers, 2006. 2006 Geophysical, Aerial Photography and Orthophoto Assessment Report on the Keno Hill Property. Yukon Mining Assessment Report 094943.
- Pigage, L.C. (compiler), 2006. Zinc-lead-silver-barium, Selwyn Basin, Yukon. Yukon Geological Survey, YGS Brochure 2006-2.
- Roots, C.F., & D.C. Murphy, 1992. Geology of Mayo Map Area (105M). Indian and Northern Affairs Canada, Exploration and Geological Services Division, Yukon Region, Open File 2483.
- Wengzynowski, W.A., 2007. Assessment report describing VTEM geophysical surveys at the Mount Hinton property. Energy, Mines and Resources Property File Collection, 095613.
- Yukon Geology and Exploration 1979-80. Department of Indian and Northern Affairs, Geology Section, Whitehorse, p. 210.
- Yukon Geological Survey (2011): MONUMENT (105M 007) Minfile Occurrence. Yukon Geological Survey's Integrated Data System (YGSIDS), 2019.
- Yukon Geological Survey (2011): SEGSWORTH (105M 062) Minfile Occurrence. Yukon Geological Survey's Integrated Data System (YGSIDS), 2019.

10 Statement of Qualifications

I, Paige Ahrens, of the City of Montreal, in the Province of Quebec, HEREBY CERTIFY:

- 1. I am a geologist based out of Montreal, QC.
- 2. I am a graduate of Carleton University (B.Sc. Hons Earth Sciences, 2016).
- 3. I have worked in the field of geology and mineral exploration in Canada (Yukon Territory and Quebec) full-time since 2018.
- 4. I am an employee of Metallic Minerals Corp. (2018-present).
- 5. I consent to the use of this report by Metallic Minerals Corp. for application, assessment and/or regulatory and financing purposes deemed necessary.

Dated at Montreal, Quebec this 12th day of April 2019.

/Khrens

Paige Ahrens, B.Sc. *Metallic Minerals Corp.* 2256 Ave du Mont Royal Est. Montreal, QC, H2H 1K6

Appendix I. Statement of Expenditures

Expenditure	Rate	Count	Total Cost
Labour			
Geologist (core logging, drill supervision)	\$500.00	2	\$1,000.00
Drilling			
Boart Longyear- Invoice 11681 (GH18-002)	Invoice	1	\$9 <i>,</i> 979.28
Reporting			
Geologist	\$500.00	2	\$1,000.00
Cost of Program			\$11,979.28

 Table A1. Statement of 2018 expenditures applied to the Gold Hill claim.

Table A2. Statement of 2018 expenditures applied to the Keno-Lightning claims.

Expenditure	Rate	Count	Total Cost
Drilling			
Boart Longyear - Invoice 11903 (CH18-039)	Invoice	1	\$27,363.69
Boart Longyear - Invoice 11903 (CH18-040)	Invoice	1	\$14,891.20
Reporting			
Geologist	\$500.00	3	\$1,500.00
Cost of Program			\$43,754.89

			No. of	Months	Late Fee/	Total Late
Claim Name(s)	Grant No.(s)	Ownership	Claims	Late	Claim	Fees
Gram 1-24	YC52446-469	MMG-100%	24	>3	\$25.00	\$600.00
Gram 25-42	YC68104-121	MMG-100%	18	>3	\$25.00	\$450.00
Isabel	59029	MMG-100%	1	>3	\$25.00	\$25.00
Isabel 2	62326	MMG-100%	1	>3	\$25.00	\$25.00
Isabel 3-4	62993-94	MMG-100%	2	>3	\$25.00	\$50.00
Livi 1-11	YE55981-991	MMG-100%	11	>3	\$25.00	\$275.00
Livi 12-211	YF57312-511	MMG-100%	200	>3	\$25.00	\$5,000.00
Livi 212-227	YE10712-727	MMG-100%	16	>3	\$25.00	\$400.00
Livi 236-239	YE10736-739	MMG-100%	4	>3	\$25.00	\$100.00
M 41-44	YE41541544	MMG-100%	4	>3	\$25.00	\$100.00
M 53-72	YE41553-572	MMG-100%	20	>3	\$25.00	\$500.00
M 75-88	YE41575-588	MMG-100%	14	>3	\$25.00	\$350.00
M Fr. 45-51	YE41545-551	MMG-100%	7	>3	\$25.00	\$175.00
MMG 11	YE55811	MMG-100%	1	<3	\$15.00	\$15.00
MMG 154-180	YE55954-980	MMG-100%	27	<3	\$15.00	\$405.00
MMG 3-4	YE55803-804	MMG-100%	2	<3	\$15.00	\$30.00
MMG 7	YE55807	MMG-100%	1	<3	\$15.00	\$15.00
MMG Fr. 1-2	YE55801-802	MMG-100%	2	<3	\$15.00	\$30.00
Taf	YC39574	MMG-100%	1	>3	\$25.00	\$25.00
TEACH 1-9	YE70944-952	MMG-100%	9	>3	\$25.00	\$225.00
Union	12811	MMG-100%	1	>3	\$25.00	\$25.00
			366			\$8,820.00

 Table A3. Keno-Lightning Cost of Filing- Late Fees.

Appendix II. Batch Sheets & Assay Certificates

MINERAL LABORATORIES Canada

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project:	Keno Silver
Shipment ID:	KS18-5
P.O. Number	Keno Silver
Number of Samples:	35

SAMPLE DISPOSAL

RTRN-PLP	Return After 90 days
DISP-RJT	Dispose of Reject After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

www.bureauveritas.com/um

Submitted By: Scott Petsel Receiving Lab:

Received:

Page:

Report Date:

Canada-Whitehorse July 27, 2018 September 06, 2018 1 of 3

WHI18000485.1

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-250	19	Crush, split and pulverize 250 g rock to 200 mesh			WHI
SLBHP	3	Sort, label and box pulps			WHI
AQ202	22	1:1:1 Aqua Regia digestion ICP-MS analysis	30	Completed	VAN
SHP01	22	Per sample shipping charges for branch shipments			VAN
MA404	3	4 Acid Digest AAS Finish Vancouver	0.5	Completed	VAN

ADDITIONAL COMMENTS

Certificate edited to only include analytical results from drill hole GH18-002 GH18-002 Sample ID: 1497280-1497300

Invoice To:	Metallic Minerals Corp.
	#904 - 409 Granville Street
	Vancouver British Columbia V6C 1T2
	Canada

r	۰	r	2	
L	,	ι	,	

Debbie James Samantha Dyck

JEFFREY CANNON Geochemistry Denartment Suna

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Bureau Veritas assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted. *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client:

Metallic Minerals Corp.

#904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada

Client: Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: Keno Silver VERITAS Canada Report Date: September 06, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 2 of 3 Part: 1 of 2 Page: WHI18000485.1 CERTIFICATE OF ANALYSIS Method WGHT AQ202 Analyte Wgt Mn Мо Cu Pb Zn Ag Ni Co Fe As Au Th Sr Cd Sb Bi v Ca Unit % % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppb ppm ppm ppm ppm ppm ppm MDL 0.01 0.1 0.1 0.01 0.5 0.5 0.1 1 0.1 0.1 0.1 0.01 0.001 0.1 0.1 1 0.1 0.1 1 1 1497280 Drill Core 3.06 0.7 25.9 33.3 1761 0.4 53.7 16.7 3973 3.18 19.5 < 0.5 6.5 53 3.7 6.3 0.2 8 1.31 0.13 1497281 Rock Pulp 0.08 7.4 1853.7 >10000 >10000 63.1 16.2 17.8 1456 4.13 56.8 41.6 2.3 81 121.8 163.7 5.1 73 1.84 0.048 1497282 Drill Core 2.40 1.1 29.1 1342.4 1861 17.1 15.5 4.1 7704 4.39 58.7 < 0.5 9.3 42 56.5 17.1 0.2 6 0.25 0.120 1497283 Drill Core 1.52 0.2 8.1 347.1 802 2.4 4.2 1.1 2112 1.66 13.9 < 0.5 3.0 21 27.9 3.4 <0.1 2 0.02 0.033 1497284 Rock 0.55 <0.1 0.7 3.1 5 < 0.1 <0.1 0.2 123 0.10 0.5 1.2 0.1 78 0.1 0.1 <0.1 <1 34.42 0.006 1497285 Drill Core 2.39 0.8 16.3 456.9 482 7.4 1.9 409 2.72 37.7 <0.5 7.4 37 0.1 7 0.04 0.066 4.8 9.8 7.0 1497286 Drill Core 2.34 0.6 143.8 466 1.2 7.0 2.2 4127 2.22 11.5 < 0.5 2.1 8 7.2 <0.1 3 0.03 0.017 3.6 2.3 Drill Core 4.22 0.3 2.9 90.9 305 1.0 3.7 1.1 2424 1.50 10.7 1.3 8 1.8 <0.1 3 0.04 0.018 1497287 0.5 5.9 Rock 0.75 <0.1 0.7 0.9 2 <0.1 <0.1 <0.1 108 0.06 <0.5 < 0.5 <0.1 90 <0.1 <0.1 <0.1 <1 37.49 0.006 1497288 2 1497289 Drill Core 5.13 3.7 37.6 659 7.1 2.6 >10000 5.44 20.8 4 13.2 < 0.1 0.04 0.011 0.3 0.2 1.4 0.8 2.8 1497290 Rock 0.77 < 0.1 0.9 0.9 3 < 0.1 < 0.1 0.3 136 0.09 < 0.5 < 0.5 <0.1 74 0.1 < 0.1 <0.1 <1 35.74 0.006 1497291 Drill Core 3.11 0.5 10.1 841.3 788 5.0 10.4 2.0 937 3.10 52.9 <0.5 2.3 12 3.5 15.7 0.1 6 0.05 0.035 1497292 Rock 0.79 <0.1 1.2 1.8 2 <0.1 <0.1 <0.1 100 0.07 0.6 <0.1 81 <0.1 <0.1 <0.1 <1 36.15 0.006 0.6 1497293 Drill Core 1.60 0.4 11.0 893.6 460 3.1 5.3 1.1 1433 2.23 46.4 <0.5 3.2 9 3.6 <0.1 4 0.03 0.030 6.0 1497294 Drill Core 3.25 526.9 425 2.0 6.6 1.4 490 2.25 180.2 3.5 3.2 11 2.0 <0.1 4 0.01 0.042 0.2 19.0 5.4 1497295 Rock 0.61 < 0.1 1.3 2 < 0.1 <0.1 0.3 84 0.07 <0.5 2.0 <0.1 77 < 0.1 < 0.1 <0.1 <1 35.37 0.006 1.1

Client: Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: Keno Silver VERITAS Canada Report Date: September 06, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 Page: 2 of 3 Part: 2 of 2 CERTIFICATE OF ANALYSIS WHI18000485.1 Method AQ202 MA404 MA404 AQ202 Analyte в Na w ТΙ s La Cr Mg Ba Ti AI κ Hg Sc Ga Se Те Pb Zn Unit % % % % % % ppm ppm % ppm % ppm ppm ppm ppm ppm ppm ppm ppm MDL 0.01 1 0.001 0.01 0.001 0.01 0.1 0.01 0.1 0.1 0.05 0.5 0.2 0.01 0.01 1 1 1 1 Drill Core 1497280 8 9 0.35 69 0.002 3 0.43 0.017 0.17 < 0.1 0.02 2.0 0.2 0.11 <1 0.7 <0.2 1497281 Rock Pulp 7 24 1.26 99 0.117 <1 1.50 0.175 0.19 0.9 0.47 3.1 0.9 1.58 5 4.2 < 0.2 1.35 1.57 1497282 Drill Core 12 8 0.09 59 0.001 4 0.38 0.018 0.16 0.3 0.21 1.5 0.2 0.09 1 0.8 < 0.2 1497283 Drill Core 5 6 < 0.01 10 < 0.001 3 0.15 0.004 0.05 0.5 0.21 0.9 0.1 0.07 <1 1.0 < 0.2 1497284 Rock 1 <1 0.63 14 0.002 1 0.04 0.004 0.01 < 0.1 0.01 0.2 <0.1 < 0.05 <1 < 0.5 <0.2 1497285 Drill Core 9 12 < 0.01 39 < 0.001 4 0.33 0.013 0.12 0.3 0.14 0.4 0.07 1 <0.5 <0.2 1.5 1497286 Drill Core 5 7 0.01 18 < 0.001 2 0.16 0.006 0.06 0.02 0.5 <0.1 < 0.05 <1 <0.5 <0.2 0.3 Drill Core 4 6 < 0.01 18 < 0.001 2 0.12 0.004 0.05 0.4 0.03 0.5 <0.1 < 0.05 <1 <0.2 1497287 < 0.5 Rock 1 <1 0.50 26 0.002 <1 0.03 0.003 < 0.01 <0.1 < 0.01 0.2 <0.1 < 0.05 <1 <0.5 <0.2 1497288 2 1497289 Drill Core 5 0.03 7 < 0.001 0.06 0.002 0.02 0.01 < 0.1 < 0.05 < 0.2 <1 0.4 0.7 <1 0.6 1497290 Rock <1 <1 0.71 11 0.001 <1 0.03 0.003 < 0.01 <0.1 < 0.01 0.2 <0.1 < 0.05 <1 < 0.5 <0.2 1497291 Drill Core 5 7 < 0.01 32 < 0.001 4 0.31 0.005 0.09 0.1 0.11 1.4 0.3 < 0.05 <1 < 0.5 <0.2 1497292 Rock 1 <1 0.40 10 0.001 2 0.03 0.002 < 0.01 <0.1 0.01 0.2 <0.1 < 0.05 <1 <0.5 <0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

24 < 0.001

0.001

38 < 0.001

10

3

2

<1

0.21

0.23

0.03

0.005

0.003

0.003

0.08

0.05

< 0.01

0.1

0.2

< 0.1

0.05

0.04

0.01

0.9

1.1

0.3

0.2

0.1

<0.1

< 0.05

< 0.05

< 0.05

<1

<1

<1

<0.5

< 0.5

< 0.5

<0.2

<0.2

<0.2

1497293

1497294

1497295

Drill Core

Drill Core

Rock

7

5

1

5

6

<1

< 0.01

< 0.01

0.45

												Clie	nt:	Me t #904 Vanc	t allic I - 409 Gr ouver Bri	Vinera anville St itish Colu	als Co treet mbia V60	rp. C 1T2 Ca	nada		
B U R E A U V E R I T A S	MINERAL LABORATOR Canada	IES		www	.burea	uverita	s.com/	um				Proje	ct:	Keno	Silver						
Bureau Veritas	Commodities Canada Lte	d.										Repo	rt Date:	Septe	ember 06	, 2018					
9050 Shaughn PHONE (604)	essy St Vancouver Britisl 253-3158	h Colum	ibia V6I	P 6E5 (Canada							Page:	:	3 of 3	3				Pa	art: 1	of 2
CERTIF	FICATE OF AN	JALY	′SIS													W	HI18	3000	485	.1	
	Method	WGHT	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202
	Analyte	Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
	Linit	ka	nnm	nnm	nnm	nnm	nnm	nnm	nnm		0/	n nm	nnh	nnm	nnm	nnm		000	nnm	0/	0/

Unit ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppb ppm ppm ppm ppm ppm ppm ĸg % MDL 0.001 0.01 0.1 0.1 0.1 1 0.1 0.1 0.1 1 0.01 0.5 0.5 0.1 1 0.1 0.1 0.1 1 0.01 1497296 0.021 Drill Core 4.08 0.4 6.0 71.1 55 0.4 1.7 0.3 82 0.97 296.8 <0.5 3.3 10 1.0 2.8 <0.1 3 0.01 1497297 7.8 1846.3 >10000 >10000 0.052 Rock Pulp 0.08 62.7 15.9 17.8 1442 4.12 58.6 78.9 2.4 81 117.8 167.8 5.5 73 1.84 1497298 Drill Core 1.65 0.4 7.6 285.1 93 3.1 1.8 0.5 54 1.65 198.6 18.0 3.0 13 0.9 4.8 0.3 3 0.05 0.019 1497299 3.19 17.2 10.2 2.2 332 125.6 15 0.1 0.036 Drill Core 0.5 62.6 200 1.1 1.64 <0.5 5.9 2.9 4.5 5 0.03 1497300 Drill Core 2.13 0.3 80.7 69.1 1578 0.2 101.7 34.9 3570 8.50 54.5 <0.5 2.0 19 18.2 1.3 <0.1 130 0.05 0.061

											Clier	nt:	Met #904 Vanco	allic M - 409 Gra ouver Briti	linera nville Str ish Colur	reet mbia V60	r p. C 1T2 Ca	nada		
B U R E A U V E R I T A S	MINERAL LABORATORI Canada	ES	www	/.burea	uverita	s.com/	um				Projec Repor	t: t Date:	Keno Septe	Silver mber 06.	2018					
Bureau Veritas	s Commodities Canada Ltd										•		copio		20.0					
9050 Shaughn PHONE (604)	essy St Vancouver British 253-3158	i Columbia	V6P 6E5	Canada	1						Page:		3 of 3					Part:	2 o	f 2
CERTIF	FICATE OF AN	ALYS	IS												Wł	4118	3000	485.1		
	Method	AQ202 AQ	202 AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	MA404 MA	404	

		Added	AGLUL	AGEUL	AGLUE	AGLOL	AGEUL	AGEUL	AGEUL	AGLOL	AGLUL	AGEUL	AGLOL	AGLUL	AGLUL	AGEUL	Adres	AGLUL	100 110 1	100 100
	Analyte	La	Cr	Mg	Ва	Ti	в	AI	Na	κ	w	Hg	Sc	ті	S	Ga	Se	Те	Pb	Zn
	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.01	0.01
1497296	Drill Core	7	5	<0.01	32	<0.001	2	0.14	0.006	0.08	<0.1	<0.01	0.4	0.1	<0.05	<1	<0.5	<0.2		
1497297	Rock Pulp	7	24	1.25	101	0.119	2	1.52	0.181	0.20	1.0	0.51	3.2	1.0	1.57	5	3.6	0.2	1.36	1.56
1497298	Drill Core	6	5	<0.01	72	0.001	1	0.14	0.011	0.24	0.1	0.05	0.6	0.1	0.34	<1	0.9	<0.2		
1497299	Drill Core	8	7	<0.01	49	<0.001	2	0.24	0.018	0.14	0.1	0.01	1.0	0.2	0.14	<1	<0.5	<0.2		
1497300	Drill Core	4	162	2.40	41	0.011	2	3.93	0.025	0.09	<0.1	<0.01	14.6	0.1	<0.05	9	<0.5	<0.2		

												Clien	t:	Met #904 - Vanco	allic N - 409 Gra ouver Briti	linera anville Struish Colum	Is Cor eet nbia V6C	'p. 1T2 Car	ada		
BUREAU M VERITAS Ca	NERAL LABORATOR	IES		www	.bureau	iveritas	.com/u	m				Project		Keno	Silver						
Buroau Voritae Co	mmoditios Conada I t	Ч										Report	Date:	Septe	mber 06,	2018					
		u. 1. O - I																			
PHONE (604) 253	3-3158	n Colum	DIA VOI	9 6E5 C	anada							Page:		1 of 1					Par	t: 1o	f 2
QUALITY	CONTROL	REP	OR	Т												WF	118	000	485.	1	
	Mathad	WOUT	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000		10000	10000	10000	10000	10000	10000		10000
	Method Analyte	WGHT	AQ202 Mo	AQ202	AQ202 Ph	AQ202 7n	AQ202	AQ202	AQ202	AQ202 Mn	AQ202 Eo	AQ202	AQ202	AQ202 Th	AQ202 Sr	AQ202	AQ202 Sh	AQ202 Bi	AQ202	AQ202	AQ202
	Unit	ka	nom	nom	nom	ppm	nom	nom	nom	ppm	۲e %	nom	nnb	nom	nom	nom	nom	nom	nom	%	%
	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	1	0.01	0.001
1497280	Drill Core	3.06	0.7	25.9	33.3	1761	0.4	53.7	16.7	3973	3.18	19.5	<0.5	6.5	53	3.7	6.3	0.2	8	1.31	0.131
REP 1497280	QC		0.7	25.1	33.5	1768	0.4	53.1	16.9	3948	3.14	20.0	<0.5	6.6	51	3.8	6.3	0.2	8	1.31	0.138
Core Reject Duplicates																					
1497296	Drill Core	4.08	0.4	6.0	71.1	55	0.4	1.7	0.3	82	0.97	296.8	<0.5	3.3	10	1.0	2.8	<0.1	3	0.01	0.021
DUP 1497296	QC		0.3	5.7	73.8	56	0.4	1.4	0.4	65	0.92	320.1	<0.5	3.6	10	0.9	2.9	<0.1	3	0.01	0.022
Reference Materials	3																				
STD DS11	Standard		14.1	153.7	139.8	349	1.8	83.2	13.4	1045	3.24	44.5	79.2	7.7	75	2.0	8.9	12.7	51	1.07	0.071
STD OREAS134B	Standard																				
STD OREAS133A	Standard																				
STD OXC129	Standard		1.4	25.9	6.4	40	<0.1	80.0	19.2	427	3.13	<0.5	204.3	1.8	203	<0.1	<0.1	<0.1	52	0.68	0.098
STD OXC129 Expe	cted		1.3	28	6.2	42.9		79.5	20.3	421	3.065	0.6	195	1.9					51	0.684	0.102
STD DS11 Expecte	d		14.6	149	138	345	1.71	77.7	14.2	1055	3.1	42.8	79	7.65	67.3	2.37	8.74	12.2	50	1.063	0.0701
STD OREAS134B Expect	ed																				
STD OREAS133A Expect	ed																				
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.001
BLK	Blank																				
Prep Wash				- /						500	4.00						• •		0.1	0.70	0.04
	Prep Blank		1.0	5.1	1.4	36	<0.1	0.8	3.5	560	1.96	1.4	1.6	2.3	28	<0.1	<0.1	<0.1	24	0.72	0.041
ROCK-WHI	Prep Blank		1.1	5.3	1.3	33	<0.1	1.2	4.3	565	2.09	1.4	0.7	2.3	29	<0.1	<0.1	<0.1	31	0.78	0.037

Client: Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: VERITAS Canada Keno Silver Report Date: September 06, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 Page: 1 of 1 Part: 2 of 2 QUALITY CONTROL REPORT WHI18000485.1 Method MA404 AQ202 Zn Analyte Mg Ва Ti в AI Na κ w Hg Sc ТΙ s Se Те Pb

Ga

	Unit	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%
	MDL	1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	0.01	0.01
																			1.38	1.58
1497280	Drill Core	8	9	0.35	69	0.002	3	0.43	0.017	0.17	<0.1	0.02	2.0	0.2	0.11	<1	0.7	<0.2		
REP 1497280	QC	8	9	0.34	72	0.002	4	0.42	0.017	0.16	<0.1	0.01	1.8	0.2	0.11	1	1.5	<0.2		
Core Reject Duplicates																				
1497296	Drill Core	7	5	<0.01	32	<0.001	2	0.14	0.006	0.08	<0.1	<0.01	0.4	0.1	<0.05	<1	<0.5	<0.2		
DUP 1497296	QC	6	4	<0.01	28	<0.001	1	0.13	0.005	0.07	<0.1	0.01	0.4	0.1	<0.05	<1	<0.5	<0.2		
Reference Materials																				
STD DS11	Standard	19	61	0.86	368	0.093	6	1.17	0.077	0.40	2.9	0.27	3.3	5.1	0.29	5	1.2	5.4		
STD OREAS134B	Standard																		13.57	17.76
STD OREAS133A	Standard																		4.97	10.77
STD OXC129	Standard	12	51	1.53	49	0.384	<1	1.55	0.597	0.37	<0.1	<0.01	0.8	<0.1	<0.05	5	<0.5	<0.2		
STD OXC129 Expected		12.5	52	1.545	50	0.4	1	1.58	0.59	0.3655			1.1			5.5				
STD DS11 Expected		18.6	61.5	0.85	385	0.0976		1.1795	0.0762	0.4	2.9	0.26	3.4	4.9	0.2835	5.1	2.2	4.56		
STD OREAS134B Expected																			13.36	18.03
STD OREAS133A Expected																			4.9	10.87
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2		
BLK	Blank																		<0.01	<0.01
Prep Wash																				
ROCK-WHI	Prep Blank	7	4	0.43	68	0.072	2	0.98	0.113	0.11	0.1	<0.01	3.1	<0.1	0.05	4	<0.5	<0.2		
ROCK-WHI	Prep Blank	6	4	0.50	72	0.081	2	1.00	0.105	0.10	<0.1	0.01	3.5	<0.1	<0.05	4	<0.5	<0.2		

La

Cr

MINERAL LABORATORIES Canada

Bureau Veritas Commodities Canada Ltd.

9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

Project:	Keno Silver
Shipment ID:	KS18-15
P.O. Number Number of Samples:	Keno Silver 178

SAMPLE DISPOSAL

RTRN-PLP	Return After 90 days
DISP-RJT	Dispose of Reject After 60 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

www.bureauveritas.com/um

Client:

Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada

Submitted By:	Scott Petsel
Receiving Lab:	Canada-Whitehorse
Received:	November 30, 2018
Report Date:	December 31, 2018
Page:	1 of 7

WHI18001158.1

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Procedure Code	Number of Samples	Code Description	Test Wgt (g)	Report Status	Lab
PRP70-250	163	Crush, split and pulverize 250 g rock to 200 mesh			WHI
SLBHP	15	Sort, label and box pulps			WHI
AQ202	178	1:1:1 Aqua Regia digestion ICP-MS analysis	30	Completed	VAN
SHP01	178	Per sample shipping charges for branch shipments			VAN
FA530-Ag	18	Lead collection fire assay fusion - Grav finish	30	Completed	VAN
EN002	19	Environmental disposal charge-Fire assay lead waste			VAN
MA404	18	4 Acid Digest AAS Finish Vancouver	0.5	Completed	VAN

ADDITIONAL COMMENTS

Certificate edited to only include analytical results from drill holes CH18-039 and CH18-040

CH18-039 Sample ID: 1497387-1497399 CH18-040 Sample ID: 1497116-1497132

Metallic Minerals Corp. Invoice To: #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada

CC:

Debbie James Samantha Dyck

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. "*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

Client: Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: Keno Silver VERITAS Canada Report Date: December 31, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 3 of 7 Part: 1 of 3 Page: **CERTIFICATE OF ANALYSIS** WHI18001158.1 Method WGHT AQ202 Analyte Wgt Мо Cu Pb Zn Ag Ni Co Mn Fe As Au Th Sr Cd Sb Bi ν Ca Unit % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppb ppm ppm ppm ppm ppm ppm % MDL 0.01 0.1 0.1 0.01 0.5 0.5 0.1 0.1 0.1 0.01 0.001 0.1 0.1 1 0.1 0.1 1 1 0.1 1 1497116 Rock 2.66 0.5 15.8 1103.1 233 7.3 2.3 0.9 744 1.01 74.3 5.4 2.0 8 1.3 14.2 <0.1 2 0.06 0.037 1497117 Rock Pulp 0.07 6.2 >10000 1755.8 9268 >100 114.6 16.1 128 2.82 1917.4 5683.4 1.8 37 61.2 151.7 152.6 10 0.24 0.018 1497118 Rock 1.41 0.2 4.7 350.1 126 4.2 1.0 0.3 218 0.64 44.6 33.7 0.4 2 0.8 5.2 <0.1 <1 < 0.01 0.006 1497119 Rock 1.68 0.7 9.0 1033.9 796 7.6 5.0 1.6 1216 1.86 103.0 1.9 4.5 14 29.2 11.3 0.1 4 0.03 0.052 1497120 Rock 1.26 0.3 239.9 1655.6 6877 >100 3.6 1.2 >10000 11.23 254.5 75.6 0.7 6 146.2 235.0 < 0.1 3 0.03 0.018 1497121 Rock 1.45 0.7 83.2 >10000 >10000 73.3 4.9 1.9 >10000 26.35 556.6 209.9 0.4 3 560.2 >2000 <0.1 5 0.07 0.014 1497122 Rock 1.01 <0.1 1.1 27.0 26 0.4 <0.1 0.2 213 0.05 2.7 < 0.5 <0.1 74 0.9 2.4 <0.1 <1 34.61 0.006 1497123 3.60 4.3 1133.9 1582 4.2 2.5 0.7 4253 2.39 101.5 2 29.2 35.8 <0.1 <1 0.03 0.012 Rock 0.2 11.7 1.0 1497124 Rock 3.45 0.4 32.5 4333.4 3311 23.4 9022 3.29 169.9 26.7 1.2 6 131.2 34.5 <0.1 2 0.018 3.1 1.6 0.02 Rock 3.41 303.4 1.7 0.7 0.94 39.9 2 <0.1 <1 < 0.01 0.018 1497125 0.3 5.7 246 1.5 153 0.6 1.5 3.3 4.8 0.07 6.0 >10000 1808.3 9495 >100 117.8 16.8 130 2.88 1963.0 5821.0 1.7 34 62.9 159.0 152.3 10 0.24 0.017 1497126 Rock Pulp 13.9 >10000 22.9 3875.1 109.1 172.2 < 0.1 1 0.03 0.020 1497127 Rock 1.05 0.4 2071 14.3 8.0 2.15 4.0 1.1 15 8.6 1497128 Rock 0.93 < 0.1 1.5 5.9 3 < 0.1 0.7 0.2 126 0.06 0.9 1.0 <0.1 76 0.1 0.1 <0.1 <1 34.78 0.006 1497129 Rock 2.48 0.3 8.6 2628.8 422 5.5 1.7 1.7 5228 1.11 56.1 4.8 1.1 5 15.6 6.9 < 0.1 <1 0.03 0.016 1497130 Rock 2.32 0.4 25.1 4852.8 8020 15.8 4.7 1.6 >10000 7.57 377.7 15.5 1.8 11 203.9 15.4 <0.1 4 0.07 0.02 1497131 Rock 0.88 <0.1 0.6 15.2 8 <0.1 1.1 0.2 127 0.04 1.2 <0.1 74 <0.1 <0.1 <1 34.40 0.007 1.1 0.3 1497132 Rock 2.89 0.3 7.7 454.5 515 2.8 3.8 1.1 403 1.11 97.9 <0.5 3.0 10 34.4 4.9 <0.1 3 0.05 0.032

Client: Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: Keno Silver VERITAS Canada Report Date: December 31, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 3 of 7 Part: 2 of 3 Page: CERTIFICATE OF ANALYSIS WHI18001158.1 Method AQ202 FA530 MA404 AQ202 AQ202 AQ202 MA404 Analyte в w La Cr Mg Ba Ti AI Na κ Hg Sc TL s Ga Se Те Ag Cu Pb Unit % % % % ppm ppm % ppm % ppm ppm ppm ppm ppm % ppm ppm ppm gm/t % MDL 1 0.01 0.001 0.01 0.001 0.01 0.1 0.01 0.1 0.05 0.5 0.2 20 0.01 0.01 1 1 1 0.1 1 1497116 Rock 9 5 < 0.01 41 < 0.001 <1 0.14 0.004 0.07 0.2 0.03 0.4 <0.1 < 0.05 <1 < 0.5 <0.2 1497117 Rock Pulp 4 30 0.05 14 0.006 1 0.67 0.026 0.10 3.0 1.66 1.2 4.4 3.50 6 58.9 63.7 292 1.01 0.20 2 1497118 Rock 2 < 0.01 9 < 0.001 1 0.03 0.002 0.01 0.2 0.02 0.2 <0.1 < 0.05 <1 < 0.5 <0.2 1497119 Rock 14 6 0.01 86 < 0.001 1 0.27 0.009 0.15 0.2 0.10 0.9 0.2 0.31 <1 1.2 < 0.2 1497120 Rock 2 2 0.09 17 < 0.001 3 0.08 0.003 0.03 0.4 0.45 0.7 0.2 0.48 1 < 0.5 < 0.2 183 1497121 Rock <1 1 0.25 13 < 0.001 3 0.07 0.003 0.02 <0.1 1.73 0.5 0.4 1.37 2 0.9 < 0.2 < 0.01 1.8 1497122 Rock 1 <1 0.48 13 0.002 <1 0.03 0.002 < 0.01 < 0.1 <0.01 0.2 <0.1 < 0.05 <1 < 0.5 < 0.2 1497123 Rock 3 4 0.01 17 < 0.001 2 0.07 0.002 0.03 0.1 0.10 0.4 <0.1 0.20 <0.2 <1 < 0.5 1497124 Rock 3 4 0.01 20 < 0.001 4 0.14 0.002 0.04 0.45 0.22 <1 <0.2 0.2 0.7 0.1 0.7 1497125 Rock 5 4 < 0.01 < 0.001 3 0.05 0.002 0.02 0.1 0.03 <0.1 0.08 <1 <0.2 10 0.3 0.7 1497126 4 32 0.05 18 0.006 2 0.62 0.025 0.09 3.3 1.72 1.3 4.5 3.57 6 57.3 65.2 0.20 Rock Pulp 284 1.00 4 3 0.02 12 < 0.001 1.5 1 < 0.2 1497127 Rock <1 0.15 0.005 0.04 0.19 0.7 < 0.1 0.08 0.6 1497128 Rock 1 <1 0.64 14 0.001 2 0.02 0.002 < 0.01 0.3 <0.01 0.2 <0.1 < 0.05 <1 < 0.5 <0.2 2 1497129 Rock 4 4 < 0.01 12 < 0.001 0.06 0.002 0.03 0.3 0.03 0.4 <0.1 < 0.05 <1 < 0.5 <0.2 1497130 Rock 4 4 0.09 30 < 0.001 4 0.24 0.006 0.07 0.3 0.55 0.8 0.2 0.66 1 <0.5 <0.2 1497131 Rock 1 <1 0.61 12 0.001 1 0.03 0.002 < 0.01 <0.1 < 0.01 0.2 <0.1 < 0.05 <1 <0.5 <0.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

49 < 0.001

3

0.18

0.007

0.09

<0.1

0.03

0.7

0.1

0.21

<1

<0.2

0.6

0.01

5

1497132

Rock

10

			Client:	Metallic Minerals #904 - 409 Granville Street Vancouver British Columbi	Corp. t a V6C 1T2 Canada	
B U R E A U V E R I T A S	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	Keno Silver		
Bureau Veritas	Commodities Canada Ltd.		Report Date:	December 31, 2018		
9050 Shaughn	essy St Vancouver British Columbi	a V6P 6E5 Canada				
PHONE (604) 2	253-3158		Page:	3 of 7	Part:	3 of 3
CERTIF	ICATE OF ANALYS	SIS		WH	18001158.1	

	Method	MA40
	Analyte	Zı
	Unit	9
	MDL	0.0
1497116	Rock	
1497117	Rock Pulp	0.9
1497118	Rock	
1497119	Rock	
1497120	Rock	
1497121	Rock	2.4
1497122	Rock	
1497123	Rock	
1497124	Rock	
1497125	Rock	
1497126	Rock Pulp	0.9
1497127	Rock	
1497128	Rock	
1497129	Rock	
1497130	Rock	
1497131	Rock	
1497132	Rock	

. Г

Client: Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: Keno Silver VERITAS Canada Report Date: December 31, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 6 of 7 Part: 1 of 3 Page: **CERTIFICATE OF ANALYSIS** WHI18001158.1 Method WGHT AQ202 Analyte Wgt Мо Cu Pb Zn Ag Ni Co Mn Fe As Au Th Sr Cd Sb Bi v Ca Unit % % kg ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppb ppm ppm ppm ppm ppm ppm MDL 0.01 0.1 0.1 0.1 0.1 0.01 0.5 0.5 0.1 0.1 0.1 0.1 0.01 0.001 0.1 1 0.1 1 1 1 1497387 Rock 7.0 43.4 88 0.9 5.8 1.2 71 2.11 38.0 7.2 60 0.3 4.4 0.2 8 0.02 0.101 2.30 1.5 1.2 1497388 Rock 3.78 0.7 19.5 483.4 2255 6.2 8.7 2.4 >10000 2.80 112.8 5.8 4.5 33 55.2 10.1 < 0.1 4 0.05 0.052 1497389 Rock Pulp 0.07 5.7 >10000 1739.9 9408 >100 116.9 16.1 129 2.86 1938.8 5699.3 1.7 37 61.9 134.2 151.9 10 0.24 0.016 1497390 Rock 4.11 0.5 179.7 5405.2 6560 >100 11.7 2.5 >10000 22.43 2858.8 186.2 6.1 20 84.0 176.4 0.1 8 0.02 0.112 1497391 Rock 0.72 < 0.1 0.5 9.6 12 0.4 0.4 <0.1 123 0.03 5.4 3.2 <0.1 68 0.2 0.7 < 0.1 <1 33.38 0.005 1497392 Rock 3.42 0.3 2.7 338.5 68 20.6 0.7 0.2 0.67 1046.8 20.7 2 <0.1 <1 0.04 0.015 101 0.8 3.6 9.1 1497393 Rock 4.01 45.1 177.2 516 1.1 332 2.81 397.7 < 0.5 4.3 22 14.8 4.4 <0.1 6 0.05 0.069 1.0 5.3 6.5 Rock 1.99 1.1 644 2.8 28.6 4.1 3.31 674.5 11.7 47 26.9 5.8 0.1 11 0.07 0.150 1497394 64.1 57.2 767 < 0.5 Rock 4.11 0.9 99.4 20.5 571 1.4 45.6 7.4 334 3.20 206.0 7.8 23 3.5 0.2 13 0.06 0.084 1497395 2.8 8.1 3.37 61.5 28.1 1147 13.2 263 55.0 34 3.5 0.2 15 0.129 1497396 Rock 2.6 0.7 83.4 3.80 1.1 4.9 38.5 0.29 1497397 Rock 2.98 0.7 131.9 282.0 1824 4.3 23.5 6.1 4448 6.40 1579.3 15.0 3.4 22 114.5 9.6 <0.1 6 0.10 0.026 1497398 Rock 0.71 <0.1 0.7 1.2 5 < 0.1 2.7 <0.1 104 0.08 2.1 2.3 <0.1 72 0.2 <0.1 <0.1 <1 31.51 0.007 1497399 Rock 5.10 1.4 92.3 181.6 994 4.4 26.1 5.9 2003 2.34 190.5 2.9 3.7 29 63.6 13.3 0.2 6 0.20 0.066

Client: Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um Project: Keno Silver VERITAS Canada Report Date: December 31, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 6 of 7 Part: 2 of 3 Page: CERTIFICATE OF ANALYSIS WHI18001158.1 Method AQ202 FA530 MA404 AQ202 AQ202 AQ202 AQ202 MA404 Analyte в w La Cr Mg Ba Ti AI Na κ Hg Sc TL s Ga Se Те Ag Cu Pb Unit % % % % % ppm ppm % ppm % ppm ppm ppm ppm ppm ppm ppm ppm gm/t % MDL 1 0.01 1 0.001 0.01 0.001 0.01 0.1 0.01 0.1 0.1 0.05 0.5 0.2 20 0.01 0.01 1 1 1 7 5 0.02 53 < 0.001 <1 0.17 0.007 0.08 0.2 0.02 0.6 <0.1 0.27 <1 <0.5 <0.2 1497387 Rock 20 10 < 0.01 127 0.001 2 0.24 0.024 0.20 <0.1 0.07 1.0 0.3 0.26 <1 <0.2 0.9 1497388 Rock 14 6 0.01 66 < 0.001 3 0.26 0.008 0.12 < 0.1 0.08 1.3 < 0.1 < 0.05 <1 1.0 <0.2 1497389 Rock Pulp 5 30 0.05 14 0.006 1 0.62 0.025 0.09 2.7 1.65 1.3 4.2 3.54 6 60.3 63.0 280 1.00 0.20 1497390 Rock 2 18 < 0.01 21 <0.001 2 0.67 0.004 0.05 < 0.1 0.72 2.8 0.2 0.26 1 1.3 <0.2 136 1497391 Rock <1 <1 0.46 13 < 0.001 <1 0.03 0.002 < 0.01 < 0.1 <0.01 0.2 <0.1 < 0.05 <1 < 0.5 < 0.2 1497392 Rock 4 3 < 0.01 29 < 0.001 2 0.05 0.004 0.04 1.3 0.11 0.2 <0.1 0.05 <1 <0.2 < 0.5 1497393 Rock 8 7 0.03 65 < 0.001 3 0.27 0.009 0.11 13.7 0.02 1.4 < 0.1 0.06 <1 <0.2 0.6 Rock 15 0.03 101 2 0.46 0.013 3.1 < 0.01 2.4 0.2 0.07 2 <0.2 1497394 15 < 0.001 0.18 1.7 1497395 Rock 15 16 0.19 94 < 0.001 4 0.74 0.009 0.02 2.2 0.1 0.05 2 4.5 <0.2 0.16 0.1 2 Rock 6 15 0.27 0.001 3 0.14 0.02 1.9 0.63 <0.2 1497396 93 0.89 0.013 0.2 <0.1 5.6 1497397 Rock 6 5 0.08 125 < 0.001 5 0.34 0.009 0.11 4.0 0.02 3.2 0.2 0.17 <1 2.4 <0.2 1497398 Rock 1 <1 0.50 13 0.002 1 0.04 0.002 < 0.01 <0.1 < 0.01 0.3 <0.1 < 0.05 <1 < 0.5 <0.2 1497399 Rock 8 5 0.06 189 < 0.001 4 0.33 0.009 0.12 0.5 0.04 2.0 <0.1 0.15 <1 2.3 <0.2

			Client:	Metallic Minerals #904 - 409 Granville Street Vancouver British Columbia	Corp. a V6C 1T2 Canada	
B U R E A U V E R I T A S	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project:	Keno Silver		
Bureau Veritas	Commodities Canada Ltd.		Report Date:	December 31, 2018		
9050 Shaughn	essy St Vancouver British Columbi	a V6P 6E5 Canada				
PHONE (604)	253-3158		Page:	6 of 7	Part:	3 of 3
CERTIF	ICATE OF ANALYS	SIS		WHI	18001158.1	

	Method	MA404
	Analyte	Zn
	Unit	%
	MDL	0.01
1497387	Rock	
1497388	Rock	
1497389	Rock Pulp	0.93
1497390	Rock	
1497391	Rock	
1497392	Rock	
1497393	Rock	
1497394	Rock	
1497395	Rock	
1497396	Rock	
1497397	Rock	
1497398	Rock	
1497399	Rock	

Metallic Minerals Corp. Client: #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um VERITAS Canada Project: Keno Silver Report Date: December 31, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 2 of 4 1 of 3 Page: Part: QUALITY CONTROL REPORT WHI18001158.1 AQ202 AQ202 AQ202 AQ202 WGHT AQ202 Ag Wgt Мо Cu Pb Zn Ni Co Mn Fe As Au Th Sr Cd Sb Bi ν Са % % ppm ppm ppm ppm ppm ppm ppm ppm % ppm ppb ppm ppm ppm ppm ppm ppm kg 0.01 0.5 0.5 0.01 0.001 0.1 0.1 0.1 1 0.1 0.1 0.1 1 0.01 0.1 1 0.1 0.1 0.1 1 STD DS11 Standard 14.8 142.8 131.5 314 1.8 76.1 14.2 1051 3.21 43.6 80.9 7.9 70 2.4 7.6 12.8 50 1.08 0.068 STD DS11 Standard 1056 47.1 0.076 15.5 148.3 141.3 340 1.7 80.0 14.0 3.20 75.6 8.0 72 2.7 7.8 11.8 51 1.09 STD DS11 Standard 14.6 148.6 139.1 342 1.7 44.4 7.1 11.5 0.074 79.2 13.7 1028 3.15 83.1 8.0 67 2.4 50 1.06 STD DS11 148.4 346 1.8 82.0 13.8 1058 3.23 45.6 73.1 73 2.3 8.1 13.2 1.08 0.075 Standard 15.3 153.4 8.0 50 STD DS11 14.6 148.3 139.0 350 77.7 13.5 1033 44.1 8.2 2.3 7.4 0.071 Standard 1.8 3.16 81.4 70 11.1 50 1.07 STD DS11 Standard 15.3 153.3 150.2 345 1.9 82.6 13.9 1068 3.29 47.0 81.2 8.1 74 2.6 8.0 12.7 46 1.09 0.070 STD DS11 Standard 14.0 146.7 139.7 330 1.7 79.5 13.0 993 3.13 46.6 59.4 7.6 66 2.3 7.7 11.0 51 1.06 0.067 STD DS11 Standard 14.4 154.7 143.4 343 1.7 79.2 13.9 991 3.22 43.6 73.9 8.2 68 2.7 7.8 12.5 45 1.03 0.079 STD DS11 Standard 14.0 151.7 131.0 325 1.7 78.6 13.8 1026 3.11 42.5 74.6 7.7 67 2.3 8.0 11.5 47 1.05 0.071 STD OREAS134B Standard STD OREAS133A Standard STD OREAS134B Standard STD OREAS133A Standard STD OREAS262 Standard 0.7 120.8 57.1 151 0.5 62.1 26.7 526 3.23 36.9 56.4 9.2 34 0.6 3.6 0.9 21 2.97 0.035 Standard 56.3 157 27.7 3.5 23 0.041 STD OREAS262 0.6 118.6 0.5 64.3 543 3.32 36.9 57.7 9.7 36 0.7 1.0 2.95 STD OREAS262 Standard 0.6 115.3 57.9 150 0.5 64.3 27.1 535 3.31 36.8 57.0 9.5 36 0.6 3.4 1.0 22 2.95 0.042 STD OREAS262 Standard 0.6 114.7 57.8 152 0.4 26.7 532 3.32 36.3 54.5 9.4 3.2 1.0 22 2.96 0.039 61.6 35 0.6 STD OREAS262 0.6 115.5 58.0 148 27.0 537 3.28 36.3 9.5 3.6 1.0 22 0.039 Standard 0.5 63.0 55.0 35 0.7 2.93 STD OREAS262 0.6 120.2 56.5 154 0.5 26.7 538 36.9 8.9 37 0.6 3.5 1.0 21 0.040 Standard 64.7 3.41 53.5 3.00 STD OREAS262 0.6 110.1 58.5 147 25.6 33.7 34 3.7 0.9 23 2.86 0.038 Standard 0.5 60.0 505 3.14 65.8 9.3 0.6 STD ORFAS262 Standard 0.6 119.3 60.2 147 26.8 511 3 35 35.6 48.9 96 0.7 36 21 2.87 0.041 04 63.7 35 1.1 STD OREAS262 57.9 147 27.1 22 0.039 Standard 0.6 123.4 0.5 63.3 520 3.19 35.4 58.8 9.1 35 0.6 4.5 1.1 3.02 STD OXC129 Standard 1.2 27.5 6.7 41 < 0.1 75.0 20.8 411 3.04 203.6 1.8 207 < 0.1 < 0.1 < 0.1 52 0.74 0.093 1.1 STD OXC129 Standard 1.1 27.5 6.6 39 < 0.1 80.4 20.8 428 3.10 0.8 185.8 1.8 196 < 0.1 <0.1 <0.1 52 0.72 0.105 STD OXC129 Standard 1.4 39 79.7 20.1 197.2 1.8 187 <0.1 <0.1 54 0.100 26.0 6.1 < 0.1 416 3.06 0.7 <0.1 0.71 STD OXC129 Standard 1.3 26.2 6.2 <0.1 80.4 19.6 417 <0.5 187.8 197 <0.1 0.100 38 3.07 1.8 < 0.1 <0.1 52 0.70 STD OXC129 1.4 27.2 6.3 43 <0.1 80.3 20.1 412 209.5 1.9 198 <0.1 <0.1 <0.1 52 0.69 0.096 Standard 3.11 1.0 0.097 STD OXC129 Standard 1.3 26.6 6.1 40 < 0.1 81.1 20.0 412 3.14 0.6 180.5 1.6 197 < 0.1 < 0.1 < 0.1 48 0.69 STD OXC129 Standard 1.3 25.4 7.7 < 0.1 77.4 19.2 390 2.96 <0.5 179.3 1.8 181 < 0.1 < 0.1 51 0.094 38 0.2 0.73

Client: Metallic Minerals Corp. #904 - 409 Granville Street Vancouver British Columbia V6C 1T2 Canada MINERAL LABORATORIES BUREAU www.bureauveritas.com/um VERITAS Canada Project: Keno Silver Report Date: December 31, 2018 Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver British Columbia V6P 6E5 Canada PHONE (604) 253-3158 2 of 4 2 of 3 Page: Part: QUALITY CONTROL REPORT WHI18001158.1 AQ202 AQ202 AQ202 AQ202 MA404 AQ202 FA530 Hg Cr Mg Ba Τi в AI Na κ w Sc TI S Ga Se Те Ag Cu Pb La % % ppm ppm ppm % ppm % % ppm ppm ppm ppm % ppm ppm ppm gm/t % % 0.01 0.001 0.001 0.01 0.01 0.05 20 0.01 0.01 1 1 1 1 0.01 0.1 0.1 0.1 1 0.5 0.2 STD DS11 Standard 19 59 0.85 363 0.095 8 1.23 0.078 0.41 3.0 0.26 3.5 4.8 0.29 5 2.6 4.9 STD DS11 Standard 9 0.078 0.41 0.28 5 4.4 20 61 0.86 398 0.102 1.24 3.1 3.6 5.0 0.29 2.2 STD DS11 Standard 18 0.84 0.096 0.074 0.40 0.28 3.5 0.29 5 2.4 4.4 58 361 6 1.18 2.8 4.8 STD DS11 18 0.86 385 0.095 5 0.074 0.41 0.25 3.3 0.30 5 2.2 4.7 Standard 58 1.18 3.2 5.3 STD DS11 Standard 20 0.097 6 1.21 0.077 0.41 0.27 3.3 0.29 5 2.3 4.4 60 0.85 369 2.8 4.9 7 STD DS11 Standard 19 61 0.85 388 0.098 1.18 0.074 0.41 3.0 0.31 3.5 5.0 0.29 5 2.2 4.9 0.29 STD DS11 Standard 19 59 0.84 362 0.095 7 1.20 0.076 0.41 2.8 0.24 3.3 4.8 5 1.9 4.8 STD DS11 Standard 20 60 0.83 367 0.097 7 1.16 0.074 0.40 2.9 0.30 3.2 4.9 0.28 5 2.0 4.6 STD DS11 Standard 19 59 0.84 352 0.095 7 1.19 0.075 0.40 2.7 0.27 3.3 4.7 0.27 5 2.1 4.3 STD OREAS134B Standard 0.12 13.22 STD OREAS133A Standard 0.03 4.98 STD OREAS134B Standard 0.13 13.29 STD OREAS133A 0.03 4.95 Standard STD OREAS262 Standard 16 43 1.16 245 0.003 4 1.33 0.071 0.31 0.2 0.16 3.4 0.28 3 0.7 <0.2 0.4 Standard 18 249 0.003 6 0.071 0.34 0.16 3.5 4 <0.5 0.2 STD OREAS262 44 1.18 1.43 0.2 0.5 0.28 STD OREAS262 Standard 17 43 1.17 253 0.003 4 1.37 0.072 0.31 0.2 0.16 3.5 0.27 4 <0.5 02 04 STD OREAS262 Standard 16 44 1.18 246 0.003 4 1.37 0.070 0.32 0.16 3.3 0.4 0.28 4 0.6 0.2 0.1 STD OREAS262 18 43 1.18 0.003 4 1.41 0.070 0.33 0.17 3.7 0.27 4 0.7 0.2 Standard 260 0.2 0.4 STD OREAS262 Standard 17 44 1.17 254 0.003 4 1.35 0.070 0.31 0.2 0.16 3.3 0.5 0.27 4 0.6 0.2 STD OREAS262 Standard 18 1.15 0.003 2 1.44 0.066 0.35 0.14 3.5 0.26 4 <0.5 <0.2 44 243 0.1 0.4 STD ORFAS262 Standard 16 43 1.15 248 0.003 4 1.29 0 071 0.30 0.2 0.17 3.2 0.27 4 < 0.5 02 0.4 STD OREAS262 17 0.003 3.3 0.2 Standard 44 1.16 247 4 1.36 0.068 0.31 0.2 0.18 0.5 0.25 4 < 0.5 12 1.55 <0.2 STD OXC129 Standard 53 52 0.388 <1 1.65 0.600 0.37 < 0.1 < 0.01 1.1 < 0.1 < 0.05 6 < 0.5 12 6 STD OXC129 Standard 53 1.58 51 0.404 2 1.62 0.599 0.37 <0.1 < 0.01 1.0 < 0.1 < 0.05 <0.5 <0.2 STD OXC129 Standard 12 52 1.55 51 0.399 <1 0.596 0.36 < 0.01 1.3 < 0.05 6 <0.5 <0.2 1.62 <0.1 < 0.1 STD OXC129 Standard 12 49 1.57 50 0.392 1 1.60 0.592 0.36 < 0.01 0.7 < 0.05 5 <0.5 <0.2 <0.1 0.2 STD OXC129 12 54 1.58 52 0.410 <1 0.609 0.37 <0.1 < 0.01 1.1 <0.1 < 0.05 6 <0.5 <0.2 Standard 1.65 12 1.56 51 5 STD OXC129 Standard 53 0.405 <1 1.59 0.589 0.36 < 0.1 < 0.01 0.9 < 0.1 < 0.05 < 0.5 < 0.2 1.50 5 STD OXC129 Standard 11 50 48 0.363 1.59 0.605 0.37 <0.1 < 0.01 1.0 < 0.05 < 0.5 < 0.2 <1 < 0.1

			Client:	Metallic Minerals (#904 - 409 Granville Street Vancouver British Columbia	Corp. V6C 1T2 Canada	
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	Keno Silver December 31, 2018		
9050 Shaughn PHONE (604)	essy St Vancouver British Columbia \ 253-3158	/6P 6E5 Canada	Page:	2 of 4	Part:	3 of 3
QUALIT	Y CONTROL REPO	RT		WHI	18001158.1	

		Zn
		%
		0.01
STD DS11	Standard	
STD OREAS134B	Standard	17.42
STD OREAS133A	Standard	11.07
STD OREAS134B	Standard	17.54
STD OREAS133A	Standard	10.65
STD OREAS262	Standard	
STD OXC129	Standard	

MA404

												Client	::	Met a #904 - Vanco	allic M 409 Gra ouver Briti	lineral nville Stre sh Colum	s Cor eet ibia V6C	p. 1T2 Cana	ada		
BUREAU VERITAS	MINERAL LABORATOR Canada	IES		www.	bureau	veritas	.com/u	ım				Project	:	Keno	Silver						
Bureau Veritas	Commodities Canada Lt	d.										Report	Date:	Decer	nber 31, 2	2018					
9050 Shaughn	essv St Vancouver Britis	h Colum	bia V6P	6E5 C	anada																
PHONE (604) 2	253-3158											Page.		3 of 4					Part	· 1 oʻ	5
		_										. ugo.									
QUALIT	Y CONTROL	REP	OR													WH	1118	0011	158.	1	
		WOUT	40202	40202	40202	40202	4.0202	4.0202	40202	40202	40202	4.0202	40202	40202	40202	40202	4.0000	40202	40202	40202	40202
		Worl	AQ202 Mo	AQ202	AQ202 Ph	AQ202 7n	AQ202	AQ202 Ni	AQ202	AQ202 Mn	AQ202 Fo	AQ202	AQ202	AQ202 Th	AQ202 Sr	Cd	AQ202 Sh	AQ202 Bi	AQ202	AQ202	AQ202
		ka	nom	nom	nom	nom	nom	ppm	nom	ppm	%	nom	nnb	ppm	nom	nom	nom	nom	ppm	%	%
		0.01	0.1	0.1	0.1		0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	1	0.01	0.001
STD OXQ114	Standard																				
STD OXQ114	Standard																				
STD OXQ114	Standard																				
STD SP49	Standard																				
STD SP49	Standard																				
STD SP49	Standard																				
STD OXC129 E	xpected		1.3	28	6.2	42.9		79.5	20.3	421	3.065	0.6	195	1.9					51	0.684	0.102
STD OREAS134B Ex	xpected																				
STD OREAS133A Ex	xpected																				
STD DS11 Expe	ected		14.6	149	138	345	1.71	77.7	14.2	1055	3.1	42.8	79	7.65	67.3	2.37	8.74	12.2	50	1.063	0.0701
STD OREAS262 Exp	pected		0.68	118	56	154	0.45	62	26.9	530	3.284	35.8	72	9.33	36	0.61	5.06	0.98	22.5	2.98	0.04
STD AGPROOF	Expected																				
STD SP49 Expe	ected																				
STD OXQ114 E	xpected																				
BLK	Blank		<0.1	<0.1	0.1	<1	<0.1	<0.1	<0.1	<1	< 0.01	< 0.5	< 0.5	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.001
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.001
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.001
BLK	Blank		<0.1	-0.1	<0.2	-1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<1		<0.001
BLK	Blank		<0.1	<0.1	-0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.02	<0.001
BLK	Blank		<0.1	<0.1	0.2	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.001
BLK	Blank		-0.1	-0.1	0.2		-0.1	.0.1	-0.1		-0.01	-0.0	-0.0	-0.1		-0.1	-0.1	-0.1			10.001
BLK	Blank																				
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.001
BLK	Blank				-		-	-						-			-				
BLK	Blank		<0.1	<0.1	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<1	0.01	<0.001
BLK	Blank																				
BLK	Blank																				
Prep Wash																					

												Clien	t:	Met #904 - Vanco	allic N - 409 Gra ouver Briti	linera l anville Stra ish Colum	Is Cor eet nbia V6C	p. 1T2 Can	ada		
BUREAU VERITAS	IINERAL LABORATOR anada	IES		www.	bureau	veritas	.com/u	ım				Project	:	Keno	Silver						
Bureau Veritas C	ommodities Canada Lt	d.										Report	Date:	Decer	mber 31, 2	2018					
9050 Shaughnes	sv St. Vancouver Britis	h Colum	bia V6F	9 6E5 C	anada																
PHONE (604) 25	3-3158											Page:		3 of 4					Part:	2 of	3
				T												\ \ /	114.0	004			
QUALITY	CONTROL	REP	OR													VVF	1118	001	158.		
		AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	FA530		MA404
		La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	TI	S	Ga	Se	Те	Ag	Cu	Pb
		ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/t	%	%
		1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	20	0.01	0.01
STD OXQ114	Standard																		142		
STD OXQ114	Standard																		121		
STD OXQ114	Standard																		125		
STD SP49	Standard																		66		
STD SP49	Standard																		57		
STD SP49	Standard																		59		
STD OXC129 Expe	ected	12.5	52	1.545	50	0.4	1	1.58	0.59	0.3655			1.1			5.5					10.00
STD OREAS134B Expect	cted																			J.1348	13.36
		10.0	04.5	0.05	005	0.0070		4 4705	0.0700	0.4		0.00	0.4	10	0.0005	5 4		1.50		J.0323	4.9
STD DS11 Expecte	ed	18.6	61.5	0.85	385	0.0976	4	1.1795	0.0762	0.4	2.9	0.26	3.4	4.9	0.2835	5.1	2.2	4.56			
	'xpootod	15.9	41.7	1.17	240	0.0027	4	1.3	0.071	0.295	0.2	0.17	3.24	0.47	0.255	3.73	0.4	0.23	04		
STD SB40 Expost	ad																		60 2		
STD OYO114 Even	ected																		127.1		
BIK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	127.1		
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2			
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2			
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2			
BLK	Blank	<1	<1	< 0.01	<1	< 0.001	<1	< 0.01	< 0.001	< 0.01	<0.1	< 0.01	<0.1	<0.1	< 0.05	<1	< 0.5	<0.2			
BLK	Blank	<1	<1	< 0.01	<1	< 0.001	<1	< 0.01	< 0.001	< 0.01	<0.1	< 0.01	<0.1	<0.1	< 0.05	<1	<0.5	<0.2			
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	< 0.001	<0.01	<0.1	<0.01	<0.1	<0.1	< 0.05	<1	<0.5	<0.2		-	
BLK	Blank																		<20		
BLK	Blank																			<0.01	<0.01
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2			
BLK	Blank																			<0.01	<0.01
BLK	Blank	<1	<1	<0.01	<1	<0.001	<1	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2			
BLK	Blank																		<20		
BLK	Blank																		<20		
Prep Wash																					

			Client:	Metallic Minerals C #904 - 409 Granville Street Vancouver British Columbia	Corp. V6C 1T2 Canada	
BUREAU VERITAS Bureau Veritas	MINERAL LABORATORIES Canada s Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	Keno Silver December 31, 2018		
9050 Shaughn PHONE (604)	essy St_Vancouver British Columbia \ 253-3158	/6P 6E5 Canada	Page:	3 of 4	Part:	3 of 3
QUALIT	TY CONTROL REPOI	RT		WHI1	8001158.1	

		Zr
		%
		0.01
STD OXQ114	Standard	
STD OXQ114	Standard	
STD OXQ114	Standard	
STD SP49	Standard	
STD SP49	Standard	
STD SP49	Standard	
STD OXC129 Expected		
STD OREAS134B Expected		18.03
STD OREAS133A Expected		10.87
STD DS11 Expected		
STD OREAS262 Expected		
STD AGPROOF Expected		
STD SP49 Expected		
STD OXQ114 Expected		
BLK	Blank	<0.01
BLK	Blank	
BLK	Blank	<0.01
BLK	Blank	
BLK	Blank	
BLK	Blank	
Prep Wash		1

MA404

												Clien	t:	Meta #904 - Vanco	409 Gra uver Briti	linera nville Stro sh Colun	Is Cor eet nbia V6C	p. 1T2 Can	ada		
B U R E A U VERITAS	MINERAL LABORATOR Canada	IES		www.	bureau	iveritas	.com/u	m				Project	: Deter	Keno S	Silver						
Bureau Veritas	Commodities Canada Lt	d.										Report	Date:	Decen	nber 31, 2	2018					
9050 Shaughn PHONE (604)	essy St Vancouver Britis 253-3158	h Colum	bia V6F	9 6E5 C	Canada							Page:		4 of 4					Par	t: 1 of	3
QUALIT	Y CONTROL	REP	POR [®]	Г												WF	118	001 ⁻	158.	1	
		WGHT	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202
		Wgt	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р
		kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%
		0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	1	0.01	0.001
ROCK-WHI	Prep Blank		0.9	6.9	20.2	36	0.5	1.2	4.0	514	1.83	2.4	2.4	2.3	28	<0.1	0.9	<0.1	24	0.74	0.043
ROCK-WHI	Prep Blank		2.2	6.7	20.2	31	0.4	1.7	4.4	474	1.79	2.3	17.6	2.3	26	<0.1	0.8	<0.1	23	0.71	0.042

												Clien	t:	Meta #904 - Vanco	Allic M 409 Gran uver Briti	lineral nville Stre sh Colum	Is Cor eet nbia V6C	p. 1T2 Can	ada		
B U R E A U V E R I T A S	MINERAL LABORATOR Canada	IES		www.	bureau	veritas	.com/u	m				Project	:	Keno	Silver						
Bureau Veritas	s Commodities Canada Lt	d.										Report	Date:	Decen	nber 31, 2	2018					
9050 Shaughr PHONE (604)	essy St Vancouver Britis 253-3158	h Colum	ibia V6F	P 6E5 C	Canada							Page:		4 of 4					Part:	2 of	3
QUALI	TY CONTROL	REF	POR	Т												WF	1118	001 [.]	158.1		
		AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	AQ202	FA530		MA404
		La	Cr	Mg	Ва	Ti	в	AI	Na	к	w	Hg	Sc	ті	S	Ga	Se	Те	Ag	Cu	Pb
		ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	gm/t	%	%
		1	1	0.01	1	0.001	1	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	20	0.01	0.01
ROCK-WHI	Prep Blank	6	3	0.45	66	0.082	2	1.05	0.099	0.10	<0.1	<0.01	3.2	<0.1	<0.05	4	<0.5	<0.2			
ROCK-WHI	Prep Blank	7	3	0.45	58	0.072	2	1.02	0.118	0.11	<0.1	<0.01	2.6	<0.1	<0.05	4	<0.5	<0.2			

			Client:	Metallic Minerals Co #904 - 409 Granville Street Vancouver British Columbia V6	D rp. SC 1T2 Canada	
BUREAU VERITAS	MINERAL LABORATORIES Canada	www.bureauveritas.com/um	Project: Report Date:	Keno Silver December 31, 2018		
	Commodities Canada Ltd.	D CEE Conside				
9050 Snaughne	essy St Vancouver British Columbia V6	P 6E5 Canada				
PHONE (604) 2	253-3158		Page:	4 of 4	Part:	3 of 3
QUALIT	Y CONTROL REPOR	Т		WHI18	8001158.1	

Appendix III. Drill Logs

Project:	Keno-Lightning						
Hole:	GH18-002						
Prospect:	Gold Hill	Survey Type:		Logged By:	B Penner	Hole Type:	DDH
UTM Grid:	NAD83_Z8	Survey By:		Log Started:	2018-07-08	Hole Diameter:	9.6
UTM East:	490717	Final Surveyed Coords?:		Log Completed:	2018-07-09	Core Size:	HQ
UTM North:	7090626	length (m)·	41	Drill Company:	Boart LY	Casing Pulled?:	
UTM Elevation	n (m): -1		71	Drill Rig:		Casing Depth (m):	
Azimuth:	300			Drill Started:		Reduced Core Size:	
Dip:	-60	Comments:		Drill Completed:		Reduced Depth (m):	

Depth (m)	Survey Method	l Survey By	Date Surveyed	Dip	Measured Azimuth	Declination	Corrected Azimuth	Mag. Field	Accept Values?	Comments										
9	REFLXEZ		2018-07-02	-60.6	281.8	21.5	303.3	5803	\checkmark											
25	REFLXEZ		2018-07-02	-60.2	296.5	21.5	318	3956	\checkmark											

Hole:		GH18	3-002											
From (m)	To (m)		Rock Type & Description			From (m)	To (m)	Length	Sample #	Ag Best ppm	Pb Best pct	Zn Best pct	Cu Best pct	Ag Equiv
4.20	13.00	FQZ2	Penetratively foliated quartzite	medium gray	MG									
13.00	13.90	GPHY	Graphitic micaceous phyllite	black	FG									
13.90	17.00	FQZ1	Weakly foliated quartzite	medium grav	FG									
17.00	22.30	FQZ2	Penetratively foliated quartzite	dark grey	FG	17.90	18.70	0.80	1497280	0.4	0.00333	0.1761	0.00259	10.3154
< <vein: 21.<="" td=""><td>65 - 22.1:</td><td>40% Quartz-</td><td>Iron oxide>></td><td></td><td></td><td>18.70</td><td>20.40</td><td>1.70</td><td>1497282</td><td>17.1</td><td>0.13424</td><td>0.1861</td><td>0.00291</td><td>33.7602</td></vein:>	65 - 22.1:	40% Quartz-	Iron oxide>>			18.70	20.40	1.70	1497282	17.1	0.13424	0.1861	0.00291	33.7602
< <struc: 18<="" td=""><td>.7 - 20: m</td><td>oderate Gou</td><td>Je>></td><td></td><td></td><td>20.40</td><td>20.80</td><td>0.40</td><td>1497283</td><td>2.4</td><td>0.03471</td><td>0.0802</td><td>0.00081</td><td>8.4476</td></struc:>	.7 - 20: m	oderate Gou	Je>>			20.40	20.80	0.40	1497283	2.4	0.03471	0.0802	0.00081	8.4476
						20.80	21.65	0.85	1497285	4.8	0.04569	0.0482	0.00163	9.7476
						21.65	22.30	0.65	1497286	1.2	0.01438	0.0466	0.00036	4.4362
22.30	25.80	FQZ1	Weakly foliated quartzite	medium gray	FG									
						22.30	24.20	1.90	1497287	1	0.00909	0.0305	0.00029	3.1356
						24.20	25.80	1.60	1497289	0.2	0.00376	0.0659	0.00037	4.0605
25.80	29.00	MBRX	Mineralized breccia	medium beige	MG									
< <min: 25.8<="" td=""><td>8 - 29: 0.1%</td><td>% sphalerite /</td><td>5% Limonite and hematite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	8 - 29: 0.1%	% sphalerite /	5% Limonite and hematite>>											
						25.80	27.10	1.30	1497291	5	0.08413	0.0788	0.00101	13.3259
						27.10	27.60	0.50	1497293	3.1	0.08936	0.046	0.0011	9.926
						27.60	29.00	1.40	1497294	2	0.05269	0.0425	0.0019	7.258
29.00	32.35	FQZ1	Weakly foliated quartzite	dark grey	FG	29.00	31.00	2.00	1497296	0.4	0.00711	0.0055	0.0006	1.1201
< <struc: 31<="" td=""><td>.4 - 31.45:</td><td>moderate to</td><td>strong Gouge 60 deg. >></td><td></td><td></td><td>31.00</td><td>31.45</td><td>0.45</td><td>1497298</td><td>3.1</td><td>0.02851</td><td>0.0093</td><td>0.00076</td><td>6.438</td></struc:>	.4 - 31.45:	moderate to	strong Gouge 60 deg. >>			31.00	31.45	0.45	1497298	3.1	0.02851	0.0093	0.00076	6.438
						31.45	32.35	0.90	1497299	1.1	0.00626	0.02	0.00172	2.6887
32.35	38.15	FQZ2	Penetratively foliated quartzite	medium gray	MG									
< <alt: 32.35<="" td=""><td>5 - 32.95: s</td><td>strong Sericit</td><td>ic>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	5 - 32.95: s	strong Sericit	ic>>											
						32.35	33.00	0.65	1497300	0.2	0.00691	0.1578	0.00807	9.9497

Hole:		GH1	8-002										
From (m)	To (m)		Rock Type & Description			From (m)	To (m) Length	Sample #	Ag Best ppm	Pb Best pct	Zn Best pct	Cu Best pct	Ag Equiv
38.15	38.38	UNK1	Unknown 1	medium beige	MG								
Siltstone; pre	viously log	ged as apli	ite. Will correlate directly with 1497278 (GH	118-004) and 1497019 (GH18-0	03)								
38.38	41.00	FQZ2	Penetratively foliated quartzite	medium gray	FG								

End of Hole @ 41

Project:	Keno-Lightning						
Hole:	CH18-039						
Prospect:	Caribou Hill	Survey Type:		Logged By:	R Turna	Hole Type:	DDH
UTM Grid: UTM East:	NAD83_28 492856	Survey By: Final Surveyed Coords?:		Log Started: Log Completed:	2018-08-15	Hole Diameter: Core Size:	9.6 HQ
UTM North: UTM Elevation	7091049 (m): 1782	Length (m):	131	Drill Company: Drill Rig:	Boart LY	Casing Pulled?: Casing Depth (m):	
Azimuth:	283			Drill Started:	2018-07-28	Reduced Core Size:	
Dip:	-60	Comments:		Drill Completed:	2018-07-30	Reduced Depth (m):	

Depth (m)	Survey Method	Survey By	Date Surveyed	Dip	Measured Azimuth	Declination	Corrected Azimuth	Mag. Field	Accept Values?	Comments
14	REFLXEZ		2018-07-28	-59.7	261.9	20.5	282.4	5807	\checkmark	
41	REFLXEZ		2018-07-30	-60	262.8	20.5	283.3	5749	\checkmark	
92	REFLXEZ		2018-07-30	-62.3	263.9	20.5	284.4	5757	\checkmark	
131	REFLXEZ		2018-07-30	-65.7	264.7	20.5	285.2	5767	\checkmark	

Hole:		CH18	-039											
From (m)	To (m)		Rock Type & Description			From (m)	To (m)	Length	Sample #	Ag Best ppm	Pb Best pct	Zn Best pct	Cu Best pct	Ag Equiv
3.50	26.30	FQZ2	Penetratively foliated quartzite	medium gray	FG									
Relic euhedr	al pyrite, m	nm-scale, oxi	dized and disseminated in matrix. Foliation 30-	-40 TCA										
< <struc: 6.3="" slickensides<="" td=""><td>37 - 6.43: s.</td><td>weak to mode</td><td>erate Fault>> foliation parallel. Weak micace</td><td>eous gouge. Weak graph</td><td>ite on</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	37 - 6.43: s.	weak to mode	erate Fault>> foliation parallel. Weak micace	eous gouge. Weak graph	ite on									
26.30	39.00	FQZ1	Weakly foliated guartzite	dark grey	FG									
Graphitic gou and parallel t	uge at 35.4 to foliation,	0-35.70m, lig 40 TCA.	ht-orange qtz associated with g.gouge, qtz vei	ins with diffuse borders, <	10cm width									
< <vein: 27.<="" td=""><td>65 - 30.47:</td><td>12% Quartz</td><td>r-Iron oxide>> both discordant and foliation p</td><td>oarallel (60-70 tca).</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	65 - 30.47:	12% Quartz	r-Iron oxide>> both discordant and foliation p	oarallel (60-70 tca).										
< <struc: 35<br="">Encloses vu</struc:>	.4 - 36.34: ıggy lim qt	weak Fault 3 z veining. No	35 deg. >> Fissile platy micaceous shear tex o obvious gouge.	ture, feels faulted and mo	ostly healed.									
						35.40	36.34	0.94	1497387	0.9	0.00434	0.0088	0.0007	1.7523
39.00	43.00	FQZ2	Penetratively foliated quartzite	dark grey	FG									
Orange, wea	kly oxidize	d qtz veins p	arallel to foliation, 25-30 TCA.											
43.00	48.40	FQZ1	Weakly foliated quartzite	dark grey	FG	46.80	48.50	1.70	1497388	6.2	0.04834	0.2255	0.00195	21.2418
Repeating al 44.20m, 45.5	teration? C 50-45.80m,	0f MnOx stain , 46.90-48.20	ing and baked appearance, no reaction to HC m.	L. Alterations zones occu	r at 43.80-									
48.40	50.50	MBRX	Mineralized breccia	dark orange	FG	48.50	50.50	2.00	1497390	136	0.54052	0.656	0.01797	213.287 8
Sharp upper MnOx matrix <struc: 48<br="">2mm - 80m Moderately no red strea</struc:>	qtz-veined -supported .5 - 50.5: 1 m, subrour occurring i k.	l contact betw l breccia with moderate to s nded -subang n the matrix t	veen fqz1 and upper clast-supported breccia w a sharp lower contact to fqz1. Approximately s strong Fault / strong Breccia>> (See this inte jular. Strongly limonitic matrix seems mostly h ypically with lim, is a dark metallic lustre, weak	which grades into a heavily 50 cm of each type of bre erval in Litho) Clasts anyw nealed rock flour from fau kly magnetic mineral. Not	/ oxidized ccia. /here from ting. spec hem -									
50.50	60.25	FQZ1	Weakly foliated quartzite	dark grey	FG	50.50	53.00	2.50	1497392	20.6	0.03385	0.0068	0.00027	24.209
>10 cm wide	bull qtz ve	eins associate	ed with limonite and graphitic stringers which x	-cut foliation, with sigmoid	dal habit.									

>10 cm wide bull qtz veins associated with limonite and graphitic stringers which x-cut foliation, with sigmoidal habit. Extremely fissile graphitic gouge occurs at 53.80-54.10m and 56.40-56.70m.

Hole:		CH18	-039											
From (m)	To (m)		Rock Type & Description			From (m)	To (m)	Length	Sample #	Ag Best ppm	Pb Best pct	Zn Best pct	Cu Best pct	Ag Equiv
60.25	65.80	FQZ2	Penetratively foliated quartzite	medium gray	FG	64.87	66.06	1.19	1497393	5.3	0.01772	0.0516	0.00451	9.4506
fqz2 foliation at 64.90-65.4 Sharp lower < <vein: 64.<br="">evident in th</vein:>	30-10 TC/ 40m. CT at 65 d 87 - 65.4: ne qtz rubb	A, decreasing eg tca. 80% Quartz-l le or hosted ir	angle downhole. Brecciated fqz2 and white ron oxide>> Occasionally graphitic. Som n intact vein. Lim-stained.	e qtz vein with significant M e local brecciation and faul	nOx staining ting/gouge									
65.80	88.10	GPHY	Graphitic micaceous phylli	te black	FG	66.06	66.85	0.79	1497394	2.8	0.00572	0.0644	0.00641	7.2945
Repeating gr increasing do of graphitic g	radation fro ownhole, m jouge at 66	om foliated phy nm-scale relic 6.10-66.80m, 7	vllitic to banded schistose, high graphite co euhedral py associated with qtz and graphi 71.00-71.50m, 87.40-88.00m.	ntent throughout, foliation 3 ite banding segregation. Re	80-50 TCA epeating units									
< <struc: 66<="" td=""><td>.06 - 66.85</td><td>5: moderate to</td><td>o strong Fault>> Mostly healed gouge, we</td><td>eak to mod graphitic.</td><td></td><td>66.85</td><td>68.28</td><td>1.43</td><td>1497395</td><td>1.4</td><td>0.00205</td><td>0.0571</td><td>0.00994</td><td>5.9457</td></struc:>	.06 - 66.85	5: moderate to	o strong Fault>> Mostly healed gouge, we	eak to mod graphitic.		66.85	68.28	1.43	1497395	1.4	0.00205	0.0571	0.00994	5.9457
88.10	94.20	GPHY	Graphitic micaceous phylli	te medium gray	FG									
Phylite +/- so gouge, 91.60 Occasional t < <struc: 91<br="">brecciation</struc:>	ome fqz2; f)-92.30m. r to local w .15 - 92.4: in upper ha	oliation/bandir reak fine-med strong Fault alf only associ	ng 50 TCA. Oxidized, light yellow brecciated grained py disseminations. / weak Breccia>> Graphitic gouge/faulting ated with large fracturing Fe-stained quartz	d qtz vein gradational into b g in interval's lower half. So : vein pushing in.	olk graphitic ome local									
						91.15	92.40	1.25	1497396	0.7	0.00281	0.1147	0.00615	7.7877
94.20	97.90	FQZ1	Weakly foliated quartzite	dark grey	FG									
Quartzite: we strong discort	eakly foliate	ed massive te oidal Fe-staine	xture. Tr fracture-controlled py present. Sh ed qtz veining (<5cm).	ort lengths of lim-overprinte	ed core. Mod-									
97.90	99.20	MVN	Mineralized vein	medium brown		98.15	99.22	1.07	1497397	4.3	0.0282	0.1824	0.01319	18.1269
20% of inten Qtz vein is ir Breccia is br < <vein: 98.<br="">frac-controll Brecciation patches.</vein:>	val is still P itact but hi ittle and inf 15 - 99.22: led py. is brittle ar	hylite interbec ighly lim-fractu tensely rusty F 80% Quartz nd intensely ru	I/clasts or quartzite wall rock. Top CT is sh ured/vugged with tr frac-controlled py. Fe-oxidized with angular to sub-ang qtz clas -Iron oxide-Sulphides>> Qtz vein is intact asty Fe-oxidized with angular to sub-ang qtz	harp phylite band, at 30deg sts and mm-scale weak fg F to but highly lim-fractured/vu z clasts and mm-scale weak	tca. Py patches. Igged with tr k fg Py									

Hole:		CH18	-039											
From (m)	To (m)		Rock Type & Description			From (m)	To (m)	Length	Sample #	Ag Best ppm	Pb Best pct	Zn Best pct	Cu Best pct	Ag Equiv
99.20	100.62	GPHY	Graphitic micaceous phyllit	e black										
Phylite: comp Qtz vein is m Bottom CT is	postitionally lostly intact s sharp 40 c	v banded w/ tr but highly int deg tca and q	r py. Biotite-rich. Bands fold and fracture with ternal lim-fractured +/-graphite. tz-veined.	nin the qtz vein.										
						99.22	100.62	1.40	1497399	4.4	0.01816	0.0994	0.00923	11.8953
100.62	113.25	FQZ2	Penetratively foliated quartzite	light green										
Foliated quar foliations. Py 40 deg tca qt metres. Bott < <alt: 100.6<br="">green. Mod sub -euherd</alt:>	rtzite: strong yrite varies, tz-veined up tom contact 62 - 113.25: I-strong lim Iral sparse o	gly ser-chl alt tr to 0.4%, fil oper contact. is undulating moderate to preferring co dissemination	tered light green. Mod-strong lim preferring on ne to med-gr, sub -euherdral sparse dissem Foliations generally 30-40deg tca. S-folding with proximal similarly deformed qtz vein. to strong Sericitic / weak Chlorite >> Foliate impositionally banded in with foliations. Pyrins. Foliations generally 30-40deg tca.	compositionally banded i inations. g of foliations occur at int ed quartzite: strongly ser- te varies, tr to 0.4%, fine	in with terval's bottom -chl altered light a to med-gr,									
113.25	119.50	GPHY	Graphitic micaceous phyllit	e black										
Phylite: biotite parallel, splitt blebby/patche	e-banded 4 ting the bec es 1-4mm s	0-50 deg tca ls. These "int scale.	. With clean white discordant qtz veining, as terbeds" of qtz get preferred by >/=0.5% fine	well as more frequently pyrite occurring in oblor	banding ng									
119.50	128.26	FQZ2	Penetratively foliated	dark grey	MG									
			quartzite											
Quartzite: we barren ptygn Top CT sharp Bottom CT sł	eak to mod natic worm p at 35 deg harp at 45 d	foliated. 0.5- y qtz veining, tca, parallel o deg tca, foliat	0.8% med grained disseminated py. Mod fr among larger 4-10 cm discordant and conc qtz vein proximally above and lim halo on lo tion parallel and py present.	equent (~1cm) weakly F ordant qtz veining. wer side.	e-stained but									
128.26	131.00	GPHY	Graphitic micaceous phyllit	e black										
Phylite: biotite "interbeds" of coarse blebs	e-banded 3 f qtz get pre in with the	85-40 deg tca eferred by >/= bio bands.	. With clean white concordant qtz veining ba =1% pyrite occurring mostly in oblong med-c	nding parallel, splitting t oarse patches 2-8mm se	he beds. These cale, and									

EOH

End of Hole @ 131

Hole: CH1	8-040						
Prospect:							
	Caribou Hill	Survey Type:		Logged By:		Hole Type:	DDH
UTM Grid:	NAD83_Z8	Survey By:		Log Started:	2018-08-15	Hole Diameter:	9.6
UTM East:	492855	Final Surveyed Coords?:		Log Completed:		Core Size:	HQ
UTM North:	7090926	Length (m):	80	Drill Company:		Casing Pulled?:	
UTM Elevation (m):	1752		00	Drill Rig:		Casing Depth (m):	
Azimuth:	275			Drill Started:		Reduced Core Size:	
Dip:	-69	Comments:		Drill Completed:		Reduced Depth (m):	

Depth (m)	Survey Method	Survey By	Date Surveyed	Dip	Measured Azimuth	Declination	Corrected Azimuth	Mag. Field	Accept Values?	Comments
14	REFLXEZ		2018-07-31	-69.4	256.5	20.5	277	5801	\checkmark	
35	REFLXEZ		2018-08-01	-69.5	257.2	20.5	277.7	5765	\checkmark	
55	REFLXEZ		2018-08-01	-69.7	258.5	20.5	279	5755	\checkmark	
80	REFLXEZ		2018-08-01	-69.6	258.5	20.5	279	5760	\checkmark	

Hole:		CH18-	040										
From (m)	To (m)		Rock Type & Description			From (m)	To (m) Length	Sample #	Ag Best ppm	Pb Best pct	Zn Best pct	Cu Best pct	Ag Equiv
0.00	4.90	OVB	Overburden										
No recovery													
4.90	17.35	FQZ2	Penetratively foliated quartzite	light grey	MG								
appearance of black (K-rich)	changes w bands	ith intensity of v	/eining - where quartz veins are more pervasiv	ve, unit is finer grained	and has more								
< <vein: 4.9<="" td=""><td>- 6.75: 10</td><td>% Quartz-Pyrite</td><td>e>> Vein 1: vugs with oxidized material and</td><td>studded with small pyr</td><td>ite grains</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	- 6.75: 10	% Quartz-Pyrite	e>> Vein 1: vugs with oxidized material and	studded with small pyr	ite grains								
< <vein: 11.<="" td=""><td>7 - 12.7: 1</td><td>5% Quartz>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	7 - 12.7: 1	5% Quartz>>											
< <struc: 4.9<="" td=""><td>-5.7: Fo</td><td>liated 40 deg. ></td><td>>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	-5.7: Fo	liated 40 deg. >	>>										
< <struc: 5.7<="" td=""><td>-7.55: F</td><td>oliated 40 deg.</td><td>>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	-7.55: F	oliated 40 deg.	>>										
< <struc: 7.5<="" td=""><td>5-9.4: F</td><td>oliated 50 deg.</td><td>>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	5-9.4: F	oliated 50 deg.	>>										
< <struc: 9.4<="" td=""><td>- 11.35:</td><td>Foliated 50 deg</td><td>g. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	- 11.35:	Foliated 50 deg	g. >>										
< <struc: 11<="" td=""><td>.35 - 13.15</td><td>: Foliated 50 c</td><td>deg. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.35 - 13.15	: Foliated 50 c	deg. >>										
< <struc: 13<="" td=""><td>.15 - 15.1:</td><td>Foliated 50 de</td><td>eg. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.15 - 15.1:	Foliated 50 de	eg. >>										
< <struc: 15<="" td=""><td>.1 - 17.3:</td><td>Foliated 40 deg</td><td>g. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.1 - 17.3:	Foliated 40 deg	g. >>										
<struc: 17<="" td=""><td>.3 - 19.2:</td><td>Foliated 55 deg</td><td>g. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.3 - 19.2:	Foliated 55 deg	g. >>										
17.35	20.35	FQZ1	Weakly foliated quartzite	dark grey	FG								
texture, lith 1	Massive												
< <struc: 19<="" td=""><td>.2 - 21.05:</td><td>Foliated 50 de</td><td>eg. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.2 - 21.05:	Foliated 50 de	eg. >>										
20.35	24.20	GPHY	Graphitic micaceous phyllite	dark brown	FG								
texture, lith 2	: MASSIVE	Ξ											
< <struc: 21<="" td=""><td>.05 - 22.9:</td><td>Foliated 50 de</td><td>eg. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.05 - 22.9:	Foliated 50 de	eg. >>										
< <struc: 22<="" td=""><td>.9 - 24.9:</td><td>Foliated 50 deg</td><td>g. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.9 - 24.9:	Foliated 50 deg	g. >>										
24.20	38.80	FQZ1	Weakly foliated quartzite	dark grey	FG								
texture: MAS	SIVE	Faliated FO de											
<<5truc: 24	.9 - 26.8:		g. >>										
<<5truc: 26	.o-29: Fo	ollated 45 deg.	>>										

Hole:		CH18	3-040											
From (m)	To (m)		Rock Type & Description			From (m)	To (m)	Length	Sample #	Ag Best ppm	Pb Best pct	Zn Best pct	Cu Best pct	Ag Equiv
38.80	43.85	FQZ2	Penetratively foliated quartzite	medium gray	MG									
< <vein: 43.<br="">Samples 14</vein:>	.1 - 44.5: 7 497120-149	0% Quartz-Ir 7122	ron oxide-Sulphides>> \weakly brecciated	l quartz vein cut by hematite	veinlets									
< <struc: 39<="" td=""><td>9.1 - 41.25:</td><td>Foliated 50</td><td>deg. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	9.1 - 41.25:	Foliated 50	deg. >>											
< <struc: 41<="" td=""><td>.25 - 43.1:</td><td>Foliated 45</td><td>i deg. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	.25 - 43.1:	Foliated 45	i deg. >>											
< <struc: 43<="" td=""><td>8.1 - 45.15:</td><td>Foliated 45</td><td>deg. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	8.1 - 45.15:	Foliated 45	deg. >>											
						42.10	43.10	1.00	1497116	7.3	0.11031	0.0233	0.00158	14.3565
						43.10	43.40	0.30	1497118	4.2	0.03501	0.0126	0.00047	9.2136
						43.40	43.85	0.45	1497119	7.6	0.10339	0.0796	0.0009	16.9927
43.85	44.50	MVN	Mineralized vein	medium beige	MG									
Minor brecci Sphalerite in Hematite vei < <min: 44.1<="" td=""><td>a texture or small euhe inlets cut ao 15 - 44.5: 5</td><td>nly, which is edral crystals cross main q % Hematite</td><td>why I've logged it as MVN. s, <2% vol. uartz vein / 0.5% sphalerite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	a texture or small euhe inlets cut ao 15 - 44.5: 5	nly, which is edral crystals cross main q % Hematite	why I've logged it as MVN. s, <2% vol. uartz vein / 0.5% sphalerite>>											
						43.85	44.15	0.30	1497120	183	0.16556	0.6877	0.02399	236.378 5
						44.15	44.50	0.35	1497121	73.3	1.81	2.45	0.005	306.861 2
44.50	62.90	FQZ2	Penetratively foliated quartzite	medium gray	MG	44.50	45.50	1.00	1497123	4.2	0.11339	0.1582	0.00043	18.9849
pyrite dissen	ninated as e	euhedral cub	bes, <1%											
< <min: -<="" 56="" td=""><td>56.55: 3%</td><td>Hematite / (</td><td>0.5% sphalerite>></td><td></td><td></td><td>45.50</td><td>46.35</td><td>0.85</td><td>1497124</td><td>23.4</td><td>0.43334</td><td>0.3311</td><td>0.00325</td><td>64.0345</td></min:>	56.55: 3%	Hematite / (0.5% sphalerite>>			45.50	46.35	0.85	1497124	23.4	0.43334	0.3311	0.00325	64.0345
< <vein: 54.<="" td=""><td>.8 - 56.55:</td><td>3% Quartz-Ir</td><td>ron oxide / 17% Quartz>></td><td></td><td></td><td>46.35</td><td>55.10</td><td>8.75</td><td>1497125</td><td>1.5</td><td>0.03034</td><td>0.0246</td><td>0.00057</td><td>4.3622</td></vein:>	.8 - 56.55:	3% Quartz-Ir	ron oxide / 17% Quartz>>			46.35	55.10	8.75	1497125	1.5	0.03034	0.0246	0.00057	4.3622
< <struc: 45<="" td=""><td>5.15 - 47.25</td><td>: Foliated 3</td><td>0 deg. >></td><td></td><td></td><td>55.10</td><td>55.40</td><td>0.30</td><td>1497127</td><td>14.3</td><td>0.38751</td><td>0.2071</td><td>0.00229</td><td>44.2447</td></struc:>	5.15 - 47.25	: Foliated 3	0 deg. >>			55.10	55.40	0.30	1497127	14.3	0.38751	0.2071	0.00229	44.2447
< <struc: 47<="" td=""><td>7.25 - 49.25</td><td>: Foliated 5</td><td>5 deg. >></td><td></td><td></td><td>55.40</td><td>56.00</td><td>0.60</td><td>1497129</td><td>5.5</td><td>0.26288</td><td>0.0422</td><td>0.00086</td><td>20.6297</td></struc:>	7.25 - 49.25	: Foliated 5	5 deg. >>			55.40	56.00	0.60	1497129	5.5	0.26288	0.0422	0.00086	20.6297
< <struc: 49<="" td=""><td>9.25 - 51.2:</td><td>Foliated 65</td><td>i deg. >></td><td></td><td></td><td>56.00</td><td>56.55</td><td>0.55</td><td>1497130</td><td>15.8</td><td>0.48528</td><td>0.802</td><td>0.00251</td><td>83.147</td></struc:>	9.25 - 51.2:	Foliated 65	i deg. >>			56.00	56.55	0.55	1497130	15.8	0.48528	0.802	0.00251	83.147
< <struc: 51<="" td=""><td>.2 - 53.15:</td><td>Foliated 55</td><td>deg. >></td><td></td><td></td><td>56.55</td><td>57.30</td><td>0.75</td><td>1497132</td><td>2.8</td><td>0.04545</td><td>0.0515</td><td>0.00077</td><td>7.8117</td></struc:>	.2 - 53.15:	Foliated 55	deg. >>			56.55	57.30	0.75	1497132	2.8	0.04545	0.0515	0.00077	7.8117

Hole	•	CH18-0)40										
From (m)	To (m)		Rock Type & Description			From (m)	To (m) Length	Sample #	Ag Best ppm	Pb Best pct	Zn Best pct	Cu Best pct	Ag Equiv
< <struc: 5<="" td=""><td>3.15 - 55.3:</td><td>Foliated 60 deg</td><td>g. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	3.15 - 55.3:	Foliated 60 deg	g. >>										
< <struc: 5<="" td=""><td>5.3 - 57.05:</td><td>Foliated 40 deg</td><td><u>j.</u> >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	5.3 - 57.05:	Foliated 40 deg	<u>j.</u> >>										
< <struc: 5<="" td=""><td>7.5 - 59: Fo</td><td>liated 40 deg. ></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	7.5 - 59: Fo	liated 40 deg. >	>										
< <struc: 5<="" td=""><td>9 - 60.9: Fo</td><td>liated 55 deg. ></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	9 - 60.9: Fo	liated 55 deg. >	>										
< <struc: 6<="" td=""><td>0.9 - 63: Fo</td><td>liated 50 deg. ></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	0.9 - 63: Fo	liated 50 deg. >	>										
62.90	67.25	FQZ2	Penetratively foliated quartzite	medium gray	FG								
sulfide band < <struc: 6<="" td=""><td>ds <1/2 cm w 3 - 64.85: F</td><td>ide; increase in oliated 50 deg.</td><td>pyite content in fqz2 >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	ds <1/2 cm w 3 - 64.85: F	ide; increase in oliated 50 deg.	pyite content in fqz2 >>										
< <struc: 6<="" td=""><td>4.85 - 66.9:</td><td>Foliated 45 deg</td><td><u>j.</u> >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	4.85 - 66.9:	Foliated 45 deg	<u>j.</u> >>										
< <struc: 6<="" td=""><td>6.9 - 68.75:</td><td>Foliated 45 deg</td><td>j. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	6.9 - 68.75:	Foliated 45 deg	j. >>										
67.25	74.40	GPHY	Graphitic micaceous phyllite	black	FG								
extensive K	-rich banding	. Much more pe	enetrative foliation. Graphitic foliation surfaces	s. Euhedral pyrite cubes	up to 2mm								
< <vein: 69<br="">carbonate.</vein:>	9.5 - 75.5: 5% Soft. No effe	% Quartz>> C ervescence.	ream colored mineral, blebby, within qtz veins	s, <10% of vein body: like	ely Fe-								
< <struc: 6<="" td=""><td>8.75 - 70.7:</td><td>Foliated 40 deg</td><td>g. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	8.75 - 70.7:	Foliated 40 deg	g. >>										
< <struc: 7<="" td=""><td>0.7 - 72.65:</td><td>Foliated 45 deg</td><td>j. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	0.7 - 72.65:	Foliated 45 deg	j. >>										
< <struc: 7<="" td=""><td>2.65 - 74.7:</td><td>Foliated 50 deg</td><td>g. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	2.65 - 74.7:	Foliated 50 deg	g. >>										
74.40	80.00	FQZ2	Penetratively foliated	medium gray	MG								
			quartzite										
< <struc: 7<="" td=""><td>4.7 - 76.65:</td><td>Foliated 50 deg</td><td>j. >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	4.7 - 76.65:	Foliated 50 deg	j. >>										
< <struc: 7<="" td=""><td>6.65 - 78.7:</td><td>Foliated 50 deg</td><td><u>j.</u> >></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	6.65 - 78.7:	Foliated 50 deg	<u>j.</u> >>										
< <struc: 7<="" td=""><td>8.7 - 80: Fo</td><td>liated 60 deg. ></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	8.7 - 80: Fo	liated 60 deg. >	>										

End of Hole @ 80

Appendix IV. Drilling Invoices

Invoice No: Customer No: Contract/PO No: Project Number (BLY): Invoice Date: Terms: Invoice Due Date: Customer VAT No:

57508 114242 23 UL 2018

Summary-11681

23-JUL-2018 N 30 Days D.O.I 22-AUG-2018

Hole #: GH18-002									
Date	Description	From	То	Depth	Qty	UOM	Rate	Extended Rate	
01-JUL-2018	HQ DRILLING 0-150	4.50	15.00	10.50	10.50	Meters	158.82	1,667.61	
01-JUL-2018	CLIENT DELAY				1.50	Hours	285.00	427.50	
01-JUL-2018	HQ OVERBURDEN 0-15M	0.00	4.50	4.50	4.50	Meters	206.47	929.12	
01-JUL-2018	REFLEX TEST				0.50	Hours	285.00	142.50	
01-JUL-2018	MOVE BETWEEN HOLES/LEVELS				1.50	Hours	285.00	427.50	
01-JUL-2018	HQ BIT #4055626				1.00	Each	502.58	502.58	
02-JUL-2018	HQ DRILLING 0-150	15.00	42.00	27.00	27.00	Meters	158.82	4,288.14	
02-JUL-2018	CLIENT DELAY				1.00	Hours	285.00	285.00	
02-JUL-2018	REFLEX TEST				0.50	Hours	285.00	142.50	
02-JUL-2018	GROUTING/CEMENTING				2.00	Hours	285.00	570.00	
02-JUL-2018	AMC CR 650 15KG PAIL				1.00	Each	135.44	135.44	
02-JUL-2018	BENTONITE STAR GEL (50LB)				2.00	Each	19.40	38.80	
02-JUL-2018	HQ VAN RUTH PLUG				1.00	Each	390.39	390.39	
02-JUL-2018	LAFARGE GU CEMENT 20KG BAG				4.00	Each	8.05	32.20	
Total	Drill Hole ID: GH18-00242.00100% included for assessment9,						ssessment 9,979.28		

Payments not received by the due date will be subject to a finance charge in accordance with the contract Page 2 of 10

Invoice

Invoice No:
Customer No:
Contract/PO No:
Project Number (BLY):
Invoice Date:
Terms:
Invoice Due Date:
Customer VAT No:

57508 114242

Summary-11903

10-AUG-2018 N 30 Days D.O.I 09-SEP-2018

Hole #: CH18-039

Date	Description	From	То	Depth	Qty	UOM	Rate	Extended Rate
27-JUL-2018	HQ DRILLING 0-150	3.50	11.00	7.50	7.50	Meters	158.82	1,191.15
27-JUL-2018	HQ OVERBURDEN 0-15M	0.00	3.50	3.50	3.50	Meters	206.47	722.65
27-JUL-2018	MOVE BETWEEN HOLES/LEVELS				3.00	Hours	285.00	855.00
28-JUL-2018	HQ DRILLING 0-150	11.00	44.00	33.00	33.00	Meters	158.82	5,241.06
28-JUL-2018	HQ DRILLING 0-150	44.00	56.00	12.00	12.00	Meters	158.82	1,905.84
28-JUL-2018	REFLEX TEST				0.50	Hours	285.00	142.50
28-JUL-2018	HOLE CONDITIONING				5.00	Hours	285.00	1,425.00
29-JUL-2018	HQ DRILLING 0-150	83.00	110.00	27.00	27.00	Meters	158.82	4,288.14
29-JUL-2018	HQ DRILLING 0-150	56.00	83.00	27.00	27.00	Meters	158.82	4,288.14
29-JUL-2018	HOLE CONDITIONING				5.00	Hours	285.00	1,425.00
30-JUL-2018	HQ DRILLING 0-150	110.00	131.00	21.00	21.00	Meters	158.82	3,335.22
30-JUL-2018	REFLEX TEST				1.50	Hours	285.00	427.50
30-JUL-2018	GROUTING/CEMENTING				1.00	Hours	285.00	285.00
30-JUL-2018	HOLE CONDITIONING				2.00	Hours	285.00	570.00
30-JUL-2018	INSTALL WATERLINE				2.00	Hours	285.00	570.00
30-JUL-2018	HQ VAN RUTH PLUG				1.00	Each	390.39	390.39
30-JUL-2018	REMOVE CASING				1.00	Hours	285.00	285.00
30-JUL-2018	LAFARGE GU CEMENT 20KG BAG				2.00	Each	8.05	16.10

Invoice No:	Summary-11903
Customer No:	57508
Contract/PO No:	
Project Number (BLY):	114242
Invoice Date:	10-AUG-2018
Terms:	N 30 Days D.O.I
Invoice Due Date:	09-SEP-2018
Customer VAT No:	

Date	Description	From	То	Depth	Qty	UOM	Rate	Extended Rate	
Total	Drill Hole ID: CH18-039			131.00		100% i	ncluded for a	ssessment	27,363.69

Hole #: CH18-040									
Date	Description	From	То	Depth	Qty	UOM	Rate	Exte	nded Rate
30-JUL-2018	HQ DRILLING 0-150	4.00	20.00	16.00	16.00	Meters	158.82		2,541.12
30-JUL-2018	HQ OVERBURDEN 0-15M	0.00	4.00	4.00	4.00	Meters	206.47		825.88
30-JUL-2018	REFLEX TEST				0.50	Hours	285.00		142.50
30-JUL-2018	MOVE BETWEEN HOLES/LEVELS				3.00	Hours	285.00		855.00
31-JUL-2018	HQ DRILLING 0-150	20.00	50.00	30.00	30.00	Meters	158.82		4,764.60
31-JUL-2018	HQ DRILLING 0-150	50.00	80.00	30.00	30.00	Meters	158.82		4,764.60
31-JUL-2018	HOLE CONDITIONING				2.50	Hours	285.00		712.50
31-JUL-2018	INSTALL WATERLINE				1.00	Hours	285.00		285.00
Total	Drill Hole ID: CH18-040	80.00 100% included for assessment					14,891.20		

Payments not received by the due date will be subject to a finance charge in accordance with the contract Page 12 of 13