

2018 Geochemical and Airborne Survey Assessment Report:

Soil Sampling, GT Probe, IP Survey and Drone Aerial Survey

on the Black Hills Creek Property Dawson Mining District, Yukon

Claim Name (From - To)	Grant No. (From -	Claim Name (From - To)	Grant No. (From - To)
	То)		
BEV 1 – BEV 316	YD45401 – YD45716	Rico 241 – Rico 336	YD48187 – YD48282
BEV 331 – BEV342	YD45731 – YD45742	Rico 337 – Rico 799	YD46501 – YD46963
BEV 357 – BEV 368	YD45757 – YD45768	Cooper 1 – Cooper 96	YD43749 – YD43844
BEV 383 – BEV 394	YD45783 – YD45794	Cooper 97 - Cooper 236	YD46261 – YD46400
BEV 409 – BEV 442	YD45809 – YD45842	Cooper 237 – Cooper 536	YD45901 – YD46200
BEV 459 – BEV 491	YD45859 – YD45891	Cooper 537 – Cooper 562	YD45329 – YD45354
BEV 509 – BEV 516	YD46209 – YD46216	Peat 1 – Peat 60	YD97501 – YD97560
BEV 535 – BEV 542	YD46235 – YD46242	Peat 77 – Peat 138	YD97577 – YD97638
BEV 561 – BEV 740	YD15301 – YD15480	Peat 153 – Peat 218	YD97653 – YD97718
BHC 1- BHC 133	YF08151 – YF08283	Peat 229 – Peat 288	YD97729 – YD97788
Rico 1 – Rico 218	YD48283 – YD48500	Peat 293 – Peat 614	YD9779 – YD98114
Rico 219 – Rico 240	YD44401 – YD44422		

NTS: 1: 50,000 1150/02, 03, 06, 07, 10, 11

Latitude 63.27°N

Longitude -138.83°W

Dawson Mining District

Work Performed Between: May 23 – October 6, 2018 Soil Sampling: September 15 – October 6, 2018 GT Probe: July 7 – July 20, 2018 IP Survey: August 15 – August 20, 2018 Drone: May 23, 2018

> Prepared for White Gold Corp By GroundTruth Exploration

Written By: Amanda Bennett and Matthew Hanewich Compilation Date: October 17, 2018

Summary

This report summarizes the soil sampling, GT Probe sampling, IP/Resistivity survey and drone aerial photography done by GroundTruth Exploration for White Gold Corporation during the 2018 field season at the Black Hills Creek Property. The property is located 95 km southeast of Dawson City, in the west-central Yukon. The property is centered at the geographic coordinates 63.403 N and 138.768 W. It is composed of 2,679 contiguous quartz claims covering an area of 51,130 hectares.

Smash Minerals explored Black Hills in 2010 and 2011 collecting total of 19,511 soil samples including ridge-and-spur and grid soil samples. Additionally, 179 stream sediment samples were collected focusing on all catchment areas within the Black Hills Creek Property to a maximum of 20 sq. km. Trenched based mapping was also conducted in 2011, covering 2500-line meters of trench.

An airborne magnetic and radiometric geophysical survey was completed during 2010 and 2011 covering 9,401 line-kilometers. Anomalies identified by the survey were ground tested. An area with prominent magnetic lows in the north-eastern portion of the Property correlate to a hydrothermally altered biotite-feldspar gneiss and augen gneiss.

The work completed in 2016 by GroundTruth Exploration included aerial drone photography and grid in fill soil sampling. The DIGHEM airborne geophysical survey began in November of 2016 and was continued in 2017. Other exploration completed in 2017, also by GroundTruth, included; IP/Resistivity geophysical surveying, GTProbe sampling, RAB drilling, drone surveying, and an extensive multi-day prospecting and mapping program.

The 2018 exploration program on the Black Hills Creek property consisted of soil sampling (2,786 samples). The 2018 GT Probe program gathered 439 samples across 6 lines. The IP/Resistivity program consisted of 6 lines for a total of 2,490 m. There were 53 square kilometers of drone imagery taken over the Black Hills Creek property.

The soil sampling results didn't turn up any revealing results. The GT Probe has several samples that are anomalous in Au, Ag, Mo and Pb which should be investigated with a small prospecting team. If significant samples are found, then a more significant probe work can be done in the area, or possible a small RAB drilling program to gather more structural and geochemical data from the bedrock near these anomalies.

A more conductive structure is observed in the resistivity models near the surface on the east side of the IP/Res profile lines, it appears to be running NW-SE. The GT Probe can be used to sample smaller lines across this structure to gather more information on alteration and mineralization. A deeper chargeable unit is also interpreted from the IP/Res data, it would be worth drilling this unit if there was indeed a small RAB program planned in the area.

Table of Contents

Summaryii
Introduction1
Property Description and Location1
Claim Information
History
Geology 6
Regional Geology
Property Geology
Mineralization
2018 Exploration Program and Results11
Soil Sampling Program11
Method and Approach11
Analysis
Results12
GT Probe12
Analysis12
IP/Resistivity Survey18
Method and Approach18
Analysis
Results
Drone Surveying
Interpretation and Recommendations 21
References
Costs
Statements of Qualification

Table of Figures

Figure 1: Location of the Black Hills Property, Yukon, Canada	2
Figure 2: Regional Geology of the Black Hills Property (from Colpron et al., 2007)	7
Figure 3: Correlation chart for major events occurring in west-central Yukon and eastern Ala	aska
(Allan et al., 2012)	8
Figure 4: Historic Smash Minerals Prospects and zones with the underlying geology, the geo	logy
is based on mapping work completed by M. Cooley 2017, and Cooley and Leatherman, 2011	. 10
Figure 5: Au in Soil Results (North Grid)	13
Figure 6: Au in Soil Results (South Grid)	14
Figure 7: Pb in Soil Results (North Grid)	15
Figure 8: Pb in Soil Results (South Grid)	16
Figure 9: Au Probe Sample Assay Results	17
Figure 10: Pb Probe Sample Assay Results	18
Figure 11: Resistivity survey of the six lines completed at BHC	19
Figure 12: IP Survey of the six lines completed at BHC	20

Table of Tables

Table 1: Claims within the Black Hills area	3
Table 2: Summary of 2010/2011 Exploration	5
Table 3: 2018 Soil sampling assay summary	12
Table 4: 2018 GT Probe assay summary	17

List of Appendices

Appendix I: Claims List, GT Probe sample descriptions and Assay, GTP XRF data, Soil sample descriptions and assay

Appendix II: Soil assay certificates, GT Probe assay certificates

Appendix III: BHC work locations map, Claims map, Property geology map

Appendix IV: BHC IP Resistivity Report

Appendix V: IP/Res data, Drone imagery

Introduction

The following report documents the work completed on the Black Hills Creek (BHC) property during the 2018 field season. The property is wholly owned by White Gold Corp and is in the Dawson Mining district, centered roughly 95 km southeast of Dawson City.

The work completed in 2018 was focused on following up on several historic exploration targets. Soil sampling, GT Probe and IP surveying were the main programs launched during the season, there was also a day of drone airborne surveying completed (locations of work shown in Appendix III). Soil sampling took place between September 15th- October 3rd with 2,786 samples collected in that time.

Between August 15th – 20th IP surveying was completed, consisting of 6 lines and totaling 2,490 m. Between July 7th-20th GT probe sampling of 439 samples along 6 lines were completed.

The soil sampling, IP surveying, GT probe sampling, and drone aerial surveying was completed by Ground Truth Exploration out of Dawson City. Helicopter support was provided by TNTA air out of Dawson City. Analysis of the soil, and GT probe samples were completed by Bureau Veritas Laboratories of Vancouver.

Results and interpretation of these surveys form the basis of this report. Appendices to this report are attached as digital files.

Property Description and Location

The property is located 95 km southeast of Dawson City, in the west-central Yukon centered at the geographic coordinates 63.403 N and 138.768 W (Figure 1). It is composed of 2,679 contiguous quartz claims covering an area of 51,130 hectares and lies to the northeast of the confluence of the Stewart and Yukon rivers. The property is named for Black Hills Creek which runs through the center of the project area and has been and continues to be actively placer mined. This mining activity has resulted in the construction of gravel roads and airstrips within the Black Hills Creek project area, allowing for year-round access to the project area by road or fixed wing aircraft.

The region has a sub-arctic continental climate, with a mean temperature of -4.4° C. The temperature reaches over 30 C in the summer and can drop below -50 C in the winter. Summer daylight hours peak at 19 hours, 8 minutes of daylight in June, dwindling to a minimum of 5 hours, 38 minutes in December.

The terrain has remained unglaciated, with rolling vegetated hills and steep incised valleys. Vegetation is consistent with that found throughout the region. Hills are dominated by black spruce, birch, alpine grasses, and moss with thicker vegetation in the valleys, often with well-developed stands of birch, alder, willow, and cottonwood.

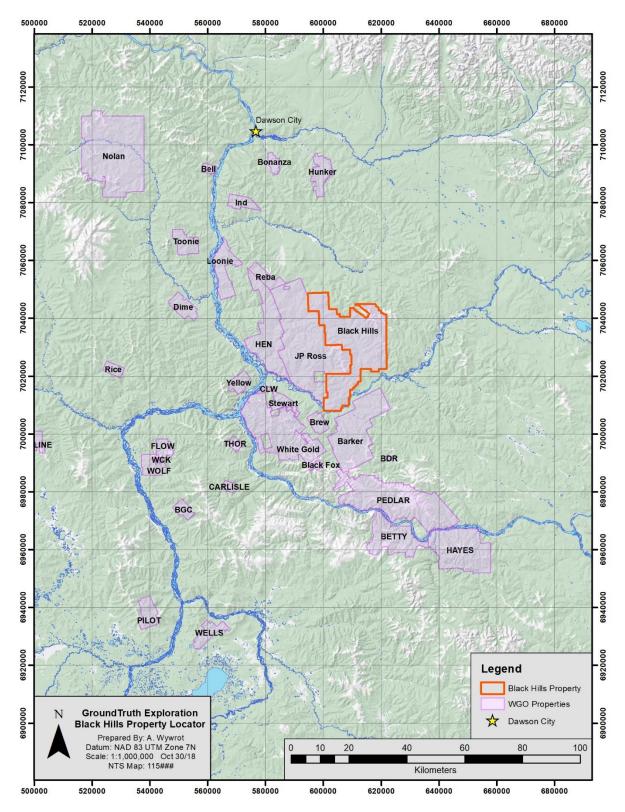


Figure 1: Location of the Black Hills Property, Yukon, Canada.

Claim Information

The Black Hills Creek property is composed of five claim groupings, encompassing 2,679 contiguous quartz claims, covering an area of 51,130 hectares. Table 1 has listed the claim numbers, grant numbers and ownership. A claims list including expiry dates can be found in Appendix I and a map of the claims can be found in Appendix III.

Claim Name	Grant Number	Owner	Operator
BEV 1 - 78	YD45401-YD45478	White Gold Corp.	White Gold Corp.
BEV 79 - 92	YD45355-YD45368	White Gold Corp.	White Gold Corp.
BEV 93 - 316	YD45493-YD45716	White Gold Corp.	White Gold Corp.
BEV 331 - 342	YD45731-YD45742	White Gold Corp.	White Gold Corp.
BEV 357 - 368	YD45757-YD45768	White Gold Corp.	White Gold Corp.
BEV 383 - 394	YD45783-YD45794	White Gold Corp.	White Gold Corp.
BEV 409 - 424	YD45809-YD45824	White Gold Corp.	White Gold Corp.
BEV 425 - 442	YD45825-YD45842	White Gold Corp.	White Gold Corp.
BEV 459 - 491	YD45859-YD45891	White Gold Corp.	White Gold Corp.
BEV 509 - 516	YD46209-YD46216	White Gold Corp.	White Gold Corp.
BEV 535 - 542	YD45235-YD46242	White Gold Corp.	White Gold Corp.
BEV 561 - 740	YD15301-YD15480	White Gold Corp.	White Gold Corp.
BHC 1 - 133	YF08151-YF08283	White Gold Corp.	White Gold Corp.
Cooper 1 - 96	YD43749-YD43844	White Gold Corp.	White Gold Corp.
Cooper 97 - 236	YD46261-YD46400	White Gold Corp.	White Gold Corp.
Cooper 237 - 240	YD45901-YD45904	White Gold Corp.	White Gold Corp.
Cooper 241 - 246	YD45905-YD45910	White Gold Corp.	White Gold Corp.
Cooper 247 - 536	YD45911 – YD46200	White Gold Corp.	White Gold Corp.
Cooper 537 - 562	YD45329-YD45354	White Gold Corp.	White Gold Corp.
Peat 1 - 60	YD97501-YD97560	White Gold Corp.	White Gold Corp.
Peat 77 - 138	YD97577-YD97638	White Gold Corp.	White Gold Corp.
Peat 153 - 218	YD97653-YD97718	White Gold Corp.	White Gold Corp.
Peat 229 - 288	YD97729-YD97788	White Gold Corp.	White Gold Corp.
Peat 293 - 614	YD97793 toYD98114	White Gold Corp.	White Gold Corp.
Rico 1 - 218	YD48283-YD48500	White Gold Corp.	White Gold Corp.
Rico 219 - 240	YD44401-YD44422	White Gold Corp.	White Gold Corp.
Rico 241 - 336	YD48187-YD48282	White Gold Corp.	White Gold Corp.
Rico 337 - 350	YD46501-YD46514	White Gold Corp.	White Gold Corp.
Rico 351 - 799	YD46515-YD46963	White Gold Corp.	White Gold Corp.

Table 1: Claims within the Black Hills area

History

The following is a summary of the Exploration and Drilling sections from the NI 43-101 Technical Report written by Dennis Arne, P.Geo and Phil Smerchanski, P.Geo dated December 12, 2011.

Starting in 2010 Smash began an extensive ridge-and-spur soil geochemistry program; conducted a preliminary bedrock/structural interpretation; analyzed and interpreted available satellite and gravity data for preliminary structural interpretations of the region; prospected areas of interest determined from the initial soil geochemistry program and initial structural interpretations; staked additional claims adjoining the east and northeast border of the existing property; and conducted a review of historical government regional geochemistry stream sediment sampling data and integrated these results with soil and rock geochemistry (Arne and Smerchanski, 2011).

From May to October of 2011 Smash Minerals executed a multi-disciplinary exploration program including property-scale geologic mapping and structural studies; local-scale mapping and prospecting; trench mapping of 2,500 line-meters over 83 trenches with the collection of 1,295 trench channel samples; collection of 1,819 grab samples; on site XRF analysis of all grid soil samples collected; and core logging and sampling of eight diamond drill holes.

A total of 19,511 soil samples including ridge-and-spur and grid soil samples were collected. Additionally, 179 stream sediment samples were collected focusing on all catchment areas within the Black Hills Creek Property to a maximum of 20 sq. km.

An airborne magnetic and radiometric geophysical survey was completed this same season covering 9,401 line-kilometers. Anomalies identified by the survey were ground tested. An area with prominent magnetic lows in the north-eastern portion of the Property correlate to a hydrothermally altered biotite-feldspar gneiss and augen gneiss. These zones are associated with steeply dipping Northeast and Northwest trending structures and were documented to have an alteration halo ranging from 10m to 100 m into the country rock. As mentioned, these zones appeared as magnetic lows corresponding to the destruction of magnetite-bearing lithologies due to hydrothermal alteration. Lithologies were also apparent, with ultramafic rocks appearing as magnetic highs within the north and northeastern claim blocks, and the northwestern portion of the Property features a magnetic high associated with the extent of the Carmacks Volcanics. Magmatic structures were also successfully identified as prominent linear magnetic highs.

The interpretation of the geological, geophysical, and geochemical data from 2010 and 2011 directed attention to the northeast of the Property. Of the potential targets identified, eight saw active exploration work. They are listed below. These targets remain the focus of much of the exploration work on the property

Table 2: Summary of 2010/2011 Exploration

Prospect	Easting	Northing	Drilling	Trenching
Ben Nevis	618,663	7,037,347	Yes	Yes
Bowmore	612,139	7,038,285	Yes	Yes
Bushmills	612,501	7,039,898	Yes	Yes
CC	613,762	7,033,283	No	Yes
Glen Breton	610,852	7,040,818	Yes	Yes
Highland Park	613,987	7,040,234	No	No
Stranahan's	617,117	7,037,940	No	No
Tullamore Dew	612,850	7,037,561	No	No

In 2016 the Black Hills Creek property was acquired my White Gold Corporation from former Sean Ryan and Wildwood Exploration. The work completed in 2016 was executed by GroundTruth exploration for White Gold Corp and focused on several historic exploration targets which had seen activity between 2009 and 2011. Airborne imagery, and grid in fill soil sampling were the main programs launched during the season, there was also a day of prospecting focused on the Highland Park and Ben Nevis zones. Soil sampling took place between October 14th-25th with 2,330 samples collected in that time. X-Cam aerial imagery was taken on October 14th-16th & 23rd and covered 350 sq. km of the property. The start of the DIGHEM airborne geophysical survey began in November of 2016, but most of the work was completed in spring of 2017.

The 2017 exploration programme at BHC took place between June 10, and September 18, 2017. The programme consisted of IP/Resistivity geophysical surveying, GTProbe sampling, RAB drilling, DIGHEM airborne geophysical surveying, drone surveying, and an extensive multi-day prospecting and mapping program. The primary focus of the field season was the historic Bowmore Prospect which saw; 8 IP/resisitivity lines totalling 3.32 km between June 9th and 15th; GT Probe sampling of 306 samples along six lines between the 29th of June and July 8th; and 6 RAB drill holes totalling 478.5 m between the 10th and 18th of September. Regional DIGHEM surveying also covered a large portion of the property, survey flights took place in June, and covered the historic Smash Minerals identified prospects.

Geology

Regional Geology

The Black Hills regional and property geology is summarized below from Dennis Arne, P.Geo and Phil Smerchanski, P.Geo NI 43-101 Technical Report on the then Whiskey Project Dated December 12, 2011. Supplemental information has been used, where this is the case parenthetical references are in place.

The Property is in the Stewart River-Klondike goldfield area within the Yukon-Tanana Terrane (YTT). The basement rocks in this region are pervasively foliated and recrystalized schists and gneisses, which have metamorphic grades ranging from greenschist facies in the north to amphibolite facies on the BHC Property. Three generations of plutonism (Devonian, Mississippian, and Permian) are recognized in the Stewart River area. Granitoids and basement rocks have developed two discernable metamorphic foliations. Compression during the Jurassic resulted in the development of narrow shear zones and thrust stacking of lithologic units. During the Cretaceous the regional stress field shifted to extensional and normal faults oriented north-south and east-west developed. These faults controlled the emplacement of Cretaceous and early Tertiary intrusions. As this system evolved into the Eocene, extension was accommodated by transcurrent slip along the Tintina Fault (Figure 3).

The Key regional structure in the BHC area is the series of stacked thrust sheets of metamorphic basement rocks, identified from the Klondike area into the Stewart River area. Amphibolite facies metasedimentary rocks and orthogneiss are thrust over similar, but possibly younger, package of metasedimentary rocks containing Late Permian orthogneiss. The thrust fault is gently folded, so that it has an apparent normal displacement along it's northeast dipping limbs.

The thrusting has resulted in the semi-ductile shearing and isoclinal to tight folds on an outcrop scale. Pyroxenites and peridotites emplaced along the thrusts provide the focus for D3 deformation, greenschist facies retrogression and metasomatism. Upright folding from regional scale compression created angular kink folds and fractures (Arne and Smerchanski, 2011). Figure 4 shows a correlation chart for the major tectonic, structural, magmatic, and mineralizing events in the west-central Yukon and eastern Alaska. The deformation phases and their associated habits are featured in the following paragraphs.

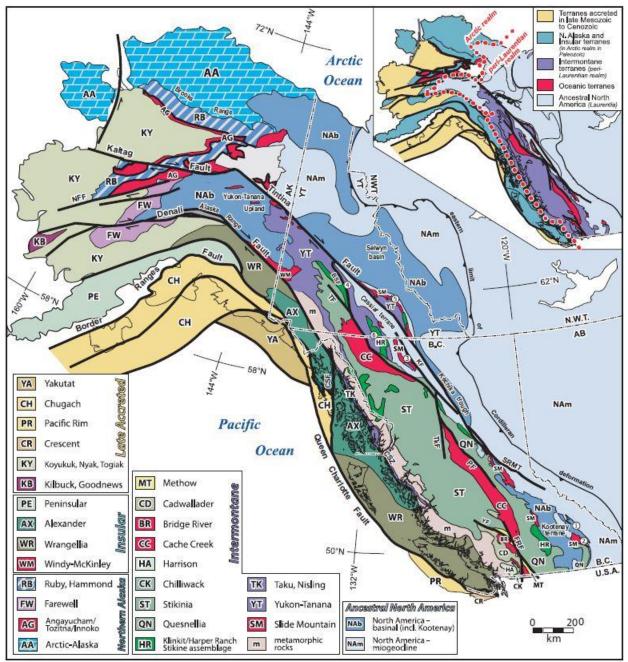


Figure 2: Regional Geology of the Black Hills Property (from Colpron et al., 2007)

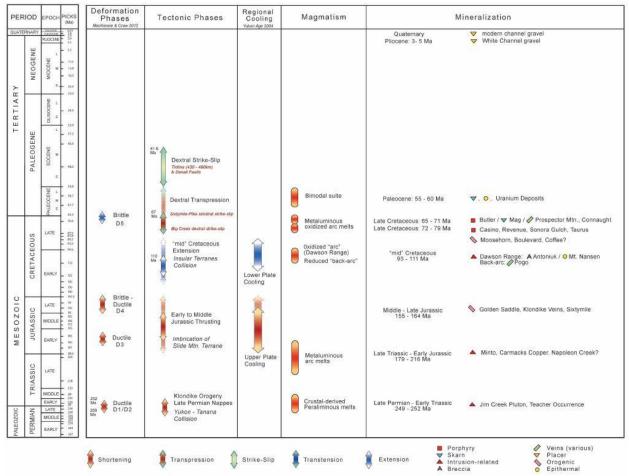


Figure 3: Correlation chart for major events occurring in west-central Yukon and eastern Alaska (Allan et al., 2012)

The earliest tectonic event recognized on the Black Hills Creek property is D2 deformation which resulted in a moderately dipping S2 foliation in biotite-quartz-feldspar gneiss and micaceous quartzite. Late metamorphic folding typified by fold zones and a rodding lineation dip at a low to moderate angle to the northwest to southeast and occurs primarily within psammitic to pelitic schists, quartzites, and marbles. Semi-brittle to brittle deformation manifested in three events. 1) D3 deformation of F3 fold hinges, and F3 axial surface parallel veins, at a low to moderate northwest to southeast dip within the banded quartzite, biotite-feldspar gneiss, and hornblende gneiss. 2) D4 Deformation corresponding to steeply north to south dipping F4 kink folds and fractures recognized in quartzite, biotite-feldspar gneiss, and hornblende gneiss. 3) And an extensional tectonic regime resulting in normal faulting.

Late brittle faulting has since affected the rocks, forming a strong northwest-trending alignment of country rock and conspicuous linear drainages that cut across ridges. Hydrothermal alteration and quartz veining crosscut the metamorphic basement and overlying volcanic rocks. Areas of increased hydrothermal alteration appear to be focused along extensional features following uplift and the formation of the regional D4 folding event, including the contacts between mechanically brittle felsic rocks (e.g. quartzite, biotite-feldspar gneiss) and the more ductile mafic rocks (e.g. amphibolite gneiss, meta-gabbro). Many of the ore deposits in this district are found near these compositional contacts.

Property Geology

The property geology is described in detail in the 2011 NI 43-101 by Dennis Arne, P.Geo and Phil Smerchanski, P.Geo The following are summaries of these sections from the report initially dated December 12, 2011. A full-sized geological map of the property can be found in Appendix III.

Hydrothermal alteration and geochemical anomalism lead the Smash Minerals geologists to focus on the northeast section of the BHC property. Detailed trench and sub-crop mapping identified steeply dipping northeast and northwest trending structures with recorded alteration zones extending 10 m to 100 m into the wallrock. These structural zones are comprised of siliceous breccias and quartz stockwork veining, with white to grey microcrystalline quartz with variable serecitic and limonitic overprints, in some cases, late clay alteration selvages. Where these structures intersect the regional northwest-trending thrusts, at the contact with the structurally lower quartzite and pelitic units, mechanically and geochemically favourable sites for hydrothermal fluid focus have been targeted. Quartz veining and breccia development in quartzite occurs throughout this target setting.

Although the property name has changed, the prospects identified in the 2011 field season have retained their names. In total, Smash Minerals identified 8 prospective zones based on geochemical and geological results (Figure 5). Four of these zones were tested by drilling, trenching, or a combination of the two. Including the Bowmore Prospect, which was the focus of most of 2017 field work.

The CC Zone

The CC zone is hosted in metagabbro and hornblende gneiss with epithermal-style quartz veins. The limited work to date here has prevented the compilation of a more detailed prospect geology.

The Glen Breton Zone

The Glen Breton Zone is characterized by a north-trending structural lineament containing brecciated quartz veins, high-density stockwork quartz veining, and strong sericitic alteration of felsic orthogneiss at a sheared contact with metasedimentary rocks. The lineament forms a magnetic low in the airborne magnetics. Disseminated pyrite and secondary copper-oxide and carbonate mineralization is focused in brecciated quartz veins and altered wall rock.

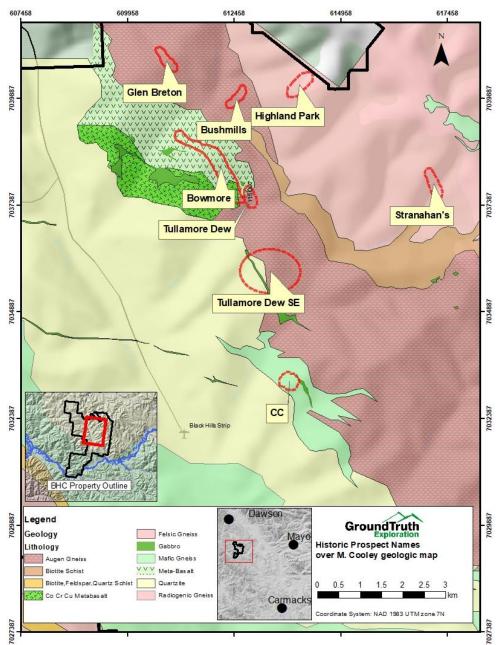


Figure 4: Historic Smash Minerals Prospects and zones with the underlying geology, the geology is based on mapping work completed by M. Cooley 2017, and Cooley and Leatherman, 2011

The Highland Park Zone

The Highland Park Zone is characterized by highly anomalous Ba, Hg, Sb, and Te with minor anomalous Au in soils and rocks. The area of interest appears to be at the intersection of two quartz-sericite structures, within a felsic gneiss. It may represent a shallow/low temperature environment indicative of high-level alteration in a vertically zoned epithermal system. There is a strongly silicified zone documented as a prominent topographic lineament coincident with the soil anomaly.

The Stanahan's Zone

Stanahan's Zone was first identified in 2011 along a northwest-trending structural corridor corresponding to a magnetic low and characterized by intense brecciation of sericite altered and silicified felsic orthogneiss associated with stockwork quartz veining. Rock samples from this zone returned assay values from detection limit up to 8 g/t Au.

The Tullamore Dew Zone

In the Tullamore Dew Zone, the target is defined by a cluster of multi-element soil anomalies with elevated gold, silver, tellurium, and bismuth values. The geologic setting is interpreted to be part of the hanging wall of a major thrust fault near the structural contact of felsic orthogneiss and pelitic schist, at the margin of a metagabbro intrusion.

Mineralization

The known zones of mineralization are associated with a series of northwest trending, and conjugate northeast trending structures with broad halos of quartz-sericite alteration within felsic orthogneiss, amphibolite, quartzite, and locally ultramafic rocks. Geochemically the zones show a range of pathfinder element associations including Bi, Te, and Ag. In altered felsic rocks there is a positive correlation between Au, Mo, and Pb.

Structurally, metal zonation appears to trend from high levels of Hg and Ba, though As to Pb, and Mo to Au-Ag signatures, suggesting possible mineralized levels/depths within a vertically zoned hydrothermal system, like low-sulfidation epithermal deposits. The regional precedence for this model is set, with noted similarities in mineralization, alteration, host lithologies, and associated geochemistry between prospects at Black Hills Creek and the Golden Saddle Deposit on the White Property (Gibson, 2017).

2018 Exploration Program and Results

Soil Sampling Program

The 2018 Soil Sampling program extended from September 15th to October 6th with 2,786 samples collected across the Black Hills property.

Method and Approach

Field technicians navigated to sample sites using handheld GPS units. A C-Horizon sample is collected using an Eijklcamp brand hand auger at a depth of between 20cm and 110cm. Where necessary, in rocky or frozen ground, a mattock is used to obtain the sample. Photos are taken of the sample site 5m from sample hole with auger inserted. Typically, 400 to 500 g of soil is placed in a pre-labeled bag. An aluminum metal tag inscribed with the sample identification number is attached to a rock or branch in a visible area at the sample site along with a length of pink flagging tape. A field duplicate sample is taken once for every 25 samples. The GPS location of the sample site is recorded with a Garmin 60cx or 76cx GPS device in UTM NAD 83 format, and the waypoint is labeled with the project name and the sample identification number. A weather-

proof handheld device equipped with a barcode scanner is used in the field to record the descriptive attributes of the sample collected, including sample identification number, soil colour, soil horizon, slope, sample depth, ground and tree vegetation and sample quality and any other relevant information.

Analysis

Once received in the lab, soil samples are prepared using the SS80 method. Samples are dried at 60 degrees Celsius and sieved such that up to 100 grams of material passes 180 microns (80 mesh). The samples are then analyzed by the AQ201+U method which involves dissolving 15 grams of material in a hot Aqua Regia solution and determining the concentration of 37 elements of the resulting analyte by the ICP-MS technique.

Results

Assay results from the 2018 season show some anomalous Au values (Figure 5 and 6, Table 3). Past work has shown that Pb can be an indicator element of Au, it has been plotted in Figure 7 and 8, the number of anomalous samples are summarized in Table 3. Analytical certificates are in Appendix II and sample description and location parameters are included in Appendix I.

Table 3: 2018 Soil sampling assay summary

Concentration (ppb)	12< Au< 24	24< Au< 48	
No. of Samples	35	9	

Concentration (ppm)	20< Pb< 40	40< Pb< 80	Pb >80
No. of Samples	26	4	1

GT Probe

The 2018 GT Probe program extended from July 7th – July 20th completing 439 samples across 6 lines.

Method and Approach

The Geo Probe is a helicopter portable, track mounted, hydraulically powered hammer drill with capabilities of taking substrate samples from the lower C-horizon/bedrock interface. Lines were laid over areas of interest with samples collected every 5 m along the line. Samples were taken as deeply as possible, with sample depths typically between 1 - 2 m depth. The lower +/-20 cm of C-horizon material was collected for analysis and representative rock chip samples were collected from each interval.

Analysis

Samples were prepared using the PRP70-250 method which involves crushing the material to 2 mm and then splitting off and pulverizing up to 250 grams to 75 microns. The resulting pulp was analyzed by the AQ200 method, which involves dissolving 0.5 of material in a hot Aqua Regia solution and determining the concentration of 36 elements of the resulting analyte by the ICP-MS technique. Gold was analyzed for by the FA430 method which involves fusing 30 grams of the

75-micron material in a lead flux to form a dore bead. The bead is then dissolved in acid and the gold quantity determined by Atomic Absorption Spectroscopy.

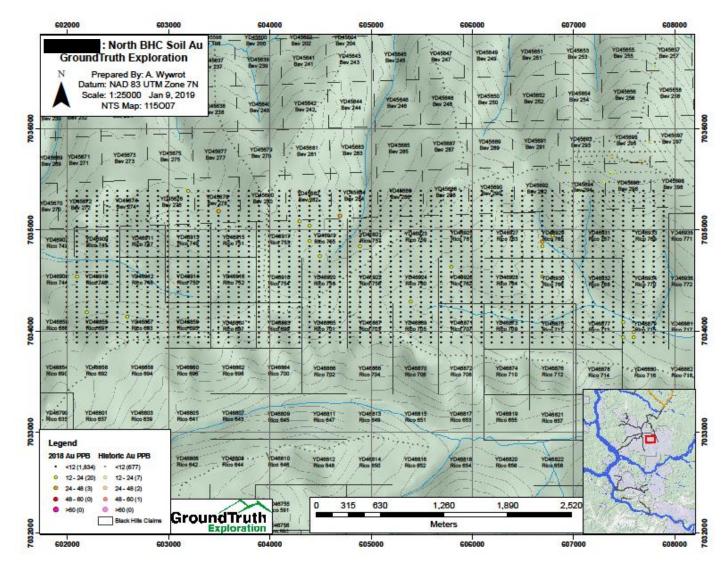


Figure 5: Au in Soil Results (North Grid)

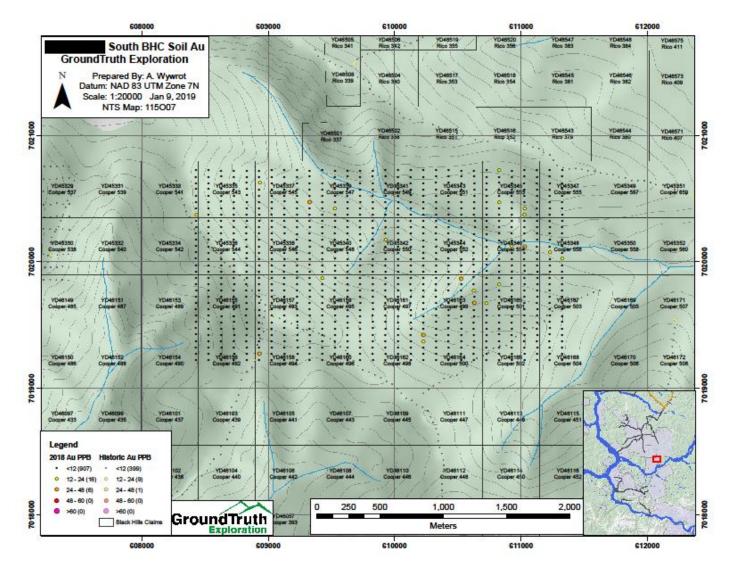


Figure 6: Au in Soil Results (South Grid)

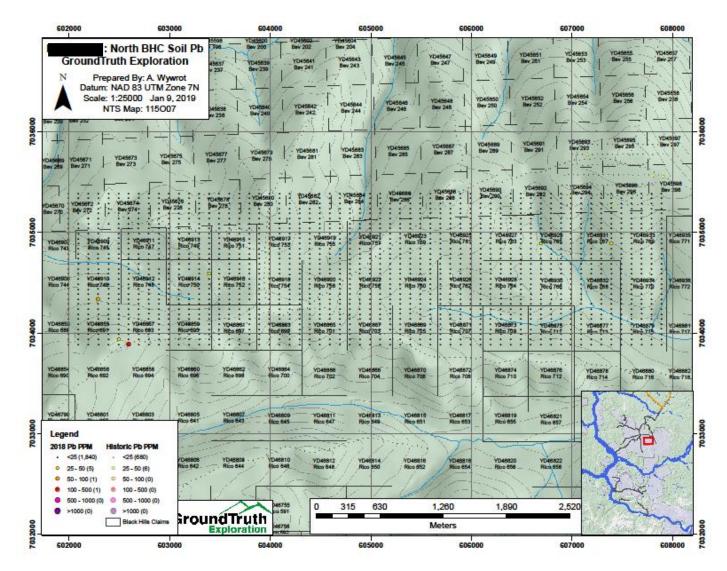


Figure 7: Pb in Soil Results (North Grid)

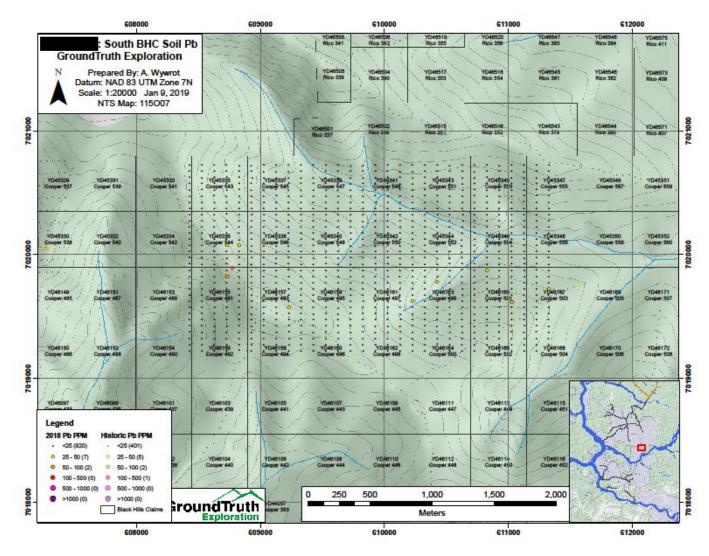


Figure 8: Pb in Soil Results (South Grid)

Results

Gold and lead anomalies are represented in Figures 9 and 10 respectively. As mentioned before, previous work has indicated that Pb can be an indicator for Au, this is apparent in the first 2 lines completed by the probe. Results also show that Mo and Ag are indicative of anomalous gold. GTProbe results are summarized in Table 4 below. Analytical certificates are in Appendix II, merged sample locations, descriptions and assay are included in Appendix I.

Table 4: 2018 GT Probe assay summary

Line	Line Metreage (m)	Au (g/t)	Pb (g/t)	
BHC18GTP-001	205	1.12	351.6	
BHC18GTP-001	495	0.39	127.9	
BHC18GTP-002	105	0.331	174.2	
BHC18GTP-003	N			
BHC18GTP-004	N	NSV		
BHC18GTP-005	50	1.093	11.3	
BHC18GTP-005	155	0.395	14.1	
BHC18GTP-006	N	SV		

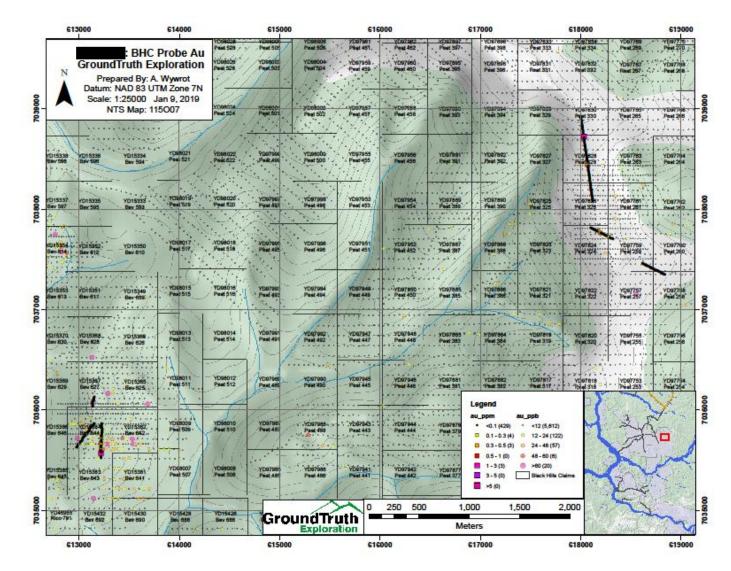


Figure 9: Au Probe Sample Assay Results

613	3000		614000	_	61500	0		000		617000		618000		619000
N	Pre	dTruth Expared By: A	Probe Pb xploration Wywrot TM Zone 7N	Print 523 Viblebook Print 525	Pest 502 Pest 502 Pest 502	YD08008 Peat 526 YD08004 Pear 504	YD87959 Plat 451 YD87959 Plast 455	VD07983 Past 452 YD07980 Post 450	Post 507 Post 507 Post 507	YD97898 Pviet 398 YD97598 ' Peet 398	- YD97833 Peat 333 - YD97831 - Peat 331	YD97834 Pest 334 YD97832 Rest 332	YD97769 Pest 259 YD97767 Final 257	YD97716 Peet 270 YD977165 Peet 215
		1:25000 ITS Map: 1	Jan 9, 2019 15007	Vinseine Peel 524	Mosecos Pejat 501	YDokcos Peet 502	YDD7067 Prest 457	VD07068 Pearl 456	HOSPOSO Prest 303	Peut SI4	YDUTO23 Peak S29	rcereal Pyet 330	TJerras Peet 265	YDW708 Paul 268
VD15338 Bev 595	(D) 5338 Bev 508	VD15334 Bay 564	YOUBUZI Pear 521	YE08022 Peit 522	YD67506 Peak.456	YD98000 Pear 500	YD9/7955 Pear 455	YD07956 Pawt 455	YDØ/7891' , Reet 391	YDs078st2 Print \$12	Y007827 Post 327	YDelses Prestate	YD67783) Peet 263	YD97704 Post 254
YD15337 Bev 597	rD15335 Bey 595	YD15335 Bev 503	YOLEO19 Peel 519	YD68020 Peat 520	YD97991 Fipat 493	YD97598 Past 455	YD97953 Past 453	YD97954, Peat 454	YD97889 Peet 389	YOM780 Pair 390	YD07505 Poet 325	VDarese Priet S28	YD97781 Prest 281	YD97762 Peet 242
4025354 Bev 814	YD15352 Bev 612	YD15350 Bev 810	YDIB017 Peat 517	YD08018 Peet 518	YD07505 Plast 412	YD07038 Past 498	YD97951 Past 451	YD6/7952 Pieal 452	YD67a67 Feat 387	YDØ7ass Pest 388	YD07823 Peet 323	YEGINESA Pari S24	Y097759 Pei4259	YD97760 Papt 250
VD15353 Bev 513	(D15351 Bev611	YD15349 Bev 609	YD05015 Peer515	YDGS016 Peet 516	YCU7505 Post 402	YD97504 Post 404	YD97940 - Post 449	YD97950 Peet 450	YD97885 Peet \$35	YD#7666 Poet 586	YD67821 Post 321	YC 07822 Poet 322	YD97757 Peet 257	YD977918 Pear 258
40,15370 Bev 630,	YD 15368. Bey 828	- YD15388 Bev 625	YDUB013 Peal 513	YD98014 Pest 514	YD07501 Pest 491	YDQ7992 Peat 492	YD07947 Post 447	YDu7945	YD67983 * Peet 383	YD07504 Plast 284	YD9//815 Pinet 319	YC-07/520 Pest 320	YD97755 Pe#255	- U YD97796 2 . Post 258
YD15369 Bev 529	VD15367 Bev 627	YD15365 -Bev 625	Y008011 Peet 511	YD98012 Peak 512	YD07965	YD07090 Prist 450	1007945 Plat 445	YD07D48 Pret 445	YD67881 Peet 381	vDe7582 Peat 382	YD97817 Post 317	YD07818 'Paul 318	VD0/753 Peet 255	Y097794. Peet 254
VD15386	1	VD15382, Bay 642	Y005009 Peet509-	YDisono Peet 510	YD97981 Past 481	YD97085 Peat 485	Peet 443	YD07044 Past 446	Post	<25 (418) 25 - 50 (18) 50 - 100 (3)	 - 425 (5,705) - 25 - 50 (77) - 50 - 100 (17) 	PPM H	A	10
YD15385, - Bev 665	YD15583 Bev 943	YDIS381. Bev 647	YDGec07 Peak 557	YDdsoos Peet 508	YD07085 Peat 485	YDG75es Post 489	YDD7bes Poul 441	YD97542 Peak 642	YD60 Pest	500 - 1000 (0)	 100 - 500 (9) 500 - 1000 (0) >1000 (0) Black Hills Cla 		2.	
YC48055 Rico-7p1	Y015432 Bev 692	Gro			YD15424 Bev 654	Y015(22 Bev (82	Peak 0	250 500	1,0		500 2	2,000		m
613	3000	10.00	614000		61500	0	616	000		617000		618000		619000

Figure 10: Pb Probe Sample Assay Results

IP/Resistivity Survey

The 2018 IP/Resistivity program extended from August 15th-August 20th, completing 6 lines for a total of 2490m.

Method and Approach

The methods and procedure for RES/IP surveys are discussed in the report "Black Hills Creek IP Resistivity Report" by Geophysicist Jen Hanlon, M.Sc., GIT in Appendix IV.

Analysis

Once each survey was completed in the field, the data measurements were downloaded and reviewed to ensure the quality of the data collected. This allowed field errors to be addressed before moving the equipment. The RES/IP datasets were processed daily by the lead operator using EarthImager2D software provided by Advanced Geosciences Inc. Noisy data or outliers are

removed from the data and the clean dataset is inverted. Terrain correction is applied to the inversion mesh from topographic measurements collected in the field using a differential GPS. All raw data from the DGPS and SuperSting are archived for future consultation.

Results

The results of the IP/Resistivity survey are further discussed in the report "Black Hills Project in Appendix. Looking at IP and Resistivity in the area, lines BHCIP-18-01 and BHCIP-18-02 show and increased in resistivity and an increase in chargeability at depth. The following figures display induced polarization and inverted resistivity along the 6 lines completed at the Black Hills Creek area. For further results see the IP Resistivity report.

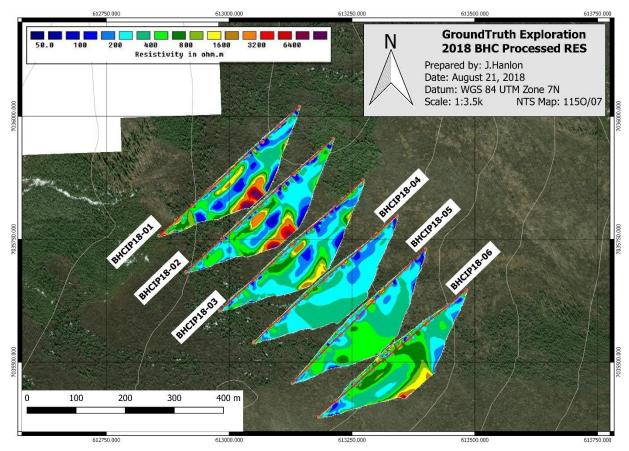


Figure 11: Resistivity survey of the six lines completed at BHC

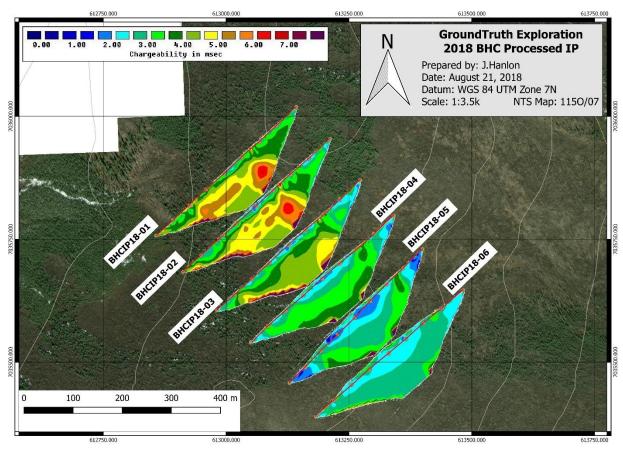


Figure 12: IP Survey of the six lines completed at BHC

Drone Surveying

There were 53 square kilometers of drone imagery take over the Black Hills Creek property on the 23rd of May 2018. The area covered by the drone is shown in Figure 2 and the processed imagery can be found in Appendix V.

Interpretation and Recommendations

The soil sampling results didn't turn up any revealing results. The GT Probe has several samples that are anomalous in Au, Ag, Mo and Pb which should be investigated with a small prospecting team. If significant samples are found, then a more significant probe work can be done in the area, or possible a small RAB drilling program to gather more structural and geochemical data from the bedrock near these anomalies.

A more conductive structure is observed in the resistivity models near the surface on the east side of the IP/Res profile lines, it appears to be running NW-SE. The GT Probe can be used to sample smaller lines across this structure to gather more information on alteration and mineralization. A deeper chargeable unit is also interpreted from the IP/Res data, it would be worth drilling this unit if there was indeed a small RAB program planned in the area.

References

Allan, M.M., Hart, C.J.R., and Mortensen, J.K. (eds.), 2012, Yukon Gold Project Final Technical Report, Mineral Deposit Research Unit, University of British Columbia, 196 p.

Allan, M.M., Mortensen, J.K., Hart, C.J., Sanchez, M., 2012, Current understanding of the metallogeny of the western Yukon and eastern Alaska. In Allan, M.M., Hart C.J., and Mortensen, J.K., eds., Yukon Gold Project Final Technical Report. Mineral Deposit Research Unit, University of British Columbia, pp. 11-27.

Arne, D., and Smerchanski, P., 2011, NI 43-101 technical report on the Whiskey Property, Yukon Territory, Canada. Report for Smash Minerals Corp.

CGG Canada Services, SURVEY REPORT, 2017, Airborne magnetic and DIGHEM survey, PROJECT# 602997

Chapman, R.J., Wrighton, T.M., Mortensen, J.K., and Allan, M.M., 2012, Classification of chemical and mineralogical signatures of gold grains from the Dawson Range and White Gold District: Implication for future exploration. In Allan, M.M., Hart C.J., and Mortensen, J.K., eds., Yukon Gold Project Final Technical Report. Mineral Deposit Research Unit, University of British Columbia, pp 159-188.

Cooley, M., 2017, Geologic map of the northern art of White Gold Corp's Black Hills Creek project area, likely structural controls for Au mineralization, and Recommendations for further work. Internal Report.

Colpron, M., Nelson, J., and Murphy, D.C., 2007. Northern Cordilleran terranes and their interactions through time. GSA Today, v. 17: pp 4-10.

Colpron, M., Israel, S., Murphy, D., Pigage, L. and Moynihan, D., 2016. Yukon Bedrock Geology Map. Yukon Geological Survey, Open File 2016-1, 1:1,000,000 scale map and legend.

Deklerk, R. and Traynor, S. (compilers), 2005. Yukon MINFILE 2005 - A database of mineral occurrences. Yukon Geological Survey

GeoSci Developers, 2017, Geophysics for Practicing Geoscientists.

Gibson, J., 2017. White Gold Corporation – Summary of 2016 Exploration Activities. Internal GroundTruth Exploration memo.

Gordey, S.P. and Makepeace, A.J. (comp.) 2003. Yukon digital geology, version 2.0; Geological Survey of Canada Open File 1749 and Yukon Geological Survey Open File 2003-9(D)

Gordey, S.P. and Ryan, J.J. 2005. Geology, Stewart River Area (115N, 115O and part of 115J), Yukon Territory; Geological Survey and Canada, Open File 4970, scale 1:250,000.

MacKenzie, D., Craw, D., Cooley, M., and Fleming, A., 2010, Lithogeochemical localization of disseminated gold in the White River area, Yukon, Canada. Mineralium Deposita, v. 45: pp 683-705

Mortensen, J.K. 1992. Pre-mid-Mesozoic tectonic evolution of the Yukon-Tanana terrane, Yukon and Alaska. Tectonics, 11: 836 – 853.

Mortensen, J.K., and Allan, M.M., 2012, Summary of the tectonic and magmatic evolution of western Yukon and eastern Alaska, in Allan, M.M., Hart C.J., and Mortensen, J.K., eds., Yukon Gold Project Final Technical Report. Mineral Deposit Research Unit, University of British, pp. 7-10

Siron, C.R., Pennimpede, C., Arne, D., and Smerchanski, P., 2011, Technical Report: 2011 Exploration Summary of the Whiskey Property, Yukon Territory, Canada. Internal Report, 124 p.

USGS, 1999, Geologic Interpretation of DIGHEM Airborne Aeromagnetic and Electromagnetic Data over Unga Island, Alaska.

Costs

Black Hills Creek	внс	
CLIENT	WGO	
AERIAL DRONE SURVEYS		
Drone Survey	Amount	Description
Drone Crew and Equipment Day Rate	\$3,300.0	0 1 day @ \$3300
Stand by Mob / De mob Day Rate	\$2,850.0	0 1 day @ \$2850
	\$0.0	0
Aerial Drone Surveys	\$6,150.0	0
Management Fee (+8%)	\$492.0	0
Total Aerial Drone Surveys	\$6,642.0	0
GEOCHEMICAL SURVEYS		
Soil/Till Survey	Amount	Description
Soil Crew 1	\$122,584.0	2786 samples at \$44/sample (assayand labour included)
Soil/Till Surveys	\$122,584.0	0
Management Fee (+8%)	\$9,806.7	2
Total Soil/Till Surveys	\$132,390.7	2
GT Probe1 Survey	Amount	Description
Labour and Equiment	\$42,000.0	0 12 days @ \$3500 per day
Mob-Stand By-Weather	\$5,250.0	0 2 days @ \$2625 per day
XRF	\$3,600.0	0 12 days @ \$300 per day
GT Probe2	\$50,850.0	0
Management Fee (+8%)	\$4,068.0	0
Total GT Probe2	\$54,918.0	0
GEOPHYSIAL SURVEYS		
DC IP-Resistivity Survey	Amount	Description
Five person IP crew and gear with		
consumables and room and board.	\$16,800.0	
Mob / demob and Standby	\$6,300.0	0 2 days @ \$3150

DC IP-Resitivity Surveys	\$23,100.00	
Management Fee (+8%)	\$2,310.00	
Total DC IP-Resitivity Surveys	\$25,410.00	
LABORATORY ANALYSIS		
Rock/Core Samples	Amount	Description
Geo	\$ -	
Probe1	\$11,425.21	\$26.82 per sample all in
Probe2	\$ -	
Laboratory Analysis	\$11,425.21	
Management Fee (+8%)	\$914.02	
Total Laboratory Analysis	\$12,339.23	
LOGISTICAL SUPPORT		
Helicopter	Amount	Description
ASTAR B2 and/or Jet Ranger (3hr minimum)	\$54,361.00	35.65 hours @ \$1525 per hour
Fuel	\$4,852.88	Invoiced Fuel
Fixed Wing	Amount	Description
Islander, 206, Skyvan, etc.	\$ -	
Logistical Support	\$59,213.88	
Management Fee (+8%)	\$4,737.11	
Total Logistical Support	\$63,950.99	
OTHER/MISC		
Camp Build	\$4,800.00	3 days @ \$1600 per day
Off Road Trucking	\$4,420.00	34 hours @ \$130 per hour
Other/Misc	\$9,220.00	
Management Fee (+8%)	\$737.60	
Total Other/Misc	\$9,957.60	
	40	
Total Project Expenditures	\$305,608.54	

Statements of Qualification

I, Amanda Bennett, do hereby declare that:

- 1. I am currently assisting with end of season report writing for GroundTruth Exploration Inc. of Dawson City, Yukon.
- 2. I graduated from University of Saskatchewan in 2015 with a B.Sc. Honor's degree in Geology.
- 3. I have worked as a geologist on and off since 2015.
- 4. I am not aware of any material fact or material change with respect to the subject matter of this report, the omission to disclose which makes this report misleading.

Dated this 15th day of October 2018 Amanda Bennett