

Geochemical and Drilling Report

(Geological Mapping and Prospecting, Soil Sampling, RAB Drilling)

on the

Pedlar Property

Dawson, Yukon

Claim name	Grant Number	Claim name	Grant Number
Bridget 1-8	YC35402-409	Pedlar 1-728	YD138501-9228
Bridget 9-40	YC84292-323	Pedlar 729-994	YE20501-766
BRIDGET 41-90	YD130301-350	U 1-2	YC36744-745
Cripple 1-291	YD135901-6191	U 3-30	YC35883-910
Cripple 292-760	YE18032-8500	U 31-50	YC36746-765
Cripple 761-932	YD139229-9400	U 51-58	YC36798-805
Cripple 933-939	YD46982-988	U 59-90	YC36766-797
Cripple 940-957	YD46964-981	U 91-118	YD48131-158
		W 1-28	YD48159-186

NTS: 1:50,000 Mapsheet 115J/15, 16

UTM: 623800E 6977600N

NAD83 Zone 7

Dawson Mining District

Work Performed Between: Geological Mapping & Prospecting: May 31st – June 15th, 2018 Soil Sampling: July 9th – July 17th, 2018 RAB Drilling: July 6th – July 19th, 2018

> Prepared for White Gold Corporation By GroundTruth Exploration

Written By: Matthew Hanewich December 4, 2018

Summary

White Gold Corporation commissioned GroundTruth Exploration Ltd. of Dawson, Yukon to perform Geological Mapping and Prospecting, Soil Sampling, and RAB Drilling on the Pedlar Property. The Property is in Yukon's White Gold district, approximately 130 km southeast of Dawson, YT in the Dawson Mining District on NTS Map Sheet 115J/15, 16 north of the Yukon River near the confluence with Britannia Creek.

The Pedlar Property is registered in the Dawson Mining district. All claims are fully owned by White Gold Corporation. The property encompasses 42879 hectares and is composed of 2187 quartz claims.

During the 2018 field season on Pedlar, 6 prospecting samples and 1438 soil samples were taken for assay. The RAB Drilling program completed 10 holes for a total of 548.6 meters. The work took place in the north central part of the property near and on the Bridget claims.

The prospecting, soil, and drilling results have shown that mineralization at the Bridget target is dominated by Molybdenum and Copper. If Cu-Mo were to be explored as an economic resource at the Bridget target, then more drilling would be needed in the area to define the Cu-Mo source.

To further explore gold anomalies, small prospecting teams should be sent out to follow up on historic soil anomalies on different areas of the property. If significant prospecting samples are found elsewhere on the property in upcoming field seasons, the GT Probe would be a viable method to explore rock type, alteration and mineralization of those areas.

Contents

Introduction1
Location and Access1
Claims1
History and Previous Work4
Geology5
Regional Geology5
Property Geology
2018 Exploration Program and Results10
Field Mapping and Prospecting10
Analysis10
Results10
Soil Sampling10
Methods and Procedures10
Analysis11
Results11
RAB Drilling15
Methods and Procedures15
Analysis15
Results15
2018 Interpretation and Recommendations16
References
Statement of Expenditures
Statement of Qualifications

List of Figures

Figure 1: Location of the Pedlar Property	3
Figure 2: Location of work completed on Pedlar in 2018	4
Figure 3: Regional Geology Map	6
Figure 4: Correlation chart for major events occurring in west-central Yukon and eastern Alaska (Allan	et
al., 2012)	7
Figure 5: Property Geology Map	9
Figure 6a: 2018 Au in soil assay results (with Historic soils shown)	12
Figure 6b: 2018 Mo in soil assay results (with historic soils)	13
Figure 6c: 2018 Cu in Soil assay results (with historic soils)	15

List of Tables

Table 1: Claims Summary	2
Table 2: Soil Sample Summary of Au, Mo, and Cu Concentrations	11
Table 3: RAB Drill Collar Summary	15
Table 4: RAB Drill Sample Assay Results	16

List of Appendices

All Appendices and contents are contained as separate digital files

Appendix I: Claims list, Soil Sample Descriptions and Assay, Drill Collar data, RAB Drill Sample logs, RAB Sample XRF and Assay, RAB Downhole Survey Data, RAB OTV Structure Data

Appendix II: Soil Sample Assay Certificates, Geo Probe Sample Assay Certificates, drilling assay certificates

Appendix III: Stereonets from OTV Interpretation, OTV Imagery with Assay

Appendix IV: Full sized Claims Maps – East and West Maps, Soil Assay Figures 6a-c, Pedlar Location of Work Figure 2, Property Geology map Figure 5

Introduction

White Gold Corporation commissioned GroundTruth Exploration Ltd. of Dawson, Yukon to perform Geological Mapping and Prospecting, Soil Sampling, and RAB Drilling on the Pedlar Property. The Property is in Yukon's White Gold district, approximately 130 km southeast of Dawson, YT in the Dawson Mining District on NTS Map Sheet 115J/15, 16 north of the Yukon River near the confluence with Britannia Creek (Figure 1).

During the 2018 field season on Pedlar, 6 prospecting samples and 1438 soil samples were taken for assay. The RAB Drilling program completed 10 holes for a total of 548.6 meters (Figure 2). The work took place in the north central part of the property near and on the Bridget claims.

Results and interpretation of these surveys form the basis of this report. Appendices to this report are attached as digital files.

Location and Access

The Pedlar property is in the central-western part of Yukon, approximately 130km southeast of Dawson (Figure 1) near the confluence of the Yukon River and Britannia Creek. The center of the property is located at UTM 623800E, 6977600N.

The property is located in an unglaciated region of the Dawson Range. Elevations range from 440m to 1130m. Vegetation is typical of the Boreal forest, with mixed white and black spruce forests in valley bottoms, stunted black spruce and moss mat forests underlain by permafrost on north facing slopes and as elevation increases, transitioning into moss, talus and felsenmeer with increasing elevation. The typical climate of the area is moderate precipitaiton, warm summers, and cold winters.

Access to the property is by helicopter from Dawson City or via fixed wing aircraft to one of 4 airstrips within 20km of the property. Dawson is the nearest supply center and 538km by paved highway from Whitehorse, Yukon Territory.

Claims

The Pedlar Property is registered in the Dawson Mining district on mapsheet 115J/15,16. All claims are fully owned by White Gold Corporation. The property encompasses 42879 hectares and is composed of 2187 claims which are summarized below in Table 1. A full list of claims is in Appendix I: Claims List.

Table 1: Claims Summary

Claim Name (From-To)	Grant # (From-To)	Expiry Date	# of Claims
Bridget 1-8	YC35402-409	2/15/2023	8
Bridget 9-40	YC84292-323	2/15/2023	32
Bridget 41-90	YD130301-350	2/15/2026	50
Cripple 1-72	YD135901-972	2/15/2027	72
Cripple 73-240	YD135973-6140	2/15/2026	168
Cripple 241-291	YD136141-191	2/15/2025	51
Cripple 292-760	YE18032-500	2/15/2022	469
Cripple 761-932	YD139229-400	3/21/2021	172
Cripple 933-939	YD46982-988	3/21/2022	7
Cripple 940-957	YD46964-81	3/21/2022	18
Pedlar 1-132	YD138501-632	2/16/2020	132
Pedlar 133-192	YD138633-692	2/15/2027	60
Pedlar 193-204	YD138693-704	2/16/2026	12
Pedlar 205-216	YD138705-716	2/15/2027	12
Pedlar 217-228	YD138717-728	2/16/2020	12
Pedlar 229-234	YD138729-734	alternating 2/15/2027 and 2/16/2020	6
Pedlar 235-244	YD138729-744	2/15/2027	10
Pedlar 245-292	YD138735-792	2/16/2020	48
Pedlar 293-304	YD138793-804	2/3/2020	12
Pedlar 305-364	YD138805-864	2/16/2020	60
Pedlar 365-367	YD138865-867	2/15/2027	3
Pedlar 368-375	YD138868-875	alternating 2/16/2020 and 2/15/2027	8
Pedlar 376-424	YD138876-924	2/16/2020	49
Pedlar 425-456	YD138925-956	2/15/2027	32
Pedlar 457-484	YD138957-984	2/16/2020	28
Pedlar 485-548	YD138985-9048	2/15/2027	64
Pedlar 549-562	YD139049-9062	2/16/2020	14
Pedlar 563-728	YD139063-228	2/15/2027	166
Pedlar 729-748	YE20501-520	4/27/2020	20
Pedlar 749-806	YE20521-578	4/27/2021	58
Pedlar 807-994	YE20579-766	4/27/2020	188
U 1-2	YC36744-745	12/9/2020	2
U 3-30	YC35883-910	4/13/2021	28
U 31-50	YC36746-765	12/9/2020	20
U 51-58	YC36798-805	12/13/2020	8
U 59-90	YC36766-797	12/9/2020	32
U 91-118	YD48131-158	4/26/2021	28
W 1-28	YD48159-186	4/26/2022	28
		Total:	2187

Figure 1: Location of the Pedlar Property

Figure 2: Location of work completed on Pedlar in 2018

History and Previous Work

The Pedlar property covers the Scroggie and Baja, Minfile occurrences (staked as porphyry copper targets following the Casino discovery) and the Onasick uranium Minfile occurrence, all in the central property area (Minfile Numbers 115J 072, 073, 093) as documented by the Yukon Geological Survey. In the Pedlar Project area, Scroggie and Mariposa Creeks are major placer producing streams and Pedlar and Cripple Creeks have seen some placer production.

The work completed by various operators as documented in Yukon Minfile (*Deklerk, 2010*) and the Geological Survey of Canada and company publications is summarized below.

Reconnaissance soil sampling on Baja (Cripple claims) in 1970 by Selco Exploration Company Ltd under option from Dawson Range Mines Ltd. following the discovery of the Casino copper porphyry deposit to the south (*Deklerk, 2010*). Results were not reported.

Grid soil sampling, mapping, hand trenching and a VLF-EM survey by Dawson Syndicate (Silver Standard Mines Ltd. and Asarco Exploration Company of Canada Ltd.) in Scroggie area (Bridget claims) outlined a molybdenum and lesser copper soil anomaly, traces of chalcopyrite, molybdenite, pyrite and magnetite and weak skarn alteration (*McMichael, 1973*).

Soil sampling, radiometric surveys and limited pits and trenches for uranium were conducted in the Onasick area (U claims) by a joint venture between Eldorado Nuclear Ltd. and Canadian Occidental Minerals Ltd., and by N. Burmeister on adjacent claims (*Burmeister, 1980*). Maximum values of 535 ppm uranium were obtained in soil and brecciated and clay altered rock chips were obtained from soil pits (*Riley, 1978 and Olsson, 1979 and 1980*).

Geological mapping, geochemical sampling (160 soil, 70 rock, 52 stream sediment) and IP and magnetic surveys in Scroggie area by Amax of Canada Ltd. in 1980, under option from N. Burmeister targeted anomalous tungsten from reanalysis of previous sample splits. A 300 by 600m coincident copper-molybdenum soil anomaly open to the south, a broad induced polarization and a separate magnetic anomaly were outlined, but only very low tungsten.

Prospecting and soil sampling in Scroggie area in 2005 with detailed magnetometer (38-line km) and soil (595 samples) surveys in 2008 by Shawn Ryan outlined a 750m long, >200 to 711 ppm copper ±molybdenum (to 322 pmm) soil anomaly with flanking tungsten values, bismuth (up to 155 ppm), and up to 62 ppb Au. The magnetic survey outlined two regional northwest trending magnetic highs separated by a broad magnetic low (*Ryan, 2009*). The results suggest similarities with the Minto and Lucky Joe areas of mineralization.

Staking of U claims and soil sampling by Shawn Ryan was conducted in the Onasick area in 2005, followed by reconnaissance soils (*Hibbitts and Nillos, 2007*) and an airborne magnetic and radiometric survey (*Sheldrake, 2007*) by International KRL Resources Corp. under option. A 100m by 500m long uranium in soil anomaly (maximum 408 ppm U) was delineated (*Ryan, 2006*).

Ethos Gold Corp. carried an exploration program on the Bridget property during the 2011 field season. The objective of 2011 exploration on the Bridget property was to screen the property, primarily using ridge-and-spur soil sampling, to detect geochemically anomalous areas that would suggest a substantial zone of gold mineralization. The 2011 exploration on the Bridget property included collection and analysis of 9,457 soil samples, pit trenching, 296 prospecting and rock samples, 4,812-line kilometers of airborne magnetic and radiometric surveying, and ~150 air photos to create 45 orthophotos of the Bridget property. A total of 385 man-days work was completed during the 2011 field season plus work by contractors up to September 30, 2011 (Tallman, 2012).

The 2016 soil program conducted by GroundTruth Exploration for White Gold Corp consisted of sending a 9-man crew from Dawson City for a 13-day detailed sampling program. The crew collected 2563 soil samples with the objective of sampling ridges and spurs throughout the property. The 2017 soil program (also conducted by GroundTruth for White Gold) consisted of sending a 19-man crew from Dawson City for a 26-day detailed sampling program to collect 8126 soil samples.

Geology

Regional Geology

The Property is in the Stewart River-Klondike goldfield area within the Yukon-Tanana Terrane (YTT). The basement rocks in this region are pervasively foliated and recrystalized schists and gneisses, which have metamorphic grades ranging from greenschist facies in the north to amphibolite facies on the BHC

Property. Three generations of plutonism (Devonian, Mississippian, and Permian) are recognized in the Stewart River area. Granitoids and basement rocks have developed two discernable metamorphic foliations. Compression during the Jurassic resulted in the development of narrow shear zones and thrust stacking of lithologic units. During the Cretaceous the regional stress field shifted to extensional and normal faults oriented north-south and east-west developed. These faults controlled the emplacement of Cretaceous and early Tertiary intrusions. As this system evolved into the Eocene, extension was accommodated by transcurrent slip along the Tintina Fault (Figure 3).

Figure 3: Regional Geology Map

The region underwent ductile (D1/D2) deformation associated with amphibolite facies metamorphism during the Late Permian Klondike orogeny. This event was associated with the accretion of the YT to Laurentia and associated closure of the Slide Mt Ocean and obduction of ophiolitic slices of the Slide Mt terrane. The area underwent additional compression and ductile deformation (D3) associated with greenschist facies metamorphism during the Late Triassic-Early Jurassic. The event was associated with widespread thrust faulting and imbrication of the Slide Mt. terrane, and the emplacement of felsic to ultramafic intrusions. This transitioned into a period of regional uplift and exhumation and is associated with dominantly east-west oriented sinistral faults, localized north-northwest vergent folds, and high angle reverse faults (D4). This period of deformation spans the ductile to brittle transition and are associated, particularly the E-W sinistral faults, with 'orogenic' style gold mineralization throughout the White Gold district and Klondike. Figure 4 below shows a correlation chart for the major tectonic, structural, magmatic, and mineralizing events in the west-central Yukon and eastern Alaska.

Figure 4: Correlation chart for major events occurring in west-central Yukon and eastern Alaska (Allan et al., 2012)

Renewed northeast dipping subduction under the continental margin during the Late Cretaceous led to renewed magmatism across the YT and is associated with felsic to intermediate intrusions of the Dawson Range batholith and felsic-mafic volcanic rocks of the Mount Nansen suite. The Early Cretaceous arc activity ceased around 99Ma; at which point it stepped farther inboard and is associated with intrusive suites in the Selwyn Basin (ie. Tombstone suite, etc.). This lull in magmatism was associated with the formation of the Indian River Formation, a coarse clastic sedimentary package deposited in an alluvial/fluvial to shallow marine setting that records approximately 40 million years of sedimentation following the formation of the Dawson Range Arc.

Arc style magmatic and volcanic activity renewed during the Late Cretaceous and is associated with a series of calc-alkaline plutons and high-level porphyry dikes, plugs, and breccias in the Casino and Freegold areas, and age equivalent intrusions in eastern Alaska (79 – 72Ma). This event was also likely associated with the initiation of dextral offset along the Big Creek fault and reactivation of older Jurassic age structures in Dawson Range area. It is also associated with variable styles of mineralization ranging from Cu-Au-Mo porphyries (Casino), intrusion-related/epithermal occurrences (Sonora Gulch, Freegold area), and structurally controlled gold / 'orogenic' mineralization (Coffee, Boulevard, Moosehorn). At 72Ma there was a distinct change in magmatism with widespread bi-modal volcanism (Carmacks group) and the emplacement of small, high-level, felsic plugs and stocks (Prospector Mountain suite) throughout the YT. A prominent set of northeast trending normal and sinistrally oblique faults are commonly associated with the intrusive and volcanic rocks of this event and are broadly coeval with magmatism.

A final magmatic event occurred during the Late Tertiary and is associated with the emplacement of bimodal suite of predominately north-south trending dike swarms, plugs, and local pyroclastic rocks. Gabrielse et al 2006 suggests that the magmatic event was likely coeval with the early stages of dextral offset along the Tintina fault (Gibson, 2014).

Property Geology

The Pedlar property is mainly underlain by Mississippian aged gneiss (MgSR) consisting of metagranodiorite, meta-diorite and meta-tonalite (Figure 5). The most eastern part of the property is comprised of an intrusive biotite-hornblende granodiorite (LTrEJgM) of Late Triassic early Jurassic age. Another two Mid Cretaceous aged intrusive bodies (mKqW) are in the center of the property and at the northwest corner. The rock types are mainly biotite-hornblende granodiorite, hornblende quartz diorite and a less silicious type of the hbl-qtz diorite. This cretaceous body is related to the Dawson Range Batholith which lies to the south of the property and is associated with both Casino and Coffee deposits.

The Pedlar property is located 40 km east of the Coffee Project, 55 km southeast of the White Gold deposit and 25 km northeast of the Casino gold-copper-molybdenum deposit of Western Copper Corporation.

The western and central parts of the property have large lenses of Devo-Mississippian intermediate to mafic volcanic rocks and volcaniclastics (DMF1). In the same area of the property there also lie small

lenses of late Triassic coarse grained foliated gabbroic hornblende gneiss (LTrgS). Further to the east, on the property there are other felsic to intermediate lenses of rhyolite and dacite that vary in color (PRC1).

A strong northwest trending aerial and magnetic lineament, noted by Burmeister (1980a), traverses the southern Pedlar and U claims and may represent a major splay of the Big Creek Fault.

Figure 5: Property Geology Map

2018 Exploration Program and Results

Field Mapping and Prospecting

There were 9.5-man days spent prospecting and mapping on Pedlar in 2018 and almost 2 days' worth of office work after the field days. A total of 4 samples were collected for assay, one of the samples with a representative and duplicate sample which were also sent for geochemical analysis. Other stations and measurements were recorded in the field.

Analysis

Prospecting samples were prepared using the PRP70-250 method which involves crushing the material to 2 mm and then splitting off and pulverizing up to 250 grams to 75 microns. The resulting pulp was analyzed by the AQ200 method, which involves dissolving 0.5 of material in a hot Aqua Regia solution and determining the concentration of 36 elements of the resulting analyte by the ICP-MS technique. Gold was analyzed for by the FA430 method which involves fusing 30 grams of the 75-micron material in a lead flux to form a dore bead. The bead is then dissolved in acid and the gold quantity determined by Atomic Absorption Spectroscopy.

Results

There was no significant Au found in the samples. One sample showed molybdenum concentrations of 452 ppm. Sample locations are shown in Figure 2, descriptions and assay results are found in Appendix I: 2018 Pedlar Prospecting Descriptions.

Soil Sampling

A total of 46-man days were spent soil sampling on the Pedlar property between the 9th and 17th of July 2018. There were 1438 samples taken in this time, the sampling area is outlined in Figure 2. Sample descriptions and assay results can be found in Appendix I: 2018 Pedlar Soil Sample Descriptions and Assay.

Methods and Procedures

Field technicians navigated to sample sites using handheld GPS units. A C-Horizon sample is collected using an Eijklcamp brand hand auger at a depth of between 20cm and 110cm. Where necessary, in rocky or frozen ground, a mattock is used to obtain the sample. Photos are taken of the sample site 5m from sample hole with auger inserted. Typically 400 to 500 g of soil is placed in a pre-labeled bag. An aluminum metal tag inscribed with the sample identification number is attached to a rock or branch in a visible area at the sample site along with a length of pink flagging tape. A field duplicate sample is taken once for every 25 samples. The GPS location of the sample site is recorded with a Garmin 60cx or 76cx GPS device in UTM NAD 83 format, and the waypoint is labeled with the project name and the sample identification number. A weather-proof handheld device equipped with a barcode scanner is used in the field to record the descriptive attributes of the sample collected, including sample identification number, soil colour, soil horizon, slope, sample depth, ground and tree vegetation and sample quality and any other relevant information.

Analysis

Once received in the lab, soil samples are prepared using the SS80 method. Samples are dried at 60 degrees Celsius and sieved such that up to 100 grams of material passes 180 microns (80 mesh). The samples are then analyzed by the AQ201+U method which involves dissolving 15 grams of material in a hot Aqua Regia solution and determining the concentration of 37 elements of the resulting analyte by the ICP-MS technique.

Results

The location of the soil sampling on Pedlar is shown in Figure 2. The Au in soil assay results are summarized in Figure 6a and Table 2. Molybdenum is also summarized in Figure 6b and Table 2, it seems to be correlated to elevated values of Cu (Figure 6c, Table 2). The mineralization seems to be a Cu-Mo style porphyry rather than a deposit that would be concentrated in gold. The Cu-Mo anomaly in the center of the soil grid appears to be an extension of an anomalous area to the north in past soil sampling work done on Pedlar.

Table 2: Soil Sample Summary of Au, Mo, and Cu Concentrations

Au Concentrations (ppb)	12 <ppb<24< th=""><th>24<ppb<48< th=""><th></th></ppb<48<></th></ppb<24<>	24 <ppb<48< th=""><th></th></ppb<48<>	
# of samples	11		3

Mo Concentration (ppm)	30< ppm< 60	60< ppm< 90	ppm >90
# of Samples	28	4	3

Cu Concentration (ppm)	50< ppm< 100	100< ppm< 150	ppm >150
# of Samples	104	23	13

Figure 6b: 2018 Mo in soil assay results (with historic soils)

RAB Drilling

From July 6th – 19th 2018, the RAB drilling crew drilled 10 holes totaling 548.64 meters on the Pedlar. All drill collar data can be found in Appendix I, a summary is shown in Table 3 below.

Hole_ID	Azimuth	Dip	Depth Reached (m)
PEDBRGRAB18-001	220	-60	51.816
PEDBRGRAB18-002	220	-60	4.572
PEDBRGRAB18-003	220	-60	71.628
PEDBRGRAB18-004	220	-60	65.532
PEDBRGRAB18-005	220	-60	67.056
PEDBRGRAB18-006	220	-60	83.82
PEDBRGRAB18-007	220	-60	45.72
PEDBRGRAB18-008	220	-60	68.58
PEDBRGRAB18-009	220	-60	73.152
PEDBRGRAB18-010	220	-60	16.764
		Total:	548.64

Table 3: RAB Drill Collar Summary

Methods and Procedures

RAB drilling on the property was conducted using Ground Truth Exploration's, helicopter portable, track mounted RAB drill. Standard operating procedures and description of the RAB are provided in Appendix V. The RAB can drill to approximately 100m depth using it's on board compressor using an external compressor.

Analysis

Samples were prepared using the PRP70-250 method which involves crushing the material to 2 mm and then splitting off and pulverizing up to 250 grams to 75 microns. The resulting pulp was analyzed by the AQ200 method, which involves dissolving 0.5 of material in a hot Aqua Regia solution and determining the concentration of 36 elements of the resulting analyte by the ICP-MS technique. Gold was analyzed for by the FA430 method which involves fusing 30 grams of the 75-micron material in a lead flux to form a dore bead. The bead is then dissolved in acid and the gold quantity determined by Atomic Absorption Spectroscopy.

Results

Assay results for 2018 drilling program for the Bridget target on the Pedlar property are summarized in Table 4 below. All assay, XRF, drill collar, Drill logs, Structure, and downhole survey data can be found in Appendix I. Downhole survey imagery and stereonets can be found in Appendix III.

Table 4: RAB Drill Sample Assay Results

Hole		Interval			
	From (m)	To (m)	Hole Length (m)	Au (g/t)	Mo (g/t)
PEDBRGRAB18-001		NSV			
PEDBRGRAB18-002		NSV			
PEDBRGRAB18-003		NSV			
PEDBRGRAB18-004		NSV			
PEDBRGRAB18-005		NSV			
PEDBRGRAB18-006		NSV			
PEDBRGRAB18-007		NSV			
PEDBRGRAB18-008		NSV			
PEDBRGRAB18-009	12.192	13.716	1.524	N/a	622.3
And	28.956	30.48	1.524	N/a	631.9
PEDBRGRAB18-010		NSV			

Bridget Target

The Bridget target had no significant gold intercepts but did have a significant molybdenum intercept in hole 9 between 28.9 and 30.5 meters. Dominant foliation strikes between 270 and 290 degrees, most reading with a steep dip at approximately 70 degrees. There were some shallower dips averaging about 40-degree dips. Several fracture sets were recorded. The mineralized veins seemed to be trending similarly to the fractures that are NW-SE and N-S trending and dipping steeply to the SW and S respectively. Breccia zones with similar orientations were also recorded.

2018 Interpretation and Recommendations

The prospecting, soil, and drilling results have shown that mineralization at the Bridget target is dominated by Molybdenum and Copper. If Cu-Mo were to be explored as an economic resource at the Bridget target, then more drilling would be needed in the area to define the Cu-Mo source.

To further explore gold anomalies, small prospecting teams should be sent out to follow up on historic soil anomalies on different areas of the property. If significant prospecting samples are found elsewhere on the property in upcoming field seasons, the GT Probe would be a viable method to explore rock type, alteration and mineralization of those areas.

References

Allan, M. M., Hart, C. J., & Mortensen, J. K. (2013). Magmatic and metallogenic framework of westcentral Yukon and eastern Alaska. *Jurnal Name*, 1-13.

Bennett, V., Schulze, C., Ouellette, D. and Pollries, B., 2010. Deconstructing complex Au- Ag-Cu mineralization, Sonora Gulch project, Dawson Range: A Late Cretaceous evolution to the epithermal environment. In: Yukon Exploration and Geology 2009, K.E. MacFarlane, L.H. Weston and L.R. Blackburn (eds.), Yukon Geological Survey, p. 23-45.

Booth, G.W., Hitchins, A.C. and Lebel, J.L., 1980. 1980 geochemical and geophysical assessment report, Scroggie Creek property. Report for Amax of Canada Ltd. Yukon Assessment Report #090668.

Burmeister, N.W., 1980a. Geophysical Report, MK 1-38 claims. Yukon Assessment Report #090602.

CGG Canada Services, SURVEY REPORT, 2017, Airborne magnetic and DIGHEM survey, PROJECT# 602997

Colpron, M., Israel, S., Murphy, D., Pigage, L. and Moynihan, D., 2016. Yukon Bedrock Geology Map. Yukon Geological Survey, Open File 2016-1, 1:1,000,000 scale map and legend.

Deklerk, R. and Traynor, S. (compilers), 2010. Yukon MINFILE 2010 - A database of mineral occurrences. Yukon Geological Survey

GeoSci Developers, 2017, Geophysics for Practicing Geoscientists.

Gordey, S.P. and Makepeace, A.J. (comp.) 2003. Yukon digital geology, version 2.0; Geological Survey of Canada Open File 1749 and Yukon Geological Survey Open File 2003-9(D)

Gordey, S.P. and Ryan, J.J. 2005. Geology, Stewart River Area (115N, 115O and part of 115J), Yukon Territory; Geological Survey and Canada, Open File 4970, scale 1:250,000.

Hibbitts, M. and Nillos, T., 2007. International KRL Resources Corp. Yukon Assessment Report #094785.

McMichael, R.C., 1973. 1972 geochemical and geophysical assessment report on the Scroggie Creek Project "C" claims. Report for Silver Standard Mines Ltd. Yukon Assessment Report #019906.

Mortensen, J.K. 1992. Pre-mid-Mesozoic tectonic evolution of the Yukon-Tanana terrane, Yukon and Alaska. Tectonics, 11: 836 – 853.

Olsson, W.J., 1980. Report on the 1979 field program NEF1-93 claim, Dawson Mining District. Report for Eldorado Nuclear Ltd. Yukon Assessment Report #090656.

Olsson, W.J.,1979. Report on the 1978 field program NEF1-34 claims, Dawson Mining District. Report for Eldorado Nuclear Ltd. Report for Eldorado Nuclear Ltd. Yukon Assessment Report #090429.

Paulter, J., 2011. TECHNICAL REPORT on the HEN AND BRIDGET PROJECTS South Dawson, Yukon Territory

Riley, C.J., 1978. Radiometrics and soil geochemistry, 3-2-Many 1-16 claims. Report for Eldorado Nuclear Ltd. Yukon Assessment Report #090344.

Ryan, J. J., Zagorevski, A., Williams, S. P., Roots, C., Ciolkiewicz, W., Hayward, N., and Chapman, J. B., 2013b, Geology, Stevenson Ridge (northwest part): Yukon: Geological Survey of Canada, Canadian Geoscience Map 117 (2nd edition, preliminary), scale 1:100,000. doi:10.4095/292408.

Ryan, S., 2009. Geochemical – geophysical report, Bridget 1-40 claims. YMIP Report #08- 053.

Ryan, S., 2006a. Geochemical report U 3-30 claims. Yukon Assessment Report #094726.

Ryan, S., 2006b. Geochemical report Bridget 1-8 claims. Yukon Assessment Report.

Sheldrake, R., 2007. Report for International KRL Resources Corp. Assessment Report #094868.

Tallman, P., 2012, Prospecting, Soil Geochemistry, Airborne Magnetic and Radiometric Surveying, on the Bridget Project, White Gold District Yukon Territory, Canada Yukon Assessment Report #096304

Tempelman-Kluit, D. J., 1974. Reconnaissance geology of the Aishihik Lake, Snag and part of Stewart River map-areas, west-central Yukon; Geological Survey of Canada, Paper 73-41, 97 p

USGS, 1999, Geologic Interpretation of DIGHEM Airborne Aeromagnetic and Electromagnetic Data over Unga Island, Alaska.

Statement of Expenditures

PROJECT CLIENT TIME LINE	Pedlar White Gold Corp June 1 to August 15, 2018		GRP 2
GEOLOGIC MAPPING/PROJECT MANA	GEM	ENT	
Geologist/Project Management	Amo	ount	Description
RAB Geologist	\$	6,930.00	14 days @\$495/day
Consulting Geologist	\$	3,240.00	5.4 days @ \$600/day
Consulting Geologist	\$	5,175.00	5.75 days @ \$900/day
Consulting Geologist Expenses	\$	493.16	
Geologist/Project Management	\$	15,838.16	
Management Fee (+8%)	\$	1,267.05	
Total Geologist/Project Management	\$	17,105.21	
GEOCHEMICAL SURVEYS			
Soil/Till Survey	Amo	ount	Description
Per Soil Sample Charge (Yukon Based Projects)	\$	63,492.00	1443 samples all in @ \$44/sample
Soil/Till Surveys	\$	63,492.00	
Management Fee (+8%)	\$	5,079.36	
Total Soil/Till Surveys	\$	68,571.36	
DRILLING			
GT RAB Drill	Amo	ount	Description
Camp Cook / OFA	\$	6,110.00	13 days @ \$470/day
RAB Drilling	\$	64,620.00	549 m @ \$127.12/m all in cost
Camp, communications, groceries, fuel	\$	20,475.00	91-man days @ \$225/man day.
Crew travel	\$	6,564.63	Crew travel for shift change.
Camp Build	\$	4,400.00	2.75 days @ \$1600/day
GT RAB Drill Equipment & Field Electronics	\$	4,320.00	12 days @ \$360/day
Sampling Supplies	\$	764.52	
Fuel	\$	2,562.67	
			27.9 Truck and driver hours @
Transportation Support	Ş	4,180.00	\$150/hour
XRF Analyzer	Ş	3,600.00	12 days @ \$300/day
Downhole Televiewer	Ş	4,800.00	12 days @\$400/day
Total RAB Drilling	\$	122,396.82	
Management Fee (+8%)	\$	9,791.75	
Total RAB Drilling	\$	132,188.57	

Soil/Till Samples	Am	ount	Description
Soil/Till Sample Prep-Analysis-Disposal	\$ -		
Rock/Core Samples	Am	ount	Description
Rock/GT Probe/RAB Sample Prep-Analysis-			•
Disposal	\$	10,085.25	
Laboratory Analysis	\$	10,085.25	
Management Fee (+8%)	\$	806.82	
Total Laboratory Analysis	\$	10,892.07	
LOGISTICAL SUPPORT			
Helicopter	Am	ount	Description
ASTAR B2 and/or Jet Ranger (3hr minimum)	\$	67,894.80	39.2 hours @ \$1732 / hour
Helicopter Fuel	\$	9,604.00	6860 L @ \$1.40/L
Fixed Wing	Am	ount	Description
			various flights to support drilling and
Islander, 206, Skyvan, etc.	\$	22,230.32	soil programs.
Logistical Support	\$	99,729.12	
Logistical Support Management Fee (+8%)	\$ \$	99,729.12 7,978.33	
Logistical Support Management Fee (+8%) Total Logistical Support	\$ \$ \$	99,729.12 7,978.33 107,707.45	
Logistical Support Management Fee (+8%) Total Logistical Support	\$ \$ \$	99,729.12 7,978.33 107,707.45	

Statement of Qualifications

I, Matthew Hanewich, do hereby declare that:

- 1. I am currently assisting with end of season report writing for GroundTruth Exploration Inc. of Dawson City, Yukon.
- 2. I graduated from Carleton University in 2015 with a B.Sc. Honor's degree in Geology.
- 3. I have worked as a geologist on and off since 2014.
- 4. I am not aware of any material fact or material change with respect to the subject matter of this report, the omission to disclose which makes this report misleading.

Dated this 10th day of January 2019 Matthew Hanewich

.