BMC MINERALS (NO. 1) LTD

2018 GEOLOGICAL AND GEOCHEMICAL PROGRAM REPORT ON THE PELLY PROPERTY

Located in the Watson Lake Mining District, Yukon NTS 105G/8 and 9 61° 27' N Latitude; 130° 12' W Longitude

Field Work Completed Between July 3rd and July 17th, 2018

-prepared for-

BMC MINERALS (NO. 1) LTD

750-789 West Pender Street Vancouver, British Columbia, Canada V6C 1H4

-prepared by-

Dillon Hume

EQUITY EXPLORATION CONSULTANTS LTD.

1510-250 Howe Street Vancouver, British Columbia, Canada V6C 3R8

Febraury 5th, 2019

EQUITY

TABLE OF CONTENTS

TABLE OF CONTENTS	. 1
LIST OF FIGURES	. 2
LIST OF TABLES	. 2
LIST OF APPENDICES	. 2
SUMMARY	. 3
1.0 INTRODUCTION	. 4
2.0 RELIANCE ON OTHER EXPERTS	. 4
3.0 PROPERTY DESCRIPTION AND LOCATION	. 4
4.0 ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY, CLIMATE	. 8
4.1 Accessibility	
4.2 Local Resources and Infrastructure	. 8
4.3 Physiography and Climate	. 9
5.0 EXPLORATION HISTORY	. 9
6.0 2018 EXPLORATION PROGRAM 1	10
6.1 Mapping Program 1	10
6.2 Rock Sampling1	11
6.3 Relogging Drill Core1	11
6.4 Air Photography1	11
7.0 GEOLOGICAL SETTING AND MINERALIZATION 1	11
7.1 Regional Geology1	11
7.2 Local Geology1	12
7.3 Property Geology1	16
7.4 Mineralization1	18
7.4.1 Wolverine deposit 1	18
7.4.2 Fisher zone (or Jay occurrence) 1	19
7.4.3 Puck prospect1	19
8.0 RESULTS OF THE 2018 PROGRAM 1	19
8.1 Mapping Program 1	
8.1.1 Campbell Range formation1	19
8.1.2 Money Creek formation2	20
8.1.3 Porphyritic intrusions2	20
8.1.4 Wolverine Lake group2	23
8.1.5 Structural geology	
8.1.6 Alteration and Mineralization2	
8.1.7 Significant map changes2	27
8.2 Lithogeochemistry	28
8.3 Relogging Results	29
8.4 Air Photography	
9.0 CONCLUSIONS AND RECOMMENDATIONS	30

🤶 ΕQUITY 🗆

1

LIST OF FIGURES

Figure 1: Location of the Pelly Property	5
Figure 2a: 1:100K tenure map of the Pelly Property	6
Figure 2b: 1:25K tenure map of the Pelly Property (in pocket)	7
Figure 3: Regional geology of the Finlayson Lake district from Layton-Matthews et al (2008)	. 12
Figure 4a: Geology of the Pelly Property after Murphy et al (2001)	. 14
Figure 4b: Geology legend after Murphy et al (2001)	. 15
Figure 5: Geology of the Pelly Property after Senft and Hall (1997)	. 17
Figure 6: Idealized stratigraphic section of the Pelly Property geology.	. 21
Figure 7: Examples of rocks observed on the Pelly Property	. 22
Figure 8: More photos of members from the Wolverine Lake group	. 24
Figure 9: Example of structures on the Pelly Property	. 26
Figure 10: Primitive mantle-normalized diagrams for (a) felsic rocks, and (b) mafic rocks in the Wolverine L	₋ake
group	28

LIST OF TABLES

Table 1: Summary of holes relogged in 2018	
Table 2: Description of the geological units on the Pelly F	
(1997) and Murphy et al. (2001)	

LIST OF APPENDICES

Appendix A: References

Appendix B: Statement of Expenditures

Appendix C: Claim Data

Appendix D: Traverse Summaries

Appendix E: Geological Map and Sections

Appendix F: Rock Sample Descriptions

Appendix G: Rock Sample Certificates of Analysis

Appendix H: Drill Logs

Appendix I: Air Photography

Appendix J: Data Disk

Appendix K: Qualified Person's Certificate

2

SUMMARY

The Pelly Property is 100% owned by BMC Minerals and consists of 422 quartz claims covering 7220 hectares (72.2 km²) of south-central Yukon. The approximate center of the Property is at 61° 27' N latitude and 130° 12' W longitude on NTS map sheets 105G/8 and 9, within the Watson Lake Mining District. The Property can be divided into three mostly contiguous claim blocks (JACK, GO, WOL), one of which hosts the downdip extension of the Wolverine volcanogenic massive sulphide (VMS) deposit.

The 2018 mapping program on the Pelly Property aimed to build on historical mapping done by Cominco in 1996 and improve understanding of the geological setting and potential for mineral occurrences on the Pelly Property. Mapping was done by a three to four-person crew over 15 days from 3 July and 17 July 2018, with daily helicopter set-outs and pick-ups along pre-planned traverse routes. Mappers completed a total of 38 traverses that covered ~70 km². The final geological map was integrated with airborne VTEM data collected by BMC in 2015 and 2016, as well as historical drilling from prospects on the Property.

Mapping identified and described the moderately northeast dipping stratigraphy of the Campbell Range formation, Money Creek formation, and Wolverine Lake group. The members of the Wolverine Lake group define lower, middle, and upper packages, which are both lithologically and geochemically distinct. The lower package stretches from the base of the Wolverine Lake group to the Wolverine horizon. The lower package consists of felsic crystal volcaniclastic rocks with minor intercalated mudstone. The middle package consists of carbonaceous mudstones cut by felsic porphyritic sills, felsic volcaniclastic rocks locally intercalated with exhalative members, and coherent banded rhyolites. This package also hosts the Wolverine deposit and the Fisher zone, displays the most significant alteration, and is host to the highest-grade sample from 2018 (gossanous float with ~1.82% Zn). The upper package comprises rhyolitic breccia overlain by a massive basalt, marking the top of the Wolverine Lake group. The Money Creek formation unconformably overlies the Wolverine Lake group and is composed of clastic sedimentary rocks. Unconformably overlying the Money Creek formation are the massive to pillow basalt of the Campbell Range formation, which mark the highest stratigraphic position identified on the Property.

The stratigraphic sequence is consistent and predictable along strike and the length of the property demonstrated from observations in outcrop and historical drill holes. Local variations in member thickness were observed and are attributed to syn-depositional basin development. It has been inferred that the location of the abrupt change in thicknesses are coincident with syn-depositional faults and may have been reactivated creating subsequent offsets of stratigraphy.

Strong silica + muscovite \pm chlorite alteration are observed around the Fisher zone, along with a series of exhalative members, similar to those observed at the Wolverine deposit (Bradshaw et al., 2008b). Sampling from here identified numerous anomalous zinc and barium values in outcrop and float.

Follow-up work should include detailed mapping at the Fisher zone, infill soil sampling in areas with low density coverage, and ground geophysical surveys (e.g. gravity, FLTEM) to identify and define coincident conductors and density anomalies.

1.0 INTRODUCTION

This report has been prepared for BMC MINERALS (NO.1) LTD ("BMC" or "BMC Minerals") in order to document the procedures and results of the 2018 exploration work on the Pelly Property and to satisfy assessment reporting requirements for the Yukon Department of Energy, Mines and Resources ("EMR"). Equity Exploration Consultants Ltd. ("Equity") was tasked to prepare this assessment report on the basis of personal observations, previous assessment reports filed with EMR, data and reports supplied by BMC and regional geological publications by the EMR. A complete list of references is provided in Appendix A.

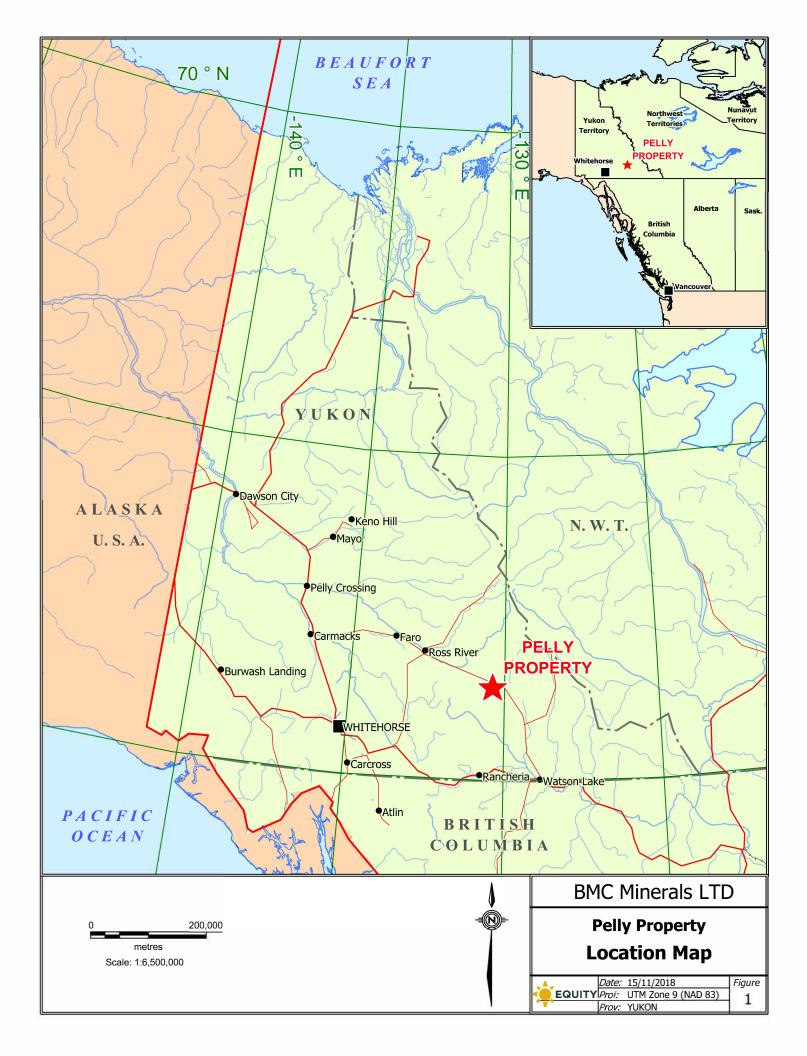
2.0 RELIANCE ON OTHER EXPERTS

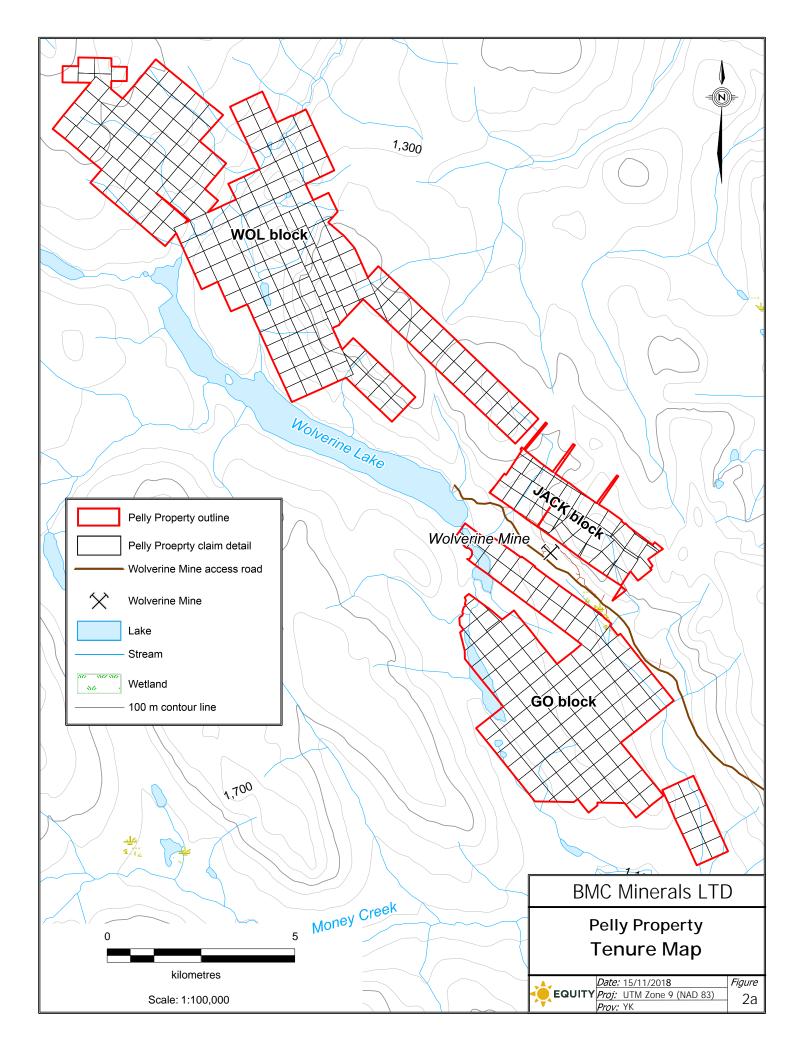
In Section 3.0, the author has relied entirely upon information provided by BMC concerning their purchase agreement with Teck Mining Worldwide Holdings Ltd ("Teck") and the extent of any underlying interests and royalties. Also, in Section 3.0, the authors have relied entirely on the Geomatics Yukon website for downloaded shapefile tenure data. The authors have not relied upon a report, opinion or statement of another expert concerning legal, political, environmental or tax matters relevant to this assessment report.

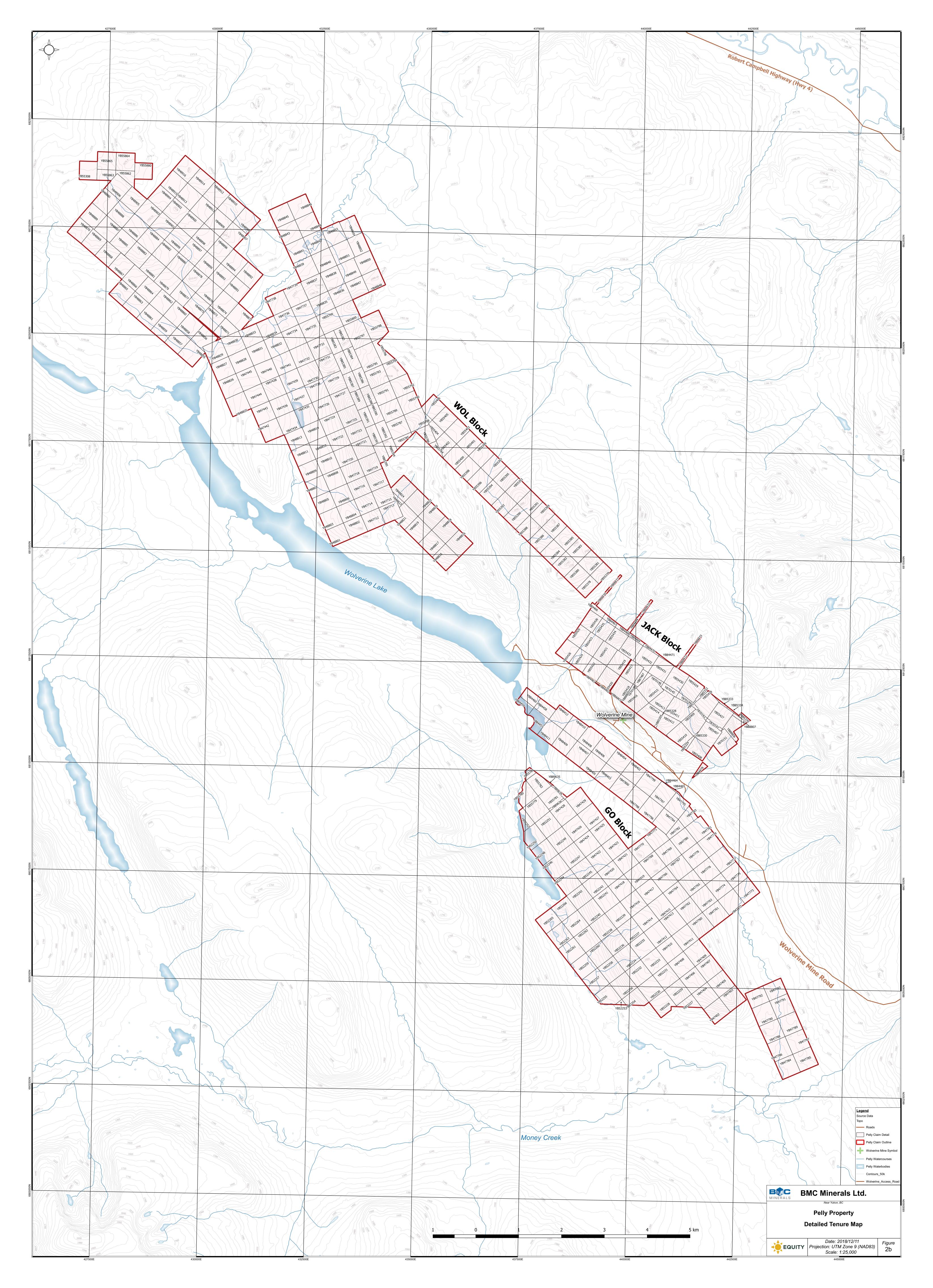
3.0 PROPERTY DESCRIPTION AND LOCATION

The Pelly Property consists of 422 quartz claims that cover 7220 hectares (72.2 km²) in the southcentral Yukon, approximately 140 km southeast of the town of Ross River and 280 km east-northeast of Whitehorse (Figure 1). It is centred at 61° 27' N latitude and 130° 12' W longitude (NAD83 UTM Zone 9: 436500E 6814000N) on NTS map sheets 105G/8 and 9, within the Watson Lake Mining District. The claims are intermingled with claims owned by Yukon Zinc Corp. ("Yukon Zinc") and at the south end host the past producing Wolverine mine ("Wolverine"; Figure 2a; 2b). A complete list of claims is provided in Appendix C.

The Pelly Property can be sub-divided into three separate claim blocks (Figures 2a, 2b): (1) JACK and WOL claims lying immediately northeast of Wolverine ("JACK block"); (2) GO, BOOT and JACK claims lying immediately southwest of Wolverine ("GO block"); and (3) WOL, TAG and LOW claims that begin ~5 km northwest of Wolverine and stretch northwest along Wolverine Lake ("WOL block"). The JACK and GO blocks flank the northeast and southwest sides of Yukon Zinc's claims overlying Wolverine, which are 900 m wide.


The JACK block is a mostly contiguous group of 66 claims that cover 6.5 km², the only non-contiguous part of which is the JACK18 claim lying 30 m to the south. The GO block consists of 134 mostly contiguous claims covering 24.6 km² that includes a satellite block of 10 claims (GO53-62) lying 25 m to the south. The WOL block consists of 222 contiguous claims that cover 41.1 km² and is thereby the largest of the three blocks. All claims were initially acquired through staking on the ground, with the area covered by each claim determined by the location of the two claim posts on the ground.


All claims are 100% registered to BMC Minerals following the purchase of the Pelly Property from Teck on 24th January 2015. There are no royalties or back-in rights in this agreement, and no significant environmental liabilities are reported from the Property.


The claims confer title to hard rock mineral tenure only. Surface rights are held by the Crown, as administered by the Yukon Territory. Trapping rights over most of the Pelly Property are held under Single Holder Trapline #250 whereas the northeastern-most claims fall under Group Trapline #405 held by the Ross River Dena Council (RRDC). The Property falls entirely within Outfitter Concession #20, held by Yukon Big Game Outfitters. Several parcels of land near the Pelly Property that have been reserved for a future land claim settlement with the RRDC, including RRDC-RR16A that abuts the northwestern side of the GO block.

The Yukon Government ("YG") placed a staking moratorium across Kaska Dena traditional territory in December 2013, which includes the Pelly project area. This moratorium was subsequent to a 2012 decision by the Yukon Court of Appeal supporting the Ross River Dena Council's contention that existing free-staking entry rules may conflict with the YG constitutional duty to consult aboriginal groups with land claims outstanding. In January 2018 the moratorium was extended until 31 July 2019. Mineral claims staked prior to the moratorium, including the Pelly Property, are unaffected.

Yukon law requires eligible assessment expenditures of \$100/claim/year on the Pelly Property to extend tenure ownership past the current expiry dates. A single claim grouping comprising all 422 claims making up the Pelly Property, referred to as "Pelly Group 1", was filed with EMR to allow the representation of work done on one or more claims to be distributed to other claims where work was not done.

Exploration programs in Yukon are divided into Class 1 (grassroots) through Class 4 (advanced), depending on threshold levels of camp man-days, fuel storage and extent of exploration activities. In the Pelly project area, Class 1 and 2 programs require notifying the EMR whereas Class 3 and 4 programs involve submittal of an operation plan that, if approved by the EMR, will provide a Quartz Mining Land Use Permit that is necessary to undertake exploration activities. The 2018 Pelly exploration work was completed under the auspices of Mining Land Use Permit LQ00451, which is valid from 26 July 2016 to 25 July 2020. The 2018 mapping program required no ground disturbance, dedicated camp or fuel storage facilities.

The Pelly Property lies within the traditional territory of the Ross River Dena Council. Land claims have not been settled in this part of Yukon and their future impact on Property access, title or the right and ability to perform work remain unknown.

4.0 ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY, CLIMATE

4.1 Accessibility

The Wolverine mine access road reaches to within 100 m of the JACK and GO claim blocks, and 2 km from the WOL block. This 31 km long privately owned and maintained gravel road connects to the Robert Campbell Highway (Highway 4) near Frances Lake, at a point 175 road-km east of Ross River and 195 road-km northwest of Watson Lake. Fixed wing aircraft can land on Frances Lake.

Additionally, a historic winter access trail transects the Pelly Property, connecting the Robert Campbell highway, to the north of the property at Wolverine Creek, with the Wolverine mine to the south.

The mainly gravel Robert Campbell Highway connects the Property to the paved Alaska Highway at the town of Watson Lake, as well as the paved Klondike Highway near the town of Carmacks, giving access to Whitehorse and points south (Figure 1). Most road access into the Property is maintained by the government except for the Wolverine mine access road, which is maintained by Yukon Zinc. Parts of the Property may be accessible to skid-based drilling with the cooperation of Yukon Zinc or appropriate permits authorized by the Yukon Government. Elsewhere, helicopters are necessary to access most of the Property for early stage exploration, especially the more remote WOL block.

4.2 Local Resources and Infrastructure

The nearest settlement to the Pelly Property is the town of Ross River (population ~300), which lies 140 km to the northwest and provides basic services (groceries, bulk fuel, freight, heavy equipment, accommodation and meals). The city of Whitehorse (population ~25000) is located 280 km west-southwest of the Pelly Property (Figure 1) and offers a full range of services and supplies for mineral exploration and mining, including skilled labour, bulk fuel, freight, heavy equipment, groceries, hardware and daily jet service to Vancouver.

The Yukon electrical grid supplies 138 kV electrical power to the town of Faro, located 195 km northwest of the Pelly Property, but only 25 kV electricity to Ross River. Concentrates from the Wolverine mine were trucked 900 km south through Watson Lake and Dease Lake to port facilities at Stewart, BC, prior to the mine's shutdown in early 2015.

Surface rights over the Pelly Property are owned by the Crown and administered by the Yukon Territory; they would be available for any eventual mining operation. The Property has abundant water and water rights could be obtained for milling. It is still too early to determine potential tailings storage areas, potential waste disposal areas, and potential processing plant sites.

4.3 Physiography and Climate

The Pelly Property lies in the Pelly Mountains and entirely within the Liard River watershed. Creeks within the WOL block either drain northeast into the Finlayson River or southwest into Wolverine Lake, whereas creeks on the JACK and GO blocks tend to drain west into Wolverine Lake or southward towards Money Creek. Topography is fairly rugged with elevations ranging from 1100 m near Wolverine Lake to nearly 1800 m on the peaks to the northeast.

White and black spruce are the most common tree types below the tree line (1350-1500 m). Black spruce is usually dominant in wetter areas whereas white spruce predominates in drier areas. Paper birch, aspen, balsam and lodgepole pine are also present. Alpine fir grows near tree line. The understory is dominated by feather moss in dense coniferous stands and by willows and heath-like shrubs in more open areas. Sedge or sphagnum tussocks are common in wetlands and under black spruce. Shrub birch and willow occur in the sub-alpine and extend well above the tree line.

The climate is cold continental with a mean daily summer temperature of 15°C and a mean daily winter temperature of -25°C. Precipitation falls fairly evenly throughout the year, predominantly as rain from May through September and then as snow from October to April. The mean annual precipitation is 655 mm. Groundwork on the Property is possible from June until October, although snow may cover parts of higher elevations late into the summer. The drilling season is limited only by freezing temperatures and lack of liquid water for drilling.

During the last glacial period, ice moved across the eastern part of the area in a northwesterly to westerly direction and extended to heights of about 1525 m (Ritson, 2000).

5.0 EXPLORATION HISTORY

The following description of the exploration history for the Pelly Property has been, in part, adapted from Bannister (1998).

The earliest records of exploration activity on what is now the Pelly Property was staking of the JAY claim group by Hi-Boy Mining and Exploration in 1966. These claims covered the so-called Jay occurrence or Fisher zone, although no work or any indication of any mineralization was recorded.

In 1973, Finlayson Joint Venture (FJV) staked the Fetish showing at the south end of Wolverine Lake and, in the same year, conducted grid soil sampling, geological mapping, trenching and drilling of two holes for 249 m. Additional soil sampling was done in 1974. Mineralization at the Fetish showing consists of trace chalcopyrite and galena in strongly leached, limonitic chloritic schists and quartz float. Drilling intersected thin bands of chalcopyrite and sphalerite in a soft, contorted, talc-sericite-chlorite schist unit up to 20 m thick. Several magnetite iron formations were found stratigraphically above the mineralized horizon.

Claims lapsed and were re-staked by Atna Resources Ltd. in 1994 and then optioned to Westmin Resources Ltd ("Westmin") in 1995. Drilling by Westmin led to the discovery of the Wolverine VMS deposit in 1995, with the best intercept returning 8.3 m of 14.2% Zn, 0.6% Cu, 7.6% Pb, 1351 g/t Ag and 3.5 g/t Au. The Fetish showing is no longer recorded in the Yukon MINFILE database as it is considered part of the Wolverine deposit.

Cominco Ltd ("Cominco") conducted silt and soil sampling across parts of the Pelly Property in 1977 as well as reconnaissance geological mapping in 1993. In 1994, they staked the WOL claims to cover geophysical targets identified during an airborne survey done earlier that year (Holroyd, 1995). Additional work included geological mapping and soil sampling on the WOL, GO and NAD claims (MacRobbie, 1995a, b). Results from the soil sampling defined several zones of anomalous Pb, Zn, Ag and Ba, with the most promising of these associated with elevated Cu and Au values and occurring downslope of favourable stratigraphy (MacRobbie, 1995b).

The following year, Cominco conducted geological mapping, soil sampling and ground-based geophysical surveys on their GO, NAD (MacRobbie, 1996b), WOL (Lajoie, 1996; MacRobbie, 1996c) and BOOT (MacRobbie, 1996a) claims that was followed in 1996 by more such surface work and diamond drilling

(Senft and Hall, 1997a). The 1996 geophysical surveys were done over five grids and found numerous EM conductors flanked by strong magnetic features that were interpreted as graphitic sedimentary rocks. Four of these five grids were also covered by detailed soil geochemistry, with sampling on the "main grid" producing three distinct linear zones of anomalous Cu, Pb, Zn ± Ba. A total of 601.1 m of diamond drilling was completed in three holes, with two of these collared on the main grid. Drilling highlights include intersection of a felsic volcanic-hosted exhalite in hole WO96-02, comprising a stratigraphic analogue to the nearby Fisher zone (Senft and Hall, 1997a). The following year, soil-sampling was done on an extension of the main grid and on several contour lines, and additional ground-based HLEM surveys were done on extensions of the WOL8 and WOL10 grids (Bannister, 1998). Results of this work extended the size of the main grid soil anomaly and helped characterize the WOL8 and 10 conductors as graphitic sedimentary rocks (Bannister, 1998).

In 2000, Expatriate Resources Ltd ("Expatriate"), a predecessor to Yukon Zinc, drilled three holes on the WOL219 claim (Duncan et al., 2001), which now forms part of the JACK claim block. Hole WW-00-03 intersected 2.5 m of massive and semi-massive sulphide at 8.33% Zn, 1.32% Pb, 1.55% Cu, 293 g/t Ag and 1.17 g/t Au, which is interpreted as the downdip extension of the Wolverine deposit (Expatriate, 2000). Drill hole WW-00-02 intersected only weak mineralization.

In 2015, BMC Minerals conducted a 269.4 line-km airborne VTEM survey over the WOL block (Voordouw and Jones, 2016). This was followed in 2016 by 481.6 line-km over the JACK and GO blocks (Voordouw, 2017), including 81.1 line-km of re-flights to meet QA/QC standards. Integration of survey results with historical mapping identified several strong formational responses and a reinterpretation of faulting, particularly between the JACK and WOL blocks (Voordouw, 2017).

6.0 2018 EXPLORATION PROGRAM

Exploration work done on the Pelly Property in 2018 mainly comprised a 15-day geological mapping program during which rock samples were collected for subsequent geochemical analysis done by SGS Vancouver. A small relogging program (3 holes for 601.1m) was also undertaken at the same time.

6.1 Mapping Program

A three to four-person crew conducted geological mapping on the Pelly Property between 3 July and 17 July 2018, with daily helicopter set-outs and pick-ups along pre-planned traverse routes (Appendix D). Mappers completed a total of about 38 traverses, covering a total area of ~70 km². Bedrock exposure within the mapped area is good along ridges, ravines, moderate on the steep westward facing slope, but typically poor along other shallower slopes and in valley bottoms. In all, nearly 700 individual outcrops were mapped and described (Appendix E). Mapping was conducted on ruggedized, GPS-enabled Panasonic Toughbook computers using QGIS software. Structural data was collected using a combination of Silva and Brunton compasses, and the Fieldmove Clino iPhone/Android application. Mapping data was compiled daily into *.gpkg files using QGIS on a central computer at the KZK Camp. Interpretation and production of the final Property geology map was completed using a combination of QGIS (2D) and Micromine (3D). Geological data for the Property map was aggregated from 2018 and historical outcrop mapping, drillhole logs, and geophysical data to constrain interpretation of surface geology.

EQUIT

6.2 Rock Sampling

Sixty-one rock samples were collected for geochemical analysis, with photographs taken, location recorded with a GPS, and field location marked with an aluminium tag. Samples were placed into a polyethylene bag along with a unique sample ID then aggregated into larger rice bags for shipment to the lab. All samples were analysed to characterize the whole rock geochemistry of the samples. Samples were sent to SGS Vancouver in Burnaby, BC, for geochemical analysis by the following methods:

- *LOG02*: Pre-preparation processing, sorting, logging, boxing, etc.
- *PRP89*: Weigh, dry, crush to 75% passing 2 mm, split 250 g, pulverize to 85% passing 75 µm
- GO XRF76V: Borate fusion/XRF whole rock package (13 elements; major oxides)
- *GE ICM90A*: Sodium peroxide fusion/combined ICP-AES and ICP-MS package (56 elements; trace elements); useful for digesting refractory minerals (i.e., spinel, zircon, etc.)
- GE FAA313: 30 g, Fire assay, AAS finish for Au
- GO-CP90Q: Sodium peroxide fusion/ICP-AES package (for overlimit Zn; n = 1)

An additional 68 hand samples were collected to be stored at the KZK camp, representing the Pelly Property geology. These samples locations were recorded and field descriptions were completed for each (Appendix F). Certificates of analysis for samples analyzed at SGS are attached as Appendix G.

6.3 Relogging Drill Core

Three drillholes (BO96-1, WO96-1, WO96-2) were relogged as part of the 2018 Pelly work program for a total of 601.1 m. These holes were available at the KZK camp and span across most of the stratigraphic sequence of the Pelly Property. Graphical logs were created on paper at a 1:200 scale. Digital logs were recorded in GeoSpark software. The re-logging data was incorporated into Micromine and used during the Property map interpretation. Graphic and GeoSpark logs are attached as Appendix H.

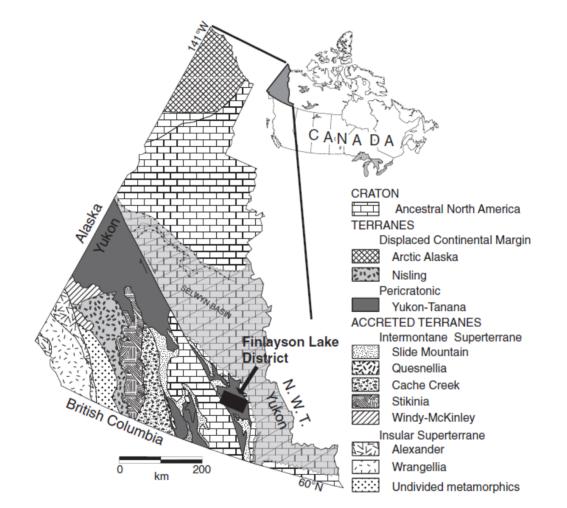
Hole	Length (m)	Grid	Easting	Northing	Elevation (m)	Azimuth	Dip	Hole Type	Core Size
BO96-1	129.8	NAD83_Z9	439522	6810138	1354	210	-60	DD	NQ
WO96-1	124.4	NAD83_Z9	432131	6817677	1169	212	-60	DD	NQ
WO96-2	346.9	NAD83_Z9	433628	6818258	1662	212	-60	DD	NQ

Table 1: Summary of holes relogged in 2018

6.4 Air Photography

Regional air photography was conducted over the Finlayson district, completed on 21 September. Air photography covers the 72.2 km² Pelly Property at 20 cm resolution. Air photography was completed using a Piper Navajo and a large format camera. The property air photograph is attached as Appendix I.

7.0 GEOLOGICAL SETTING AND MINERALIZATION


7.1 Regional Geology

The Finlayson Lake district comprises part of the Yukon-Tanana terrane of the Yukon Territory and Alaska, which is composed of polydeformed metamorphosed sedimentary, volcanic and plutonic rocks that are interpreted as the product of mid-Palaeozoic continental arc magmatism. Syngenetic volcanogenic massive sulphide (VMS) mineralization occurs in several settings in this terrane. The Finlayson Lake portion of the Yukon-Tanana terrane is a crescent-shaped area, approximately 300 x 50 km in size and extending from Ross River in the north to Watson Lake in the south, and is composed of Devonian to Mississippian volcanic, intrusive and sedimentary rocks. It is juxtaposed with Proterozoic and Palaeozoic strata of the ancient North American continental margin along the Tintina Fault Zone to the southwest and with late Palaeozoic rocks of the Slide Mountain terrane to the northeast (Figure 3). The main part of the Yukon-Tanana terrane, which underlies most

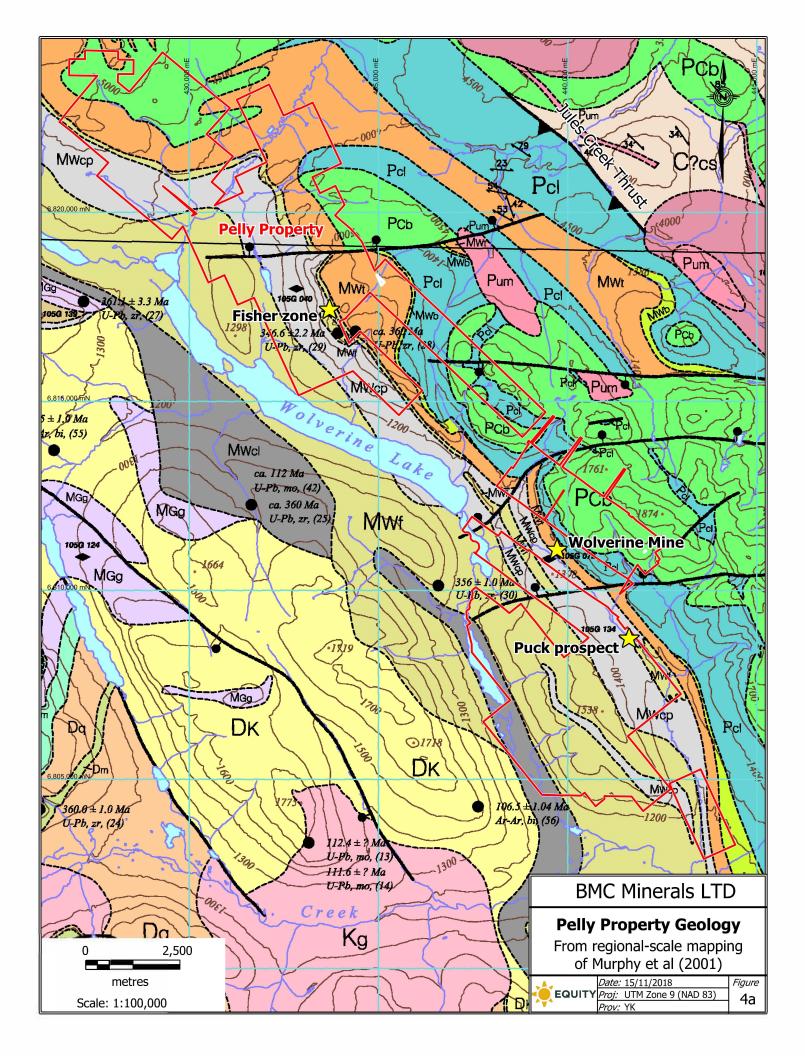
of west-central Yukon, is contiguous with the Finlayson Lake district after restoration of 456 km of Late Cretaceous right lateral strike-slip movement along the Tintina Fault (Layton-Matthews et al., 2008).

The Yukon-Tanana terrane in the Finlayson Lake district is composed of greenschist- to lower amphibolite-grade meta-sedimentary, -volcanic and -plutonic rocks (Figures 4a, 4b). The Finlayson Lake district was imbricated by Permian thrust faulting into three thrust sheets (Cleaver Lake, Money, Big Campbell), with the final stage of thrusting placing this rock package onto North America in Late Triassic to Early Jurassic (MacRobbie and Holroyd, 2005a). The Pelly Property lies within the Big Campbell thrust sheet, in what is structurally the deepest part of the Yukon-Tanana terrane.

7.2 Local Geology

The Big Campbell thrust sheet is formed by the Grass Lakes and Wolverine Lake groups, which are both bound by unconformities. At the Pelly Property, the Lower Permian Money Creek formation, composed of clastic sedimentary rocks, unconformably overlies the Wolverine Lake group. Klippe of late Palaeozoic Slide Mountain Terrane occur along the eastern margin of the Big Campbell thrust sheet (and within the Pelly Property) and are locally referred to as Campbell Range formation.

The upper Devonian to lower Mississippian (?) **Grass Lakes group** is made up of the Fire Lake, Kudz Ze Kayah and Wind Lake formations. The *c*. 365 to 357 Ma Fire Lake formation consists of metasedimentary and mafic metavolcanic rocks (**DF**, **Dm**, **Dfv**), with the upper-most rocks comprising a 30 to >200 m thick boninite that hosts the Kona Cu-Co-Au VMS deposit. The Fire Lake formation is conformably overlain by felsic volcanic and sedimentary rocks of the Kudz Ze Kayah formation (**DK**, **DKcp** and **DKcs**), which hosts the ABM


and GP4F Zn-Pb-Ag \pm Au-Cu VMS deposits. The Kudz Ze Kayah formation grades conformably upwards into a thick sequence of carbonaceous to locally calcareous phyllite and mafic epiclastic rocks of the Wind Lake formation (**DMq**, **DMm**, **DMcp**, and **DMcg**). Coeval with the Kudz Ze Kayah and Wind Lake formations are Devonian-Mississippian (360 \pm 1 Ma) peraluminous K-feldspar porphyritic to megacrystic granite of the Grass Lakes plutonic suite (**MGg** and **MGag**), which are inferred to be subvolcanic feeders to the felsic volcanic rocks (Murphy et al., 2001; Piercey et al., 2001; MacRobbie and Holroyd, 2005b).

The Wolverine Lake group unconformably overlies the Grass Lakes group and consists predominantly of Early Mississippian (*c*. 356-346 Ma) felsic volcanic and carbonaceous sedimentary rocks (**MWb**, **MWt**, **MWf**, **MWcp** and **MWcI**). The Wolverine Lake group lies atop different parts of the Grass Lakes group in different areas, suggesting an angular unconformity (Murphy et al., 2006). From bottom to top, the group comprises a lower conglomerate, felsic volcanic rocks, carbonaceous argillite, the immediate footwall felsic volcanic and subvolcanic rocks to the Wolverine VMS deposit, and a hanging wall consisting of aphyric rhyolite and carbonaceous sedimentary rocks that, near their top, host basalt flows. Rocks of the Wolverine Lake group are interpreted to have formed within an ensialic back-arc rift basin that evolved by sea-floor spreading (Layton-Matthews et al., 2008). The Kuroko-style Wolverine deposit occurs at the contact between footwall felsic volcanic lesic volcaniclastic rocks and either hanging wall carbonaceous argillite or exhalite (Murphy et al., 2001; Piercey et al., 2001).

The Lower Permian Money Creek formation sits unconformably atop the Wolverine Lake group at the Pelly Property. The clastic rocks of the Money Creek formation represent the stratigraphically highest position of the Yukon-Tanana terrane in the Finlayson Lake district (Murphy et al., 2006). These rocks are described as dark phyllite and sandstone, chert, chert-pebble conglomerate, and diamictite (**PCI**).

The Campbell Range formation (part of the Slide Mountain terrane) consists of weakly deformed Permian basalt (**PCb**) that unconformably overlies the Wolverine Lake group. Basaltic rocks are locally pillowed and fragmental, show widespread epidote and/or hematite alteration and are interbedded with reddish jasperoidal silica (Murphy et al., 2001). Thin layers of chert that occur within mafic volcanic rocks are typically foliated and internally folded, in contrast to the weakly deformed nature of the surrounding volcanic rocks. Both the basalt and chert units are cut by leucogabbroic (**PIg**) and ultramafic (**Pum**) intrusions.

EQUITY

LEGEND FOR PELLY LOCAL GEOLOGY (OPEN FILE 2001-33) **POST-THRUST INTRUSIVE ROCKS** CRETACEOUS intrusion

Kg Equigranular biotite-muscovite granite JURASSIC Jg Equigranular hornblende-biotite granite **YUKON-TANANA TERRANE** Footwall of Jules Creek Thrust PERMIAN Variably serpentinized ultramafic Pum PERMIAN TO CARBONIFEROUS CAMPBELL RANGE FORMATION Pmc Phyllite, ribbon chert, sandstone, grit, conglomerate Chlorite-feldspar-quartz phyllite (intermediate **PCb** metavolcanic rocks) C?cs Phyllite, ribbon chert, sandstone, grit, conglomerate Chlorite-feldspar-quartz phyllite (intermediate C?iv metavolcanic rocks) Hanging wall of Jules Creek Thrust PERMIAN Phyllite, chert, conglomerate, greywacke, diamictite, Pcl limestone Hanging wall of Money Creek Thrust PENNSYLVANIAN Pq Quartz sandstone/quartzite UPPER MISSISSIPPIANTO MID-PENSYLVANIAN Bioclastic crinoidal limestone Cc EARLY MISSISSIPPIAN SIMPSON RANGE PLUTONIC SUITE MSg Granite, quartz monzonite LOWER MISSISSIPPIAN Miv Chlorite-muscovite-quartz phyllite (intermediate composition) Footwall of Money Creek Thrust EARLY MISSISSIPPIAN WOLVERINE LAKE GROUP **MWb** Chloritic phyllite Thinly interbedded siliceous rock and phyllite (metatuff **MWt** and exhalites)

MWf

Muscovite-quartz phyllite, exhalite

MWfb iron formation MWcp Carbonaceous phyllite and quartz sandstone Feldspathic meta-sandstone, grit and MWcl carbonaceous phyllite EARLY MISSISSIPPIAN GRASS LAKES PLUTONIC SUITE Granitic to monzonitic equigranular meta-plutonic MGq/ rocks/Augen-textured granitic to monzonitic meta-MGag plutonic rocks LATE DEVONIAN NORTH LAKES META-DIORITE DNd Foliated hornblende-biotite meta-diorite UPPER DEVONIAN (TO LOWER MISSISSIPPIAN?) GRASS LAKES GROUP Wind Lake formation DMq Quartzite DMm Chloritic phyllite DMcp Carbonaceous phyllite and quartzite DMcg Meta-conglomerate Kudz Ze Kayah formation Undifferentiated feldspar-muscovite-quartz schist/ DK phyllite, siliceous muscovite-quartz schist/phyllite, augen schist/phyllite (meta-porphyry) DKcp Carbonaceous phyllite and quartzite DKcs Calcareous meta-sandstone and grit Fire Lake formation Plagioclase-chlorite phyllite/schist, carbonaceous DF phyllite, muscovite-quartz phyllite Dm Biotite-plagioclase-actinolite-chlorite schist Feldspar-muscovite-quartz schist (felsic Dfv metavolcanic rock) UPPER DEVONIAN AND OLDER North River formation Psammitic and meta-pelitic schist Dq Marble, calcareous schist and lesser carbonaceous Dqm phyllite BMC Minerals LTD **Pelly Project** Local Geology Legend

Reference: Murphy et al (2001, 2006)

Figure

4b

7.3 Property Geology

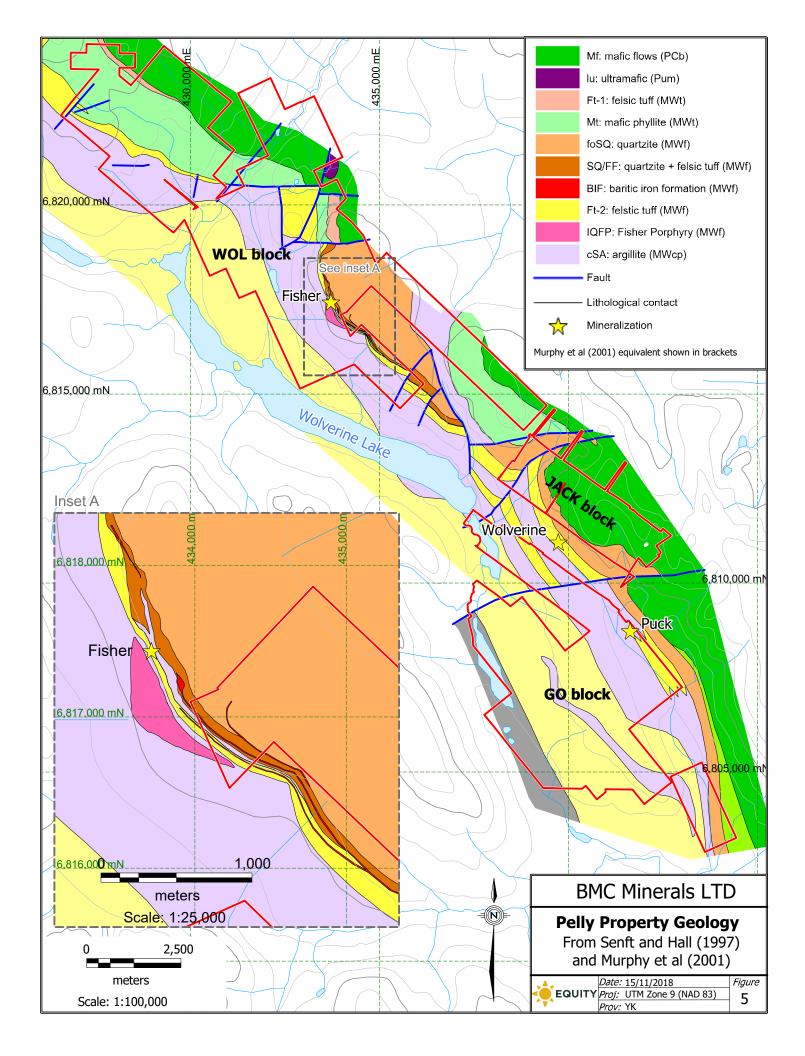
The following description of the Property geology has been adapted from the assessment reports covering the WOL, BOOT and GO properties by Senft and Hall (1997) and MacRobbie (1996a, b, c). The Property geology based on this mapping is shown in Figure 5. Parts of the Property not mapped by these workers are covered by the regional-scale mapping of Murphy (2001). Results from this 2018 mapping are presented in Section 8.1, with discussion, including comparison to the Property geology presented in this report.

The Pelly Property is located near the eastern margin of the Big Campbell thrust sheet and the boundary of Slide Mountain terrane. Exposure is generally poor with outcrops restricted to creeks and higher elevations. Stratigraphy generally trends northwest and is moderately to steeply northeast dipping. Detailed property-scale geological mapping, previous to 2018, was done by Senft and Hall (1997), on what was then referred to as the "WOL property". Most of this WOL property now falls within the WOL block of the Pelly Property.

Mapping by Senft and Hall (1997) describes an uppermost package of intermediate to mafic volcanic rocks with minor grey limestone fragments and intra-pillow fillings (**Mf** in Figure 5). The mafic volcanic rocks are described as intermediate to mafic pillowed flows, tuffs, lapilli-tuffs and minor flow breccias that are generally well foliated, chloritic and locally epidote-altered and hematitic (Senft and Hall, 1997), and likely correlate with the Campbell Range formation (**PCb**) of Murphy et al (2001). Flows and flow fragments are in places vesicular, amygdaloidal and/or spherulitic. Minor massive serpentinized ultramafic bodies (**Iu**), are locally present, likely correlating with the ultramafic intrusion (**Pum**) of Murphy et al (2001).

Structurally below the Campbell Range formation at the northern end of the Property, Senft and Hall, (1997) mapped fine-grained, massive, variably calcareous chloritic phyllite, and schist containing minor intercalated chert, cherty tuff, carbonaceous mudstone and siltstone (**Mt**, **Ft-1**). This unit overlaps with the Money Creek formation (**PCI**) of Murphy et al. (2001 and 2006), described as a Lower Permian clastic sedimentary package. As well, the **Mt** and **Ft-1** units locally overlap with **PCb** and **MWt** (metatuff and phyllite of the Wolverine Lake group) of Murphy et al. (2001).

A unit defined by Murphy et al. (2001), but not Senft and Hall (1997) is a chloritic phyllite (**MWb**) occurring at the top of the Wolverine Lake group, occurring discontinuously beneath unit **PCI**.


The **Mt** and **Ft-1** units of Senft and Hall (1997) are underlain by a thick sequence of strongly foliated, laminated to thinly bedded, quartzite that is interbedded with pyrite-bearing phyllitic, chloritic and mudstone/argillite layers (**foSQ, SQ/FF**). The location of this unit correlates with the Wolverine Lake group metatuff and exhalite unit (**MWt**) of Murphy et al (2001).

On the Senft and Hall (1997) map, stratigraphically underlying the **foSQ** and **SQ/FF** units is a sequence of felsic volcaniclastic rocks intercalated with minor argillite/mudstone (**Ft-2**), and baritic iron formation (**BIF**). This package hosts the Wolverine Deposit and the Fisher zone. At the Fisher zone this stratigraphy is intruded by the Fisher Porphyry (**IQFP**). Senft and Hall (1997) describe this sequence as comprising a 10-20 m thick basal unit of porphyritic quartz-feldspar-chlorite tuff with minor galena-pyrite-sphalerite mineralization, overlain by intercalated felsic volcanic and carbonaceous argillite cut by subordinate mafic sills. Intercalated rocks are overlain by quartz-sericite \pm ankerite-barite schist interpreted as the along-strike equivalent of the magnetiterich exhalite (**MWfb**) overlying the Wolverine deposit. This package includes the **MWf** and **MWcp** units from Murphy et al. (2001). **MWf** is described as a tan, variably altered muscovite-quartz phyllite (equivalent to **Ft-2**) and quartz-feldspar augen phyllite (equivalent to **IQFP**). An age for the Fisher Porphyry has been established as 346.2 \pm 2.2 Ma (Piercey et al., 2008).

The lowermost unit mapped by Senft and Hall (1997) comprises a thick package of carbonaceous phyllitic mudstone with subordinate amounts of interbedded siltstone and sandstone (**cSA**). The description and contact location of this unit shows a clear correlation with the Wolverine Lake group carbonaceous phyllite and quartz sandstone unit (**MWcp**) of Murphy et al (2001) and is host to many soil anomalies in the region.

This unit is underlain by quartz- and feldspar-phyric, muscovite-quartz phyllite (**MWf**) and feldspathic meta-sandstone, grit and carbonaceous phyllite (**MWcI**) forming the base of the Wolverine Lake group (Murphy et al., 2001 and Bradshaw et al., 2008b). Neither of these lower units were mapped by Senft and Hall (1997).

7.4 Mineralization

Mineralization on the Pelly Property includes the downdip extension of the Wolverine VMS deposit, as well as the Fisher zone (or Jay occurrence) and Puck prospect. Each of these is summarized below.

7.4.1 Wolverine deposit

The Wolverine deposit (Figures 4a, 5) is formed by two lenses of massive sulphide, referred to as the Lynx and Wolverine zones, connected to each other and fringed by relatively thin massive sulphide, stringer veins and/or sulphide replacement zones (Bradshaw et al., 2008b). The geology, tectonic setting, sulphur isotopic signature, age and metal grades of the deposit exemplify it as a volcanic sediment-hosted massive sulphide deposit (Bradshaw et al., 2008b).

Host rocks to the deposit consist of deformed meta-volcanic, -volcaniclastic and -sedimentary rocks of the Wolverine Lake group (Murphy et al., 2006). From bottom to top, these rocks consist of carbonaceous argillite (MWcp) that grade upwards into volcaniclastic rhyolite and are cut by porphyritic sills with a U-Pb zircon age of 347.8 ± 1.3 Ma, interpreted as the maximum age of mineralization (Piercey et al., 2008). Rhyolite is overlain by an interbedded argillite, rhyolite and magnetite-carbonate-sulphide exhalite (MWf). The transition from MWcp to MWf marks a change in the nature of volcanism, from quartz- and feldspar-phyric rhyolite of the footwall to aphyric rhyolite and exhalite in the hanging wall (Bradshaw et al., 2008b). Graphitic argillite in the hanging wall is generally carbonate-rich immediately above massive sulphide and magnetite-rich higher up in the stratigraphy. Exhalite is overlain by a fragmental rhyolite unit that also forms part of the Wolverine Horizon, followed by interbedded carbonaceous argillite, greywacke, basalt and rhyolite (MWt).

The Wolverine deposit is 700 m long, at least 475 m wide and generally 1-10 m thick, with the deposit still open at depth and extending off the Wolverine Property and onto the JACK block of the Pelly Property. The thickest sulphide accumulations occur in the Wolverine and Lynx zones, which comprise a series of stacked lenses totalling 5-15 m of massive sulphide separated by layers of argillite up to 8 m thick. Both zones are tabular and 250 m long, and are separated from each other by 200 m of semi-massive sulphide referred to as the Hump zone (Bradshaw et al., 2008b). Semi-massive sulphide consists of replacement-style sulphide that typically occur around, above or outboard of the stinger veins. The semi-massive parts of the deposit are generally Cu-rich whereas the massive parts of the deposit are more enriched in Pb and Zn.

Massive and banded sulphide consists mostly of fine-grained pyrite and sphalerite with subordinate amounts of pyrrhotite, chalcopyrite, galena, arsenopyrite and sulphosalts. Barite is generally absent, in contrast to the nearby ABM and GP4F deposits. Galena occurring near the base of the Lynx zone is notably enriched in selenium, averaging 4.04 wt% Se and containing up to 5.13 wt%. Silver is mostly contained within tetrahedrite. Semi-massive sulphide, defined as comprising 10-50 vol% of the rock (Bradshaw et al., 2008b), consists of chalcopyrite, sphalerite, pyrite and minor pyrrhotite. Chalcopyrite is significantly more abundant than in the more massive sulphide and is typically associated with strong chlorite and/or iron carbonate alteration (Bradshaw et al., 2008b). Another type of replacement-style mineralization is sphalerite-rich, comprising massive lenses and/or blebs of sphalerite with subordinate pyrite and in association with sericite and ankerite alteration. Stringer vein sulphide zones are formed by quartz-sulphide veins that have sulphide assemblages of pyrite-sphalerite ± chalcopyrite-pyrrhotite-arsenopyrite and gangue minerals that include quartz, calcite, dolomite, ankerite, siderite, chlorite, biotite and muscovite (Bradshaw et al., 2008b).

The hydrothermal overprint associated with the Wolverine deposit is mostly restricted felsic volcaniclastic rocks in the footwall, which would have been permeable before they were consolidated. This is manifested as four alteration styles (Bradshaw et al., 2008b); (1) silica alteration immediately adjacent to quartz-sulphide stringer veins, (2) carbonate alteration in association with replacement-style mineralization, (3) chlorite alteration, which is most abundant in the deposit footwall, and (4) sericite alteration, which typically occurs below and lateral to chlorite alteration. Alteration is generally stratabound and conformable as opposed to occurring within a pipe-like structure.

7.4.2 Fisher zone (or Jay occurrence)

The below description of the Fisher zone is adapted from the Yukon Geological Survey MINFILE description (occurrence number 105G 040) and from Senft and Hall (1997).

The Fisher zone, which is referred to as the Jay occurrence in MINFLE, was discovered at surface as comprising felsic lapilli tuff with vein-hosted and disseminated sphalerite with minor chalcopyrite. Subsequent drilling shows that this zone consists of numerous narrow sulphide bands hosted within strongly altered felsic volcanic and/or sedimentary rock that is overlain by thick accumulations of baritic iron formation and massive barite (collectively the MWf unit). These exhalite units are interbedded with carbonaceous argillite, felsic volcanic, fragmental tuff and massive tuff. At a thickness of 350 m, the MWf unit that hosts the Fisher zone is significantly thicker than the 40 m of MWf hosting the Wolverine deposit.

The narrow sulphide bands comprising the Fisher zone consist of sphalerite, pyrite and subordinate galena, and are associated with strong sericite-carbonate ± chlorite alteration. The best intersection of the Fisher zone was in hole 95-06, which intersected 2.4 m of semi-massive sulphides at 2.84% Zn, 1.41% Pb, 0.12% Cu, 66.3 g/t Ag and 0.14 g/t Au (Senft and Hall, 1997a).

Magnetite-rich exhalite associated with both the Fisher zone and Wolverine deposit is up to 40 m thick and occurs along a strike length of at least 8 km. Mineralogy typically consists of quartz-magnetite \pm barite-hematite-pyrite, with mineralized segments enriched in sphalerite and rare chalcopyrite. Hydrozincite occurs where mineralization is laminated. Rock samples have returned up to 5.3% Zn, 0.56% Pb and 45% Ba.

7.4.3 Puck prospect

The below description of the Puck prospect (Figures 4a, 5) is adapted from the Yukon Geological Survey MINFILE description (occurrence number 105G 134). Note that although the Yukon EMR data shows this prospect lying on the Pelly Property, its' actual location is 700 m further northeast and off the Property (Wengzynowski, 1996; Turner and Terry, 1996).

The Puck prospect consists of Fe-rich exhalite, stockwork mineralization and strong alteration within the "Wolverine Horizon", lying 3 km southeast of the Wolverine deposit. The prospect is underlain by subvolcanic porphyry and overlain by interlayered carbonaceous argillite, felsic volcanic, fragmental and tuffaceous units and magnetite-carbonate iron formation.

The area was identified as prospective through a prospecting and grid soil sampling program that defined a 1200 x 1000 m zone of weakly to moderately anomalous Cu values (Wengzynowski, 1996). Subsequent diamond drilling in 1996 and 1997, comprising 4025 m in 16 holes, failed to intersect massive sulphide mineralization, with one of the better composites returning 2.72% Zn and 1.16% Pb over 2.8 m in hole PK96-02 (Turner and Terry, 1996).

8.0 RESULTS OF THE 2018 PROGRAM

8.1 Mapping Program

Previous work (MacRobbie, 1996a, b, c; Senft and Hall, 1997; Murphy et al., 2001; Piercey et al., 2001; Murphy et al., 2006; Voordouw, 2017) has shown that the stratigraphy contained within the Pelly claims display a moderate to shallow E-NE dipping section through the Wolverine Lake group, Money Creek formation, and Campbell Range formation (Figure 6; Murphy et al., 2006), with overprinted greenschist facies metamorphism and ductile deformation. Massive sulphide mineralization at the Wolverine mine occurs within the Wolverine Lake group. Further discussion of these stratigraphic units and their components based on 2018 observations are presented below. The resulting geological map at 1:25,000 scale is attached as Appendix E.

8.1.1 Campbell Range formation

Outcrops of Campbell Range formation occur along the northeastern margin of the Pelly Property, consisting mostly of massive to locally pillowed basalt (PBA; Table 1; Figure 7a) and lesser exposed ultramafic intrusive rocks (UMI) in the north-northeastern WOL block. The basalts are typically calcareous, variably

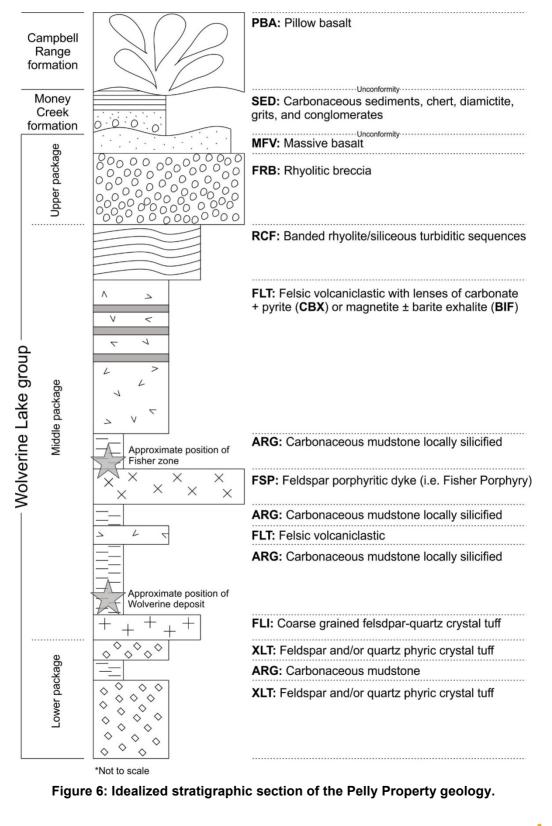
epidote-altered (locally intense), deformed, and metamorphosed to greenschist facies. Ultramafic rocks (UMI) crop out in the WOL block and are primarily dark green, massive, intensely altered to serpentine, and contain abundant calcite veins and secondary alteration (Figure 7b).

(1997) and Murphy et al. (2001).								
Formation	BMC 2018 Unit Code	Senft and Hall (1997) Code	Murphy et al. (2001) Code	Lithology	Description			
obell ige ation	UMI	lu	Pum	Ultramafic intrusive	Dark green, massive ultramafic rocks intensely altered to serpentinite; contain abundant calcite veins and secondary alteration			
Campbell Range formation	РВА	Mf	PCb	Pillow basalt	Massive basalt with local pillows; local intense epidote alteration			
Money Creek formation	SED	Ft-1/Mt	Pcl	Clastic sedimentary rocks	Mudstone, siltstone, sandstone, and chert			
	MFV	N/A	MWb	Mafic volcanic	Massive basalt with rare reworked (volcaniclastic?) mafic rocks; coarser-grained than Campbell Range basalts and pyroxene/hornblende-phyric			
	FRB	foSQ	MWt	Rhyolitic breccia	Fragmental or resedimented rhyolite breccia (i.e. turbidite?); rhyolite fragments can contain feldspar phenocrysts; variable alteration			
	RCF	SQ/FF	MWt	Rhyolitic coherent flow	Coherent, massive, flow-banded and -laminated rhyolite with rare intercalations of felsic tuffs			
dn	FLT	Ft-2	MWf	Felsic volcaniclastic	Pale, very fine to fine-grained felsic to intermediate(?) ash and lapilli tuffs with intercalations of argillite; locally intensely silica altered			
ke grc	BIF	N/A	N/A	Magnetite exhalite	Disseminated, semi-massive, and massive magnetite : silica \pm barite (iron formation) in tuff and mudstone			
La	СВХ	BIF	MWt	Carbonate exhalite	Calcite/dolomite-rich rocks with local pyrite and barite			
Wolverine Lake group	ARG	cSA	МWср	Carbonaceous sediments	Dark, finely laminated to thinly bedded argillite with intercalations of siltstone; locally intensely silica altered and carbonaceous?			
	FSP	IQFP	MWf	Fisher Porphyry: Feldspar porphyry	Coherent to locally sheared feldspar +/- hornblende (minor) porphyritic intrusive; feldspars are sub-euhedral 5-25 mm, and variable altered to white mica-epidote			
	FLI	N/A	N/A	Quartz-feldspar porphyry	Felsic to intermediate quartz-feldspar porphyritic intrusive rocks; feldspar up to 25-30 mm, broken to augen-textured; quartz typically as blue phenocrysts; crystals make up ~10-30 modal %			
	XLT	N/A	MWf	Crystal-bearing felsic volcaniclastic	Fine to medium grained feldspar-quartz and quartz crystal tuffs; equigranular crystals from ~2-5 mm in size, 5-15% modal abundance; hosted in fine-grained ash to local lapilli-rich matrix			

Table 2: Description of the geological units on the Pelly Property compared to codes used by Senft and Hall(1997) and Murphy et al. (2001).

8.1.2 Money Creek formation

The Money Creek formation consists of a variety of Lower Permian clastic rocks that includes carbonaceous sedimentary rocks, chert, diamictite, grit and conglomerate (SED); the rocks are interpreted to be unconformably deposited over the Grass Lakes and Wolverine Lake groups in agreement with Murphy et al. (2006). Carbonaceous mudstone, siltstone, sandstone, and chert crop out in the northernmost claims of the WOL block and immediately north of the Wolverine mine (Figure 7c).


8.1.3 Porphyritic intrusions

Porphyritic intrusions cut the Wolverine Lake group in two areas on the Pelly Property: (1) Fisher zone and (2) GO block due south of the Wolverine mine. These intrusive rocks appear to be semiconcordant sills and, at Fisher, display intensely sheared margins with argillite on both upper and lower contacts.

Fisher Porphyry (FSP)

The Fisher Porphyry consists mostly of coherent to locally sheared, feldspar \pm hornblende (minor) porphyritic intrusive. Quartz is generally absent. Feldspar phenocrysts are sub-euhedral, 5-25 mm in length, commonly broken and variably altered to white mica and epidote (Figure 7d). The upper and lower contacts display intense shearing with an S₁ cleavage subparallel to the regional fabric, and a reduction of phenocryst grain sizes.

EQUITY

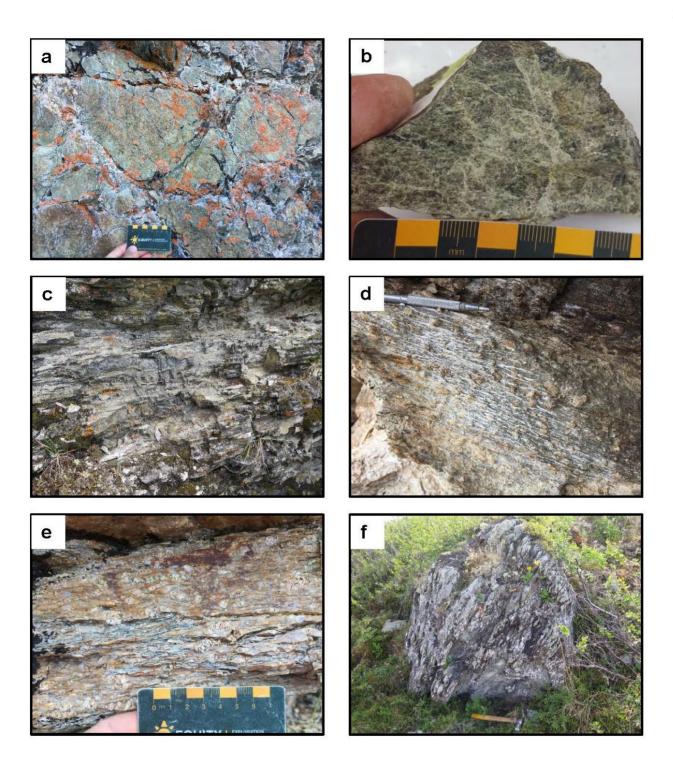


Figure 7: Examples of rocks observed on the Pelly Property: (a) epidote-altered and relatively undeformed basalt pillows of the Campbell Range formation; (b) hand sample from ultramafic intrusive in the WOL block; (c) interbedded sandstone and carbonaceous mudstone of the Money Creek formation in the WOL block; (d) lower contact of the Fisher Porphyry with argillite, showing preferred orientation of large feldspar crystals parallel to the contact and the regional deformation fabric; (e) feldspar-quartz porphyry from the lower package of the Wolverine Lake group, with broken and weathered feldspar phenocrysts that distinguish it from the XLT member immediately below; and (f) massive calcareous basalt in the northwestern WOL block.

Wolverine footwall porphyry (FLI)

Porphyritic intrusions in the footwall to the Wolverine deposit (GO block) are distinguished from the Fisher Porphyry by an abundance of quartz phenocrysts. This Wolverine footwall porphyry comprises felsic to intermediate feldspar-quartz porphyritic rhyolite overprinted by the same regional S₁ fabric featured over most of the Pelly Property (Figure 7e). Feldspar phenocrysts are commonly 25-30 mm in length with a broken to augen texture, while quartz is present as blue phenocrysts; together all of these phenocrysts make up ~10-30 modal % of rock. This unit is differentiated from surrounding rocks by its coarse grain size and abundance of feldspar phenocrysts.

8.1.4 Wolverine Lake group

The 2018 mapping program suggests that there are at least seven members comprising the Wolverine Lake group on the Pelly Property. Each of these members is described in more detail below.

Massive basalt member (MFV)

Massive basalt cap the Wolverine Lake group as a relatively thin layer across most of the Pelly Property, increasing in thickness towards the north. The rocks are typically calcareous, distinctly coarser-grained than the Campbell Range basalts, and locally contain <1-3 mm pyroxene and/or hornblende phenocrysts (Figure 7f). There is a regionally-consistent S₁ cleavage observed. Rare sections of reworked/brecciated (?) basalt occur in the JACK and WOL blocks at the northeastern claim boundary.

Rhyolitic breccia member (FRB)

Fragmental or resedimented rhyolitic breccia occur stratigraphically below the massive basalt. The FRB member varies significantly in thickness along strike, thinnest in the north and south ends of the Property and the thickest (by at least 5x) at the Fisher zone. The rocks are green to grey, variably altered, and aphyric to feldspar-phyric rhyolites with deformed fragments that range up to ~25 mm (Figure 8a). Piercey et al., (2006) have interpreted this breccia as fragments of the underlying laminated silica-altered rhyolitic siltstone and tuffaceous rocks (i.e., felsic volcaniclastic rocks, FLT) that were deposited by volcanic ash-rich turbidity currents and subsequently reworked.

Rhyolitic coherent flow member (RCF)

Rocks in the felsic coherent rhyolite member are commonly tan and coherent, massive, banded or laminated with rare intercalations of felsic tuff at the lower contact and/or incorporation of rhyolitic breccia at the upper contact (Figure 8b). Map patterns of this member vary along strike, with multiple layers north of the Fisher zone, which pinch out within the Fisher zone. No RCF is observed in the southern JACK and GO blocks.

Felsic volcaniclastic member (FLT)

Crystal-barren felsic volcaniclastic rocks are laterally continuous and extensive along much of the Pelly Property. The rocks are tan, white and/or grey, very fine to fine-grained, felsic to intermediate ash and lapilli tuffs with common intercalations of argillite (Figure 8c). The entire member is silica-altered with a notable increase in the Fisher zone, where FLT nears a glassy rhyolite appearance. The Fisher zone also contains thin, fissile mudstone layers interbedded with felsic tuffs that roughly mark the lower stratigraphic extent of exhalative members.

Exhalative members (BIF, CBX)

Outcrops of exhalative members are mostly seen around the Fisher Porphyry and are either magnetite-(BIF; Figure 8d) or carbonate-dominant (CBX). The BIFs occur to the south-southeast of the Fisher Porphyry with the CBX occurring as a lateral equivalent to the north-northwest of the Fisher Porphyry. The exhalative members are typically hosted within the FLT member, with gradational contacts. Less commonly, the exhalative occurs in carbonaceous mudstone. Layers are typically <50 cm thick. One thicker, >1.5 m (lower contact below surface), occurrence of massive magnetite was observed. BIF occurs mostly as disseminated and semi-massive textured magnetite intercalated with silica \pm barite. CBX consists of calcite \pm dolomite with minor disseminated barite and pyrite. Trace sphalerite is also associated with these exhalative members.

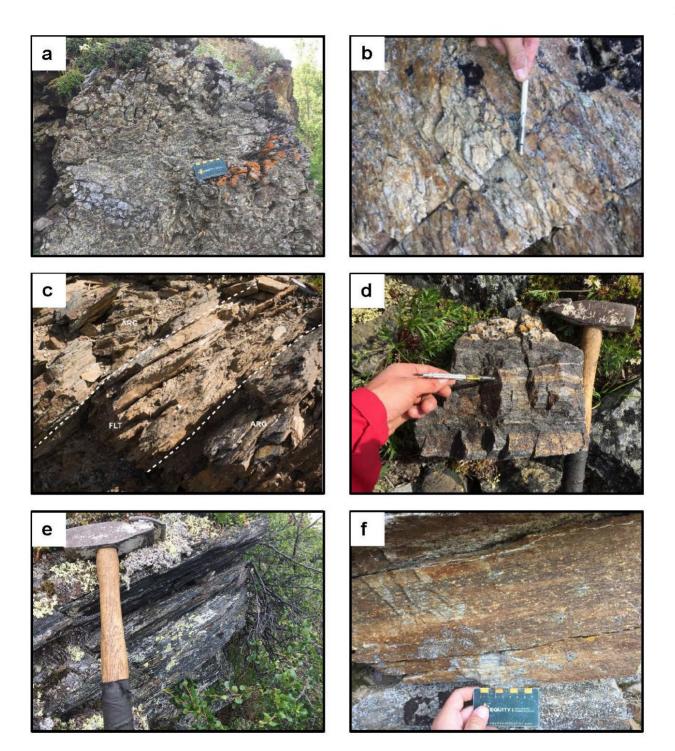


Figure 8: More photos of members from the Wolverine Lake group including: (a) rhyolitic breccia; (b) felsic coherent rhyolite displaying flow laminations; (c) fine-grained felsic volcaniclastic interbedded with argillite in the Fisher Zone; (d) float of semi-massive magnetite exhalite layered with silica ± barite; (e) finely laminated argillite of the ARG member; and (f) crystal tuff with coarse-grained feldspar from the XLT member in the stratigraphic footwall of the Wolverine deposit.

25

Carbonaceous sedimentary member (ARG)

The middle package of the Wolverine Lake group contains an approximately 500 to >2000 m thick member of carbonaceous sedimentary rocks spanning the full length of the Pelly Property and continuous beyond that. The predominant rock type consists of grey to black, finely laminated to thinly bedded, variably carbonaceous argillite. Local intercalations of siltstone and sections where argillaceous, silica-altered siltstones is more abundant are also present (Figure 8e).

Crystal-bearing felsic volcaniclastic member (XLT)

The lower package of the Wolverine Lake group contains a thick package of crystal-bearing felsic volcaniclastic that sits stratigraphically below the carbonaceous argillite member (ARG). These felsic rocks are typically fine- to medium-grained feldspar-quartz and quartz crystal tuffs, comprising 5-15 modal percent phenocrysts ranging from ~2-5 mm in size and hosted within a fine-grained ash to lapilli-rich matrix (Figure 8f). Feldspar crystals are commonly aligned parallel to the S₁ cleavage. A distinct layer of crystal-barren felsic tuffs is present within the crystal tuff member in the southern GO block.

8.1.5 Structural geology

S₀ bedding

Primary bedding (S_0) is best-defined in carbonaceous argillite (ARG) of the Wolverine Lake group and clastic sediments (SED) of the Money Creek formation. The S_0 planar features appear not to have been deformed significantly due to deformation events over time.

D1 deformation: regional schistosity

A regionally extensive north-northwest trending and east-northeast dipping deformation fabric (S₁) is observed in nearly all rocks in the Wolverine Lake group (Appendix E). S₁ cleavage is defined by flattened crystals and phenocrysts in volcaniclastic and porphyritic rocks (Figures. 7c, d, 8f) and alignment of muscovite and/or chlorite. S₁ is typically subparallel to S₀ (Figure 9a). Stratigraphy in the lower package of the Wolverine Lake group has a shallower dip and more easterly dip direction (mean = 14°/E) than rocks in the middle and upper Wolverine Lake group (mean = 26-33°/NE). S₁ cleavage in the overlying Money Creek formation and Campbell Range formation are subparallel to those in the middle and upper packages of the Wolverine Lake group though with somewhat steeper dips, especially the pillow basalts in the JACK block (mean = 42-49°/E). These differences could reflect unconformities between the Wolverine Lake group, Money Creek formation and Campbell Range formation, as suggested by Murphy et al (2006).

D₂ deformation: localized isoclinal folding

 D_2 deformation features occur as localized westerly-verging, asymmetric, F_2 parasitic and isoclinal folds that deform the S_1 cleavage (Figure 9b, c). The F_2 axial planar cleavage, S_2 , is typically developed subparallel to the S_1 cleavage. The observable F_2 fold wavelengths can vary in scale from millimetres to meters. The subparallel orientation of S_2 and S_1 cleavages and asymmetrical nature of F_2 folds suggests the stratigraphy is situated on the eastern limb of a regional anticline, consistent with observations by Bradshaw et al. (2008).

D₃ deformation: brittle faulting

At least three significant brittle faults occur on the Pelly Property, trending east-west to northeastsouthwest and obliquely cutting the entire stratigraphy (Appendix E). These faults were identified by stratigraphic offset of geological units, rare examples of fault zones in outcrop (e.g., south of Fisher zone), and integration of the 2015/16 VTEM data with geological mapping. The two fault blocks that contain the thickest packages of FRB are bound by brittle faults with apparent dextral displacement, while the central fault cutting these breccias appears to be sinistral. These faults may have formed as a horst-graben structure within an extensional basin that was subsequently reactivated by far-field Tertiary extension. Smaller-scale faulting is present in outcrop and drill core as brittle D₃ structures and rare cataclasite or fault breccia that may be local manifestations of the large, property-scale faults (Figure 9d, e). Stretching lineations, L₃, trend to the E-SE (Figure 9f), which may indicate oblique strain of clasts within faults.

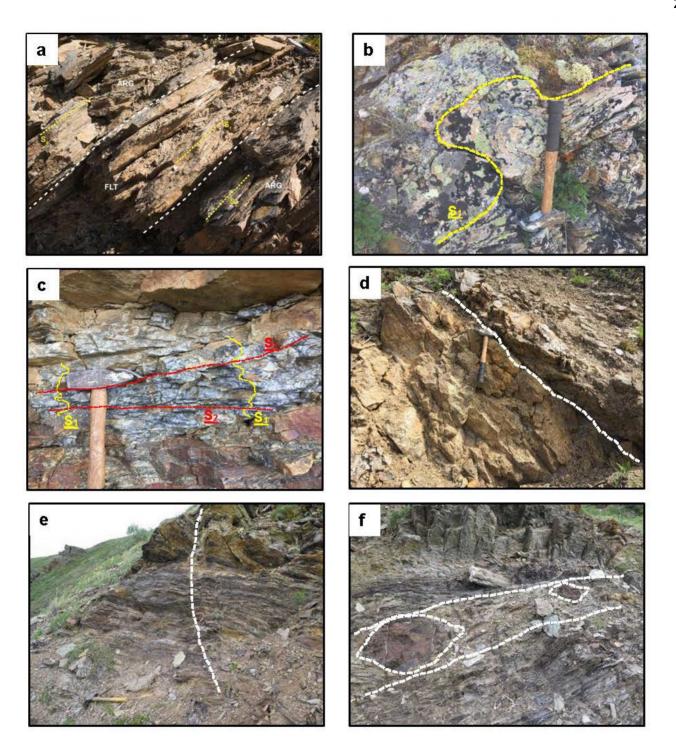


Figure 9: Example of structures on the Pelly Property that include (a) primary bedding, S_0 , in argillite (yellow, top and bottom) that is subparallel to S_1 (yellow, centre) cleavage within intercalated tuff, (b) flow banding or F_2 fold hinge in the RCF member, (c) crenulation of S_1 by D_2 deformation, with S_2 forming axial planar to F_2 in argillaceous siltstone, (d) rusty, ankerite-altered cataclasite, (e) SW-NE trending brittle fault cutting S_1 cleavage in the felsic volcaniclastic member (FLT), and (f) cataclasite with chert nodules and stretched quartz fragments.

8.1.6 Alteration and Mineralization

Magnetite, pyrite, and barite were mapped primarily along the Fisher zone exhalative horizon, with mineralization occurring in carbonate or chlorite alteration around these horizons. Sericite alteration is observed around the CBX downhill from WO96-2. Additionally, silica alteration is observed around the Fisher Porphyry.

Other pyrite mineralization was observed in the footwall of the Wolverine deposit, within the FLI unit of the GO block. This mineralization was observed in an area of low outcrop density and in association with silicification. Additional carbonate and silica alteration were observed within the lower ARG member within the crystal tuffs of the Wolverine footwall in the GO block.

Three other occurrences of pyrite mineralization were recorded in the north-western WOL block, within mafic volcanic, flow banded rhyolite, and rhyolite breccia. Additionally, carbonate alteration is observed in the north-western WOL block along the contact of the FRB and RCF on section C-C' (Appendix E).

8.1.7 Significant map changes

Faulting

The mapping completed by Cominco in 1996 interpreted six regional-scale faults trending W-E or SW-NE, defining fault blocks that disrupted the stratigraphic continuity of the Wolverine Lake group. New mapping in 2018 reduced the number of regional-scale structures to three SW-NE to E-W trending faults, primarily observed as abrupt changes in the lithologic continuity along strike, trends in high-resolution VTEM conductors and magnetics, and local cataclasite in outcrop.

The 2015 and 2016 VTEM data, in particular, has allowed for significant change in fault pattern interpretation by utilizing integrated TMI (total magnetic field), 1VD (first vertical derivative of magnetics), and early channel VTEM (near-surface features). These data products are useful for defining abrupt changes in stratigraphy, especially in poorly exposed areas and for the highly conductive argillite (ARG) member.

Stratigraphic continuity

Cominco mapping interpreted the Wolverine Lake group stratigraphy to be relatively continuous, but included many faults, curved map patterns, and lithological changes that could not be verified during the 2018 campaign. The new geological map (Appendix E) simplifies the distribution of lithofacies by adding new outcrop control points, geophysical data constraints (as noted above), and 3D map generation in Micromine to account for topographical changes in the stratigraphy. These new observations define the Wolverine Lake group as one continuous stratigraphic package with distinct variations in member thickness in the fault-bounded Fisher zone, primarily in the upper package FRB.

The exhalite layers (BIF and CBX) that occur in the Fisher Zone are contained exclusively in the felsic volcaniclastic member (FLT), both stratigraphically above and below the thin, interbedded argillite member (Appendix E). These exhalites are interpreted as primary beds of massive to semi-massive magnetite and/or carbonate, and occur over a strike length of ~12 km (Peter et al., 2007). These layers are interpreted to have formed in short pulses of exhalative venting that followed periodic volcanism, with variably disseminated to locally massive magnetite-rich layers formed when there is some overlap between volcanic and exhalative activity.

Formational interpretation

The Wolverine Lake group was deposited above the Grass Lakes group, beginning at ca. 358 Ma following a period of regional deformation (Murphy et al., 2006). The lowest, and thus oldest, parts of the Wolverine Lake group is located west-southwest of the Pelly Property and is overlain by a thick package of felsic crystal-bearing volcaniclastic (XLT) that crops out in the GO block (ca. 352 Ma; Piercey et al., 2008; Appendix E). This period of volcanism was followed by transient back-arc basin-related anoxic sedimentation (ARG) and volcanism that produced aphyric rhyolite and tuff (FLT), mudstone, and the Wolverine VMS deposit (ca. 347 Ma; Bradshaw et al., 2008a; Piercey et al., 2008; Piercey et al., 2016). Quartz-feldspar porphyry sills intrude the Wolverine deposit footwall stratigraphy and have U-Pb ages of ca. 352 Ma in the Puck and Sable area (Piercey et al., 2008).

The stratigraphy of the middle package of the Wolverine Lake group includes felsic volcaniclastic interbedded with argillite and both carbonate- and magnetite-rich exhalite. This package suggests an active vent system within an extensional basin that is contemporaneous with mineralization at the Wolverine deposit, with extension leading to increased geothermal gradients, magmatism and establishment of a hydrothermal system (Piercey et al., 2008). Feldspar porphyritic intrusions like the Fisher Porphyry are upper crustal expressions of this magmatic event and likely represents the age of mineralization throughout the Wolverine Lake group (ca. 347 Ma; Piercey et al., 2008). The upper package of the Wolverine Lake group consists of RCF and FRB. We suggest, in accordance with observations of Piercey et al. (2006), that both the RCF and FRB members were originally rhyolitic tuffs (FLT) that were formed from volcanic-ash turbidity currents and subsequently silica-altered. Rocks in the FRB member are interpreted to have been reworked felsic tuffs that were shed into a developing rift basin, resulting in thick sequences observed in the 2018 map (Appendix E).

8.2 Lithogeochemistry

Preliminary lithogeochemical analyses for rocks throughout the Pelly Property show distinct trends for lower and middle packages of felsic rocks that agree with existing studies (Piercey et al., 2001, 2002, 2008, 2012). Lower package felsic volcanic (XLT) and intrusive porphyries (FLI and FSP) exhibit the highest average high field strength element (HFSE) and rare earth element (REE) contents (e.g., Nb/Ta = ~9-20), similar to rocks of the Kudz Ze Kayah formation. The middle package rocks (FLT and RCF), in contrast, have lower HFSE and REE (Nb/Ta <12). Interestingly, the lower-most part of the FRB member ("lower FRB"), near the stratigraphic top of the FRB has HFSE and REE contents similar to the lower package XLT. Additional work is needed to determine the significance of this trend.

The mafic rocks on the Pelly Property have been defined as middle Mississippian Wolverine Lake group massive basalts (MFV) and Permian Campbell Range pillow basalts (PBA) and have similar geochemical characteristics. Both rock suites represent E- and N-MORB-type rocks with relatively high large ion lithophile element abundances (e.g., Cs, Rb, Ba, K) that could represent fluid mobility and enrichment of these elements.

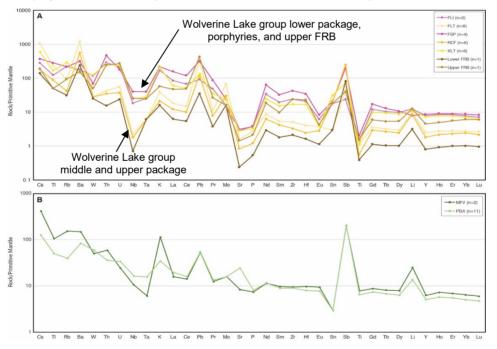


Figure 10: Primitive mantle-normalized diagrams for (a) felsic rocks, and (b) mafic rocks in the Wolverine Lake group. Lines represent averages of individual analyses; number of samples is shown in the legend. Mafic rocks compared to pillow basalts (PBA) from the Campbell Range formation. Normalization values from Sun and McDonough (1989).

EQUIT

8.3 Relogging Results

Re-logging of BO96-1, which collars into the footwall of the Wolverine deposit, intersected primarily ARG with minor interbedded sandstone and XLT. This drill hole displays characteristics of the middle to lower packages of the Wolverine Lake group.

Re-logging of WO96-1, drilled in the WOL block west of the Fisher zone, intersected deep overburden (42.3 m) atop ARG, which extend to the end of the drill hole (124.4 m). This drillhole highlights the depth of overburden on the western margin of the Pelly Property, which adds to the complexity of geophysical and geochemical work conducted in the area. The carbonaceous mudstones display the fact that the ARG member is significantly thick in this part of the stratigraphy, supporting the idea of a rift basin in the center of the Pelly Property.

Re-logging of WO96-2, drilled ~1100 m north of the main Fisher Porphyry outcrop, intersected very little overburden (~3 m), as it is collared on subcrop. Drilling collared directly into FRB to 144.9 m. From 144.9 to 179.1 m, a package of intercalated FLT, RCF, and CBX occurs. This package is inferred to be along strike of the Fisher zone, where carbonate and magnetite-exhalites are encountered in outcrop. From 179.1 to 246.3 m RCF is the dominant lithological unit, with minor mudstones, and CBX horizons. The RCF in this zone also displays a significant carbonaceous content, potentially representing silicified mudstones or peperitic textures. From 246.3 to 263 m a package of carbonaceous mudstones and intermediate volcanic rocks occur. This package is inferred to correlate with the intercalated mudstones, occur from 263 to 300.4 m, likely representing silicified volcaniclastic rocks of the FLT member. From 300.4 to 302.9 m a feldspar-phyric rock logged as a crystal tuff occurs. This lithology likely represents the distal expression of the FLT member. From 309.7 to 346.9 m (EOH), the carbonaceous mudstone of the ARG member occurs. Overall, this drill hole represents the stratigraphy of the Fisher zone well and highlights the complexity of the volcanic stratigraphy within.

8.4 Air Photography

Regional air photography covered the 72.2 km² Pelly Property at 20 cm resolution. Imagery is included on the data disk (Appendix J).

9.0 CONCLUSIONS AND RECOMMENDATIONS

Notable findings from the 2018 mapping, geochemical, relogging, spectral-analysis and air photography studies on the Pelly Property include:

- Definition of property-scale relationships between the Campbell Range formation, Money Creek formation, and Wolverine Lake group at the Pelly Property, as well as members within each;
- Stratigraphy is cut by three regional SW-NE and E-W faults, but otherwise is continuous across the Property;
- Abrupt changes in thickness of the carbonaceous mudstones (ARG) and rhyolitic breccia member (FRB) suggest a paleo-rift basin in the central portion of the Pelly Property;
- A series of exhalative members in the Fisher zone, at a similar stratigraphic level to exhalative members of the Wolverine deposit indicate the potential of a mineralizing system in the area;
- A gossanous float sample, which returned values of 1.82% Zn, was collected from the Fisher zone

Follow-up work should include detailed mapping at the Fisher zone, infill soil sampling in areas with low density coverage, and ground geophysical surveys (gravity, FLTEM) to identify and define coincident conductors and density anomalies.

Respectfully submitted,

Signed and sealed: "Dillon Hume"

Dillon Hume

EQUITY EXPLORATION CONSULTANTS LTD. Vancouver, British Columbia Date: February 5th, 2018

30

Appendix A: References

Bannister, V. L., 1998, 1997 assessment report, WOL Property, geochemistry and geophysics: Cominco Ltd. : Yukon Department of Energy, Mines and Resources assessment report 105–007.

Bradshaw, G. D., Rowins, S. M., Peter, J. M., and Taylor, B. E., 2008a, Genesis of the Wolverine volcanic sediment-hosted massive sulfide deposit, Finlayson Lake District, Yukon, Canada: Mineralogical, mineral chemical, fluid inclusion, and sulfur isotope evidence: Economic Geology, v. 103, p. 35–60.

Bradshaw, G. D., Rowins, S. M., Peter, J. M., and Taylor, B. E., 2008b, Genesis of the Wolverine Volcanic Sediment-Hosted Massive Sulfide Deposit, Finlayson Lake District, Yukon, Canada: Mineralogical, Mineral Chemical, Fluid Inclusion, and Sulfur Isotope Evidence: Economic Geology, v. 103, p. 35–60.

Duncan, R. A., Bradshaw, G. D., and Tucker, T. L., 2001, 2000 summary report on the (diamond drilling on WOL219 claim): Summary report for Expatriate Resources: Expatriate Resources Ltd.

Expatriate, 2000, Expatriate drilling expands Wolverine deposit: Expatriate Resources Ltd news release, Monday November 27, 2000:

Holroyd, R. W., 1995, Report on 1994 geophysical surveys, Pelly Mountain Property: Cominco Ltd. Yukon Department of Energy, Mines and Resources assessment report 08–003.

Lajoie, J. J., 1996, Horizontal loop electromagnetic and magnetic geophysical surveys on the WOL claims, Wolverine Lake area, Yukon Territory: Cominco Ltd. Yukon Department of Energy, Mines and Resources assessment report 91–020.

Layton-Matthews, D., Peter, J. M., Scott, S. D., and Leybourne, M. I., 2008, Distribution, Mineralogy, and Geochemistry of Selenium in Felsic Volcanic-Hosted Massive Sulfide Deposits of the Finlayson Lake District, Yukon Territory, Canada: Economic Geology, v. 103, p. 61–88.

MacRobbie, P. A., 1995a, 1994 assessment report, GO and NAD properties, soil geochemistry and geological mapping: Cominco Ltd. Yukon Department of Energy, Mines and Resources assessment report 91–005.

MacRobbie, P. A., 1995b, 1994 assessment report, WOL Property, soil geochemistry and geological mapping: Yukon Department of Energy, Mines and Resources assessment report 105–004.

MacRobbie, P. A., 1996a, 1995 assessment report, BOOT Property, soil geochemistry and geological mapping: Cominco Ltd. Yukon Department of Energy, Mines and Resources assessment report 102–016.

MacRobbie, P. A., 1996b, 1995 assessment report, GO and NAD properties, soil geochemistry and geological mapping: Cominco Ltd. Yukon Department of Energy, Mines and Resources assessment report 91–006.

MacRobbie, P. A., 1996c, 1995 assessment report, WOL Property, soil geochemistry and regional mapping: Cominco Ltd. Yukon Department of Energy, Mines and Resources assessment report 91–017.

MacRobbie, P. A., and Holroyd, R. W., 2005a, 2004 Assessment Report on the KZK (R-15) Project and TAG Property, Linecutting, grid groung geophysical surveys (UTEM) and diamond drilling: Teck Cominco Ltd. 094513.

MacRobbie, P. A., and Holroyd, R. W., 2005b, 2004 Year End Report, R-15 Option (KZK Project): Teck Cominco Ltd.

Murphy, D. C., Colpron, M., Gordey, S. P., Roots, C. F., Abbott, J. G., and Lipovsky, P. S., 2001, Preliminary bedrock geological map of northern Finlayson Lake area (NTS 105G) Yukon Territory (1:100 000 scale): Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 2001-33.

Murphy, D. C., Mortensen, J. K., and Piercey, S. J., 2006, Mid-Paleozoic to early Mesozoic tectonostratigraphic evolution of Yukon-Tanana and Slide Mountain terranes: Special Paper - Geological Association of Canada, v. 45, p. 75–105.

Peter, J. M., Layton-Matthews, D., Piercey, S., Bradshaw, G., Paradis, S., and Bolton, A., 2007, Volcanichosted massive sulphide deposits of the Finlayson Lake District, Yukon: Special Publication (Geological Association of Canada Mineral Deposits Division), v. 5, p. 471–508.

Piercey, S. J., Paradis, S., and Murphy, D. C., 2001, Geochemistry and Paleotectonic Setting of Felsic Volcanic Rocks in the Finlayson Lake Volcanic-Hosted Massive Sulfide District, Yukon, Canada: Economic Geology, v. 96, p. 1877–1905.

Piercey, S. J., Paradis, S., Peter, J. M., and Tucker, T. L., 2002, Geochemistry of basalt from the Wolverine volcanic-hosted massive-sulphide deposit, Finlayson Lake district, Yukon Territory: 2002-A3, accessed November 16, 2018, at http://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=213069.

Piercey, S. J., Nelson, J. L., Colpron, M., Dusel-Bacon, C., and Simard, R.-L., 2006, Paleozoic magmatism and crustal recycling along the ancient Pacific margin of North America, northern Cordillera: Special Paper - Geological Association of Canada, v. 45, p. 281–322.

Piercey, S. J., Peter, J. M., Mortensen, J. K., Paradis, S., Murphy, D. C., and Tucker, T. L., 2008, Petrology and U-Pb Geochronology of Footwall Porphyritic Rhyolites from the Wolverine Volcanogenic Massive Sulfide Deposit, Yukon, Canada: Implications for the Genesis of Massive Sulfide Deposits in Continental Margin Environments: Economic Geology, v. 103, p. 5–33.

Piercey, S. J., Murphy, D. C., and Creaser, R. A., 2012, Lithosphere-asthenosphere mixing in a transform-dominated late Paleozoic backarc basin: Implications for northern Cordilleran crustal growth and assembly: Geosphere, v. 8, p. 716–739.

Piercey, S. J., Gibson, H. L., Tardif, N., and Kamber, B. S., 2016, Ambient Redox and Hydrothermal Environment of the Wolverine Volcanogenic Massive Sulfide Deposit, Yukon: Insights from Lithofacies and Lithogeochemistry of Mississippian Host Shales: Economic Geology, v. 111, p. 1439–1463.

Ritson, G., 2000, Pre-Feasibility Study for Finlayson Project:, 893 p.

Senft, D. A., and Hall, D. C., 1997a, 1996 assessment report, WOL, BOOT and JACK properties, linecutting, soil geochemistry, geological mapping, geophysical surveys and diamond drilling: Cominco Ltd. Yukon Department of Energy, Mines and Resources Assessment Report.

Senft, D. A., and Hall, D. C., 1997b, 1996 assessment report, WOL, BOOT and JACK properties, linecutting, soil geochemistry, geological mapping, geophysical surveys and diamond drilling:, 120 p.

Turner, A. J., and Terry, D. A., 1996, 1996, Airborne and ground geophysical, and diamond drill programs conducted on the PUCK 1-80 claims, Finlayson Lake area, Yukon Territory: Westmin Resources Ltd. Yukon Department of Energy, Mines and Resources Assessment Report 093652.

Voordouw, R., 2017, 2016 Geophysical report on the Pelly Property, BMC Minerals Ltd.: BMC Minerals (No. 1) Limited.

Voordouw, R., and Jones, M. I., 2016, 2015 geophyiscal report on the Pelly Property: BMC Minerals (No. 1) Limited Yukon Department of Energy, Mines and Resources Assessment Report.

Wengzynowski, W. A., 1996, Assessment report describing prospecting and geochemical surveys on the PUCK 1-80 claims: Expatriate Resources Ltd. Yukon Department of Energy, Mines and Resources Assessment Report 093414.

Appendix B: Statement of Expenditures

	Units	Rate	Cost	Sub-Total
Wages				
Oscar Nielsen	1.82	\$750	\$1,365.00	
Bahram Bahrami	44	\$75	\$3,300.00	
Dillon Hume	23.59	\$750	\$17,692.50	
Charles Louvet	0.25	\$600	\$150.00	
Ty Magee	26	\$600	\$15,600.00	
Matthew Manor	24.5	\$600	\$14,700.00	
Victoria Tweedie	19.5	\$600	\$11,700.00	
Ron Voordouw	1.38	\$750	\$1,035.00	
				\$65,542.50
Rental Equipment				
Field Computer	45	\$20	\$900.00	
TerraSpec	1	\$80	\$80.00	
Micromine	12	\$50	\$600.00	
				\$1,580.0
Contractors				
Helicopter Charters (BH06 L4)	12.2	\$1,500	\$18,300.00	
Eagle Mapping Air Photography		+ _ /	\$13,113.57	
			, ,	\$31,413.6
Analyses				
Whole Rock Analyses SGS	61	\$89	\$5,446.91	
Matavials and Evanases				\$5,446.9
Materials and Expenses Meals			¢140	
Accomodation			\$140	
Taxis			\$514.00 \$103.68	
Airfare				
	1020	\$1.40	\$4,147.22 \$2,562.00	
Jet Fuel (estimate)	1830	Ş1.40	\$2,302.00	
Propane Satellite Phone (non-Equity)			\$28.75	
Satellite Phone (non-Equity)			Ş28.75	\$7,495.8
Reporting				
Assessment report writing (estim	ate)		\$6,075.00	
				\$6,075.0
Grand total				\$117,553.7

Appendix C: Claim Data

Grant Tenure Claim Staking Recording Expiry Area Block YB47402 Quartz GO GO III Stayney 15Apr94 2-Apr23 0.20 GO block YB47403 Quartz GO GO III Stayney 15Apr94 2-Apr23 0.21 GO block YB47405 Quartz GO GO CS III Stayney 15Apr94 2-Apr23 0.21 GO block YB47405 Quartz GO GO CS IIII Stayney 15Apr94 2-Apr23 0.21 GO block YB47405 Quartz GO GO CG III IIIIIIII Apre34 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Creat	Tamuma	Claim	Claim	Ctolsin a	Decending	E station (A	
YB47402 Ouartz GO GO I 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO Block YB47404 Quartz GO GO GO IS-Apr-94 15-Apr-94 2-Apr-23 0.21 GO Block YB47405 Quartz GO GO GO IS-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47405 Quartz GO GO IS-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47409 Quartz GO GO IS-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47410 Quartz GO GO IS-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47411 Quartz GO GO IS-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47413 Quartz GO GO IS-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47416 Quartz					•	-			Block
VB47403 Ouartz GO GO 2 13-Apr:P4 15-Apr:P4 2-Apr:23 0.21 GO block VB47405 Ouartz GO GO 2 13-Apr:P4 15-Apr:P4 2-Apr:23 0.21 GO block VB47406 Quartz GO GO 5 13-Apr:P4 15-Apr:P4 2-Apr:23 0.21 GO block VB47406 Quartz GO GO 6 13-Apr:P4 15-Apr:P4 2-Apr:23 0.21 GO block VB47408 Quartz GO GO 60 13-Apr:P4 15-Apr:P4 2-Apr:23 0.21 GO block VB47410 Quartz GO GO 60 13-Apr:P4 15-Apr:P4 2-Apr:23 0.21 GO block VB47411 Quartz GO GO 10 13-Apr:P4 15-Apr:P4 2-Apr:23 0.21 GO block VB47416 Quartz GO GO 15 13-Apr:P4 15-Apr:P4 2-Apr:23 0.21 GO block VB47416 Quartz GO GO 16 13-Apr:P4									GO block
VB47404 Ouartz GO GO 3 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block VB47406 Quartz GO GO 4 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block VB47406 Quartz GO GO 5 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block VB47400 Quartz GO GO 7 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block VB47410 Quartz GO GO 7 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block VB47411 Quartz GO GO 10 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block VB47413 Quartz GO GO 15 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block VB47415 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block VB47416 Quartz GO GO 16 13-Apr-94 <					•				
YB47405 Quartz GO GO 4 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47405 Quartz GO GO 5 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47405 Quartz GO GO 6 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47405 Quartz GO GO 7 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47410 Quartz GO GO 7 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47411 Quartz GO GO 11 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47413 Quartz GO GO 16 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47415 Quartz GO GO 16 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47413 Quartz GO GO 16 13-Apr:94 <									
YB47400 Quartz GO GO 5 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47407 Quartz GO GO 6 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47408 Quartz GO GO 6 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47410 Quartz GO GO 60 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47411 Quartz GO GO 71 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47413 Quartz GO GO 12 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47416 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47416 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47417 Quartz GO GO 16 13-Apr-94									
YB47407 Quartz GO GO 60 F 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB4708 Quartz GO GO 7 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47410 Quartz GO GO 9 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47411 Quartz GO GO 10 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47413 Quartz GO GO 11 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47415 Quartz GO GO 14 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47416 Quartz GO GO 16 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47419 Quartz GO GO 17 13-Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47421 Quartz GO GO 21 13-Apr:94									
YB47408 Quartz GO GO GO 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47410 Quartz GO GO 8 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47411 Quartz GO GO 10 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47413 Quartz GO GO 13 3-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47414 Quartz GO GO 13 3-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47416 Quartz GO GO 16 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47417 Quartz GO GO 16 13-Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47417 Quartz GO GO 13 Apr:94 15-Apr:94 2-Apr:23 0.20 GO block						-			
VB47409 Quartz GO GO GO B Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47411 Quartz GO GO 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47413 Quartz GO GO 11 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47413 Quartz GO GO 12 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47416 Quartz GO GO 15 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47417 Quartz GO GO 16 13-Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47419 Quartz GO GO 16 13-Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47420 Quartz GO GO 21 13-Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47422 Quart					•				
YB47411 Quartz GO GO 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47413 Quartz GO GO 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47413 Quartz GO GO 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47415 Quartz GO GO 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47416 Quartz GO GO 15 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47416 Quartz GO GO 15 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47421 Quartz GO GO 15-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47424 Quartz GO GO 22					•			0.21	
YB47412 Quartz GO GO 11 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47414 Quartz GO GO 12 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47414 Quartz GO GO 13 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47416 Quartz GO GO 15 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47419 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47419 Quartz GO GO 17 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47421 Quartz GO GO 20 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47424 Quartz GO GO 22 13-Apr-94		Quartz	GO	GO 9	13-Apr-94		2-Apr-23	0.21	GO block
YB47413 Quartz GO GO 12 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47415 Quartz GO GO 13 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47415 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47417 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47419 Quartz GO GO 17 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47420 Quartz GO GO 18 13-Apr-94 15-Apr-94 2-Apr-23 0.19 GO block YB47421 Quartz GO GO 221 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 223 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47424 Quartz GO GO 226 13-Apr-94		Quartz	GO	GO 10	13-Apr-94	15-Apr-94	2-Apr-23	0.21	GO block
YB47413 Quartz GO GO 12 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47415 Quartz GO GO 13 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47415 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47417 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47410 Quartz GO GO 17 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47420 Quartz GO GO 21 13-Apr-94 15-Apr-94 2-Apr-23 0.19 GO block YB47422 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47424 Quartz GO GO 22 13-Apr-94	YB47412	Quartz	GO	GO 11	•	15-Apr-94	2-Apr-23	0.21	GO block
YB47414 Quartz GO GO 13 3-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47415 Quartz GO GO 13 Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47415 Quartz GO GO 13 Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47418 Quartz GO GO 13 Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47419 Quartz GO GO 13 Apr:94 15-Apr:94 2-Apr:23 0.19 GO block YB47421 Quartz GO GO 220 13-Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47423 Quartz GO GO 221 13-Apr:94 15-Apr:94 2-Apr:23 0.20 GO block YB47425 Quartz GO GO 226 13-Apr:94 15-Apr:94 2-Apr:23 0.21 GO block YB47426 Quartz		Quartz	GO	GO 12	13-Apr-94	15-Apr-94	2-Apr-23	0.21	GO block
YB47416 Quartz GO GO 15 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47417 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47418 Quartz GO GO 17 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47419 Quartz GO GO 19 13-Apr-94 15-Apr-94 2-Apr-23 0.19 GO block YB47421 Quartz GO GO 20 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 21 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 25 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47425 Quartz GO GO 25 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47426 Quartz GO GO 26 13-Apr-94	YB47414	Quartz	GO	GO 13	13-Apr-94	15-Apr-94	2-Apr-23	0.21	
YB47417 Quartz GO GO 16 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47418 Quartz GO GO 113-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47419 Quartz GO GO 18 15-Apr-94 2-Apr-23 0.19 GO block YB47420 Quartz GO GO 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47422 Quartz GO GO GO 21 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47424 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47425 Quartz GO GO 25 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47429 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47430 Quartz WOL WOL <t< td=""><td>YB47415</td><td>Quartz</td><td>GO</td><td>GO 14</td><td></td><td>15-Apr-94</td><td>2-Apr-23</td><td>0.21</td><td>GO block</td></t<>	YB47415	Quartz	GO	GO 14		15-Apr-94	2-Apr-23	0.21	GO block
YB47418 Quartz GO GO 17 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47419 Quartz GO GO 18 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47420 Quartz GO GO 19 13-Apr-94 15-Apr-94 2-Apr-23 0.19 GO block YB47421 Quartz GO GO GO 21 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47422 Quartz GO GO 23 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47425 Quartz GO GO 24 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47426 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47428 Quartz GO GO 27 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47439 Quartz WOL WOL WOL 30	YB47416	Quartz	GO	GO 15	13-Apr-94	15-Apr-94	2-Apr-23	0.21	GO block
YB47419 Quartz GO GO 18 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47420 Quartz GO GO 19 13-Apr-94 15-Apr-94 2-Apr-23 0.19 GO block YB47421 Quartz GO GO 20 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47422 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47424 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47425 Quartz GO GO 25 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47427 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47426 Quartz GO GO 28 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47430 Quartz WOL WOL WOL 30	YB47417	Quartz	GO	GO 16	13-Apr-94	15-Apr-94	2-Apr-23	0.20	GO block
YB47420 Quartz GO GO 19 13-Apr-94 15-Apr-94 2-Apr-23 0.19 GO block YB47421 Quartz GO GO 20 13-Apr-94 15-Apr-94 2-Apr-23 0.19 GO block YB47423 Quartz GO GO 21 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47426 Quartz GO GO 25 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47426 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47428 Quartz GO GO 28 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47436 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47436 Quartz WOL WOL 30 13-Apr-94	YB47418	Quartz	GO	GO 17	13-Apr-94	15-Apr-94	2-Apr-23	0.21	GO block
YB47421 Quartz GO GO 20 13-Apr-94 15-Apr-94 2-Apr-23 0.19 GO block YB47422 Quartz GO GO 21 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 23 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47425 Quartz GO GO 24 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47426 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47427 Quartz GO GO 27 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47435 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47436 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47436 Quartz WOL WOL 30 13-Apr-94 <td>YB47419</td> <td>Quartz</td> <td>GO</td> <td></td> <td></td> <td>15-Apr-94</td> <td>2-Apr-23</td> <td>0.20</td> <td>GO block</td>	YB47419	Quartz	GO			15-Apr-94	2-Apr-23	0.20	GO block
YB47422 Quartz GO GO 21 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47423 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47424 Quartz GO GO 23 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47426 Quartz GO GO 25 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47427 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47428 Quartz GO GO 27 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47436 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47436 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47437 Quartz WOL WOL 31 13-Apr-94 </td <td>YB47420</td> <td>Quartz</td> <td>GO</td> <td>GO 19</td> <td>13-Apr-94</td> <td>15-Apr-94</td> <td>2-Apr-23</td> <td>0.19</td> <td>GO block</td>	YB47420	Quartz	GO	GO 19	13-Apr-94	15-Apr-94	2-Apr-23	0.19	GO block
YB47423 Quartz GO GO 22 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47424 Quartz GO GO 23 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47425 Quartz GO GO 24 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47426 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47428 Quartz GO GO 28 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47436 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47436 Quartz WOL WOL 31 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47437 Quartz WOL WOL 32 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47438 Quartz WOL WOL	YB47421	Quartz	GO	GO 20	13-Apr-94	15-Apr-94	2-Apr-23	0.19	GO block
YB47424 Quartz GO GO 23 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47425 Quartz GO GO 24 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47426 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47428 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47434 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47434 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47435 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47436 Quartz WOL WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47443 Quartz WOL	YB47422	Quartz	GO		13-Apr-94	15-Apr-94	2-Apr-23	0.20	
YB47425 Quartz GO GO 24 13-Apr-94 15-Apr-94 2-Apr-23 0.20 GO block YB47426 Quartz GO GO 25 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47427 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47428 Quartz GO GO 28 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47434 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47435 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47435 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47436 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz	YB47423	Quartz					2-Apr-23	0.20	GO block
YB47426 Quartz GO GO 25 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47427 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47428 Quartz GO GO 27 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47429 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47436 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47437 Quartz WOL WOL 31 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47439 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 36 13	YB47424	Quartz							
YB47427 Quartz GO GO 26 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47428 Quartz GO GO 27 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47429 Quartz WOL WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47434 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47437 Quartz WOL WOL 32 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47438 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47438 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL	YB47425	Quartz	GO	GO 24	13-Apr-94	15-Apr-94	2-Apr-23	0.20	GO block
YB47428 Quartz GO GO 27 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47429 Quartz GO GO 28 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47434 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47435 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47436 Quartz WOL WOL 31 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47438 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 35 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL WO	YB47426								
YB47429 Quartz GO GO 28 13-Apr-94 15-Apr-94 2-Apr-23 0.21 GO block YB47434 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47435 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47436 Quartz WOL WOL 31 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47438 Quartz WOL WOL 32 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 35 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47444 Quartz WOL WOL 37						-			
YB47434 Quartz WOL WOL 29 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47435 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47436 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47437 Quartz WOL WOL 32 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47438 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 35 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47443 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47443 Quartz WOL WOL 38									
YB47435 Quartz WOL WOL 30 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47436 Quartz WOL WOL 31 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47437 Quartz WOL WOL 32 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47439 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47439 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47444 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47445 Quartz WOL WOL 39					•	-			
YB47436 Quartz WOL WOL 31 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47437 Quartz WOL WOL 32 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47438 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47439 Quartz WOL WOL 34 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47444 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47712 Quartz WOL WOL 31					•				
YB47437 Quartz WOL WOL 32 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47438 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47439 Quartz WOL WOL 34 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 35 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47443 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47445 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 1					•				
YB47438 Quartz WOL WOL 33 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47439 Quartz WOL WOL 34 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 35 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47444 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47445 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47712 Quartz WOL WOL 40 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3						-			
YB47439 Quartz WOL WOL 34 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47440 Quartz WOL WOL 35 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47443 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47444 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47745 Quartz WOL WOL 40 13-Apr-94 15-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 1 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3									
YB47440 Quartz WOL WOL 35 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47441 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47444 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47445 Quartz WOL WOL 40 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47712 Quartz WOL WOL 1 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 2 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3						-			
YB47441 Quartz WOL WOL 36 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47442 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47443 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47444 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47445 Quartz WOL WOL 40 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47712 Quartz WOL WOL 40 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 2 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5					•		•		
YB47442 Quartz WOL WOL 37 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47443 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47444 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47445 Quartz WOL WOL 40 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47712 Quartz WOL WOL 40 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 2 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47715 Quartz WOL WOL 4 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 <					•				
YB47443 Quartz WOL WOL 38 13-Apr-94 15-Apr-94 2-Apr-23 0.19 WOL block YB47444 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47445 Quartz WOL WOL 40 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47712 Quartz WOL WOL 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 2 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47715 Quartz WOL WOL 4 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 7 1									
YB47444 Quartz WOL WOL 39 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47445 Quartz WOL WOL 40 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47712 Quartz WOL WOL WOL 1 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 2 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47715 Quartz WOL WOL 4 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47718 Quartz WOL WO									
YB47445 Quartz WOL WOL 40 13-Apr-94 15-Apr-94 2-Apr-23 0.20 WOL block YB47712 Quartz WOL WOL WOL 1 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 2 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47715 Quartz WOL WOL 4 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47718 Quartz WOL WOL									
YB47712 Quartz WOL WOL 1 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47713 Quartz WOL WOL 2 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47715 Quartz WOL WOL 4 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 7 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47719 Quartz WOL WOL 8 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13									
YB47713 Quartz WOL WOL 2 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47714 Quartz WOL WOL 3 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47715 Quartz WOL WOL 4 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47718 Quartz WOL WOL 7 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47719 Quartz WOL WOL 8 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 10 1									
YB47714 Quartz WOL WOL 3 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47715 Quartz WOL WOL 4 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47715 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47718 Quartz WOL WOL 7 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47719 Quartz WOL WOL 8 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47721 Quartz WOL WOL 10 1									
YB47715 Quartz WOL WOL 4 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47718 Quartz WOL WOL 7 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47719 Quartz WOL WOL 8 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47721 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 11					•				
YB47716 Quartz WOL WOL 5 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47717 Quartz WOL WOL 7 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47719 Quartz WOL WOL 8 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47721 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47722 Quartz WOL WOL 11 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
YB47717 Quartz WOL WOL 6 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47718 Quartz WOL WOL 7 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47719 Quartz WOL WOL 8 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47721 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47722 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 11 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47724 Quartz WOL WOL 12 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 13 <					•		•		
YB47718 Quartz WOL WOL 7 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47719 Quartz WOL WOL 8 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47721 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47722 Quartz WOL WOL 11 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 12 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47724 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 13 <									
YB47719 Quartz WOL WOL 8 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47721 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47722 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 11 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 12 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47724 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block									
YB47720 Quartz WOL WOL 9 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47721 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47722 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 11 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 12 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47724 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 14 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block									
YB47721 Quartz WOL WOL 10 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47722 Quartz WOL WOL 11 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 12 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47724 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 14 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block									
YB47722 Quartz WOL WOL 11 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47723 Quartz WOL WOL 12 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47724 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 14 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block									
YB47723 Quartz WOL WOL 12 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47724 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 14 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block									
YB47724 Quartz WOL WOL 13 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block YB47725 Quartz WOL WOL 14 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block					•				
YB47725 Quartz WOL WOL 14 13-Apr-94 26-Apr-94 2-Apr-23 0.18 WOL block							2-Apr-23		
			WOL		•		•		
			WOL	WOL 15		26-Apr-94	2-Apr-23	0.19	WOL block

Table C-1: Tenure details for Pelly Property claims

Grant	Tenure	Claim	Claim	Staking	Recording	Expiry	Area	Disak
Number	Туре	Name	Label	Date	Date	Date	km²	Block
YB47727	Quartz	WOL	WOL 16	13-Apr-94	26-Apr-94	2-Apr-23	0.19	WOL block
YB47728	Quartz	WOL	WOL 17	13-Apr-94	26-Apr-94	2-Apr-23	0.19	WOL block
YB47729	Quartz	WOL	WOL 18	13-Apr-94	26-Apr-94	2-Apr-23	0.20	WOL block
YB47730	Quartz	WOL	WOL 19	13-Apr-94	26-Apr-94	2-Apr-23	0.21	WOL block
YB47731	Quartz	WOL	WOL 20	13-Apr-94	26-Apr-94	2-Apr-23	0.20	WOL block
YB47732	Quartz	WOL	WOL 21	13-Apr-94	26-Apr-94	2-Apr-23	0.21	WOL block
YB47733	Quartz	WOL	WOL 22	13-Apr-94	26-Apr-94	2-Apr-23	0.20	WOL block
YB47734	Quartz	WOL	WOL 23	13-Apr-94	26-Apr-94	2-Apr-23	0.21	WOL block
YB47735	Quartz	WOL	WOL 24	13-Apr-94	26-Apr-94	2-Apr-23	0.21	WOL block
YB47736	Quartz	WOL	WOL 25	13-Apr-94	26-Apr-94	2-Apr-23	0.19	WOL block
YB47737	Quartz	WOL	WOL 26	13-Apr-94	26-Apr-94	2-Apr-23	0.19	WOL block
YB47738	Quartz	WOL	WOL 27	13-Apr-94	26-Apr-94	2-Apr-23	0.21	WOL block
YB47739	Quartz	WOL	WOL 28	13-Apr-94	26-Apr-94	2-Apr-23	0.20	WOL block
YB47760	Quartz	GO	GO 29	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47761	Quartz	GO	GO 30	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47762	Quartz	GO	GO 31	30-Apr-94	2-May-94	2-Apr-23	0.21	GO block
YB47763	Quartz	GO	GO 32	30-Apr-94	2-May-94	2-Apr-23	0.21	GO block
YB47764	Quartz	GO	GO 33	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47765	Quartz	GO	GO 34	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47766	Quartz	GO	GO 35	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47767	Quartz	GO	GO 36	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47768	Quartz	GO	GO 37	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47769	Quartz	GO	GO 38	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47770	Quartz	GO	GO 39	30-Apr-94	2-May-94	2-Apr-23	0.18	GO block
YB47771	Quartz	GO	GO 40	30-Apr-94	2-May-94	2-Apr-23	0.18	GO block
YB47772	Quartz	GO	GO 41	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47773	Quartz	GO	GO 42	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47774	Quartz	GO	GO 43	30-Apr-94	2-May-94	2-Apr-23	0.21	GO block
YB47775	Quartz	GO	GO 44	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47776	Quartz	GO	GO 45	30-Apr-94	2-May-94	2-Apr-23	0.21	GO block
YB47777	Quartz	GO	GO 46	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47778	Quartz	GO	GO 47	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47779	Quartz	GO	GO 48	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB47780	Quartz	GO	GO 49	30-Apr-94	2-May-94	2-Apr-23	0.21	GO block
YB47781	Quartz	GO	GO 50	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47782	Quartz	GO	GO 51	30-Apr-94	2-May-94	2-Apr-23	0.09	GO block
YB47783	Quartz	GO	GO 52	30-Apr-94	2-May-94	2-Apr-23	0.11	GO block
YB47784	Quartz	GO	GO 53	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47785	Quartz	GO	GO 54	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47786	Quartz	GO	GO 55	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47787	Quartz	GO	GO 56	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47788	Quartz	GO	GO 57	30-Apr-94	2-May-94	2-Apr-23	0.21	GO block
YB47789	Quartz	GO	GO 58	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47790	Quartz	GO	GO 59	30-Apr-94	2-May-94	2-Apr-23	0.21	GO block
YB47791	Quartz	GO	GO 60	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB47792	Quartz	GO	GO 61	30-Apr-94	2-May-94	2-Apr-23	0.17	GO block
YB47793	Quartz	GO	GO 62	30-Apr-94	2-May-94	2-Apr-23	0.18	GO block
YB47794	Quartz	BOOT	BOOT 1	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB47795	Quartz	BOOT	BOOT 2	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB47796	Quartz	BOOT	BOOT 3	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB47797	Quartz	BOOT	BOOT 4	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB47798	Quartz	BOOT	BOOT 5	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB47799	Quartz	BOOT	BOOT 6	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB47800	Quartz	BOOT	BOOT 7	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB48402	Quartz	BOOT	BOOT 8	30-Apr-94	2-May-94	2-Apr-23	0.18	GO block
YB48403	Quartz	BOOT	BOOT 9	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block
YB48404	Quartz	BOOT	BOOT 10	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB48405	Quartz	BOOT	BOOT 11	30-Apr-94	2-May-94	2-Apr-23	0.20	GO block

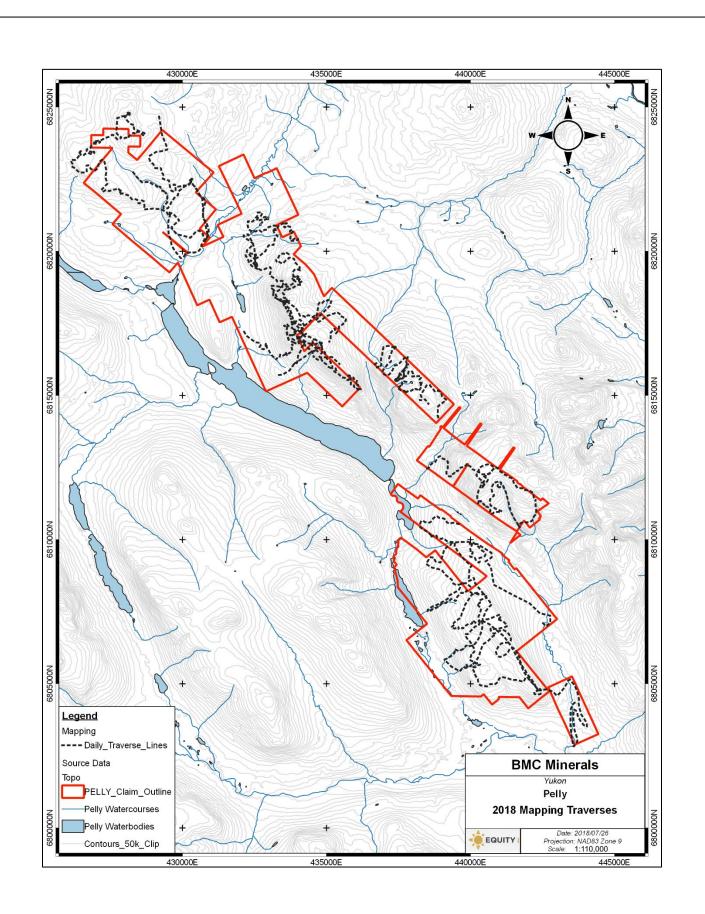
Grant	Tenure	Claim	Claim	Staking	Recording	Expiry	Area	Block
Number	Туре	Name	Label	Date	Date	Date	km²	
YB48406	Quartz	BOOT	BOOT 12	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB48407	Quartz	BOOT	BOOT 13	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB48408	Quartz	BOOT	BOOT 14	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB48409	Quartz	BOOT	BOOT 15	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB48410	Quartz	BOOT	BOOT 16	30-Apr-94	2-May-94	2-Apr-23	0.18	GO block
YB48411	Quartz	BOOT	BOOT 17	30-Apr-94	2-May-94	2-Apr-23	0.19	GO block
YB48412	Quartz	BOOT	BOOT 18	30-Apr-94	2-May-94	2-Apr-23	0.17	GO block
YB48801	Quartz	WOL	WOL 41	30-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48802	Quartz	WOL	WOL 42	30-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48803	Quartz	WOL	WOL 43	30-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48804	Quartz	WOL	WOL 44	30-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48805	Quartz	WOL	WOL 45	30-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48806	Quartz	WOL	WOL 46	30-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48807	Quartz Quartz	WOL WOL	WOL 47 WOL 48	30-Apr-94 30-Apr-94	2-May-94 2-May-94	2-Apr-23 2-Apr-23	0.18 0.18	WOL block WOL block
YB48808	Quartz	WOL	WOL 48 WOL 49	30-Apr-94 30-Apr-94	2-May-94 2-May-94	2-Apr-23 2-Apr-23	0.18	WOL block
YB48809	Quartz	WOL	WOL 49 WOL 50	30-Apr-94 30-Apr-94	2-May-94 2-May-94	2-Apr-23 2-Apr-23	0.18	WOL block
YB48810 YB48811	Quartz	WOL	WOL 50 WOL 51	30-Apr-94 30-Apr-94	2-May-94 2-May-94	2-Apr-23 2-Apr-23	0.18	WOL block
	Quartz	WOL	WOL 51 WOL 52	30-Apr-94 30-Apr-94	2-May-94 2-May-94	2-Apr-23 2-Apr-23	0.18	WOL block
YB48812 YB48813	Quartz	WOL	WOL 52 WOL 53	30-Apr-94	2-May-94 2-May-94	2-Apr-23	0.18	WOL block
YB48814	Quartz	WOL	WOL 53 WOL 54	30-Apr-94	2-May-94 2-May-94	2-Apr-23	0.18	WOL block
YB48815	Quartz	WOL	WOL 54 WOL 55	30-Apr-94	2-May-94 2-May-94	2-Apr-23	0.18	WOL block
YB48816	Quartz	WOL	WOL 55 WOL 56	30-Apr-94	2-May-94 2-May-94	2-Apr-23	0.20	WOL block
YB48817	Quartz	WOL	WOL 50 WOL 57	30-Apr-94	2-May-94 2-May-94	2-Apr-23	0.21	WOL block
YB48818	Quartz	WOL	WOL 58	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48819	Quartz	WOL	WOL 59	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48820	Quartz	WOL	WOL 60	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48821	Quartz	WOL	WOL 61	30-Apr-94	2-May-94	2-Apr-23	0.16	WOL block
YB48822	Quartz	WOL	WOL 62	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48823	Quartz	WOL	WOL 63	30-Apr-94	2-May-94	2-Apr-23	0.03	WOL block
YB48824	Quartz	WOL	WOL 64	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48825	Quartz	WOL	WOL 65	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48826	Quartz	WOL	WOL 66	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48827	Quartz	WOL	WOL 67	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48828	Quartz	WOL	WOL 68	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48829	Quartz	WOL	WOL 69	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48830	Quartz	WOL	WOL 70	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48831	Quartz	WOL	WOL 71	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48832	Quartz	WOL	WOL 72	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48833	Quartz	WOL	WOL 73	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48834	Quartz	WOL	WOL 74	30-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48835	Quartz	WOL	WOL 75	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48836	Quartz	WOL	WOL 76	30-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48837	Quartz	WOL	WOL 77	30-Apr-94	2-May-94	2-Apr-23	0.22	WOL block
YB48838	Quartz	WOL	WOL 78	30-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48839	Quartz	WOL	WOL 79	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48840	Quartz	WOL	WOL 80	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48841	Quartz	WOL	WOL 81	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48842	Quartz	WOL	WOL 82	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48843	Quartz	WOL	WOL 83	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48844	Quartz	WOL	WOL 84	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48845	Quartz	WOL	WOL 85	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48846	Quartz	WOL	WOL 86	30-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48847	Quartz	WOL	WOL 87	29-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48848	Quartz	WOL	WOL 88	29-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48849	Quartz	WOL	WOL 89	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48850	Quartz	WOL	WOL 90	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48851	Quartz	WOL	WOL 91	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block

Grant	Tenure	Claim	Claim	Staking	Recording	Expiry	Area	Block
Number	Туре	Name	Label	Date	Date	Date	km²	
YB48852	Quartz	WOL	WOL 92	29-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48853	Quartz	WOL	WOL 93	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48854	Quartz	WOL	WOL 94	29-Apr-94	2-May-94	2-Apr-23	0.17	WOL block
YB48855	Quartz	WOL	WOL 95	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48856	Quartz	WOL	WOL 96	29-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48857	Quartz	WOL	WOL 97	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48858	Quartz	WOL	WOL 98	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48859	Quartz	WOL	WOL 99	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48860	Quartz	WOL	WOL 100	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48861	Quartz	WOL	WOL 101	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48862	Quartz	WOL	WOL 102	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48863	Quartz	WOL	WOL 103	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48864	Quartz	WOL	WOL 104	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48865	Quartz	WOL	WOL 105	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48866	Quartz	WOL	WOL 106	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48867	Quartz	WOL	WOL 107	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48868	Quartz	WOL	WOL 108	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48869	Quartz	WOL	WOL 109	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48870	Quartz	WOL	WOL 110	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48871	Quartz	WOL	WOL 111	29-Apr-94	2-May-94	2-Apr-23	0.15	WOL block
YB48872	Quartz	WOL	WOL 112	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48873	Quartz	WOL	WOL 113	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48874	Quartz	WOL	WOL 114	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48875	Quartz	WOL	WOL 115	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48876	Quartz	WOL	WOL 116	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48877	Quartz	WOL	WOL 117	29-Apr-94	2-May-94	2-Apr-23	0.18	WOL block
YB48878	Quartz	WOL	WOL 118	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48879	Quartz	WOL	WOL 119	29-Apr-94	2-May-94	2-Apr-23	0.22	WOL block
YB48880	Quartz	WOL	WOL 120	29-Apr-94	2-May-94	2-Apr-23	0.22	WOL block
YB48881	Quartz	WOL	WOL 121	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48882	Quartz	WOL	WOL 122	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48883	Quartz	WOL	WOL 123	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48884	Quartz	WOL	WOL 124	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48885	Quartz	WOL	WOL 125	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48886	Quartz	WOL	WOL 126	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48887	Quartz	WOL	WOL 127	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48888	Quartz	WOL	WOL 128	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48889	Quartz	WOL	WOL 129	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48890	Quartz	WOL	WOL 130	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48891	Quartz	WOL	WOL 131	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48892	Quartz	WOL	WOL 132	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48893	Quartz	WOL	WOL 133	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48894	Quartz	WOL	WOL 134	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48895	Quartz	WOL	WOL 135	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48896	Quartz	WOL	WOL 136	29-Apr-94	2-May-94	2-Apr-23	0.19	WOL block
YB48897	Quartz	WOL	WOL 137	29-Apr-94	2-May-94	2-Apr-23	0.22	WOL block
YB48898	Quartz	WOL	WOL 138	29-Apr-94	2-May-94	2-Apr-23	0.22	WOL block
YB48899	Quartz	WOL	WOL 139	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48900	Quartz	WOL	WOL 140	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48901	Quartz	WOL	WOL 141	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48902	Quartz	WOL	WOL 142	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48903	Quartz	WOL	WOL 143	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48904	Quartz	WOL	WOL 144	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48905	Quartz	WOL	WOL 145	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48906	Quartz	WOL	WOL 146	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48907	Quartz	WOL	WOL 147	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48908	Quartz	WOL	WOL 148	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
	Quartz	WOL	WOL 149	29-Apr-94	2-May-94	2-Apr-23	0.22	WOL block

Grant	Tenure	Claim	Claim	Staking	Recording	Expiry	Area	Block
Number	Туре	Name	Label	Date	Date	Date	km²	
YB48910	Quartz	WOL	WOL 150	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48911	Quartz	WOL	WOL 151	29-Apr-94	2-May-94	2-Apr-23	0.20	WOL block
YB48912	Quartz	WOL	WOL 152	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48913	Quartz	WOL	WOL 153	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48914	Quartz	WOL	WOL 154	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48915	Quartz	WOL	WOL 155	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB48916	Quartz	WOL	WOL 156	29-Apr-94	2-May-94	2-Apr-23	0.21	WOL block
YB52227	Quartz	GO	GO 82	14-Aug-94	31-Aug-94	2-Apr-23	0.09	GO block
YB52228	Quartz	GO	GO 83	14-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52229	Quartz	GO	GO 84	14-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52230	Quartz	GO	GO 85	14-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52231	Quartz	GO	GO 86	14-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52232	Quartz	GO	GO 87	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52233	Quartz	GO	GO 88	14-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52234	Quartz	GO	GO 89	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52235	Quartz	GO	GO 90	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52236	Quartz	GO	GO 91	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52237	Quartz	GO	GO 92	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52238	Quartz	GO	GO 93	15-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52239	Quartz	GO	GO 94	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52240	Quartz	GO	GO 95	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52241	Quartz	GO	GO 96	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52242	Quartz	GO	GO 97	15-Aug-94	31-Aug-94	2-Apr-23	0.19	GO block
YB52243	Quartz	GO	GO 98	15-Aug-94	31-Aug-94	2-Apr-23	0.19	GO block
YB52244	Quartz	GO	GO 99	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52245	Quartz	GO	GO 100	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52246	Quartz	GO	GO 101	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52247	Quartz	GO	GO 102	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52248	Quartz	GO	GO 103	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52249	Quartz	GO	GO 104	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52250	Quartz	GO	GO 105	15-Aug-94	31-Aug-94	2-Apr-23	0.19	GO block
YB52251	Quartz	GO	GO 106	15-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52252	Quartz	GO	GO 110	14-Aug-94	31-Aug-94	2-Apr-23	0.10	GO block
YB52253	Quartz	GO	GO 111	14-Aug-94	31-Aug-94	2-Apr-23	0.02	GO block
YB52254	Quartz	GO	GO 112	14-Aug-94	31-Aug-94	2-Apr-23	0.16	GO block
YB52255	Quartz	GO	GO 113	14-Aug-94	31-Aug-94	2-Apr-23	0.18	GO block
YB52256	Quartz	GO	GO 114	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52257	Quartz	GO	GO 115	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52258	Quartz	GO	GO 116	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52259	Quartz	GO	GO 117	14-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52260	Quartz	GO	GO 118	14-Aug-94	31-Aug-94	2-Apr-23	0.20	GO block
YB52261	Quartz	GO	GO 119	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52262	Quartz	GO	GO 120	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52263	Quartz	GO	GO 121	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52264	Quartz	GO	GO 122	14-Aug-94	31-Aug-94	2-Apr-23	0.21	GO block
YB52265	Quartz	GO	GO 123	15-Aug-94	31-Aug-94	2-Apr-23	0.19	GO block
YB52266	Quartz	GO	GO 124	15-Aug-94	31-Aug-94	2-Apr-23	0.19	GO block
YB55308	Quartz	TAG	TAG 1388	18-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55378	Quartz	WOL	WOL 181	21-Aug-94	31-Aug-94	2-Apr-23	0.13	WOL block
YB55379	Quartz	WOL	WOL 182	21-Aug-94	31-Aug-94	2-Apr-23	0.13	WOL block
YB55380	Quartz	WOL	WOL 183	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55381	Quartz	WOL	WOL 184	21-Aug-94	31-Aug-94	2-Apr-23	0.17	WOL block
YB55382	Quartz	WOL	WOL 185	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55383	Quartz	WOL	WOL 186	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55384	Quartz	WOL	WOL 187	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55385	Quartz	WOL	WOL 188	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55386	Quartz	WOL	WOL 189	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55387	Quartz	WOL	WOL 190	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block

Grant	Tenure	Claim	Claim	Staking	Recording	Expiry	Area	Block
Number	Туре	Name	Label	Date	Date	Date	km²	
YB55388	Quartz	WOL	WOL 191	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55389	Quartz	WOL	WOL 192	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55390	Quartz	WOL	WOL 193	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55391	Quartz	WOL	WOL 194	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55392	Quartz	WOL	WOL 195	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55393	Quartz	WOL	WOL 196	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55394	Quartz	WOL	WOL 197	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55395	Quartz	WOL	WOL 198	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55396	Quartz	WOL	WOL 199	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55397	Quartz	WOL	WOL 200	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55398	Quartz	WOL	WOL 201	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55399	Quartz	WOL	WOL 202	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55400	Quartz	WOL	WOL 203	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55401	Quartz	WOL	WOL 204	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55402	Quartz	WOL	WOL 205	21-Aug-94	31-Aug-94	2-Apr-23	0.14	WOL block
YB55403	Quartz	WOL WOL	WOL 206	21-Aug-94	31-Aug-94	2-Apr-23	0.18	WOL block
YB55404	Quartz	WOL	WOL 207 WOL 208	21-Aug-94 21-Aug-94	31-Aug-94	2-Apr-23	0.08	WOL block WOL block
YB55405	Quartz Quartz	WOL	WOL 208 WOL 209	9	31-Aug-94 31-Aug-94	2-Apr-23 2-Apr-23	0.18	WOL block
YB55406		WOL		21-Aug-94	-		0.18	JACK block
YB55407	Quartz Quartz	WOL	WOL 210 WOL 211	21-Aug-94 21-Aug-94	31-Aug-94	2-Apr-23 2-Apr-23	0.21	JACK block
YB55408 YB55409	Quartz	WOL	WOL 211 WOL 212	21-Aug-94 21-Aug-94	31-Aug-94 31-Aug-94	2-Apr-23	0.17	JACK block
YB55410	Quartz	WOL	WOL 212 WOL 213	21-Aug-94 21-Aug-94	31-Aug-94 31-Aug-94	2-Apr-23	0.19	JACK block
YB55410	Quartz	WOL	WOL 213 WOL 214	21-Aug-94 21-Aug-94	31-Aug-94 31-Aug-94	2-Apr-23	0.19	JACK block
YB55412	Quartz	WOL	WOL 214 WOL 215	21-Aug-94 21-Aug-94	31-Aug-94	2-Apr-23	0.24	JACK block
YB55412 YB55413	Quartz	WOL	WOL 215 WOL 216	21-Aug-94 21-Aug-94	31-Aug-94 31-Aug-94	2-Apr-23	0.10	JACK block
YB55414	Quartz	WOL	WOL 210	21-Aug-94	31-Aug-94	2-Apr-23	0.18	JACK block
YB55415	Quartz	WOL	WOL 218	21-Aug-94	31-Aug-94	2-Apr-23	0.10	JACK block
YB55416	Quartz	WOL	WOL 219	21-Aug-94	31-Aug-94	2-Apr-23	0.19	JACK block
YB55417	Quartz	WOL	WOL 220	21-Aug-94	31-Aug-94	2-Apr-23	0.16	JACK block
YB55418	Quartz	WOL	WOL 221	21-Aug-94	31-Aug-94	2-Apr-23	0.16	JACK block
YB55419	Quartz	WOL	WOL 222	21-Aug-94	31-Aug-94	2-Apr-23	0.18	JACK block
YB55420	Quartz	WOL	WOL 223	21-Aug-94	31-Aug-94	2-Apr-23	0.17	JACK block
YB55421	Quartz	WOL	WOL 224	21-Aug-94	31-Aug-94	2-Apr-23	0.18	JACK block
YB55422	Quartz	WOL	WOL 225	21-Aug-94	31-Aug-94	2-Apr-23	0.18	JACK block
YB55423	Quartz	WOL	WOL 226	21-Aug-94	31-Aug-94	2-Apr-23	0.17	JACK block
YB55424	Quartz	WOL	WOL 227	21-Aug-94	31-Aug-94	2-Apr-23	0.16	JACK block
YB55425	Quartz	WOL	WOL 228	21-Aug-94	31-Aug-94	2-Apr-23	0.15	JACK block
YB55426	Quartz	WOL	WOL 229	21-Aug-94	31-Aug-94	2-Apr-23	0.16	JACK block
YB55427	Quartz	WOL	WOL 230	22-Aug-94	31-Aug-94	2-Apr-23	0.20	JACK block
YB55428	Quartz	WOL	WOL 231	22-Aug-94	31-Aug-94	2-Apr-23	0.19	JACK block
YB55429	Quartz	WOL	WOL 232	22-Aug-94	31-Aug-94	2-Apr-23	0.19	JACK block
YB55430	Quartz	WOL	WOL 233	22-Aug-94	31-Aug-94	2-Apr-23	0.19	JACK block
YB55431	Quartz	WOL	WOL 234	22-Aug-94	31-Aug-94	2-Apr-23	0.20	JACK block
YB55432	Quartz	WOL	WOL 235	22-Aug-94	31-Aug-94	2-Apr-23	0.19	JACK block
YB55433	Quartz	WOL	WOL 236	22-Aug-94	31-Aug-94	2-Apr-23	0.17	JACK block
YB55434	Quartz	WOL	WOL 237	22-Aug-94	31-Aug-94	2-Apr-23	0.15	JACK block
YB55435	Quartz	WOL	WOL 238	22-Aug-94	31-Aug-94	2-Apr-23	0.15	JACK block
YB55436	Quartz	WOL	WOL 239	22-Aug-94	31-Aug-94	2-Apr-23	0.14	JACK block
YB55779	Quartz	GO	GO 108	21-Aug-94	6-Sep-94	2-Apr-23	0.20	GO block
YB55780	Quartz	GO	GO 109	21-Aug-94	6-Sep-94	2-Apr-23	0.15	GO block
YB55781	Quartz	GO	GO 77	21-Aug-94	6-Sep-94	2-Apr-23	0.16	GO block
YB55782	Quartz	GO	GO 79	21-Aug-94	6-Sep-94	2-Apr-23	0.16	GO block
YB55783	Quartz	GO	GO 81	21-Aug-94	6-Sep-94	2-Apr-23	0.04	GO block
YB55784	Quartz	WOL	WOL 164	16-Aug-94	6-Sep-94	2-Apr-23	0.04	WOL block
YB55785	Quartz	WOL	WOL 165	16-Aug-94	6-Sep-94	2-Apr-23	0.07	WOL block
YB55786	Quartz	WOL	WOL 166	16-Aug-94	6-Sep-94	2-Apr-23	0.12	WOL block
YB55787	Quartz	WOL	WOL 167	16-Aug-94	6-Sep-94	2-Apr-23	0.20	WOL block

Grant	Tenure	Claim	Claim	Staking	Recording	Expiry	Area	Block
Number	Туре	Name	Label	Date	Date	Date	km²	
YB55788	Quartz	WOL	WOL 168	16-Aug-94	6-Sep-94	2-Apr-23	0.20	WOL block
YB55789	Quartz	WOL	WOL 169	16-Aug-94	6-Sep-94	2-Apr-23	0.20	WOL block
YB55790	Quartz	WOL	WOL 170	16-Aug-94	6-Sep-94	2-Apr-23	0.19	WOL block
YB55791	Quartz	WOL	WOL 171	16-Aug-94	6-Sep-94	2-Apr-23	0.20	WOL block
YB55792	Quartz	WOL	WOL 172	16-Aug-94	6-Sep-94	2-Apr-23	0.19	WOL block
YB55793	Quartz	WOL	WOL 173	16-Aug-94	6-Sep-94	2-Apr-23	0.20	WOL block
YB55794	Quartz	WOL	WOL 174	16-Aug-94	6-Sep-94	2-Apr-23	0.16	WOL block
YB55795	Quartz	WOL	WOL 175	16-Aug-94	6-Sep-94	2-Apr-23	0.26	WOL block
YB55796	Quartz	WOL	WOL 176	16-Aug-94	6-Sep-94	2-Apr-23	0.12	WOL block
YB55797	Quartz	WOL	WOL 177	16-Aug-94	6-Sep-94	2-Apr-23	0.28	WOL block
YB55798	Quartz	WOL	WOL 178	16-Aug-94	6-Sep-94	2-Apr-23	0.27	WOL block
YB55799	Quartz	WOL	WOL 179	16-Aug-94	6-Sep-94	2-Apr-23	0.23	WOL block
YB55800	Quartz	WOL	WOL 180	16-Aug-94	6-Sep-94	2-Apr-23	0.21	WOL block
YB55862	Quartz	TAG	TAG 1412	18-Aug-94	6-Sep-94	2-Apr-23	0.10	WOL block
YB55863	Quartz	TAG	TAG 1413	18-Aug-94	6-Sep-94	2-Apr-23	0.10	WOL block
YB55864	Quartz	TAG	TAG 1414	18-Aug-94	6-Sep-94	2-Apr-23	0.18	WOL block
YB55865	Quartz	TAG	TAG 1415	18-Aug-94	6-Sep-94	2-Apr-23	0.18	WOL block
YB55880	Quartz	TAG	TAG 1430	24-Aug-94	6-Sep-94	2-Apr-23	0.16	WOL block
YB70142	Quartz	WOL	WOL 240	22-Sep-95	13-Oct-95	2-Apr-23	0.03	JACK block
YB70143	Quartz	WOL	WOL 241	22-Sep-95	13-Oct-95	2-Apr-23	0.03	JACK block
YB70144	Quartz Quartz	WOL WOL	WOL 242 WOL 243	22-Sep-95	13-Oct-95	2-Apr-23	0.04	JACK block
YB70145		WOL	WOL 243 WOL 244	22-Sep-95 22-Sep-95	13-Oct-95 13-Oct-95	2-Apr-23 2-Apr-23		JACK block JACK block
YB70146	Quartz Quartz	WOL	WOL 244 WOL 246	22-Sep-95 22-Sep-95	13-Oct-95 13-Oct-95	2-Apr-23 2-Apr-23	0.04	JACK block
YB70148 YB70151	Quartz	WOL	WOL 240 WOL 249	22-Sep-95 22-Sep-95	13-Oct-95	2-Apr-23 2-Apr-23	0.02	JACK block
YB84457	Quartz	BOOT	BOOT 19	22-3ep-95 28-May-96	17-Jun-96	2-Apr-23 2-Apr-23	0.18	GO block
YB84458	Quartz	BOOT	BOOT 19 BOOT 20	28-May-96	17-Jun-96	2-Apr-23	0.13	GO block
YB84459	Quartz	BOOT	BOOT 20	28-May-96	17-Jun-96	2-Apr-23	0.12	GO block
YB84460	Quartz	BOOT	BOOT 21 BOOT 22	28-May-96	17-Jun-96	2-Apr-23	0.07	GO block
YB84461	Quartz	JACK	JACK 1	27-May-96	17-Jun-96	2-Apr-23	0.00	JACK block
YB84462	Quartz	JACK	JACK 2	27-May-96	17-Jun-96	2-Apr-23	0.00	JACK block
YB84463	Quartz	JACK	JACK 3	27-May-96	17-Jun-96	2-Apr-23	0.01	JACK block
YB84464	Quartz	JACK	JACK 4	27-May-96	17-Jun-96	2-Apr-23	0.00	GO block
YB84465	Quartz	JACK	JACK 5	27-May-96	17-Jun-96	2-Apr-23	0.00	GO block
YB84466	Quartz	JACK	JACK 6	26-May-96	17-Jun-96	2-Apr-23	0.05	JACK block
YB84467	Quartz	JACK	JACK 7	26-May-96	17-Jun-96	2-Apr-23	0.04	JACK block
YB84468	Quartz	JACK	JACK 8	26-May-96	17-Jun-96	2-Apr-23	0.04	JACK block
YB84469	Quartz	JACK	JACK 9	26-May-96	17-Jun-96	2-Apr-23	0.03	JACK block
YB84470	Quartz	JACK	JACK 10	26-May-96	17-Jun-96	2-Apr-23	0.02	JACK block
YB84471	Quartz	JACK	JACK 11	26-May-96	17-Jun-96	2-Apr-23	0.01	JACK block
YB84472	Quartz	JACK	JACK 12	26-May-96	17-Jun-96	2-Apr-23	0.03	JACK block
YB84473	Quartz	JACK	JACK 13	26-May-96	17-Jun-96	2-Apr-23	0.02	JACK block
YB84474	Quartz	JACK	JACK 14	26-May-96	17-Jun-96	2-Apr-23	0.03	JACK block
YB84475	Quartz	JACK	JACK 15	26-May-96	17-Jun-96	2-Apr-23	0.03	JACK block
YB84476	Quartz	JACK	JACK 16	26-May-96	17-Jun-96	2-Apr-23	0.02	JACK block
YB84477	Quartz	JACK	JACK 17	26-May-96	17-Jun-96	2-Apr-23	0.02	JACK block
YB84478	Quartz	JACK	JACK 18	28-May-96	17-Jun-96	2-Apr-23	0.04	JACK block
YB85305	Quartz	JACK	JACK 19	4-Jul-96	12-Jul-96	2-Apr-23	0.01	JACK block
YB85328	Quartz	JACK	JACK 20	4-Jul-96	12-Jul-96	2-Apr-23	0.00	JACK block
YB85329	Quartz	JACK	JACK 21	4-Jul-96	12-Jul-96	2-Apr-23	0.03	JACK block
YB85330	Quartz	JACK	JACK 22	4-Jul-96	12-Jul-96	2-Apr-23	0.00	JACK block
YB85331	Quartz	JACK	JACK 23	4-Jul-96	12-Jul-96	2-Apr-23	0.00	JACK block
YB85332	Quartz	JACK	JACK 24	4-Jul-96	12-Jul-96	2-Apr-23	0.03	JACK block
YB85333	Quartz	JACK	JACK 25	4-Jul-96	12-Jul-96	2-Apr-23	0.01	JACK block
YB85334	Quartz	JACK	JACK 26	4-Jul-96	12-Jul-96	2-Apr-23	0.01	JACK block
YB85336	Quartz	JACK	JACK 28	4-Jul-96	12-Jul-96	2-Apr-23	0.03	JACK block
YB85382	Quartz	LOW	LOW 1	28-Jun-96	16-Jul-96	2-Apr-23	0.13	WOL block
YB85383	Quartz	LOW	LOW 2	28-Jun-96	16-Jul-96	2-Apr-23	0.12	WOL block



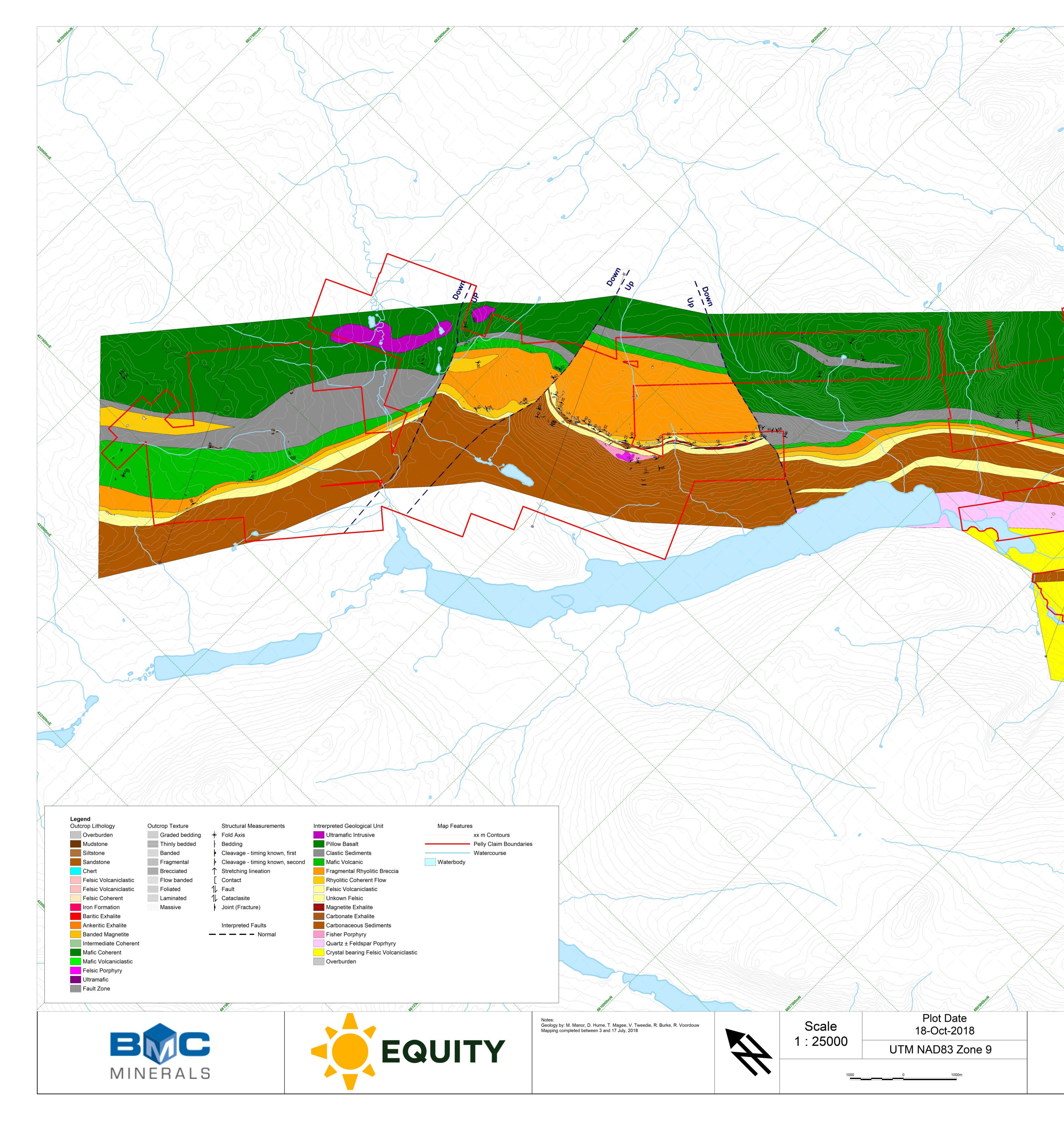
Grant Number	Tenure Type	Claim Name	Claim Label	Staking Date	Recording Date	Expiry Date	Area km²	Block
YB85384	Quartz	LOW	LOW 3	28-Jun-96	16-Jul-96	2-Apr-23	0.13	WOL block
YB85385	Quartz	LOW	LOW 4	28-Jun-96	16-Jul-96	2-Apr-23	0.13	WOL block
YB85386	Quartz	LOW	LOW 5	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB85387	Quartz	LOW	LOW 6	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB85388	Quartz	LOW	LOW 7	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB85389	Quartz	LOW	LOW 8	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB85390	Quartz	LOW	LOW 9	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB85391	Quartz	LOW	LOW 10	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB85392	Quartz	LOW	LOW 11	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB85393	Quartz	LOW	LOW 12	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB85394	Quartz	LOW	LOW 13	28-Jun-96	16-Jul-96	2-Apr-23	0.09	WOL block
YB85395	Quartz	LOW	LOW 14	28-Jun-96	16-Jul-96	2-Apr-23	0.11	WOL block
YB87487	Quartz	JACK	JACK 30	11-Sep-96	23-Sep-96	2-Apr-23	0.06	JACK block
YB88805	Quartz	JACK	JACK 31	12-Oct-96	6-Nov-96	2-Apr-23	0.00	JACK block
YB88806	Quartz	JACK	JACK 32	12-Oct-96	6-Nov-96	2-Apr-23	0.13	JACK block
YB88807	Quartz	JACK	JACK 33	12-Oct-96	6-Nov-96	2-Apr-23	0.02	JACK block
YB89634	Quartz	GO	GO 125	14-Jul-97	28-Jul-97	2-Apr-23	0.02	GO block
YB89635	Quartz	GO	GO 126	14-Jul-97	28-Jul-97	2-Apr-23	0.01	GO block
YB89636	Quartz	GO	GO 127	14-Jul-97	28-Jul-97	2-Apr-23	0.02	GO block
Total			422 claims				72.21	

Appendix D: Traverse Summaries

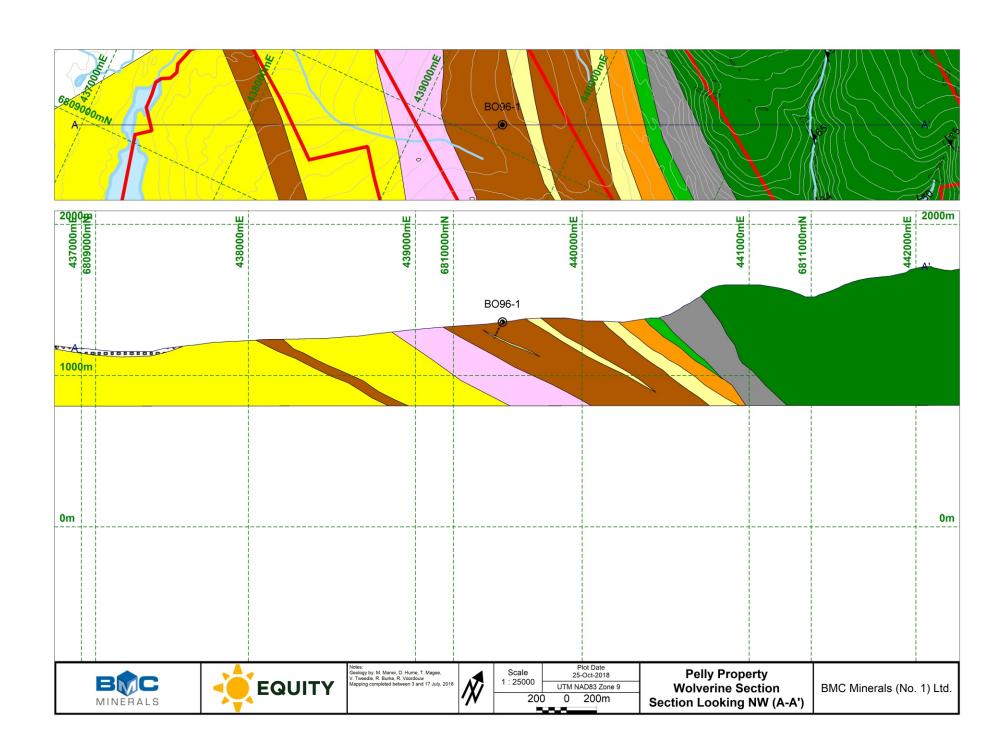
Table D-1: Pelly mapping traverse logs

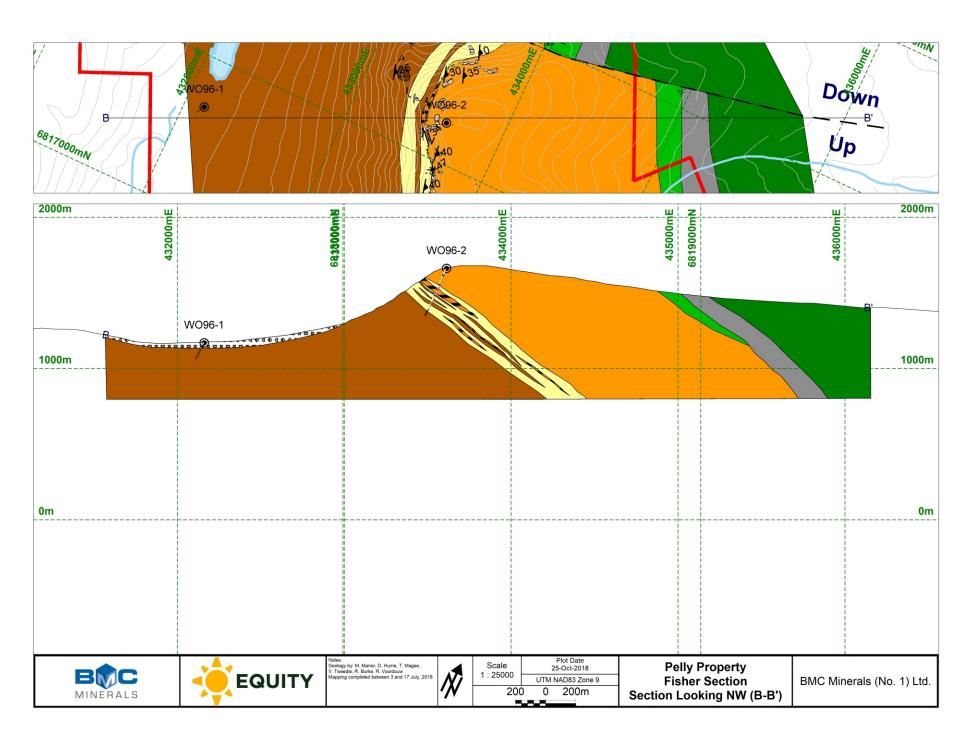
Traverse Date	Geologist	Traverse Summary
2018-07-04	D.Hume + T.Magee +	Introduction day at the Fisher zone. Started traverse at top
	M.Manor +	of hill at coherent, fragmental rhyolite, down to
	V.Tweedie	volcaniclastics, exhalite, argillite, and Fisher porphyry.
2018-07-05	T.Magee + M.Manor	Hot, sunny day. Traversed downhill along the "Fisher
		Porphyry" area with Matt. Mapped and collected assay
		samples on the main Fisher prospect.
2018-07-05	D.Hume + V.Tweedie	Warm sunny day with brief hail. Traversed down and across
		hill from Fisher zone through coherent and fragmental
		volcanics, felsic porphyry, volcaniclastics,
2018-07-06	T.Magee + D.Hume	Cloudy cool day with scattered showers. Traversed down hill
		on the Pelly claim area just south from the main "Fisher
		Porphyry". Found some outcrops to possibly extend the
		exhalative unit.
2018-07-06	M.Manor +	Cool, cloudy, and windy day with spotty showers. Traverse
	V.Tweedie	line began at top of ridge and went down, crossing the
		southern extent of Fisher Porphyry, argillite, and tuff-
		argillite. Last half of day spent ground-truthing Cominco Zn
		+Ag soil anomalies in lower valley – no outcrop found.
2018-07-07	M.Manor +	Blue bird day! Started traverse on argillite mounds at
	V.Tweedie + R.Burke	bottom of hill, then walked up creek in the gully. Matt took
		separate traverse to N in early afternoon (Trav B). Found
		exhalite in multiple locations.
2018-07-07	T.Magee + D.Hume	Sunny, hot day. Mapping South of the Fisher Porphyry to the
		extent of the claim. Spent the morning traversing the ridges,
		followed by traversing halfway down the mountain to find
		possible exhalative unit.
2018-07-08	T.Magee	Slightly hazy, sunny day. Quite warm. Dropped at drill hole
		WO96-02. Traversed NE towards the gully to verify a
		possible fault on the historical map. From noon, traversed
		along the gully (~SW) towards previously mapped outcrops
2010 07 00		from orientation day.
2018-07-08	D.Hume	Warm sunny day. Dropped off on one of the hills to the NE
		of the Fisher zone and traversed to large orange cliff north
		of Fisher prospect. Transected Campbell Range pillow basalt,
		chert, massive basalt, and felsic coherents. Lithogeochem
2018-07-08	V.Tweedie	samples collected of each. Warm sunny but hazy day. Dropped off at WO96-02.
2010-07-00	v.i weeule	Traversed SE and found coherent fragmental rhyolite.
2018-07-09	Т Мадоо	Hot day. Traversed in the NW of WOL block. Tried to find
2010-07-09	T.Magee	
2018-07-09	V Twoodic	contacts between the interpreted basalt and ultramafics.
2010-07-09	V.Tweedie	Warm sunny day, windy in morning. Mapped outcrops of
		felsic and mafic volcanics. Collected lithogeochem samples.

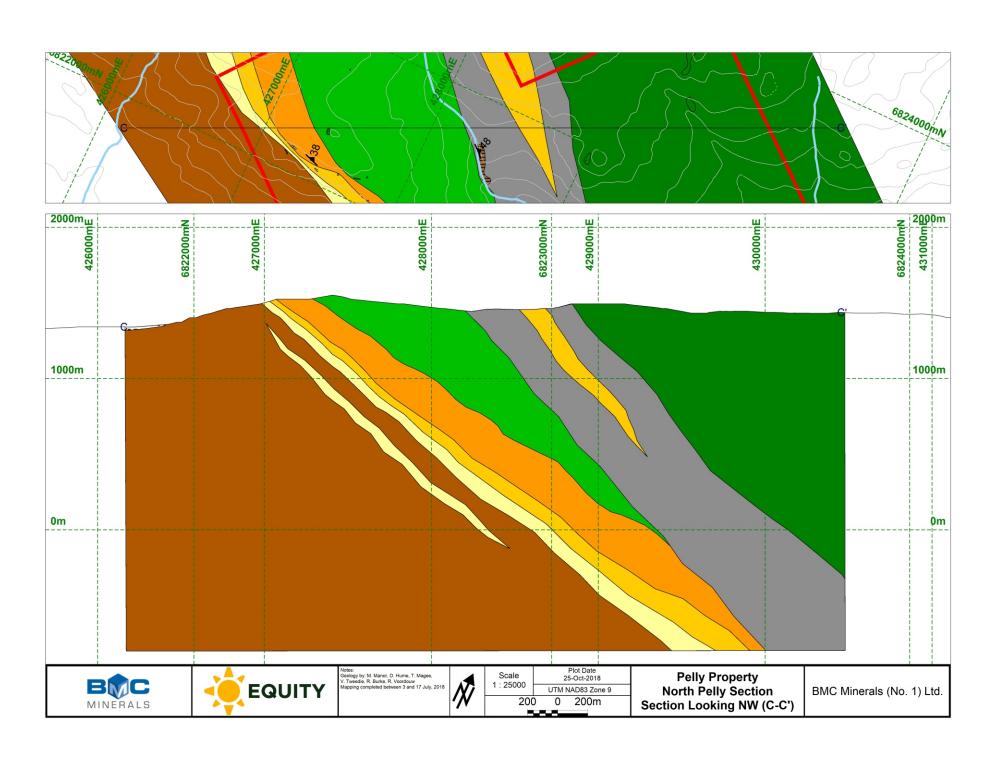
Traverse Date	Geologist	Traverse Summary
2018-07-09	D.Hume	Mapped pillow basalts all day from same hill as day before through valley. Mapped units show 'mafic tuff', but all display pillow textures.
2018-07-10	R.Black, R.Burke, S.Piercey, M.Colpron, D.Hume, M.Manor, T.Magee, V.Tweedie, N.Denisova	Group traverse through from Fisher Porphyry over to WO96- 2 section. Went to Money Creek Fm outcrop East of Pelly Property afterward.
2018-07-11	M.Manor	Started just north of Fisher porphyry and traversed north to WO96-02. Traced the contact between rhyolite breccias and felsic tuffs, searching for exhalite mapped by Cominco. No exhalite horizons found.
2018-07-11	V.Tweedie	Windy with mixed sun and clouds. Mapped contact between flow banded rhyolite and argillite unit, appear to be intercalated and contain intervals of chert.
2018-07-11	T.Magee	Windy day and encounter with a bear; long traverse to map and infill a section of the map; found and connected the coherent rhyolite along strike
2018-07-11	D.Hume	Mapped from knob north of WO96-2, through valley, and up hill to WO96-2. Encountered a fault zone in the valley, with felsic rocks (HW) to the north and mudstone (FW) to the South. Also found gossan float, with ~2% Zn XRF analysis.
2018-07-12	V.Tweedie	Windy wet day. Mapped footwall of Wolverine mine, found quartz porphyry subcrop and two argillite outcrops.
2018-07-12	T.Magee	Wet day. Raining. Traversed in some lower ground, South- East of the Wolverine mine site; located a couple of felsic tuff outcrops.
2018-07-12	M.Manor	Wet, low visibility, cold, snow. Traversed ridges east and above Wolverine mine site in Campbell Range basalts. All basalt, no other units found.
2018-07-12	D.Hume	Mapped atop hill east of Wolverine. Went from alpine down one ravine and up another. Saw Pillow Basalt all day. Some of which had been previously recorded as mafic tuff?
2018-07-13	T.Magee	Patchy cloudy with interspersed rain showers; on top of the hill SW from Wolverine deposit finding contacts in the interpreted footwall of the Wolverine succession
2018-07-13	D.Hume	Mapped in footwall rocks west of Wolverine (GO claims). Primarily observed Fd ± Qz porphyritic tuffs. Fd varied in size and abundance, whereas the Qz was usually fgr and rounded. Toughbook battery died early (~2 PM).
2018-07-13	V.Tweedie	Variable sun and cloud with rain and hail. Mapped footwall of Wolverine. Observed volcaniclastics with Qz ± Fd phenos, local hematite alteration and mod. foliation.



Traverse Date	Geologist	Traverse Summary
2018-07-13	M.Manor	Sun and periods of rain/hail. Traversed just south of Victoria.
		Found Qz-Fd porphyry (Cgr; Fd phenocrysts up to 30mm),
		Qz-Fd crystal tuffs (finer grain size), and argillites.
2018-07-14	T.Magee	Periods of both sun and rain. Infilled and traversed claimed
	-	land between the fisher prospect and Wolverine. Identifying
		Campbell Range Succession and possible Money Creek Fm.
2018-07-14	M.Manor	Sun, rain, and mosquitos. Traversed through Campbell
		Range basalts and some Money Creek Fm. Ended traverse
		and joined Ty for remainder of day.
2018-07-14	V.Tweedie	Sunny and light rain. Mapped Campbell Range pillow basalts,
		argillite subcrop, and possible Money Creek Formation in
		northeast section of WOL claim.
2018-07-14	D.Hume	Steep and bushy day mapping from top of hill above
		Wolverine mine down through 'Wolverine stratigraphy'
		Mainly encountered CR basalts on hill and Money Cr Fm
		down the hill. No Wolverine Strat encountered, especially in
		creek, where there was no OC. Stratigraphy does not seem
		to bend around the hill as previously interpreted.
2018-07-15	V.Tweedie	Chilly and overcast. Mapped northeast WOL block. Observed
		altered pillow basalts with calcite and chlorite alteration
		from the Campbell Range and an argillite outcrop.
2018-07-15	T.Magee	Cool overcast day. Mapped in the north WOL block.
	- 0	Observed altered pillow basalts from the CRS and strongly
		foliated basalts from Wolverine succession?
2018-07-15	M.Manor	Cloudy and cool day. Mapped in northern block working
		south. Abundant Wolverine (?) basalts, some coherent-
		fragmental rhyolite, and argillite.
2018-07-16	M.Manor	Sunny, cloudy, and hail at end of day. Traversed with Crey.
		Down creek in morning – no OC. Up other creek to the south
		in afternoon and found tuffs of variable crystal contents.
2018-07-16	T.Magee	Traversed along strike to Wolverine mine stratigraphy. Lots
	_	of bush. No outcrop found.
2018-07-16	V.Tweedie	Mapped contact between felsic porphyry (Qz ± Fd), felsic
		volcaniclastic, and argillite units at NW of the GO block.
2018-07-17	V.Tweedie	Bush-wacked in northern region of GO block. Mapped float,
		unable to find outcrop. Unable to cross large stream,
		continued back to Campbell Range Basalts with Ty.
2018-07-17	T.Magee	Started in the central area of the GO Block planning to
		traverse South. Unable to cross the stream safely so
		travesed the GO block with V.Tweedie.
2018-07-17	M.Manor	Cloudy day in northern block – traversed down stream to
		where ended on 15 th . Went through Money Creek Fm and
		Wolverine basalts to define contact, then traversed east into
		Campbell Range basalts.


Appendix E: Geological Map and Sections





Pelly Property Geological Map

BMC Minerals (No. 1) Ltd.

Appendix F: Rock Sample Descriptions

Table F-1: Rock Samples Description

Formation abbreviations: WLS – Wolverine Succession; CMS – Campbell Range Succession

Lithology abbreviations: SDO – Sedimentary Dolomite; FRHc – Felsic Rhyolite Coherent; FPO – Felsic Porphyry; TFZ – Structure Fault Zone; SCH – Sedimentary Chert; MBAc – Mafic Basalt Coherent; FRHv – Felsic Rhyolite volcaniclastic; SIF – Sedimentary Iron Formation; SMU – Sedimentary Mudstone;

All coordinates in NAD83 UTEM Zone 9

SampleID	Sample Type	UTM_E	UTM_N	Form.	Lith Code	Texture	Analysis	Comments	Sampler
Q190903	GRAB	433486	6818242	WLS	SDO		Litho	~1m thick calcareous exhalate unit	D. Hume
Q190904	GRAB	433482	6818227	WLS	SDO		Assay	Exhalative unit. Strong ankerite alteration. Qtz tensions veins present.	D. Hume
Q190905	GRAB	433465	6818256	WLS	SDO	Thinly bedded	Assay	Thinly banded felsic volcanic and exhalative layers	D. Hume
Q190906	GRAB	433451	6818280	WLS	SDO		Assay	Oxidized exhalite with local sulfide occurrences	D. Hume
Q190907	GRAB	433839	6817560	WLS	FRHc	Fragmental	Litho	Light-grey, aphanitic Fragments in coherent rhyolite flow	D. Hume
Q190908	GRAB	433639	6817447	WLS	FPO	Porphyritic	Litho	Dark-grey, aphanitic siliceous groundmass, amphibole-feldspar phyric dacite	D. Hume
Q190909	FLOAT	434140	6816698	WLS	ZMG		Assay	Banded magnetite and silica	D. Hume
Q190910	GRAB	435823	6815516	WLS	TFZ		Assay	Rusty orange-red with ankerite alteration. Some stockwork silica also found	D. Hume
Q190911	GRAB	435822	6815529	WLS	TFZ		Assay	Rusty ankerite matrix with quartz clasts. Possible fault zone?	D. Hume
Q190912	GRAB	435275	6815824	WLS	FRHc	Foliated	Assay	Fe-stained exhalite with disseminated pyrite and possible barite	D. Hume
Q190913	GRAB	433164	6820659	MCF	SCH	Thinly bedded	Litho	Finely laminated chert	D. Hume
Q190914	GRAB	433158	6820680	CMS	MBAc	Pillows	Litho	thinly bedded brecciated basalt	D. Hume
Q190915	GRAB	433250	6820575	CMS	MBAc		Assay	Quartz vein with significant ankerite infill	D. Hume
Q190916	GRAB	433199	6820464	CMS	MBAc	Medium bedding	Litho	Massive coherent basalt	D. Hume
Q190917	GRAB	433032	6820236	WLS	FRHc	Foliatedow Banded	Litho	Banded aphanitic rhyolite	D. Hume
Q190918	GRAB	432527	6820694	CMS	MBAc	Pillows	Litho	Vesicular, chloritic pillow basalt	D. Hume
Q190919	FLOAT	433378	6818280	WLS	SIF		Assay	Very weathered, rusty, vuggy, slag-looking float	D. Hume
Q190920	GRAB	433458	6818248	WLS	FRHv	La	Assay	Finely laminated, sericite altered volcaniclastic	D. Hume
Q190921	FLOAT	442253	6811218	CMS	MBAc		Assay	Float of Fe-carbonate altered basalt in creek	D. Hume

SampleID	Sample Type	UTM_E	UTM_N	Form.	Lith Code	Texture	Analysis	Comments	Sampler
Q190922	GRAB	441702	6810472	CMS	MBAc	Pillows	Litho	Coherent basalt. Previously mapped as "Money Creek Fm." But looks like "Campbell Range Succession"	D. Hume
Q190923	GRAB	440157	6806963	WLS	FRHv	Thinly bedded	Litho		D. Hume
Q190801	GRAB	433886	6817236	WLS	SIF		Assay	Baritic Iron Formation. Exhalative unit with disseminated sulfides	T. Magee
Q190802	GRAB	433889	6817235	WLS	SIF		Assay	Fe-oxide alteration. Exhalative unit	T. Magee
Q190803	GRAB	435640	6815600	WLS	FRHc	Foliatedow Banded	Litho	Felsic rhyolite unit	T. Magee
Q190804	GRAB	433485	6818567	WLS	FRHv	La	Assay	Possible exhalative unit	T. Magee
Q190807	GRAB	434055	6816913	WLS	SIF	Bedded	Assay	Massive magnetite showing. Likely the exhalative unit	T. Magee
Q190808	GRAB	438647	6810587	WLS	FRHv	Clastic	Assay	sulfide stringer showings in a volcaniclastic unit.	T. Magee
Q190809	GRAB	442004	6805293	WLS	SMU	Massive	Litho	Strongly silicified mudstone	T. Magee
Q190810	GRAB	427856	6823913	WLS	FRHc	Foliatedow Banded	Litho	Coherent rhyolite	T. Magee
Q721251	GRAB	433976	6817298	WLS	FRHc	Aphanitic	Litho	Rhyolite with trace Fe- carb + py	M. Manor
Q721252	GRAB	433919	6817221	WLS	FRHv	Thinly bedded	Litho	Fgr felsic tuff + tr magnetite	M. Manor
Q721253	GRAB	433804	6817100	WLS	FPO	Porphyritic	Litho	Fine- to - medium grained k-feldspar porphyry with pervasive bleach alteration	M. Manor
Q721254	GRAB	433685	6817131	WLS	FPO	Porphyritic	Litho	Medium-grained feldspar porphyry (Fisher)	M. Manor
Q721255	GRAB	433911	6816810	WLS	FPO	Porphyritic	Litho	Moderately foliated felsic feldspar (~5-10%) Po rock	M. Manor
Q721256	GRAB	433435	6816374	WLS	FRHv	Bedded	Litho	Volcaniclastic felsic argillite material between beds	M. Manor
Q721257	GRAB	434600	6816556	WLS	FRHc	Massive	Assay	Silica- altered rhyolite with carbonaceous material along foliation	M. Manor
Q721258	GRAB	434610	6816565	WLS	SIF	Banded	Assay	Siliceous tuff with traces of sulfides; 1 m above exhalite layer	M. Manor
Q721259	GRAB	434609	6816566	WLS	SIF	Banded	Assay	Bands of alternating magnetite and quart From exhalite with euhedral medium- grained pyrite; Near border with tuff/ volcaniclastic unit	M. Manor
Q721260	GRAB	434690	6816505	WLS	FRHc	Foliatedow Banded	Assay	Exhalitive unit with strong ankerite alteration. Traces of pyrite locally found	M. Manor
Q721261	GRAB	434470	6816748	WLS	SDO		Assay	Exhalite layer of carbonate-quartz- magnetite	M. Manor

SampleID	Sample Type	UTM_E	UTM_N	Form.	Lith Code	Texture	Analysis	Comments	Sampler
Q721262	GRAB	432430	6819567	WLS	FRHv	Medium bedding	Litho	Si-altered felsic tuff from rhyolite/ argillite contact	M. Manor
Q721263	GRAB	432247	6819785	WLS	FRHv	Granular	Litho	Felsic tuff	M. Manor
Q721264	GRAB	433581	6818065	WLS	FRHv	Medium bedding	Litho	Layer of siliceous argillite in felsic tuff	M. Manor
Q721265	GRAB	440247	6811477	CMS	MBAc	Pillows	Litho	Pillow basalt	M. Manor
Q721266	GRAB	440177	6808146	WLS	FPO	Porphyritic	Litho	Quartz-eye crystal tuff unit	M. Manor
Q721267	GRAB	439590	6807262	WLS	FRHv	Thinly bedded	Litho	Hbl xtl tuff/intrusive?	M. Manor
Q721268	GRAB	439897	6807053	WLS	FRHv	Thinly bedded	Litho	Fine grained felsic ash tuff intercalated with argillites	M. Manor
Q721269	GRAB	427383	6822358	WLS	MBAc		Litho	Carbonaceous basalt in Wolverine Lake Group?	M. Manor
Q721270	GRAB	428582	6821762	WLS	MBAc	Aphanitic	Litho	Coherent to locally foliated. Aphanitic basalt flow/intrusive? Possibly Wolverine Lake Group basalts?	M. Manor
Q721271	GRAB	439592	6805466	WLS	FRHv	Thinly bedded	Litho	Qtz-eye crystal tuff	M. Manor
Q190860	GRAB	434039	6819407	WLS	FRHc	Fragmental	Litho	Rhyolite near mafic flow	V. Tweedie
Q190861	GRAB	433740	6817655	CMS	MBAc	Foliated	Litho	Massive to medium- bedded, silica-altered felsic tuff	V. Tweedie
Q190862	GRAB	433730	6817693	WLS	FRHv	Thinly bedded	Litho	Contact of rhyolite , argillite, with chert?	V. Tweedie
Q190863	GRAB	433581	6818065	WLS	FRHc	Foliatedow Banded	Litho	A layer of siliceous argillite in felsic tuff	V. Tweedie
Q190864	GRAB	440690	6809376	WLS	FRHv	Foliated	Litho	Appearance of a volcaniclastic. Foliated with quartz lapillis/phenocrysts	V. Tweedie
Q190865	GRAB	440675	6808812	WLS	SMU	Thinly bedded	Litho	thinly bedded sedimentary mudstone unit.	V. Tweedie
Q190866	GRAB	440014	68081789	WLS	FRHv	Porphyritic	Litho	Felsic Volcaniclastic	V. Tweedie
Q190867	GRAB	439418	6807917	WLS	FRHv	Foliated	Litho	Coherent felsic volcanic with pink ankerite alteration	V. Tweedie
Q190868	GRAB	438866	6814596	CMS	MBAc	Aphanitic	Litho	Altered mafic volcanic	V. Tweedie
Q190869	GRAB	438478	6815357	CMS	MBAc	Porphyritic	Litho	Coherent green aphanitic basalt with green phenicrysts.	V. Tweedie
Q190870	GRAB	438400	6814865	CMS	MBAc	Foliated	Litho	Mapped as "reworked mafics" unit. Possible flow with calcite	V. Tweedie
DH18-01	Hand	433562	6818227	WLS	FRHc	Fragmental	N/A	Fragmental rhyolite	D. Hume
DH18-02	Hand	434327	6816819	WLS	FRHc	Flow banded	N/A	Chlorite-altered flow banded rhyolite	D. Hume
DH18-03	Hand	435282	6815818	WLS	FRHc	Flow banded	N/A	Chlorite-altered fragmental rhyolite	D. Hume
DH18-04	Hand	433880	6817201	WLS	FRHc	Flow banded	N/A	Silica-altered banded rhyolite	D. Hume
DH18-05	Hand	432330	6819876	WLS	FRHc	Flow banded	N/A	Banded silica with carbonate	D. Hume
DH18-06	Hand	438809	6815922	WLS	SMU	Laminated	N/A	mudstone with silica bands	D. Hume

SampleID	Sample Type	UTM_E	UTM_N	Form.	Lith Code	Texture	Analysis	Comments	Sampler
DH18-07	Hand	434407	6816805	WLS	SMU	Banded	N/A	Si banded mudstone	D. Hume
DH18-08	Hand	441446	6810871	CMS	MBAc	Pillows	N/A	Jasper	D. Hume
DH18-09	Hand	433471	6818289	WLS	FRHv	-	N/A	Volcaniclastic rhyolite	D. Hume
DH18-10	Hand	440156	6806963	WLS	FRHv	Thinly bedded	N/A	felsic ash tuff	D. Hume
DH18-11	Hand	435937	6817261	MCF	FRHv	Thinly bedded	N/A	Quartz-phyric tuff	D. Hume
DH18-12	Hand	436086	6815373	MCF	IPO	Porphyritic	N/A	Quartz-amphibole tuff	D. Hume
DH18-13	Hand	436087	6815375	MCF	IPO	Porphyritic	N/A	amphibole-phyric tuff	D. Hume
DH18-14	Hand	433810	6817107	WLS	FPO	Porphyritic	N/A	Sericite altered, foliated, feldspar porphyry	D. Hume
DH18-15	Hand	433633	6817448	WLS	FPO	Porphyritic	N/A	feldspar porphyry	D. Hume
DH18-16	Hand	439330	6812217	MCF	SST	Thinly bedded	N/A	lithic/sandstone	D. Hume
DH18-17	Hand	442396	6804632	WLS	SSI	Thinly bedded	N/A	Possible pelite?	D. Hume
DH18-18	Hand	433158	6820663	MCF	SCH	Thinly bedded	N/A	chert	D. Hume
DH18-19	Hand	433177	6820747	CMS	MBAc	Pillows	N/A	Coherent mafic	D. Hume
DH18-20	Hand	442238	6804632	WLS	SMU	Thinly bedded	N/A	hydrothermal breccia	D. Hume
DH18-21	Hand	433918	6817261	WLS	FRHv	-	N/A	lapilli tuff	D. Hume
DH18-22	Hand	434170	6816856	WLS	ZMG	Banded	N/A	Banded magnetite	D. Hume
DH18-23	Hand	-	-	WLS	SMU	-	N/A	mudstone	D. Hume
DH18-24	Hand	436047	6815388	MCF	IPO	Porphyritic	N/A	Intermediate porphyry	D. Hume
DH18-25	Hand	436036	6815435	MCF	IPO	Porphyritic	N/A	Intermediate porphyry	D. Hume
MM18-01	Hand	427099	6823125	WLS	MBAc	Granular	N/A	Money Creek?/ Wolverine basalt?	M. Manor
MM18-02	Hand	427207	6822165	WLS	FRHc	Fragmental	N/A	Fragmental Rhyolite?	M. Manor
MM18-03	Hand	427184	6822125	WLS	SMU	Laminated	N/A	Siliceous Argillite?	M. Manor
MM18-04	Hand	428350	6821815	MCF	SST	Granular	N/A	Money Creek?	M. Manor
MM18-05	Hand	428350	6822655	MCF	SSI	Foliated	N/A	Money Creek Phyllite	M. Manor
MM18-06	hand	429409	6822047	MCF	SST	Foliated	N/A	Money Creek?/ Wolverine basalt?	M. Manor
MM18-07	Hand	430197	6822312	MCF	SSI	Foliated	N/A	Money Creek?	M. Manor
MM18-08	Hand	433883	6817228	WLS	SIF	Massive	N/A	Massive magnetite	M. Manor
MM18-09	Hand	434470	6816748	WLS	SDO	-	N/A	Dolomite with cb+qtz+mg exhalative in flow banded rhyolite	M. Manor
MM18-10	Hand	434556	6816693	WLS	FRHv	-	N/A	felsic tuff?	M. Manor
MM18-11	Hand	434764	6816335	WLS	ZMG	Thinly bedded	N/A	Banded magnetite	M. Manor
MM18-12	Hand	437668	6816275	MCF	MUN	Brecciated	N/A	Reworked mafic (fragments)	M. Manor
MM18-13	Hand	440343	6807788	WLS	FPO	Porphyritic	N/A	QF porphyry?	M. Manor
MM18-14	Hand	439446	6807076	WLS	FRHv	Foliated	N/A	Felsic Volcaniclastic	M. Manor
MM18-15	Hand	439961	6807068	WLS	FRHv	Medium bedding	N/A	Rhyolite?	M. Manor
MM18-16	Hand	439749	6805641	WLS	FRHv	Thinly bedded	N/A	QF Crystal Tuff	M. Manor

SampleID	Sample Type	UTM_E	UTM_N	Form.	Lith Code	Texture	Analysis	Comments	Sampler
MM18-17	Hand	439722	6805591	WLS	FRHv	Thinly bedded	N/A	felsic volcaniclastic	M. Manor
MM18-18	Hand	433671	6818264	WLS	FRHc	Fragmental	N/A	Fragmental Rhyolite	M. Manor
TM18-01	hand	427873	6823947	MCF	FRHc	Fragmental	N/A	Flow banded rhyolite?	T. Magee
TM18-02	Hand	433317	6820849	CMS	MBAv	Clastic	N/A	Clastic Mafic? *off claim*	T. Magee
TM18-03	Hand	433327	6820878	CMS	MBAv	Fragmental	N/A	Mafic volcaniclastic with mudstone clasts? *off claim*	T. Magee
TM18-04	Hand	433575	6820838	CMS	UUN	Massive	N/A	Ultramafic *off claim*	T. Magee
TM18-05	Hand	433776	6820721	CMS	UUN	Massive	N/A	Ultramafic massive *off claim*	T. Magee
TM18-06	Hand	434057	6818949	-	TFZ	-	N/A	fault breccia?; cataclasite	T. Magee
TM18-07	Hand	433991	6819095	WLS	MBAc	Fragmental	N/A	Mafic coherent fragmental	T. Magee
TM18-08	Float	434177	6816798	WLS	ZMG	-	N/A	Silica magnetite	T. Magee
TM18-09	Hand	437677	6815880	MCF	SSI	Slaty	N/A	Money Creek?/cherty mudstone	T. Magee
TM18-10	Hand	440547	6809511	WLS	FRHv	Clastic	N/A	felsic volcaniclastic	T. Magee
VT18-01	Hand	429299	6822530	CMS	MBAc	Granular	N/A	Coherent, blue-green basalt with pervasive chlorite + calcite	V. Tweedie
VT18-02	Hand	433433	6819926	WLS	FRHc	Fragmental	N/A	Felsic fragmental rhyolite	V. Tweedie
VT18-03	Hand	434048	6819507	WLS	FRHc	Foliated	N/A	Rhyolite	V. Tweedie
VT18-04	Hand	434769	6818223	WLS	FRHc	Fragmental	N/A	Fragmental Rhyolite	V. Tweedie
VT18-05	Hand	433657	6817428	WLS	FRHc	Porphyritic	N/A	Rhyolite feldspar porphyry?	V. Tweedie
VT18-06	Hand	435261	6817843	WLS	FRHc	Fragmental	N/A	Flow banded Rhyolite	V. Tweedie
VT18-07	Hand	435567	6817528	WLS	FRHc	Flow banded	N/A	Rhyolite?	V. Tweedie
VT18-08	Hand	438385	6814853	CMS	MBAc	Foliated	N/A	Mudstone	V. Tweedie
VT18-09	Hand	438229	6814846	CMS	MBAc	Pillows	N/A	pillow basalt	V. Tweedie
VT18-10	Hand	438964	6815127	CMS	MBAc	Pillows	N/A	Mafic	V. Tweedie
VT18-11	Hand	438883	6814614	CMA	MBAc	Aphanitic	N/A	Mafic coherent basalt	V. Tweedie
VT18-12	Hand	433434	6816374	WLS	FRHv	-	N/A	felsic volcaniclastic with intercalated argillite	V. Tweedie
VT18-13	Hand	434635	6816592	WLS	FRHc	Glassy	N/A	felsic coherent rhyolite?	V. Tweedie

Appendix G: Rock Sample Certificates of

<u>Analysis</u>

Certificate of Analysis Work Order : VC183009 [Report File No.: 0000032158]

Date: October 19, 2018

To: Neil Martin

BMC MINERALS (NO 1) LTD SUITE 750-789 WEST PENDER ST VANCOUVER BC V6C 1H2

P.O. No.: PO: BMC18-02_01 (Smpls 1-60) Project No.: KZK Samples: 61 Received: Aug 13, 2018 Pages: Page 1 to 21 (Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	Description
61	G_LOG02	Pre-preparation processing, sorting, logging, boxing
61	G_WGH79	Weighing of samples and reporting of weights
61	G_PRP89	Weigh, dry,(up to3.0 kg) crush to 75% passing 2 mm, split 250 g, pulverize to
61	GE_FAA313	@Au, FAS, AAS, 30g-5ml(Final Mode)
61	ZMS_ICM90A	Package - GE_ICM90A (GE_IC90A+GE_IC90M)
61	GE_IC90A	Sodium Peroxide fusion/ICP-AES finish
61	GE_IC90M	Sodium Peroxide fusion/ICP-MS finish
61	GO_XRF76V	Ore grade Borate fusion, XRF

Storage: Pulp & Reject

PULP STORAGE	:	STORE FOR 90 DAYS
REJECT STORAGE	:	STORE FOR 30 DAYS

Certified By : John Chiang QC Chemist

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

Report Footer:

L.N.R. = Listed not received n.a.

= Not applicable

I.S. = Insufficient Sample = No result

*INF = Composition of this sample makes detection impossible by this method

M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Report File No.: 0000032158

	Element Method	WtKg G_WGH79	@Au GE_FAA313	@AI GE_ICM90A	@Ba GE_ICM90A	@Be GE_ICM90A	@Ca GE_ICM90A	@Cr GE_ICM90A	@Cu GE_ICM90A
	Det.Lim.	0.01	5	0.01	10	5	0.1	10	10
	Units	kg	ppb	%	ppm	ppm	%	ppm	ppm
Q190904		2.670	8	0.50	5290	<5	21.7	20	<10
Q190905		2.805	35	3.03	>10000	7	2.9	120	60
Q190906		2.270	32	1.62	>10000	<5	1.9	70	50
Q190909		2.865	7	0.44	>10000	16	0.4	40	10
Q190910		2.955	8	3.17	660	<5	2.2	70	20
Q190911		2.990	10	1.71	460	<5	<0.1	70	70
Q190912		1.675	15	1.02	6800	<5	<0.1	20	100
Q190915		2.815	7	6.49	1390	8	9.4	240	40
Q190919		1.750	28	2.94	550	6	<0.1	20	950
Q190920		2.665	17	3.75	7960	5	0.5	70	60
Q190921		2.460	13	7.22	310	6	5.8	280	100
Q190801		1.380	14	0.12	4870	<5	<0.1	30	20
Q190802		4.010	14	0.41	>10000	<5	<0.1	30	150
Q190804		1.745	8	2.76	4280	<5	0.1	70	230
Q190807		1.880	8	1.00	>10000	6	<0.1	30	<10
Q190808		1.680	7	6.46	1450	<5	0.2	20	<10
Q190863		1.310	6	2.29	6800	<5	<0.1	70	70
Q190903		1.580	6	0.88	2240	<5	9.7	40	<10
Q190907		3.165	<5	1.00	1700	<5	<0.1	50	<10
Q190908		1.675	14	6.58	3430	<5	<0.1	40	<10
Q190913		3.920	17	5.95	2540	<5	0.7	80	160
Q190914		2.065	<5	7.01	300	7	8.0	220	120
Q190916		2.270	12	7.06	220	9	5.7	50	70
Q190917		2.570	7	1.10	780	<5	<0.1	60	30
Q190918		3.110	<5	7.49	230	9	12.1	190	40
Q190922		2.155	<5	9.21	100	6	8.8	160	60
Q190923		2.240	5	6.98	910	<5	<0.1	10	<10
Q190803		1.100	<5	0.87	5130	<5	<0.1	50	30
Q190809		1.880	18	1.12	360	<5	0.6	110	10
Q190810		2.475	10	1.67	4130	<5	<0.1	50	60
Q721251		1.695	19	2.18	5720	<5	<0.1	60	30
Q721252		1.175	<5	3.71	>10000	<5	<0.1	60	10
Q721253		1.515	8	7.23	1680	6	<0.1	20	<10
Q721254		1.845	<5	6.78	1000	5	<0.1	20	<10
Q721255		1.765	<5	9.90	2610	5	0.2	10	<10
Q721256		1.225	5	1.36	420	<5	<0.1	30	<10
Q721257		2.620	6	0.63	910	<5	<0.1	50	<10
Q721258		2.760	<5	2.84	8450	<5	<0.1	60	20
Q721259		2.935	<5	4.56	>10000	71	0.2	90	230
*Dup Q721259		N.A.	12	4.52	>10000	76	0.2	90	230

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 2 of 21

Report File No.: 0000032158

Element	WtKg	@Au	@Al	@Ba	@Be	@Ca	@Cr	@Cu
Method	G_WGH79	GE_FAA313	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
Det.Lim.	0.01	5	0.01	10	5	0.1	10	10
Units	kg	ppb	%	ppm	ppm	%	ppm	ppm
Q721260	3.540	6	2.77	1390	<5	<0.1	70	20
Q721261	2.815	6	0.31	2020	<5	8.1	40	30
Q721262	1.670	<5	1.97	6460	<5	<0.1	50	20
Q721263	1.570	<5	1.87	3360	<5	<0.1	70	30
Q721264	1.400	15	2.13	6750	<5	<0.1	50	<10
Q721265	1.790	6	7.26	60	10	6.4	50	100
Q721266	2.085	<5	7.27	1030	<5	0.3	20	<10
Q721267	2.675	5	6.48	1080	5	0.3	20	<10
Q721268	1.345	<5	5.99	1080	<5	<0.1	10	<10
Q721269	1.525	6	8.38	1610	8	4.3	350	50
Q721270	1.785	<5	6.57	440	11	7.0	60	70
Q721271	1.520	<5	6.79	370	6	1.1	20	<10
Q190860	1.260	<5	7.18	1080	<5	0.2	50	20
Q190861	1.705	<5	7.20	810	<5	7.2	270	100
Q190862	0.920	<5	1.11	1110	<5	<0.1	50	<10
Q190864	1.315	<5	7.10	1050	<5	0.3	20	<10
Q190865	0.880	<5	7.30	120	13	2.8	100	140
Q190866	0.820	<5	6.89	1230	<5	<0.1	10	<10
Q190867	0.820	<5	6.39	1330	<5	0.1	10	<10
Q190868	0.945	<5	6.63	60	6	8.1	310	80
Q190869	0.625	<5	7.92	150	5	6.8	330	80
Q190870	1.115	8	6.62	2750	<5	0.8	20	30
*Std OREAS222		1180						
*Std SN75		8690						
*Std AMIS0474		168						
*BIk BLANK		5						
*Rep Q190913			5.98	2540	<5	0.7	80	160
*Rep Q721264			2.07	6900	<5	<0.1	50	<10
*Rep Q721270			6.74	440	11	7.2	60	70
*Std OREAS70B			3.71	200	<5	3.1	1330	50
*Std OREAS520			5.63	8130	5	4.3	50	2920
*BIk BLANK			<0.01	<10	<5	<0.1	<10	<10
*Rep Q190909		6						
Element Method	@Au GE_FAA313							

*Rep Q190802

Det.Lim.

Units

5 ppb

9

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 3 of 21

Report File No.: 0000032158

	Element Method Det.Lim.	@Fe GE_ICM90A	@K GE_ICM90A	@Li GE_ICM90A	@Mg GE_ICM90A	@Mn GE_ICM90A	@Ni GE_ICM90A	@P GE_ICM90A	@Sc GE_ICM90A
		0.01	0.1	10	0.01	10	5	0.01	5
	Units	%	%	ppm	%	ppm	ppm	%	ppm
Q190904		2.18	0.3	<10	0.12	5020	<5	0.09	6
Q190905		4.39	1.9	50	0.16	890	51	0.35	8
Q190906		5.54	1.1	<10	0.06	2270	40	0.16	<5 <5
Q190909		14.0	0.1	<10	0.02	180	8	0.02	<5
Q190910		3.82	<0.1	20	1.10	700	25	0.04	19
Q190911		2.15	<0.1	20	0.08	470	23	0.02	8 9
Q190912		>25.0	<0.1	20	<0.01	1960	25	0.04	
Q190915		4.72	2.0	40	3.71	1040	116	0.14	25
Q190919		>25.0	0.2	20	0.08	16100	729	0.08	10
Q190920		2.64	1.9	40	0.42	1400	47	0.08	13
Q190921		7.09	1.1	20	2.47	1340	111	0.05	38
Q190801		3.35	<0.1	<10	<0.01	340	19	0.03	38 <5 <5
Q190802		19.8	<0.1	<10	<0.01	380	37	0.04	<5
Q190804		10.4	0.6	<10	0.86	23700	170	0.04	7
Q190807		>25.0	0.1	<10	0.02	570	15	0.13	<5
Q190808		1.49	1.6	20	0.25	210	<5	0.02	<5
Q190863		1.54	0.7	20	0.16	150	29	0.02	6
Q190903		0.94	<0.1	<10	0.34	740	7	0.05	<5
Q190907		0.87	0.4	<10	0.26	100	13	<0.01	<5
Q190908		0.59	5.5	<10	0.03	40	<5	0.03	5
Q190913		3.48	3.1	20	1.04	1000	51	0.02	18
Q190914		8.73	0.5	20	3.92	1100	84	0.03	46
Q190916		8.91	0.2	10	3.78	1360	47	0.10	47
Q190917		0.49	0.2	20	0.06	30	7	<0.01	<5
Q190918		6.40	0.6	20	2.50	1160	98	0.20	32
Q190922		7.16	0.3	10	4.07	1200	69	0.06	41
Q190923		0.52	7.4	<10	0.21	40	<5	0.02	5
Q190803		0.88	0.3	<10	0.08	3190	21	<0.01	5 <5 <5
Q190809		0.79	0.5	30	0.11	60	5	0.36	<5
Q190810		1.42	0.7	10	0.30	50	10	<0.01	6
Q721251		1.18	0.8	20	0.15	70	10	<0.01	6 8 9
Q721252		3.67	1.8	<10	0.21	30	15	0.04	8
Q721253		0.93	3.7	20	0.33	50	<5	0.03	9
Q721254		0.67	4.2	<10	0.04	50	<5	0.02	7
Q721255		2.22	6.5	20	0.32	510	<5	0.06	11
Q721256		0.46	0.6	<10	0.12	30	7	<0.01	<5
Q721257		0.42	0.3	<10	0.05	70	<5	<0.01	<5
Q721258		5.31	0.9	20	0.27	530	20	0.02	7
Q721259		10.5	0.3	<10	0.13	320	21	0.06	12
*Dup Q721259		11.7	0.3	<10	0.14	340	22	0.06	12

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 4 of 21

Report File No.: 0000032158

Element	@Fe	@K	@Li	@Mg	@Mn	@Ni	@P	@Sc
Method	GE_ICM90A							
Det.Lim.	0.01	0.1	10	0.01	10	5	0.01	5
Units	%	%	ppm	%	ppm	ppm	%	ppm
Q721260	2.96	0.2	20	0.12	1970	34	0.02	9
Q721261	0.62	0.1	<10	0.08	2560	28	0.01	<5
Q721262	1.41	0.8	20	0.23	40	10	<0.01	7
Q721263	1.14	0.8	10	0.24	100	19	0.01	7
Q721264	0.57	1.0	20	0.23	50	<5	<0.01	7
Q721265	9.31	0.1	20	3.75	1430	43	0.09	48
Q721266	1.55	3.7	20	0.26	210	<5	0.06	6
Q721267	1.26	4.3	20	0.18	290	<5	0.01	<5
Q721268	1.12	3.8	30	0.35	180	<5	<0.01	<5
Q721269	8.05	4.3	60	4.30	1500	78	0.05	43
Q721270	9.47	1.1	20	3.31	1540	35	0.09	42
Q721271	1.66	3.7	10	0.94	400	<5	0.07	<5
Q190860	2.98	1.3	20	1.01	1850	16	0.02	10
Q190861	7.24	1.1	40	3.59	1220	82	0.05	44
Q190862	0.56	0.6	10	0.12	30	96	<0.01	<5
Q190864	1.97	3.9	20	0.48	370	7	0.05	<5
Q190865	9.60	<0.1	30	3.13	1600	63	0.15	38
Q190866	1.43	6.4	20	0.18	280	<5	0.03	<5
Q190867	1.32	6.2	20	0.26	400	<5	0.03	<5
Q190868	6.56	0.2	10	4.04	1200	57	0.03	47
Q190869	6.65	0.6	20	5.12	1270	86	0.03	43
Q190870	4.09	2.2	30	1.15	1300	9	0.06	14
*Rep Q190913	3.58	3.1	20	1.08	1030	49	0.02	19
*Rep Q721264	0.64	1.0	20	0.22	50	<5	<0.01	7
*Rep Q721270	9.94	1.1	10	3.31	1600	33	0.08	42
*Std OREAS70B	5.34	0.6	30	13.8	1140	2270	0.02	14
*Std OREAS520	16.0	3.3	20	1.29	2520	82	0.07	19
*BIk BLANK	<0.01	<0.1	<10	<0.01	<10	<5	<0.01	<5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 5 of 21

Report File No.: 0000032158

	Element Method	Si GE_ICM90A	@Sr GE_ICM90A	@Ti GE_ICM90A	@V GE_ICM90A	@Zn GE_ICM90A	@Ag GE_ICM90A	@As GE_ICM90A	@Bi GE_ICM90A
	Det.Lim.	0.1	10	0.01	5	5	1	5	0.1
	Units	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Q190904		18.8	1020	<0.01	15	55	<1	<5	<0.1
Q190905		>30.0	160	0.15	296	60	1	22	0.2
Q190906		>30.0	120	0.09	167	1110	3	39	0.1
Q190909		25.2	700	0.02	50	159	<1	<5	<0.1
Q190910		>30.0	80	0.48	190	53	<1	<5	0.4
Q190911		>30.0	60	0.22	85	76	<1	11	0.7
Q190912		16.1	40	0.05	34	144	<1	<5	0.2
Q190915		18.1	370	0.91	211	48	<1	106	<0.1
Q190919		8.2	<10	0.07	65	>10000	<1	205	<0.1
Q190920		>30.0	60	0.18	247	2850	<1	43	0.2
Q190921		22.8	160	0.72	216	72	<1	10	<0.1
Q190801		>30.0	90	0.02	6	305	<1	7	0.2
Q190802		23.6	320	<0.01	78	593	<1	8	<0.1
Q190804		28.4	80	0.19	74	311	<1	10	<0.1
Q190807		11.7	470	0.06	120	149	<1	<5	<0.1
Q190808		>30.0	40	0.18	19	33	<1	10	<0.1
Q190863		>30.0	<10	0.09	130	119	<1	24	0.2
Q190903		>30.0	1020	0.11	16	21	<1	11	<0.1
Q190907		>30.0	<10	0.05	33	24	<1	<5	<0.1
Q190908		>30.0	40	0.23	15	11	<1	<5	<0.1
Q190913		>30.0	20	0.42	207	76	<1	24	0.5
Q190914		22.7	2830	0.87	266	75	<1	<5	<0.1
Q190916		21.4	170	1.21	366	97	<1	<5	<0.1
Q190917		>30.0	<10	0.06	88	12	<1	<5	<0.1
Q190918		18.1	310	1.21	274	71	<1	<5	<0.1
Q190922		21.5	610	0.83	249	59	<1	<5	<0.1
Q190923		>30.0	10	0.17	13	<5	<1	<5	0.8
Q190803		>30.0	70	0.06	25	20	<1	<5	<0.1
Q190809		>30.0	50	0.06	406	35	<1	7	1.1
Q190810		>30.0	<10	0.11	43	26	<1	<5	0.2
Q721251		>30.0	<10	0.10	129	34	<1	<5	0.1
Q721252		>30.0	90	0.21	82	64	<1	83	<0.1
Q721253		>30.0	50	0.24	19	8	<1	11	0.2
Q721254		>30.0	40	0.24	19	9	<1	6	0.2
Q721255		27.0	130	0.33	23	25	<1	<5	0.2
Q721256		>30.0	<10	0.06	26	15	<1	<5	0.2
Q721257		>30.0	<10	0.03	51	21	<1	<5	<0.1
Q721258		>30.0	20	0.13	90	330	<1	<5	<0.1
Q721259		26.8	140	0.28	211	74	<1	<5	0.3
*Dup Q721259		27.4	140	0.28	223	77	<1	<5	0.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 6 of 21

Report File No.: 0000032158

Element	Si	@Sr	@Ti	@V	@Zn	@Ag	@As	@Bi
Method	GE_ICM90A							
Det.Lim.	0.1	10	0.01	5	5	1	5	0.1
Units	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Q721260	>30.0	<10	0.20	69	98	<1	<5	<0.1
Q721261	>30.0	950	<0.01	8	169	<1	<5	<0.1
Q721262	>30.0	10	0.11	56	36	<1	15	0.1
Q721263	>30.0	10	0.11	76	35	<1	<5	0.2
Q721264	>30.0	10	0.09	105	16	<1	<5	<0.1
Q721265	22.1	150	1.20	326	84	<1	<5	<0.1
Q721266	17.4	80	0.20	20	14	<1	<5	<0.1
Q721267	>30.0	80	0.11	6	62	<1	<5	0.2
Q721268	>30.0	50	0.09	5	98	<1	<5	0.4
Q721269	24.4	50	0.85	270	72	<1	29	<0.1
Q721270	24.8	300	1.18	343	98	<1	<5	<0.1
Q721271	>30.0	70	0.15	18	27	<1	<5	0.3
Q190860	>30.0	30	0.21	48	81	<1	6	0.3
Q190861	26.3	270	0.59	215	79	<1	<5	<0.1
Q190862	>30.0	<10	0.05	71	13	<1	7	<0.1
Q190864	>30.0	70	0.18	17	35	<1	<5	<0.1
Q190865	21.7	140	1.61	338	189	<1	26	<0.1
Q190866	>30.0	60	0.18	16	66	<1	<5	<0.1
Q190867	>30.0	70	0.17	14	147	<1	<5	0.3
Q190868	24.0	60	0.72	241	61	<1	<5	<0.1
Q190869	22.0	30	0.68	252	64	<1	<5	<0.1
Q190870	29.2	660	0.32	76	84	<1	<5	0.1
*Rep Q190913	>30.0	20	0.40	212	76	<1	24	0.5
*Rep Q721264	>30.0	10	0.10	111	18	<1	<5	<0.1
*Rep Q721270	25.0	310	1.22	344	96	<1	<5	<0.1
*Std OREAS70B	23.2	70	0.18	73	119	<1	133	0.8
*Std OREAS520	18.8	100	0.52	270	11	<1	155	3.1
*BIk BLANK	<0.1	<10	<0.01	<5	<5	<1	<5	<0.1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 7 of 21

Report File No.: 0000032158

	Element Method	@Cd GE_ICM90A	@Ce GE_ICM90A	@Co GE_ICM90A	@Cs GE_ICM90A	@Dy GE_ICM90A	@Er GE_ICM90A	@Eu GE_ICM90A	@Ga GE_ICM90A
	Det.Lim.	0.2	0.1	0.5	0.1	0.05	0.05	0.05	1
	Units	ppm							
Q190904		0.6	9.7	1.0	0.6	3.74	2.33	0.75	<1
Q190905		<0.2	29.6	6.1	5.9	4.01	2.19	1.29	8
Q190906		6.7	23.2	6.7	1.8	2.75	1.44	1.03	8 5 2
Q190909		<0.2	4.9	1.3	5.8	0.66	0.45	1.97	2
Q190910		<0.2	11.9	19.9	0.2	2.71	1.54	0.71	10
Q190911		0.2	10.2	6.1	0.3	1.33	0.77	0.42	4
Q190912		<0.2	28.1	1.3	0.4	5.23	3.38	1.12	2
Q190915		0.2	49.7	24.9	3.8	3.83	2.05	1.46	16
Q190919		16.9	67.8	185	2.0	21.58	12.43	3.87	4
Q190920		16.1	35.2	19.0	7.4	3.43	1.93	0.97	10
Q190921		<0.2	15.5	40.7	1.5	3.73	2.12	1.02	15
Q190801		0.2	6.2	3.7	<0.1	1.06	0.72	0.23	<1
Q190802		0.5	3.3	4.1	0.3	2.04	1.43	1.53	2
Q190804		1.7	29.2	22.7	2.8	3.35	1.97	0.86	7
Q190807		0.2	11.9	1.7	2.9	2.00	1.36	1.52	4
Q190808		<0.2	148	1.6	1.5	7.46	4.46	1.04	20
Q190863		0.7	21.6	2.7	1.8	1.71	0.93	0.57	6
Q190903		<0.2	17.0	1.3	0.2	1.97	1.19	0.43	1
Q190907		<0.2	9.6	1.7	1.1	0.75	0.48	0.19	4
Q190908		<0.2	174	<0.5	2.6	7.66	4.02	1.18	19
Q190913		<0.2	39.7	20.3	2.9	3.19	1.87	0.92	18
Q190914		0.3	14.2	46.5	0.5	3.48	2.19	0.93	17
Q190916		<0.2	25.3	48.3	0.6	6.61	3.94	1.66	18
Q190917		<0.2	12.6	<0.5	0.5	0.77	0.48	0.25	5
Q190918		0.3	70.2	34.4	0.4	4.90	2.44	1.87	16
Q190922		<0.2	16.8	38.0	0.2	4.25	2.47	1.29	18
Q190923		<0.2	109	0.9	2.5	8.22	5.11	0.64	18
Q190803		<0.2	16.6	8.9	1.0	1.11	0.65	0.41	3
Q190809		<0.2	10.6	<0.5	0.6	2.98	1.83	0.56	4
Q190810		<0.2	20.0	<0.5	1.4	1.55	0.99	0.43	7
Q721251		<0.2	20.6	1.1	3.3	2.27	1.33	0.53	8
Q721252		<0.2	33.6	1.0	41.5	2.44	1.74	1.12	11
Q721253		<0.2	220	<0.5	2.8	3.27	2.01	0.82	24
Q721254		<0.2	190	<0.5	1.5	6.70	3.59	1.19	21
Q721255		<0.2	266	3.2	4.7	13.77	7.44	2.35	30
Q721256		<0.2	12.6	0.5	0.9	0.93	0.56	0.25	6
Q721257		<0.2	3.2	<0.5	2.0	0.18	0.12	0.06	
Q721258		0.9	23.2	3.0	8.2	2.05	1.14	0.52	2
Q721259		0.2	40.3	6.7	2.0	2.36	1.35	3.44	15
*Dup Q721259		0.2	39.7	6.8	2.0	2.38	1.35	2.91	15

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 8 of 21

Report File No.: 0000032158

Element	@Cd	@Ce	@Co	@Cs	@Dy	@Er	@Eu	@Ga
Method	GE_ICM90A							
Det.Lim.	0.2	0.1	0.5	0.1	0.05	0.05	0.05	1
Units	ppm							
Q721260	0.2	47.5	11.0	1.0	2.95	1.84	0.72	8
Q721261	<0.2	22.1	4.9	0.4	4.25	2.63	0.89	<1
Q721262	<0.2	18.6	1.1	4.8	1.61	0.90	0.44	8
Q721263	<0.2	20.4	1.0	3.2	1.85	1.19	0.45	7
Q721264	<0.2	17.4	<0.5	4.1	1.34	0.88	0.41	7
Q721265	<0.2	26.0	49.9	<0.1	6.55	3.79	1.68	17
Q721266	<0.2	115	2.4	1.5	7.14	3.74	1.50	20
Q721267	<0.2	113	1.1	10.5	7.31	4.28	0.39	20
Q721268	0.5	65.7	1.2	5.4	3.54	2.38	0.12	18
Q721269	<0.2	18.0	41.5	5.2	4.55	2.45	1.29	19
Q721270	<0.2	32.1	43.1	1.4	7.10	4.16	1.87	19
Q721271	<0.2	78.9	1.8	2.3	5.66	2.93	0.97	19
Q190860	0.3	85.3	6.7	1.5	3.98	2.67	0.71	19
Q190861	<0.2	10.4	32.8	0.9	3.91	2.20	0.89	11
Q190862	<0.2	10.0	1.3	2.2	0.68	0.40	0.23	4
Q190864	<0.2	82.6	1.8	2.7	5.76	3.24	1.08	20
Q190865	2.3	53.5	38.4	0.1	5.90	2.97	2.02	21
Q190866	0.5	94.5	1.7	3.7	6.66	3.96	0.56	20
Q190867	1.3	99.4	2.7	4.7	7.11	4.09	0.65	19
Q190868	<0.2	9.0	40.5	0.2	4.62	2.66	0.90	12
Q190869	<0.2	11.3	42.2	0.5	4.80	2.82	1.23	16
Q190870	<0.2	62.3	5.7	2.3	4.41	2.54	1.42	15
*Rep Q190913	<0.2	39.9	21.4	2.9	3.10	1.89	0.86	18
*Rep Q721264	<0.2	17.3	<0.5	4.1	1.44	0.87	0.43	7
*Rep Q721270	<0.2	32.0	42.9	1.4	7.21	4.24	1.87	18
*Std OREAS70B	0.4	26.6	78.4	3.1	1.80	1.04	0.48	9
*Std OREAS520	<0.2	85.6	201	0.8	4.05	2.41	1.55	19
*BIk BLANK	<0.2	<0.1	<0.5	<0.1	<0.05	<0.05	<0.05	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 9 of 21

Report File No.: 0000032158

	Element Method	@Gd GE_ICM90A	@Ge GE_ICM90A	@Hf GE_ICM90A	@Ho GE_ICM90A	@In GE_ICM90A	@La GE_ICM90A	@Lu GE_ICM90A	@Mo GE_ICM90A
	Det.Lim.	0.05	1	1	0.05	0.2	0.1	0.05	2
	Units	ppm							
Q190904		3.12	1	<1	0.81	<0.2	5.9	0.34	2
Q190905		4.32	3	1	0.83	<0.2	18.8	0.31	4
Q190906		3.14	2	<1	0.51	<0.2	14.7	0.19	6
Q190909		0.66	14	<1	0.14	<0.2	3.4	0.05	28
Q190910		2.46	<1	1	0.54	<0.2	5.5	0.21	11
Q190911		1.36	<1	<1	0.27	<0.2	4.8	0.11	3
Q190912		4.40	1	<1	1.07	<0.2	10.8	0.55	3 6
Q190915		4.13	<1	3	0.73	<0.2	26.7	0.27	<2
Q190919		19.70	<1	<1	4.28	<0.2	33.5	1.90	<2 3 3 <2 <2 10
Q190920		3.88	2	1	0.70	<0.2	20.6	0.24	3
Q190921		3.36	1	2	0.74	<0.2	6.7	0.27	<2
Q190801		0.73	3	<1	0.24	<0.2	3.4	0.09	<2
Q190802		1.25	5	<1	0.44	<0.2	2.6	0.24	10
Q190804		3.36	1	2	0.67	<0.2	15.2	0.29	<2
Q190807		1.96	8	1	0.45	<0.2	7.2	0.22	6
Q190808		7.40	2	8	1.44	<0.2	75.1	0.58	<2
Q190863		1.95	2	1	0.33	<0.2	11.5	0.14	2
Q190903		1.69	<1	4	0.40	<0.2	9.8	0.17	2
Q190907		0.67	1	<1	0.15	<0.2	4.3	0.07	<2
Q190908		9.33	1	8	1.44	<0.2	87.4	0.55	2
Q190913		3.20	1	2	0.62	<0.2	19.0	0.29	2 <2 <2 <2 <2 <2 <2 <2 <2
Q190914		3.05	3	2	0.73	<0.2	4.8	0.30	<2
Q190916		6.04	1	3	1.37	<0.2	11.0	0.53	<2
Q190917		0.89	1	<1	0.16	<0.2	6.0	0.05	<2
Q190918		5.47	1	3	0.92	<0.2	38.3	0.31	<2
Q190922		3.89	1	2	0.88	<0.2	7.1	0.32	<2
Q190923		7.71	1	6	1.77	<0.2	55.7	0.64	2
Q190803		1.24	1	1	0.19	<0.2	7.2	0.08	<2
Q190809		2.44	<1	<1	0.61	<0.2	7.8	0.24	6
Q190810		1.48	1	<1	0.32	<0.2	9.5	0.15	<2 6 <2 <2
Q721251		1.96	2	1	0.42	<0.2	9.9	0.19	<2
Q721252		2.11	2	2	0.55	<0.2	16.3	0.27	<2 2
Q721253		5.91	2	11	0.61	<0.2	111	0.37	2
Q721254		8.55	2	10	1.27	<0.2	96.7	0.50	<2
Q721255		16.83	2	13	2.60	<0.2	137	0.99	<2
Q721256		1.08	1	1	0.21	<0.2	6.4	0.08	<2
Q721257		0.19	2	<1	<0.05	<0.2	1.9	<0.05	5
Q721258		1.98	4	1	0.40	<0.2	11.0	0.17	3
Q721259		2.69	5	4	0.45	<0.2	21.5	0.22	22
*Dup Q721259		2.95	5	4	0.47	<0.2	20.9	0.20	22

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 10 of 21

Report File No.: 0000032158

Eleme		@Ge GE ICM90A	@Hf	@Ho	@In	@La	@Lu GE ICM90A	@Mo
Meth Det.Li		GE_ICM90A	GE_ICM90A	GE_ICM90A 0.05	GE_ICM90A 0.2	GE_ICM90A 0.1	GE_ICM90A 0.05	GE_ICM90A
Un		ppm	ppm	ppm	ppm	ppm	ppm	ppm
Q721260	3.01	<1	2	0.61	<0.2	18.3	0.29	<2
Q721261	3.92	<1	<1	0.95	<0.2	12.7	0.32	<2
Q721262	1.43	2	1	0.32	<0.2	9.6	0.15	<2
Q721263	1.82	1	1	0.40	<0.2	10.1	0.17	16
Q721264	1.27	2	<1	0.29	<0.2	8.5	0.12	
Q721265	5.90	2	3	1.33	<0.2	10.3	0.49	5 <2
Q721266	8.09	<1	4	1.38	<0.2	58.4	0.49	<2
Q721267	6.99	2	6	1.45	<0.2	55.8	0.58	<2
Q721268	2.03	2	4	0.77	<0.2	8.1	0.38	
Q721269	4.00	2	2	0.84	<0.2	7.8	0.31	<2 <2
Q721270	6.38	3	4	1.53	<0.2	13.9	0.57	<2
Q721271	5.71	1	4	1.01	<0.2	37.8	0.29	<2 <2
Q190860	3.52	1	7	0.80	<0.2	32.4	0.44	<2
Q190861	3.23	2	2	0.79	<0.2	4.8	0.30	<2
Q190862	0.78	2	<1	0.12	<0.2	5.1	<0.05	<2 2
Q190864	5.94	1	4	1.17	<0.2	39.5	0.36	<2 <2
Q190865	6.17	2	5	1.11	<0.2	24.1	0.34	<2
Q190866	5.78	2	7	1.33	<0.2	41.3	0.50	
Q190867	6.70	2	7	1.39	<0.2	49.2	0.49	<2 3 <2
Q190868	3.88	1	2	0.98	<0.2	3.0	0.35	<2
Q190869	4.20	2	2	0.99	<0.2	4.2	0.34	<2
Q190870	4.84	1	3	0.86	<0.2	30.3	0.36	<2
*Rep Q190913	3.28	1	2	0.62	<0.2	18.4	0.28	<2 5
*Rep Q721264	1.37	2	<1	0.28	<0.2	8.6	0.14	
*Rep Q721270	6.29	2	4	1.48	<0.2	14.2	0.57	<2 3
*Std OREAS70B	1.92	1	2	0.38	<0.2	14.5	0.14	
*Std OREAS520	4.05	1	3	0.81	<0.2	91.7	0.32	63
*BIk BLANK	<0.05	<1	<1	<0.05	<0.2	<0.1	<0.05	<2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 11 of 21

Report File No.: 0000032158

	Element Method Det.Lim. Units	@Nb GE_ICM90A 1	@Nd GE_ICM90A 0.1	@Pb GE_ICM90A 5	@Pr GE_ICM90A 0.05	@Rb GE_ICM90A 0.2	@Sb GE_ICM90A 0.1	@Sm GE_ICM90A 0.1	@Sn GE_ICM90A 1
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Q190904		<1	8.1	26	1.79	9.7	0.3	2.3	<1
Q190905		2	20.2	292	5.02	96.5	1.8	4.6	<1
Q190906		1	15.7	138	3.94	38.6	8.6	3.2	<1
Q190909		<1	2.7	<5	0.56	8.9	0.2	0.8	<1
Q190910		3	7.5	6	1.72	1.6	0.2	2.2	<1
Q190911		4	5.0	13	1.23	3.4	0.9	1.2	<1
Q190912		<1	15.1	10	3.33	2.6	1.7	3.8	23
Q190915		33	22.1	6	5.70	67.6	4.3	4.4	<1
Q190919		2	37.1	341	8.37	14.1	5.8	11.8	<1
Q190920		4	20.0	62	5.08	127	0.6	4.0	<1
Q190921		6	10.2	<5	2.24	25.0	2.1	2.9	<1
Q190801		<1	2.6	9	0.70	1.4	0.4	0.6	<1
Q190802		<1	2.4	7	0.47	2.4	2.1	1.0	<1
Q190804		3	14.4	<5	3.70	33.8	0.2	3.1	<1
Q190807		<1	7.6	<5	1.80	8.3	0.2	2.1	<1
Q190808		12	56.2	<5	16.90	72.3	0.1	10.1	3
Q190863		2	10.4	9	2.68	39.8	3.8	2.2	<1
Q190903		2	8.9	6	2.27	2.7	0.8	1.9	<1
Q190907		<1	3.9	<5	1.04	19.9	0.4	0.8	<1
Q190908		27	70.7	29	19.59	111	0.8	12.5	3
Q190913		7	18.5	20	4.86	117	0.1	3.6	<1
Q190914		8	8.9	<5	1.80	15.1	1.6	2.5	<1
Q190916		9	16.6	<5	3.55	4.8	1.2	4.6	<1
Q190917		1	6.3	<5	1.67	11.5	0.6	1.4	<1
Q190918		43	30.9	<5	8.29	15.4	0.6	6.0	<1
Q190922		6	11.5	<5	2.43	7.7	<0.1	3.3	<1
Q190923		22	42.7	7	12.78	195	0.4	8.9	6
Q190803		<1	7.0	<5	1.77	14.7	0.2	1.5	<1
Q190809		1	8.1	15	2.07	29.3	1.9	2.0	1
Q190810		1	8.5	5	2.36	36.3	0.3	1.7	<1
Q721251		2	9.9	13	2.42	47.8	0.1	2.1	<1
Q721252		2	14.6	<5	4.07	117	<0.1	2.9	<1
Q721253		27	83.3	18	24.52	107	2.1	11.5	3
Q721254		30	76.5	20	21.56	114	0.8	12.8	3 5
Q721255		29	112	23	30.99	210	0.2	20.5	3
Q721256		2	6.1	6	1.57	28.0	0.6	1.2	<1
Q721257		<1	1.4	99	0.39	16.1	0.3	0.2	<1
Q721258		2	10.5	26	2.72	51.7	0.1	2.3	<1
Q721259		4	18.1	7	4.62	16.3	0.3	3.7	<1
*Dup Q721259		3	17.4	6	4.64	16.3	0.3	3.8	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 12 of 21

Report File No.: 0000032158

Element	@Nb	@Nd	@Pb	@Pr	@Rb	@Sb	@Sm	@Sn
Method	GE_ICM90A							
Det.Lim.	1	0.1	5	0.05	0.2	0.1	0.1	1
Units	ppm							
Q721260	2	17.8	<5	4.71	10.9	<0.1	3.7	<1
Q721261	<1	10.9	16	2.70	5.2	<0.1	2.8	<1
Q721262	<1	8.6	<5	2.28	55.3	0.1	1.7	<1
Q721263	<1	9.2	10	2.44	42.9	<0.1	1.8	<1
Q721264	<1	7.8	<5	2.05	54.9	0.4	1.5	<1
Q721265	9	17.4	<5	3.57	2.0	<0.1	4.9	<1
Q721266	7	47.3	7	13.80	125	<0.1	9.4	1
Q721267	18	42.4	19	12.70	219	0.2	8.1	6
Q721268	19	8.0	<5	2.32	137	0.2	1.9	7
Q721269	4	11.4	<5	2.49	168	1.7	3.3	<1
Q721270	11	19.3	5	4.36	26.2	0.3	5.3	<1
Q721271	15	32.4	10	8.96	170	<0.1	6.5	5
Q190860	18	24.8	30	7.27	59.3	0.2	4.3	3
Q190861	4	7.8	<5	1.57	31.5	0.7	2.5	<1
Q190862	1	4.6	21	1.24	29.1	2.6	0.9	<1
Q190864	13	33.8	8	9.55	160	1.0	7.1	3
Q190865	23	27.3	6	6.50	7.3	0.3	6.3	<1
Q190866	20	33.6	10	9.38	224	0.2	6.4	5
Q190867	18	38.3	9	11.31	216	0.3	7.7	5
Q190868	1	8.4	<5	1.57	5.5	0.3	3.0	<1
Q190869	2	9.5	<5	1.79	14.4	<0.1	3.1	<1
Q190870	7	29.8	14	7.92	86.9	0.2	6.1	<1
*Rep Q190913	5	18.2	20	4.76	119	0.1	3.6	<1
*Rep Q721264	<1	8.1	<5	2.14	54.2	0.4	1.5	<1
*Rep Q721270	11	19.8	5	4.24	25.7	0.3	5.2	<1
*Std OREAS70B	2	9.9	13	2.94	31.1	0.5	2.0	<1
*Std OREAS520	4	22.9	7	7.18	108	2.8	4.3	4
*Blk BLANK	<1	<0.1	<5	<0.05	<0.2	<0.1	<0.1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 13 of 21

Report File No.: 0000032158

	Element Method	@Ta GE_ICM90A	@Tb GE_ICM90A	@Th GE_ICM90A	@TI GE_ICM90A	@Tm GE_ICM90A	@U GE_ICM90A	@W GE_ICM90A	@Y GE_ICM90A
	Det.Lim.	0.5	0.05	0.1	0.5	0.05	0.05	1	0.5
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Q190904		<0.5	0.55	2.1	<0.5	0.35	0.17	<1	22.4
Q190905		<0.5	0.70	5.2	1.5	0.32	1.02	<1	18.9
Q190906		<0.5	0.45	4.2	1.3	0.19	0.60	1	11.6
Q190909		<0.5	0.10	3.3	0.7	0.07	0.21	<1	3.6
Q190910		<0.5	0.40	2.0	<0.5	0.22	0.35	<1	14.0
Q190911		<0.5	0.22	1.3	<0.5	0.11	0.25	<1	7.0
Q190912		<0.5	0.81	4.2	<0.5	0.55	1.79	<1	23.5
Q190915		2.0	0.65	4.7	<0.5	0.29	0.98	5	18.7
Q190919		<0.5	3.51	6.6	0.5	1.90	16.20	<1	103
Q190920		<0.5	0.57	4.8	2.6	0.26	1.24	1	20.8
Q190921		<0.5	0.58	1.2	<0.5	0.29	0.20	3	18.4
Q190801		<0.5	0.12	0.6	<0.5	0.11	0.31	<1	5.6
Q190802		<0.5	0.27	1.0	<0.5	0.24	0.45	<1	9.2
Q190804		<0.5	0.53	4.7	<0.5	0.30	2.50	<1	17.0
Q190807		<0.5	0.33	2.4	0.6	0.23	0.51	<1	9.8
Q190808		0.9	1.12	28.3	<0.5	0.65	4.80	2	40.5
Q190863		<0.5	0.28	4.3	0.5	0.16	1.51	<1	8.1
Q190903		<0.5	0.30	2.5	<0.5	0.18	1.20	<1	12.3
Q190907		<0.5	0.11	1.3	<0.5	0.07	0.50	<1	3.6
Q190908		1.3	1.35	30.8	1.9	0.56	3.42	<1	37.6
Q190913		<0.5	0.50	8.1	<0.5	0.30	1.56	1	15.5
Q190914		<0.5	0.54	1.9	<0.5	0.31	0.32	<1	16.9
Q190916		<0.5	1.01	1.4	<0.5	0.57	0.78	<1	33.7
Q190917		<0.5	0.13	1.3	<0.5	0.07	0.33	<1	3.6
Q190918		2.8	0.81	5.4	<0.5	0.34	1.45	<1	22.5
Q190922		<0.5	0.66	1.0	<0.5	0.35	0.18	<1	21.4
Q190923		1.3	1.34	27.3	0.9	0.74	5.99	3	47.0
Q190803		<0.5	0.19	2.6	<0.5	0.09	0.62	<1	4.7
Q190809		<0.5	0.43	1.7	<0.5	0.27	5.60	<1	20.3
Q190810		<0.5	0.24	2.4	<0.5	0.15	0.66	<1	7.5
Q721251		<0.5	0.35	2.6	0.6	0.19	0.67	<1	9.6
Q721252		<0.5	0.37	4.5	1.4	0.27	0.72	<1	12.1
Q721253		1.6	0.62	39.4	1.5	0.37	2.18	1	18.4
Q721254		1.6	1.16	36.7	1.0	0.54	3.11	2	33.6
Q721255		2.0	2.42	50.9	1.2	1.07	6.36	2	65.3
Q721256		<0.5	0.17	4.4	<0.5	0.08	0.42	<1	5.1
Q721257		<0.5	<0.05	1.6	3.7	<0.05	0.15	<1	0.9
Q721258		<0.5	0.34	4.3	2.4	0.18	0.91	2	8.6
Q721259		<0.5	0.42	9.4	3.3	0.23	1.79	<1	10.0
*Dup Q721259		<0.5	0.42	9.0	3.2	0.21	1.79	<1	10.1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 14 of 21

Report File No.: 0000032158

Element Method Det.Lim.	@Ta GE_ICM90A 0.5	@Tb GE_ICM90A 0.05	@Th GE_ICM90A 0.1	@TI GE_ICM90A 0.5	@Tm GE_ICM90A 0.05	@U GE_ICM90A 0.05	@W GE_ICM90A 1	@Y GE_ICM90A 0.5
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Q721260	<0.5	0.50	5.7	<0.5	0.29	2.28	<1	13.4
Q721261	<0.5	0.63	1.3	<0.5	0.37	0.20	<1	27.5
Q721262	<0.5	0.25	2.6	<0.5	0.15	0.82	<1	7.7
Q721263	<0.5	0.28	2.4	<0.5	0.18	1.18	<1	10.4
Q721264	<0.5	0.20	2.3	0.8	0.13	0.47	<1	6.6
Q721265	<0.5	1.02	1.7	<0.5	0.54	0.29	<1	32.0
Q721266	0.8	1.21	19.9	0.5	0.54	3.76	2	33.7
Q721267	1.2	1.21	31.6	0.7	0.63	6.67	2	38.1
Q721268	1.3	0.47	20.0	<0.5	0.40	5.28	3	20.0
Q721269	<0.5	0.67	5.3	0.8	0.35	0.33	1	21.1
Q721270	<0.5	1.08	4.7	<0.5	0.63	0.68	1	35.8
Q721271	1.0	0.93	14.3	1.3	0.39	3.17	2	25.6
Q190860	1.0	0.57	20.7	<0.5	0.43	5.66	1	20.5
Q190861	<0.5	0.58	2.8	<0.5	0.33	0.25	1	19.7
Q190862	<0.5	0.11	1.7	1.2	0.06	0.32	1	3.0
Q190864	0.9	0.99	14.8	0.8	0.49	3.92	2	29.0
Q190865	1.6	0.97	5.0	<0.5	0.42	1.92	1	26.2
Q190866	1.4	0.98	24.8	1.1	0.59	4.88	3	34.5
Q190867	1.2	1.16	25.2	1.0	0.60	4.17	3	35.5
Q190868	<0.5	0.68	2.9	<0.5	0.41	0.22	<1	22.3
Q190869	<0.5	0.74	1.5	<0.5	0.40	0.12	<1	24.3
Q190870	<0.5	0.71	9.1	<0.5	0.39	2.91	<1	22.6
*Rep Q190913	<0.5	0.48	8.1	<0.5	0.28	1.59	<1	16.2
*Rep Q721264	<0.5	0.21	2.4	0.8	0.14	0.47	<1	6.3
*Rep Q721270	<0.5	1.10	3.9	<0.5	0.62	0.65	<1	35.7
*Std OREAS70B	<0.5	0.29	7.0	<0.5	0.17	1.68	4	9.4
*Std OREAS520	<0.5	0.63	10.8	<0.5	0.37	18.11	42	20.7
*BIk BLANK	<0.5	<0.05	<0.1	<0.5	<0.05	<0.05	<1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 15 of 21

Report File No.: 0000032158

	Element Method	@Yb GE_ICM90A	@Zr GE_ICM90A	@LOI GO_XRF76V	@SiO2 GO_XRF76V	@Al2O3 GO_XRF76V	@Fe2O3 GO_XRF76V	@MgO GO_XRF76V	@CaO GO_XRF76V
	Det.Lim.	0.1	0.5	-10.000	0.01	0.01	0.01	0.01	0.01
	Units	ppm	ppm	%	%	%	%	%	%
Q190904		2.3	<0.5	25.3	38.8	0.95	3.02	0.20	30.0
Q190905		1.8	46.2	3.49	73.2	6.12	6.10	0.29	3.92
Q190906		1.2	27.7	5.72	75.6	3.11	6.93	0.12	2.53
Q190909		0.5	2.5	1.08	60.7	0.87	20.8	0.07	0.55
Q190910		1.4	38.7	6.86	76.2	6.24	4.99	1.79	3.01
Q190911		0.7	14.4	2.10	91.4	3.37	2.94	0.14	0.11
Q190912		3.9	29.9	9.12	37.7	1.81	49.6	0.04	0.04
Q190915		1.9	124	17.9	38.1	12.6	6.69	6.20	12.9
Q190919		13.5	69.2	16.0	15.2	5.77	57.8	0.18	0.09
Q190920		1.7	49.2	2.89	80.9	7.29	3.79	0.71	0.78
Q190921		2.0	75.6	11.6	46.3	14.0	9.27	4.14	8.15
Q190801		0.8	6.5	2.14	91.6	0.23	4.91	0.02	0.01
Q190802		1.9	<0.5	2.94	53.2	0.80	28.6	0.04	0.02
Q190804		2.1	90.3	7.30	66.2	5.58	13.7	1.44	0.22
Q190807		1.6	29.3	3.97	25.4	2.02	40.9	0.08	0.03
Q190808		4.2	339	1.52	75.9	13.0	2.02	0.44	0.32
Q190863		1.1	43.4	1.77	90.1	4.59	1.97	0.28	0.02
Q190903		1.3	166	12.0	69.4	1.73	1.36	0.58	13.9
Q190907		0.5	23.8	0.860	95.8	2.03	1.31	0.43	0.02
Q190908		3.7	382	1.47	75.5	13.3	0.78	0.10	0.02
Q190913		1.9	92.6	2.98	73.3	11.8	4.64	1.73	1.00
Q190914		2.0	90.9	4.10	51.0	13.4	12.3	6.51	11.2
Q190916		3.7	122	5.28	49.3	13.6	11.8	6.30	7.93
Q190917		0.6	25.3	0.950	96.7	2.22	0.77	0.09	0.01
Q190918		2.2	148	10.3	40.7	14.2	8.34	4.15	15.8
Q190922		2.3	82.2	2.71	47.7	17.4	9.38	6.67	12.3
Q190923		4.7	258	1.21	73.7	14.0	0.81	0.39	0.05
Q190803		0.6	41.2	0.980	94.9	1.79	1.22	0.15	0.06
Q190809		1.8	21.2	1.87	92.6	2.25	1.09	0.21	0.79
Q190810		1.0	41.4	1.18	91.5	3.40	2.19	0.52	<0.01
Q721251		1.4	45.6	1.11	91.1	4.34	1.64	0.25	<0.01
Q721252		1.8	66.3	2.10	78.4	7.10	5.34	0.39	<0.01
Q721253		2.9	489	2.91	75.1	14.2	1.39	0.58	0.01
Q721254		3.6	420	1.78	75.9	13.6	0.99	0.11	0.01
Q721255		6.9	612	2.41	63.8	19.0	2.95	0.58	0.25
Q721256		0.6	44.7	0.850	95.3	2.68	0.76	0.22	<0.01
Q721257		0.2	11.3	0.520	97.4	1.27	0.64	0.12	<0.01
Q721258		1.2	45.6	2.39	82.9	5.35	7.00	0.48	0.08
Q721259		1.5	153	1.61	58.6	8.81	15.8	0.26	0.33
*Dup Q721259		1.6	149	1.78	59.1	8.82	15.8	0.27	0.32

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 16 of 21

Report File No.: 0000032158

	lement	@Yb	@Zr	@LOI	@SiO2	@Al2O3	@Fe2O3	@MgO	@CaO
	Method	GE_ICM90A	GE_ICM90A	GO_XRF76V	GO_XRF76V	GO_XRF76V	GO_XRF76V	GO_XRF76V	GO_XRF76V
D	et.Lim.	0.1	0.5	-10.000	0.01	0.01	0.01	0.01	0.01
	Units	ppm	ppm	%	%	%	%	%	%
Q721260		1.9	118	3.06	87.0	5.43	3.96	0.21	0.05
Q721261		2.4	3.7	9.94	76.1	0.62	0.99	0.15	11.9
Q721262		1.0	44.4	1.22	90.1	4.17	2.08	0.42	0.02
Q721263		1.2	49.5	1.22	91.8	3.70	1.65	0.44	0.03
Q721264		0.9	24.3	1.14	91.6	4.17	0.95	0.42	0.06
Q721265		3.4	128	2.33	50.5	13.7	12.6	6.35	8.96
Q721266		3.5	191	1.57	72.4	14.2	2.44	0.46	0.57
Q721267		4.2	187	0.990	76.2	12.5	1.72	0.34	0.42
Q721268		2.8	120	2.17	78.7	11.6	1.44	0.61	0.08
Q721269		2.3	77.0	4.89	48.5	16.0	10.3	7.16	5.94
Q721270		4.0	135	3.34	49.6	12.8	12.8	5.55	9.78
Q721271		2.4	147	2.61	73.5	13.2	2.40	1.58	1.55
Q190860		3.0	267	2.28	71.0	14.1	4.07	1.71	0.26
Q190861		2.1	56.2	5.61	49.2	13.9	8.96	6.06	10.0
Q190862		0.4	22.4	0.890	95.8	2.21	0.73	0.22	0.03
Q190864		2.8	166	2.43	74.5	13.8	2.59	0.82	0.35
Q190865		2.6	196	7.06	49.7	14.0	13.9	5.25	4.11
Q190866		3.7	268	1.73	73.9	13.4	1.92	0.34	0.09
Q190867		3.7	256	1.30	74.8	12.7	1.68	0.45	0.19
Q190868		2.6	79.2	4.72	49.7	12.8	9.70	6.79	11.6
Q190869		2.5	63.4	4.46	48.1	15.6	9.31	8.59	9.65
Q190870		2.5	131	2.73	70.3	13.1	4.88	1.86	1.16
*Rep Q190920				2.83	80.8	7.25	3.80	0.70	0.79
*Rep Q721252				2.41	78.2	7.10	5.34	0.38	<0.01
*Rep Q190865				6.93	49.6	14.1	13.9	5.25	4.08
*Std SY4				4.59	50.0	20.8	6.21	0.55	8.06
*Std RM183-89				0.880	42.2	1.66	49.7	0.07	0.02
*BIk BLANK				N.A.	<0.01	<0.01	<0.01	<0.01	<0.01
*BIk BLANK				N.A.	<0.01	<0.01	<0.01	<0.01	<0.01
*Rep Q190913		1.9	93.6						
*Rep Q721264		0.9	20.0						
*Rep Q721270		4.0	141						
*Std OREAS70B		1.1	62.0						
*Std OREAS520		2.4	135						
*BIk BLANK		<0.1	<0.5						

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 17 of 21

Report File No.: 0000032158

	Element								
		@K20	@Na2O	@TiO2	@MnO	@P2O5	@Cr2O3	@V205	BaO
	Method	GO_XRF76V							
	Det.Lim. Units	0.01 %	0.02 %						
	Units								
Q190904		0.36	0.06	<0.01	0.63	0.20	<0.01	<0.01	N.A.
Q190905		2.40	0.11	0.25	0.11	0.82	0.01	0.05	2.23
Q190906		1.32	0.11	0.14	0.28	0.36	<0.01	0.03	2.14
Q190909		0.17	0.04	0.02	0.03	0.06	<0.01	<0.01	10.7
Q190910		0.04	0.02	0.81	0.09	0.10	<0.01	0.03	N.A.
Q190911		0.09	0.03	0.38	0.05	0.06	0.02	0.01	N.A.
Q190912		0.06	0.03	0.07	0.27	0.10	<0.01	0.01	N.A.
Q190915		2.47	1.88	1.43	0.14	0.32	0.03	0.04	N.A.
Q190919		0.32	0.64	0.10	2.04	0.19	<0.01	<0.01	N.A.
Q190920		2.42	0.13	0.31	0.18	0.20	<0.01	0.04	N.A.
Q190921		1.41	4.22	1.16	0.16	0.13	0.04	0.04	N.A.
Q190801		0.06	0.04	0.03	0.04	0.07	<0.01	<0.01	N.A.
Q190802		0.08	<0.01	<0.01	0.05	0.11	<0.01	0.02	9.65
Q190804		0.79	1.50	0.30	2.96	0.11	0.01	0.01	N.A.
Q190807		0.17	<0.01	0.09	0.07	0.30	<0.01	0.03	18.2
Q190808		2.11	4.61	0.31	0.02	0.05	<0.01	<0.01	N.A.
Q190863		0.92	0.04	0.14	0.02	0.05	<0.01	0.04	N.A.
Q190903		0.07	0.77	0.17	0.10	0.13	<0.01	<0.01	N.A.
Q190907		0.48	0.02	0.09	<0.01	0.02	<0.01	<0.01	N.A.
Q190908		7.14	1.23	0.38	<0.01	0.08	<0.01	<0.01	N.A.
Q190913		3.99	0.24	0.70	0.13	0.06	0.02	0.04	N.A.
Q190914		0.61	0.22	1.43	0.14	0.08	0.02	0.05	N.A.
Q190916		0.26	3.88	1.97	0.18	0.22	<0.01	0.06	N.A.
Q190917		0.25	<0.01	0.09	<0.01	<0.01	<0.01	0.01	N.A.
Q190918		0.75	3.74	1.88	0.14	0.45	0.03	0.05	N.A.
Q190922		0.43	2.60	1.32	0.14	0.14	0.03	0.05	N.A.
Q190923		9.80	0.26	0.28	<0.01	0.05	<0.01	<0.01	N.A.
Q190803		0.35	0.06	0.10	0.40	0.03	<0.01	<0.01	N.A.
Q190809		0.66	0.02	0.11	<0.01	0.85	0.02	0.07	N.A.
Q190810		0.94	0.02	0.19	<0.01	0.03	<0.01	0.01	N.A.
Q721251		1.05	0.03	0.17	<0.01	0.03	<0.01	0.02	N.A.
Q721252		2.29	0.46	0.36	<0.01	0.08	<0.01	0.02	3.85
Q721253		4.75	0.82	0.41	<0.01	0.09	<0.01	<0.01	N.A.
Q721254		5.55	1.73	0.40	0.01	0.06	<0.01	<0.01	N.A.
Q721255		8.39	1.62	0.53	0.07	0.16	<0.01	<0.01	N.A.
Q721256		0.79	0.02	0.10	<0.01	0.02	<0.01	0.02	N.A.
Q721257		0.41	0.04	0.04	0.01	<0.01	<0.01	0.01	N.A.
Q721258		1.14	0.03	0.22	0.06	0.06	<0.01	0.02	N.A.
Q721259		0.41	0.09	0.49	0.04	0.16	0.01	0.03	12.6
*Dup Q721259		0.41	0.09	0.48	0.04	0.16	<0.01	0.04	12.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 18 of 21

Report File No.: 0000032158

Element	@K2O	@Na2O	@TiO2	@MnO	@P2O5	@Cr2O3	@V2O5	BaO
Method	GO_XRF76V	GO XRF76V	GO_XRF76V	GO XRF76V	GO_XRF76V	GO_XRF76V	GO_XRF76V	GO_XRF76V
Det.Lim.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
Units	%	%	%	%	%	%	%	%
Q721260	0.22	0.02	0.34	0.25	0.07	0.01	<0.01	N.A.
Q721261	0.17	0.03	<0.01	0.35	0.03	<0.01	<0.01	N.A.
Q721262	1.07	0.03	0.22	<0.01	0.03	<0.01	<0.01	N.A.
Q721263	1.01	0.02	0.19	0.01	0.04	0.01	<0.01	N.A.
Q721264	1.26	0.04	0.17	<0.01	0.01	<0.01	0.02	N.A.
Q721265	0.15	3.85	1.95	0.19	0.21	<0.01	0.05	N.A.
Q721266	4.71	3.23	0.36	0.03	0.16	<0.01	<0.01	N.A.
Q721267	5.45	2.69	0.16	0.03	0.03	<0.01	<0.01	N.A.
Q721268	4.81	0.95	0.14	0.03	0.03	<0.01	<0.01	N.A.
Q721269	5.50	0.33	1.37	0.18	0.13	0.05	0.06	N.A.
Q721270	1.35	3.09	1.96	0.19	0.21	<0.01	0.06	N.A.
Q721271	4.71	0.34	0.25	0.06	0.17	<0.01	<0.01	N.A.
Q190860	1.71	4.42	0.34	0.23	0.06	<0.01	<0.01	N.A.
Q190861	1.42	4.06	0.94	0.14	0.13	0.03	0.05	N.A.
Q190862	0.72	0.03	0.07	<0.01	<0.01	<0.01	<0.01	N.A.
Q190864	5.03	0.11	0.28	0.04	0.14	<0.01	<0.01	N.A.
Q190865	0.12	3.14	2.77	0.20	0.37	0.01	0.07	N.A.
Q190866	8.32	0.31	0.30	0.03	0.08	<0.01	<0.01	N.A.
Q190867	8.05	0.28	0.27	0.05	0.09	<0.01	0.01	N.A.
Q190868	0.26	3.44	1.23	0.15	0.09	0.04	0.04	N.A.
Q190869	0.79	2.61	1.15	0.16	0.08	0.05	0.05	N.A.
Q190870	2.83	2.28	0.53	0.16	0.15	<0.01	<0.01	N.A.
*Rep Q190920	2.41	0.13	0.30	0.18	0.19	0.01	0.05	N.A.
*Rep Q721252	2.28	0.47	0.36	<0.01	0.09	<0.01	0.02	3.85
*Rep Q190865	0.12	3.13	2.79	0.20	0.36	0.02	0.06	N.A.
*Std SY4	1.66	7.29	0.28	0.11	0.13	<0.01	<0.01	N.A.
*Std RM183-89	0.37	0.02	0.05	0.06	0.04	<0.01	<0.01	3.57
*BIk BLANK	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	N.A.
*BIk BLANK	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	N.A.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 19 of 21

Final : VC183009 Order: PO: BMC18-02_01 (Smpls 1-60) Report File No.: 0000032158

	Element Method	Sum GO_XRF76V
	Det.Lim. Units	0 %
Q190904		99.6
Q190905		96.8
Q190906		96.3
Q190909		84.5
Q190910		100.2
Q190911		100.6
Q190912		98.8
Q190915		100.7
Q190919		98.4
Q190920		99.7
Q190921		100.6
Q190801		99.2
Q190802		85.9
Q190804		100.1
Q190807		73.1
Q190808		100.3
Q190863		100.0
Q190903		100.1
Q190907		101.1
Q190908		100.0
Q190913		100.6
Q190914		101.1
Q190916		100.8
Q190917		101.1
Q190918		100.6
Q190922		100.8
Q190923		100.5
Q190803		100.0
Q190809		100.5
Q190810		100.0
Q721251		99.7
Q721252		96.6
Q721253		100.3
Q721254		100.2
Q721255		99.8
Q721256		100.8
Q721257		100.5
Q721258		99.8
Q721259		86.7
*Dup Q721259		87.3

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 20 of 21

Final : VC183009 Order: PO: BMC18-02_01 (Smpls 1-60) Report File No.: 0000032158

	Element	Sum
	Method	GO_XRF76V
	Det.Lim.	0
	Units	%
Q721260		100.6
Q721261		100.2
Q721262		99.4
Q721263		100.2
Q721264		99.8
Q721265		100.9
Q721266		100.1
Q721267		100.6
Q721268		100.5
Q721269		100.5
Q721270		100.8
Q721271		100.4
Q190860		100.3
Q190861		100.5
Q190862		100.7
Q190864		100.1
Q190865		100.8
Q190866		100.4
Q190867		99.9
Q190868		100.6
Q190869		100.6
Q190870		100.0
*Rep Q190920		99.4
*Rep Q721252		96.7
*Rep Q190865		100.5
*Std SY4		99.7
*Std RM183-89		95.1
*Blk BLANK		N.A.
*Blk BLANK		N.A.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Certificate of Analysis Work Order : VC183009A [Report File No.: 0000032298]

Date: October 25, 2018

To: Jeff Hamilton **BMC MINERALS (NO 1) LTD**

SUITE 750-789 WEST PENDER ST VANCOUVER BC V6C 1H2

P.O. No.: PO: BMC18-02 01 (Smpls 1-60) Project No.: KZK Samples: 61 Received: Oct 22, 2018 Pages: Page 1 to 3 (Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	<u>Description</u>
1	G_LOG02	Pre-preparation processing, sorting, logging, boxing
1	GO_ICP90Q	Sodium Peroxide fusion/ICP-AES, single element

Storage: Pulp & Reject

PULP STORAGE **REJECT STORAGE**

STORE FOR 90 DAYS
STORE FOR 30 DAYS

Certified By : Gerald Chik

Operations Manager/Chief Chemist

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

Report Footer:

L.N.R. = Listed not received n.a.

= Not applicable

I.S. = Insufficient Sample = No result

*INF = Composition of this sample makes detection impossible by this method

M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Final : VC183009A Order: PO: BMC18-02_01 (Smpls 1-60) Report File No.: 0000032298

Element @2/n Method Det.Lim. GO_ICP90Q Det.Lim. 0.01 Units % Q190904 N.A. Q190905 N.A. Q190906 N.A. Q190910 N.A. Q190911 N.A. Q190912 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190920 N.A. Q190921 N.A. Q190802 N.A. Q190803 N.A. Q190804 N.A. Q190805 N.A. Q190806 N.A. Q190807 N.A. Q190908 N.A. Q190909 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q1909014 N.A. Q1909015 N.A. Q190916 N.A. <th></th> <th>1</th> <th>-</th>		1	-
Det.Lim. Units0.01 %Q190904N.A.Q190905N.A.Q190906N.A.Q190909N.A.Q190910N.A.Q190911N.A.Q190912N.A.Q190915N.A.Q1909191.82Q190920N.A.Q190921N.A.Q190801N.A.Q190802N.A.Q190803N.A.Q190804N.A.Q190905N.A.Q190805N.A.Q190807N.A.Q190808N.A.Q190903N.A.Q190903N.A.Q190903N.A.Q190904N.A.Q190905N.A.Q190905N.A.Q190903N.A.Q190904N.A.Q190905N.A.Q190905N.A.Q190905N.A.Q190905N.A.Q190905N.A.Q190905N.A.Q190905N.A.Q190916N.A.Q190917N.A.Q190918N.A.Q190922N.A.Q190923N.A.Q190803N.A.Q190810N.A.Q190810N.A.Q190810N.A.Q190810N.A.Q190810N.A.Q121251N.A.Q121255N.A.Q121255N.A.Q121255N.A.Q121256N.A.Q121257N.A.Q121259N.A. <th></th> <th>Element</th> <th>@Zn</th>		Element	@Zn
Units % Q190904 N.A. Q190905 N.A. Q190906 N.A. Q190909 N.A. Q190910 N.A. Q190911 N.A. Q190912 N.A. Q190915 N.A. Q190920 N.A. Q190921 N.A. Q190801 N.A. Q190802 N.A. Q190803 N.A. Q190804 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190904 N.A. Q190905 N.A. Q190907 N.A. Q190908 N.A. Q1909091 N.A. Q190901 N.A. Q190902 N.A. Q190903 N.A. Q190904 N.A. Q190905 N.A. Q190916 N.A.			
Q190904 N.A. Q190905 N.A. Q190906 N.A. Q190909 N.A. Q190910 N.A. Q190911 N.A. Q190912 N.A. Q190915 N.A. Q190920 N.A. Q190921 N.A. Q190802 N.A. Q190803 N.A. Q190804 N.A. Q190805 N.A. Q1908063 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190903 N.A. Q190904 N.A. Q190905 N.A. Q190907 N.A. Q190908 N.A. Q19090914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190923 N.A. Q19083 N.A. </td <td></td> <td></td> <td></td>			
Q190905 N.A. Q190906 N.A. Q190909 N.A. Q190910 N.A. Q190911 N.A. Q190912 N.A. Q190915 N.A. Q190919 1.82 Q190920 N.A. Q190921 N.A. Q190802 N.A. Q190803 N.A. Q190804 N.A. Q190805 N.A. Q1908063 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. <th></th> <th>Units</th> <th>70</th>		Units	70
Q190906 N.A. Q190909 N.A. Q190910 N.A. Q190911 N.A. Q190912 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190920 N.A. Q190920 N.A. Q190801 N.A. Q190802 N.A. Q190803 N.A. Q190804 N.A. Q190805 N.A. Q1908063 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190904 N.A. Q190905 N.A. Q190906 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190914 N.A. Q190915 N.A. Q190918 N.A. Q190922 N.A. Q190803 N.A. Q190803 N.A. <td>Q190904</td> <td></td> <td>N.A.</td>	Q190904		N.A.
Q190909 N.A. Q190910 N.A. Q190911 N.A. Q190912 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190920 N.A. Q190920 N.A. Q190921 N.A. Q190802 N.A. Q190804 N.A. Q190807 N.A. Q190808 N.A. Q190903 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190907 N.A. Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190917 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. <td>Q190905</td> <td></td> <td>N.A.</td>	Q190905		N.A.
Q190910 N.A. Q190911 N.A. Q190912 N.A. Q190915 N.A. Q190919 1.82 Q190920 N.A. Q190921 N.A. Q190801 N.A. Q190802 N.A. Q190803 N.A. Q190804 N.A. Q190807 N.A. Q190808 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190904 N.A. Q190905 N.A. Q190906 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q19083 N.A. Q190803 N.A.	Q190906		N.A.
Q190911 N.A. Q190912 N.A. Q190915 N.A. Q190915 N.A. Q190919 1.82 Q190920 N.A. Q190921 N.A. Q190801 N.A. Q190802 N.A. Q190803 N.A. Q190804 N.A. Q190805 N.A. Q190806 N.A. Q190807 N.A. Q190808 N.A. Q190808 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190833 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721255 N.A. Q721255 N.A. <td>Q190909</td> <td></td> <td>N.A.</td>	Q190909		N.A.
Q190912 N.A. Q190915 N.A. Q190919 1.82 Q190920 N.A. Q190921 N.A. Q190801 N.A. Q190802 N.A. Q190804 N.A. Q190807 N.A. Q190808 N.A. Q190803 N.A. Q190903 N.A. Q190903 N.A. Q190904 N.A. Q190905 N.A. Q1909063 N.A. Q190907 N.A. Q190908 N.A. Q19090913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721255 N.A. Q721255 N.A. Q721255 N.A. <	Q190910		
Q190915 N.A. Q190919 1.82 Q190920 N.A. Q190921 N.A. Q190801 N.A. Q190802 N.A. Q190803 N.A. Q190804 N.A. Q190805 N.A. Q1908063 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721255 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. <td>Q190911</td> <td></td> <td>N.A.</td>	Q190911		N.A.
Q190919 1.82 Q190920 N.A. Q190921 N.A. Q190801 N.A. Q190802 N.A. Q190804 N.A. Q190805 N.A. Q1908063 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190903 N.A. Q190904 N.A. Q190905 N.A. Q190906 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721255 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. <td>Q190912</td> <td></td> <td>N.A.</td>	Q190912		N.A.
Q190920 N.A. Q190921 N.A. Q190801 N.A. Q190802 N.A. Q190804 N.A. Q190807 N.A. Q190808 N.A. Q190808 N.A. Q190808 N.A. Q190803 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190922 N.A. Q190933 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721255 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A. <td>Q190915</td> <td></td> <td></td>	Q190915		
Q190921 N.A. Q190801 N.A. Q190802 N.A. Q190804 N.A. Q190807 N.A. Q190808 N.A. Q190808 N.A. Q190808 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190907 N.A. Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190917 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190919		1.82
Q190801 N.A. Q190802 N.A. Q190804 N.A. Q190807 N.A. Q190808 N.A. Q190808 N.A. Q190808 N.A. Q190903 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190922 N.A. Q190933 N.A. Q190924 N.A. Q190925 N.A. Q190803 N.A. Q190803 N.A. Q190803 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. Q721259 N.A. <td>Q190920</td> <td></td> <td>N.A.</td>	Q190920		N.A.
Q190802 N.A. Q190804 N.A. Q190807 N.A. Q190808 N.A. Q190808 N.A. Q190803 N.A. Q190903 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190810 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. Q721259 N.A.	Q190921		N.A.
Q190804 N.A. Q190807 N.A. Q190808 N.A. Q190808 N.A. Q190863 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190933 N.A. Q190918 N.A. Q190921 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. Q721259 N.A.	Q190801		N.A.
Q190807 N.A. Q190808 N.A. Q190863 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190810 N.A. Q190810 N.A. Q721251 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. Q721259 N.A.	Q190802		N.A.
Q190808 N.A. Q190863 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190909 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190810 N.A. Q190810 N.A. Q721251 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190804		N.A.
Q190863 N.A. Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q121251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190807		N.A.
Q190903 N.A. Q190907 N.A. Q190908 N.A. Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190915 N.A. Q190916 N.A. Q190917 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A.	Q190808		N.A.
Q190907 N.A. Q190908 N.A. Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190916 N.A. Q190917 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190803 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190863		N.A.
Q190908 N.A. Q190913 N.A. Q190914 N.A. Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190803 N.A. Q190809 N.A. Q190810 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. Q721259 N.A.	Q190903		N.A.
Q190913 N.A. Q190914 N.A. Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190933 N.A. Q190923 N.A. Q190803 N.A. Q190809 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190907		N.A.
Q190914 N.A. Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190810 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. Q721259 N.A.	Q190908		N.A.
Q190916 N.A. Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190809 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721258 N.A. Q721259 N.A.	Q190913		N.A.
Q190917 N.A. Q190918 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190809 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A.	Q190914		N.A.
Q190918 N.A. Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190809 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721259 N.A.	Q190916		N.A.
Q190922 N.A. Q190923 N.A. Q190803 N.A. Q190809 N.A. Q190809 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190917		N.A.
Q190923 N.A. Q190803 N.A. Q190809 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190918		N.A.
Q190803 N.A. Q190809 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721259 N.A.	Q190922		N.A.
Q190809 N.A. Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721259 N.A.	Q190923		N.A.
Q190810 N.A. Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190803		N.A.
Q721251 N.A. Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721259 N.A.	Q190809		N.A.
Q721252 N.A. Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q190810		N.A.
Q721253 N.A. Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q721251		N.A.
Q721254 N.A. Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q721252		N.A.
Q721255 N.A. Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q721253		N.A.
Q721256 N.A. Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q721254		N.A.
Q721257 N.A. Q721258 N.A. Q721259 N.A.	Q721255		N.A.
Q721258 N.A. Q721259 N.A.	Q721256		N.A.
Q721259 N.A.	Q721257		N.A.
	Q721258		N.A.
Q721260 N.A.	Q721259		N.A.
	Q721260		N.A.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 2 of 3

Final : VC183009A Order: PO: BMC18-02_01 (Smpls 1-60) Report File No.: 0000032298

	Element	@Zn
	Method	GO_ICP90Q
	Det.Lim.	0.01
	Units	%
Q721261		N.A.
Q721262		N.A.
Q721263		N.A.
Q721264		N.A.
Q721265		N.A.
Q721266		N.A.
Q721267		N.A.
Q721268		N.A.
Q721269		N.A.
Q721270		N.A.
Q721271		N.A.
Q190860		N.A.
Q190861		N.A.
Q190862		N.A.
Q190864		N.A.
Q190865		N.A.
Q190866		N.A.
Q190867		N.A.
Q190868		N.A.
Q190869		N.A.
Q190870		N.A.
*Std OREAS624		2.32
*BIk BLANK		<0.01
*Rep Q190919		1.79

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 3 of 3

Appendix H: Drill Logs

This appendix contains all of the drill logs generated from the 2018 relog program. Drill logs are placed in hole number order with the first page of each log starting on the page number indicated in Table H-1.

		-	-		
Hole ID	Length (m)	Purpose	Core Storage Location	Page Number	Number of Pages
BO96-1	129.8	Relog	KZK Camp	1	2
WO96-1	124.4	Relog	KZK Camp	3	1
WO96-2	346.9	Relog	KZK Camp	4	6

 Table H-1: Table of contents for diamond digital drill hole logs in this appendix

 Table H-2: Table of contents for diamond graphical logs in this appendix

Hole ID	Length (m)	Purpose	Core Storage Location	Page Number	Number of Pages
BO96-1	129.8	Relog	KZK Camp	10	3
WO96-1	124.4	Relog	KZK Camp	13	3
WO96-2	346.9	Relog	KZK Camp	16	7

BMC		GeoSpa	ark Logger ~ D	Relog N	lumber 1		
MINERAL	S		Project:	PEL	_LY	Hole Number:	BO96-1
Prospect:		Hole Type:	DD	Survey Type:		Logged By:	New Age
Grid:	NAD83_Z9	Core Size:	NQ	Survey By:		Date Logging Start:	2018-07-23
UTM Easting	439522	Casing Pulled?:		Azimuth:	210	Date Logging Complete:	2018-07-23
UTM Northing:	6810138	Casing Depth (m):	:	Dip:	-60	Drill Company:	
UTM Elev. (m):	1354	Stored?:	Yes	Length (m):	129.8	Drill Rig:	
Purpose:	Exploration	Cemented?:		Claims Title		Drill Started:	1996-08-06
Parent Hole:	•			Hole Completed	?:	Drill Completed:	1996-08-07

Comments:

Purpose was to test BO-D HLEM conductor and near coincident mag anomaly. Primarily carbonaceous mudstone with minor interbedded sandstone and crystal tuffs. Wolverine Lake Succession 'footwall unit'.

Downhole Surveys:

From (m)	To (m)		Rocktype & Description	
0.00	6.07	00V	Other Overburden	
6.07	37.90	SMU	Sedimentary Mudstone	black
6.07 - 37.9:	Black to da	rk grey, modera	tely graphitic mudstone. Thinly bedded. Locally interbedded medium bedded of coa	arser, felsic material
< <alt: 37.7<="" td=""><td>- 39.6 Mod</td><td>derate Calcite>></td><td>Qtz-cb veins locally found in interval</td><td></td></alt:>	- 39.6 Mod	derate Calcite>>	Qtz-cb veins locally found in interval	
37.90	44.70	SST	Sedimentary Sandstone	medium grey
37.9 - 44.7:	Medium gre	ey, med-fine gra	ined felsic sandstone. Somewhat gradational bedding. Carbonate material found in	unit.
44.70	111.20	SMU	Sedimentary Mudstone	black
44.7 - 111.2	Black to d	ark grey, carbor	naceous mudstone. Thinly bedded. Locally brecciated. Local qtz-cb veins. Increasir	ng in thin cb lenses further down the hole.
< <min: 81.7<="" td=""><td>7-82.8 3%</td><td>Min: Pyrite>></td><td>Disseminated sulfides found adjacent to the qtz veins</td><td></td></min:>	7-82.8 3%	Min: Pyrite>>	Disseminated sulfides found adjacent to the qtz veins	
< <min: 90.8<="" td=""><td>3-96.8 2%</td><td>Min: Pyrite>></td><td>Laminated/disseminated sulfides in mudstones</td><td></td></min:>	3-96.8 2%	Min: Pyrite>>	Laminated/disseminated sulfides in mudstones	
< <min: 96.8<="" td=""><td>3-97.6 5%</td><td>Min: Pyrite>></td><td>Euhedral, disseminated sulfides (dominantly py) within the qtz veins/mudstones</td><td></td></min:>	3-97.6 5%	Min: Pyrite>>	Euhedral, disseminated sulfides (dominantly py) within the qtz veins/mudstones	
< <min: 97.6<="" td=""><td>6 - 111.2 19</td><td>% Min: Pyrite>></td><td>Disseminated py in the mudstone along cleavage planes</td><td></td></min:>	6 - 111.2 19	% Min: Pyrite>>	Disseminated py in the mudstone along cleavage planes	
< <alt: 50.5<="" td=""><td>- 81.7 Mod</td><td>derate Calcite>></td><td> Cb in laminations in the mudstone </td><td></td></alt:>	- 81.7 Mod	derate Calcite>>	 Cb in laminations in the mudstone 	
< <alt: 81.7<="" td=""><td>- 82.8 Inte</td><td>nse Silicificatior</td><td>n>> Qtz vein with sulfides</td><td></td></alt:>	- 82.8 Inte	nse Silicificatior	n>> Qtz vein with sulfides	
< <alt: 85.2<="" td=""><td>-87.7 Wea</td><td>ak Chlorite>></td><td>Minor amounts of chloritic alteration</td><td></td></alt:>	-87.7 Wea	ak Chlorite>>	Minor amounts of chloritic alteration	

BMC	GeoSp	ark Logger ~ Drill Log	R	elog Number	1
MINERALS	Project:	PELLY	Hole Number:	BO96-1	
From (m) To (m)	Rockty	pe & Description			
	ic Dacite Volcanoclastic m coarse to fine size down the hole. Intercalated carbo	grey-gree onaceous mudstone. Graphitic. Carbo			
< <alt: -="" 114.31="" 115.9="" ankerite="" weak="">></alt:>					
115.90 129.80 SMU Sedi	mentary Mudstone	black			
115.9 - 129.8: Black mudstones. Locally siliced	ous bands, hosting 1% py. Qtz veins present locally as	s well.			
< <min: -="" 1%="" 115.9="" 129.5="" min:="" pyrite="">></min:>					
< <alt: -="" 118.5="" 129.5="" silicification="" weak="">></alt:>	Vinor siliceous bands/laminations				
End of Hole @ 129.8					

BMC			GeoSp	ark Logger ~ Dr	ill Log	Relog Number		
MINERAL	S		Project:	PELI	_Y	Hole Number:	WO96-1	
Prospect:		Hole Type:	DD	Survey Type:	APS	Logged By:	Dillon Hume	
Grid:	NAD83_Z9	Core Size:	NQ	Survey By:		Date Logging Start:	2018-06-30	
UTM Easting	432131	Casing Pulled?:		Azimuth:	212	Date Logging Complete:	2018-07-01	
UTM Northing:	6817677	Casing Depth (m):		Dip:	-60	Drill Company:		
UTM Elev. (m):	1169	Stored?:	Yes	Length (m):	124.4	Drill Rig:		
Purpose:	Exploration	Cemented?:		Claims Title		Drill Started:	1996-08-08	
Parent Hole:				Hole Completed?	:	Drill Completed:	1996-08-10	

Comments:

Purpose: test coincident WO-2B HLEM conductor and coincident mag anomaly. Deep overburden (42.3 m); collared into a carbonaceous mudstone unit (to EOH), inferred to be the footwall to the Wolverine felsic volcanic succession.

Downhole Surveys:

From (m)	To (m)		Rocktype & Description	
0.00	42.30	ΟΤΙ	Other Till	
42.30	49.50	SMU	Sedimentary Mudstone	black
42.3 - 49.5:	Black carbo	onaceous muds	one, with local rotated mustone clasts. Moderate amounts of calcite cement.	
< <min: 42.3<="" th=""><td>8 - 124.4 1</td><td>% Min: Pyrite>></td><td>Trace disseminated to patchy pyrite throughout the hole. One ~1-2 cm band at ~</td><td>46 m.</td></min:>	8 - 124.4 1	% Min: Pyrite>>	Trace disseminated to patchy pyrite throughout the hole. One ~1-2 cm band at ~	46 m.
49.50	124.40	SMU	Sedimentary Mudstone	black
49.5 - 124.4	Black, wel	ll foliated, thin p	anar bedding, carbonaceous mudstone. Local zones with more sand sized grains.	Overall very low calcite content.
< <struc: 12<="" th=""><td>1.3 - 121.8</td><td>Weak Fault>></td><td>Minor faulting with some sheared wallrock</td><td></td></struc:>	1.3 - 121.8	Weak Fault>>	Minor faulting with some sheared wallrock	
End of H	ole @ 12	24.4		

BMC			G	eoSpark Logg	er ~ Drill	Log	Relog N	lumber 1	
MINERAL	S		P	roject:	PELLY		Hole Number:	WO96-2	
Prospect:		Hole Type:	DD	Survey	/ Туре:		Logged By:	New Age	
Grid:	NAD83_Z9	Core Size:	NQ	Survey	/ Ву:		Date Logging Start:	2018-07-21	
UTM Easting	433628	Casing Pulled?:		Azimu	th:	212	Date Logging Complete:	2018-07-23	
UTM Northing:	6818258	Casing Depth (m):		Dip:		-60	Drill Company:		
UTM Elev. (m):	1662	Stored?:	Yes	Length	n (m):	346.9	Drill Rig:		
Purpose:	Exploration	Cemented?:		Claims	s Title		Drill Started:	1996-08-10	
Parent Hole:				Hole C	Completed?:		Drill Completed:	1996-08-16	

Comments:

Purpose: Test Fisher Zone equivalent stratigraphy in area of strong Zn-Pb-Cu-Ag-Ba soil geochemistry. HW: fragmental rhyolites; BIF: ankerite-barite exhalites and felsic volcaniclastics; FW: banded rhyolite, carb. mudstones & felsic volcaniclastics.

Downhole Surveys:

Depth (m)	Dip	Measured Correction Azimuth Factor	n Corrected Azimuth	Survey Type	Survey By	Survey Date	Mag Field	Accept Values?	Comments
30.5	-70	236.5		APS					Cominco survey; Survey Method unknown; correction factor not applied
61	-68.8	238.5		APS					Cominco survey; Survey Method unknown; correction factor not applied
91.4	-68.3	240.5		APS					Cominco survey; Survey Method unknown; correction factor not applied
121.9	-67.5	241.5		APS					Cominco survey; Survey Method unknown; correction factor not applied
152.4	-65.8	239.5		APS					Cominco survey; Survey Method unknown; correction factor not applied
182.9	-64.5	242.5		APS					Cominco survey; Survey Method unknown; correction factor not applied
215.8	-64.8	240.5		APS					Cominco survey; Survey Method unknown; correction factor not applied

From (m) To (m)

0.00

Rocktype & Description

3.00 OOV Other Overburden

0 - 3: Overburden. No recovery

To (m) **Rocktype & Description** From (m) 3.00 7.40 FRHc **Felsic Rhyolite Coherent** grey 3 - 7.4: Grey, clast-supported to flow banded, aphanitic rhyolite with micaceous partings (~0.2-1.3cm). Clasts resemble coarse "curds". Field term was labeled as "fragmental" but marked in the logger as "brecciated. **Felsic Rhyolite Volcanoclastic** 7.40 9.10 FRHv liaht arev 7.4 - 9.1: Grey, fine grained, massive, weakly foliated, guartzo-feldspathic sandstone. Moderate calcite in matrix and cross-cutting gtz-calcite veins (up to ~1.3 cm width). Upper and lower contacts appear broken. 24.30 FRHc **Felsic Rhyolite Coherent** 9.10 arev 9.1 - 24.3: Similar as the first unit (3-7.4 m) grey, brecciated to flow banded, aphanitic rhyolite with micaceous partings. "Fragmental" rhyolite. 24.30 26.80 FRHv Felsic Rhyolite Volcanoclastic medium grey 24.3 - 26.8: Grey, fine-grained, guartzo-feldspathic unit as above. Contacts are somewhat gradational. Qtz-calcite veins present. 26.80 86.60 FRHc **Felsic Rhyolite Coherent** grey 26.8 - 86.6: Flow banded to fragmental rhyolite. Strong micaceous bands with localized disseminated py. Sericitic alteration increases from 57.9-85.9m. <<Min: 41 - 85.9 1% Min: Pyrite>> Disseminated pyrite hosted in the micaceous bands <<Alt: 40.8 - 57.2 Trace Sericite>> Light pervasive sericitic alteration <<Alt: 57.2 - 69 Weak Sericite>> <<Alt: 69 - 85.9 Moderate Sericite>> <<Alt: 85.9 - 123.2 Moderate Sericite>> Weak to moderate sericitic alteration <<Struc: 85.9 - 86.6 Moderate Fault>> Brecciated contact. Appears to be a fault 86.60 123.20 FRHc **Felsic Rhyolite Coherent** grey

Project:

86.6 - 123.2: Grey, flow-banded to fragmental rhyolite with local fine grained, white, subhedral feldspar phenocrysts. Phenocrysts present in the siliceous aphanitic matrix. Micaceous partings hosting diss py.

<<Min: 86.6 - 123.2 1% Min: Pyrite>>

123.20 125.70 FRHc **Felsic Rhyolite Coherent**

123.2 - 125.7: "Rusty", flow-banded to massive rhyolite with a strong iron carbonate alteration (ankerite alteration). Locally disseminated py and magnetite found hosted in or near the micaceous bands.

<<Min: 123.2 - 125.7 1% Min: Pyrite>>

5

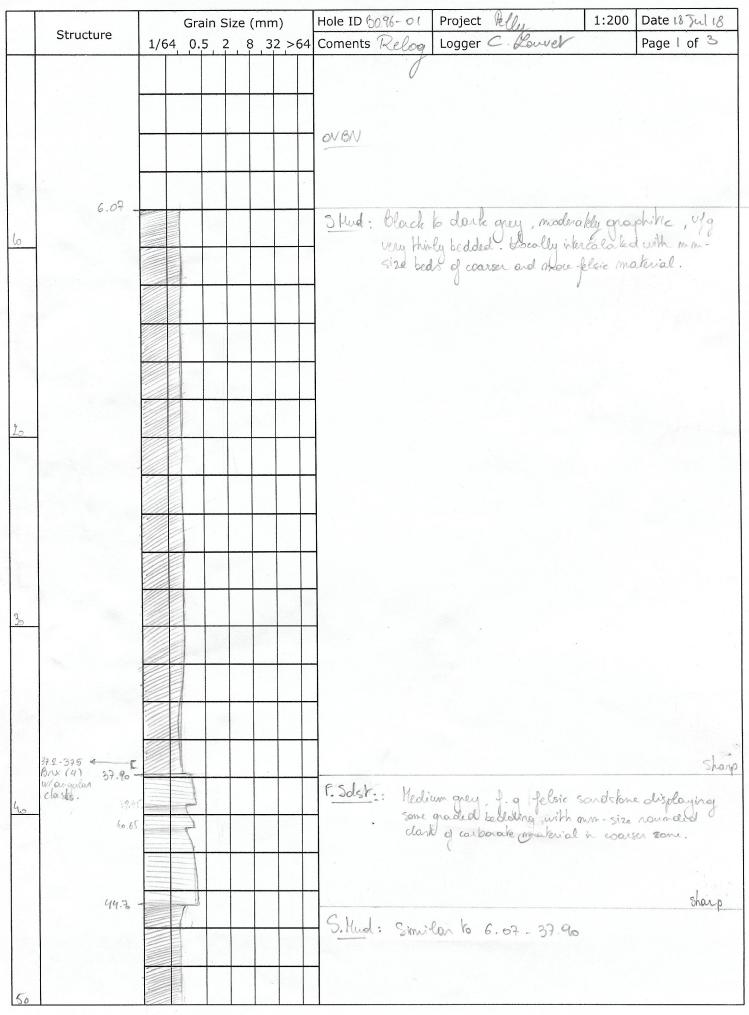
cream

GeoSpark Logger ~ Drill Log

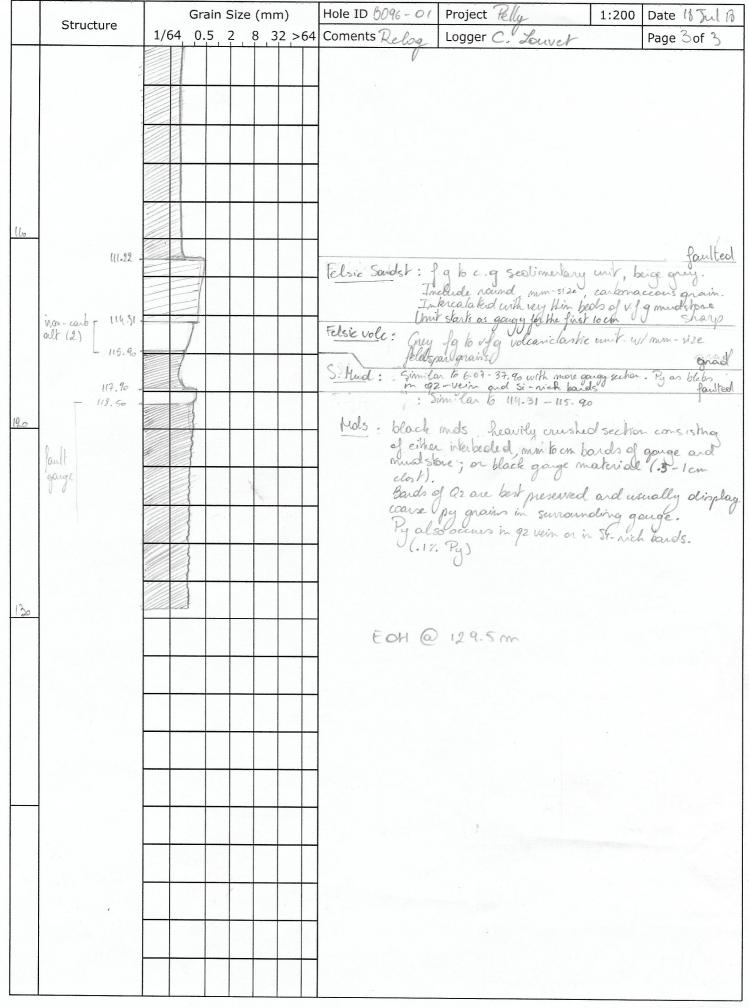
PELLY

Relog Number

WO96-2


Hole Number:

E	BMC		GeoSpark Logg	er ~ Drill Log	Ke	log Number	1
M	INERALS		Project:	PELLY	Hole Number:	WO96-2	
From (m)	To (m)		Rocktype & Descript	ion			
	144.90 FRHc	Felsic Rhyolite Coherent		grey			
25.7 - 144.9	9: Flow-banded to fragme	ntal, feldspar-phyric, rhyolite. Similar unit as abc	ove. Large amounts of micad	eous partings. Locally dis	seminated pyrite throughout		
< <min: 125<="" td=""><td>5.7 - 144.9 1% Min: Pyrite</td><td>>></td><td></td><td></td><td></td><td></td><td></td></min:>	5.7 - 144.9 1% Min: Pyrite	>>					
< <alt: 125.<="" td=""><td>7 - 144.9 Weak Sericite></td><td>></td><td></td><td></td><td></td><td></td><td></td></alt:>	7 - 144.9 Weak Sericite>	>					
144.90	145.00 SIF	Sedimentary Iron Formation		brown			
144.9 - 145:	Exhalite band. With disse	minated pyrite. Quartz-carbonate veins present					
< <min<sup>. 144</min<sup>	I.9 - 149.3 5% Min: Pyrite	>>					
	9 - 145 Strong Ankerite>						
	146.20 FRHv	Felsic Rhyolite Volcanoclastic		brown			
		volcaniclastic rhyolite, banded to fragmental rhy	volite + quartz-ankerite-disse		nds		
		· · · · · · · · · · · · · · · · · · ·					
146.20	146.30 SIF	Sedimentary Iron Formation		brown			
146.2 - 146.3	3: Exhalite unit with disse	minated pyrite					
< <alt: 146.<="" td=""><td>2 - 146.3 Strong Ankerite</td><td>>></td><td></td><td></td><td></td><td></td><td></td></alt:>	2 - 146.3 Strong Ankerite	>>					
	149.30 FRHv	Felsic Rhyolite Volcanoclastic		brown			
		ed, volcaniclastic rhyolite and flow banded to frag	amental rhvolite + quartz-an		exhalite bands		
	, j						
	150.00 SIF	Sedimentary Iron Formation		brown			
149.3 - 150: cpy. ~2% Ba		Jartz-carbonate "tension" veining in the red-brow	/n bands as well as larger qu	ıartz-carbonate veins. Ban	ided to semi-massive "buckshot" p	y. Local disseminate	
< <min: 149<="" td=""><td>9.3 - 150 25% Min: Pyrite</td><td>Banded to disseminated pyrite throughout in</td><td>nterval</td><td></td><td></td><td></td><td></td></min:>	9.3 - 150 25% Min: Pyrite	Banded to disseminated pyrite throughout in	nterval				
< <min: 149<="" td=""><td>9.3 - 150 1% Min: Chalcop</td><td>oyrite>></td><td></td><td></td><td></td><td></td><td></td></min:>	9.3 - 150 1% Min: Chalcop	oyrite>>					
< <min: 149<="" td=""><td>9.3 - 150 2% Min: Barite></td><td> Small amounts of barite </td><td></td><td></td><td></td><td></td><td></td></min:>	9.3 - 150 2% Min: Barite>	 Small amounts of barite 					
< <alt: 149.3<="" td=""><td>3 - 150 Intense Ankerite></td><td>></td><td></td><td></td><td></td><td></td><td></td></alt:>	3 - 150 Intense Ankerite>	>					
150.00	162.00 SIF	Sedimentary Iron Formation		brown			
	lix zone. Dominantly exha ion" veining. Strong anker	lative units intercalated with siliceous flow bande ite alteration.	ed rhyolite. Rhyolite containe	ed siliceous, lapilli sized cla	asts.~30% diss.py in ankerite-qtz g	roundmass. Common	
< <min: 150<="" td=""><td>) - 161.5 5% Min: Pyrite></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>) - 161.5 5% Min: Pyrite>						
< <min: 150<="" td=""><td>) - 161.5_2% Min: Barite></td><td> Local barite occurrences </td><td></td><td></td><td></td><td></td><td></td></min:>) - 161.5_2% Min: Barite>	 Local barite occurrences 					
< <min: 161<="" td=""><td>.5 - 162 30% Min: Pyrite</td><td>Disseminated to partly banded pyrite</td><td></td><td></td><td></td><td></td><td></td></min:>	.5 - 162 30% Min: Pyrite	Disseminated to partly banded pyrite					
<< Alt. 150	- 162 Strong Ankerite>>	Alternating strong, somewhat banded ankerite	alteration				


BMC	G	eoSpark Logger ~ Drill Log	Re	elog Number	1
MINERALS	Pr	oject: PELLY	Hole Number:	WO96-2	
rom (m) To (m)		Rocktype & Description			
162.00 164.30 FRHc	Felsic Rhyolite Coherent	grey			
<a>Alt: 162 - 164.3 Trace Sericite>>					
164.30 171.30 FRHv	Felsic Rhyolite Volcanoclastic with 15-20% coarse to fine grained siliceous clasts	grey-bro	wn		
 Min: 164.3 - 167 15% Min: Barite> Alt: 164.3 - 167 Moderate Ankerite Alt: 167 - 174.9 Trace Ankerite>> 					
171.30 171.70 SMU 71.3 - 171.7: Black, carbonaceous mu	Sedimentary Mudstone	black			
	Felsic Rhyolite Volcanoclastic	grey pinl py locally found near the ankerite . Minor mi)	
	Felsic Rhyolite Coherent intercalated with carbonaceous mudstone. Local min	grey nor silica flow bands. Minor diss sulfides local	ly present. Partings are either sericiti	ic or carbonaceous.	
179.00 179.10 SIF /9 - 179.1: Quartz-ankerite with bucks	Sedimentary Iron Formation shot pyrite between flow bands of rhyolite	grey-bro	wn		
: <min: -="" 179="" 179.1="" 2%="" min:="" sphalerit<br="">:<min: -="" 179="" 179.1="" 2%="" min:="" pyrite="">> :<alt: -="" 179="" 179.1="" ankerite="" weak="">></alt:></min:></min:>	e>> Disseminated in an ankerite altered section				
179.10 186.30 FRHc 79.1 - 186.3: Light grey, aphanitic, flow	Felsic Rhyolite Coherent w-banded rhyolite with sericitic/micaceous partings. L	grey ocal trace of disseminated sulfides (sphalerit	e?+pyrite)		
-	Locally disseminated py hosted in the micaceous p Dominantly weak pervasive sericitic alteration.	partings			
186.30 193.30 FRHc 36.3 - 193.3: Light to med grey, flow-b	Felsic Rhyolite Coherent anded rhyolite with carbonaceous partings. Qtz vein	grey s present as well.			
193.30 204.30 FRHc	Felsic Rhyolite Coherent	grey			

BMC	GeoSpark	Logger ~ Drill Log	Re	log Number	1
MINERALS	Project:	PELLY	Hole Number:	WO96-2	
From (m) To (m)	Rocktype &	Description			
< <alt: -="" 193.3="" 208="" sericite="" trace="">></alt:>					
204.30204.80FRHvFelsic Rhyol204.3 - 204.8: Light grey, volcaniclastic rhyolite with siliced	i te Volcanoclastic us clasts in a fine ash matrix.	grey			
204.80208.00FRHcFelsic Rhyol204.8 - 208: Flow banded rhyolite	ite Coherent	grey			
208.00 214.10 FRHc Felsic Rhyol 208 - 214.1: Flow banded rhyolite with intercalated with min		grey			
214.10 223.60 FRHc Felsic Rhyol 214.1 - 223.6: Flow banded rhyolite	ite Coherent	grey			
< <min: -="" 1%="" 220.7="" 223.6="" min:="" pyrite="">> <<alt: -="" 214.3="" 223.6="" sericite="" trace="">></alt:></min:>					
223.60 239.10 FRHc Felsic Rhyol 223.6 - 239.1: Flow banded rhyolite with localized calcared		grey carbonaceous material.			
< <min: -="" 1%="" 232="" 239="" min:="" pyrite="">></min:>	Iron Formation	brown			
239.10239.40SIFSedimentary239.1 - 239.4: Massive ankerite with "buckshot" dissemina	Iron Formation ted pyrite.	brown			
< <min: -="" 1%="" 239.2="" 239.4="" min:="" pyrite="">> <<min: -="" 239.2="" 239.4="" 3%="" magnetite="" min:="">></min:></min:>					
< <alt: -="" 239.2="" 239.4="" ankerite="" moderate="">> 239.40 246.30 FRHc Felsic Rhyol</alt:>	ite Coherent	dark grey			
239.4 - 246.3: Dark grey, flow-banded rhyolite with carbona					
246.30253.40SMUSedimentary246.3 - 253.4:Black, carbonaceous mudstone.Appears to		black parent with sulfides			
< <min: -="" 250.5="" 251.5="" 5%="" min:="" pyrite="">> Oxidized and di <<struc: -="" 246.3="" 247.5="" fault="" moderate="">></struc:></min:>	sseminated sulfides hosted along quartz-cb ve	bins			
253.40 263.00 IANc Intermediate	Andesite Coherent	cream			

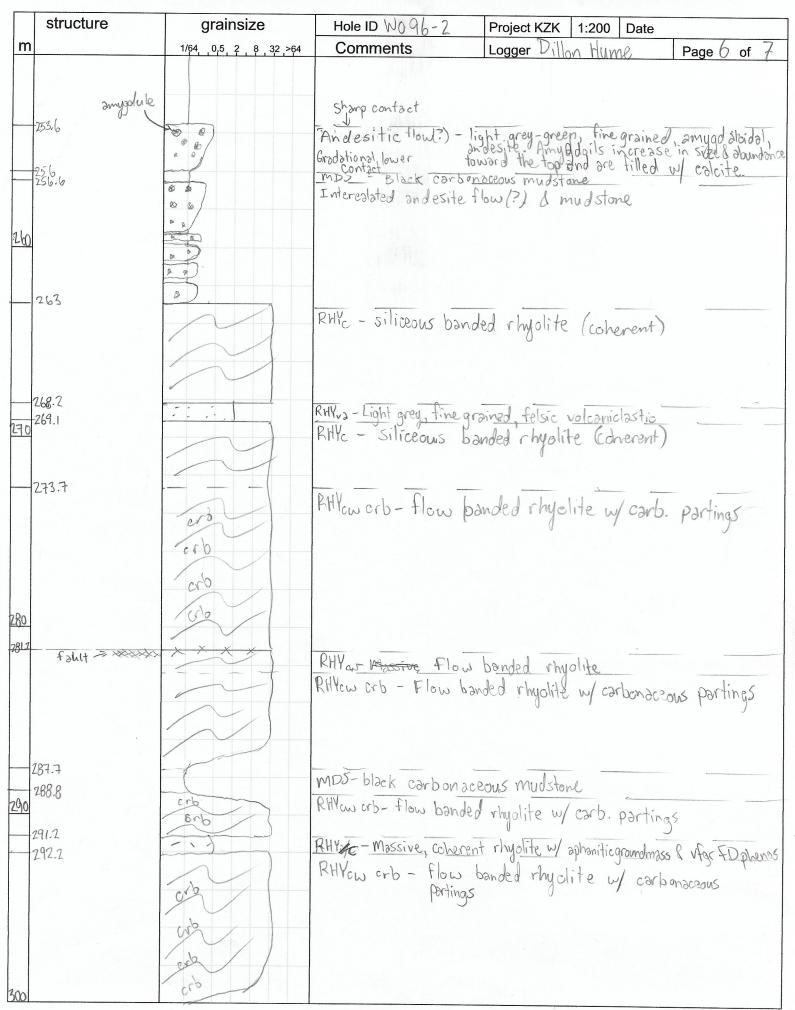
BMC	GeoSpark L	ogger ~ Drill Log	Re	Relog Number	
MINERALS	Project:	PELLY	Hole Number:	WO96-2	
From (m) To (m)	Rocktype & De	escription			
< <min: -="" 253.4="" 263="" 5%="" min:="" pyrite="">> Disseminated py +/- sulfides de <<alt: -="" 253.4="" 263="" calcite="" moderate="">> Amygdaloids infilled with calc</alt:></min:>	-				
263.00 268.20 FRHc Felsic Rhyolite Coher 263 - 268.2: Siliceous banded rhyolite. Minor micaceous partings		grey			
< <alt: -="" 263="" 273="" sericite="" trace="">> Light pervasiveness throughout un</alt:>	it				
268.20 269.10 FRHv Felsic Rhyolite Volcar 268.2 - 269.1: Light grey, fine-grained felsic volcaniclastic	noclastic	light grey			
269.10 287.70 FRHc Felsic Rhyolite Coher 269.1 - 287.7: Medium grey, flow banded rhyolite with carbonaceous par		medium gr	ey		
< <min: -="" 1%="" 269.1="" 273.7="" min:="" pyrite="">> Localized disseminate py <<struc: -="" 281.2="" 281.4="" fault="" weak="">> Minor brecciated core</struc:></min:>					
287.70 300.40 FRHc Felsic Rhyolite Cohere 287.7 - 300.4: Mix zone between flow banded rhyolite with carbonaceous		dark grey			
300.40 302.90 FRHv Felsic Rhyolite Volcar 300.4 - 302.9: Crystal-rich! (no code for crystal-bearing volcaniclastic); n		medium gr phyric, felsic tuff. Developed sch	•		
302.90 309.70 FRHv Felsic Rhyolite Volcar 302.9 - 309.7: Grey, rusty, felsic volcaniclastic with local silica bands	noclastic	medium gr	еу		
< <alt: -="" 304.2="" 310="" sericite="" trace="">></alt:>					
309.70 346.90 SMU Sedimentary Mudston 309.7 - 346.9: Black, carbonaceous mudstone (argillite package). Local		black			
< <struc: -="" 309.7="" 311.8="" fault="" moderate="">></struc:>					
End of Hole @ 346.9					

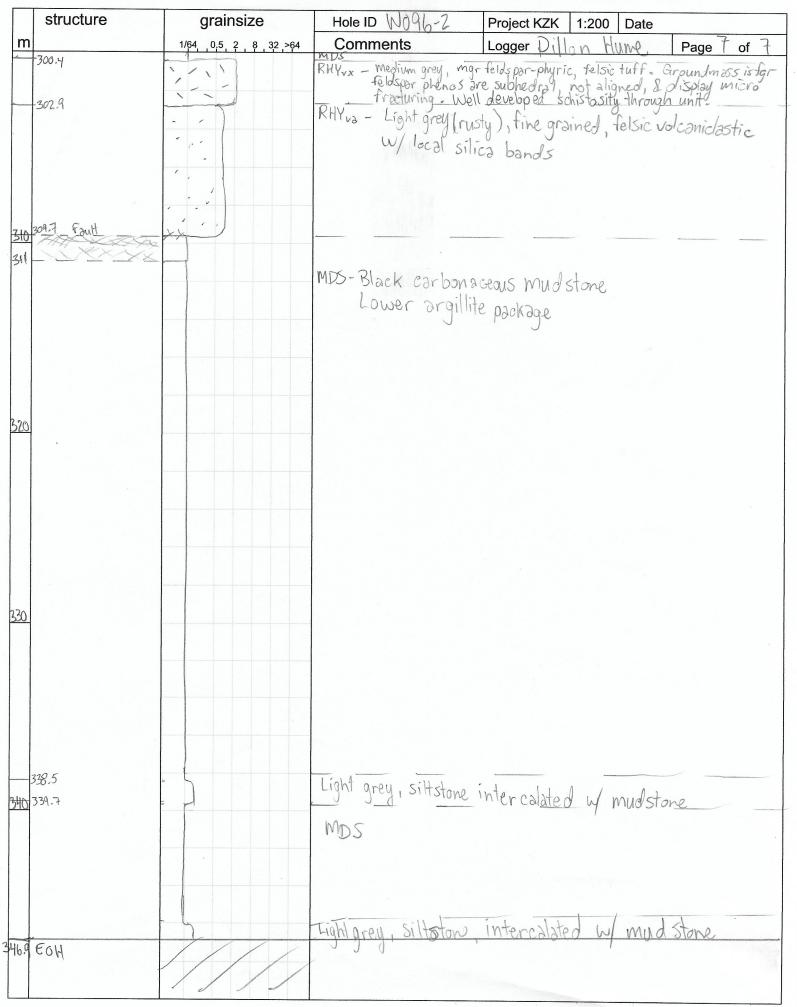
			Gr	ain S	Size	(mn	ר)		Hole ID 6096-01	Project Pelly	1:200	Date 18 Jul 18
	Structure	1/64	1 <u>0</u> .	5	2 8	3 3	2 >6	54	Coments Relog	Logger C. Louvet	· · · ·	Page 2 of 3
			+						0			
			1			_						
						,						
60												
			1									
			1		ļ							
			1-									
70												
			7									
			1									
			-		-							
80							-					
				+								
				\uparrow								
90			1					-	_			
	96.41 - 67 BAX (4) + Si Alt		1	-		-		+	presciated with	in. Mds clast an use	B	
	BAX (4) + Si Alk (4)							-	in situ. The w	in. Mds class are very hole section is silicified, in veins.	flevid is	s 67 wil
									localy more Cli	in veins.	1	de mi
,												
60		1/1	12									

structure	grainsize	Hole ID W696-1	Project KZK 1:200	Date Toma	3 0
<u>n</u>	1/64 0.5 2 8 32 >64	Comments	Logger Dillon	1 - Contes mar	
		Overburden O	-110 2	lume Page	of
	0	Guille I.	-72-5m		
		Fine silty matrix,	matrix-supporter	d, coarse sand	to
	0)	cobble, till.			
	0				
	00				
	- 0				
	0				
	~				
	0				
	-				
	0				
	0				
	0				
	a	Johanna - M.			and an and the second
1		-moderately calcaren -moderately calcaren fractured grains/c -mirror (1-2%) di	8	N	
	Band of fine, brossy pyrite?	Froctimed a const	ous w/ Jand-Size	& batetor b	
).	Pyrite:	- minor (1-70)	Somerated and	6	
		. (12/0) 01	sommaled bar	R	. Million and Market Market Market
		ee next page for desc.		News	- Willy & S Contract.

-	structure	grainsize	Hole ID NO 96-1	Project KZK 1:200 Date June 30, 208
m		1/64 0.5 2 8 32 >64	Comments	Logger Dillan Hung Dage 2 of 3
			Black, carbonaceou Local patches cu/ content throughou	is, well foliated & laminated, mudstone. minor for sand grains. low calcite
	Kranow 9tz-vein			

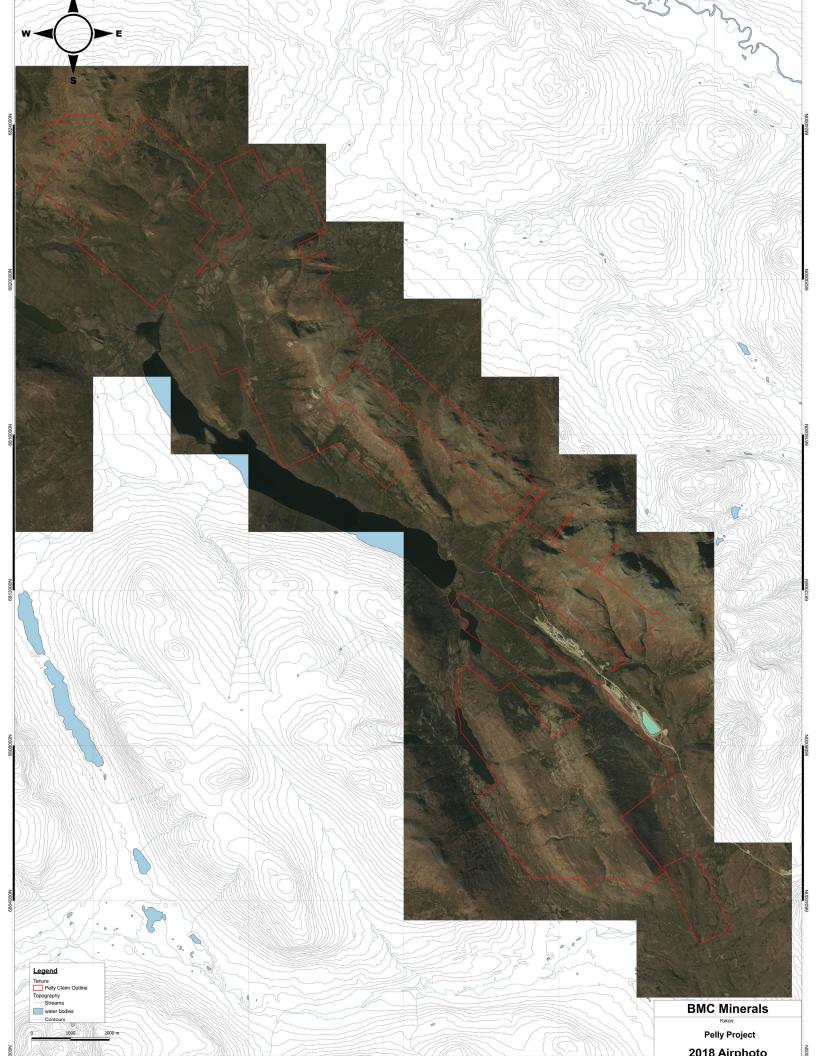
structure	grainsize	Hole ID W096-1	Project KZK 1:200 Date	240200-0
m	1/64 , 0.5 , 2 , 8 , 32 ,>64	Comments	Logger Dillan Hung	June 30, 2018 Page 3 of 3
		See last page for	dese.	Trage 01 2
		- WAR		
-				
124.4m				
-				
	0			


structure grainsize Hole ID WOY6 Project KZK 1:200 Date m 2018 July 1/64 0.5 2 8 32 >64 Comments Logger Dillon Hume Page / of Overburden. No recovery 3m clast-supported Grey, brecciated to flow-banded, aphanitic rhyolite with 'dirty' micaceous partings & groundmass/minor total) Clasts are round & resemple coarse curds'. 7.4 Grey, fine grained, massive, weakly foliated, quartzo-feldspathic sandstone. Moderate calcite in matrix & cross-cut by gz-calcite veinlets. Upper & lower contacts are broken, but appear sharp. 9.1 10 Same as first unit curdy texture 20 243 Similar grey, fine, quartzo-feld spathic unit as a bove Contacts are somewhat gradational, but still quite sharp. 268 Same `curdy'-textured unit as above. 30 40 16


structure grainsize Hole ID Wo96-2 Project KZK | 1:200 | Date July 2, 2018 m 1/64 0.5 2 8 32 >64 Comments Logger Dillon Hume. Page Z of Same 'curdy-textured unit as above -57.9 weak-moderate sericite alteration of groundmass/cleavages 60 w/ trace diss pyrite t 70 80 859 VARV& 2980 86.6 5077060 Brecciated contact Eight blue-grey, flow-banded to curdy, rhydlite w/ local teldspar phenocrysts. Similar to texture of unit above, but is locally porphyritic Hydite (90 durds Phenocrysts are fine grained, white, subhedral, feldspar within an aphanitic siliceous matrix Partings & groundmass between 'curds' is very micaceous (muscovite/sericite). Trace disseminated, oxidized pyrite throughout 100 17

structure grainsize Hole ID W096 Project KZK 1:200 Date m 1/64 0.5 2 8 32 >64 Comments Logger Dillon Hume Page 3 of 110 120 123-2 Rusty, curdy to massive rhyolite w/ strong carbonate alt(?) 1% Diss. mag. w py 125.7 RHYC - Grey, Curdy to banded, feldspar-phyric, rhyolite Phenos are fine grained, subhedral, feldspar disseminated in siliceous, aphanatic, rhydlite, which forms clasts & bands through the core. 130 Matrix & partings (~5%) is fine grained micaceous material. Trace-minor disseminated pyrite throughout. 140 144.9 148.2 X Intercalated fine grained, volcaniclastic rhyolite, banded to curdy . . rhyolite, & quartz-ankerite-disseminated pyrite exhalite bands 146. Highly fractured Exhalite horizons show common quartz-carbonate veining 85-30% ~ ?% Barite 18

structure	e grainsize	Hole ID W096-2	Project KZK	1:200 Date	
m	1/64 0.5 2 8 3		1	on Hume	Page 4 of 7
150.1					
153.1					
	E REAL				
	2221	\approx -elongated silic	eous clasts (lapill	i-sized)	
156-1					
156-1 156-5 156-5 157-3 157-8		Siliceous flow band	b. J 1710		
158-6 158-1 158-3 001159-4		STREEDUD TIOW DAVID	rea rhyolite		
00159.4					
- 161.5		~30% pyrite dissemin	sted in ankerite-g	uartz oraunda	nass
162		RHY ~ 15%	P	Jound	
			00,,,,=		
-164.3		Greek fina acris 1		2.0/	
	· · · · · · · · · · · · · · · · · · ·	Girey, fine grained sized siliceous cla	$m_{2} m_{1} m_{2} m_{2} m_{3} m_{3$	-20% coarse	sand to pebble
		RHYVI			
	2. 2				
70	. F. J				
171.3	- ~ . /				
171.7		mpsw-Black, carb	maceous, muds-	lone	
. 1.21	ite the init	RHYVI-Grey, ankerite-	silica lapillin ti	ne grained as	sh ground mass
174.7 12P	ite this is a set of the set of t	Black, Carbonac	RUS-rich partipos	hotinopa Silicoa	in that 12 test and
174.9	erb .	RHVew orb - Flow banded	rhyolite w/ carbon	accous partin	x (~ 15%)
176-5	1 cure	MDS -Black Carbonac RHY - Black Carbonac RHY - Light grey, ver along partin - Min - Quartz-anker RHY - Light grey, altered part Trace patchy	eous mudstone w	minor Silica	Flore bands
-177.1		RHYCW - Light grey, ver	siliceous, flow bar	ided rhydlite.	Minor diss. sulfid
179		- Min-Quartz-anker	te w/ buckshot pyrit	e between flo	w bandsof RHICW
30		have Light grey,	aphanitic, flow-bar	ded, rhyolite	w/sericite
		allered part	ings brite + Oll rit	τp	
		irace pareny	spharen ic Fg		
· 1 A.	eiving cro	RHYow orb - Flow bi	inded rhydite i	~/ carbona	ceous partinos
Qz-coby	byennt cro		7		,
n Q	2-Car bytemp cro				
	crb		1.		
	sup	crb-carbon aceous p	drtings		
193.3		RHV - FI I			
		RHYL - Flow bande	rhyolite w/	Sericite-alte	ered partings
			U		J
	$ \lambda $				
m		- mosw - Carbonaceous	mudstone w/ min	nar silicon ((flam) La k
The flam to the second s	and the second	0 0000000	NUME TO THE ALL AND	in ottoous	(110W) Donoling


structure grainsize Hole ID W096-2 Project KZK 1:200 Date m Comments Hump. 1/64 0.5 2 8 32 >64 Logger Dill Page 5 of 7 00 200.2 RHYow - Flow banded rhyolite RHVVI - Light grey, volcaniclastic rhyolite w/ siliceous clasts in a fine RHVVI - John Matrix RHVcw - flow banded rhyolite 2043 ·C 204.8 208 RHICWCrb - flow banded rhyplite w/ carbonaceous Grb 210 col erb crb -214.1 RHYcw- flow banded rhydlite 220 223.6 RHYCW orb-flow banded rhyolite w/ corbonaceous partings crb 225.5 RHY a crb- Fine grained, calcareous & carbonaceous, rhydlitic tuff erb. 226.4 RHITEW orb- flow banded rhyolite w/ carbonaceous partings crb Cri crb orb crb crb 239.1 erb Min - Massive ankerite w/ buckshot disseminated pyrite RHYCW orb - dark grey, flow banded rhydlite wy carbonaceous cv5 orb Crh Fault MDS - black catbonaceous mudstone

Appendix I: Air Photography

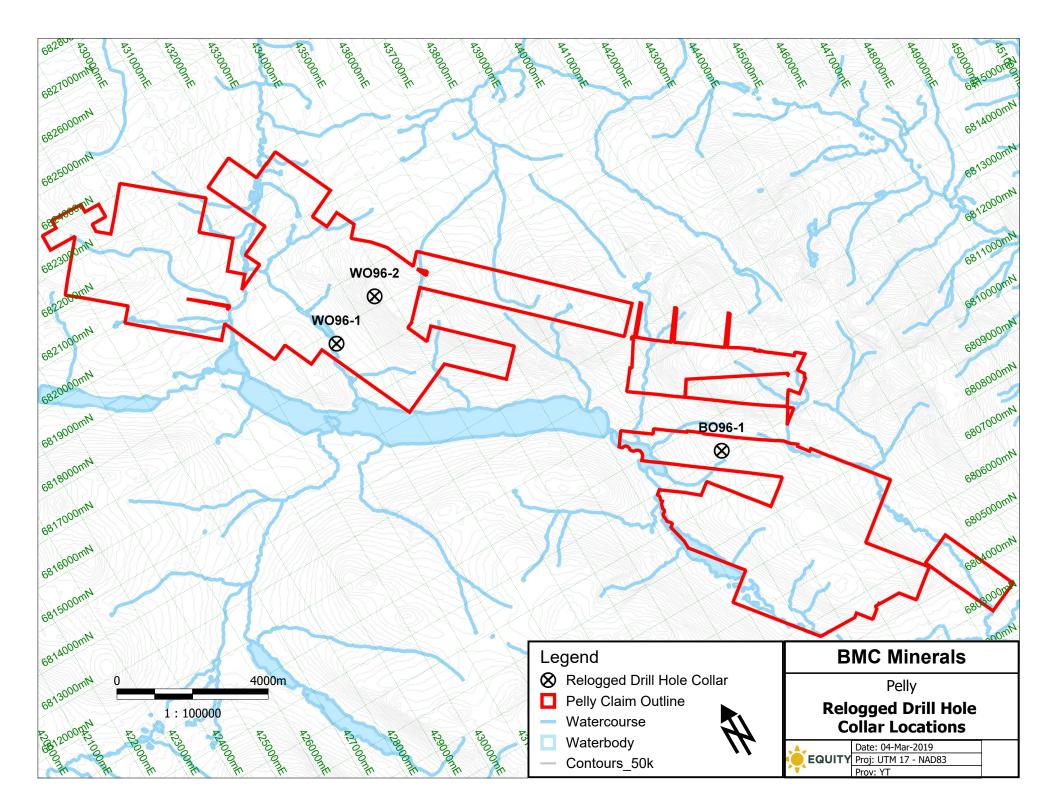
Appendix J: Data Disk

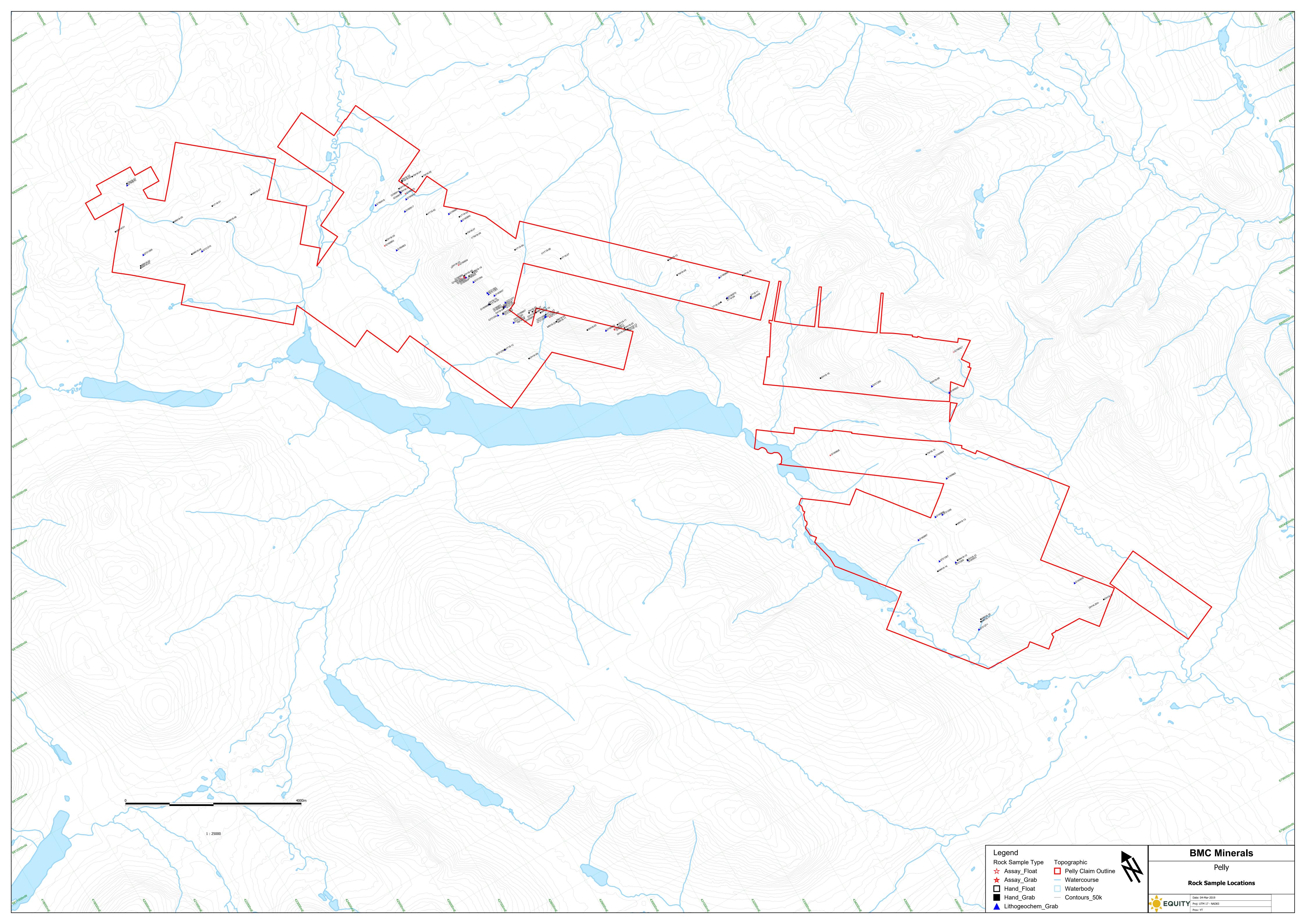
See Data Folder for Digital Data Appendix K: Qualified Person's Certificate

GEOLOGIST'S CERTIFICATE

Dillon H.E. Hume 8253 15th Ave Burnaby, BC, Canada V3N 1X7

I, DILLON HUME, M.Sc., G.I.T., do hereby certify that:


- 1. I am presently employed as a Project Geologist with Equity Exploration Consultants Ltd, with offices at Suite 1510, 250 Howe Street, Vancouver, British Columbia, Canada.
- 2. I am a graduate of Simon Fraser University, Burnaby, British Columbia with a Bachelor of Science degree in Earth Sciences in 2015, and a graduate of Simon Fraser University, Burnaby, British Columbia with a Master of Science degree in Earth Science in 2018.
- 3. I am a Geoscientist in Training (G.I.T.) in good standing with Engineers & Geoscientists British Columbia (EGBC) in the province of British Columbia.
- 4. Since 2011 I have been seasonally involved in mineral exploration for base metals and gold in Canada and Mexico.
- 5. I am the author of the assessment report titled "2018 Geological and Geochemical Program Report on the Pelly Property" prepared for BMC Minerals LTD.
- 6. I was involved with and managed the 2018 exploration work on the Pelly Property from 3 July to 17 July 2018.


Dated 15th December 2018, at Vancouver, British Columbia.

Signed and sealed: "Dillon H.E. Hume"

Dillon H.E. Hume, G.I.T.

