Assessment Report

describing

Geological and Geochemical Surveys

at the

PDM Property

(Babylon)

PDM 1-20: YC47987-YC480006; PDM 21-40: YC54958-YC54977; PDM 41-78: YC57606-YC57643;PDM 79-198: YD129501-YD129620; PDM 199-338: YE17605-YE17744; PDM 339-340: YE19301–YE19302; PDM341-348: YE17747-YE17754; PDM 349-352: YE19303-YE19306; PDM 353-360: YE17795-YE17766; PDM 361-364: YE19307-YE19310; PDM 365-372: YE17771-YE17778; PDM 373-376: YE19311-YE19314; PDM 377-384: YE17783-YE17790; PDM 385-408: YE19315-YE19338; PDM 409-624: YE17815-18030; PDM 625-688: YE19339-YE19402

NTS 105-J13

Latitude 62°51'N; Longitude 131°38'W

Mayo Mining District

Yukon Territory

100%-owned by StrikePoint Gold Inc.

Work Completed by: HIVE Geological

Reported by: Scott Dorion, G.I.T.

Dates of work performed: August 14th, 15th, 16th and 21st, 2017

Table of Contents

List of Figures
List of Tables
Introduction5
Location & Access
Physiography & Climate8
Exploration History9
Geology12
Regional12
Local
Mineralization
Prospecting & Geochemical Sampling26
Results & Interpretation
Discussion
Conclusion
References
Appendix I: Statement of Qualifications35
Appendix II: Sampling Methodology
Appendix III: Certificates of Analysis
Appendix IV: Rock Sample Descriptions51
Appendix V: Correlation Matrix55
Appendix VI: Statement of Expenditures56

List of Figures

Figure 1: Location of the PDM Property7 Figure 2: Claim Numbers defining the PDM Property. Claim-Names, -Numbers and Grant Numbers are Figure 3: Physiographic map of the region surrounding the PDM Property. The property is located between the North and South MacMillan Rivers, in the Hess Mountains of the Selwyn Mountain Range. 8 Figure 4: Regional geology (1:500,000) displaying the units and large-order structures surrounding the PDM property. The thrust fault cross-cutting the southern section of the PDM property is termed the Figure 5: Modified figure from Nelson et al.'s (2013) schematic stratigraphic relationships for Neoproterozoic and younger strata of the Ancestral North American margin's east-west section across Selwyn Basin (Nelson, Colpron, & Israel, 2013). The PDM property would plot directly east of Faro's Figure 6: Modified from Gordey's (2013) major structures defining the Tay River and Sheldon Lake map areas. The PDM Property is located in the north-center area, highlighted box; NTS mapsheet 105-J13..16 Figure 7: Modified from Gordey's (2013) time-stratigraphic transects illustrating stratigraphic relationships and rock types for Selwyn Basin strata. PDM property is within mapsheet 105J-13, which Figure 8: Local geology of the PDM property. Sheldon Thrust pushing older, Proterozoic-lower Cambrian bedrock (Yusezyu Formation; PY) over, younger, Devono-Mississippian bedrock (Prevost Formation; DMP). Normal faults perpendicular to Sheldon Thrust offset the respective formations. An intrusive stock of the Tay River suite (KS2), the oldest of the Selwyn intrusion-related systems (Mayo, Tay River, Tombstone, and Tungsten suites), was emplaced in the Prevost Formation. The northern section of the lower contiguous claim block (i.e. PDM, Mozart, Fairweather) and the entire upper contiguous claims block (i.e. Gato Negro) is defined by Ordovician and Silurian rocks of the Road River Group (OSR). 19 Figure 9: Photograph taken on August 14, 2017, looking north on top of the Spearhead Mountain Stock Figure 10: QAP diagram displaying normalized quartz-alkali feldspar-plagioclase values of 35 samples Figure 11: Regional map displaying known mineral occurrences surrounding the PDM property. The area proximal to the PDM region is primarily defined by polymetallic vein Ag-Pb-Zn+/-Au showings, and Figure 12: Photograph taken on August 15, 2017, of the large (>100ft) cliffs defining the Cu-Au Babylon prospect's northern aspect, PDM property. The mineralization is hosted in steeply-dipping, sheeted Figure 13: Granodiorite-hosted, oxidized, mineralized Cu-Ag-Ag sheeted vein complex; southwestern Figure 14: Chalcopyrite-pyrrhotite mineralization on open fracture face of quartz vein from anomalous Figure 15: Fracture-fill Cu-oxide mineralization observed at the Babylon showing; southwestern area of the Spearhead Mountain Stock......25 Figure 16: 2017 Grab Sample Locations (green triangles) and geological observations (maroon circles) at Figure 17: 2017 rock sample locations showing respective Au values at the PDM property, with focus on the Babylon prospect (highlighted in the figure's subset map). Notable anomalous Au values for 2017 rock grabs include 1.145 and 9.8g/t Au (Sample Number: V176654 and V176650, respectively). Graduated scale based off Reflex ioGAS software's progressive half function for all 109 rock samples Figure 18: 2017 rock sample locations showing respective Ag values at the PDM property, with focus on the Babylon prospect (highlighted in the figure's subset map). Notable anomalous Ag values for 2017 rock grabs include: 36, 39, 51, and 245g/t Ag (Sample Number: V176559, V176898, V176555, and V176653, respectively). Graduated scale based off Reflex ioGAS software's progressive half function for all 109 rock samples retrieved during 2017 season at the PDM property. Refer to Figure 16 for location Figure 19: 2017 rock sample locations showing respective Cu values at the PDM property, with focus on the Babylon prospect (highlighted in the figure's subset map). Notable anomalous Cu values for 2017 rock grabs include: 8000, 14200, 14350, 14600 and 28000ppm Cu (Sample Number: V176506, V176559, V176555, V176748, and V176653, respectively). Graduated scale based off Reflex ioGAS software's progressive half function for all 109 rock samples retrieved during 2017 season at the PDM property.

List of Tables

Table 1: Claim Names, Grant Numbers and Expiry Dates for the PDM Property	. 6
Table 2: Summarized Chronological Work History of the PDM Property	.9
Table 3: 2008 Diamond Drilling Results (Gregory, 2009)	11
Table 4: A modified table of formations regarding the Tay River and Sheldon Lake mapping areas	
(Gordey S. P., 2013). Highlighted formations mapped by Gordey (2013) are found within the PDM	
Property limits	14
Table 5: Five select samples retrieved in the Babylon zone (2017) which display strong Au and/or Cu	
values. Respective Sample Numbers with strikethrough assay values are not considered anomalous	27
Table 6: Au-Cu-Ag correlation matrix from 2017 PDM rock sampling lab assay results. Most significant correlations bolded and highlighted; other notable positive and negative correlations italicized	31

Introduction

The PDM property is a prospective polymetallic target in the Selwyn Mountains of the Yukon Territory which is 100%-owned by StrikePoint Gold Inc. The intrusive-hosted, anomalous polymetallic sheeted vein system defining the PDM property's exploration target will be called the 'Babylon' prospect under the proprietor StrikePoint Gold Incorporated.

The property has been termed the Spearhead showing by the Yukon Mining Recorder (Y.G.S., 2017), the Fairweather property (Gregory, 2009), Mozart (Diment, 1999), and PDM (Hilker, 1972; Ryan, 2006; Jin, 2012). The Yukon Geological Survey (2017) lists the occurrence as a silver-lead-zinc ± gold polymetallic sheeted vein complex. Previous work programs delineated subeconomic values of copper hosted in the sheeted vein complex, and numerous gossan and skarn showings surrounding the mineralized Spearhead Mountain stock.

This report describes the work completed on August 14th-16th and August 21st by members of the Hive Geological team on behalf of StrikePoint Gold Inc. The work program was defined by helicoptersupported prospecting and geological reconnaissance with a focus on the mineralized sheeted vein complex, hosted in the southwestern section of the Spearhead Mountain stock. A total of 147 geological observations were recorded during the 2017 field season at the PDM property - 109 of which were complimented with rock grab samples. Numerous rock grab samples returned anomalous assay values, which included maximums of 9.8g/t Au, 245g/t Ag, and 2.8% Cu. Of the 109 rock grab samples retrieved during the four days of reconnaissance, the average grade for the three listed commodities was 0.16g/t Au, 6.89g/t Ag, and 0.18% Cu.

Encouraging results from 2017 geological reconnaissance warrant further exploration on the PDM property, with focus on the Spearhead Mountain stock's Babylon prospect.

Location & Access

The PDM property, 62°51'N and 131°38'W, is located at in the Selwyn Mountains of the central Yukon Territory, 106 kilometers north-northeast straight bearing from the community of Ross River. The property's claim boundaries are fully within NTS 1:50,000 mapsheet: 105J/13.

The Town of Ross River has a population of 313 people¹ and is home to the Ross River Dena First Nation Council. The town maintains an active ferry over the Pelly River, which is the only form of road access to the North Canol Road - the maintained Yukon Highway #6, which gets as close as 30 kilometers from the PDM property. Ross River's amenities as of 2017 include: fuel and expediting services via Tu Lidlini Petroleum, an active airport, a health center, and a small grocery store. The nearly equidistant town of Faro, 108 kilometers west-southwest bearing from the PDM property, provides similar services as Ross River and several forms of lodging accommodation. Whitehorse, 300 kilometers to the southwest of the PDM property as the crow flies, provides all services expected from a capital city – including a general hospital, large grocery distributors and an international airport.

A temporary fly camp was established on the Macmillan Pass airport along the North Canol Road, located at 63°10′35″N and 130°12′9″W. The Macmillan Pass airport fly camp served as a base for exploration activity on StrikePoint Gold Inc.'s North Canol projects: Golden, Oly, Nug, Nordic, and PDM.

¹ https://en.wikipedia.org/wiki/Ross_River,_Yukon#cite_note-1

The field crew was shuttled to and from the camp via Huey 520 helicopter provided by Fireweed Helicopters.

The property is comprised of 688 claims, covering approximately 139 square kilometers. The claims are registered under the Mayo Mining Recorder under the name of StrikePoint Gold Inc. Claim data is listed in Table 1 below with a location map and claim map in Figure 1 and Figure 2, respectively.

PDM Property: Claim Data						
Claim Name	Grant Number	Expiry Date				
PDM 1-20	YC47987-YC480006	May 19, 2026				
PDM 21-40	YC54958-YC54977	May 19, 2025				
PDM 41-78	YC57606-YC57643	May 19, 2022				
		March 5, 2017				
PDM 79-198	YD129501-YD129620	March 5, 2018				
		March 5, 2019				
DDM 100 228-241 248-252		March 5, 2017				
PDM 199-338;341-348;353-	YE17605-18030	March 5, 2018				
360;377-384;409-624		March 5, 2019				
PDM: 339-340;349-352;361- 64;373-376;385-408;625-688	YE19301-YE19402	May 19, 2018				

Table 1: Claim Names, Grant Numbers and Expiry Dates for the PDM Property

The PDM property claims are currently on disputed traditional territories between the First Nation of Na-Cho Nyak Dun and Kaska Dena Council. The First Nation of Na-Cho Nyak Dun, based in the town of Mayo, represents the most northern community of the Northern Tutchone language and culture group and has a traditional territory which covers 162,456 square kilometers of land (NNDFN, 2017). The Kaska Dena Council, based in Lower Post, British Columbia, represents a large Nation divided into bands by the Indian Act. Two of the five traditional Kaska groups now referred to as First Nations reside in the Yukon Territory - the Liard First Nation at Watson Lake and Ross River Dena Council. The Kaska Dena Council has a traditional territory which covers over 240,000 square kilometers of land (KDC, 2017).

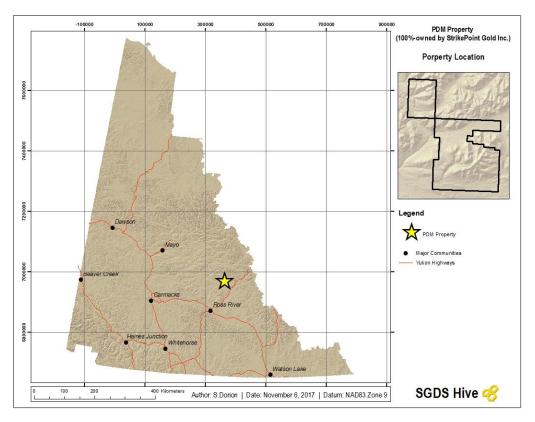


Figure 1: Location of the PDM Property

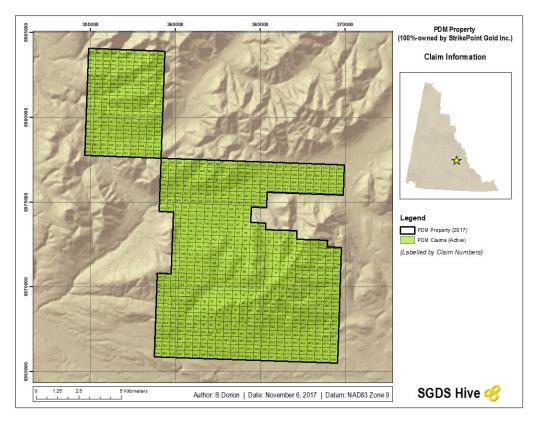
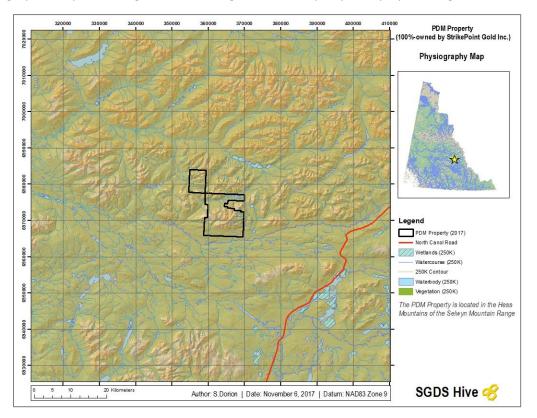



Figure 2: Claim Numbers defining the PDM Property. Claim-Names, -Numbers and Grant Numbers are listed in Table 1.

Physiography & Climate

A physiographic map of the region surrounding the PDM Property is displayed in Figure 3.

Figure 3: Physiographic map of the region surrounding the PDM Property. The property is located between the North and South MacMillan Rivers, in the Hess Mountains of the Selwyn Mountain Range.

Regional glaciation of the Yukon Territory has occurred at least six times during the Pleistocene, where the last Cordilleran Ice Sheet advanced from the Selwyn, Pelly and Cassiar, and eastern Coast Mountains in east-central and south-central Yukon (Jackson Jr., Ward, Duk-Rodkin, & Hughes, 1991). Jackson Jr. et al. (1991) suggests climate conditions were conducive for glaciation around 29,600 years ago; glacial cover was confined to mountainous areas until after 26,000 years ago; full-bodied ice sheets developed only after 24,000 years ago. The active glaciation of the area in the past defines the geomorphology of the PDM property, from the mountain's hanging valleys, cirques and arêtes to the vast U-shaped valley bottoms surrounding the property.

Elevation on the PDM property ranges from 860 to 2100 meters above sea level, with an average elevation of 1390 meters above sea level. The property is defined by a central massif-like block of sheer, jagged mountains in the middle of the southern section of the PDM property. The remaining morphology of the property is characterized by more modest highlands and large valleys. The valleys immediate to the north and south of the PDM property host the North and South MacMillan Rivers, respectively.

The ecoregion is characterized by alpine tundra at upper elevations and by subalpine open woodland vegetation at lower elevations. Alpine vegetation consists of crustose lichens, mountain avens, dwarf willow, and ericaceous shrubs; sedge and cottongrass are associated with wetter sites. Barren talus

slopes are common. Subalpine vegetation consists of discontinuous open stands of stunted white spruce, and occasional alpine fir and lodgepole pine, in a matrix of willow, dwarf birch, and northern Labrador tea with a ground cover of moss and lichen. Sedge, cottongrass, and mosses occur in wet sites (Ecoregions of Canada: Selwyn Mountains, n.d.).

Characteristic wildlife includes caribou, grizzly and black bear, Dall's sheep, moose, beaver, fox, wolf, hare, raven, rock and willow ptarmigan, and bald and golden eagle (Ecoregions of Canada: Selwyn Mountains, n.d.). The PDM Property is within known areas of Thinhorn sheep (ID-1763) and ungulate mineral lick sites (ID-3196). The Thinhorn sheep area, last modified in 1990, implies work restrictions from October to April; ungulate mineral lick area has no work restrictions associated with it and was last modified in 2008 (YEMR, 2017).

The mean annual temperature for major valley systems is approximately -4.5°C with a summer mean of 9.5°C and a winter mean of -19.5°C. Mean annual precipitation is highly variable ranging from 600 mm at lower elevation on the perimeter of the ecoregion up to 750 mm at high elevation (Ecoregions of Canada: Selwyn Mountains, n.d.).

Exploration History

A summary of the chronological work history as per the Yukon Mining Recorder is listed in Table 2.

Proprietor	Year		Claim Name (Grant Number)		Work Program		Program
Atlas Exploration	1967-68		*n/a		Investigated		
Phelps Dodge Corp.	1971-72		PDM cl 1-144 (Y56385)		Geological mapping; soil sampling magnetic surveying; blasting; hand trenching		
R.G. Hilker	1976-78		Fat cl 1-24 (YA6003)		Hand trenching		
Archer, Cathro & Associates [1981] Ltd.	1978		Uno cl 1-10 (YB49293)		*n/a		
Hemlo Gold Mines Inc. / Battle Mountain Gold Company	1996		*n/a		Rock, silt and soil sampling		l soil sampling
Viceroy Exploration [Canada]	1997	1998	Mozart cl 1-144 (YC00897)	Gato Negro cl 1-12 (YC01227)	Geological mapping; rock, silt and soil sampling		
NovaGold Resources	1999		Gato Negro cl 13-45 (YC01943)		Staking		king
Shawn Ryan	20	06	PDM cl 1-40		Soil sampling and prospecting		and prospecting
Strategic Metals	2007	2008	Fairwea (PDM cl -		Soil sampling		
Ryan Gold Corp.	2011	2012	PDM cl	1-688			Rock sampling
StrikePoint Gold Inc.	2017		Babyl (PDM cl		Geological reconnaissance; rock samplir		
*n,	/a – no av	vailable da	ta available via Yu	ukon Mining Rec	order (data.geo	logy.gc	ov.yk.ca)

Table 2: Summarized Chronological Work History of the PDM Property

The PDM property was initially investigated by Atlas Exploration from 1967-1968 due to observed disseminated copper mineralization and anomalous silt geochemistry proximal to the Spearhead Mountain showing. The work program was complimented with an undergraduate thesis at the University of British Columbia (Sanford, 1969). Sandford (1969) observed two interesting trends where orthoclase and plagioclase increased to the southeast with quartz and specific gravity increases to the northwest.

The property was first staked until October 1971 by Phelps Dodge Corporation of Canada Limited as PDM cl 1-144 (Y56385). Phelps Dodge carried out geological mapping, soil sampling, blasting, hand trenching, and magnetic surveys in 1972. The results of the program identified north-northeast trending, 2200 by 1300 meter band of disseminated and fracture-filling mineralization that locally graded up to 0.3% copper (Hilker, 1972). Hilker (1972) refers to Sandford's (1969) two trends, noting mineralization appears to be associated with quartz-lean rocks, and the mineralized zone is predominantly within the southeastern half of the intrusive body. During detailed 1":200' mapping of the intrusion, Phelps Dodge noted that the highest fracture densities directly correlated with zones of strongest mineralization; K-feldspar and greenish colouration of plagioclase alteration is strongest in the mineralized zone; quartz-filled fractures are associated with sulphides; sulphides occur as finely disseminated or in small blebs and are closely associated with mafic minerals. Of the 4 blasted trenches, trench C2-4 returned the most prospective result at 0.2% Cu over a 6-foot chip sample (Hilker, 1972).

R.G. Hilker restaked the property in July of 1976 as Fat cl 1-24 (YA6003), who performed hand trenching in 1977 and 1978.

Archer, Cathro & Associates (1981) Limited staked claims Uno cl 1-10 (YB49293) in June of 1994.

Hemlo Gold Mines Incorporated carried out geochemical (rock, silt and soil) sampling over the occurrence prior to merging with Battle Mountain Gold Company in July of 1996. Battle Mountain later released the data to Viceroy Exploration (Canada) Incorporated in 1997, prompting the restaking of the occurrence as Mozart cl 1-144 (YC00897) in April of 1998. In 1998, Viceroy completed geological mapping and geochemical (rock, silt and soil) sampling. Results of the geochemical sampling included a 6g/t Au in rock and silts up to 270ppb Au. Abundant gossaneous areas with lesser arsenopyrite skarn and vein mineralization near the stock were observed during field reconnaissance (Diment, 1999). Noted alterations included: strong argillization local to vein mineralization, local silicification, and skarnification of sediments near the stock. Limonitic calcareous sediment, roughly 450 meters north of the instrusive stock, returned a grab of 2.3g/t Au proximal to Hemlo's (1996) 3.0g/t Au silicified limestone grab. Diment (1999) refers to a "silicified material" sample, retrieved originally by Hudson Bay Exploration and Development, in the southwestern area of the property returning the previously mentioned 6g/t Au grab. Diment (1999) suggests that the property has a lower emplacement setting of mineralization and lower erosional level than most stocks exposed within the Tombstone Suite. The work recommendation put forward was to continue exploring to the north and southwest (Diment, 1999).

Viceroy also staked the Gato Negro cl 1-12 (YC01227) 13.5 kilometers to the northwest and completed more geochemical (rock, silt and soil) sampling results based off initial results in 1998. The Gato Negro claims are associated with anomalous silver and mercury values, which include 5.4g/t Ag and 2340ppb

Hg, which correlate to weakly scoroditic, baritic veins and a vein breccia zone. The property was also noted to have a widespread background gold value averaging 25ppb (Diment, 1999).

In March of 1999, NovaGold Resources Incorporated acquired 100% of Viceroy Exploration's 22 grassroots properties in the Yukon, including Mozart and Gato Negro claims in exchange for 3.4 million common shares. NovaGold staked Gato Negro cl 13-45 (YC01943) in August of 1999.

Shawn Ryan restaked the Spearhead Mountain showing as PDM cl 1-20, later adding 21-40 from favourable copper and gold results from soil sampling and prospecting, in 2006. Initial results returned anomalous element in soils, including 378ppb Au, 6410ppm Cu, 360ppm Bi, 6110ppm As, and 81ppm W (Ryan, 2006). Ryan (2006) notes dry fracturing of the intrusive having a vein density of a 2-4mm vein every 5-6 centimeters. Shawn Ryan optioned the property to Strategic Metals Limited in early 2007 and performed soil sampling on their behalf the same year. In November of 2007, Strategic Metals added PDM cl 41-78 to the southwest corner of the property.

Strategic Metals (Gregory, 2009) completed the most robust work program to date on the property which included airborne geophysics, geochemical sampling, geological mapping and diamond drilling. A massive sulphide body was discovered within a skarn in the southwestern section of the property which was termed the 'Ming' showing. A sample of quartz vein float to the southwest of the Spearhead Mountain stock returned 6.9g/t Au. Additional soil sampling was completed on identified anomalies, which included a 9.06g/t Au soil at the Ming showing. Gregory (2009) notes that hand trenching left the extent of mineralization open to the west at the Ming showing. Results of the Ming hand trench returned 1.5g/t Au over 18 meters, with a nested 3.5g/t Au over 4 meter hosted in cherty shale. A 211.6 line kilometer airborne VTEM and magnetic geophysical survey was completed by Geotech Limited, which returned anomalous magnetic signatures surrounding the intrusive stocks. The magnetic halo surrounding the intrusive stocks likely relates to skarns and/or pyrrhotite-rich hornfels (Gregory, 2009). Gregory (2009) states the most significant result from the 2008 geophysical survey was adjacent to the Ming showing, which identified the presence of a steeply to vertically dipping conductive body which links a known gold-bearing massive pyrrhotite body to a weak magnetic high, suggesting the massive sulphide body likely extends to depth. A second anomaly was identified 1 kilometer to the south of the Ming showing which relates strongly to historical lead and zinc values, potentially suggesting further skarnification, strataform or stratabound mineralization. 883.92 meters diamond drilling over 3 holes was completed using a JKS Super-300 diesel drill and BTW equipment. Collar information regarding the diamond drilling at PDM are listed in Table 3.

Hole	Easting	Northing	Elevation (m)	Azimuth (°)	Angle (°)	Depth (m)
FW08-01	365257	6970246	1773	117	-48	304.8
FW08-02	366606	6971582	1591	100	-45	332.23
FW08-03	366415	6971280	1695	100	-45	246.89

Table 3: 2008 Diamond Drilling Results (Gregory, 2009)

The 2008 drilling's success was limited by weather and terrain obstacles which resulted in the 3 drilled holes not being collared in ideal locations. The results of drilling were generally disappointing, especially for copper, which rarely exceed 500ppm. The most notable interval was 1.085g/t Au over 3 meters in FW08-02.

Ryan Gold Corporation completed work programs on PDM in 2011 and 2012². In 2011, Ryan Gold Corp. retrieved 2008 soils and 29 rock samples. The most significant grab samples included 2.3g/t Au and 1251ppm Cu adjacent to the Fe-rich skarn zones southwest of the Spearhead Mountain stock (Jin, 2012).

The Ryan Gold Corporation portfolio was packaged along with Eagle Hill Exploration Corporation and Corona Gold Corporation portfolios and acquired by Oban Mining Corporation on August 25th, 2015. On February 1st, 2016, IDM Mining completed the acquisition of Oban Mining's Yukon properties, issuing 7,188,889 common shares and granted a 1% NSR to Oban Mining. On December 21st, 2016, StrikePoint Gold Inc. signed a letter of intent to acquire the Yukon properties from IDM Mining. The purchase price of the Yukon properties by StrikePoint Gold was for \$4,000,000 paid via \$150,000 in cash and \$3,850,000 common shares at \$0.385 per share, with the agreement to spend \$1,500,000 in exploration expenditures by December 31st, 2017.

Geology

Regional

An overview provided by Pigage (2004) describes the region, The Anvil Mining District, as "the most westerly exposures of the off-shelf basinal facies (Selwyn Basin) of the Cordilleran miogeocline, a prism of sedimentary rocks of Precambrian to Jurassic age deposited along the relatively stable, passive continental margin of western North America. Anvil District is immediately northeast of the Slide Mountain and Yukon-Tanana Terranes, the most easterly of the allochthonous suspect terranes which were amalgamated with North America starting in Jurassic time. The total interpreted stratigraphic thickness of the metasedimentary rocks of North American affinity is greater than 7400 m, ranging in age from latest Precambrian or earliest Cambrian through Devonian. These metasedimentary rocks consist predominantly of fine clastic sediments deposited in an off-shelf marine basin with local occurrence of euxinic carbonaceous shales and coarser sandstones and conglomerates. Extensive Ordovician within-plate basaltic submarine volcanic rocks and associated epiclastic breccias are indicative of localized rifting along the continental margin."

Compilation work by Gordey & Makepeace (1999) provides a comprehensive geological map of the Yukon Territory which is displayed in Figure 4. Figure 5 displays a schematic stratigraphic relationship of the Ancestral North American margin defining the region (Nelson, Colpron, & Israel, 2013). Nelson et al.'s (2013) regional schematic stratigraphy is complimented with Gordey's (2013) Tay River and Sheldon Lake mapping areas, Figure 6 - which includes local schematic stratigraphic sections of the PDM property region, displayed in Figure 7.

² At the time of reporting, the 2012 Ryan Gold Corporation Assessment Report (#096362) was still closed to the public on the EMR Library (http://virtua.gov.yk.ca:8080/lib/item?id=chamo:169562&theme=emr).

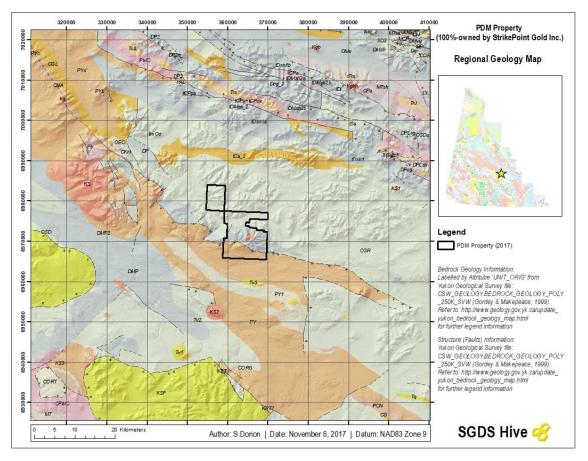


Figure 4: Regional geology (1:500,000) displaying the units and large-order structures surrounding the PDM property. The thrust fault cross-cutting the southern section of the PDM property is termed the 'Sheldon Thrust'. A modified legend is listed in Table 4 (Gordey S. P., 2013).

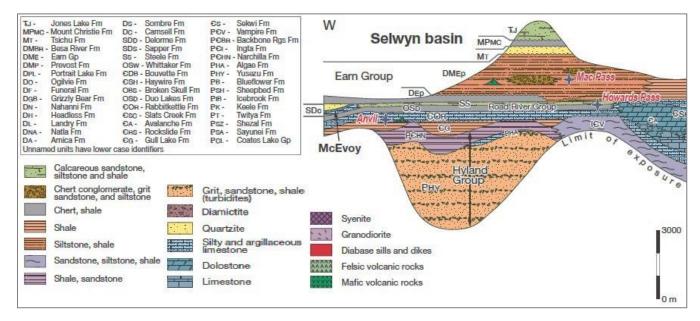


Figure 5: Modified figure from Nelson et al.'s (2013) schematic stratigraphic relationships for Neoproterozoic and younger strata of the Ancestral North American margin's east-west section across Selwyn Basin (Nelson, Colpron, & Israel, 2013). The PDM property would plot directly east of Faro's 'Anvil' mine, Yukon Territory.

Table 4: A modified table of formations regarding the Tay River and Sheldon Lake mapping areas (Gordey S. P., 2013).Highlighted formations mapped by Gordey (2013) are found within the PDM Property limits.

Period/Epoch	Formation	Map Unit	Lithology	Thickness (m)
		Tv	Undivided Tv1, Tv2, Tv3; Acid volcanic plugs; Acid ash-flow tuffs	
	Bimodal volcanic	Tv1	and flows; Basalt flows; Intrusive (Tv1) or unconformable on	?
	unit	Tv2	Paleozoic units faulted against Ts	•
Tertiary		Tv3		
	Alluvial clastic unit	Ts	Sandstone, conglomerate, shale; faulted contacts; likely unconformable on various Paleozoic units	200(?)+
	Limestone conglomerate unit	Tcg	Limestone conglomerate; faulted contacts, stratigraphic relations unclear	400+
		Pre-Terti	ary Rocks Northeast of Tintina Fault	
	South Fork volcanics	KSF	Biotite-quartz-hornblende-feldspar crystal tuff; unconformable; extrusive equivalent of Ks	950+
Cretaceous		кs	Granite, quartz monzonite, granodiorite	
		KS1	Biotite ± muscovite-bearing plutons	
cictaceous	Selwyn Plutonic	KS1 KS2	Biotite ± hornblende-bearing plutons	
	Suite	KS2 KS3	Porphyritic biotite-hornblende granite	
			Mafic-free granite	
		KS4	intrusive	
			honous Terrane (Upper Paleozoic)	
	Slide Mountain terra	ne (CPSv, C		
	Basalt unit	CPSv	Basalt; conformable and interfingers with CPSt, other contacts faulted	1000±
Carboniferous and	Chert unit	CPSt	Chert; interfingers with CPSv, other contacts faulted	1000±
Permian	Limestone unit	CPSI	Limestone; faulted contacts	100±
	Ultramafic unit	CPSub	Serpentinite, peridotite; faulted contacts	
	Yukon-Tanana terrar			
Carboniferous to	Conglomerate unit	CTYcg	Conglomerate; faulted contacts	600+
Triassic	Schist unit	CTYm	Muscovite-biotite schist, micaceous quartzite, eclogite, blueschist; faulted contacts	
	L	chthonous	terranes emplaced in the Jura-Cretaceous	
Foreland Basin (Creta		cintinonious		
	Big Timber			
Lower Cretaceous	Big Timber Formation	КВ	Shale, chert-pebble conglomerate; unconformable on TJ	120+
	Formation		Shale, chert-pebble conglomerate; unconformable on TJ	120+
	Formation age (mid-Mississippian		Shale, chert-pebble conglomerate; unconformable on TJ	
Clastic Shelf Assembla Triassic	Formation age (mid-Mississippian Jones Lake Formation		Shale, chert-pebble conglomerate; <i>unconformable on TJ</i> Shale, siltstone, sandstone, limestone; unconformable on TJ	120+ 400+
Clastic Shelf Assembla	Formation age (mid-Mississippian Jones Lake	to Triassic)	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; <i>unconformable on MT</i>	
Clastic Shelf Assembla Triassic Carboniferous to	Formation age (mid-Mississippian Jones Lake Formation Mount Christie	to Triassic) TJ	Shale, siltstone, sandstone, limestone; unconformable on TJ	400+
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation	to Triassic) TJ CPMc MT MT1	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; <i>unconformable on MT</i> Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME	400+ 200-700 310+
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation	to Triassic) TJ CPMc MT MT1	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; <i>unconformable on MT</i> Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided	400+ 200-700 310+ 400
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De	to Triassic) TJ CPMc MT MT1 vonian to n	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; <i>unconformable on MT</i> Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian)	400+ 200-700 310+
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP	to Triassic) TJ CPMc MT MT1 vonian to n DMe	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; <i>unconformable on MT</i> Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided	400+ 200-700 310+ 400
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak	to Triassic) TJ CPMc MT MT1 evonian to n DMe Mv	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; <i>unconformable on MT</i> Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; <i>lateral equivalent, in part, to DMP</i> Shale, sandstone, conglomerate Shale, limestone	400+ 200-700 310+ 400 300
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian Mississippian Devono-	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak Formation	to Triassic) TJ CPMc MT MT1 vonian to n DMe Mv MC DMP	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; <i>unconformable on MT</i> Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; <i>lateral equivalent, in part, to DMP</i> Shale, sandstone, conglomerate	400+ 200-700 310+ 400 300 1000
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian Mississippian Devono- Mississippian Lower to Upper Devonian	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak Formation Prevost Formation Potrait Lake Formation	to Triassic) TJ CPMc MT MT1 vonian to n DMe Mv MC DMP DMP1 DMP1	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; unconformable on MT Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; lateral equivalent, in part, to DMP Shale, sandstone, conglomerate Shale, limestone (?)unconformatble Shale, chert, sandstone, conglomerate	400+ 200-700 310+ 400 300 1000 500+
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian Mississippian Devono- Mississippian Lower to Upper Devonian	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak Formation Prevost Formation Potrait Lake	to Triassic) TJ CPMc MT MT1 DMe Mv MC DMP DMP1 DP ian)	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; unconformable on MT Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; lateral equivalent, in part, to DMP Shale, sandstone, conglomerate Shale, limestone (?)unconformatble Shale, chert, sandstone, conglomerate Conformable on SS	400+ 200-700 310+ 400 300 1000 500+
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian Mississippian Devono- Mississippian Lower to Upper Devonian	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak Formation Prevost Formation Potrait Lake Formation	to Triassic) TJ CPMc MT MT1 vonian to n DMe Mv MC DMP DMP1 DMP1	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; unconformable on MT Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; lateral equivalent, in part, to DMP Shale, sandstone, conglomerate Shale, limestone (?)unconformatble Shale, chert, sandstone, conglomerate	400+ 200-700 310+ 400 300 1000 500+
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian Mississippian Devono- Mississippian Lower to Upper Devonian	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak Formation Prevost Formation Potrait Lake Formation	to Triassic) TJ CPMc MT MT1 DMe Mv MC DMP DMP1 DP ian)	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; unconformable on MT Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; lateral equivalent, in part, to DMP Shale, sandstone, conglomerate Shale, limestone (?)unconformatble Shale, chert, sandstone, conglomerate Conformable on SS	400+ 200-700 310+ 400 300 1000 500+ 200
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian Mississippian Devono- Mississippian Lower to Upper Devonian McEvoy Platform (She	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak Formation Prevost Formation Potrait Lake Formation Potrait Lake Formation	to Triassic) TJ CPMc MT MT1 evonian to n DMe Mv MC DMP DMP1 DP ian) SDc	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; unconformable on MT Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; lateral equivalent, in part, to DMP Shale, sandstone, conglomerate Shale, limestone (?)unconformatble Shale, chert, sandstone, conglomerate Conformable on SS	400+ 200-700 310+ 400 300 1000 500+
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian Mississippian Devono- Mississippian Lower to Upper Devonian McEvoy Platform (She Devonian and (?)	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak Formation Prevost Formation Prevost Formation Potrait Lake Formation Elf Facies: Siluro-Devon Carbonate-	to Triassic) TJ CPMc MT MT1 evonian to n DMe Mv MC DMP DMP1 DMP1 DP ian)	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; unconformable on MT Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; lateral equivalent, in part, to DMP Shale, sandstone, conglomerate Shale, limestone (?)unconformatble Shale, chert, sandstone, conglomerate Conformable on SS	400+ 200-700 310+ 400 300 1000 500+ 200
Clastic Shelf Assembla Triassic Carboniferous to Permian Mississippian Earn Clastic Assembla Devonian and Mississippian Mississippian Devono- Mississippian Lower to Upper Devonian McEvoy Platform (She Devonian and (?)	Formation age (mid-Mississippian Jones Lake Formation Mount Christie Formation Tay Formation ge (Turbidite Basin: De EARN GROUP Felsic volcanic unit Crystal Peak Formation Prevost Formation Prevost Formation Potrait Lake Formation Elf Facies: Siluro-Devon Carbonate-	to Triassic) TJ CPMc MT MT1 evonian to n DMe Mv MC DMP DMP1 DMP1 DP ian)	Shale, siltstone, sandstone, limestone; unconformable on TJ Chert, shale; unconformable on MT Shale, siltstone, limestone, sandstone, limestone; (?)conformable on DME nid-Mississippian) MC, DMP, DP, Mv; map unit DME includes MC, DMP, DP undivided Felsic volcanic and/or subvolcanic Conglomerate, shale; lateral equivalent, in part, to DMP Shale, sandstone, conglomerate Shale, limestone (?)unconformatble Shale, chert, sandstone, conglomerate Conformable on SS	400+ 200-700 310+ 400 300 1000 500+ 200

	ROAD RIVER			
	GROUP	OSR	SS, OSD	
Ordovician and Silurian	Steel Formation	SS	Siltstone, mudstone (?)locally unconformable	250
	Duo Lake Formation	OSD	Chert, shale Conformable on CORG, CORT; <i>locally unconformable on PCH</i>	175-200
	Menzie Creek Formation	ОМ	Basalt, tuff Interfingers with CORT, conformable on CORV	430+
		CORG	Gold Creek facies: siltstone, limestone interfingers with CORT; unconformable on CG, PCH	270
Cambro-Ordovician	Rabbitkettle Formation	CORT	Twopete facies: siltstone Interfingers with CORG, OM; conformable on CG	600-800(?
		CORV	Vangorda facies: calcareous phyllite Conformable on CG	500
Lower Cambrian	Gull Lake Formation	CG	Shale, siltstone, limestone; mica schist conformable on PCN	0-400
	HYLAND GROUP	PCH	PCN, PY	
Proterozoic and	Narchilla Formation	PCN	Shale, sandstone conformable	0-630
Lower Cambrian	Yusezyu Formation	PY PY1	Shale, sandstone, quartz-pebble conglomerate, minor limestone Limestone; Base not exposed	500+ 0-250
		Pre-Terti	ary Rocks Southwest of Tintina Fault	
Cretaceous	Cassiar Plutonic Suite	КС	Biotite quartz monzonite Intrsuive into strata on both sides of St. Cyr Fault	
		•	ween St. Cyr and Tintina Faults]	
St. Cyr Assemblage (O	offshelf and Shelf Facies	s: Cambrian		1
Triassic	Shale-limestone unit	uTsc	Shale, siltstone, sandstone, limestone (?) unconformable	100+
Carboniferous	Limy clastic unit	Csl	Shale, siltstone, limestone conformable	
	Argillite-chert unit	Mtf	Chert, slate conformable	150?
Devono-	Black argillite unit	DMs	Shale, sandstone, chert conglomerate (?) unconformable	150?
Mississippian	Limestone-phyllite unit	DMcsl DMcsl1	limestone	
Ordovician to Devonian	Black slate unit	ODsl	Black pyritic slate (?) conformable	400+
Cambro-Ordovician	Silty limestone unit	COc	Shale and silty limestone Base not exposed	400+
			[Southwest of St.Cyr Fault]	
	(Turbidite Basin: Devo	no-Mississi	7	
Devono- Mississippian	Black clastic unit	DMs	Shale, sandstone (?) unconformable	600+
Cassiar Platform (She	lf Facies: Siluro-Devoni	an)		1
Siluro-Devonian	Dolostone unit	SDdq	Dolomite, dolomitic sandstone conformable	1000
Silurian	Platy siltstone unit	Sst	Dolomitic siltstone Unconformable	400
Pre-Cassiar Platform (Offshelf Facies: late Pr	oterozoic to	·	
Cambro-Ordovician	Black shale unit	OSsl	Slate conformable	0-40
to Silurian	Phyllite unit	COsl	Calcareous phyllite, limestone (?)unconformable	450
Proterozoic to	Slate unit	PCp	Slate, quartz sandstone	
Cambrian		PCp1	Base not exposed	0-350

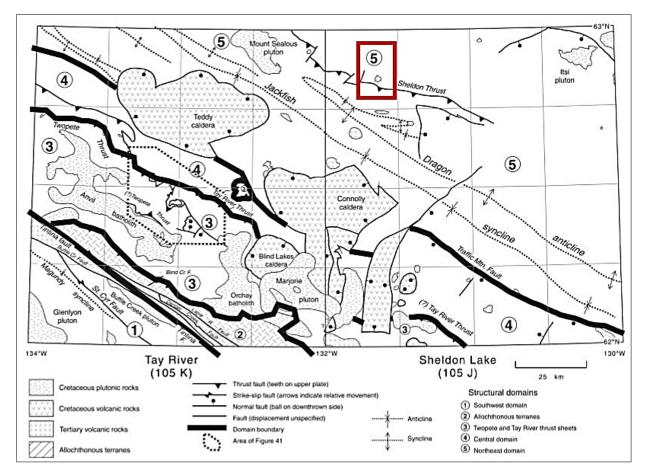


Figure 6: Modified from Gordey's (2013) major structures defining the Tay River and Sheldon Lake map areas. The PDM Property is located in the north-center area, highlighted box; NTS mapsheet 105-J13.

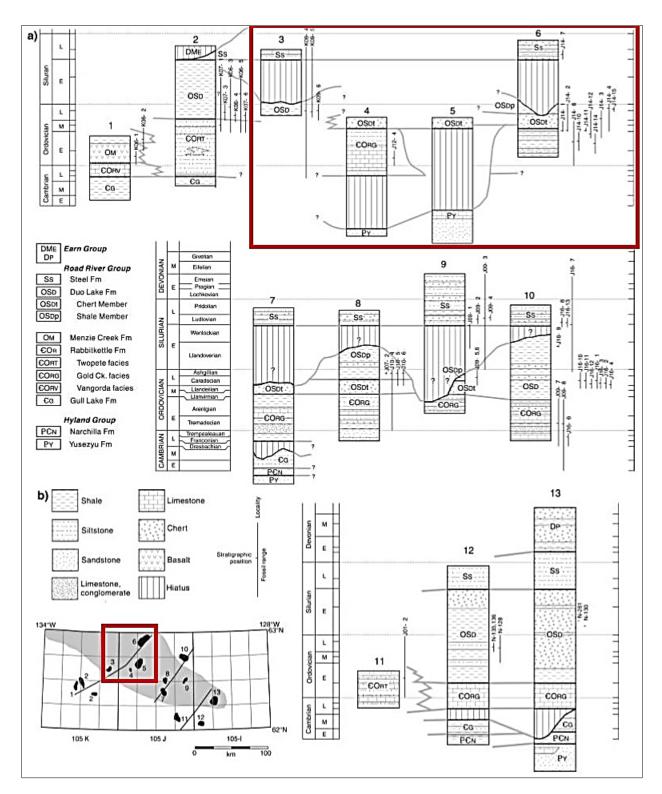


Figure 7: Modified from Gordey's (2013) time-stratigraphic transects illustrating stratigraphic relationships and rock types for Selwyn Basin strata. PDM property is within mapsheet 105J-13, which most closely relate to time strat columns: '3', '4', '5', and '6'.

Chakungal (2012) summarizes elements of the region's tectonic history effectively: "Neoproterozoic – early Cambrian coarse-medium grained sandstone, calcareous sandstone and minor limestone of the Yusezyu Formation - the basal unit of the Hyland Group which defines the Selwyn Basin (Gordey and Anderson, 1993). In south and east Yukon proximal to the border with NWT, units of the Yusezyu Formation grade upward at the basin to platform edge, into the time equivalent lower Cambrian Gull Lake Formation. Trangression of the sea onto the passive margin in the late Cambrian – Ordovician resulted in deposition of finely laminated calcareous siltstones of the Rabbitkettle Formation. Following this transgression, in late Ordovician through early Devonian, the Selwyn Basin was dominated by sedimentation of the Road River Group - a thick package of black siliceous mudstone, chert and siltstone (Cecile and Norford, 1991).

As sedimentation ensued, percolation of metal-rich brines through seafloor springs onto the basin floor likely led to the precipitation and preservation of stratiform lead-zinc deposits within the Selwyn Basin (e.g. Howard's Pass and Anvil Range).

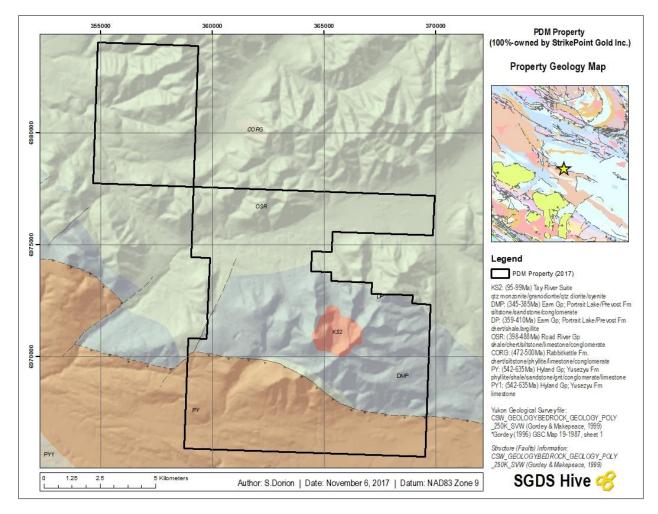
During the mid-Devonian (~390 Ma) a rise in sea level forced the west Laurentian coastline to migrate inland (eastward) resulting in the submergence of the Selwyn Basin and deposition of black shale and siltstone beds with lenses of sandstone in eastern and northern Yukon (Gordey, 1991). Uplift and erosion in the region of central Yukon at that time resulted in the production and deposition of the Earn Group comprising thick bedded chert-pebble conglomerate, that funneled eastward within submarine channels in the direction of Macmillan Pass. By the Mississippian epoch, river deltas flooded the shallow marine environment depositing the sandy Keno Hill quartzite. From Pennsylvanian - early Jurassic (318-178 Ma) thin-bedded carbonates, calcareous and siliceous sandstones interbedded with green, moderately cherty shales accumulated in a platform environment that developed in eastern and northern Yukon, and subsequently overlain with brown sandy shale of the Jones Lake formation.

With convergence and accretion of continental and oceanic terranes to the western margin of North America beginning in the mid-Jurassic has resulted in telescoping of the units described above to the east, towards Northwest Territories. Generation and intrusion of Cretaceous plutonic material into rocks with Ancient North American affinity is associated with this convergence which continues through to today."

For a more detailed regional geology and tectonic history of the region, readers are referred to Canadian geological surveys: YGS, NTGS, BCGS, and GSC (Gordey S. P., 2013; Nelson, Colpron, & Israel, 2013).

Local

Pigage (2004) describes the local geology of the PDM property as a biotite-granite stock of the mid-Cretaceous Selwyn Suite which has intruded Devonian to Mississippian Earn Group shale and Ordovician to Silurian Road River Group shales, cherts and limestones that is in thrust fault (i.e. Sheldon Thrust) contact with Proterozoic Hyland Group sediments.



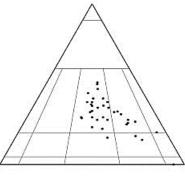

Figure 8: Local geology of the PDM property. Sheldon Thrust pushing older, Proterozoic-lower Cambrian bedrock (Yusezyu Formation; PY) over, younger, Devono-Mississippian bedrock (Prevost Formation; DMP). Normal faults perpendicular to Sheldon Thrust offset the respective formations. An intrusive stock of the Tay River suite (KS2), the oldest of the Selwyn intrusion-related systems (Mayo, Tay River, Tombstone, and Tungsten suites), was emplaced in the Prevost Formation. The northern section of the lower contiguous claim block (i.e. PDM, Mozart, Fairweather) and the entire upper contiguous claims block (i.e. Gato Negro) is defined by Ordovician and Silurian rocks of the Road River Group (OSR).

Figure 9: Photograph taken on August 14, 2017, looking north on top of the Spearhead Mountain Stock (Figure 8: KS2), hostlithology to the Babylon Cu-Au prospect, PDM Property.

Referring to Table 4, the formations which define the PDM region are:

Tay River suite [Cretaceous]: A 465 kilometer, 70 to 150 kilometer-wide, northwest-trending belt of intermediate plutonic rocks (Pigage, Crowley, Roots, & Abbott, 2013), ranging in lithology types: monzogranite ± granodiorite ± quartz monzonite ± quartz monzodiorite ± tonalite ± diorite, as displayed in Figure 10 (Gordey S. P., 2013). The Tay River suite is 99-96 Ma and, depending on phase of evolution, can be associated with skarn-related deposits in the Mackenzie-Selwyn Mountains (Ootes, et al., 2013). The Tay River suite was emplaced during the early to mid-Cretaceous magmatic belt's 'Late arc' setting between 99-94 Ma and represent an intermediate phase of the continental arc response to subduction and accretion along the Cordilleran margin (Pigage, Crowley, Roots, & Abbott, 2013). Pigage et al.'s (2013) study of the Coal River map area, where the intrusive rocks were deemed to be of the Tay River suite, ranged in magnetic susceptibilities from 0.0 to 17.8 (10⁻³ SI units); had consistent major and trace element compositions corresponding to magnetite to ilmentite series; a largely metaluminous to slightly peraluminous affinity.

Plutons with hornblende (Ks2) (n = 35)

Figure 10: QAP diagram displaying normalized quartz-alkali feldspar-plagioclase values of 35 samples retrieved from Tay River-Sheldon Lake map area, KS2 intrusive stocks (Gordey S. P., 2013).

- Potrait Lake Formation [Lower to Upper Devonian]: Gordey (2013) describes the Portrait Lake Formation as a well bedded black chert, distinguished by its dark grey, black or blue-black weathering colour, which contrasts sharply with underlying orange-weathering argillite of the Steel Formation and overlying brown-weathering clastic rocks of the Prevost Formation. In respect to Sheldon's (2013) Tay River and Sheldon Lake mapping areas, the occurrences are spotty and restricted to northern areas. Bed thicknesses range from 3 to 10 centimeters and are commonly separated by shaly partings. Rare shale-dominant intervals and fine- to mediumgrained chert-quartz wacke localities are noted.
- Road River Group [Ordovician and Silurian]: Gordey (2013) describes the Road River Group in detail as a light- to dark-weathering shale and chert of the Duo Lake Formation and overlying, dominantly organe-weathering mudstone, siltstone, and chert of the Steel Formation. The upper limit of white- to dark-grey-weathering carbonate and siltstone or green shale of the Rabbitkettle Formation marks its base. The group is overlain by the Portrait Lake Formation (basal Earn Group), which is an invisible sequence of Lower to Upper Devonian black shale and chert.
- Yusezyu Formation [Lower Proterozoic and Lower Cambrian]: Gordey (2013) describes the Yusezyu Formation as a thick succession of sandstone and interbedded siltstone and shale. capped by a locally prominent limestone member. Regionally, it is the oldest unit exposed in the Selywn Basin. The formation is sharply, conformably overlain by the Narchilla Formation, or unconformably by the lower- to upper-Paleozoic units. Upwards of 600 meters of strata are exposed within Sheldon's (2013) Tay River and Sheldon Lake mapping areas. The coarse clastics beds typically weather grey, tan-buf, or orange and are composed of medium grey, fine- to very coarse-grained, quartzose sandstone. Locally, the sand is pebbly, with rounded quartz grains reaching 1-2cm diameter. Beds average around 1 meter thick, reaching upwards of 4 meters, and are commonly massive; rarely laminated. Fresh surfaces of fine clastics are associated with light apple-green to dark greenish-grey, and less commonly dark blue-grey. Other observations may include: graded bedding; scattered intraclasts of dark shale; grey- or rust-weathering, laminated siltstone and shale interbedded with the sandstone on a scale of less than 1 meter. The Yuseyzu Formation is capped by a member of light grey- to white-weathering carbonate that ranges from 0 to 250 meters thick; thickest in Gordey's (2013) respective northwestern Sheldon Lake map area - proximal to the PDM property.

Mineralization

Pigage (2004) describes the mineralization observed at the PDM property as "traces of chalcopyrite and pyrrhotite which occur on unidirectional dry fractures within the stock, and pyrite and arsenopyrite occur in xenoliths and schlieren and along fractures cutting hornfelsed sedimentary rocks at the contact. Abundant gossanous areas with lesser arsenopyrite skarn and vein mineralization also occur near the stock."

The Yukon Geological Survey at the time of reporting lists the Spearhead³ occurrence, occurrence number 105J 010, as a Ag-Pb-Zn+/- Au polymetallic vein located at 62°50′43″N / -131°39′3″W. Regional occurrences are displayed in Figure 11.

Figure 11: Regional map displaying known mineral occurrences surrounding the PDM property. The area proximal to the PDM region is primarily defined by polymetallic vein Ag-Pb-Zn+/-Au showings, and lesser, sedimentary-exhalative Pb-Zn-Ag systems (SEDEX)

³ The Spearhead occurrence's former aliases: Fairweather (Strategic Metals) and Mozart (Viceroy Exploration; NovaGold). Under StrikePoint Gold Inc., the occurrence is termed the PDM property's Babylon prospect.

A photograph of the area defining the polymetallic sheeted vein complex, the Babylon prospect, at the Spearhead Mountain is shown in Figure 12. The photograph encompasses the full area of the Babylon prospect studied by the Hive Geological team during the 2017 field reconnaissance of the PDM property.

Figure 12: Photograph taken on August 15, 2017, of the large (>100ft) cliffs defining the Cu-Au Babylon prospect's northern aspect, PDM property. The mineralization is hosted in steeply-dipping, sheeted quartz veins and respective fracture orientations – approximately orientated at 210/84.

Figure 13 displays the high frequency of oxidized fracture sets and sheeted veins defining the Babylon prospect at the PDM property. Mineralized fracture and vein spacing varied from infrequent to over 10 veins per meter. The average orientation of the sheeted veins measured at the Babylon prospected in 2017 strike at 210° and dip at 84°.

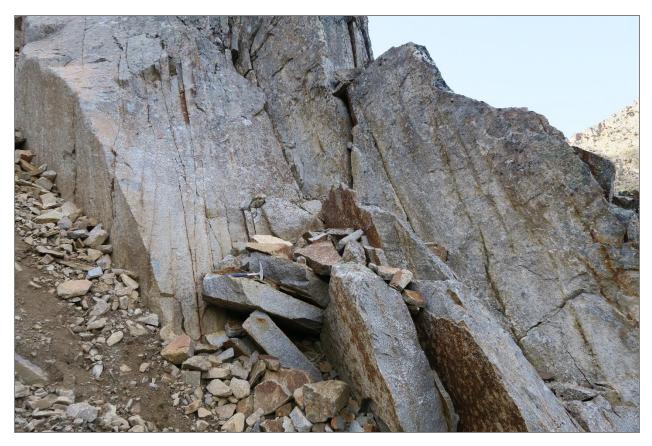


Figure 13: Granodiorite-hosted, oxidized, mineralized Cu-Ag-Ag sheeted vein complex; southwestern area, northern aspect of the Spearhead Mountain Stock. Estwing Rock Pick for scale.

Visible copper mineralization at the PDM property's Babylon prospect is displayed in Figure 14 and Figure 15. Anomalous copper mineralization, hosted in the sheeted veins and fracture sets of the granodiorite, has a currently mapped exposure of 300 square-meters. The primary copper mineralization observed is chalcopyrite. Oxidized copper mineralization included: native copper, cuprite, chrysocolla, and malachite. Copper mineralization in the sheeted quartz veins was normally defined by 5-15% massive and wall-rock disseminated chalcopyrite mineralization which varied in oxidation, from a fresh, characteristic rich-yellow colouration to a fully tarnished blue-purple oxidized colouration. On oxidized fracture faces of the granodiorite, Cu-oxide mineralization was more commonly observed where percentages ranged from trace to the entire exposed fracture face defined by classic turquoise-colouration of Cu-oxide. One sample location was associated with trace amounts of disseminated native copper within the fracture face of the granodiorite.

Other observed sulphide mineralization included: semi-massive to disseminated pyrite, pyrrhotite, galena, and molybdenite; regularly occurring in observable volume of under 1% to 5% vein or fracture-fill.

Figure 14: Chalcopyrite-pyrrhotite mineralization on open fracture face of quartz vein from anomalous sheeted-vein complex. Estwing Rock Pick for scale.

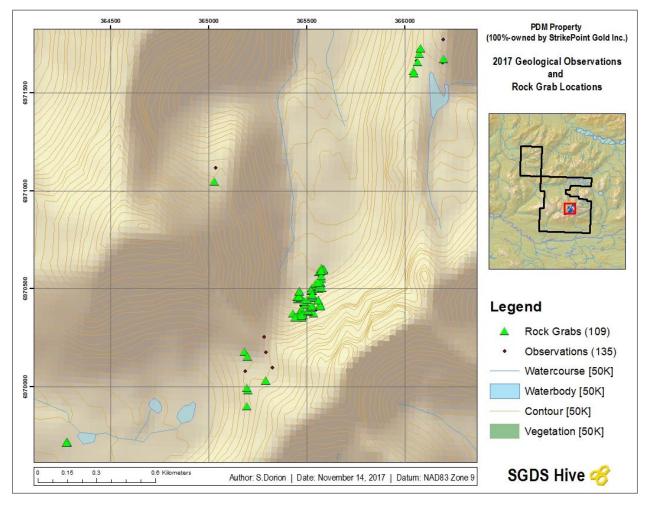


Figure 15: Fracture-fill Cu-oxide mineralization observed at the Babylon showing; southwestern area of the Spearhead Mountain Stock.

Prospecting & Geochemical Sampling

The reader is advised to refer to Appendix II for further details regarding the 2017 sampling methodology.

Prospecting was planned via anomalous Au- and Cu-soils, originally retrieved by Shawn Ryan (2007) and Ryan Gold Corporation (2011). During the 2017 field season a total of 147 geological observations were recorded, which included 109 rock samples. Geological observations and rock sampling were retrieved from the PDM property during the 14th, 15th, 16th and 21st of August. The sample locations are displayed in Figure 16. Rock descriptions for each sample can be found in Appendix IV of this report.

Figure 16: 2017 Grab Sample Locations (green triangles) and geological observations (maroon circles) at the PDM Property. 147 geological observations, 109 of which included rock grabs.

Results & Interpretation

From the 2017 prospecting and geological reconnaissance, numerous anomalous Au and Cu samples were retrieved by the Hive geological team. From previous targeted commodities on the PDM property, the 109 rock samples collected returned: 14 samples over 0.1g/t Au, 38 samples over 0.1% Cu, and 5 samples over 35g/t Ag. Of the 109 grab samples retrieved during the four days of reconnaissance, the average⁴ grade for the three listed commodities where 0.16g/t Au, 6.89g/t Ag, and 0.18% Cu. All rock samples retrieved during the 2017 field season can be found in Appendix III of this report. Table 5 lists five notable samples retrieved from the 2017 prospecting.

Sample Number	Au (g/t)	Cu (%)	Other Anomalous Elements	Rock Description
V176650	9.8	0.0443	4560ppm Bi; 516ppm Sb	Very oxidized quartz vein; intrusive-hosted
V176653	1.145	0.438	1530ppm Bi	Copper oxidation; intrusive-hosted
V176654	0.73	2.8	245g/t Ag; 809ppm Bi; 635ppm Sb	Intrusive-hosted quartz veins, chalcopyrite-rich (tarnished green); very weathered and oxidized.
V176748	0.041	1.46	-	Granodiorite-hosted moderate silicification; moderate weathered; weathered and oxidized quartz+/-chalcopyrite vein.
V176555	0.089	1.435	51g/t Ag	Silicified granodiorite with Cu-oxide coated mm- scale veinlet cutting through chrysacolla; possible brown tarnished chalcopyrite in veinlet; Vein orientation: 183/88.

Table 5: Five select samples retrieved in the Babylon zone (2017) which display strong Au and/or Cu values. Respective SampleNumbers with strikethrough assay values are not considered anomalous.

Figure 17 to Figure 19 display rock sample locations shown by Au-, Ag- and Cu-values, respectively. The respective figures show the 300m² sample area which highlights the Babylon prospect. Within the 2017 prospecting limits, the majority of the anomalous samples were retrieved in the southwestern-central section. The southwestern area is defined by the outcropping Spearhead stock, previous shown in Figure 12, whereas the northern section is characterized by boulder-sized talus and subcrop. Vein exposure was more prevalent in the southwestern section of the 2017 prospecting limits.

⁴ Average grade was calculated using MS Excel's function '=AVERAGE(number1, [number2], ...)' where all 83 rocks were calculated per individual column (i.e. Au, Ag, Cu)

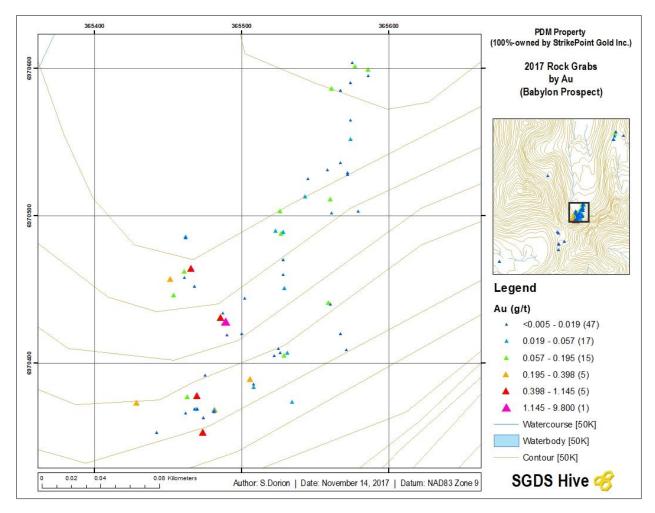


Figure 17: 2017 rock sample locations showing respective Au values at the PDM property, with focus on the Babylon prospect (highlighted in the figure's subset map). Notable anomalous Au values for 2017 rock grabs include 1.145 and 9.8g/t Au (Sample Number: V176654 and V176650, respectively). Graduated scale based off Reflex ioGAS software's progressive half function for all 109 rock samples retrieved during 2017 season at the PDM property. Refer to Figure 16 for location reference.

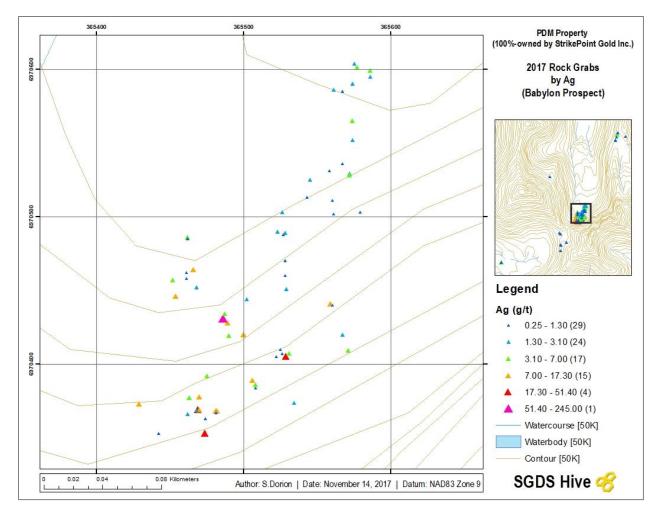


Figure 18: 2017 rock sample locations showing respective Ag values at the PDM property, with focus on the Babylon prospect (highlighted in the figure's subset map). Notable anomalous Ag values for 2017 rock grabs include: 36, 39, 51, and 245g/t Ag (Sample Number: V176559, V176898, V176555, and V176653, respectively). Graduated scale based off Reflex ioGAS software's progressive half function for all 109 rock samples retrieved during 2017 season at the PDM property. Refer to Figure 16 for location reference.

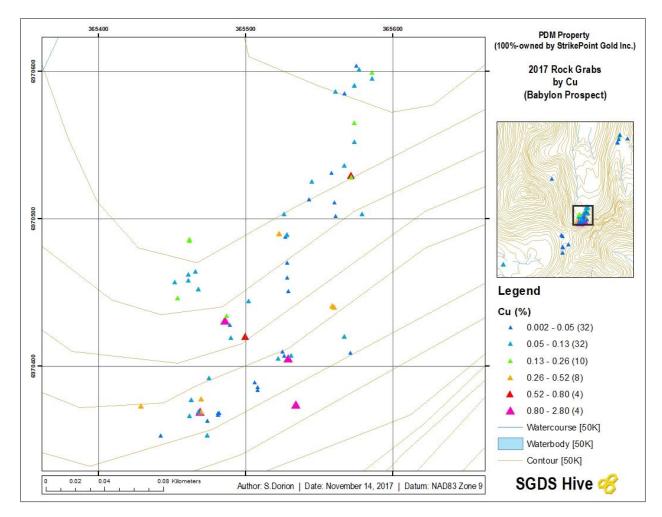


Figure 19: 2017 rock sample locations showing respective Cu values at the PDM property, with focus on the Babylon prospect (highlighted in the figure's subset map). Notable anomalous Cu values for 2017 rock grabs include: 8000, 14200, 14350, 14600 and 28000ppm Cu (Sample Number: V176506, V176559, V176555, V176748, and V176653, respectively). Graduated scale based off Reflex ioGAS software's progressive half function for all 109 rock samples retrieved during 2017 season at the PDM property. Refer to Figure 16 for location reference.

A brief geochemical study⁵ which includes all of the 109 rock samples retrieved, grouping properties such as lithology and alteration type, reveals convincing element correlations from lab assay results. The correlation matrix displayed in Table 6 shows element correlations for Au, Ag and Cu. A complete correlation matrix is included in Appendix V.

Element	Au	Cu	Ag	Element	Au	Cu	Ag
Au	1.00	0.02	0.13	Mn	-0.08	0.13	-0.06
Cu	0.02	1.00	0.77	Мо	0.07	-0.07	0.17
Ag	0.13	0.77	1.00	Na	-0.20	-0.23	-0.29
Al	-0.36	0.04	-0.24	Ni	-0.04	-0.10	-0.06
As	0.08	-0.06	0.19	Р	-0.37	0.04	-0.24
Ва	-0.27	-0.03	-0.23	Pb	0.11	0.02	0.33
Ве	-0.29	-0.19	-0.27	S	0.07	0.06	0.36
Bi	0.97	0.10	0.20	Sb	0.40	0.25	0.48
Ca	-0.20	-0.24	-0.27	Sc	-0.29	0.03	-0.17
Cd	0.08	0.03	0.25	Sr	-0.23	-0.29	-0.27
Со	0.01	-0.07	0.09	Th	-0.10	-0.02	-0.08
Cr	0.05	-0.15	-0.04	Ti	-0.37	-0.02	-0.29
Fe	0.01	0.05	0.32	TI	-0.02	-0.04	-0.02
Ga	-0.32	0.02	-0.25	U	0.06	-0.02	0.17
К	-0.25	0.15	-0.09	V	-0.28	-0.10	-0.11
La	-0.28	-0.06	-0.16	W	-0.04	0.08	0.07
Mg	-0.24	-0.09	-0.25	Zn	0.03	0.32	0.33

Table 6: Au-Cu-Ag correlation matrix from 2017 PDM rock sampling lab assay results. Most significant correlations bolded and highlighted; other notable positive and negative correlations italicized.

From element correlations displayed in Table 6, the data suggests that gold-bismuth mineralization may be independent to copper-silver mineralization. Copper-silver mineralization's strongest correlation is between themselves, at a coefficient of determination value of 0.77. Copper and silver both share similarly moderate correlations for antimony and zinc. Gold correlation is definitively correlated to bismuth at a coefficient of determination value of 0.97. Gold is moderately correlated with antimony, which is the only consistent positive element correlation between the three listed target commodities, with a moderate coefficient of determination value ranging between 0.25 and 0.48. Other metals that appear to be associated with silver mineralization includes, from higher correlation to least: lead, iron, cadmium, arsenic, molybdenite, and uranium. Similar depleted values in beryllium, calcium, sodium and strontium occur nearly uniformly in all three of the target elements. From the element correlations generated by the 109 rock grab samples retrieved from the 2017 prospecting, the two apparent signatures are:

- Au-Bi ± Sb
- Cu-Ag ± Sb+Zn (where Ag includes S±Pb±Fe±Cd±Bi±As±Mo±U)

⁵ Geochemical study completed using Microsoft Office Excel 2010 and REFLEX ioGAS version 6.3.1.

Discussion

Gregory (2009) provides correlation matrices for rock and soil samples retrieved during the 2008 program on the Fairweather (PDM) property. The 2008 sample locations differ from the 2017 sample locations, where 111 of the 147 grabs retrieved in 2017 where sampled within intrusive-hosted, anomalous Cu-Au-Ag sheeted vein complex; an approximately 300 square meter sampling area (Babylon prospect). In 2008, a majority of the samples were retrieved on their Ming showing discovery – a massive sulphide and skarn, hosted in clastic to carbonate sediments. The lithology, alteration and mineralization styles makes the comparison between coefficient of determination values (R²) of the two programs relatively extraneous, however both programs do reveal similar Au:Bi R² values of 0.82 (2008) and 0.97 (2017); Cu:Ag R² values of 0.52 (2008) and 0.80 (2017). A notable correlation from the 2008 program is tungsten's relationship to gold and silver (R² value of 0.76 and 0.54, respectively) which was unobserved in 2017 sampling and further geological reconnaissance of the property is required to determine the variance. Tungsten is a significant commodity in the region (i.e. Mactung, Cantung) and an important signature element when exploring for intrusion-related gold systems (Hart & Goldfarb, 2005) – a prominent model type in the Yukon Territory and Alaska, which includes such deposits as: Fort Knox, Donlin Creek, Pogo, and Dublin Gulch.

Conclusion

After receiving encouraging grab sample results from the 2018 reconnaissance and extensively reviewing previous work programs, the author of this report suggests that further exploration is warranted in order to further delineate controls on Au-, Ag- and Cu-mineralization at the PDM property.

A suggested future work program includes:

- Trace out the extent of mineralization and complete further geophysical ground surveys on the Ming showing (2008);
- Targeted 50 meter-spaced soil sample grids on the southern aspect of Spearhead mountain, given the slightly more modest terrain and tangible soil horizons;
- An early 1000 meter diamond drilling program with respective drill pad construction, to test the underexplored mineralized sheeted vein complex defining Babylon zone;
- Continued prospecting and geological reconnaissance of the PDM property;
- 1:10,000 detail mapping of the 2017 PDM property boundary which includes previous claims Gato Negro (1999), Mozart(1999) and PDM(2008).

References

- Chakungal, J. (2012). 2011 Exploration Program NUG Project Area: Golden, Nug, Oly, SMR & Nordic Prospects. Vancouver: Ryan Gold Corporation.
- Diment, R. (1999). Assessment Report #094043. Viceroy Exploration (Canada) Inc.
- Diment, R. (1999). Assessment Report #094050. Viceroy Exploration (Canada) Inc.
- *Ecoregions of Canada: Selwyn Mountains*. (n.d.). Retrieved from Ecological Framework of Canada; originally published by Environment Canada: http://ecozones.ca/english/region/171.html
- Gordey, S. P. (2013). *Evolution of the Selwyn Basin region, Sheldon Lake and Tay River map areas, central Yukon. Bulletin 599.* Vancouver, Canada: Geological Survey of Canada.
- Gordey, S., & Irwin, S. (1987). *Geology, Sheldon Lake and Tay River map areas, Yukon Territory Map 19-1987.* Geological Survey of Canada.
- Gordey, S., & Makepeace, A. (1999). *Compilation. Yukon Bedrock Geology (Yukon Digital Geology Open File D3826)*. Whitehorse: YGS.
- Gregory, D. (2009). *Geochemical Sampling, Geophysical Surveys, Hand Trenching and Diamond Drilling* [Assessment Report: 095655]. Vancouver, B.C.: Archer Cathro & Associates (1981) Limited; Strategic Metals.
- Hart, C. J., & Goldfarb, R. J. (2005). *Distinguishing Intrusion-Related from Orogenic Gold Systems*. Yukon Geological Survey; Gangue No.87.
- Hilker, R. (1972). Assessment Report: 060122. Phelps Dodge Corporation of Canada Ltd.
- Hilker, R., & Carlson, G. (1972). Assessment Report #060122. Phelps Dodge Corporation of Canada Ltd.
- Jackson Jr., L. E., Ward, B., Duk-Rodkin, A., & Hughes, O. L. (1991). *The Last Cordilleran Ice Sheet in Southern Yukon Territory (Vol.45, numero 3).* Geographie physique et Quaternaire.
- Jin, H. (2012). *Geological and Geochemical Report on the PDM Claim (Assessment Report: 095924).* Vancouver, B.C.: Ryan Gold Corporation.
- KDC. (2017). Kaska Dena Council. Retrieved from KDC: https://www.kaskadenacouncil.com/kaskadena/our-land
- Klondike Gold Corp. (2017). *TSX-V: KG*. Retrieved from Klondike Gold Corp.: http://www.klondikegoldcorp.com/projects/yukon/lone-star/
- (1971-72). Mineral Industry Report.
- Nelson, J. L., Colpron, M., & Israel, S. (2013). *The Cordillera of British Columbia, Yukon, and Alaska: Tectonics and Metallogeny.* Society of Economic Geology; Special Publication 17, pp.53-109.

(March 1999). News Release. NovaGold Resources Inc.

NNDFN. (2017). First Nation of Na-Cho Nyak Dun. Retrieved from NNDFN: http://www.nndfn.com/

- Ootes, L., Gleeson, S. A., Turner, E., Rasmussen, K., Gordey, S., Falck, H., . . . Pierce, K. (2013). Metallogenic Evolution of the Mackenzie and Eastern Selwyn Mountains of Canada's Northern Cordillera, Northwest Territories: A Compilation and Review. Volume 40, Number 1. Geoscience Canada: Journal of the Geological Association of Canada.
- Pigage, L. (2004). *Bedrock Geology Compilation of the Anvil District (105K/2,3,5,7,11), central Yukon.* Whitehorse: YGS Bulletin 15.
- Pigage, L. C., Crowley, J. L., Roots, F. C., & Abbott, J. G. (2013). *Geochemistry and U-Pb zircon geochronology of mid-Cretaceous Tay River suite intrusions in southeast Yukon*. Whitehorse, YT: Yukon Exploration and Geology.
- Ryan, S. (2006). Assessment Report #094961. Whitehorse, YT: Shawn Ryan.
- Sandford, G. (1969). *Geology of the Spearhead Mountain Stock*. Vancouver: Unpublished thesis, University of British Columbia.
- Y.G.S. (2017). *Occurence 105J 010*. Retrieved from Yukon Geological Survey's Integrated Data System (YGSIDS): http://data.geology.gov.yk.ca/Occurrence/13416
- YEMR. (2017). Yukon Energy, Mines and Resources (Mineral Lick: ID-3196; Thinhorn Sheep: ID-3197). Retrieved from Mining Map Viewer: http://mapservices.gov.yk.ca/Mining/Load.htm

Appendix I: Statement of Qualifications

I, Scott Dorion, who resides in the city of Vancouver, British Columbia, Canada, do hereby certify that:

- 1. I held the position of Project Geologist with StrikePoint Gold Inc., hired through HIVE Geological, during the 2017 season;
- 2. I graduated from the University of Alberta with a Bachelor of Science Degree with Specialization in Geology in the Fall of 2009;
- 3. I have been actively employed in the mineral exploration industry since 2007;
- 4. I am registered with APEGA and in good standing (Member Number: 107616, Geol.I.T.);
- 5. I was physically present for all field days reported on and directly supervised the 2017 field exploration program conducted by StrikePoint Gold Inc. on the PDM property.

ut

Scott Dorion Project Geologist StrikePoint Gold Inc. / SGDS HIVE Geological Consulting & Mentoring

Appendix II: Sampling Methodology

Sampling, chosen based on geological relevance, followed a methodical set of procedures from initial sample collection to final database recording. Samples were typically chipped away from outcrop showings, using a standard Estwing rock hammer, into polyurethane bags and recorded into a field book. The point location of the sample was digitized into a standard Garmin GPS unit. Before sealing the bag with a cable tie, an ALS Chemex supplied sample tag was placed inside the bag and the sample number marked on the bag using a permanent felt. The closed sample, along with a marked show sample, was stored amongst the others throughout the day by the sampler in a field pack. After returning each day, sample numbers and descriptions were digitized in MS Excel and the samples were securely stored until a batch shipment was prepared. The on-site project geologist was responsible for creating the chain of custody and shipment forms. Samples were placed in a sample string with a systematic pattern of standards and blanks to ensure QA/QC, grouped in rice bags and secured with security tags. The batch shipments would be transported via expeditor or StrikePoint Gold personnel to ALS Chemex in Whitehorse, where the samples were prepped and shipped to their Vancouver lab for assaying and QA/QC checks. Throughout the shipment process, a chain of custody paperwork trail was maintained to ensure sample security.

Once in at the ALS Lab in Whitehorse the samples are received, weighed and logged. Samples are then crushed until 80% or better passes through a 2 mm mesh screen. This resulting material is put through a riffle splitter, where a 1000 g sample is isolated and the rest is collected as reject. The sample is pulverized further until 85% or better passes through a 75 micron mesh screen. After this step the pulp material is shipped to the North Vancouver lab for analysis. The remaining reject material is stored in Whitehorse.

The material that is shipped to the North Vancouver lab is split using a riffle splitter where a 50 g sample is isolated. The reject material from this process is stored at the lab. This 50 g sample is now subjected to ICP22 and ME-MS41 assaying methods. The ICP22 is a fire assay and ICP-AES method to assay for gold, and can detect values between 0.01 ppm and 10 ppm. ME-MS41 is a 51 element analysis by aqua regia digestion and a combination of ICP-MS and ICP-AES assaying. Assays for Au, Ag, Cu, Pb, As, Zn and Sb that are above detection are then finished using a gravity method to obtain true value. Final results using the methods above are reported to StrikePoint Gold electronically via excel spreadsheet and a secure PDF certificate of work.

36

Appendix III: Certificates of Analysis

- ALS work order numbers [total number of samples]
- WH17178123 [35]
- WH17178151 [56]

0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry ALS Canada Ltd.

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 28-SEP-2017 Account: POINGO 38

CERTIFICATE WH17178151

Project: Yukon	
P.O. No.: 17SKP-PDM-01	
This report is for 56 Rock sar	This report is for 56 Rock samples submitted to our lab in Whitehorse, YT, Canada
on 23-AUG-2017.	
The following have access	The following have access to data associated with this certificate:
SCOTT DORION	ANDY RANDELL

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
CRU-QC	Crushing QC Test
PUL-QC	Pulverizing QC Test
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES
Ag-0G62	Ore Grade Ag - Four Acid	ICP-AES
ME-0G62	Ore Grade Elements - Four Acid	ICP-AES
Cu-OG62	Ore Grade Cu - Four Acid	ICP-AES
As-OG62	Ore Grade As - Four Acid	ICP-AES
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM

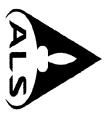
ō STRIKEPOINT GOLD ATTN: ANDY RANDELL 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry ALS Canada Ltd.


To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 28-SEP-2017 Account: POINGO

Project: Yukon

									CER		ATE O	TIFICATE OF ANALYSIS	-YSIS	WH1717815	178151	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP21 Au ppm 0.001	Au-GRA21 Au ppm 0.05	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI %	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	5 	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01
V176735		0.85	0.001		<0.5	6.89	3	1750	1.9	2	0.14	<0.5	, <u>1</u>	57	134	3.04
V176736 V176737		0.91	0.010		<0.5	1.71 2.25	189 185	320 700	0.5	88	1.03 2.20	<0.5	21 5	48 66	27 54	1.34 1.93
V176738		0.64 0.61	0.003		< с о л о л о	2.07 3.35	1 3 B	470 1050	0.5 9	S A	0.82 0.53	^ 0.5	ათ	60 82	45 21	2.15 2.43
			2.00			1					5		1.	20	3000	404
V176740		0.87 0.58	0.004		1 7 1 7	4 51	49 49	620	1.0	3	2.48 2.63	<0.5	57	31	3260 470	4.3/
V176742		0.83	0.095		2.9	7.16	302	970	2.0	138	2.89	<0.5	9	28	898	3.12
V176743		1.50	0.001		0.6	6.91	186	1050	1 .6	24	2.37	с 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	° 13	3 8	298 133	3.47
V 1707 44			0.000		10,0			1000		5 !				22	204	o o n
V176745		0.61	0.001		<0.5	7.59	55 6	096	24	8 4	2.28	0.6	÷ ۵	25	5240	3.66
V176747		2.15	0.001		3.7	7.69	29	1320	1 8 1 7	° ∧	2.51	<0.5	13	23	469	3.88
V176749		0.74	0.267		14,4	7.74	>10000	1130	0.6	189	0.11	0.7	70	15	339	6.95
V176750		0.85	0.005		4,9	8.52	525	1080	1.3	7	0.16	<0.5	4	23	153	4.37
V176551		0.76	0.022		0.8	7 5.40	3950 56	1000	<u>ν</u> . ωω	5 8	3.27	ر 0.8	0 M	3 3 J	262	3 <u>1</u> .85
V176553		0.77	0.046		3.4	7.65	66	1100	1.8	28	2.54	<0.5	10	21	1170	3.57
V176554		0.82	0.006		0.8	7.46	15	1180	1.8	4	3.09	<0.5	12	24	337	3.88
V176555		0.71	0.089		51.4 1.3	7.55	104 683	1390 1150	 	29	0.80	<0.5	14 5	23	>10000 654	3.20
V176557		0.99	0.008		3.5	7.86	48	1070	2.0	^2	2.39	<0,5	10	24	1335	3.71
V176558 V176559		1.00 0.58	0.005		1.6 36.2	7.65 8.80	142 5710	1080 1380	2,0 0,9	4ω	2.91 1.02	5.4 5.4	20 20	27 22	/43 >10000	4.19 4.80
V176560		0.24	<0.001		<0.5	7.29	51	790	1.0	<2	1.79	<0.5	6	14	148	2.56
V176561		0.74	0.014		12.0	1 5 5 5 5	209	1090	0.5	۹ ۴	0.39	0 1. G	ωω	32 20	4950 800	1.71 3.00
V176629		0.97	0.001		<0.5	6.30	95 90	1510	1.7	s c	0.54	60.5	തര	8 2	76	3.05
V176630		0.75	0.001		<0.5	8.23	40	2150	2.2	^2	0,08	<0.5	62	79	60	2.96
V176631		1.04	0.011		х со 0, Сл	2.50 2.55	18 27	340 40	0.8	^უ ე თ	1.22 2.34	<0.5	ග	78 76	105 128	3 14
V176633		1.07	0.005		0,5	8.00	39	1080	2.1	~2	2.62	<0.5	21	14	362	5.21
V176634		0.95	0.005		<0.5	2.01	30	560	0.6	თ	1.27	<0.5	ი თ.	59	. 28	1.46
V176635		1.22	0.141		3.7	7.33	11	1020	1.9	100	2.96	<0.5	9	30	1475	3.38
V176636		0.60	0.018		9.1 9.1	6.94	: 3	1040	4 <u>1</u> 6	ŝ	2.64	0.7	° 7	3 23	707	2.54
V176637 V176638		1.19	0.05		1.2	7.44	60 <u>1</u>	1060 1230	1.7	24 17	2.21	<0.5	9 O	26 26	570	2.90 3.11
V176639		1.21	0.006		0.9	7.32	143	1140	1.7	ω	2.29	<0.5	9	24	1145	3.17
V176640		0.34	<0.001		<0.5	7.16	ŝ	800	0.9	~2	1.96	<0.5	σ	14	θt	2.00

***** See Appendix Page for comments regarding this certificate *****

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 28-SEP-2017 Account: POINGO

Project: Yukon

Sample Description	Method Analyte Units LOR	ME-ICP61 Ga 10 20	ME-ICP61 K 0.01 3.09 0.27	ME-ICP61 La 10 10	ME-ICP61 Mg 0.01 0.78 0.44	ME-ICP61 Mn 5 105 183	ME-ICP61 Δ	ME-ICP61 Na 0.01 0.13	CER ME-ICP61 ME Ni ppm 40		FIFICATE O I-ICP61 ME-ICP61 P Pb ppm ppm 10 2 520 9 3290 3	OF ANALYSIS 1 ME-ICP61 ME-ICP6 S Sb 0.01 5 0.71 5 0.29 <5	ME-ICP61 Sb 5 5 5 5 5 5	WH17178151 ME-ICP61 ME-ICP61 Sc Sr ppm ppm 1 1 10 70 4 90	ME-ICP61 Sr ppm 1 70 90	× 2
V176735 V176736 V176737 V176738 V176739		10 10 10 20	3.09 0.27 0.73 0.44 1.19	20 1 1 1 40 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.78 0.44 0.42 0.57	105 946 193	ωωαμωω	0.31 0.13 0.39 0.07 0.12	40 60 34	520 330 300	იაჯად	0.71 0.29 0.31 0.25	ი ი ი ი ი ი ი ი ი ი		~ 4 0 4 ¹ 0	
V176740 V176741 V176742 V176743 V176743		20 20 20	3.71 2.25 2.42 3.43	20 20 30	1.16 0.29 1.09 1.00	331 582 416 281 413		1.29 1.46 1.43	ოგთათ	730 340 650	14 185 33	0.96 0.12 0.42 0.23	ზ ზ წ დ ზ		13303	
V176745 V176746 V176747 V176747 V176748 V176749		20 20 10	3.37 3.12 3.63 4.52	20 20 40	0.99 1.03 1.19 1.31 0.22	535 432 213 54	$o_{\Delta} \rightarrow \rightarrow o$	1.49 1.45 0.13 0.31	4404	620 700 670 710	26 16 17 65 7530	0.11 0.29 0.10 <0.01 1.93	1210 11 \$		32 13 13 32	
V176750 V176651 V176652 V176553 V176554		20 20 20	5.43 2.83 3.28 2.96	20 20 20	0,35 1,14 1,19	666 799 481 561		0.15 1.36 1.50	4 (1 4 4 10)	570 470 680 730	982 40 24 16	1,40 0,41 0,24 0,24	555536		15 13 13	
V176555 V176556 V176557 V176558 V176558 V176559		20 20 20	5.01 3.51 3.07 4.70	30 30 30	1.38 1.08 1.23 0.52	356 393 551 1135	د د د ۵ د	0.25 1.43 0.40	იიაკიიი	720 710 740 770	37 15 23 78	0.04 0.46 0.42 1.32	5 < 27 5 5		13 13 14 20	
V176560 V176561 V176562 V176629 V176630		20 20 20 20	1,49 5,41 2,66 3,80	10 20 30 40	0.74 0.10 0.89 0.72 0.90	817 269 531 130 119	2 2 2 15 2	3.31 0.36 0.27 0.23	296 296	430 670 550	4 28 20 14	0.04 0.38 0.35 0.59	გ გ შ თ ჭ		00204	
V176631 V176632 V176633 V176634 V176634 V176635		20 20 20 20 20 20	0.57 0.06 2.75 0.72 3.09	10 20 20	0.70 0.33 1.17 0.42 0.99	327 340 288 504	4 ω <u>^</u> ω ω	0.07 0.07 2.01 0.16 1.31	32 21 17 4	280 260 1000 290 690	10 150	0.64 1.44 0.62 0.38 0.32	88399		2440	
V176636 V176637 V176638 V176639 V176639 V176640		10 20 10	3.69 3.47 3.37 1.48	40 20 20 10	0.62 0.85 0.93 0.97	605 505 461 780	- W - N -	3, 20 3, 20 3, 20	4 4 4 <u>2</u>	580 610 620 460	217 217 21	0.14 0.18 0.12 0.03	ე. ე. ე. ე. ე. ე. ე. ე. ე. ე. ე. ე. ე. ე		55550	

***** See Appendix Page for comments regarding this certificate *****

See A
Appendix
Page for
for
comments
regarding
Вu
this
certificate

	2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry	Fax: +1 (604) 984 0218 mistry	837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6	וסנaו # Pages: ג אן - כ) Plus Appendix Pages Finalized Date: 28-SEP-2017 Account: POINGO
ALS)			CERTIFICATE OF ANALYSIS	NALYSIS WH17178151
Method Analyte Sample Description LOR	od ME-ICP61 ME-ICP61 ME-ICP61 Ti Ti U U % ppm ppm R 0.01 10 10	ME-ICP61 ME-ICP61 V V Zn ppm ppm ppm ppm 1 10 2	Ag-OG62 Cu-OG62 As-OG62 Ag Cu As ppm % % 1 0.001 0.001	
V176735 V176736 V176737 V176738 V176739	0.17 <10 <10 0.08 <10 <10 0.13 <10 <10 0.12 <10 <10 0.19 <10 <10			
V176740 V176741 V176742 V176743 V176744	0.41 <10 <10 0.20 <10 <10 0.32 <10 10 0.36 <10 10 0.35 <10 <10	91 40 83 45 10 55 84 <10 62 78 20 50		
V176745 V176746 V176747 V176748 V176749	0.36 <10 <10 0.37 <10	81 10 63 81 <10	1.460 4.74	
V176750 V176551 V176552 V176553	0.36 10 <10 0.26 10 <10 0.38 <10 <10 0.40 <10 10 0.42 <10 <10	99 130 60 62 310 144 90 70 40 89 10 62 95 10 51		
V176555 V176556 V176557 V176558 V176559	< 10< 10< 10< 10< 10	20 60 10	1.435 1.420	
V176560 V176561 V176562 V176629 V176630	0.22 <10 <10 0.23 <10 <10 0.34 <10 10 0.33 <10 <10 0.39 <10 <10	<10 <10		
V176631 V176632 V176633 V176634 V176635	< 10	10 20 20 20		
V176636 V176637 V176638 V176639 V176640	0.34 <10 <10 0.36 <10 <10 0.35 <10 <10 0.35 <10 <10 0.35 <10 <10 0.23 <10 <10	76 30 112 78 10 65 80 <10 52 78 10 58 57 <10 45		

TO: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

ALS Canada Ltd.

Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 28-SEP-2017 Account: POINGO

	>
N/	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 28-SEP-2017 Account: POINGO 42

Project: Yukon

Method Analyze Sample Description Weil-CP3 Loris Au-GRA2 Method Nunk Met-ICP61 Method Nunk Method Nunk Method Nunk	Nathod Analyse Visit:21 (Name Nacion:23 (Name Nacion:23 (N										CER		TIFICATE O	OF ANALYSIS	-YSIS	WH17	WH17178151	
	Varianzia Istancia All		Method	WEI-21	Au-ICP21	Au-GRA21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Guite Lux No Both B		Analyte	Recvd Wt.	Au	Au	Ag	Þ	As	Ва	Be	₿	Са	Cd	0	õ	Cu	П Ф
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	101 001 405 775 41 201 18 -2 100 405 100 105 0000 10 775 41 201 10 -2 100 405 15 41 201 10 -2 100 405 15 101 -2 100 405 100 10 <t< th=""><th></th><th>LOR</th><th>6.02</th><th>0.001</th><th>0.05</th><th>ррт 0.5</th><th>0.01 %</th><th>5 5</th><th>ррт 10</th><th>0,5</th><th>ppm 2</th><th>0.01</th><th>ррт 0.5</th><th>ppm</th><th>ppm 1</th><th>ppm 1</th><th>0.01</th></t<>		LOR	6.02	0.001	0.05	ррт 0.5	0.01 %	5 5	ррт 10	0,5	ppm 2	0.01	ррт 0.5	ppm	ppm 1	ppm 1	0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15 0.003 15 7.70 67 0.00 10 2.26 4.05 10.27			0.60	0.001		<0.5	7.25	41	2270	1.8	ŝ	1.00	<0.5	5	83	149	3.70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.67 0.089 12 7.40 6 104 10 20	V176642		1.54	0.003		0.9	7.70	671	006	21	\$	2.05	<0.5	9	27	707	3.16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.62 0.68 1.6 7.13 ×10000 1.7 7.6 1.7 3.00 2.1 4.5 1.1 2.2 6.4 1.2 7.3 ×10000 1.7 3.00 2.21 4.55 1.1 2.2 6.45 1.1 2.2 6.45 1.1 2.2 6.45 1.1 2.2 2.05 2.2 7.64 1.2 2.00 1.1 2.2 2.05 2.2 2.65 1.1 2.2 2.05 2.2 2.45 1.1 2.2 2.05 2.3 1.00 1.1 2.2 2.05 2.3 1.00 1.0 2.2 2.46 3.05 1.1 2.2 2.45 1.1 2.2 2.46 1.1 2.2 2.46 1.1 2.2 2.46 1.1 2.2 2.46 1.1 2.2 2.46 1.1 2.2 2.46 1.1 2.2 2.46 2.2 2.46 2.2 2.46 2.2 2.47 2.2 2.2 2.47 2.2	V176643		0.85	0.398		3.5	7.40	თ	1040	1.9	243	2.66	<0.5	9	24	1125	3.35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	022 034 105 713 7000 037 13 1000 13 20 14 20 14 20 14 20 14 20 14 20 14 20 14 100 14 2 2 16 17 30 22 16 14 100 18 2 2 30 16 14 2 30 16 14 2 30 16 14 2 30 16 16 2 30 173 30 23 100 16 44 2 30 16 16 16 17 30 23 100 16 17 30 23 100 16 17 30 23 100 17 30 23 100 17 30 23 175 30 23 100 17 30 23 100 17 30 23 176 30 23 103	V176644		0.87	0.088		1.2	7.59	62	1040	2.0	30	2.31	<0,5	11	22	843	3.29
0.64 0.015 2.7 7.4 75 1060 1.8 2 3.05 <0.5	064 0015 27 74 75 100 18 2 205 64 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 2 000 18 17 000 18 17 000 18 17 13 000 18 17 13 000 18 17 13 100 13 100 13 11 13 11 13 11 13 11 13 13 13 13 13 13 13 13 13 13 13	V176645		0.62	0.694		10.5	7.13	>10000	930	1.7	330	2.21	<0.5	54	23	863	5.31
0.85 0.098 2.9 7.06 1.54 1020 1.8 46 2.36 45. 5 30 987 0.90 0.005 2.3 7.86 39 1090 2.0 42 2.46 40.5 9 2.3 696 0.85 0.012 9.80 17.3 0.68 263 100 2.0 42 2.46 40.5 9 2.3 696 0.76 >100 9.80 17.3 0.68 263 110 405 450 0.10 0.7 1 43 443 1.05 0.091 16.7 6.48 32 900 1.5 170 2.23 2.1 7 30 5280 1.15 0.730 >100 3.30 4000 2.40 1.65 4.9 6 37 >100 3.7 9 37 >1000 3.7 9 37 >1000 3.7 9 37 >1000 3.7 <	065 0004 23 76 14 70 18 42 235 455 5 5 5 5 100 10 5 2 76 14 42 235 455 5 2 100 11 42 2 235 455 5 2 100 11 42 2 245 455 5 2 2 45 100 11 42 2 235 415 10 11 235 415 11 <th1< th=""><th>V176646</th><th></th><th>0.64</th><th>0.015</th><th></th><th>2.7</th><th>7,44</th><th>75</th><th>1060</th><th>1.8</th><th>2</th><th>3.05</th><th><0.5</th><th>10</th><th>26</th><th>867</th><th>3.60</th></th1<>	V176646		0.64	0.015		2.7	7,44	75	1060	1.8	2	3.05	<0.5	10	26	867	3.60
0.90 0.005 2.3 7.86 39 1090 2.0 <2 2.46 <0.5 9 2.3 696 0.85 0.012 5.2 7.09 6.3 690 1.7 2.5 2.36 1.6 7 32 775 0.76 >10.0 980 17.3 0.68 263 110 <0.5 4560 0.10 0.7 1 43 443 1.05 0.091 16.7 6.48 32 900 1.5 170 2.23 2.1 7 30 5280 1.15 0.730 >100 3.30 4000 240 0.8 809 0.07 3.7 9 25 438 0.75 1.145 9.4 7.67 113 910 1.9 1530 2.28 3.7 >1000 37 3 25 4380 1.16 0.228 12.0 7.43 4730 1050 1.5 179 2.35	0005 2.3 7.86 3.0 0007 2.3 7.86 3.0 0007 2.3 7.86 3.0 0007 2.3 7.86 3.0 0007 3.0 2.3 7.86 3.0 0007 3.0 2.3 7.86 3.0 0007 3.0 2.3 7.86 3.0 0007 3.0 3.0 0007 3.0 3.0 0007 3.0 3.0 0007 3.0 3.0 0007 3.0 3.0 0007 3.0 3.0 0007 3.0 3.0 0007 3.0 <th>V176647</th> <th></th> <th>0.85</th> <th>0.098</th> <th></th> <th>2.9</th> <th>7.06</th> <th>154</th> <th>1020</th> <th>1.8</th> <th>46</th> <th>2.36</th> <th><0.5</th> <th>თ</th> <th>30</th> <th>987</th> <th>2.57</th>	V176647		0.85	0.098		2.9	7.06	154	1020	1.8	46	2.36	<0.5	თ	30	987	2.57
0.85 0.012 5.2 7.09 63 890 1.7 25 2.36 1.6 7 32 775 0.76 >100 9.80 17.3 0.68 263 110 <0.5 4560 0.10 0.7 1 43 443 1.05 0.091 16.7 6.48 32 900 1.5 170 2.23 2.1 7 30 5280 0.81 0.011 4.5 7.65 63 760 1.8 1.8 1.65 4.9 6 263 240 0.8 9.07 3.7 30 5280 0.75 1.145 9.4 7.67 113 910 1.9 1530 2.28 3.7 3 37 43 4380 1.16 0.228 12.0 7.43 4730 1050 1.5 179 2.35 0.8 15 23 3780 1.102 0.195 9.7 7.52 65	0.76 0.10 940 17.3 7.69 6.3 610 17.2 7.26 7.27 7.26 7.27 7.	V176648		0.90	0.005		2.3	7.86	39	1090	2.0	<2	2.46	<0.5	9	23	696	3.48
0.76 >100 9.80 17.3 0.68 263 110 <0.5	076 >100 920 173 068 233 110 405 460 010 07 1 43 433 018 0011 45 765 63 200 18 18 18 185 170 21 6 230 210 6 230 210 6 230 210 1 41 41 116 0123 1145 767 113 910 19 1630 237 3 3 23 37 9 257 4139 200 15 179 233 08 15 23 237 30 257 4000 102 0195 97 722 65 900 20 61 173 43 6 21 23 3780 23 3780 23 3780 23 3780 23 3780 23 3780 23 3780 23 3780 23 3780 23 <th>V176649</th> <th></th> <th>0.85</th> <th>0.012</th> <th></th> <th>5.2</th> <th>7.09</th> <th>63</th> <th>069</th> <th>1.7</th> <th>25</th> <th>2.36</th> <th>1.6</th> <th>7</th> <th>32</th> <th>775</th> <th>2.92</th>	V176649		0.85	0.012		5.2	7.09	63	069	1.7	25	2.36	1.6	7	32	775	2.92
1.05 0.091 16.7 6.48 32 900 1.5 170 2.23 2.1 7 30 5280 0.81 0.011 4.5 7.65 63 760 1.8 18 1.65 4.9 6 26 2580 1.15 0.730 9.4 7.67 113 910 1.9 1530 2.26 3.7 3 3.7 ×10000 0.75 1.145 9.4 7.67 113 910 1.9 1530 2.26 3.7 3 3.7 ×10000 1.16 0.228 12.0 7.43 4730 1050 1.5 179 2.35 0.8 15 23 3780 1.02 0.195 9.7 7.52 65 990 2.0 61 1.73 <0.5 6 21 2450	100 0001 167 648 22 000 15 170 223 21 7 30 200 115 0701 45 730 4000 240 18 100 123 21 7 30 200 116 0720 110 33 4000 240 18 800 007 37 3 37 100 33 4000 240 18 800 007 37 3 37 1000 102 0195 97 722 65 90 20 61 173 25 6 21 20 102 0195 97 722 65 90 20 61 173 25 6 21 240 102 17 72 65 90 20 61 173 205 6 21 240 103 104 105 105 107 173 <td< th=""><th>V176650</th><th></th><th>0.76</th><th>>10.0</th><th>9.80</th><th>17.3</th><th>0.68</th><th>263</th><th>110</th><th><0.5</th><th>4560</th><th>0.10</th><th>0.7</th><th>د.</th><th>43</th><th>443</th><th>0.54</th></td<>	V176650		0.76	>10.0	9.80	17.3	0.68	263	110	<0.5	4560	0.10	0.7	د.	43	443	0.54
0.81 0.011 4.5 7.65 63 760 1.8 18 1.65 4.9 6 26 2580 1.15 0.730 >100 3.30 4000 240 0.8 809 0.07 3.7 3 37 >10000 0.75 1.145 9.4 7.67 113 910 1.9 1530 2.28 3.7 9 2.5 4380 1.16 0.228 12.0 7.43 4730 1050 1.5 179 2.35 0.8 15 23 3780 1.02 0.195 9.7 7.52 65 990 2.0 61 1.73 <0.5 6 21 2450	081 001 325 63 370 18 60 16 16 27 170 370 18 60 16 16 16 37 170 18 60 175 173 90 18 60 107 37 17 910 170 </th <th>V176651</th> <th></th> <th>1.05</th> <th>0.091</th> <th></th> <th>16.7</th> <th>6.48</th> <th>32</th> <th>006</th> <th>1.5</th> <th>170</th> <th>2.23</th> <th>2.1</th> <th>7</th> <th>30</th> <th>5280</th> <th>3.10</th>	V176651		1.05	0.091		16.7	6.48	32	006	1.5	170	2.23	2.1	7	30	5280	3.10
1.15 0.730 >100 3.30 4000 240 0.8 809 0.07 3.7 3 37 >10000 0.75 1.145 9.4 7.67 113 910 1.9 1530 2.28 3.7 3 37 >10000 1.16 0.228 12.0 7.43 4730 1050 1.5 179 2.35 0.8 15 23 3780 1.02 0.195 9.7 7.52 65 990 2.0 61 1.73 <0.5 6 21 2450	115 01730 240 767 113 240 16 150 27 133 210 14 202 17 133 210 14 150 207 137 9 137 13 210 14 150 150 170 235 16 17 235 16 17 235 16 17 23 37 0 23 16 23 230 16 23 236 16 23 236 16 23 236 16 23 236 16 23 236 16 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23 236 23	V176652		0.81	0.011		4. U	7.65	63	760	1.8	18	1.65	4.9	6	26	2580	2.12
0.76 1.145 1.94 7.67 11.3 11.9 15.30 2.26 3.7 9 2.5 4.80 1.16 0.228 12.0 7.43 4730 1050 1.5 179 2.35 0.8 15 2.3 3780 1.02 0.195 9.7 7.52 65 990 2.0 61 1.73 <0.5 6 21 2450	116 0129 120 743 470 151 133 228 31 151 133 228 31 151 133 228 31 15 133 228 31 151 133 228 31 151 133 228 31 151 133 228 31 151 133 228 31 151 133 228 31 151 133 228 31 151 133 228 31 151 133 238 31 151 133 238 31 151 133 238 31 151 133 238 31 151 233 316 151 233 316 151 233 316 151 233 316 151 233 316 151 233 316 151 233 316 151 233 316 151 233 316 151 233 316 151 233 3	V176653		1.15	0.730		>100	3.30	4000	240	0.8	809	0.07	3.7	ω	37	>10000	8.63
1.10 0.220 1.20 7.43 47.30 1030 1.3 7.43 2.33 0.6 1.3 23 37.00 1.02 0.195 9.7 7.52 65 990 2.0 61 1.73 <0.5 6 21 2450	102 112 113 <th13< th=""> 113 113</th13<>	V1/6654		0. /G	1.145		1 9 4	7.6/	113	016	н. 9 9	1530	2.28	2. 2	` (C	20	4380	
1.02 0.195 9.7 7.52 65 990 2.0 61 1.73 <0.5 6 21 2450 3	102 0195 97 752 65 980 20 61 173 405 6 21 2460 3	CC007.LA		01.1	0.228		12.0	1.43	4/30	UCUI	1.0 C.F	6/1	2.30 CC.2	U.a	G	22	5/00	08.C
		V176656		1.02	0.195		9.7	7.52	65	066	2.0	61	1.73	<0.5	თ	21	2450	3,16
													,					
		V176652 V176653 V176655 V176656 V176656		1.16 1.16 1.16 1.02	0.011 0.730 1.145 0.228 0.195		9 4 5 9 4 5 7 0 4 5	7.65 7.43 7.52	65 65	760 910 990 990	2 1 1 0 0 0 5 9 8 8	18 809 1730 61	1.65 2.28 1.73	40 5 5 5 5 5	თ <u></u> ნა დ	23 25 7 23 25 7 24 25 7	≥10000 4380 3780 2450	3.16 3.16 3.16

ALS Canada Ltd 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 28-SEP-2017 Account: POINGO

	—
	<u>_</u> U
	<u>o</u>
1	Ō
	8
	~
	È
	8
	Ĕ

V176656	00000	V176655	V1/6653	V176652	V176651	V176650	V176649	V176648	V176647	V 170040	V176645	V176643	V176642	V176641	Sample Description			
															LOR	Units	Analyte	
8	2.2	200	3 6	4 N	10	<10	20	20	20	00	20	200	200	20	10	ppm	Ga	ME-ICP61
ن ت ح	0.00	3 10	386	4.00	3.02	0.48	3.78	3.19	3.53	2 00	2.84	334	35 5 167	3.69	0.01	%	7	ME-ICP61
8		30	30 20	100	20	<10	20	30	20	00	30	30	36	6 6	10	ppm	La	ME-ICP61
- - 		1 09	0.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.62	0.05	0.46	1.13	0.78	1 06	0.95	1 07	1 0.00	1.10	0.01	%	Мg	ME-ICP61
30		482	1215	363	1015	217	976	517	308	559	470	439	450 450	403	ა	ppm	Mn	ME-ICP61
~			. .	ωr	ז ^ר כ	ω	2	د	9	2	2	٦ 4	1 C	3 12	-	ppm	Mo	ME-ICP61
		1.12	0.92	0.03	1.00 0.41	0.03	0.58	1.42	1.38	1.43	1.37	1.40	1.41	1.02	0.01	%	Na	ME-ICP61
N	>	Ν	N	<u>^</u> .		> ~	2	2	.	ω	9	ω	ωι	n <u>4</u>		ppm	Z	ME-ICP61
Ě	740	700	069	240	630 UUC	40	600	710	530	730	620	670	069	590	10	ppm	σ	ME-ICP61
ā	10	133	152	2690	420 586	100	302	24	21	24	338	85	21 3	26 75	ĸ	, ppm	Pb	ME-ICP61
	20.0	0.77	1.06	3.83	0.12	0.09	0.32	0.01	0.27	0.35	1.54	0.18	0.27	0.89	0.0		S	ME-ICP61
2	~7	37	51	635	8 <u>2</u>	4 2 2	20	3 G	, თ	-5	127	21	18	17 5	Ċ	r ppm	Sb	ME-ICP61
4	13	13	11	4	10	10 -	• - C	71	, 0	14	11	12	12	12	; -	a ppm	Sc	ME-ICP61
5	900	239	205	7	62	180		110	268	279	251	276	280	100 249	-	3	ស្	ME-ICP61
	0<>	20	<20	<20	<20	002	~20	~ ~ ~ C	ý 28	<20	<20	20	<20	30	3 5	20 20	In	ME-ICP61

ALS Canada Ltd 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 28-SEP-2017 Account: POINGO

Project: Yukon

V176656	V176653 V176654 V176655	V176651 V176652	V176646 V176647 V176648 V176649 V176650	V176641 V176642 V176643 V176643 V176644 V176645	Sample Description	
					Method Analyte Units LOR	
0 37	0.12 0.35 0.36	0.28 0.32	0.41 0.31 0.38 0.34 0.02	0,43 0,36 0,37 0,37	ME-ICP61 TI 0.01	
0	10 ^10	- 10	<10 10 <10	<u>4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	ME-ICP61 TI ppm 10	
6	<u>4 4 0</u>	<10 <10	<10 10 10	<pre></pre>	ME-ICP61 U ppm 10	
ğ	83 83	63 68	95 79 5	134 84 81 71	ME-ICP61 V ppm 1	
0	20 20 10	120 30	10 10 30 10	<10 <10 20	ME-ICP61 W ppm 10	
74	503 566 171	258 723	76 80 31	103 60 71 72	ME-ICP61 Zn ppm 2	
	245				Ag-OG62 Ag ppm 1	
	2.80				Cu-OG62 Cu % 0.001	CER
				3.17	As-OG62 As % 0.001	RTIFIC
						ATE O
						TIFICATE OF ANALYSIS
						-YSIS
						WH17178151
						178151

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 28-SEP-2017 Account: POINGO

Project: Yukon

CERTIFICATE OF ANALYSIS WH17178151

Applies to Method:	Applies to Method:	
Processed at ALS Vancouver locate Ag-OG62 Cu-OG62	Processed at ALS Whitehorse locate CRU-31 PUL-QC	
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Ag-OG62 As-OG62 Au-GRA21 Cu-OG62 ME-ICP61 ME-OG62	LABORATORY ADDRESSES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. CRU-31 CRU-QC LOG-22 PUL-QC SPL-21 WEI-21	CERTIFICATE COMMENTS
ouver, BC, Canada. Au-GRA21 ME-OG62	ADDRESSES Canada. LOG-22 WEI-21	S
Au-ICP21	PUL-31	

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 27-SEP-2017 Account: POINGO

CERTIFICATE WH17178123

Project: Yukon
P.O. No.: 17SUP-PDM-02
This report is for 35 Rock samples submitted to our lab in Whitehorse, YT, Canada on 23-AUG-2017.

The following have access to data associated with this certificate:

SCOTT DORION ANDY RANDELL

SAMPLE PREPARATION
ALS CODE DESCRIPTION
WEI-21 Received Sample Weight
LOG-22 Sample login - Rcd w/o BarCode
CRU-31 Fine crushing - 70% <2mm
CRU-QC Crushing QC Test
PUL-QC Pulverizing QC Test
SPL-21 Split sample - riffle splitter
PUL-31 Pulverize split to 85% <75 um

	ANALYTICAL PROCEDURES	0,
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	33 element four acid ICP-AES	ICP-AES
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
As-OG62	Ore Grade As - Four Acid	ICP-AES
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES

To: STRIKEPOINT GOLD ATTN: ANDY RANDELL 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate ***** This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as

Signature: Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

Method Sample Description WEI-21 LOR Au-UCP21 ME-LOP81 ME-LOP81 M
Method WEI-21 Au-ICP21 ME-ICP61 ME ICP61 ME ICP61 <t< th=""></t<>
Analyte Record Wt. Au Ag A As Ba Be Bl Ca Cd Co
Lorits kg ppm ppm<
LOR 0.02 0.01 0.5 0.01 6 10 0.5 2 0.01 0.5 1 1 1.61 0.086 $c0.5$ 7.29 19 830 2.4 4 2.44 $c0.5$ 8 18 1.04 $c0.001$ $c0.5$ 10.15 10 2140 0.8 4 0.04 $c0.5$ 1 14 0.64 0.079 9.4 7.43 117 990 1.9 82 2.72 1.2 9 2.3 0.65 0.014 13.8 7.84 210 1.6 20 2.97 $c0.5$ 5 2.4 0.95 0.061 13.8 7.84 210 1.9 82 2.72 1.2 9 23 0.45 0.021 13.3 8.69 4030 1.5 20 2.97 $c0.5$ 7 33 323 1.5 43 </td
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0.86 0.023 1.8 6.85 50 960 1.6 20 2.97 40.5 5 24 0.65 0.014 13.8 7.84 210 1360 0.9 5 1.46 1.1 5 24 0.98 <0.001
0.65 0.014 13.8 7.84 210 1360 0.9 5 1.46 1.1 5 18 0.98 <0.001
0.98 <0.001
0.45 0.021 13.3 8.69 4030 1320 1.5 <2
0.92 0.006 1.0 7.71 65 1060 1.6 2 2.82 6.10 3 1.99 0.392 13.8 5.91 >10000 230 1.5 43 0.33 15.2 54 20 1.12 <0.001
0.99 0.392 13.8 5.91 >10000 230 1.5 43 0.33 15.2 54 20 1.12 <0.001
1.12 <0.001 0.7 7.73 312 1060 1.6 <2 1.94 <0.5 9 23
22 0 C.U2 CI 2 00 0.1 0011 EIO 00.1 200 0.1
0.71 0.004 <0.5 4.84 81 1490 1.3 2 0.37 <0.5 7 69
0.80 0.005 <0.5 5.78 60 2270 1.6 <2 0.17 <0.5 8 81
0.078 3.7 7.94 68 1190 1.9 35 1.39 <0.5 6 21
0.001 2.6 7.50 39 1070 2.0 28 2.81 <0.5 12 24
0 90 109 113 738 172 990 1.9 3 2.42 <0.5 10 21
0.32 0.019 2.6 8.66 295 1610 1.0 9 0.26 0.5 31 17
0.70 0.004 <0.5 7.94 18 900 2.5 6 2.89 <0.5 9 20
0.78 0.024 1.4 7.91 218 1040 2.1 10 1.27 0.8 16 18
1.43 0.030 1.5 7.36 97 1000 1.6 8 2.37 <0.5 15 25
0.002 <0.5 7.53 504 1030 1.9 2 2.49 <0.5 1.4 20
0.62 0.025 7.0 7.53 41 970 1.9 13 2.45 <0.5 11 24
0.91 0.012 2.2 8.07 53 1030 2.2 9 1.94 <0.5 9 21
0.99 0.589 38.7 1.44 >10000 100 0.7 78 0.50 41.9 81
1.09 0.009 0.6 7.49 413 900 2.2 <2 2.46 <0.5 10 22
<0.001 <0.5 7.35 137 870 0.9 <2 1.83 <0.5 4 12
0.58 0.006 <0.5 7.41 31 1030 1.8 4 3.35 <0.5 11 23
uuu4 1.3 7.45 25 1040 1.9 5 3.11 <0.5 1.3 2.3

3

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 27-SEP-2017 Account: POINGO 47

ALS	>	•

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 27-SEP-2017 Account: POINGO

Project: Yukon

				CER		TIFICATE OF ANALYSIS	= ANAL	.YSIS	WH17,	WH17178123	
ME-ICP61 ME-ICP61 ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61		ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Mo	Na	Z	ס	Рb	S	4S	Sc	ŝ	TH C	Ξ
ppm % ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
0.01	-	0.01		10	N	0.01	თ			20	0.01
	4	1.65	4	640	20	0.06	-5	8	275	< <u>2</u> 0	0.29
0.12	7	0.43	N	210	15	0.12	თ	10	161	<20	0.38
0.94	2	1.48	5	630	26	0.16	6	1	291	20	0.35
30 1.05 586		1.40	4	760	150	0.76	76	12	272	<20	0.39
0.54		1.01	ch	730	28	0.07	8	1	175	<20	0.34
0.27	<1	0.45	თ	780	252	0.21	16	12	127	00>	0.36
0.66	ω	0.50	ω	640	86	0.24	თ	<u>-</u> 1	101	25	0.32
0.25	7	0.26	ω	069	4110	1.17	23	13	87	20	0.31
30 1.06 615	7	1.58	6	680	34	0.17	7	12	308	<20	0.37
	14	0.12	თ	530	3390	7.24	85	10	89	<20	0.24
0.79	-	1.06	4	740	78	0.24	-5	13	206	00	0.39
30 0.66 267	<u>د ـ</u>	1.29	4	690	46	0.46	ი	11	241	<20	0.35
0.72	ω	0.45	24	490	8	0.33	6	9	66	<20	0.27
1.02	ω	0.31	40	530	20	0.91	8	12	116	<20	0.29
0.98	د	1.24	6	660	23	0.17	7	1	233	20	0.35
1.07	<1	1.51	4	720	17	0.43	-5	12	319	<20	0.39
0.97		1.52	2	620	16	0.28	6	11	270	20	0.33
0.98	• _	1.37	۰ J	670	19	0.63	. UI	ŧ	284	20	0.35
30 0.19 <u>267</u>	<u>- </u>	0.61	თ 1	080 070	185 D	0.03	2 0	3 1	1247	20	0.32
0.66	22	1 27	s	590	21	0 13	л	α	a+C	100	
0.86	-	1.69	4	770	17	0.13	<u>ტ</u> ი	10 0	288	20	0.34
30 0.76 1195	7	1.10	Ch	780	79	0.05	17	12	183	20	0.36
1.04	.	1.37	თ	710	14	0.38	5	12	293	<20	0.39
1.08		1.48	ω	730	17	0.05	12	12	323	<20	0,38
1.00	L	1.39	4	700	55	0.66	13	12	279	20	0.35
30 0.97 428	7	1.31	4	770	35	0.01	CI ;	= 1	252	20	0.35
0.08	65	0.02	თ	220	9790	>10.0	203	ω	281	<20	0.04
0.79	-	1,44	ω	740	54	0.15	7	10	251	<20	0.32
0.53	-1	3.27		470	17	0.03	6	7	203	<20	0.21
20 1.13 526	4	1.63	4	700	24	0.24	-5	12	349	<20	0.39
0.62	ω	3.32	7	430		0.02	თ	7	221	<20	0.22
1.09	<u>د.</u>	1.61	თ	650	14	0,40	۸ ن	2	334	<20	0.37
1.18	-	1.56	თ	790	28	0.55	9	12	327	<20	0,43
1.35	4	1.59	6	730	12	0.71	Ch	13	326	<20	0.43

***** See Appendix Page for comments regarding this certificate *****

See
Appendix
Page f
or o
comments
regarding
this
certificate

Manda Imped I									Project: Yukon
Method Analyte Nume units ME-ICP61 10 ME-ICP61 0 ME-ICP61 10 ME-ICP61									OF ANALYSIS
$\begin{array}{c cccc} \bescription & \bescription \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	As-0G62	
$ \begin{array}{c ccc} \label{eq:rescription} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Analyte	maa	pom	Pom	nnn V		8 I.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		LOR	10	10	·	10	2	0.001	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176501		<10	<10	59	<10	47		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176502		<10	<10	86	<10	4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176503		<10	<10	78	30	75		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176504		<10	<10	84	10	197		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176505		<10	<10	83	30	34		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176506		<10	<10	101	30	400		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176507		<10	<10	75	20	37		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176508		<10	<10	79	80	1040		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V1/6509		<10	<10	85	10	62		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176510		<10	10	86	60	953	8.95	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176511		<10	<10	91	40	86		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176002		10	01>	20	20	6/		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176884		<10	<10	185 185	<10	130		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176885		<10	<10	79	10 2	63		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176886		<10	<10	87	20	62		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176887		<10	<10	72	10	44		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176888		-10	<10	77	; 10	52		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176890		<u>^10</u>	^10	87	20 20	330		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V/176801		C40	~10	74	110	3 2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176892		6	<10	77	<10	30		
<10	V176893		<10	<10	81	20	315		
<10 <10 81 <10 88 <10	V176894		<10	<10	87	10	44		
<10	V176895		<10	<10	81	<10	88		
<10	V176896		<10	<10	75	20	154		
-10 -	V 1 7 0097 V/1 7 6 8 0 8		^1 0	à c	15A	ð ē	100 00	UC CL	
<10	V176899		<u>~ 10</u>	<10	8 8	20 7	79	10.20	
<pre><10 <10 87 <10 <10 <10 87 <10 <10 <10 50 <10 <10 <10 85 10 <10 <10 98 10 <10 <10 98 10 <10 <10 102 20</pre>	V176900		<10	<10	39	<10	42		
<pre><10 <10 50 <10 <10 <10 85 10 <10 <10 98 10 <10 <10 102 20</pre>	V176579		<10	<10	87	<10	41		
<10 <10 85 10 <10 <10 98 10 <10 <10 102 20	V176580		<10	<10	50	<10	50		
<10 <10 98 10 <10 <10 102 20	V176581		<10	<10	3 8	; 10	34		
24 101 01. 01.	V176530		<u> </u>	<u>^</u>	10, 98	3 5	51a		
					102	22	, c		

E.

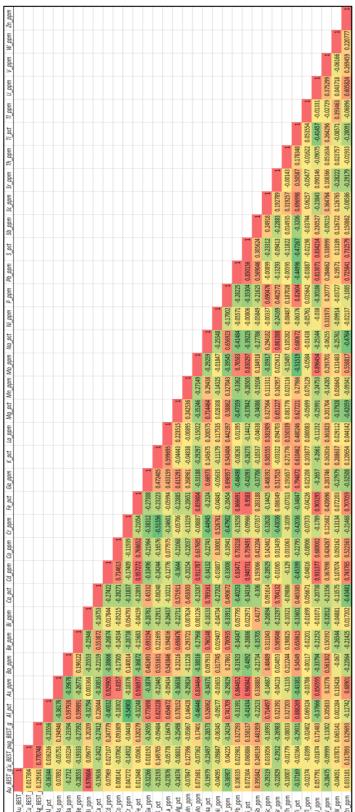
2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry ALS Canada Ltd.

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 27-SEP-2017 Account: POINGO

Applies to Method:	Applies to Method:			
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, As-OG62 Au-ICP21	LABORATORY ADDRES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. CRU-31 CRU-QC LC PUL-QC SPL-21 Wi	CERTIFICAT		ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry
Hwy, North Vancouver, BC, Canada. ME-ICP61	LABORATORY ADDRESSES I, Whitehorse, YT, Canada. LOG-22 WEI-21	CERTIFICATE COMMENTS	Project: Yukon CERTIFICATE OF ANALYSIS	To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6
ME-OG62	PUL-31		SIS WH17178123	Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 27-SEP-2017 Account: POINGO

Sample Number	Sample Date	Easting	Northing	Lithology	Comment
V176501	2017-08-16	365527	6970488	Granodiorite	Oxide-Cpy 10% ma qtz vein GND, sericite pervasive.
V176502	2017-08-16	365528	6970470	Granodiorite	Bleached GND.
V176503	2017-08-16	365567	6970420	Granodiorite	Oxidized vein, ser/sil/ox selvage w/ 8% massive cpy in qtz vein GND.
V176504	2017-08-16	365559	6970441	Granodiorite	Fracture face of vein shows 40% of vein material cpy, py / bn; 8% of grab mass.
V176505	2017-08-16	365529	6970451	Granodiorite	50% vein material; CuO fresh vein surface malachite green oxidized GND in heavy vein area.
V176506	2017-08-16	365500	6970420	Granodiorite	Cu-oxide, cpy, oxidized veinlet (GPS coordinate estimate)
V176507	2017-08-16	365474	6970363	Granodiorite	Cu-oxide, drusy quartz vein. Extreme terrain.
V176508	2017-08-16	365481	6970368	Granodiorite	Oxidized asp-cp vein. Extreme terrain.
V176509	2017-08-16	365481	6970367	Granodiorite	Cpy-qtz vein / cpy in wall rock. Extreme terrain.
V176510	2017-08-16	365482	6970368	Granodiorite	Oxidized cpy/asp vein
V176511	2017-08-16	365442	6970353	Granodiorite	Pervasive Cu-oxide alteration /colouration of GND w/ strong FeOx, Asstyle yellow-brown weathering or fracture face 80% turquoise, green-blue colouration.
V176512	2017-08-16	365463	6970377	Granodiorite	2 0.2cm qtz veinlets w/ 3% massive cpy 10% oxide.
V176529	2017-08-21	364276	6969715	Granodiorite	Core pile from 2008 drilling H237687 Po-Cpy (249.3m? FW-08-01 Box 31)
V176530	2017-08-21	364276	6969715	Granodiorite	Core pile from 2008 drilling Chl-Sil perv alt / asp-po-cpy- Cu-Ox sample from 2008 D.H. at 315.01m.
V176551	2017-08-16	365508	6970384	Granodiorite	2-3cm vuggy qtz vn with blebbed sulphides(cpy+py); sulphides apear quite weathered and oxidized; hosted in bt-rich GD; vn orientation 200/80 2m south of previous sample;
V176552	2017-08-16	365525	6970410	Granodiorite	sil+chl altered GD w/ abundant shear vns steeply dipping cutting through; D cpy+aspy in wallrock 1-2% with anhedral habit; moderately lim oxidized; grey green colour outcrop steeply dipping vns with about 200 degree trent and very steeply dipping;
V176553	2017-08-16	365531	6970407	Granodiorite	sil+chl altered gd with fairly abundant bt; shear vns and fractures cut across massive gd with anhedral cpy coating fractures; mod lim ox; 209/88 vn orientation in bedrock;
V176554	2017-08-16	365526	6970407	Granodiorite	strongly silicified salt and pepper gd w/ abundant cpy+aspy infilling fracture 2-3% abundance;
V176555	2017-08-16	365529	6970405	Granodiorite	sil alt gd salt and pepper with cu-oxide coated mm-scale vnlt cutting through chrysacolla; possible brown tarnished d cpy in vnlt; 183/88;
V176556	2017-08-16	365522	6970405	Granodiorite	sil alt and minor chl alt gd xcut by numerous heavily oxidized shear vns containing fracture filling anhedral cpy;


Appendix IV: Rock Sample Descriptions

V176557	2017-08-16	365475	6970392	Granodiorite	mod strongly sil gd with abundant bt; 1cm qtz vn oxidized along sample contains d cpy+py and bl pyrrhotite;
V176558	2017-08-16	365468	6970369	Granodiorite	mod hem+lim oxidized gd with mod silic and weak chl alt; 0.5cm qtz vn cuts across with abundant cpy occurring in and along vn sf w/ trace moly; outcrop;
V176559	2017-08-16	365469	6970369	Granodiorite	15cm wide strongly oxidized and weathered shear zone with about 6 qtz vns spanning 15cm; host rock is heavily sil and chl alt gd; grey green colour with malachite cu-ox staining on sf; 1 vn contains 10% semi massive cpy and trace moly which locally appea
V176561	2017-08-16	365470	6970369	Granodiorite	shear zone; gd hosted sil and chl altered; heavliy weathered and lim oxidized; vuggy qtz vn w/ cu-oxides and chalco sampled in float below shear;
V176562	2017-08-16	365462	6970366	unavailable	unavailable
V176579	2017-08-21	364279	6969717	unavailable	unavailable
V176581	2017-08-21	364279	6969717	unavailable	unavailable
V176630	2017-08-14	365197	6970155	Granite	Sheeted/jointed granite subcrop intruding the siltstone talus
V176631	2017-08-14	365182	6970177	Siltstone	Siltstone talus in granite talus field
V176632	2017-08-14	366046	6971610	Sandstone	Silicified sandstone talus
V176633	2017-08-14	366065	6971655	Sandstone	Silicified sandstone subcrop
V176634	2017-08-14	365029	6971045	Granite	
V176635	2017-08-14	366075	6971697	Quartz	Sulfide-rich, concentrated in 2cm thick + oxidized qz vein
V176635	2017-08-15	365586	6970599	Sandstone	V. silicified sandstone
V176636	2017-08-15	365586	6970595	Granite	Copper oxide (blue-green); reacts slightly with acid
V176637	2017-08-15	365574	6970552	Quartz	V. copper oxide-rich; magnetic mineral (glass bottle brown, lens-shaped)
V176638	2017-08-15	365579	6970503	Granite	Sheeted granite cliffs; copper oxide on surface of sample
V176639	2017-08-15	365567	6970536	Granite	Copper oxide (50% of surface)
V176641	2017-08-15	365528	6970460	Sandstone	Siliceous sandstone float, v. oxidized
V176642	2017-08-15	365461	6970458	Granite	Copper oxidation
V176643	2017-08-15	365452	6970457	Quartz	Copper oxidation on surface
V176644	2017-08-15	365461	6970462	Granite	Copper oxidation on surface and throughout
V176645	2017-08-15	365466	6970464	Granite	Sulfide-rich on vein surface> silvery-gold, striated flat planes
V176646	2017-08-16	365545	6970525	Granite	Granite with mineralization in qz grain
V176647	2017-08-16	365526	6970503	Granite	Pink alteration (K-spar?); chalco (tarnished to blue-green- brass) massive on vein face
V176648	2017-08-16	365502	6970444	Granite	Copper oxidation on surface
V176649	2017-08-16	365490	6970419	Granite	Granite outcrop with qz veining, deep turqouise blue alteration throughout
V176650	2017-08-16	365489	6970428	Quartz	V. oxidized qz vein in granite outcrop (qz crystals+massive)
V176652	2017-08-16	365487	6970434	Granite	Copper oxidation
V176653	2017-08-16	365486	6970431	Granite	Qz veins (crystalls+massive) chalco rich (tarnished green); very weathered and oxidized

V176654	2017-08-16	365470	6970378	Granite	Copper oxidation
V176655	2017-08-16	365429	6970373	Granite	Copper oxidation (malachite, azurite); chalco variety of colors (bright yellow+tarnished blue, green, purple), reacts with HCl (vein only)
V176656	2017-08-16	365454	6970446	Granite	Copper oxide (10%)
V176735	2017-08-14	365196	6969994	Siltstone	Fgr grey strongly sil SLST? w/darker grey bands containing vfgr pyrite dissem 1-2% mod hem+lim ox float adjacent to outcrop;
V176736	2017-08-14	365202	6969981	Siltstone	Grey heavily sil unit (maybe our SLST) w/ vuggy surface mod hem+lim ox; 1-2% D py+aspy? Vfgr-fgr silver minera fills fractures as well;
V176737	2017-08-14	365195	6969902	Siltstone	Same as previous; grey v. strongly sil SLST or congl? Almost appears to have cherty and chloritized clasts; fgr silver anhedral sulphide? Throughout occuring as disseminated xstals and along fractures; wk hem ox
V176738	2017-08-14	366048	6971598	Conglomerate	Very silicified cgr sst or finer grained conglomerate; light grey with wk lim ox; trace anhedral silver py; float;
V176739	2017-08-14	366198	6971669	Siltstone	Sil SST-CNGL outcrop 223/49 bedding measurement; moderately hem+lim ox; grey to dark grey; trace d py noted in float below outcrop and in outcrop;
V176741	2017-08-15	365575	6970604	Granodiorite	Bt-rich GD with sheeted qtz vn ganging from fracture coating to cm-scale w/ abundant cpy in vns; abundance 2-5% with cm-scale blebs and surface cu-oxides; trace py and gn;
V176742	2017-08-15	365561	6970586	Granodiorite	Vuggy moderately oxidized qtz vn 2cm wide with 2% cpy anhedral locally more abundant in neighboring vns; Cpy also appears on fractures; Bt-rich GD hosted (in zone of cu-anomaly);
V176743	2017-08-15	365558	6970531	Granodiorite	Bt-rich silicified GD with sheeted vng; 1cm-3cm wide qtz vnlt with 5% cpy blebs and trace d gn; weakly lim oxidized;
V176744	2017-08-15	365560	6970511	Granodiorite	strongly sil bt-rich GD with mod surface ox; 0.5cm-1cm magnetite rich vnlt; d and blebbed py + cpy replacing pheno's in sample;
V176745	2017-08-15	365561	6970502	Granodiorite	mod-strongly hem+lim ox GD with str sil alt and trace blebbed and d cpy replacing phenos; hem replacing phenos and d as well; salt and pepper coloured;
V176746	2017-08-15	365560	6970440	Granodiorite	Mgr GD salt and pepper with qtz-sulphide vns running along surface; vns contain abundant cpy and trace galen w/ additional py replacing phenos in GD; vn orientatnio 208/79
V176747	2017-08-15	365571	6970409	Granodiorite	Mod ox and sil alt GD with abundant bt+bt ox; Abundant malachite and azurite copper oxides typically surficial or clost to surface of rock; Float salt and pepper inside with brown orange surface ox;
V176748	2017-08-15	365534	6970374	Granodiorite	Very strongly sil GD with vn surface ox and cu-oxides; center of rock appears more siliceous almost zoned and contains abundant fgr D cpy 2-3% Float
V176749	2017-08-15	365506	6970389	Granodiorite	GD hosted mod silic; mod weathered; qtz-cu vn with weathering and oxidation; massive chrysocolla staining; azure green-blue; vn orientation 200/79; D cpy;
V176750	2017-08-16	365508	6970386	Granodiorite	blasted qtz-sulphide vn 3-5cm thick w/ 1cm band aspy running down; GD salt and pepper mod silic hosted; additional d and bl cpy+py; vn orientation 198/76;

V176883	2017-08-14	365291	6970031	Granodiorite	Heavily blasted and fluid altered qtz-aspy +sulphides vn vuggy w/ aspy along vn edges; yellow-brown coloured outcrop in same vn as last sample;
V176884	2017-08-14	366082	6971723	Sandstone	Sandstone. >FeOx, hematization on surface purple; grey fresh. Asp finely diss., Po massive 'bleb'.
V176885	2017-08-15	365577	6970601	Granodiorite	Anomalous Cu-target in soils. Cu-oxide staining w/ disseminated asp 2% in GND.
V176886	2017-08-15	365574	6970590	Granodiorite	Oxidized qtz vein 0.5cm w/ massive po/asp/cpy veinlets 0.1mm (stringers) throughout vein coarse grained GND. chl-ser selvage.
V176888	2017-08-15	365574	6970565	Granodiorite	The Raquel Vein (J.Luck) V176887/88(?) oxidized sericite/chlorite 2mm selvage on cpy/ native copper / asp vein.
V176889	2017-08-15	365572	6970528	Granodiorite	Cpy / tarnished(?) bornite? / asp / po vein in GND.
V176890	2017-08-15	365572	6970529	Granodiorite	Cu-oxide massive malachite, oxidized GND
V176891	2017-08-15	365543	6970513	Granodiorite	Qtz vein 1cm w/ Po-Mo-Asp-Cpy oxidized veinlets selvage.
V176893	2017-08-15	365523	6970490	Granodiorite	Weathered, FeOx granodiorite w/ 5% fresh diss. Hematite; 10% Cu-oxide.
V176894	2017-08-15	365528	6970489	Granodiorite	Cu-oxide (5%) and Cpy/Po, FeOx weathered GND.
V176895	2017-08-15	365462	6970485	Granodiorite	Cu-oxide/cpy staining on fracture face.
V176896	2017-08-15	365462	6970486	Granodiorite	Cpy-Po-Asp veinlet in GND.
V176897	2017-08-15	365468	6970452	Granodiorite	Cu-oxide veinlet, 0.2cm.
V176898	2017-08-15	365474	6970353	Granodiorite	Cpy-Asp oxidized vein hosted in granodiroite; sampled at end of day by pilot Jordan Luck.
V176899	2017-08-16	365567	6970585	Granodiorite	1cm oxidized selvage, qtz-bt vein w/ 3% massive cpy + FeOx (pyrite "devil's dice") 5%. V176900 BLANK

Appendix VI: Statement of Expenditures

Stri	kePoint Gold Inc.						
	CERTIFICA	TE OF WORK					
Sch	edule C - ROCK SAMPLING						
	PDM I	PROPERTY					
	DLOGICAL ROCK SAMPLING PROGRAM:						
A to	tal of 12 man days were required to do geological mappin	g & collect a tot	al o			rom Aug	
	Description			Rate	Unit		Total
NAC	GES:		<i>.</i>	600.00		<i>^</i>	2 400 00
	VPExploration /Planning/Sampling	per day	\$	600.00		\$	2,400.00
	Senior Geologist/Supervision	per day	\$	350.00	4		1,400.00
	Geologist	per day	\$	380.00		\$	1,520.00
	Geology Tech	per day	\$	265.00	2	\$	530.00
lea	th & Safety - Training:						
	Oneeva Solution, Vancouver, B.C.					\$	539.00
CON	SUMABLE SAMPLING SUPPLIES:						
	Flagging, Metal ID Tags, Sample Bags, Ore Bags, Rice Bags, etc.	per sample	\$	1.00	109	Ş	109.00
EQU	IPMENT RENTAL (per unit, per day):						
	Radio: ICOM Handheld: 1 per person	per day	\$	35.00	4	\$	140.00
	Computer/Software: 1 per camp nightly data download	per day	\$	50.00	4	\$	200.00
	Handheld GPS/Camera/Data Recorder	per day	\$	15.00	4	\$	60.00
TDA	NSPORTATION:						
IKA		mar day	Ś	150.00	4	\$	C00.00
	- rental - 1 only 1/2 Ton	per day	Ş	150.00	4	Ş	600.00
EQU	IPMENT RENTAL:						
	First Aid Equip Rental: 62 Degrees North Inc., Yellowknife, NT					\$	423.88
	OMODATION and FOOD:						
ACC	Food & Accomodation (Camp)	per man day	\$	125.00	12	\$	1,500.00
		permanuay	Ŷ	125.00	12	Ŷ	1,500.00
HEL	COPTER SUPPORT & FUEL:						
	Fireweed Helipcopters, Whitehorse, Yk	per hour	\$	1,350.00	6.5	\$	8,775.00
	Fuel, 160 liters (1 drum)	per drum	\$	275.00	2	\$	550.00
	LYTICAL ANALYSIS COSTS:		-				
		nor comple	ć	25.50	100	ć	2 770 50
	ALS Labs, Vancouver, B.C./ROCK	per sample	\$	25.50	109	Ş	2,779.50
REP	ORT WRITING:					\$	1,050.00
						\$	22,576.38

QUARTZ MINING ACT FORM 4 SECTION 56 APPLICATION FOR A CERTIFICATE OF WORK

I, Robin Sudo, Land Manager	Office Date Stamp
213 - 8th St. S., Cranbrook, B.C. V1C 1N9	
of Strikepoint Gold Inc.	
Phone 250-421-0939	
Client I.D. Number: make oath and say that:	

- 1. I am the owner, or agent of the owner, of the mineral claim(s) to which reference is made herein.
- 2. I have done, or caused to be done, work, on the following mineral claim(s): (Here list claims on which work was actually done by number and name)

See attached SCHEDULE A

03550

RE: PDM Property - GROUP 1		
situated at <u>north of South MacMillan Rive</u>	er Claim sheet No. 105J13	
in the Mayo	Mining District, to the value of at least \$22,200.00	dollars
since the 14th	day of August	20 17
requested). See attached SCHEDULE B - Claims To E	Be Renewed	
The following is a datailed statement of		
The following is a detailed statement of work commenced and ended in the two Section 56).	f such work: (Set out full particulars of the work done in elve months in which such work is required to be done a	dicating date as shown by
work commenced and ended in the twe	elve months in which such work is required to be done a	dicating date as shown by
work commenced and ended in the two Section 56).	elve months in which such work is required to be done a	dicating date as shown by
work commenced and ended in the twe Section 56). See attached SCHEDULE C - Rock Samp	elve months in which such work is required to be done a	dicating date as shown by

-The personal information requested on this form is collected under the authority of and used for the purpose of administering the Quartz Mining Act. Questions about the collection and use of this information can be directed to the Mining Recorders Office, Mineral Resources, Department of Energy, Mines and Resources, Yukon Government, Box 2703, Whitehorse, Yukon Territory, Y1A 2C6 (867) 667-3190 YG(50490)F2 Rev. 04/2012