Assessment Report

describing

Geological and Geochemical Surveys

at the Kluane Regional Properties:

Glad, Kilo, and Sapphire

<u>Glad</u> (80 cl)

cl 37-116: YF02197-YF02276

<u>Kilo</u> (88 cl)

cl 1-80: YD139401-YD139480; cl 209-216: YE75209-YE75216

Sapphire (445 cl)

cl 1-64: YD90030-YD90093; cl 65-450: YD136681-YD137066; cl 625-667: YE81465-YE81507

NTS: 115G08 (Glad), 115H05 (Kilo), 115H04 (Sapphire)

61°20'N / 138°12'W (Glad); 61°17'N / 137°41'W (Kilo); 61°05'N / 137°35'W (Sapphire)

Whitehorse Mining District Yukon Territory

100%-owned by StrikePoint Gold Inc.

Work Completed by: HIVE Geological Reported by: Scott Dorion, G.I.T. Dates of work performed: July 20th, 22nd, 24-25th, August 4-8th, 2017

Table of Contents

List of Figures	3
List of Tables	3
Introduction	4
Location & Access	4
Physiography & Climate	8
Exploration History	9
Glad	
Kilo	
Sapphire	
Mt. Bark	
Kin	
Ryan Gold Corporation (2010-2012)	
StrikePoint Gold Acquisition (2017)	
Geology	
Regional	
Local	
Glad	
Kilo	
Sapphire	
Mineralization	
Prospecting & Geochemical Sampling	
Results	
Discussion	21
Conclusion	22
References	23
Appendix I: Statement of Qualifications	24
Appendix II: Methodology	25
Appendix III: Certificates of Analysis	26
Appendix IV: Rock Sample Descriptions	50
Appendix V: Further Claim Information	53
Appendix VI: Statement of Expenditures	55

List of Figures

Figure 1: Location of the Kluane Regional property.	5
Figure 2: Claim Numbers defining the Kluane Regional properties. Claim-Names, -Numbers and Grant Numbers are listed in Table 1	1. A
detailed list of claim information is displayed in Appendix VI	7
Figure 3: Physiographic map of the region surrounding the Kluane Regional properties	8
Figure 4: Israel et al. (2010) Bedrock Geology map of the Ruby Range, displaying the Kluane Regional properties: Glad, Kilo, and	
Sapphire	14
Figure 5: A generalized cross section of southwestern Yukon Territory, Canada. A-A' represents a section trending to the northeast	t,
starting in the southwest (A) near Yukon 1 W highway, between Haines Junction and Beaver Creek, YT; ending (A') in the Nisling Ra	ange
which characterizes the Kluane Regional properties (Israel, Murphy, Crowley, & Mortensen, 2012).	15
Figure 6: Legend respective to Ruby Range bedrock map and cross section displayed in Figure 4 and Figure 5, respectively (Israel,	
Murphy, Crowley, & Mortensen, 2012)	15
Figure 7: Regional map displaying known mineral occurrences surrounding the Kluane Regional properties. The immediate region i	is
defined by ultramafic-hosted Cu-Ni-PGE, vein-Au, Cu-Mo-Au porphyry, and Au-Cu skarn showings	17
Figure 8: 2017 Grab Sample Locations at the Kilo (teal triangles) and Sapphire (green triangles) properties.	18
Figure 9: NAD83 Zone 7 Kluane Regional; Glad property displaying 2017 rock grab and geological observations	19
Figure 10: 2017 rock sample locations showing respective Au and Ag values at the Glad Prospect	20
Figure 11: Israel et al. (2010) suggested mineralization deposit styles associated with the Ruby Range mapping; 1. Sapphire; 2. Glac	d and
Kilo	21
Figure 12: Complimenting the cross section displayed in Figure 11. Israel et al. (2010) suggests zonation of mineral deposit styles	
variations trending to the northeast: orogenic Au (Sapphire), Cu-Mo-Au porphyry (Glad, Kilo) and epithermal Au-Ag	21
Figure 13: Grant and Claim Numbers defining the Glad Property.	30
Figure 14: Grant and Claim Numbers defining the Kilo Property.	31
Figure 15: Grant and Claim Numbers defining the Kilo Property.	32

List of Tables

Table 1: Claim Names, Grant Numbers and Expiry Dates for the Kluane Regional properties	6
Table 2: Minfile Showings within the Sapphire Property.	
Table 3: Further information for top 5 Au grabs from Figure 10	

Introduction

The Glad, Kilo, and Sapphire claims form a discontiguous claim package located in the southwestern region of Canada's Yukon Territory, termed the Kluane Regional properties. The projects are 100%-owned by StrikePoint Gold Incorporated.

The Kluane Regional properties are divided into NAD 83 Zone 7 [Glad] and NAD 83 Zone 8 [Kilo and Sapphire]. StrikePoint Gold Inc.'s Kluane Regional portfolio includes the Arm property which was not worked in 2017 and is not described in this report.

The prospective systems which define the Kluane Properties regional exploration targets include potential orogenic-Au and Cu-Mo-Au porphyry settings (Israel, Murphy, Crowley, & Mortensen, 2012). The properties have been historically explored by past proprietors for their gold potential. The Yukon Geological Survey (2017) lists two mineral occurrences on the Sapphire property, the 'Mt. Bark' showing (Minfile 115H 049) and the 'Kin' showing (Minfile 115H 050).

This report describes the work completed intermittently over 9 days between July 20 and August 8, by members of the Hive Geological and GroundTruth Exploration teams on behalf of StrikePoint Gold Inc. The work program was defined by helicopter-supported prospecting and geological reconnaissance with a focus on the anomalous gold-in-soils and anomalous grabs from previous work programs. A total of 160 geological observations were recorded during the 2017 field season at the Kluane Regional properties - 96 of which were complimented with rock grab samples. A single grab from the Glad property returned 0.66g/t Au and 44g/t Ag.

Given results from the 2017 reconnaissance on the Kluane Regional properties, no further exploration is warranted at this time.

Location & Access

The Kluane Properties, shown in Figure 1, revolve around 61°15'N and 138°51'W. The properties are located in the Ruby Range of the southwest Yukon Territory, between 40 and 70 kilometers north to northwest of the village of Haines Junction.

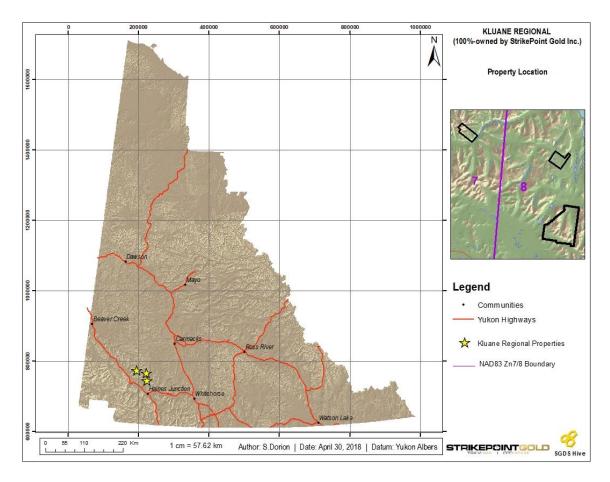


Figure 1: Location of the Kluane Regional property.

The village of Haines Junction has a population of 589¹ and is the administrative hub of the Champagne and Aishihik First Nations, whose primary language is Southern Tutchone. The village's facilities include all necessities, including: groceries, accommodations, fuel and means of transportation via airport and highway. The city of Whitehorse, located 154 kilometers to the east via highway Yukon 1 E, provides all services expected from a capital – including a general hospital, large grocery distributors and an international airport.

The 2017 field season regarding exploration at the Kluane Regional properties was based out of a fly camp set up at the end of the Mount Nansen road, directly north of Rockhaven's Klaza project, located at 62°07′48″N and 137°13′27″W. The field crew was shuttled to and from the project sites from the fly camp via Bell 206 L4 helicopter provided by Fireweed Helicopters.

¹ 2006 census (http://www12.statcan.gc.ca/census-recensement/index-eng.cfm)

The property is comprised of 1,542 claims, covering approximately 312 square kilometers. The claims are registered under the Whitehorse Mining Recorders under the name of StrikePoint Gold Inc. Claim data is listed in Table 1 below with a location map and claim map in Figure 1 and Figure 2, respectively. The property's claim boundaries are defined within NTS mapsheet 115G08 [Glad], 115H05 [Kilo], and 115H04 [Sapphire].

Claim Number	Grant Number	Expiry Date
	Glad	
cl 37-116	YF02197-YF02276	November 29, 2018
	Kilo	
al 1 90: 200 210	YD139401-YD139480; YE75209-	March 20, 2020/2021
cl 1-80; 209-216	YE75216	March 20, 2020/2021
	Sapphire	
cl 1-64	YD90030-YD90093	February 2, 2020
cl 65 – 450	YD136681-YD137066	February 2, 2020
cl 625-667	YE81465-YE81507	February 2, 2020

Table 1: Claim Names, Grant Numbers and Expiry Dates for the Kluane Regional properties.

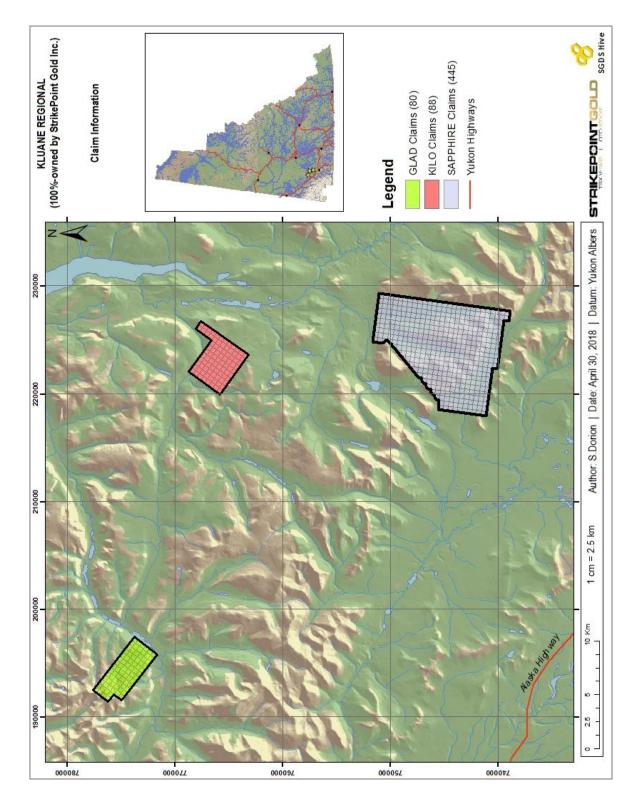
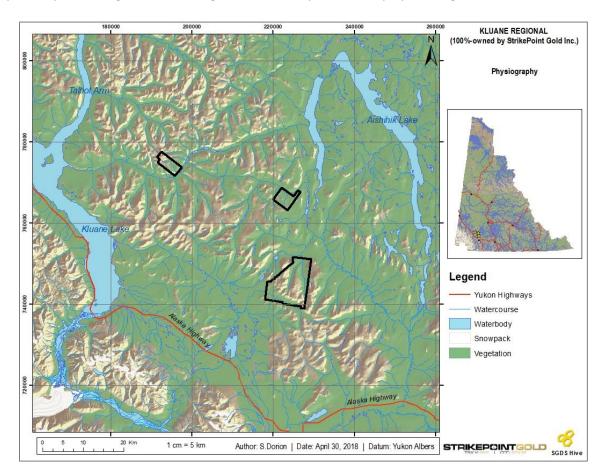



Figure 2: Claim Numbers defining the Kluane Regional properties. Claim-Names, -Numbers and Grant Numbers are listed in Table 1. A detailed list of claim information is displayed in Appendix V.

Physiography & Climate

A physiographic map of the region surrounding the Kluane Properties is displayed in Figure 3.

Figure 3: Physiographic map of the region surrounding the Kluane Regional properties.

Regional glaciation of the Yukon Territory has occurred at least six times during the Pleistocene, where the last Cordilleran Ice Sheet advanced from the Selwyn, Pelly and Cassiar, and eastern Coast Mountains in east-central and south-central Yukon (Jackson Jr., Ward, Duk-Rodkin, & Hughes, 1991). Jackson Jr. et al. (1991) suggests climate conditions were conducive for glaciation around 29,600 years ago; glacial cover was confined to mountainous areas until after 26,000 years ago; full-bodied ice sheets developed only after 24,000 years ago. The active glaciation of the area in the past defines the geomorphology of the Kluane Regional properties, from the mountain's hanging valleys, cirques and arêtes to the vast U-shaped valley bottoms surrounding the property. Elevation on the Kluane Regional properties ranges from 850 to 1800 meters above sea level, with an average elevation of 1375 meters above sea level. The property is defined by modest to steep mountains and uplands, with gentle NW-SE trending valleys. Dwarf Birch Creek is two kilometers west of the main Charon showing.

The ecoregion defining the Kluane Regional properties is summarized by the Ecological Framework of Canada² as an area which covers the Kluane, Ruby, and Nisling ranges, Shakwak Valley (Trench), and Kluane Plateau. The climate is characterized by short, cool summers and long, cold winters. Winter temperature inversions are common, giving milder temperatures at higher elevation. Maritime air from the Gulf of Alaska periodically invades the ecoregion during the winter to produce mild spells with near-thawing temperatures. Northern boreal forests occupy lower slopes and valley bottoms. Open white and black spruce in a matrix of dwarf willow, birch, ericaceous shrubs, and, occasionally, lodgepole pine form extensive forests. Black spruce, scrub willow, birch, and mosses are found on poorly drained sites. Alpine fir and lodgepole pine occur in higher subalpine sections, whereas at highest elevations sparsely vegetated alpine communities consist of mountain avens, dwarf willow, birch, ericaceous shrubs, graminoid species, and mosses. The most common soils in this ecoregion are Eutric Brunisols on sandy loam morainal or colluvial materials. West of the Nisling Range, there is an area of Turbic Cryosols on sandy loam morainal material. Regosolic soils are associated with active deposition of gravelly fluvioglacial outwash materials on braided floodplains. Volcanic ash from the 1300 year old White River eruption is up to 100 cm thick on lower slopes. In these cases, the soils are classified as either Regosols or Regosolic Turbic Cryosols, depending on the presence or absence of permafrost. Permafrost is extensive and discontinuous over most of the ecoregion decreasing to sporadic along the western side of the ecoregion. Characteristic wildlife includes caribou, grizzly and black bear, Dall's sheep, moose, beaver, fox, wolf, hare, raven, rock and willow ptarmigan, and golden eagle.

Temperatures at Burwash Landing range from 6.3 to 19.3°C in July and -15.6 to -28.4°C in January, with an annual average high of 2.9°C and low of -10.5°C. Annual rainfall and snowfall patterns of the area average at 192.1mm and 106.4cm, respectfully.³

Exploration History

The exploration history of the Kluane Regional projects are divided into the following headings:

- Glad
- Kilo

² http://ecozones.ca/english/region/174.html

³ Environment Canada. Climate ID: 2100182 from Canadian Climate Normals 1981-2010.

- Sapphire
 - o Mt. Bark
 - o Kin
 - o Ryan Gold Corporation
- StrikePoint Gold Inc.

Glad

The Glad property was staked by Ryan Gold Corp in 2011. There is no prior documented exploration history within the claim boundaries prior to activity by Shawn Ryan. In 2012, 8 of the 73 geological observations were complimented with grab samples. One grab sample returned 1.13g/t Au, hosted in a breccia. Geological reconnaissance was complimented with 1:20,000 mapping. A total of 975 soils were retrieved on the property, which returned assays as high as 1815ppb Au (Dorion, Geological & Geochemical Report (Assessment Report #096342), 2013).

Kilo

The Kilo property was staked by Ryan Gold Corp in 2011. There is no prior documented exploration history within the claim boundaries prior to activity by Shawn Ryan. In 2011, 21 geological observations with 4 corresponding grab samples and 510 soil samples were retrieved (Dorion & Lapp, 2011). In 2012, 14 of the 55 geological observations were complimented with grab samples – none of which returned any anomalous results. Geological reconnaissance was complimented with 1:20,000 mapping. A total of 1,390 soils were retrieved on the property, which returned assays as high as 1778ppb Au (Dorion, Geological & Geochemical Report (Assessment Report #096342), 2013).

Sapphire

Documented exploration history prior to acquisition of the Sapphire Property by StrikePoint Gold Inc. is limited to two Minfile showings: Mt. Bark and Kin. Placer gold in the region has been documented on several creeks located in the immediate area dating back to the late 1800's. One creek was noted to have mined 100 kilograms of gold since 1985 (Wengzynowksi, 1995). More notable historic exploration activity is just northwest of the current Sapphire claim boundary, with mineral occurrences between 800 meters to 11 kilometers away, which includes Minfile showings, respective to distance from the Sapphire Property: Mckinley, Killermun, Lib, Shut, Bowan and Live.

Minfile	Name	Easting	Northing	Zone	NTS	Deposit Type	Status
Number		NAD83	NAD83		250k		
115H 049	Mt. Bark	359871	6776617	8	115H	Au-Quartz Veins	Anomaly
115H 050	Kin	361268	6772101	8	115H	Unknown	Anomaly

Sapphire: Mt. Bark

The Mt. Bark claim was one of four, southernmost block staked in 1986 by United Keno Hill Mines Ltd. The discontiguous claim packaged defining the four blocks in immediate vicinity was termed the Ruby claims (YA95693). The claims were staked to cover gold silt anomalies following a government regional geochemical survey. United Keno Hill preformed mapping and soil sampling in 1988 (Walton) and was restaked by J.P. Ross as the Joy claim (YB27811) in August of 1990. A zone of anomalous float containing up to 150ppb Au coincides with a topographic lineament which is the trace of a north-striking thrust fault. The anomalous float consists of scorodite-stained breccia formed of smokey quartz fragments in a hematite-limonite matrix. The area was noted be underlain by a cordierite-biotite schist of probable Paleozoic age.

Sapphire: Kin

The Kin claim (YA95649) was staked by Silverquest Resources in 1986. Exploratory mapping and prospecting commenced in 1987 and was noted to be underlain by hornfelsed Nisling Terrane schist. The Kin claim was initially staked to cover gold silt geochemical anomalous identified by a regional government stream survey. No further information or assessment reports were available at the time of reporting.

Sapphire: Ryan Gold Corporation (2010-2012)

Reconnaissance soil sampling throughout the Ryan Gold Corporation Kluane property portfolio occurred in 2010 which led to staking of claims in the spring of 2011 (Dorion & Lapp, 2011).

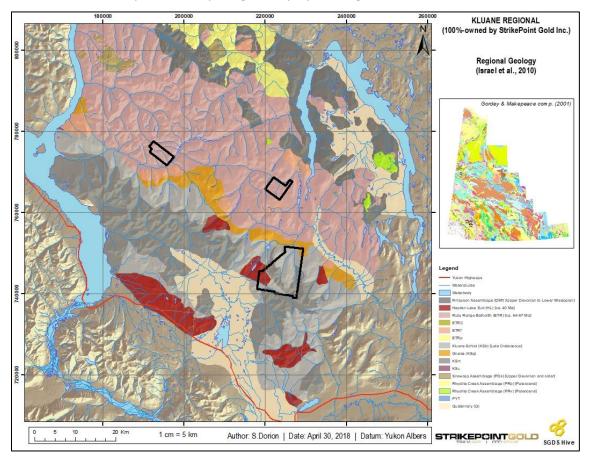
In 2011, a total of 2119 soils were collected – 1710 of which were within the claim boundary at the time. Geological reconnaissance was completed, with minor rock grab sampling. The 2011 work program identified Au values exceeding 200ppb in quartz vein talus grabs (Chakungal, 2011).

In 2012, 25 of the 126 geological observations were complimented with grab samples – none of which returned any anomalous results. Geological reconnaissance was complimented with 1:20,000 mapping. A total of 4,201 soils were retrieved on the property, which returned assays as high as 2542ppb Au (Dorion, 2013).

StrikePoint Gold Acquisition (2017)

The Ryan Gold Corporation portfolio was packaged along with Eagle Hill Exploration Corporation and Corona Gold Corporation portfolios and acquired by Oban Mining Corporation on August 25th, 2015. On February 1st, 2016, IDM Mining completed the acquisition of Oban Mining's Yukon properties, issuing 7,188,889 common shares and granted a 1% NSR to Oban Mining. On December 21st, 2016, StrikePoint Gold Inc. signed a letter of intent to acquire the Yukon properties from IDM Mining, which included the Kluane Regional properties. The purchase price of the Yukon properties by StrikePoint Gold was for \$4,000,000 paid via \$150,000 in cash and \$3,850,000 common shares at \$0.385 per share, with the agreement to spend \$1,500,000 in exploration expenditures by December 31st, 2017.

Geology


Regional

The regional area surrounding the Kluane Regional properties is defined by an accretion arrangement of units, termed the Coast Belt, west of the Tintina fault. The five dominant lithologic units which define the region, from youngest to oldest, are: the Rhyolite Creek volcanoplutonic complex, Ruby Range batholith, Kluane Schist, Gneiss and Yukon-Tanana terrane, described by Israel et al. (2010) as:

- 1. Rhyolite Creek volcanoplutonic complex (Paleocene, 57 Ma)
 - a. Light grey, brown and green, intermediate to felsic volcanic rocks; flow banding is common; local volcanic breccia; rare pillows and mafic volcanic rocks.
 - b. Light grey to purple, quartz, feldspar porphyry; quartz is often smoky grey in colour; occurs as thin dykes to large intrusive bodies; intrusive equivalents to intermediate to felsic volcanic rocks.
- 2. Ruby Range batholith (Paleocene)
 - a. Fine to coarse-grained, salt and pepper, hornblende +/- biotite, quartz diorite, rare garnets; mediumgrained, light grey to pinkish biotite +/- hornblende granodiorite; fine to medium-grained, beige to grey tonalite with distinctive smoky grey quartz; pinkish/grey, biotite granite.

- b. Strongly to moderately deformed equivalents of undeformed Ruby Range batholith; often has 'gneissic' texture near the base of the batholith.
- 3. Kluane Schist (mid-Cretaceous)
 - a. Dark grey to dark green, strongly deformed and altered ultramafic lenses; light grey, fine-grained talcschist.
 - b. Light to dark grey, fine-grained, quartz, muscovite schist; variably carbonaceous (more carbonaceous in the northwest of map area); rare light grey carbonate lenses;
 - c. Dark grey to black; fine-grained, quartz, biotite schist; occasional garnets and plagioclase porphyroblasts; layer parallel, boudinaged quartz veins ubiquitous.
- 4. Gneiss (late Cretaceous and older)
 - Beige, orange to grey black, medium- to coarse-grained orthogneiss and paragneiss; mafic layers composed primarily of biotite +/- hornblende, leucocratic layers consist of quartz, potassium feldspar and plagioclase; abundant garnet; could be part of Yukon-Tanana terrane or the Kluane Schist.
- 5. Yukon-Tanana terrane (Proterozoic to Mississippian)
 - Beige- to brown-weathering quartz, muscovite +/- garnet, psammitic schist; dark grey to black carbonaceous biotite +/- garnet schist and quartzite; dark green to black garnet amphibolite; grey to cream marble; rare metaplutonic rocks.

The Coast Belt area is loosely defined by a 40km-thick northeast-dipping structural stack. The original structural contrast between the younger Kluane Schist and older Yukon-Tanana terrane pre-dates the Ruby Range batholith, which is made evident by two significant metamorphic events affecting the Kluane Schist at 82 and 70 Ma. The Ruby Range batholith intruded between the Kluane Schist and Yukon-Tanana terrane contact. Detrital zircon analyzed from the Kluane Schist indicates the onset of deposition of this metasedimentary sequence to have occurred after 94 Ma. The origin of the Kluane Schist is believed to be an uplifted Yukon-Tanana terrane and Jurassic-Cretaceous plutons of the Aishihik batholith and Coast plutonic complex (Israel et al., 2010). Cooling and syn-tectonic emplacement of the Aishihik batholith within the Yukon Tanana terrane occurred during the Jurassic deformation. The ensuing deformation occurred during the mid-Cretaceous which was included the emplacement of the Dawson Range batholith and Nisling Range granodiorite, and is the likely age of Kluane Schist deposition. Late Cretaceous to Paleocene deformation is associated with continued deformation in the Kluane Schist and a syn-tectonic phase of the Ruby Range batholith. Paleocene to Eocene deformations mark the N-NW and E-W trending strike-slip faults observed which are likely related to movement along Denali fault (Israel et al., 2010).

The Israel et al. (2012) bedrock map of the Ruby Range is displayed in Figure 4.

Figure 4: Israel et al. (2010) Bedrock Geology map of the Ruby Range, displaying the Kluane Regional properties: Glad, Kilo, and Sapphire.

A cross section of the regional geology associated with Figure 4 is illustrated in Figure 5, with the respective legend for the listed units displayed in the cross section in Figure 6 (Israel et al, 2010).

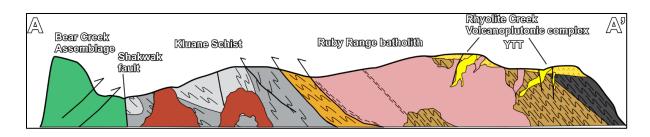


Figure 5: A generalized cross section of southwestern Yukon Territory, Canada. A-A' represents a section trending to the northeast, starting in the southwest (A) near Yukon 1 W highway, between Haines Junction and Beaver Creek, YT; ending (A') in the Nisling Range which characterizes the Kluane Regional properties (Israel, Murphy, Crowley, & Mortensen, 2012).

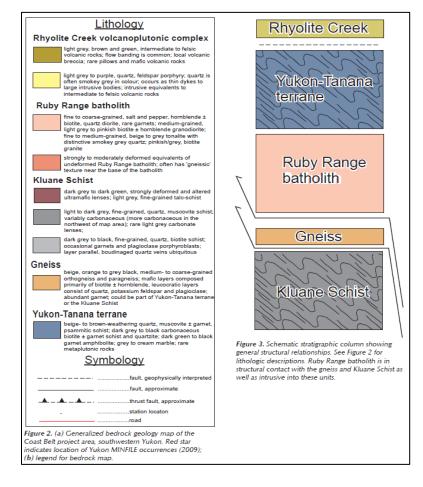


Figure 6: Legend respective to Ruby Range bedrock map and cross section displayed in Figure 4 and Figure 5, respectively (Israel, Murphy, Crowley, &

Mortensen, 2012)

Local

Glad

Recent mapping by Israel et al. (2010) describes the Glad prospect as being entirely encompassed by the Ruby Range batholith. The Ruby Range batholith at the Glad prospect is correlated to the Nisling Range Suite which is described as a biotite-hornblende granodiorite (locally K-feldspar megacrysts), quartz monzonite, quartz diorite; minor granodioritegneiss; hornblende and biotite hornblende diorite; biotite quartz feldspar porphyry and porphyritic biotite quartz. Unconsolidated Quaternary sediments and vegetation overlay a majority of the bedrock (Dorion, 2013).

Kilo

The property is defined by Ruby Range batholith. Israel et al. (2010) notes a single fault, trending roughly NW-SE and stretching approximately 25 kilometers, on the southern edge of the Kilo prospect's claim boundaries. A single foliation orientation measured within the prospect's boundaries strikes near-north and dips at angle of 14°. Unconsolidated Quaternary sediments and vegetation overlay a majority of the bedrock (Dorion, 2013).

Sapphire

Israel et al. (2010) defines the prospect by three units: the Hayden Lake Suite, Kluane Schist, and Gneiss. The Kluane Schist correlates with the undivided metamorphics and the Nisling Range Suite relates to the Hayden Lake Suite. Israel et al. (2010) highlights the presence of a multiple faults, running upwards of 45 kilometers, cutting through the Sapphire prospect. Two of the three interpreted faults are undefined in movement while the third is an interpreted as a thrust fault. The nearly 45 kilometer, undefined fault is truncated by a 35 kilometer, NW-SE trending undefined fault on the southern limits of the prospect's boundaries. The movement of the thrust fault is over-thrusting in a northward direction along the contact between the Kluane Schist and Gneiss. Structures measured proximal to or within the Sapphire prospect include: foliations, stretching lineations, fold axis; dominant phase and s-fold, crenulation lineations and dykes. The lineation structures dominantly trend northeast and are shallowly plunging. The dominant foliation orientation is striking northwest and dipping at angle of approximately 20°. Unconsolidated Quaternary sediments and vegetation overlay a majority of the bedrock (Dorion, 2013).

Mineralization

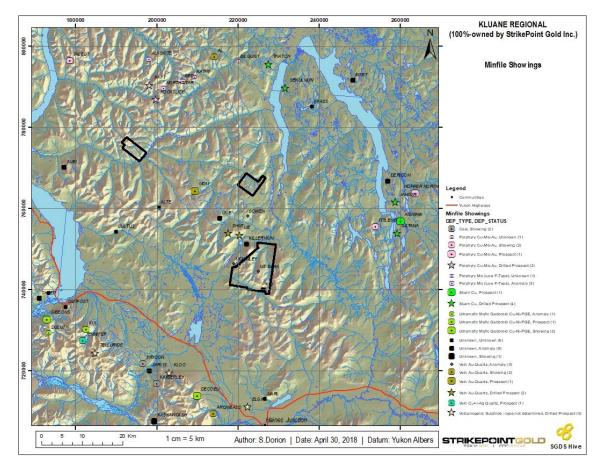


Figure 7: Regional map displaying known mineral occurrences surrounding the Kluane Regional properties. The immediate region is defined by ultramafic-hosted Cu-Ni-PGE, vein-Au, Cu-Mo-Au porphyry, and Au-Cu skarn showings.

Figure 7 displays known mineralization in the immediate area surrounding the Kluane Properties. The properties themselves lack a definable mineralization, with only select grab samples from Ryan Gold Corp. and StrikePoint Gold Inc. programs returning anomalous results. To date, mineralization at the Glad property has been observed in breccia (2012 sample 41703; 1.13g/t Au) and an oxidized schist (2017 sample V176335; 0.66g/t Au and 44g/t Ag). Aside from several anomalous soils >100ppb Au from 2012, the Kilo property has yet to return any visible mineralization styles. The Sapphire property, similar to Kilo in terms of anomalous soils, has yet to return any notable mineralization.

Prospecting & Geochemical Sampling

During the 2017 field season a total of 160 geological observations were recorded on the Kluane Regional properties, which included 96 rock samples. Geological observations and rock sampling were retrieved from the properties between July 20nd, 22nd, 24th, 25th and August 4th-8th. The sample locations are displayed in Figure 8 (NAD 83 Zone 8) and Figure 9 (NAD 83 Zone 7). Rock descriptions for each sample can be found in Appendix IV of this report. The prospecting and grab sampling methodology is described in Appendix II.

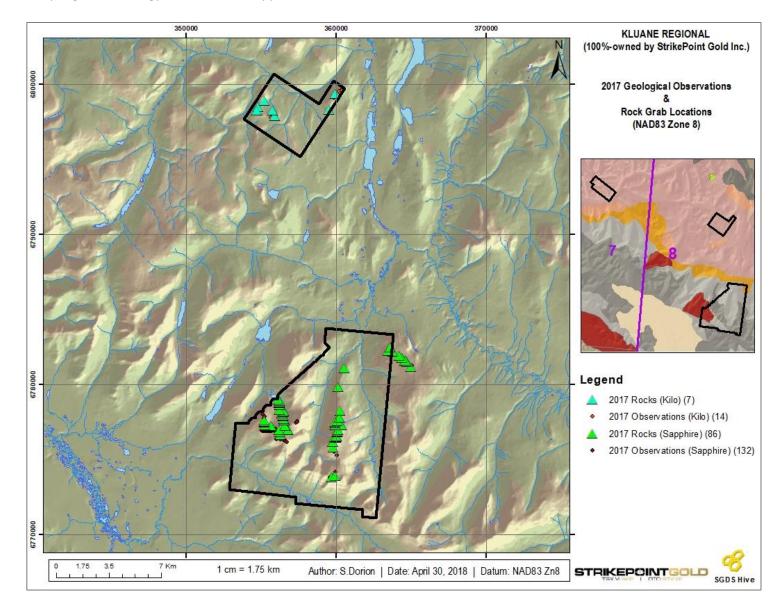


Figure 8: 2017 Grab Sample Locations at the Kilo (teal triangles) and Sapphire (green triangles) properties.

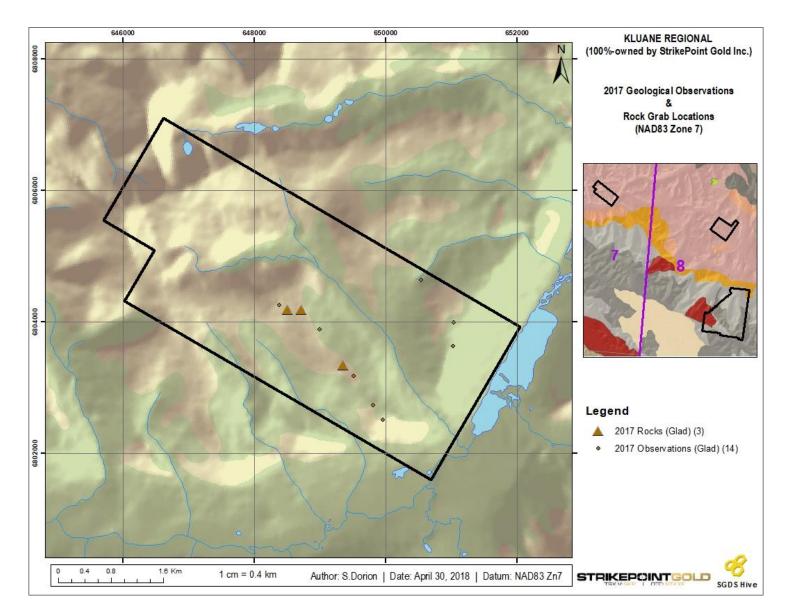


Figure 9: NAD83 Zone 7 Kluane Regional; Glad property displaying 2017 rock grab and geological observations.

Results

From the 2017 prospecting and geological reconnaissance, only one grab sample returned anomalous results of 0.66 g/t Au and 44g/t Ag at the Glad property. The sample location is displayed in Figure 10.

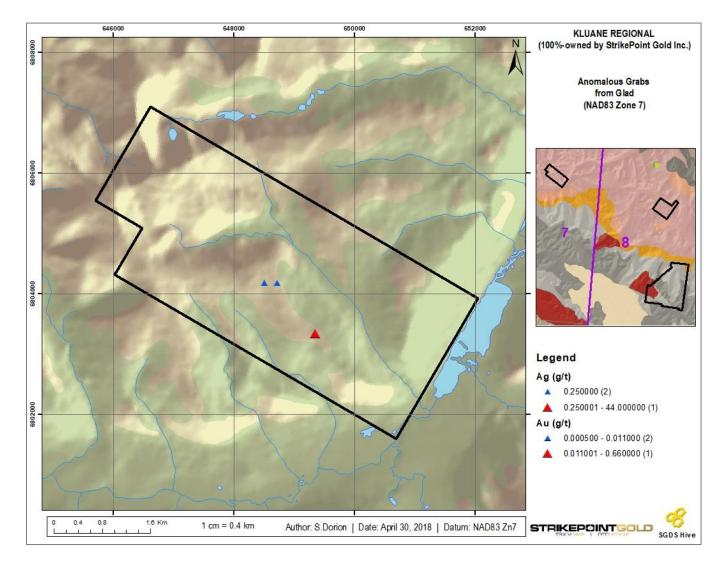


Figure 10: 2017 rock sample locations showing respective Au and Ag values at the Glad Prospect.

Table 3: Further information	for top 5 Au	grabs from Figure 10.
------------------------------	--------------	-----------------------

Sample #	Easting	Number	Au (g/t)	Ag (g/t)	Lithology	Comment
V176335	649359	6803331	0.66	44	Schist	Very oxidized and weathered.
V1/0555	0-3333	0003331	0.00		Schist	No visible sulphides.

Discussion

Israel et al (2010) presented figures which display respective zonation of deposit types in the area which corresponds to the location of the Kluane Regional properties, displayed in Figure 11 and Figure 12. The Israel et al (2010) proxy for a potential deposit model for the Kluane Regional properties includes orogenic-Au and Cu-Mo-Au porphyry settings.

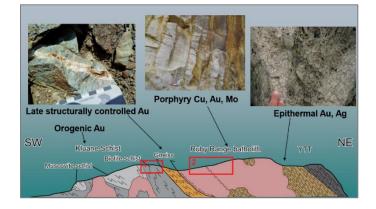


Figure 11: Israel et al. (2010) suggested mineralization deposit styles associated with the Ruby Range mapping; 1. Sapphire; 2. Glad and Kilo

Figure 12: Complimenting the cross section displayed in Figure 11. Israel et al. (2010) suggests zonation of mineral deposit styles variations trending to the northeast: orogenic Au (Sapphire), Cu-Mo-Au porphyry (Glad, Kilo) and epithermal Au-Ag.

Conclusion

After receiving disappointing results from the 2017 geological reconnaissance programs at the Sapphire, Kilo, and Glad properties, the author of this report recommends no further work on any of the three properties.

References

- Chakungal, J. (2011). 2011 Exploration Program for the Sapphire Property (Assessment Report #095839). Toronto, ON: Ryan Gold Corporation.
- Dorion, S. (2013). *Geological & Geochemical Report (Assessment Report #096342)*. Toronto, ON: Ryan Gold Corporation.
- Dorion, S., & Lapp, J. (2011). 2011 Geological and Geochemical Report (Assessment Report #096105). Toronto, ON: Ryan Gold Corporation.
- Israel, S., Murphy, D., Crowley, J., & Mortensen, J. (2012). 2012 Dawson Rocks Presentation: Overprinting magmatic and tectonic events in southwest Yukon and their influence on mineralizing systems. Dawson City, YT: Yukon Geological Survey.
- Jackson Jr., L. E., Ward, B., Duk-Rodkin, A., & Hughes, O. L. (1991). *The Last Cordilleran Ice Sheet in Southern Yukon Territory (Vol.45, numero 3).* Geographie physique et Quaternaire.
- Walton, L. (1987). *Geological and Geochemical Report on the Ruby cl. 29-34. (Assessment Report: 091997).* Whitehorse, YT: United Keno Hill Mines.
- Wengzynowksi, B. (1995). Prospecting, Soil Geochemistry, Trenching and Geophysical Surveys at the Ruby Range Project. Mapsheet 115H/4. (Assessment Report: 093250). Vancouver, B.C.: Cash Resources Ltd.; Archer Cathro Associates Ltd.

Appendix I: Statement of Qualifications

I, Scott Dorion, who resides in the city of Vancouver, British Columbia, Canada, do hereby certify that:

- I held the position of Project Geologist with StrikePoint Gold Inc., hired through HIVE Geological, during the 2017 season;
- 2. I graduated from the University of Alberta with a Bachelor of Science Degree with Specialization in Geology in the Fall of 2009;
- 3. I have been actively employed in the mineral exploration industry since 2007;
- 4. I am registered with APEGA and in good standing (Member Number: 107616, Geol.I.T.);
- 5. During the Kluane Regional reconnaissance, I was actively engaged in reconnaissance programs at StrikePoint Gold Inc.'s Nug and PDM properties or managing the StrikePoint Gold Inc. RAB drill program at the Pluto Property. I did not step foot on Glad, Kilo, or Sapphire in 2017. However, I am familiar with them as I worked the properties in 2012 under Ryan Gold Corp. The program was carried out effectively by other geological staff of the HIVE Geological team.

Just /2_

Scott Dorion

Project Geologist

StrikePoint Gold Inc. / SGDS HIVE Geological Consulting & Mentoring

Appendix II: Methodology

Sampling, chosen based on geological relevance, followed a methodical set of procedures from initial sample collection to final database recording. Samples were typically chipped away from outcrop showings, using a standard Estwing rock hammer, into polyurethane bags and recorded into a field book. The point location of the sample was digitized into a standard Garmin GPS unit. Before sealing the bag with a cable tie, an ALS Chemex supplied sample tag was placed inside the bag and the sample number marked on the bag using a permanent felt. The closed sample, along with a marked show sample, was stored amongst the others throughout the day by the sampler in a field pack. After returning each day, sample numbers and descriptions were digitized in MS Excel and the samples were securely stored until a batch shipment was prepared. The on-site project geologist was responsible for creating the chain of custody and shipment forms. Samples were placed in a sample string with a systematic pattern of standards and blanks to ensure QA/QC, grouped in rice bags and secured with security tags. The batch shipments would be transported via expeditor or StrikePoint Gold personnel to ALS Chemex in Whitehorse, where the samples were prepped and shipped to their Vancouver lab for assaying and QA/QC checks. Throughout the shipment process, a chain of custody paperwork trail was maintained to ensure sample security.

Once in at the ALS Lab in Whitehorse the samples are received, weighed and logged. Samples are then crushed until 80% or better passes through a 2 mm mesh screen. This resulting material is put through a riffle splitter, where a 1000 g sample is isolated and the rest is collected as reject. The sample is pulverized further until 85% or better passes through a 75 micron mesh screen. After this step the pulp material is shipped to the North Vancouver lab for analysis. The remaining reject material is stored in Whitehorse.

The material that is shipped to the North Vancouver lab is split using a riffle splitter where a 50 g sample is isolated. The reject material from this process is stored at the lab. This 50 g sample is now subjected to ICP22 and ME-MS41 assaying methods. The ICP22 is a fire assay and ICP-AES method to assay for gold, and can detect values between

0.01 ppm and 10 ppm. ME-MS41 is a 51 element analysis by aqua regia digestion and a combination of ICP-MS and ICP-AES assaying. Assays for Au, Ag, Cu, Pb, As, Zn and Sb that are above detection are then finished using a gravity method to obtain true value. Final results using the methods above are reported to StrikePoint Gold electronically via excel spreadsheet and a secure PDF certificate of work.

Appendix III: Certificates of Analysis

- ALS Work Order Number
- WH17156951
- WH17159708
- WH17171142
- WH17155473

*Lab certificates included Pluto and Venus grab samples as the two properties are in the Kluane region as well. The reader is advised to cross reference Appendix IV of this report to correlate assays to Kluane Regional grab samples.

	s apply to samples as	This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.
		To: STRIKEPOINT GOLD ATTN: SCOTT DORION 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6
33 element four acid ICP-AES ICP-AES Au 30g FA ICP-AES Finish ICP-AES	ME-ICP61 3 Au-ICP21 A	
DESCRIPTION INSTRUMENT	ALS CODE D	
ANALYTICAL PROCEDURES		
Split sample - riffle splitter Pulverize split to 85% <75 um Pulp Login - Rcvd with Barcode		
Pulverize Split - duplicate Crushing QC Test Pulverizing QC Test	CRU-QC P	
Split sample - duplicate Fine crushing - 70% < 2mm		This report is for 20 Rock samples submitted to our lab in Whitehorse, Y1, Canada on 28-JUL-2017.
Received Sample Weight Sample login - Rcd w/o BarCode Sample logning - ClientBarCode Dun	WEI-21 R	Project: Yukon P.O. No.: SKP17-009
DESCRIPTION	ALS CODE D	
SAMPLE PREPARATION		CERTIFICATE WH17156951
Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 4-SEP-2017 Account: POINGO 27	To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6	ALS Canada Ltd. 2103 Doilarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager N

P	
Г M	
U	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 4-SEP-2017 Account: POINGO 8

P
<u>O</u> .
ČT:
Ľ
K
ň

								CF	RTIFIC	CERTIFICATE OF	- ANALYSIS		WH17156951	56951	
Method Analyte Units LOR	WEI-21 Recvd Wt. Kg 0.02	Au-ICP21 Au ppm 0.001	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be 0.5	ME-ICP61 Bi 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
	0.65	0.002	1 2	2 01 0 40	27 22	1510 230	10 605	<2 <2	0 03	<0.5	A 4	93 93	14 14	0.86 53	6 ¹
	080 080	0.001	- 6 - 5	7 22	ı (Ji	1020	1.0	< 2	1 02	<05	Q	68	4	3 92	20
	- 6 02	0.001	> 6 3 01	7 40	(U1	1040	د۔ د۔	N	1.03	40 5	10	90	42	3 99	20
	0.85	0 002	40 5	6.99	1	90	-60 S	æ.	6.41	07	52	340	101	797	20
	0 054	0 001	6 6	86.9	0	06	<0.5	<2	68.9	60	39	102	176	814	20
	0.70	0.008	17	7 40	30	770	13	()ı	437	06	57	100	580 0	7 81	20
	0.84	0.002	<0.5	628	Ø	270		თ	19 80	0.5	02	64	33	نی 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	20
	076	0.086	 00	د 44 44	136	710	07	^ ¢4	0.10	2.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44	38	169	<10
	0 50	0 002	<0.5	0 25	24	160	7 0	^ 	0 10	40 G	Ŋ	20	10	3 28	<10
	078	0 004	<0.5	693	299	140	<0.5	ω	631	60	66	472	76	7 64	20
	079	<0.001	< 0.5	6 27	Ch A	440	19	4	078	40 ð	د.	ð	ω	0.65	10
		<0.001	<0 ð	6 60	Çh	1510	3 3	2	501	0.5	22	61	ч Ю	80 G	20
	0 60	<0 001	40 01	031	ô	30	<0 0 5	ω	0.06	10	^	30	ω 4	8C 0	<10
	1 16	0 003	<0.5	738	110	1380	38	~2	015	10	ω	60	ь	1 54	20
	66 O	<0.001	9 0>	7 67	¢	620	107	A N	1 60	33	2	0	2	2 12	30
	0.06	0317	<0.5	7 18	185	340	10	ω	5 80	6 0	39	186	22	779	20
	0 49	0 001	^0 5	701	00	1470	د د	ю	146	<0.5	õ	106	5	4.70	20
******	0 84	0 001	6 0 0	7 21	~5	00	4 0	I).	10.65	ھیہ دینہ	 4	50	00	6 50	30
	083	<0.001	6 0	6.21	C1	580	د ۵	~2	0.47	6 0 5	.		N	0.48	20

V177120 V177121 V177122 V177122 V177123

V177118 V177119

V176988 V177115 V177116 V177116 V177117

V177042 V177043 V177044 V177044 V176986 V176987 V177037 V177038 V177039 V177039 V177040 V177041

Sample Description

***** See Appendix Page for comments regarding this certificate *****

•

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

> To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 4-SEP-2017 Account: POINGO 2

-	1	Pro
		ject:
		Yuk
		ion

Mintal transmit (marked) Instant Mintal (marked) Mintal (m										CER.	i manual i	IFICATE OF	= ANALYSIS		WH1715695	56951	
$ \begin{array}{ $		Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP81
Operifying Log 601		Units	28 ;	ppm	98	mdd	mdd	8 ⁴	mdd	ppm .	mdd	¥.	ndd	mdd	ppm	udd	88
112 10	Sample Description	LOR	0.01	10	0.01	(n		0.01	sent	10	N	0.01	Un	1		20	10.0
102 102 101 102 101 102 101 102 101 102 101 102 101 102 101 102 101 102 101 102 101 <th>V177037</th> <th></th> <th>1 22</th> <th>10</th> <th>0.16</th> <th>63</th> <th>37</th> <th>0.03</th> <th>1.1</th> <th>280</th> <th>7</th> <th>0.09</th> <th></th> <th>Ch</th> <th>49</th> <th><20</th> <th>0.08</th>	V177037		1 22	10	0.16	63	37	0.03	1.1	280	7	0.09		Ch	49	<20	0.08
100 100 <th>V177038</th> <th></th> <th>0.23</th> <th>10</th> <th>0.04</th> <th>57</th> <th>UL I</th> <th>0.01</th> <th>З</th> <th>50</th> <th>42</th> <th>0 03</th> <th>30</th> <th></th> <th>O)</th> <th>< 20</th> <th>0.03</th>	V177038		0.23	10	0.04	57	UL I	0.01	З	50	42	0 03	30		O)	< 20	0.03
1000 1000 100 1000	V177039		-1 96 1	20	1 09	625	^	140	34	960	ц. СЛ	0 03	¢ O	د حل	202	< 20	0 41
1 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	V177040		2 02	20	4 6	640	→k	د. 45 45	36	086	12	0.03	ŝ	4	208	< 20	0 42
1 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	V177041		0 82	<10	5.86	1185	~	1 28	338	290	15,	070	6	26	116	< 20	058
1 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	V177042		0.68	<10	3 80	1225		197	85	510	8	0.67	62	43	717	< 20	083
1000 1000 <th< td=""><th>V177043</th><th></th><td>2 67</td><td>~10</td><td>354</td><td>669</td><td></td><td>1 18</td><td>115</td><td>540</td><td>312</td><td>2.84</td><td>Ch A</td><td>43</td><td>275</td><td><20</td><td>0.61</td></th<>	V177043		2 67	~10	354	669		1 18	115	540	312	2.84	Ch A	43	275	<20	0.61
1 0.07 1.0 0.02 1.0 0.02 1.0 0.02 1.0 0.02 1.0 0.02 1.0 0.02 1.0 0.02 1.0 0.02 1.0 0.02 1.0 0.02 1.0 0.02 1.0 1.0 0.02 1.0 0.02 1.0 <th1.0< th=""> 1.0</th1.0<>	V177044		1 62	40	079	180	t.)	077	36	280	100	1 29	Сh Сh	9	1295	<20	0.24
010 010 <th>V176986</th> <th></th> <td>070</td> <td>10</td> <td>0.09</td> <td>00</td> <td>ő</td> <td>0.01</td> <td>د. د. ز</td> <td>820</td> <td>565</td> <td>0 14</td> <td>i di</td> <td>. W</td> <td>1 50</td> <td>- ANO</td> <td>00/</td>	V176986		070	10	0.09	00	ő	0.01	د. د. ز	820	565	0 14	i di	. W	1 50	- ANO	00/
1 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	V176987		0.07	~10	0 04	069)	0.01	1¢	650 0	20	0.01	ł	<1	0	07.>	001
4.40 5.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0 2.00 7.0	V176988		0.59	010	5 05	1350	<u>^</u>	- 1 85 - 85	351	410	, tr	016	່ ດໍ	, 20	200	< 20	् ु ु ु
	V177115		4 0 2 0	0 C) C D D C		a /	スト マン ひ	2 -	000 000	- 1 1 1	000	Λ / .h (1	753	3	0 C 65 C
351 30 014 640 4 316 1 340 18 610 53 100 126 5 217 14 180 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 340 12 210 13 100 13 000 14 10 11 100 13 000 14 10 11 100 13 000 14 100 13 000 14 100 13 000 14 100 13 000 14 11 100 13 000 14 11 <th1< td=""><th>71177177 71777777</th><th></th><td>0.08</td><td><10</td><td>0.02</td><td>08</td><td></td><td>0</td><td>;</td><td>20</td><td>7</td><td>0 01</td><td>Q1 -</td><td>~</td><td>o</td><td><20</td><td>0 01</td></th1<>	71177177 71777777		0.08	<10	0.02	08		0	;	20	7	0 01	Q1 -	~	o	<20	0 01
0.02 10 0.02 10 0.02 10 0.02 10	V177118		3 57	30	014	640	4	ය 18	i	340	18	<0.01	9	ω	110	<20	013
2070 20 142 644 2 202 16 1610 3 473 10 026 64 4 1 1620 12 028 44 473 10 026 64 4 1 1610 3 028 44 1 175 2 028 45 17 333 45 1 18 11 18 11 18 31 45 1 18 41 1 18 41 1 18 41 1 18 41 1 18 41 1 18 41 1 18 41 1 18 41 18 42 18 42 18 42 18 42 18 42 18 42 18 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42<	V177119		083	01	0.09	1285	4	612	2	350	10	<0 01	â	ω		<20	016
10 000 1 10 10 10 000 1 1 10 1 10 000 1 1 10 1 1 10 000 1 1 100 1 1 1 10 000 1 1 100 1 <th>V177120</th> <th></th> <td>079</td> <td>20</td> <td>4 03 00 00 00</td> <td>1410</td> <td>ათ</td> <td>2 2 2 2 2 1</td> <td>4 6 6 7 7</td> <td>1610 530</td> <td>3 G</td> <td>0 0 2 0 2 0 2 0</td> <td>5 ô</td> <td>-1 () ()</td> <td>505 / 14</td> <td>67 S</td> <td>550</td>	V177120		079	20	4 03 00 00 00	1410	ათ	2 2 2 2 2 1	4 6 6 7 7	1610 530	3 G	0 0 2 0 2 0 2 0	5 ô	-1 () ()	505 / 14	67 S	550
	V177122		007	06	122	3020	x P	0.26	க் ச	970	: Cl	0.28	ô.	~+ 1	မ မ ဂ	<20	038
	2717110		2 C 2 C 2 C	4 C	0	5 KG	<u>^</u> -	과 () 나 [년	0 č	300	201	0.0	A Ch (194	420	0 03
	V177123		4 78	10	0.06	64	^	3 70 70		300	28	0.01	~5 5	2	194	025	003

V177119 <10 <10 <10 V177120 <10 <10 <10 V177121 <10 <10 <10 V177122 <10 <10 <10 V177123 <10 <10 <10	10 410 410	V177042 <10 <10 V177043 <10 <10 <10 V177044 <10 <10 <10 V176986 <10 10 10 V176987 <10 <10 <10		Method ME-ICP61 ME-ICP61 Analyte T1 U Units ppm ppm LOR 10 10	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 www.alsglobal.com/geochemistry
12 <10 150 <10 185 <10 54 <10 3 <10				1 ME-ICP61 ME-ICP61 V Ppm Ppm 1 10	V7H 0A7 0221 Fax: +1 (604) 984 0218 n/geochemistry
1758 117 295 6	116 7 6 59	96 109 72 131 38	56 19 103 103	51 ME-ICP61 Zn ppm 2) 984 0218
					To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6 Project: Yukon CERTIFICATE OF ANALYSIS
					Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 4-SEP-2017 Account: POINGO WH17156951

Applies to Method:	Applies to Method:		(ALS)	
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au-ICP21 ME-ICP61	LABORATORY ADDRES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. CRU-31 CRU-QC LO LOG-23 PUL-31 PUL-31 PUI SPL-21 SPL-21d WE	CERTIFICATE COMMENTS		ALS Canada Etd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry
vy, North Vancouver, BC, Canada.	LABORATORY ADDRESSES , Whitehorse, YT, Canada. LOG-21d PUL-31d WEI-21	COMMENTS	Project: Yukon CERTIFICATE OF ANALYSIS	To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6
	LOG-22 PUL-QC		WH17156951	Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 4-SEP-2017 Account: POINGO

To: STRIKEPOINT GOLD 837 WEST HASTINGS, VANCOUVER BC V6C	Tot Finalize	Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 8-AUG-2017 Account: POINGO
	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% < 2mm	
CRU-QC	Crushing QC Test	
PUL-QC	Pulverizing QC Test	
SPL-21 PUL-31	Split sample - riffle splitter Pulverize split to 85% <75 um	
	1	S
ALS CODE	DESCRIPTION	
ME-ICP61		INSTRUMENT
ME - 0662	33 element four acid ICP-AES Ore Grade Ag - Four Acid	ICP - AES ICP - AES
Au-ICP21	33 element four acid ICP-AES Ore Grade Ag - Four Acid Ore Grade Elements - Four Acid	INSTRUMENT ICP-AES ICP-AES ICP-AES
	33 element four acid ICP-AES Ore Grade Ag - Four Acid Ore Grade Elements - Four Acid Au 30g FA ICP-AES Finish	INSTRUMENT ICP-AES ICP-AES ICP-AES ICP-AES
	33 element four acid ICP-AES Ore Grade Ag - Four Acid Ore Grade Elements - Four Acid Au 30g FA ICP-AES Finish	INSTRUMENT ICP-AES ICP-AES ICP-AES ICP-AES
	33 element four acid ICP-AES Ore Grade Ag - Four Acid Ore Grade Elements - Four Acid Au 30g FA ICP-AES Finish	INSTRUMENT ICP-AES ICP-AES ICP-AES ICP-AES
	33 element four acid ICP-AES Ore Grade Ag - Four Acid Ore Grade Elements - Four Acid Au 30g FA ICP-AES Finish	INSTRUMENT ICP-AES ICP-AES ICP-AES ICP-AES
	33 element four acid ICP-AES Ore Grade Ag - Four Acid Ore Grade Elements - Four Acid Au 30g FA ICP-AES Finish	INSTRUMENT ICP-AES ICP-AES ICP-AES ICP-AES
To: STRIKEPOINT GOLD ATTN: ANDY RANDELL 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6	33 element four acid ICP-AES Ore Grade Ag - Four Acid Ore Grade Elements - Four Acid Au 30g FA ICP-AES Finish	INSTRUMENT ICP-AES ICP-AES ICP-AES
	STRIKEPOINT GOLD 837 WEST HASTINGS VANCOUVER BC V6C ALS CODE WEI-21 LOG-22 CRU-31 CRU-QC SPL-21 PUL-QC SPL-21 PUL-31	5, #507 Tot 3N6 Finalize Finalize SAMPLE PREPARATION DESCRIPTION Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Crushing QC Test Pulverizing QC Test Split sample - riffle splitter Pulverize split to 85% <75 um

***** See Appendix Page for comments regarding this certificate *****

Colin Ramshaw, Vancouver Laboratory Manager

32

minerals	
----------	--

ALS Canada Ltd. 2103 Doilarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

> To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 8-AUG-2017 Account: POINGO

Project: Yukon

minerals								CER	RTIFICATE	ATE OF	ANALYSIS		WH17159708	59708	
	\neg		1 130 10001	13001 244	ME_IC961	ME_ICPA1	MF-ICPA1	MF-ICP61	MF-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
Method	od Recvd Wt	Nt. Au		AI	As	83	ве	<u>8</u>	Ca	Cd	Co	Cr	Cu	Fe	Ga
			ppm	×	bbu	ppm	ppm	ppm	- 3 ²	ppm	- ppm	, udd		2 2 *	to no
sample Description LOF	R 0.02	0.001	0,5	0.01		10	0.5	Z	10.0	0.5	-		-	10.0	10
V176089	18 0			7.91	σı	1370	1.3	ې ک	3.26	<0.5	13	23	ω	411	20
V176990	0 55			7 69	17	2270	ω 	42	2 30	40.5	თ	83	148	4.16	30
V176001	0.78			7 98	26	870	2.1	<>	070	<0.5	د دا.	76	27	4.26	20
V176992	080			7.42	۲ رئ	1810	1. G	C>	3.35	1.0	ວິ	70	57	2.53	20
V176993	0.54			570	113	730	2.1	ω	5.22	<0.5	7	95	105	3 28	20
V176994	0.67			788	6	960		<2	6 30	<0.5	22	156	348	3.59	20
V176995	0.70			786	40	70	0.6	ω	10.65	1.0	25	177	080	7.22	20
96692LV	0.50			8 36	o	500	27	∿ Ci	6.27	<0.5	16	110	385	398	3 33
79697TV	0.54			8 39	07	1300	د د_	22	4 68	40 5	19	8	10		20
86694LA	0.59			66 9	7	2510		A.	1 62	ω ω	σι	31	0819	2 23	20
V176999	0 63			8 20	6	1480	1.2	<2	404	<0.5	-100	37	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28
V176355	0.84			2 42	635	260	0.6	20	0.10	70	<u>^</u>	0 10	921	2.U/	č
V177124	0 77	1.390		1047	157	ວງຄວ 2000	4 0 0 2 0 2	ζσ		en en		10	ь <u>^</u>	1 . 09 1	20
V1/1/D				0 - C - C - L	ο -	1110	200	ŝ	0.77	6.0	10	97	40 0	429	20
104772472	24.0			773	60	1410	1.3	<2	3.86	<0.5	13	74	75	2.36	20
V177128	0.79			798	Q	1430	4	42	3 82	-1. O	с,	75	0 O	2.79	20
V177129	0 74			610	Q 2	970	د- س	< 2	5.01	0.9	22		30F	3 G 3 G	3.5
V177130	1.14			7.62	œ	1290	L N	Â	4 49 4 49	6.0 1	ìō	001	а К 1 Ц - С	0 C 0 C	2 6
V177131	0.92			8.50	ß	70	0.5	<2	0/ ñ	0.0 0	15	341	C 11	000	200
V177132	0.94			8.53	с С	640	10	S C	1.1	- A 0 1 01	, d	305 901	4 C 5	o n O n O n	38
V177133	0.85			0.0 0.0 0.0	438	1001	n i	4 0 0 N	0 00 0 00	\ / О С л (ΓĹ	35	104	1 42	<10 ¹
V177045	0.68			20.07	a d	200	, 4 C D	2 00	ь С л С а N	n ç	3	10,5	31	5 G 6	3
V177046	0.76			7.72	ŝ	1600	1	2>	4,01	<0.0	22	100	۲ د	0.00	P C

***** See Appendix Page for comments regarding this certificate *****

Minerals	
	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com
	Fax: +1 (604) 984 0218

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 8-AUG-2017 Account: POINGO

Project: Yukon

Illinerals								CER	RTIFICATE	ATE OF	ANALYSIS		WH17159708	59708	
Method Analyte Units Sample Description	.e d ME-ICP61	ME-ICP61 La ppm 10	ME - ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na %	ME-ICP61 Ni ppm 1	ME-ICP61 p ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm T	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME-ICP61 Ti % 0.01
		20	1.45	900 915	o ^	2.94	2 1 0	1360 780	2 1 3	0.03	Δ Δ	9	591 247	^ 20 ^ 20	0.41
V176991	4 72	40	1.24	606	۰ <u>۵</u>	1.06	36	520	23	0.54	ŝ	13	217	20	0.53
V176992	ယ လ လ	30	1.67	236		2.60	26	970	17	0.47	n Ch	: ±	718	~20	0.32
V176993	3.13	20	1.88	633	~	0.61	77	700	41	0.59	6>	12	214	<20	0.31
V176994	2 11	20	276	214	<1	2.44	60	1170	G	1.19	- Ci	5	649	<20	0.44
V176995	0.35	10	363	819	2	1.05	94	490	10	2.31	A Ch	35	378	~20	098
00000000000000000000000000000000000000	2.64	30	1 29	370	^ <i>x</i>	0.65	56	470	1 00	0.88	n Ch	12	328	~20	0.4/
76997	5 4 9 1	20	2 26 1 01	306 306))	2.08	<u>-</u> 5	1650 870	817	0.04	<u></u> д д	∞ ō	473	~20	023
V176000	2 45	20	2.22	1155		2.70	5	1750	12	0.19	ŝ	17	929	<20	0.84
V176355	1 04	10	0.14	223	2	0.04	2	270	768	0.01	59	·	ಕೆ ಹೆ	<20	0.06
V177124	0 17	<10	0.09	75	1 0	0.06	د۔ <u>`</u>	110	540 58	40 04	n o	., n	145	20	010
V177126	4 48 4 48	50 2	1 40	525		1 42	42	470	30	0.40	Ś	15	185	20	0.61
V177127	3.00	30	172	191	. ^1	258	21	1020	4 4	0.38	რ ტ	4 4. 6 4.	780 780	< 20 50	0.32
V177128	1 04	30	2 AO	323 Jei	<i>e</i>	3.06	00 C	1260	ជី ខី	0.66	ô.	ಕೆ	721	<20	0.45
V177130	2.94	20	2.15	277	2	2.68	49	1120	ü	0.77	Q1	ω. ω	786	<20	0.38
V177131	0 41	10	5 40	1145	4	0.88	205	380	7	0 70	^ 01	36	242	< 20	0.67
V177132	179	30	1.29	305	- 0	1 62 0 02	400	540	1 1 - 0	1.01	a a	ದ ವ	736 614	^20	0.53
V177133	20 0 8/ 10	<10	0.01	55	ω I	0.01 0.00	⊳ t	10	6250	018	ĉ, ĉ	<u>^</u> ;	60	<20	<0.01
V 1 / U45	0.01	5 2		000	5 (a (0 (0) -	ž I	3600	o n	70.0	ıر ر	-1 0	571	^2N	0.86
1 V177046	1.69	40	2.74	916	N	1 80	4	2600	30 5	0 07	\$	16	1/0	< NO	0.85
V1 / /046	I. Ge	ŧ	i 1	0	Þ	- 000	1	1000	0	4					

2103 Doilarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 F www.alsglobal.com ALS Canada Ltd. Fax: +1 (604) 984 0218

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 8-AUG-2017 Account: POINGO 5

Project: Yukon

CERTIFICATE OF ANALYSIS WH17159708

	Method Analyte	ME-ICP61 TI	ME-ICP61 U	ME-ICP61 V	ME-ICP61 W	ME-ICP61 Zn	Ag-0662 Ag	
Sample Description	Units LOR	ppm 10	ppm 10	1 1	01 Udd	2 2	ا سرط	
V176989		<10	<10	112	<10	99		
V176990 V176991		- 10 10	<u>^ 10</u>	137 93	4 A	130 82		
V176992		410	<10	102	<10	56		
V176993		<10	<10	74	<10	92		
V176994		<10	<10	144	<10	37		
V176995		<10	<10	232	<10	217		
96694LA		<10	<10	94	^10	63		
V176997		<u> </u>	A 40	121	10	2010 2010 2010		
V (/ 0000						000		
66694LA		10	01^	126	5 C	97L		
V170355 V177124		<u> </u>	<u> </u>	ග දි	A 20	96 280		
V177125		10	<10	ŋ	<10	58		
V177126		<10	<10	106	-10	73		
V177127		10	<10	102	<10	42		
V177128		<10 012	40	104	40	137		
921/17		à c	è è		, ^IC	a n O		
V177130 V177131		10 0	10	210	^10	102		
V177132		<10	<10	102	<10	62		
V177133		<10	<10	106	10	39		
V177045		<10	<10	¥ ا	-10	12	333	
V177046		<10	<10	122	<10	128		

***** See Appendix Page for comments regarding this certificate *****

Applies to Method:	Applies to Method:		(ALS) Minerals	
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Ag-OG62 ME-ICP61 ME-ICP61	LABORATORY ADDRES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. CRU-31 PUL-QC SPL-21 WE	CERTIFICATE		ALS Canada Ltd. 2103 Doliatton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com
twy, North Vancouver, BC, Canada. ME-ICP61	LABORATORY ADDRESSES , Whitehorse, YT, Canada. LOG-22 WEI-21	CERTIFICATE COMMENTS	Project: Yukon CERTIFICATE OF ANALYSIS	To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6
ME-OG62	PUL-31		WH17159708	Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 8-AUG-2017 Account: POINGO

LOG-23 ALS CODE ME-ICP61 ME-0G62 As-0G62 Au-ICP21	Project: Yukon ALS CODE This report is for 79 Rock samples submitted to our lab in Whitehorse, YT, Canada on 15-AUG-2017. WEI-21 The following have access to data associated with this certificate: CRU-QC SCOTT DORION ANDY RANDELL	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 WWW.alsglobal.com/geochemistry CERTIFICATE WH17171142 S
Pulp Login - Rovd with Barcode ANALYTICAL PROCEDURES DESCRIPTION INSTRUMENT 33 element four acid ICP-AES ICP-AES Ore Grade Elements - Four Acid ICP-AES Ore Grade As - Four Acid ICP-AES Au 30g FA ICP-AES Finish ICP-AES	DESCRIPTION Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Crushing QC Test Pulverizing QC Test Split sample - riffle splitter Pulverize split to 85% <75 um	Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-SEP-2017 Account: POINGO SAMPLE PREPARATION

submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager ***** See Appendix Page for comments regarding this certificate *****

() P r N								Proj	Project: Yukon	r						
									CI	ERTIFICATE	ATE OF	F ANALYSIS	VSIS	WH17171142	71142	
	Method	WEI-21	Au-ICP21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	MF=ICPS1	MF_ICPA1
	Analyte	ko	An	PAG AG	e Al	As	Ba	Be	<u>8</u>	Ca	Cd	Co	Cr	Сu	Fe	Ga -
Sample Description	LOR	0.02	0.001	0.5	0.01 ×	5 Indd	10	o s	s ppm)) %	ppm	ppm	ppm	ppm	246	ppm
				States and the second second		Constant of the second s	-0	0.0	~	0.01	C.5				0.01	10
V176451		* 0.40	0.001	605	0.07	A Ch	20	<0.5	<2	32 7	<0.5	(>	2		60.0	-10
V176753				¢0.5	7 07	23	680	kun kun	<2	1 25	<0.5	 	103	25	376	10
V176752			0016	A C D	6.79	28	470	60	<2	126	<0.5	Q	109	21	2 0 - 0 2 4	1 -
V176454		0 C 0 C 0 C 0 C		b c c	0.43 0.43	1390	850	م حر	12	0.90	<0.5	œ	108	4	4.05	20
17420 177) I I I	0000	20.0	6U.0	21	1820	1.4	ŝ	5.39	< 0,5	16	130	85	5 68	20
V176455 V176456		0 C 1 C 1 C	~0.001	<0.5	8.03	10	1150	1.6	4	3.79	<0.5	21	43	10	587	20
V176457		070 070	0001	<0.5	2.04	0	310	0.5	A N	0.42	<0 б	10	37	44 U1 (~1 ~1 ~	10
V176450		0.70	0.014	0.0 0.0	6.08	103	230	1 1	4	1-19	605	ω	78	24	ယ - သ - ဘ -	3 8
V176459			6 6 6	20 0 0 0	から40 からの	л л л С	530		сł г	5.33	<0.5	17	n 4	70	0 42	20
V176760		0.024	0			ć	000		7	9.7 E	ĉ	Q	73	15	333	10
V176461		D 0 54	<0.001	л С С л	002	3 Q	20	- 0.5	~ ^	33 5	<0.5	4	ω		0.10	<10
V176462		0 71	0.035	A . 0 0 0 0	10 80	ο i Q	100 000	, 4 2 0 0		013	- 0 - 0	<u>^</u>	ರೆ		0 25	<10
V176463	-	0 43	<0 001	<0.5	7.88	 00 -	710	د. - در	2 K	 	n a	o o:	133	20	5.46	30
V176464		0 58	0.002	<0.5	8.35	Å.	1000		A i	0.94	6 / 0 i	j, o	100 100	A 0.	л д 0 0 0 0	20
V176465		1.07	<0.001	<0.5	116	8	210	605	\$	010	2 02		2	n :		40
V1/6466		0.65	<0 001	<0.5	808	თ	280	1 12	A N	9.90	6 0 5	3 -	2 4	2 2 2	n C 24 0 0 6	9 A
/176468		0.73	<0.001	- 0.0 7 0	11.55	17	800	13.7	ω	0.18	<0.5	10		0 (5.26	30 5
V177199		69 U 80'0	0.017 510.0	へ C つ び び	1 ~ 10	36 2/2	1110	с. 1 О	, t.	5.04	<0.5	21	293	62	582	20
V177200		0 00	0.00				010	C C	7>	0.20	<0.5	4	0) 44	12	2.75	20
/176801		0.09 0.98	0 001		0.10 2 0 2	n N N N	20	20.5 0.5	c' c	33.7	<0.5	~	ω	A	0.11	<10
/176802		 	<0.001	<0.5	6 4 9 1	A P Ji C	7.00 0	а с Э б	2 2	4 0.63	- C - C - C	; თ	00 07	19	290	10
/176803		0.78	<0.001	А 0 (6 5 6 5 7	~	020	7 C	5.6	a	è	10	101	36	3.24	10
V176804		1.06	0 009	<0.5	8 21	29	960 200	- 21	ŝ k	103	ر (پ د (پ	1 7	1,00 90	8	n 3.80	20
/176805		0,76	<0.001	<0.5	7.03	<u>ح</u> م	USA	00	c.	× ×0					0 50	202
/176806		0.76	<0.001	6.0	7.53	တန	8 0 8 0 0		ς r	0 240	3 2	د. د د د	99	28	4.49	10
/176807		1.12	0.002	<0 5	7.82	10	810	ω ω	Å I	0.88	6 5 7			3 8	4.00 100	3 8
V176808		12	<0.001	<0.5	7.15	ð	086	۸ هـــَ	\$	1.65	6.5 7	23	02 č	-1 K	2 6	3 2
		0.75	<0.001	<0 <i>5</i>	0.13	7	10	6 C	< <u>2</u>	0 02	<0.5	_^	1	ь.	0.40	610
V176810		0.92	<0.001	<0.5	0.60	21	70	<0.5	-2	0.04	<0.5		30	10	0.77	10
1189/17		0.67	<0.001	<0.5	7.95	Ĝ	400	2.4	Ю	2.30	<0.5	თ.	01 0 00 P	i č	2 C - 2 - 75	i ć
V176813		0 7 4 A		- C.G		28	600	2.2	<>	2.10	<0.5	œ	68	29	4.04	00
V176814		0.74		л с л с	7.33	\$ 6	1250	. 1.9	, ω	1.46	<0.5	ω	ç	2	1.65	20
776215		4 07	0 0 0 0 0		1.90	ē	740	1.3	^ ≥	1.26	€0,5	Q	109	25	4.63	20
V176816		0.45		с 2 С 2	5.82	ŝĜ	360	4.4	<2	1.64	<0.5	7	73	39	3 11	10
176364		0.67	600.0		105	ח – ס ג		د. ی د	Ň	1.04	<0.5	10	111	23	4.58	20
V176365		0.64	0.002	A 0.0		C U	7470 0.74	σ			5	~	56	ת	0.53	<10
2440000		$\cap \neg i$			70.4	212	1/1	O B	5.6	0.02	4			5 0		

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-SEP-2017 Account: POINGO 3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

ALS Canada Ltd.

www.alsglobal.com/geochemistry	Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218	North Vancouver BC V7H 0A7	2103 Dollarton Hwy	ALS Canada Ltd.
	400			
	384			
	0218			

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-SEP-2017 Account: POINGO 3

Project: Yuko
ct: Yukc
: Yukc
lukc
R
1 2
1-

	\cap	1
	m	
	CERTIFICATE OF ANALYSIS	
1		
	100000	

	0	I
	5	
I	_	
I	1	
I	1 . 1	
I	O	
ł	-	
l		
l	P	
l	2	
I	\supset	
I	-	
ļ	~	
ļ	ŝ	
l	-	
l	<i>c</i> n	
l		
l	Š	
	-	1
l		1
	-	
	-	
	~	
	142	
	iV.	L
		1

	Method Analyte	ME-ICP61 K	ME-ICP61 La	ME-ICP61 Mg	ME-ICP61 Min	ME-ICP61 Mo	ME-ICP61 Na	ME-ICP61	ME-ICP61 P	ME-ICP61 Pb	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	
Sample Description	Units LOR	0.01	ppm 10	0.01	5 9	1 Udd	0.01 %	ndđ	ppm 10	2 ppm	0.01 × °	5 ppm	ppm 3	ndd Js	
V177000		0.01	<10	1.41	108	<1	0 03	< 1	90	C>	20.04				
V176451		4	20	1 02	431	2	1.62	39	1660	i a	0.03	ŝ, ĉ		325 00	
V1/6452		0.66	30	0.30	623	ω	2.65	7	360	- 1	0.17	A Ji ())	200	
V176453	~~~~~~	1.67	20	 	631	4	2.12	40	1010	t	<0.01	ô, i	17	242	
V = / 0 + 3 +		71.0	20	1.78	1645		0.89	50	140		0.20	Ĝ	თ	627	
V176455		1.81	10	290	1070	^_	2.26	15	2700	7	0.01	6	18	780	
V1/6456 V1/6456		0 43	10	0.34	341 1	2	0 40	36	460	4	0 01	^ თი	э ;	2) CC	
V11045/		0.49	10	077	508		1.45	ц Ф	630		0.05	ô	10	757	
V130458		0 68	10	2 50	729	^	1.12	00	1220	ω	0 44	A Ch	20	790	
V1/0439		7 46	20	093	513	Ы	1.75	26	670	-1 0	0.03	A Ol	12	248	
V176460		0.01	<10	134	130		0 02	<1	70	<2	10.02	5	1	0.2	
V176461		0.07	<10	0.02	30	>	0 04	Ŋ	30	Å i	40 04 10 0	ک رژ	n .	1 L 1	
V176462		271	20	1.55	971	N	1.38	36	1730		80 0 1919	a d	2 -	07.A	
V 1 7 6 4 6 4		35	20	1.36	678		244	28	760	44	0.12	A.	17	345	
V 1 / O 4 O 4		80 Z	20	7 40	/40	4	د. 4.	47	1040	13	0.12	∧ ¢	18	213	
V176465		0.63	<10	0 04	77	-1	0.22	2	110	ω	<0.01	6	<i>.</i> .	38	
V176465		0.39	20	3 03	1390	(J)	1.67	37	1080	4	1.04	A V	22 -	761	
V170407		1.69 2.00	^10	2.62	2020		0.56	17	230	10	0 01	Q1	2	යා : වා :	
V177100		4 C 95	20	0 1 0 1 0 1 0 1 0	1120	~	1.80	k	1350	Ch	0 09	A FÜ	20	579	
EEL/IN		3.53	01	077	413	د	0.36	26	370	თ	<0.01	Ch Ch	10	50	
0027717		0.02	01>	1.45	121	-	0.03	^]	08	Q	<0.01	ω	~~	56	
V176802		204	20	0.77	314	N	0.83	24	450	O)	0.02	۸ Ch	10.	130	Λ.
1176003		1.23	20	0.96	725	^	1.71	35	1330	13	0.02	A Ch		248	Λ.
V 1 7 6 6 0 4		 	20	1.23	764	¥	1.80	30	1170	10	0.08	Ċ1		236	~20
		2.01		1.42	710	>	1.62	5 4	1150	4	<0.01	A Ch	17	222	Λ
V176805		1 66	20	1.30	769		161	38	2680	13	0.05	۹D	16	272	
9089/11		1/3	20	115	492	λ	 24 4	42	660	10	0.02	Å.	ch i		Λ.
176001		 8 8	20	1.40	730	<i>د.</i> -	1.30	42	740	12	0.01	ŝ	17	196	A
V176809		0 1 40	, ² c	0.00	2112	· (1)	163	27	066	 	0.06	сл Сл	ΰ,	263	
176010			ĉ				0.02	.2	40	<2	<0.01	å	<u>^1</u>	ω	
V176211		0 0 7	, second	0.11	9	Ŋ	0.04	Çh	130	\$	0.01	ŝ	،	Q	
V176812		1 44	or Or	0.62	476	N	2.89	ц. СЛ	860	19	0.03	A ()1	Q	364	,
176212)	2 6) 19 9	639		2 44	30	1720	19	0.02	Сh А	4	364	
V17681A		4 F.7	20	0.31	4 4 4	X	2.82	ω	470	19	<0.01	∿ ∿	ω	378	
V I / OO I 4		10.1	20	1.37	793	د	1.68	28	1430	 4-	0.05	с,	5	242	
V176815		0.99	10	0.87	632	2	1.21	24	3080	11	0.04	65	15	100	
		1.74	20	1.28	622	د.	160	33	760	 ພ	0.03	n Ch	ਤੀ ਹੋ	245	<i>م</i> ،
176816		0.61	10	0.09	37	11	0.01	100	120	.)	0.00	ć	ۍ د ا	540	,
V176816 V176364	•	0.42	10			13				5		C		د د	
V176816 V176364 V176365			č	0.28	45	è	0.02	21	1510	ပ	0.02	25 g	S C	1 1 () ()	

***** See Appendix Page for comments regarding this certificate *****

Note: Note: <th< th=""><th></th><th><i></i></th><th>ALS Canada Ltd 2103 Dollarto 2007 North Vancou Phone: +1 (60 Www.alsglob</th><th>ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com/geoch</th><th>CD CD C</th><th>Fax: +1 (604) 984 0218 mistry</th><th>34 0218</th><th></th><th>To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6</th><th>Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-SEP-2017 Account: POINGO 4</th></th<>		<i></i>	ALS Canada Ltd 2103 Dollarto 2007 North Vancou Phone: +1 (60 Www.alsglob	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com/geoch	CD C	Fax: +1 (604) 984 0218 mistry	34 0218		To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6	Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-SEP-2017 Account: POINGO 4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ALS)								RTIFICATE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		alyte nits OR	ME-ICP61 TI Ppm 10	ME-ICP61 U PPm 10	ME-ICP61 V ppm 1	ME-ICP61 W 10	ME-ICP61 Zn ppm 2	As-OG62 As % 0.001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V177000 V176451 V176452		<u> </u>	4 4 A	63 1 →	<10 <10	76 19			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176453 V176454		10 ^10	40 0	180 193	^10	86 107			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176455 V176456		4 40 0	A 10	153 46	410 410	38			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176457 V176458		<u>4</u>	<10 10	186 186	A A .	613			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, c	212	/11	01>	83			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176461 V176461		<u>^</u>	^10 0	AN	40 010	~1 N			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176463 V176464		4 4 ĉ	<u> </u>	1228 177 180	4 4 4 5 0 6	s 8 4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176465		<10	<10	4	<10	Ch			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176466 V176467		4 4 0 0	^ ^ 0 0	201 7	10 ^10	94 94			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176468 V177199		10 10	^10 0	153 139	^10 0	45 45			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V177200 V176801		790	10	* N	540	; 22			
<10	V176802 V176803		10 10 2	<u> </u>	1 1 1 1 4 0	1 <u>1</u> 2	3 & 8			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176804	ļ	<10	<10	187	<10	66			
<10	V176805 V176806		4 4 0 0	6 6	141 141	<10 0	957 92			
<10	V176807 V176808		6 6	<u> </u>	105	<u>6</u> 6	070 02			
<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>	V 1 / 0809		<10	<10	ω	<10	(J)			
<10	V176810 V176811		4 4 0 0 1 0	A A A	74 74	<10	л -1 4 Ю			
<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	V176812		^10	10	125	10	101			
<pre><10 <10 100 <10 <10 <10 164 <10 <10 <10 164 <10 <10 <10 950 <10 <10 <10 265 <10 10 <10 245 <10</pre>	V1/6613 V176814		012 012	<10		40 40	88			
<10 <10 950 <10 <10 <10 265 <10 10 <10 245 <10	V176815 V176816		<10 <10	<10 10	100 164	10	64 72			
10 <10 245 <10	V176365		<u>10</u>	<10	265 265	40 10	37 244			
	V176366		10	<10	245	<10	64			

***** See Appendix Page for comments regarding this certificate *****

									CE	RTIFICATE	ATE OF	ANALYSIS		WH17171142	71142	
Mei	thod	WEI-21	Au-ICP21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
Ana	Analyte	Recvd Wt.	Au	ρĄ	AI	As	Ba	Ве	8	Ca	Cd	Co	Cr	С ^с	۳e	Ga
Sample Description		0 9 6	ppm	ppm	, , , ,	ppm	ppm	ppm	ppm	<u>8</u> 2	ppm	ppm	ppm	ppm	×	ppm
	2	0.02	1.00.0	0.b	0.01		10	0.5	2	0.01	0.5			1	0.01	10
V176367		0.99	0.044	<0.5	9.32	C>	60	2.0	4	15.30	8.0	00	31	76	3 89	00
V176368		66 0	<0.001	€ 0>	8.51	¢.	1240	- 1	ю	1 59	0 0 0	17	100	5°.	4 0 3 0 1	201
V176369		086	0.011	< 0.5	13 30	10	520	^0 0	ω	0.11	<0.5	N	28	12 1	0.94	30
V176370		0.88	0.001	<0.5	7.93	29	680	0.7	2	6.16	0.5	24	127	င်္ခ ဂ	5.96	83
V176371		0.76	0.003	<0.5	8.69	A Ch	1030	, On	<2	1.09	<0.5	16	106	49	4.91	20
V176372		1.01	<0.001	<0.5	7.62	61	1100	1.4	<2	3.63	6.5	21	133	99	4 46	00
V176373	-	0.73	<0.001	∧0.5	2 09	A C1	60	0.6	A N	0 53	rc 0>	0	ה ת	ה מ	1 40	15
V176374		0.94	0.001	<0.5	6.84	10	1240	1.0	ω	40	6.5	ਨੇ ਾ	110	ۍ د د	4 9 2	3 2
V176375		1.00	0 001	<0.5	8.03	10	1070	44	.fs.	1.21	6.05	6	78	10	2001	20
V176376		0 56	0.086	<0.5	915	380	530	4.2	ω	1 30	<0.5	10	138	0	5.42	201
V176377		1.00	<0.001	<0.5	09.8	00	180	0.8	<2	9 15	605	77	ת	4C	C8 F	20
V176378		0.80	<0 001	<0.5	7.68	Q) A	800	1.9	N I	3.80	6 0 0	ch :	ы С	5 8	6 3 4 6 3 4	300
76379		071	0 002	- 0 - 0	370	50	840	0.6	3>	0.44	¢.0>	4	30	18	1 48	10
v176381	•••••••••••••••••••••••••••••••••••••••	0.75	0.011	A C A C	2 C C	810 191	890 890	 	5.6	0 0 4 4 4 4	60.51 1	38	185	109	7 63	20
1176383	-	0.72	10.004	10 2	U L				, ,	944	100	Ţ	50		1 30	01.
V177047		0.90	0.636 1	3 6 3 6 0 (⊃~ 1:1:	v1000	1 n C	\ Э == л ~	5450 5450	0 4 G	0 4 C	24	967.	16	0.01	20
V177048		0 53	0 004	<0.5	8.28	55	1580	2.2	17	2.83	6.5	26	6	96 0107	56 C	00
V1 / /049	-	0.63	0 001	<0.5	8.38	25	750	24	ω	5.67	<0.5	21	72	50	487	20
/ /030	ļ	0.00	1.00 D	G'0>	8.30	σ	560	0.8	<2	5.92	<0.5	20	40	9	5.50	20
V176751 V176752		088	<0.001	6 0 0	0.30	6	10	<0.5	< 2	0.13	<0.5	101	1610	4	5.10	<10
16753		080	0.011	A C	10 50	o ĝ	4/0	C	° ∼ №	0.95) 0 1 0	27	137	32	578	20
V176754		68 0	0 001	<0.5	7 56	28	240 240	0.7	2 r	- - 2 2 2 2	л с л с	n ý	20	30	10.20	30
V176755		0.64	<0.001	<0.5	8.74	Q1	940	د 4	<2	0.92	<0.5 €	22	108	67	5.08	20
V176756		0.81	0.001	<0.5	9.09	38	1190	1.6	<2	0.86	<0.5	22	109	71	513	00
76757		0.80	0.046	<0.5	11.60	170	590	44 00	4.	0.74	∆0.5	თ	87	61	6.32	30
V176750		0.80	0.001	A0.5	6.80	27	560	1.7	^2	1.49	< 0.5	اللہ ہے۔ اللہ ا	108	28	4.32	20
V176760		0.60	<0.001	6 5 5	0.09	6 I	30	6 5 C	4 <i>(</i>)	34.0	6 6 5 0	4 K	ა 104	s 211	0 4 89	20
/176761	_	0.87	<0.001	<0.5	6.96	6	50	0.5	ω	6 13	05	44	175	102	07.8	30
V176762		0.87	<0.001	< 0.5	8.92	ŝ	720	0.8	ω	5.37	<0.5	10	C0	10	01 (45 (53 (3 5
V176763		0.83	0.003	<0.5	9.85	Q.	180	<0.5	ω	9.55	<0.5	21	о -	42	86'6 2: 2	22 1
V176764			<0.001	<0.5	9.04	â	100	<0.5	N	7.65	<0.5	35	0	123	11.10	20
<1/0/00		1.01	100.05	5U.0	9.04	ð	380	60	-2	5.98	<0.5	20	J	302	5,45	20
70707		0.78	0.006	<0.5	7.01	50	520	6.0	<2	0.86	<0.5	12	311	33	4,74	20
00,0	-	0.00	0.001	л с л с	л с 20 с 40 с	1975	700	0.9	5 ~1	544	205 5	20	40	(1) 4	6.41	20
V176767 V176768		0.00	0.00.2	10.0	0.00	17	200	0.0	7>	8.23	6.0	G	72	43	5.65	10

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-SEP-2017 Account: POINGO 4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry	AI Consels 144
---	----------------

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-SEP-2017 Account: POINGO 42

CERTIFICA	Project: Yukon	

ALS.

		V176764 0.26 <10	بر ر ان در ر		0.01	2.42	0, ר		2.30	0.78	2.76		0.01	0.57	2 44	2.34		1.34		0.77	1 33	1 60	80 N	2 23	V176375 20 20 20 20 20 20 20 20 20 20 20 20 20			2 58	1.22	194	2 46		LOR	Sample Description Units % ppm	Z	
1.30 2.77	157	3.47 3.67	1.67	4.07	1.47	1.44	1.25	145 2.29	151	0.74	3.27	2.50	24.8	2.66	2 45	11 08 0	0.06	378	0.30	3.60	031		US C	1.55	1.02	0.21	2.58	1.39	3.44	0.23	1.37	0.84	0.01	%	ME-ICP61 Mg	
860 1165 963	608	1285 1270	1290	1195	4	888	661	1515 15	861	463	2590	796	600	946	944	373	297	1230	235	1365	364	1090	4.405	1120	982	465	783	688	1210	113	65 1	2650	01	ppm	61	
د د <u>۱</u>																																		-	ME-ICP61 M Mo	
1 1,11 1 57 1 40		0.74																															0.01		61	
9 2 26 9																																-		ppm	ME-ICP61 Ni	
610 1620 720	1990	4960	1440	710	70	770	490 1070	700	1230	870	5620	1050	000	1440	500	500	250 1400	1 200	430	1610	UOC DRFI	1910	244	2000	1130	620	1970	1110	1380	320	1280	0444	10	maa	ME-ICP61	CER
10 ∧ ∞	N K	ათ	Q	<2	22	പ ്റ തി	10	4	4	~1	7	3.6	5	თ (-1 . 5) F	108	4 U		7	n ī	, o	ာ ယ	5) G	17	0	9	17	. 4	ь ; (13 C	S. S	N	com	ME-ICP61	RTIFICATE
0.03 1.17 0.22	0.86	1 00	0.16	<0.01	<0.01	0 0 40 1	0 02 0 0	0.24	0,45	0.02	101	0.07	20 0	0.48	1 0 1	0 c. ro	0.51		40 01 01			0.16	< U. U 1	- 0 03 - 1	0.38	0 01	0.22	0.34	0.06	5 0 0 5 0		0.00	0.01	× 1	ME-ICP61	ATE OF
ები	6.6	h Ch	¢.	6	~1 (n / Di C	'nσ	• &	ې ۷	ŝ.	φ.	3 G	a (Λ Λ Ch C	n r Di C	h D	; ^	č	Λ C	n O	η σ	o 👌	ŝ	A O	ô	ŝ.	5	ŝ,	A A	n i Dir C). Q	AND	ך תו יי	7000	ME-ICP61	ANALYSIS
1 22 20	32 10	24	12	39	<u> </u>	י ד	3 0:	19	-1 00	0 ¹	37	20		žĉ	10	à N	22	<	υ ĉ	4 6	- 14	20	16	ω	19	io j	13	11	3 0	0 C	*		1	n ur	ME-ICP61	
167 674 176	903 954	1600	1015	797	91	280 102	198 198	223	198	265	167	4 4 0	100	702 702	0 0 K	33	610	201	400 900	133	435	1320	416 6	274	275	129	581	230	aca t	2 20	626 946	Manager and Concerns of Concer	L Urdd		ME-ICP61	WH17171142
à à à	<20 <20	~20	<20	<20	<20	-20 -20	20	<20	<20 20	000	00 × ×	20	120	v 20 V V	< 20	<20	<20	140	22	~20	<20	<20	<20	< 20	<20	<20	062	<20	222	~~ <u>~</u>	< 20		06 Didd	202	ME-ICP61	71142
0.58 0.70 0.29	0.90	0.74	0.42	1 10	0.01	5 C C C	0.50	0.52	0.52	0.20	1 0.40	0.03	0.70	0.02 2 2 2	0.65	<0.01	0.49	0.08	0.98	011	0.99	0.62	0.58	0.36	0.51	0.60	222 0	0.49	0.00	0.49	010		2 ° 2	2 =	ME-ICP61	

			ALS Canada Ltd. 2103 Dollarto North Vancou Phone: +1 (6C Www.alsglob	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com/geoch	7H 0A7 0221 Fax /geochemi	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry	84 0218		To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6 F	Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 16-SEP-2017 Account: POINGO
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									Project: Yukon CERTIFICATE OF ANALYSIS	WH17171142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample Description	Method Analyte Units LOR	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	МЕ-IСР61 W ррт 10	ME-ICP61 Zn ppm 2	As-OG62 As %		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176367 V176368 V176369		à 10 10	100	46 167 77	à 10 830	120 124			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176370 V176371		<u> </u>	4 A ê	199 177	- 2 8 - 2	129 99			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176372 V176372		<10	01>	109	10	100			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176374 V176374		366	6.6	105		14 10			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176376		10	410	158	^10	130			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176377 V176378		*10	6 á	231	01>	76			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176379		40 012	40	43 E	<10	33			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V176380 V176381		^ <u>10</u>	40 40	148 37	4 A	112 31			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176382 V177047		<10 012	010	187	<10	141			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V177048		- 7 2	40	56 6	-10 10	00 20 20 20	1 400		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V177050		^10	<10 01	98 233	^ ^ 10	1 34 72			
<10	V176751		<10	<10	19	<10	40			And a second
<10	V176753		^ ^ - - - -	410 410	328 392	40 10	143 292			
<10	V176755 V176755		^10 0	<10 <10	186 186	^ ^ î	140 40			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V176756 V176757		4 A	<10	180 71	140	133			
10 <10	V176758		6	<u>~10</u>	126	^10	83			
<10	V176760		40 č	-10 012	to Ch	^10	120 7			
10 <10	V176761		<10	<10	298	<10	80			
<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <113 <10	v176763		610 10	410 410	143 256	A 40	47 4 C			
10 <10 202 <10 10 <10 171 <10 <10 <10 113 <10	V176764 V176765		4 A	^10 0	348 130	<u>^</u> 10	120 53			
10 <10 171 <10 <10 <10 113 <10	/176766		10	<10	202	<10	108			
	/176767 /176768		^10	<10	17 173	<10 610	95 105			

***** See Appendix Page for comments regarding this certificate *****

Applies to Method:	Applies to Method:		(ALS)	
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. As-OG62 ME-ICP61	LABORATORY ADDRES Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada. CRU-31 PUL-31 CRU-QC PUL-QC SPL	CERTIFICATE COMMENTS		ALS Canada Ltd. To 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry
North Vancouver, BC, Canada. ME-ICP61	LABORATORY ADDRESSES , Whitehorse, YT, Canada. LOG-22 SPL-21	DMIMENTS	Project: Yukon CERTIFICATE OF ANALYSIS	To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6
ME - 0G62	LOG-23 WEI-21		S WH17171142	Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 16-SEP-2017 Account: POINGO

ALS Canada Ltd. 2103 Doliarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com	To: STRIKEPOINT GOLD 837 WEST HASTING VANCOUVER BC V60	5, #507 2 3N6 Final	Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 2 - AUG - 2017 Account: POINGO 45
CERTIFICATE WH17155473		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: Yukon	WEI-21 LOG-22	Received Sample Weight Sample login - Rcd w/o BarCode	
This report is for 25 Rock samples submitted to our lab in Whitehorse, YT, Canada	CRU-31	Fine crushing - 70% < 2mm	
	PUL-QC	Pulverizing QC Test	
SCOTT DORION ANDY RANDELL	SPL - 21 PUL - 31	Split sample - riffle splitter Pulverize split to 85% <75 um	
		ANALYTICAL PROCEDURES	ES
	ALS CODE	DESCRIPTION	INSTRUMENT
	ME - ICP61 Au - ICP21	33 element four acid ICP-AES Au 30g FA ICP-AES Finish	ICP - AES ICP - AES
To: STRIKEPOINT GOLD ATTN: SCOTT DORION 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6			
This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as	Its apply to samples as		

submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

www.alsglobal.com	Phone: +1 (604) 984 0221	North Vancouver BC V7H 0A7	2103 Dollarton Hwy	ALS Canada Ltd.
	Fax: +1 (604) 984 0218			

ú

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 2-AUG-2017 Account: POINGO 4

0
1.0
E
L'uk
n

Minerals ALS

\sim	
CERTIFICATE OF ANALYSIS	
2	
areasest	
~	
N	
-	
ATE O	
0	
77	
2	
D	
5	
ିର	
ŝ	
~	
Š	
1000000	
171	
S	
555	
155473	
ώ	

								CE	RTIFICATE	ATE OF	- ANALYSIS		WH171	55473	
Method		Au-ICP21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
Analyte Units	2	uA N	by 64	* ₽	AS	nnn Ba	onm	n Bi	e G	Cd	6	Q	Cu	- Fe	Ga
Southing FOS	0.02	0.001	0.5	0.01	a '	10	0.5	N	0.01	0.5		ال دومارية	1	10'0 ×	10
V177101	070	<0.001	9.0>	1 60	24	069	60	<2	70 C	5 		GR	40	2.C. F	
V1777102	0.71	<0.001	0 0	0.95	22	590	0.6	< 22	0 06	30	ю ;	62	ರೇ	0.92	A10
VT7703	0 61	<0.001	08	188	22	1410	اب اب	<2	131	ယ န		in the second	22	یہ در ا	i (
V1//104	- C 2 2 2	0.001	<0.5	116	~1	840	0 01	\$2	0.61	<0.5	×	4	22	0.81	10
GO17710	35.1	0 004	22	076	193	350	08	< 2	0.01	<0.5	~ ^	62	52	2.02	<10
V177106	071	0 003	0.5	141	16	950	80	<2	0 27	05	£1.	55	16	1 45	-10
V177107	0.51	0.001	<0.5	-1 -4-1 -1	17	350	08	N	777	0	())	0 0	မှ . က	37 . 37 .	1 C
V177108	0 85 68	<0.001	<0.5	96.9	တ	1300	-) 0)	< ∧	610	40 0	13	75	43	3	2.5
V177109	0.91	0.015	ယ တ	347	66	1040	10	^2	0.02	A CJ	N	(h (b)	8	200	10
V177110	0.58	0.023	08	174	72	510	0.7	â	0.02	6 0>		15 05	<u>5</u>	110	6
V177111	38 O	100 0>	<0.5	781	15	1470	10	<2	59 C	60 S	36	341	23	A OR	00
21177112	0.81	0 026	<0.5	т. О	213	570	07	٩ د	0 03	ô n	on (40	5. I	သ (၁) (၁) (<10 5
V177113	1 22	<0.001	۸ 0 0	0.06	6	10	€ 0>	A Q	21 2	0 0 O	د.	N	<i>თ</i> ,	035	<u>^</u>
V177005	-+ C h 0 h	47 A	- 0 - 0 - 0	э (С О Ф 4 4	3 0	2730	2 -4 > ~1	2	079	6 ⁶	28	122	57	7.47	30
× 200 × 2					Р.C	ò	c	Z+51	R0 I	K Q	đ	σ	/ 600	202	^10
V176350	5 C 3 C		5 C O	0.47	5 - 3 N (4/0	2 (C) 2 (C)	, 13	0.08	-1 0	د.	01 	00 44	0.81	<10
V176353		500 O	0.0	0 0 - 4 4	un C N	1980	о с х о	0 Å	- 1 C C I	2 0 2 0	5 <u>6</u>	4 4 0 - 1	100	• 0.89	5 0
V176354	073	0 001	< 0.5	1 60	44 00	086	00	A N	003	6 (0 (^ F	(2) ~ (2) (2)	100	0 - 0 - 0 - 0 -	1 C
V177189	0.62	0 001	~0.5	078	å	470	60 6	\$	0 01	<0.5	~	9 2		0.87	<u> </u>
V177190	072	0 001	<0.5	1 26	18	570	60	~2	0.25	12	ω	63	25	1 09	<10
1817710		-0001 -0001	; c , α	- NO 00 00	10	1590	- L N	4	019	-7 QI	ω	67	69	-1 -1 -0	5
7317100	> c 8 c	200	0.0 0.0	20 C	12	610	0	ŝ	0 05	4 ω	۸ 4-	77	22	0.71	10
V176065) (7 0 7 0	0 000	2 C	n > C.	ਹਿ	520 020	10.7	- 22	044	08	ω	4	00	N 10	^10
	0 04	900 O		LC C		760	76	2	0 19	یں حد	Ø	1	38	239	20
			Carlos Andrea (State and Antonia State Antonia State Antonia State Antonia State Antonia State Antonia State An					And and a feature and a second statement of the second second second second second second second second second			A PARTY CONTRACTOR AND A PARTY OF A		No. and a subscription of a particular statement of the subscription of the subscripti		
	u van gebrie														

Therals	
----------------	--

ALS Canada Ltd 2103 Doilarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6

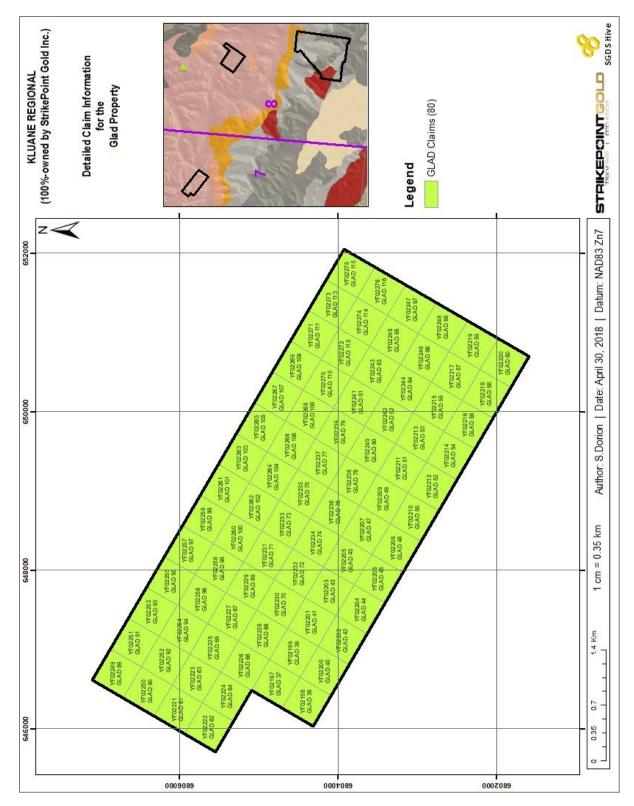
Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 2-AUG-2017 Account: POINGO 4

Project: Yukon

CERTIFICATE OF ANALYSIS WH17155473

									C	CERTIFICATE		OF ANALYSIS	Y SIS	WH1/1554/3	554/3	
	Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	MF-ICP61	MF_ICPS1	ME ICEA	845.10563	Learn ave
	Analyte	* 7	6	Mg	Min	Mo	Na	N	q	Po	S	Sb	Sc	Sr	Th	Π
Sample Description	Units	ੇ 2 ਯੋ	ppm) }	udđ	ppm	N	ppm	ppm	mdd	×	mdd	wdđ	ppm	mdd	96
NACES AND INCOMESSION OF A DESCRIPTION OF A	101		onomenenenenenenenenenenen	A PY C		1	0.03	1	10	N	0.01	th			20	0.01
V177101		073	10	028	61	61	0 07	74	490	a.	0.77	(h	C)	08	-20	0.10
V177102		0 47	10	80.0	42	33	0.02	50	360	G^	0.41	Ø	2	10	< 23 [51.0
V177103		1 06	10	036	62	32	0 10	30	6340	n	0.47	(D	is i	ب م	~ 1 2	0 0 0 0 1 0
V177104		0.59	10	0.56	99 9	N	0 04	(J)	150	N	0.13	Ch -	с л .	27	000	
V177105		0 39	10	0.06	96	51	0.01	70	520	-1 6	0.04	27	2	20 !	^ 10 0	004
V177106		075	10	031	145	Ch	0.05	12	1230	212	0 54	6	S	49	<20	80 D
V177107		0.69	10	0 50	222	23	0.06	26	3380	4	0.75	0 D	ω	50	2 2 2 2	0 00
BOL//IA		2.30	30	077	565		034	4	590	zh, zh	0 01	¢ Ch	<u></u>	72	< 20	0.34
501//10			00	023	τω	·λ	0.10	14	530	<u>د.</u> جار	0.02	â	())	ω 4	<20	0.18
		00 0	10	71.0	44		10 0	2	190	7	0.02	A Ch	4	κ έ	<20	0 08
		نہ : نہ : نک ا	40	571	1126	< 1	1 84	153 3	1310	ы Сл	0.11	6	24	838	20	89.0
ZLL//LA		007	; 10	60.0	281	N	0.01	100 00	1150	15	0 02	Ch	45	28	<20	0.07
V 1 / 1 / S		• • • •	012	12.25	287	^	0 01	۸ •	770	ю	0 01	Â	^	266	<20	600
V177005		4 20 000	2. S	n 1 3 3	108 1	, N	(((53	130	ω A	0 13	A Ch	à	43	< 20	0 77
		0.00		000	-140	1	0.20	10	σC	N	0.01<	~	~	136	<20	0.01
V176351		0.49	0	016	45	40	0 04	27	440	ω	030	0	2	19	<20	90.0
2020710	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	90 JS	ē	000	4. N	ð	0.01	28	130	10 0	0.05	17	2	10	<20	30.0
v176354		D ~ 02	î c	0 0 0 0 0 0	201 201	i Ki X G	008	00	2340	12	0 44	, Ch	4	62	<20	0 12
V177189		0.46	<10	0.07	38	<u>A</u> .	0 0 0 2	2 6	70	a a	0 C 3 S	Ъ.	s G	െ ത	~20	000
V177190		0.45	10	55.0	נת	77	0 11	200	707	× 1			× <	; c	07.5	0.04
12177191		یہ در	15	0.24	n (n (27) ; ;	2 T T	2000	3 4	0.7-	, U	16	30	<20	0.08
V177192		0.64	10		5 (- (ы (2 ~	0 0 22	2) N N	NCO.	s (J		, A	o O	36	<20	0 11
V177193		0.79	00	0.47		4 J 4 O		k C h C	1000	ŗı	0 2 20	0	L	22	<20	0.07
1176025	-	2 2 2 2	л N С С	0 c t 0 C C C C) <u>F</u>			/20	4	0 54	G	ω	74	<20	0.07
CGGG/11		3 U 3	00	95. D	268	2	0.15	19	760	158	0.03	6	1	S S	<20	035
															VICTOR DE LA CONTRACTA DE LA C	And and an an an and an
											A COMPANY IN THE OWNER OF THE OWNER OWNE				San	VISCOUND COLORING CONTRACTOR

Number Conservation			ALS Canada Ltd. 2103 Doilarton Hwy North Vancouver BC V Phone: +1 (604) 984 0 www.alsglobal.com	ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com		Fax: +1 (604) 984 0218	84 0218	To: STRIKEPOINT GOLD 837 WEST HASTINGS, #507 VANCOUVER BC V6C 3N6 Project: Yukon	Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 2-AUG-2017 Account: POINGO
Mutry IOR Mutry IOR Ppm 10 Ppm 10 P			ME-ICP51	ME-ICP61	ME - IOP61	ME-ICP61	ME-ICP61	CERTIFICATE OF ANALY	
<10 20 2430 <10 <10			10 10 10 10	ppm 10	ME-ICP61 V 1	ME-ICP61 W 10	ME-ICP61 Zn ppm 2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V177101 V177102		410 410	20 10	2430 571	<10	421 84		
<10	V177103 V177104	16-10-7-14-14-14-14-14-1	40 0	-10 -10	544 52	6 A	200		
410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410 410			~ 10	01.5	3040	01>	113		
<10	V177106 V177107		6 A	10 10	271 410	<u> </u>	645		any ya na na maha na
410 410 410 88 10 410 410 410 87 410 410 410 410 11 410 410 410 410 410 410 410 10 2 410 <td< td=""><td>80177108</td><td>******</td><td>~10</td><td>^10 0</td><td>124</td><td>^10</td><td>1 0 0</td><td></td><td></td></td<>	80177108	******	~10	^10 0	124	^10	1 0 0		
<10	20177109 2177110		<u> </u>	<10 10	67 7	°10	30 95		
410 410 410 410 410 410 10 12 410 410 410 10 12 410 410 410 410 1310 410 410 410 20 829 410 410 10 10 642 410 410 10 10 1657 410 410 10 1735 410 410 410 10 1735 410 10 410 10 1732 410 10 174 410 10 173 410 10 174 10 410 10 173 410 10 174 10 410 10 173 410 10 174 10 410 130 10 172 410 10 10 410 130 10 130 10 10 10 10 10 410 130 10 130 10 10	177711		100	010	165	<10	102		
<10	/177113		4 / 0 c	<u> 10</u>	2]	410 012	16 16		
<10	/177114 /177095		4 4 0 6	1 10	8 149 8	002	137 210		
<10	/176351		<10	<10	1240	210	01. 5 4		
 <10 <10	/176352		4 C	<u> </u>	918 918	01^ 012	3 ° 8		
<10	/176353 /176354	***********	4 4 6 6	66	46 46	666	5 E		
<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0777189		410	^10	35	6	ω ຼ		
<pre><10 10 735 <10 <10 <10 1735 <10 <10 <10 242 <10 <10 130 10 130 10 10 10 130 10 10 10 10 10 10 10 10 10 10 10 10 10 1</pre>	177190 101101		7 2 0	10	642 ***	<10	102		
<10 <10 242 <10 10 10 10 10 10 10 10 10 10 10 10 10 1	20177192		40	10 0	0 <i>57</i> 1735	^10	0 5 6 4 5		
	177193 176985		^10 ^10	6 6	242 130	10 0	66 619		


As carear in 2103 Bolking Hilly STY WEST HASTINGS, #507 Final 2210 String String
--

Appendix IV: Rock Sample Descriptions

Sample #	Property	Sample Date	Easting	Northing	Lithology	Comments
V176355	Glad	2017-07-20	649359	6803331	Schist	Very oxidized and weathered Scht. No visible sulphides
V177113	Glad	2017-07-20	648510	6804185	Granodiorite	Fgr granodiorite; strongly silicified ; mod lim ox weathering on rock surface; Trace fgr brassy py replacing phenos;
V177114	Glad	2017-07-20	648730	6804185	Granodiorite	mixed float with bt schist and granodiorite; sample is weakly foliated bt schist with qtz vnlts and coarse qtz along foliation; trace garnets; mod lim oxide gossan;
V177117	Kilo	2017-07-25	354828	6798446	Quartz	Qtz vn with minor weathered sulfs; trace vugs within vn; vn cuts across weathered gd intrusive with mgr-cgr xstals; milky-grey vn w/ heavily oxidized surface;
V177118	Kilo	2017-07-24	354758	6798218	Granodiorite	Heavily oxidized and gossanous mgr-cgr gd adjacent to fgr possibly aplite dike or salt and pepper qtz vn; Possible black-dark purple weathered sulfides observed in brown- orange sample;
V177119	Kilo	2017-07-24	355968	6797864	Granodiorite	Heavily weathered and lim+mn ox altered mgr gd(I); Abundant vugs and rusty weathered mineralization throughout; Cannot determine sulfide type or if just bt; Orange-brown (float);
V177121	Kilo	2017-07-24	355823	6798244	Granodiorite	Moderately flow banded gd with v. strong gossanous oxidation on rock surface; Rusty mineralization througout; abundant bt; dark grey colour;
V177122	Kilo	2017-07-24	359970	6799342	Granodiorite	Heavily chloritzed sample; strongly oxidized, possibly just altered gd with bt altered by chl; Green+orange/purple ox; float among gd(I) outcrop;
V177123	Kilo	2017-07-25	359562	6798247	Granite	Possible sulphides. Weathered.
V176366	Sapphire	2017-08-04	356277	6776759	Quartzite	Qzt (Possibly silicified scht, no latent foliation) Diss. Aspy. FeOx on weathered surface.
V176367	Sapphire	2017-08-04	355704	6777169	Quartz	Calcareous Qz vein in scht. Located distally to ~2m bull Qz vein trending along potential fault. Highly magnetic with blebby to semi-massive Pyrr. Very chewed up and gossany.
V176368	Sapphire	2017-08-04	355275	6777579	Schist	Aspy diss and blebby along foliation. Feox on weathered surface
V176369	Sapphire	2017-08-05	360151	6776821	Quartz	Gossany Qtz vein with musc and light purple cubic feldspars? No visible mineralization. FeOx throughout
V176370	Sapphire	2017-08-05	360010	6777239	Granodiorite	Fine grained GNDR with qz phenocrysts. Blabby aspy. Mixed in with Scht talus. No trend
V176371	Sapphire	2017-08-05	360005	6777450	Schist	Contact between Scht and Fine Grained Gndr. Chilled margin. Mineralized in scht, blebby aspy. FeOx on surface
V176372	Sapphire	2017-08-06	259842	6776149	Granodiorite	Fine grain Gndr. Aspy disseminated. Little to no FeOx
V176373	Sapphire	2017-08-06	359835	6775738	Quartz	Qz vein. Gossany. Potentially Tourmaline in vein. FeOx throughout. No visible mineralization
V176374	Sapphire	2017-08-07	355258	6777463	Schist	Dark Grey Scht. Qz veins along foliation (sheeted). Blebby Aspy stringers along foliation
V176375	Sapphire	2017-08-07	355264	6777430	Schist	Rock with contact between Scht and Gndr with Qz vein crosscutting both. 1-3mm Py crystals on weathered surface but not in rock.
V176376	Sapphire	2017-08-07	355302	6777237	Quartz	Qz vein in Scht. Gossany. No visible mineralization. Found by soil 1352265

V176377	Sapphire	2017-08-07	355387	6777104	Schist	Highly Altered Scht. Dark Green with Aspy stringers along foliation.
V176378	Sapphire	2017-08-07	355348	6777141	Gossan	Massive silicified gossan. Highly magnetic. Almost impossible to break. Mineralization too disseminated to identify clearly. Assumed to be Pyrr due to magnetism. Found with Chl altered Scht
V176379	Sapphire	2017-08-08	365022	6781145	Quartz	Qz vein in scht. No visible mineralization. Oxide staining throughout
V176381	Sapphire	2017-08-08	364248	6781883	Quartz	Qz vein in scht ourcrop. No visible mineralization. Oxide staining throughout
V176382	Sapphire	2017-08-08	363826	6782167	Schist	Silicified Scht. Possibly Qzt. FeOx on weathered surface
V176451	Sapphire	2017-08-05	360056	6776425	Schist	VUGGY QTZ VEINS
V176452	Sapphire	2017-08-05	360096	6776519	Schist	PLATY GREEN MINERAL
V176453	Sapphire	2017-08-05	360140	6777540	Schist	DEFORMED (VERY DISTORTED FOLIATION)
V176454	Sapphire	2017-08-05	360315	6778194	Schist	No extra comments.
V176455	Sapphire	2017-08-06	359804	6776136	Granodiorite	Looks like chill margin of GRND but reacts to HCL. Contact zone.
V176456	Sapphire	2017-08-07	356832	6776912	Schist	No extra comments.
V176457	Sapphire	2017-08-07	356559	6777647	Quartz	No extra comments.
V176458	Sapphire	2017-08-07	356532	6777865	Granodiorite	No extra comments.
V176459	Sapphire	2017-08-07	356496	6778103	Schist	No extra comments.
V176460	Sapphire	2017-08-07				No extra comments.
V176461	Sapphire	2017-08-07	356573	6778158	Quartz	No extra comments.
V176462	Sapphire	2017-08-07	356576	6778174	Schist	GREEN ALTERATION
V176463	Sapphire	2017-08-07	356276	6778877	Schist	No extra comments.
V176464	Sapphire	2017-08-07	356172	6778946	Schist	No extra comments.
V176465	Sapphire	2017-08-08	364724	6781536	Quartz	No extra comments.
V176466	Sapphire	2017-08-08	364644	6781559	Quartzite	No extra comments.
V176467	Sapphire	2017-08-08	364441	6781717	Schist	V. HEAVY
V176468	Sapphire	2017-08-08	363652	6782408	Granodiorite	No extra comments.

V176751	Sapphire	2017-08-04	356247	6776905	Schist	Green mineral could be epidote. Very magnetic. Scattered quartz veinlets
V176752	Sapphire	2017-08-04	355721	6777166	Hornfels	slightly brecciated
V176753	Sapphire	2017-08-04	355717	6777199	Schist	beside quartz pegmatite
V176754	Sapphire	2017-08-05	359957	6776450	Quartz	slightly brecciated
V176755	Sapphire	2017-08-05	359988	6777255	Schist	next to granodiorite dyke
V176756	Sapphire	2017-08-05	359999	6777371	Schist	next to granodiorite dyke
V176757	Sapphire	2017-08-06	360581	6781040	Quartz	slightly brecciated
V176758	Sapphire	2017-08-06	360005	6773846	Schist	next to granodiorite dyke
V176759	Sapphire	2017-08-07	355272	6777435	Schist	Some sheeted veinlets
V176760	Sapphire	2017-08-07	missing	missing		Blank
V176761	Sapphire	2017-08-07	355518	6777100	Schist	very chloritized with scattered qtz veins
V176762	Sapphire	2017-08-07	355430	6777076	Schist	Some sheeted veinlets
V176763	Sapphire	2017-08-07	355418	6777078	Schist	from a more biotite rich to hornblende rich schist
V176764	Sapphire	2017-08-07	355301	6777177	Schist	from a more biotite rich to hornblende rich schist
V176765	Sapphire	2017-08-07	355273	6777440	Granodiorite	fine grained granodiorite, likely chilled margin with schist
V176766	Sapphire	2017-08-08	364763	6781445	Schist	Gossan/rusted vein
V176767	Sapphire	2017-08-08	364661	6781560	Granodiorite	Fine grained near contact to schist. Could be cooled margin
V176768	Sapphire	2017-08-08	364451	6781721	Schist	chloritized with scattered qtz veins
V176769	Sapphire	2017-08-08	363501	6782179	Schist	lightly foliated with some qtz veins
V176801	Sapphire	2017-08-05	360098	6776501	Schist	Schist + larger qz vein; schist v.foliated
V176802	Sapphire	2017-08-05	360139	6776756	Schist	Qz vein parallel to foliation ~0.5 cm thick; possible mineralization
V176803	Sapphire	2017-08-05	360180	6776896	Schist	Dusty yellow-green alteration? (not chlorite)
V176804	Sapphire	2017-08-05	360387	6777249	Schist	Qz veinlets weathered orange
V176805	Sapphire	2017-08-05	360276	6777757	Schist	V. minimal mineralization
V176806	Sapphire	2017-08-06	360180	6779810	Schist	V. slightly oxidized
V176807	Sapphire	2017-08-06	359736	6773782	Schist	No extra comments.
V176808	Sapphire	2017-08-07	356831	6776911	Schist	Slightly oxidized
V176809	Sapphire	2017-08-07	356663	6777199	Quartz	Oxidized qz vein
V176810	Sapphire	2017-08-07	356617	6777569	Quartz	Qz vein, highly oxidized (surface and throughout)
V176811	Sapphire	2017-08-07	356536	6777859	Quartz	Qz vein + schist, with unknown brown vitreous mineral
V176812	Sapphire	2017-08-07	356423	6778050	Schist	Oxidized (surface and parallel to foliation)
V176813	Sapphire	2017-08-07	356284	6778260	Granodiorite	5m wide strip of talus grano within schist, trending ~090°
V176814	Sapphire	2017-08-07	356285	6778603	Schist	No extra comments.
V176815	Sapphire	2017-08-07	356227	6778725	Schist	Biot schist outcrop with qz vein ~4cm thick (oxidized)
V176816	Sapphire	2017-08-07	356271	6778791	Schist	Biot schist with qz vein
V177050	Sapphire	2017-08-04	356350	6776612	Quartzite	Very hard to break and not foliated
V177199	Sapphire	2017-08-05	360036	6776439	Quartz	Qz vein, qz stained orange. Possible molybdenite? (grey, soft, greasy, fibrous)

Appendix V: Further Claim Information

Figure 13: Grant and Claim Numbers defining the Glad Property.

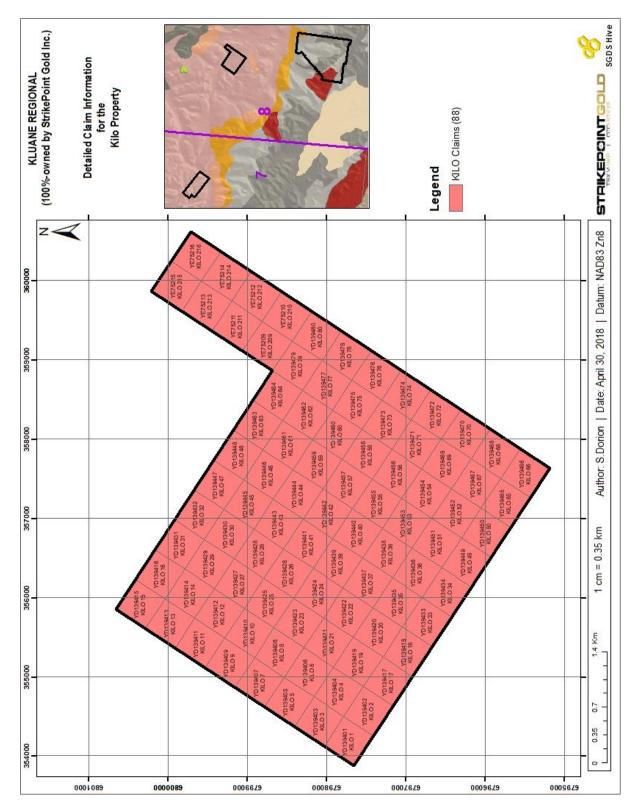


Figure 14: Grant and Claim Numbers defining the Kilo Property.

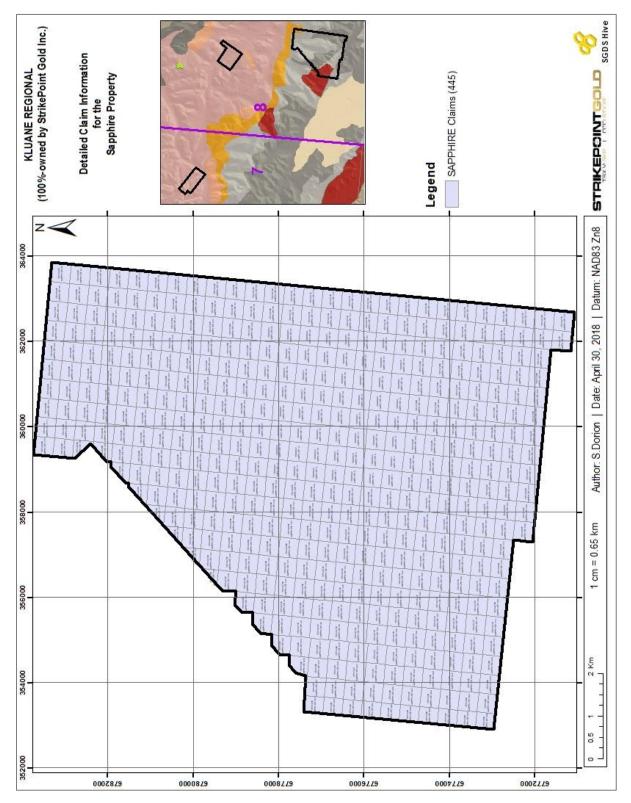


Figure 15: Grant and Claim Numbers defining the Kilo Property.

Appendix VI: Statement of Expenditures

- Glad (\$3,183.00)
- Kilo (\$10,995.87)
- Sapphire (\$37,857.45)

<u>Total: \$52,036.32</u>

Office Date Stamp

I, Robin Sudo

Land Manager/StrikePoint Gold Inc.

of Suite 507, 837 West Hastings Street Vancouver BC V6C 3N6

Phone 250-421-0939

Client I.D. Number: _

make oath and say that:

- 1. I am the owner, or agent of the owner, of the mineral claim(s) to which reference is made herein.
- 2. I have done, or caused to be done, work, on the following mineral claim(s): (Here list claims on which work was actually done by number and name)

Glad 51 (YF02211); Glad 53 to 56 (YF02213 to YF00216); Glad 74 (YF02234); Glad 76 (YF02236);

Glad 78 (YF02238); Glad 109 (YF02269); & Glad 111 to 114 (YF02271 to YF02274).

situated at North of Glad Stone lakes	Claim sheet No.	115G08
Situated at Horiti of Glad Stolle lakes	Ciaim Sheet NO.	1130

in the Whitehorse Mining District, to the value of at least \$3,100.00 dollars,

since the	20th	day of	and the 22nd day of July	20 17
Since and	Loui	_ uay or	and the Eria day or day	20 1/

to represent the following mineral claims under the authority of Grouping Certificate No. ______. (Here list claims to be renewed in numerical order, by grant number and claim name, showing renewal period requested).

See attached Schedule A

Glad Property Group

 The following is a detailed statement of such work: (Set out full particulars of the work done indicating dates work commenced and ended in the twelve months in which such work is required to be done as shown by Section 56).

See attached Schedule B - Mapping & Rock Sampling = \$3,183.00

d.		
Contraction	90 AKID DU IT	7
Sworn opporte me at 1 100000 this	day of20	
Barreter & Solicitor	(AK / A	
2nd Floor R-stolla Ave	Bune	
Notary/Public, 3	Owner or Authorized Agent	
C Access to Information and Protection of Privacy Act		

The personal information requested on this form is collected under the authority of and used for the purpose of administering the Quartz Mining Act. Questions about the collection and use of this information can be directed to the Mining Recorders Office, Mineral Resources, Department of Energy, Mines and Resources, Yukon Government, Box 2703, Whitehorse, Yukon Territory, Y1A 2C6 (867) 667-3190 YG(5049Q)F2 Rev. 04/2012

SCHEDULE A GLAD CLAIMS

Claims
to
be
renewed:

	Fees	Work \$ Needed							
	\$155.00	\$3,100.00		31					
November 29, 2018	\$30.00	\$600.00	1	6	November 29, 2017	YF02269 - YF02274 Glad 109 - 114 StrikePoint Gold Inc.	Glad 109 - 114	- YF02274	YF02269
November 29, 2018	\$55.00	\$1,100.00	1	11	November 29, 2017	YF02233 - YF02243 Glad 73 - 83 StrikePoint Gold Inc.	Glad 73 - 83	- YF02243	YF02233
November 29, 2018	\$70.00	\$1,400.00	1	14	November 29, 2017	YF02205 - YF02218 Glad 45 - 58 StrikePoint Gold Inc.	Glad 45 - 58	- YF02218	YF02205
Expiry Date	per Year	per Year	Applied	Units	ExpiryDate	Owner	Claim Name & #	Grant #	Gr
New	\$5 Fee	\$100	# of Years	# of	Claim				

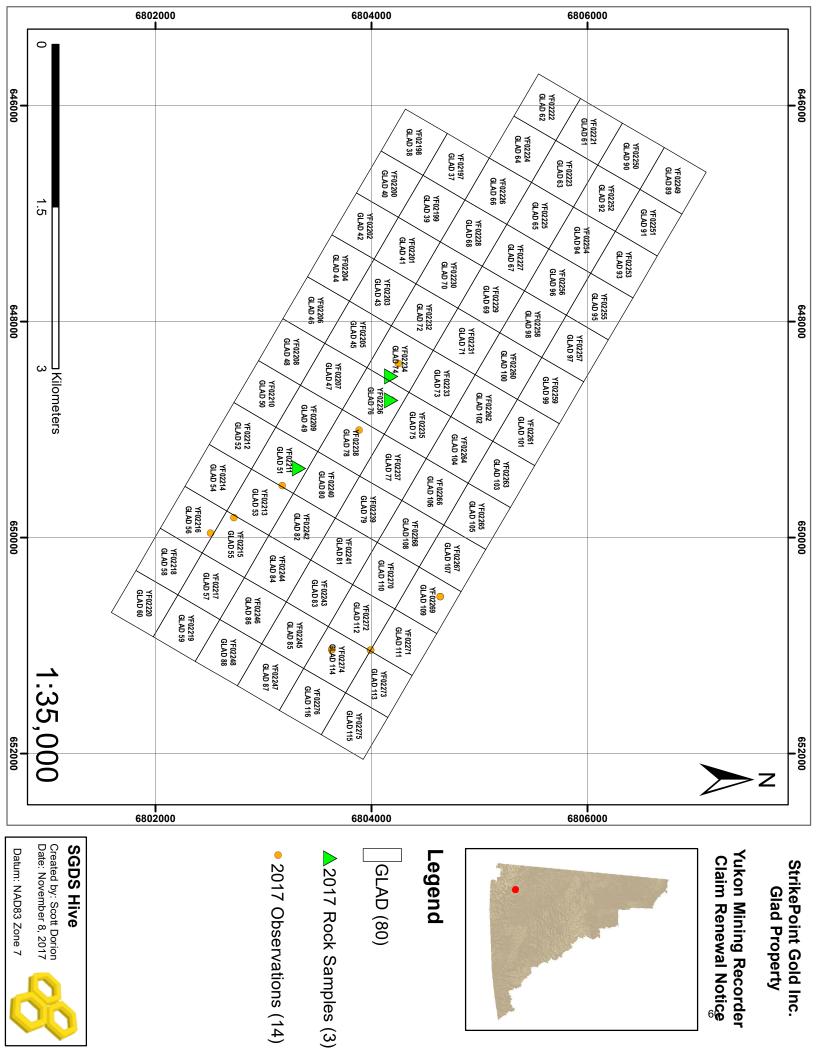
58

H

CERTIFICATE OF WORK

Schedule B - MAPPING & ROCK SAMPLING

GLAD PROPERTY


GEOLOGICAL MAPPING & ROCK SAMPLING PROGRAM:

A total of 4 man days were required to do geological mapping & collect a total of 3 rock samples on July 20 & 22/2017

Description			Rate	Unit		Total
WAGES:						
A.Randell-VPExploration /Planning	per day	\$	600.00	1	\$	600.00
S.Dorion -Senior Geologist/Supervision	per day	\$	350.00	1	\$	350.00
M.Dick -Geologist	per day	\$	325.00	2	\$	650.00
L.Garvin-Geo Tech	per day	\$	265.00	2	\$	530.00
CONSUMABLE SAMPLING SUPPLIES:		-				
Flagging, Metal ID Tags, Sample Bags, Ore Bags, Rice Bags, etc.	per sample	\$	1.00	3	\$	3.00
EQUIPMENT RENTAL (per unit, per day):						
Radio: ICOM Handheld: 1 per person	per day	\$	35.00	2	\$	70.00
Computer/Software: 1 per camp nightly data download	per day	\$	50.00	2	\$	100.00
Handheld GPS/Camera/Data Recorder	per day	\$	15.00	2	\$	30.00
ACCOMODATION and FOOD:						
Food & Accomodation (Camp)	per man day	\$	125.00	4	\$	500.00
REPORT WRITING:					Ś	350.00
	TOTAL MAPPI	NG &		MPLING =		3,183.00

100% OF MAPPING/SAMPLING PROGRAM WAS WITHIN BOUNDARIES OF THE GLAD CLAIM BLOCK = \$

3,183.00

1000 C

QUARTZ MINING ACT FORM 4 SECTION 56 APPLICATION FOR A CERTIFICATE OF WORK

Energy, Mines and Resources	
I, Robin Sudo, Land Manager	Office Date Stamp
213 - 8th St. S., Cranbrook, B.C. V1C 1N9	
210-00102.0., 01000000, 2101100	
of Strikepoint Gold Inc.	
Phone 250-421-0939	
Phone 200 127 Constant Phone 200 127 Constant Phone 200 127 Constant Phone 200 127 Constant Phone Phon	
Client I.D. Number:	
make oath and say that:	
make bain and say man	

- 1. I am the owner, or agent of the owner, of the mineral claim(s) to which reference is made herein.
- 2. I have done, or caused to be done, work, on the following mineral claim(s): (Here list claims on which work was actually done by number and name)

RE: KILO PROPERTY - GROUP	1	
RE. KILO PROPERTI - GROGI		
situated at Bear Lakes	Claim sheet No. 115H05	
	Mining District, to the value of at least \$9,600.00	
since the 24th	day of July	_ 20 <u>17</u> _
See attached SCHEDULE B - C	laims To Be Renewed	
	atement of such work: (Set out full particulars of the work done in	as shown
 The following is a detailed sta work commenced and ended Section 56). 	in the twelve months in which such work is required to be done	
work commenced and ended Section 56).	in the twelve months in which such work is required to be done Mapping & Rock Sampling Program = \$10,995.87	
work commenced and ended Section 56).	in the twelve months in which such work is required to be dene	
work commenced and ended Section 56). See attached SCHEDULE C - I	In the twelve months in which such work is required to be deno Mapping & Rock Sampling Program = \$10,995.87	20

StrikePoint Gold Inc. KILO PROPERTY

SCHEDULE A

Claims work was performed on:

CLAIM		GRANT #
KILO	5	YD139405
KILO	6	YD139406
KILO	8	YD139408
KILO	10	YD139410
KILO	22	YD139422
KILO	23	YD139423
KILO	24	YD139424
KILO	80	YD139480
KILO	214	YE75214
KILO	216	YE75216

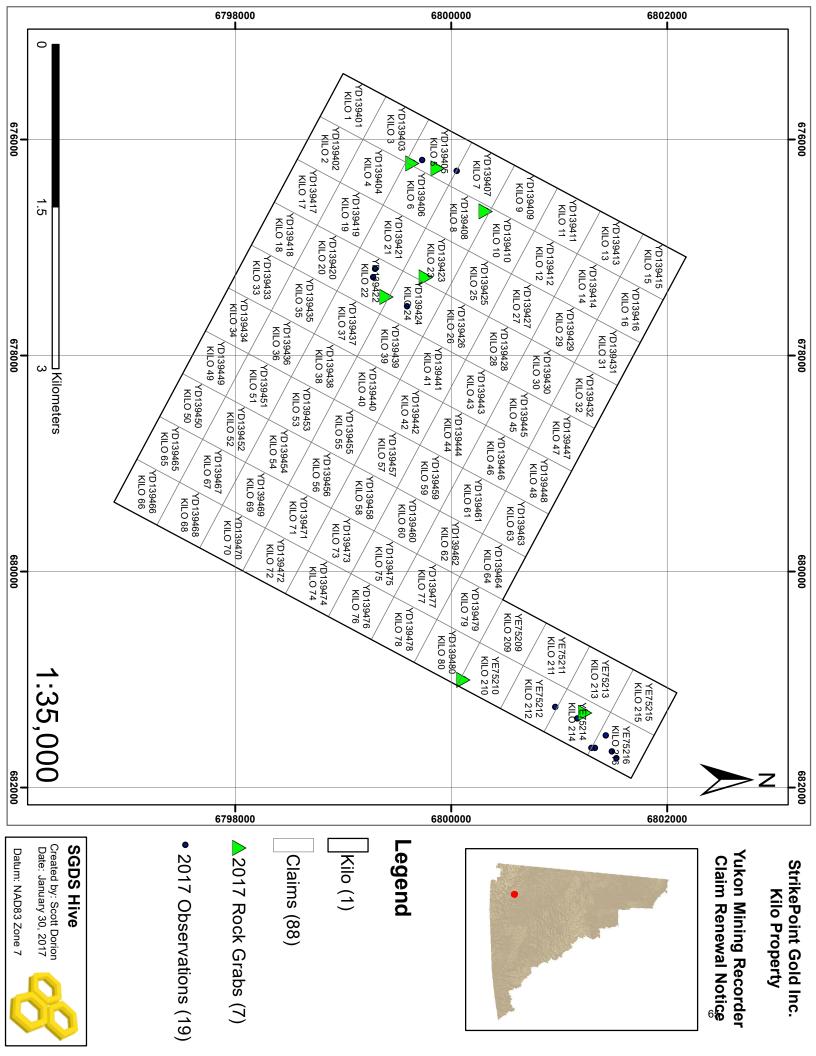
StrikePoint Gold Inc. KILO PROPERTY

Schedule B

Claims to be renewed:

	Fees	Work \$							
	\$9,600.00 \$480.00	\$9,600.00							
March 20, 2020	80	1600	2	8	209 - 216 March 20, 2018	216		YE75209 - YE75216 KILO	Whitehorse
March 20, 2020	240	4800	1	48	33 - 80 March 20, 2019	80		YD139433 - YD139480 KILO	Whitehorse
160 March 20, 2021		3200	1	32	32 March 20, 2020	32	1 -	YD139401 - YD139432 KILO	Whitehorse
NEW EXPIRY		of Years \$100/Yr \$5/Yr Fee	# of Years	Units #	Expiry Date	ζ#	Claim Name & #	Grant #	District
				# of					

CERTIFICATE OF WORK


Schedule C - MAPPING & ROCK SAMPLING

KILO PROPERTY

GEOLOGICAL MAPPING & ROCK SAMPLING PROGRAM:

A total of 6 man days were required to do geological mapping & collect a total of 8 rock samples on July 24&25/2017

	Description			Rate	Unit	Total
WA	GES:					
	VPExploration /Planning	per day	\$	600.00	1	\$ 600.00
	Senior Geologist/Supervision	per day	\$	350.00	2	\$ 700.00
	Geo Tech	per day	\$	265.00	2	\$ 530.00
	Geo Tech	per day	\$	265.00	2	\$ 530.00
Неа	l Ith & Safety - Training:					
	Oneeva Solution, Vancouver, B.C.					\$ 385.00
COI	I NSUMABLE SAMPLING SUPPLIES:		-			
	Flagging, Metal ID Tags, Sample Bags, Ore Bags, Rice Bags, etc.	per sample	\$	1.00	8	\$ 8.00
EQI	 JIPMENT RENTAL (per unit, per day):					
	Radio: ICOM Handheld: 1 per person	per day	\$	35.00	2	\$ 70.00
	Computer/Software: 1 per camp nightly data download	per day	\$	50.00	2	\$ 100.00
	Handheld GPS/Camera/Data Recorder	per day	\$	15.00	2	\$ 30.00
	Camp Satellite Internet	per day	\$	20.00	2	\$ 40.00
EQI	JIPMENT RENTAL:		-			
	First Aid Equip Rental: 62 Degrees North Inc., Yellowknife, NT					\$ 423.87
ACC	COMODATION and FOOD:					
	Food & Accomodation (Camp)	per man day	\$	125.00	6	\$ 750.00
	ICOPTER SUPPORT & FUEL:					
псь	Fireweed Helipcopters, Whitehorse, Yk	per hour	\$	1,500.00	4	\$ 6,000.00
	Fuel, 160 liters (1 drum)	per drum	\$	275.00		\$ 275.00
AN	ALYTICAL ANALYSIS COSTS:		┢			
	ALS Labs, Vancouver, B.C./ROCK	per sample	\$	25.50	8	\$ 204.00
REP	PORT WRITING:					\$ 350.00
		TOTAL MAPPI				10,995.87

QUARTZ MINING ACT FORM 4 SECTION 56 **APPLICATION FOR A CERTIFICATE OF WORK**

AM

2

F

6

Λ

RECEIVED

JAN 1 9 2018

MINING RECORDER

TEHORS

mment of 40 3

Otte

Q

9 G 17

١, Robin Sudo

Land Manager

of StrikePoint Gold Inc.

Phone 250-421-0939

Client I.D. Number:

make oath and say that:

- 1. I am the owner, or agent of the owner, of the mineral claim(s) to which reference is made herein.
- 2. I have done, or caused to be done, work, on the following mineral claim(s): (Here list claims on which work was actually done by number and name)

d 20 <u>_1</u> ; g renewa
d 20 <u>1</u> ;
d 20 <u>1</u> ;
20_1
g renewa
ndicating as show
2
2
as

YG(5049Q)F2 Rev. 04/2012

and FI

StrikePoint Gold Inc.

SAPPHIRE PROPERTY

SCHEDULE A

CLAIMS WORK WAS PERFORMED ON:

GRANT #	CLAIM N	AME & #	GRANT #	CLAIM N	AME & #
YD90046	SAPHIRE	17	YD136755	SAPPHIRE	139
YD90047	SAPHIRE	18	YD136756	SAPPHIRE	140
YD90048	SAPHIRE	19	YD136757	SAPPHIRE	141
YD90049	SAPHIRE	20	YD136758	SAPPHIRE	142
YD90050	SAPHIRE	21	YD136759	SAPPHIRE	143
YD90051	SAPHIRE	22	YD136762	SAPPHIRE	146
YD90052	SAPHIRE	23	YD136763	SAPPHIRE	147
YD90053	SAPHIRE	24	YD136764	SAPPHIRE	148
YD90055	SAPHIRE	26	YD136765	SAPPHIRE	149
YD90056	SAPHIRE	27	YD136766	SAPPHIRE	150
YD90057	SAPHIRE	28	YD136807	SAPPHIRE	191
YD90059	SAPHIRE	30	YD136809	SAPPHIRE	193
YD90061	SAPHIRE	32	YD136810	SAPPHIRE	194
YD136683	SAPPHIRE	67	YD136816	SAPPHIRE	200
YD136685	SAPPHIRE	69	YD136840	SAPPHIRE	224
YD136752	SAPPHIRE	136	YD136949	SAPPHIRE	333
YD136754	SAPPHIRE	138	YD136956	SAPPHIRE	340

StrikePoint Gold Inc.

SAPPHIRE PROPERTY

SCHEDULE B

CLAIMS TO BE RENEWED:

	\$1,885.00	\$37,700.00 \$1,885.00		445	TOTAL # OF CLAIMS =						
February 2, 2019	\$215.00	\$4,300.00	1	43	February 2, 2018	667	625 -	SAPPHIRE	- YE81507	YE81465	Whitehorse
February 2, 2019	\$180.00	\$3,600.00	1	36	February 2, 2018	450	415 -	SAPPHIRE	YD137031 - YD137066 SAPPHIRE	YD137031	Whitehorse
February 2, 2019	\$180.00	\$3,600.00	1	36	February 2, 2018	404	369 -	SAPPHIRE	YD136985 - YD137020 SAPPHIRE	YD136985	Whitehorse
February 2, 2019	\$180.00	\$3,600.00	1	36	February 2, 2018	358	323 -	SAPPHIRE	YD136939 - YD136974 SAPPHIRE	YD136939	Whitehorse
February 2, 2019	\$180.00	\$3,600.00	1	36	February 2, 2018	312	277 -	SAPPHIRE	YD136893 - YD136928 SAPPHIRE	YD136893	Whitehorse
February 2, 2019	\$220.00	\$4,400.00	1	44	February 2, 2018	266	223 -	SAPPHIRE	YD136839 - YD136882 SAPPHIRE	YD136839	Whitehorse
February 2, 2019	\$70.00	\$1,400.00	1	14	February 2, 2018	214	201 -	SAPPHIRE	YD136817 - YD136830 SAPPHIRE	YD136817	Whitehorse
February 2, 2020	\$340.00	\$6,800.00	1	68	February 2, 2019	200	133 -	SAPPHIRE	YD136749 - YD136816 SAPPHIRE	YD136749	Whitehorse
0	\$0.00	\$0.00	0	68	February 2, 2019	132	65 -	SAPPHIRE	YD136681 - YD136748 SAPPHIRE	YD136681	Whitehorse
February 2, 2020	\$320.00	\$6,400.00	1	64	February 2, 2019	64	1 -	SAPHIRE	- YD90093	YD90030	Whitehorse
NEW EXPIRY DATE	\$5/Yr Fee	\$100/yr	Years	Units	Expiry Date	s	Claim Name & #'s	Claim I	Grant #'s	Gra	Division
			# Of	# of							

WORK REQUIRE

FEES

CERTIFICATE OF WORK

Schedule C - MAPPING & ROCK SAMPLING

SAPPHIRE PROPERTY

GEOLOGICAL MAPPING & ROCK SAMPLING PROGRAM:

A total of 25 man days were required to do geological mapping & collect a total of 89 rock samples from Aug4-8 + Sep2&3/2017

Description			Rate	Unit	Total
WAGES:					
VPExploration /Planning	per day	\$	600.00	1	\$ 600.00
Senior Geologist/Supervision	per day	\$	350.00	2	\$ 700.00
Geologist	per day	\$	325.00	7	\$ 2,275.00
Geology Tech	per day	\$	265.00	7	\$ 1,855.00
Geology Tech	per day	\$	265.00	5	\$ 1,325.00
Geology Tech	per day	\$	265.00	4	\$ 1,060.00
Health & Safety - Training:		+			
Oneeva Solution, Vancouver, B.C.					\$ 539.00
CONSUMABLE SAMPLING SUPPLIES:		┢			
Flagging, Metal ID Tags, Sample Bags, Ore Bags, Rice Bags, etc.	per sample	\$	1.00	89	\$ 89.00
EQUIPMENT RENTAL (per unit, per day):					
Radio: ICOM Handheld: 1 per person	per day	\$	35.00	6	\$ 210.00
Computer/Software: 1 per camp nightly data download	per day	\$	50.00	6	\$ 300.00
Handheld GPS/Camera/Data Recorder	per day	\$	15.00	6	\$ 90.00
TRANSPORTATION:		\vdash			
- rental - 1 only 1/2 Ton	per day	\$	150.00	6	\$ 900.00
EQUIPMENT RENTAL:					
First Aid Equip Rental: 62 Degrees North Inc., Yellowknife, NT					\$ 423.88
ACCOMODATION and FOOD:					
Food & Accomodation (Camp)	per man day	\$	125.00	25	\$ 3,125.00
HELICOPTER SUPPORT & FUEL:		\vdash			
Fireweed Helipcopters, Whitehorse, Yk	per hour	\$	1,500.00	15	\$ 22,500.00
Fuel, 160 liters (1 drum)	per drum	\$	275.00	3.5	\$ 962.50
ANALYTICAL ANALYSIS COSTS:					
ALS Labs, Vancouver, B.C./ROCK	per sample	\$	25.50	89	\$ 2,269.50
REPORT WRITING:		<u> </u>			\$ 1,050.00
	TOTAL MAPPI			MPLING =	\$ 40,273.88

NOTE: 94% OF WORK WAS PERFORMED WITHIN THE PROPERTY BOUNDARY =

Office Use Only

QUARTZ MINING ACT FORM 12 SECTION 55 **APPLICATION TO GROUP MINERAL CLAIMS**

MINING DISTRICT

I, (We) the undersigned owners or agent(s) of the owners of following mineral claims.

(Additional sheets or an appendix may be used) (Claim names and grant numbers to be listed in sequence eg. TOM 1-40, YC10001 - YC10040)

GRANT NUMBER	CLAIM NAME	MAP SHEET
	Saphire & Sapphire Claims	115H04
	See SCHEDULE A attached	
		1

Give notice of intention to group the said claims for the performance of work and do hereby apply under the provisions of section 55 of the Quartz Mining Act for a certificate in form 6.

I (We) hereby certify that the above claims are adjoining as shown on the attached sketch

Dated at Cranbrook, B.C.

This 19th day of January , 20_18

Applicant(s) É UNT

Client I.D. Number

Access to Information and Protection of Privacy Act

The personal information requested on this form is collected under the authority of and used for the purpose of administering the Quartz Mining Acr.

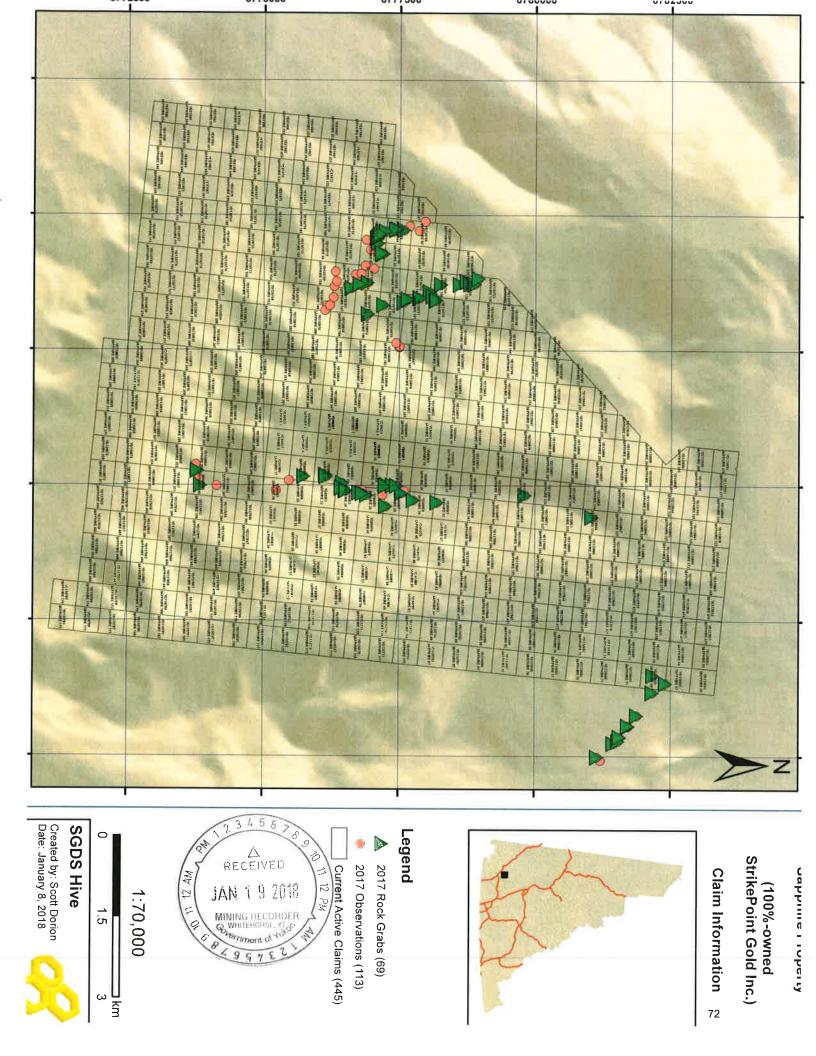
Questions about the collection and use of this information can be directed to the Mining Recorders Office, Mineral Resources, Department of Energy, Mines and Resources, Yukon Government, Box 2703, Whitehorse, Yukon Territory, Y1A 2C6 (867) 667-3190

YG(5048EQ)F1 Rev.01/2012

StrikePoint Gold Inc.

SAPPHIRE PROPERTY

SCHEDULE A


٨

CLAIMS TO BE GROUPED:

Division	Grant #'s	Claim Name & #'s	# of Units
Whitehorse	YD90030 - YD90093	SAPHIRE 1 - 64	64
Whitehorse	YD136681 - YD136748	SAPPHIRE 65 - 132	68
Whitehorse	YD136749 - YD136816	SAPPHIRE 133 - 200	68
Whitehorse	YD136817 - YD136830	SAPPHIRE 201 - 214	14
Whitehorse	YD136839 - YD136882	SAPPHIRE 223 - 266	44
Whitehorse	YD136893 - YD136928	SAPPHIRE 277 - 312	36
Whitehorse	YD136939 - YD136974	SAPPHIRE 323 - 358	36
Whitehorse	YD136985 - YD137020	SAPPHIRE 369 - 404	36
Whitehorse	YD137031 - YD137066	SAPPHIRE 415 - 450	36
Whitehorse	YE81465 - YE81507	SAPPHIRE 625 - 667	43

TOTAL # OF CLAIMS = 445

