

Geochemical, Geophysical & Airborne Survey Assessment Report:

Rotary Air Blast (RAB) Drill, GT Probe, IP Survey, XCAM Aerial Survey & Dighem Aerial Survey

Brew GOLD PROJECT

Brew 1-56 Brew 57-168 YC87746-87801 YC95901-96012

Dawson Mining District

NTS: 115O/02 &03 Latitude: 63.15° N Longitude: -139.05 ° W Work Performed on:

IP Survey	Aug 2-12
GT Probe	July 12-27
RAB Drilling	Aug 31- Sept 10
Dighem	August 8-12
XCAM	July 22

Prepared for White Gold Corp

By GroundTruth Exploration

Written by: Adam Fage, M.Sc Jen Hanlon, M.Sc., GIT Amir H. Radjaee, P.Geo

January 21, 2018

Table of Contents

1	INTRODUCTION	1
2	PROPERTY DESCRIPTION, LOCATION, ACCESSIBILITY, CLIMATE	1
3	CLAIM INFORMATION	4
4	HISTORY	4
5	GEOLOGY	5
	5.1 REGIONAL GEOLOGY	5
	5.2 PROPERTY GEOLOGY	7
	5.3 MINERALIZATION	8
6	GEOCHEMICAL SAMPLE PREPARATION AND ANALYSIS	9
7		
-		0
	7.1 INTRODUCTION	9
	7.2 SURVEY THEORY	11
	7.2.1 Field Survey Operating Trocedure	
	7.3 Subvey Dedsonniel and Ddocd an Dates	
	7.3 SURVET FERSONNEL AND FROOKAM DATES	12
	7.3.2 Program Dates	
	7.3.2 Flogram Dates	
	7.4 ZONE I (DRWIP1/-01 - DRWIP1/-04)	15
	7.4.1 Survey Summary	
	7.4.2 Survey Results	
	7.5 ZONE 2 (BRWIP17-05 - BRWIP17-07)	17
	7.5.1 Survey Summary	
	7.5.2 Survey Results	
	7.6 ZONE 3 (BRWIP17-08 - BRWIP17-12)	
	7.6.1 Survey Summary	
	7.0.2 Survey Results	
	7.7 IP SURVEY: DESCRIPTION OF FILES AND FILE STRUCTURE	
	7.8 IP SURVEY: E SUPERSTING R 1/IP TECHNICAL SPECIFICATION	
	7.9 IP SURVEY: EXTENDED DIPOLE-DIPOLE ARRAY	
8	GT PROBE PROGRAM	
	8.1 INTRODUCTION	29
	8.2 PERSONNEL	29
	8.3 GT PROBE SAMPLING SURVEY PROCEDURE	29
	8.4 GT PROBE SURVEY RESULTS	
9	RAB DRILLING PROGRAM	36
	9.1 INTRODUCTION	36
	9.2 PERSONNEL	
	9.3 RAB DRILL OVERVIEW	36
	94 RAB DRILL STANDARD OPERATING PROCEDURE	38

9.5	Optical Televiewer	40
9.6	RAB DRILL RESULTS	41
10 X	CAM SURVEY PROGRAM	43
10.1	I INTRODUCTION	
10.2	2 XCAM Survey Results	44
11 D	DIGHEM SURVEY PROGRAM	46
11.1	I INTRODUCTION	
11.2	2 PURPOSE AND SCOPE	46
11.3	3 SURVEY DESCRIPTION	46
11.4	4 Survey Theory	49
11	1.4.1 Electromagnetic surveys	
11	1.4.2 Magnetic surveys	51
11.5	5 Field Survey	
11.6	5 Deliverables	
12 D	DISCUSSION AND INTERPRETATION	54
12.1	IP SURVEY	
11.1	1.1 ZONE 1 INTERPRETATION	
11.1	1.2 Zone 2 Interpretation	
1:	2.1.3 Zone 3 Interpretation	
12.2	2 GT Probe Survey	
12.3	3 RAB Drilling	
12.4	DIGHEM SURVEY	
12.5	5 INTERPRETATION	67
13 R	RECOMMENDATIONS	68
14 C	COSTS	68
15 R	REFERENCES	68
16 O	DUALIFICATION	
APPEN	NDIX A: CLAIMS LIST	
ADDEN	NDIV D. STATEMENT OF FYDENDITIDES	
ALLEI	NDIA D. STATEMENT OF EXIENDITURES	
APPEN	NDIX C: GT PROBE SAMPLE LOCATION, DESCRIPTION AND ASS	AY CERTIFICATES
APPEN	NDIX D: RAB COLLAR LOCATION, GEOLOGICAL LOGS AND ASS	AY CERTIFICATES
APPEN	NDIX E: XCAM SURVEY ORTHOIMAGE	
APPEN	NDIX F: SURVEY REPORT - AIRBORNE DIGHEM 2017 GENERA	AL INFORMATION / DATA
ARCH	HVE AFTER CGG CANADA PROJECT 602997 (OCT. 6, 2017)	•••••

Table of Figures

Figure 1: Location of the Brew Property, Yukon, Canada	3
Figure 2: Claim Map of the Brew property	4
Figure 3: Regional Geology of the Brew Property (From Colpron et al., 2016)	7
Figure 4: Local Geology of the Brew Property	8
Figure 5: Overview map of Brew 2017 RES/IP grid zones. Zone 1 = lines 1-4; Zone 2 =	=
lines 5-7; Zone 3 = lines 8-121	0
Figure 6: 2017 completed RES/IP grid on the Brew Zone 114	4
Figure 7: BRWIP17-01 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B	3)
Inverted IP (scale -10-75 ms)	5
Figure 8: BRWIP17-02 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B	3)
Inverted IP (scale -10-75 ms)	5
Figure 9: BRWIP17-03 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B	3)
Inverted IP (scale 0-75 ms) 1	6
Figure 10: BRWIP17-04 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B	3)
Inverted IP (scale 0-75 ms) 1	6
Figure 11: 2017 completed RES/IP grid on the Brew Zone 21	8
Figure 12: BRWIP17-05 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B	3)
Inverted IP (scale 0-50 ms)	9
Figure 13: BRWIP17-06 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B	5)
Inverted IP (scale 0-50 ms)	9
Figure 14: BRWIP17-07 sections. (A) Inverted resistivity (scale 250-10,000 Ohm-m). (B	3)
Inverted IP (scale 0-50 ms)	0
Figure 15: 2017 completed RES/IP grid on the Brew Zone 32	1
Figure 16: BRWIP17-08 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B	5)
Inverted IP (scale 0-75 ms)	2
Figure 17: BRW17-09 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B	5)
Inverted IP (scale 0-75 ms)	2
Figure 18: BRWIP17-10 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B	5)
Inverted IP (scale 0-75 ms)	3
Figure 19: BRWIP17-11 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B	5)
Inverted IP (scale 0-75 ms)	3
Figure 20: BRWIP17-12 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B	5)
Inverted IP (scale 0-75 ms)	4
Figure 21 – GT Probe	0
Figure 22: Location of 2017 GT Probe Samples. Gold in Soil samples for reference 3	0
Figure 23: GT Probe Au over gold in soil, Brew property	2
Figure 24: GT Probe As, Brew property	3

Figure 25: GT Probe Mo, Brew property
Figure 26: GT Probe Cu, Brew property
Figure 27: 2017 Brew Drillhole Location map, GTProbe, IP Lines for reference
Figure 28: XCAM Mounted to airplane strut
Figure 29: Orthophoto from the 2017 XCAM Survey of the Brew Property
Figure 30: Location of airborne FDEM and Mag survey 2017 on Brew property
Figure 31: A time-varying electrical current generates a primary magnetic field which
induces secondary currents in the subsurface, and creates the secondary magnetic field.
Both the primary and secondary fields reach the receiver (2017, GeoSci Developers). 51
Figure 32: Earth's magnetic field, declination (D) and inclination angles (2017, GeoSci
Developers)
Figure 33: Brew Zone 1 RES/IP fence diagrams (A) resistivity profiles and (B) IP profiles.
Figure 34: Brew Zone 2 RES/IP fence diagrams (A) resistivity profiles and (B) IP profiles.
Figure 35: Brew Zone 3 RES/IP fence diagrams (A) resistivity profiles and (B) IP profiles.
Figure 36: Interpreted mineralization at the Brew main zone from GTProbe data over IP.
Figure 37: Interpreted mineralization at the Brew main zone from GTProbe data over
Resistivity
Figure 38: Plan view of drill intercepts >1g-m
Figure 39: Flight line of DIGHEM 2017 survey, Brew Block 52
Figure 40: Apparent resistivity map at frequency 56 kHz from airborne DIGHEM survey
2017, Brew property Block-52
Figure 41: Apparent resistivity map at frequency 7200 Hz from airborne DIGHEM survey
2017, Brew property Block-52
Figure 42: Apparent resistivity map at frequency 5500Hz from airborne DIGHEM survey
2017, Brew property Block-52
Figure 43: Apparent resistivity map at frequency 1000Hz from airborne DIGHEM survey
2017, Brew property Block-5265
Figure 44: Apparent resistivity map at frequency 900 Hz from airborne DIGHEM survey
2017, Brew property Block-52
Figure 45: Total Magnetic Intensity from airborne DIGHEM survey 2017, Brew property
Block-52

1 Introduction

The Brew property (herein after referred to as 'the property') is a set of 168 quartz claims located in the White Gold district of the Yukon interior. It has been historically explored for mining potential. It is located 22 km east of the White Gold discovery owned by White Gold Corp. The suspected mineralisation and geology is interpreted to be part of the same system as White Gold.

In July 2017, a reconnaissance near surface soil collection program was performed. The objective of the exploration was to explore for gold in the hills around the Brewer Creek placer gold deposits, with specific attention being paid to the magnetic anomaly encompassed within the claim block. The on-site XRF assays of the soil samples revealed geochemical anomaly. This was explored further with a geophysical survey. The IP/RES survey defined a geophysical anomaly which would explain the high surface geochemical spikes. To evaluate the potential, drilling was performed. The Dighem survey was contracted to CGG Global of Toronto.

Results and interpretation of these surveys form the basis of this report. Appendices to this report are attached as digital files.

2 Property Description, Location, Accessibility, Climate

The property is located in the Dawson Range area of the west-central Yukon on NTS map sheet 115O/03. It approximately 100km south-southeast of Dawson City, YT (Figure 1). The claims are centered at latitude 63°09'12''N longitude 139°02'02'W. They are situated around the Brewer Creek tributary that feeds into the Stewart River to the north. The property is in close proximity to other actively explored claims: White Gold's Golden Saddle prospect is to the west, surrounding and enclosing the Brew property is GoldStrike's Lucky Strike property, and south across the Yukon River are GoldCorp's Coffee and Western Copper and Gold's Casino.

Access is to the property is available by summer access road or year round by helicopter from Dawson City. There is also access via fixed wing aircraft on the Thistle Creek airstrip. A permanent camp is not currently established on the property.

The property lies between the elevations of 420m to 800m. The property is cut by three drainages and associated ridges with a northeast bearing. It is a heavily forested property with south aspect slopes being dominated by Alder Trees, north aspect slopes dominated

by Black Spruce, and the remainder of the property having mixed forests of these species plus White Spruce and Birch trees.

The Brew lies within Canada's discontinuous permafrost zone. This area is typified by thick moss mats overlying permafrost on north aspects, rocky and boggy permafrost zones at alpine elevations, no permafrost on south aspect, and varying degrees of permafrost in intermediate zones depending on localized effects of vegetation, aspect and hydrology.

Figure 1: Location of the Brew Property, Yukon, Canada

3 Claim Information

The Brew Gold Project is registered in the Dawson Mining district on mapsheet 115O/02&03. (Figure 2, Appendix D) It encompasses 3410 hectares and is composed of the following 168 claims:

Figure 2: Claim Map of the Brew property

4 History

In 2009 Ryanwood Exploration Inc. performed a 42 man-day soil sampling program alongside a ground magnetic survey on behalf of Aldrin Resources Corp. 1317 soil samples were collected from a square grid 2500m by 2500m. The 26 traverse lines are oriented northeast, and are parallel with 100m spacing between them. Samples were collected every 50m along the traverse lines.

In 2010 trenching and additional soil sampling was done by GroundTruth Exploration Inc. A total of 3596 soil sample were collected with 981 soil samples collected from a grid extension to the north. The remaining samples were infill sampling in the Central Zone.

A total of 1500m of trenching was outlined in eight trenches. Due to early onset of winter conditions only five trenches, totaling 1000m, were completed, with four completely chip sampled and only grab samples collected from Trench 10-3.

In 2011 Aldrin Resources announced a drill program is to retrieve fresh bedrock samples beneath trench intervals led by Aurora Geosciences Ltd. It would consist of a three man crew (two drillers and a geologist) equipped with a lightweight gas powered Packsack drill capable of drilling 20 to 30 metre small diameter (EW) holes. The program would consist of 165 metres in 11 shallow, low angle drill holes to test 120 metres of mineralized trench intervals in trenches TR10-1 and TR10-2.

5 Geology

5.1 Regional Geology

The project is located within the Yukon-Tanana terrane (YT) of the western Yukon and central Alaska. The YT is an accreted terrane of polymetamorphosed and polydeformed metasedimentary, metavolcanic, and metaplutonic rocks of Upper Paleozoic and older ages bound by the Tintina fault to the northeast and Denali fault to the south-west (Figure 3). Overall, it records a prolonged and complex history of tectonic and magmatic processes along the northwestern margin of Laurentia between middle Paleozoic and Early Tertiary time. It has an equally complex metallogenic evolution with at least 10 pulses of mineralization of various styles currently recognized (Nelson et al 2013, Allan et al 2013, Mortensen and Allan 2012). In the area of the property bedrock consists of meta-sedimentary, meta-volcanic rocks of the Devonian-Mississippian Nasina assemblage and Simpson Range suite that are crosscut/overlain by the Permian Snowcap and Klondike assemblages. These units underwent ductile (D1/D2) deformation associated with amphibolite facies metamorphism during the Late Permian Klondike orogeny. This event was associated with the accretion of the YT to Laurentia and associated closure of the Slide Mt Ocean and obduction of ophiolitic slices of the Slide Mt terrane.

The area underwent additional compression and ductile deformation (D3) associated with greenschist facies metamorphism during the Late Triassic-Early Jurassic. The event was associated with widespread thrust faulting and imbrication of the Slide Mt. terrane, and the emplacement of felsic to ultramafic intrusions. This transitioned into a period of regional uplift and exhumation and is associated with dominantly east-west oriented

sinistral faults, localized north-northwest vergent folds, and high angle reverse faults (D4). This period of deformation spans the ductile to brittle transition and are associated, particularly the E-W sinistral faults, with 'orogenic' style gold mineralization throughout the White Gold district and Klondike. Renewed northeast dipping subduction under the continental margin during the Late Cretaceous led to renewed magmatism across the YT, and is associated with felsic to intermediate intrusions of the Dawson Range batholith and felsic-mafic volcanic rocks of the Mount Nansen suite. The Early Cretaceous arc activity ceased around 99Ma; at which point it stepped farther inboard and is associated with intrusive suites in the Selwyn Basin (i.e Tombstone suite, etc.). This lull in magmatism was associated with the formation of the Indian River Formation, a coarse clastic sedimentary package deposited in an alluvial/fluvial to shallow marine setting that records approximately 40 million years of sedimentation following the formation of the Dawson Range Arc.

Arc style magmatic and volcanic activity renewed during the Late Cretaceous and is associated with a series of calc-alkaline plutons and high level porphyry dikes, plugs, and breccias in the Casino and Freegold areas, and age equivalent intrusions in eastern Alaska (79 – 72Ma). This event was also likely associated with the initiation of dextral offset along the Big Creek fault and reactivation of older Jurassic age structures in Dawson Range area. It is also associated with variable styles of mineralization ranging from Cu-Au-Mo porphyries (Casino), intrusion related/epithermal occurences (Sonora Gulch, Freegold area), and structurally controlled gold / 'orogenic' mineralization (Coffee, Boulvard, Moosehorn). At 72Ma there was a distinct change in magmatism with widespread bi-modal volcanism (Carmacks group) and the emplacement of small, high-level, felsic plugs and stocks (Prospector Mountain suite) throughout the YT. A prominent set of northeast trending normal and sinistrally oblique faults are commonly associated with the intrusive and volcanic rocks of this event and are broadly coeval with magmatism.

A final magmatic event occurred during the Late Tertiary and is associated with the emplacement of bi-modal suite of predominately north-south trending dike swarms, plugs, and local pyroclastic rocks. Gabrielse et al 2006 suggests that the magmatic event was likely coeval with the early stages of dextral offset along the Tintina fault.

2017

Figure 3: Regional Geology of the Brew Property (From Colpron et al., 2016)

5.2 Property Geology

The Brew claims are part of the Nasina Assembly. The claims are primarily composed of quartzite, micaceous quartzite, quartz muscovite schist, and minor metaconglomerate and metagrit, but may locally include significant Nisling Assemblage. There are also two small packages of Nasina Assembly Marble. The property primarily underlain by Devonian to Mississippian tonalitic orthogneiss with undifferentiated amphibolite, fine metasiliciclastic rocks with local marble lenses and less granitic orthogneiss.

Figure 4: Local Geology of the Brew Property Source: GSC (Jim Ryan, et al, 2013)

5.3 Mineralization

Gold mineralization at the Golden Saddle zone on the White Gold property is associated with quartz veins, stockwork and breccia zones, as well as pyrite veinlets and disseminations, and includes cubic pyrite and visible gold, preferentially hosted within felsic orthogneiss (meta-intrusive), as well as felsic and mafic metavolcanic rocks, all of probable Devono-Mississippian age.

The alteration assemblage includes pervasive K-spar, carbonate, sericite and silicification. An intrusion related gold model has been postulated for the mineralization. Other mineralized zones at White Gold are hosted by a metasedimentary package (DMps)

6 Geochemical Sample Preparation and Analysis

Samples were shipped to Bureau Veritas (BV) sample preparation facility in Whitehorse. Prepared samples where shipped by BV to Vancouver where final analysis was completed.

Soil samples are prepared using the SS80 method. Samples are dried at 60 degrees Celsius and sieved until up to 100 grams of material passes 180 microns (80 mesh). The samples are then analyzed by the AQ201+U method which involves dissolving 15 grams of material in a hot Aqua Regia solution and determining the concentration of 37 elements of the resulting analyte by the ICP-MS technique.

RAB and GTProbe samples were prepared using the PRP70-250 method which involves crushing the material until 70 % will pass 2 mm and then splitting off and pulverizing up to 250 grams until 85 % passess 75 microns. A 0.5 g sub sample of the resulting pulp is analyzed by the AQ200 method, which involves dissolving the material in a hot Aqua Regia solution and determining the concentration of 36 elements of the resulting analyte by the ICP-MS technique. A 30 gram sub sample of the pulp is also analyzed by the FA430 method, with involves dissolving fusing the material with a lead based flux, dissolving the resultant dore (Au-Ag alloy) bead in acid and determining the Au content of the analyte by AAS. Any samples returning results over 10 g/t Au are analyzed by the FA530 method which uses a similar fusion technique as the FA430 method, but the Au is parted from the dore bead by dissolving it in nitric acid and the final amount of Au is determined gravimetrically.

7 IP Survey

7.1 Introduction

White Gold Corporation (WGO) headquartered in Toronto, ON commissioned GroundTruth Exploration Inc. (GroundTruth) headquartered in Dawson City, YT to complete high resolution resistivity and induced polarization (RES/IP) surveys on three different areas on the Brew (BRW) property during the 2017 field season.

The purpose of the RES/IP survey is to identify geological structure and delineate extent of mineralized zones that are indicated by soil anomalies. This report details the results of the RES/IP surveys. Additional surveying and interpretation is left to WGO's discretion.

The three grid zones that are investigated on the Brew property are located within the Northwest corner of the property on adjacent ridgelines (see Figure 5). Note that Zone 1 is composed of 4 survey lines (BRWIP17-01 - BRWIP17-04), Zone 2 is composed of 3 survey lines (BRWIP17-05 - BRWIP17-07), and Zone 3 is composed of 5 survey lines (BRWIP17-08 - BRWIP17-12). Maps of the grids for each zone are shown in Figures 6, 11, and 15, respectively.

Figure 5: Overview map of Brew 2017 RES/IP grid zones. Zone 1 = lines 1-4; Zone 2 = lines 5-7; Zone 3 = lines 8-12.

7.2 Survey Theory

Resistivity and Induced Polarization surveys are an appropriate approach to lode-source gold exploration in Yukon Territories because of the resistivity contrasts inherent to the mineralization and geological structures that are associated with gold deposits. The non-invasive nature of RES/IP combined with its cost efficiency make it a valuable contribution to exploration efforts.

RES/IP surveys involve current injection from the ground surface to induce an electric field that is a function of the conductivity distribution in the subsurface. A current injection typically uses one sink electrode and one source electrode. A measurement of potential field is then acquired across two electrodes that are different from the current electrodes. Hundreds of potential field measurements are made at intervals along the RES/IP traverse for successive current injections to generate the final raw profile of apparent subsurface resistivity.

There are a wide number of array types used to perform RES/IP surveys, each involving a different configuration of current and potential electrodes. Different arrays have strengths and weaknesses in regards to the time necessary to complete the survey and the measurement sensitivity to vertical or horizontal subsurface features. GroundTruth utilizes an extended dipole-dipole array for the BRW project to adequately image the target zones. Details on the extended dipole-dipole array can be found in Appendix C.

7.2.1 Field Survey Operating Procedure

A crew of 5 GroundTruth personnel sets up and operates each survey. Brief operating procedures are as follows:

- 1. The midpoint of a traverse is located and the length of the line is sighted using a compass and GPS.
- 2. Minimal brush is cut along the line to place pickets and set up equipment.
- 3. 84 electrodes are diligently inserted into the ground, equivalently spaced along the line at 5m and hammered to a depth of 50cm (10% of electrode spacing).
- 4. Calcium Chloride (CaCl, 25% solution) is added to the base of all electrodes.
- 5. Cables are laid and connected to the electrodes.
- 6. Contact resistance test is conducted.
- 7. Extra electrodes and CaCl solution is added to each electrode with CR >2,000 Ohms. CR test is repeated.
- 8. Continue to add electrodes and CaCl until satisfactory CR values are achieved.
- 9. Operator initializes survey.
- 10. Operator uses DGPS and data collection software to document survey line parameters incl. electrode locations, topography, and notable geological/cultural features if present. Pickets are placed along the line every 50m.
- 11. Crew cuts and prepares the next survey line.

7.2.2 Data Processing

Immediately after each survey is completed in the field, the data measurements are downloaded and reviewed for integrity. Any field errors are thus addressed before moving the equipment. RES/IP datasets are processed daily by the lead operator using EarthImager2D software provided by Advanced Geosciences Inc. Outlier/noisy data are removed and the cleaned dataset is inverted. Terrain correction to the inversion mesh is applied from topographic measurements collected in the field using a differential GPS. All raw data from the DGPS and SuperSting are archived for future consultation.

7.3 Survey Personnel and Program Dates

7.3.1 Survey Personnel

The following table summarizes the GroundTruth personnel involved in completing the survey lines on each of the three Brew grid zones. Note that on Zone 3 the GroundTruth team was composed of four personnel, instead of the usual five.

Personnel	Position	Zone 1 (lines 1-4)	Zone 2 (lines 5-7)	Zone 3 (lines 8-12)
Jen Hanlon	Lead Geophysical Operator and Crew Chief	\checkmark	\checkmark	\checkmark
Pawel Kapa	Geo Technician	\checkmark	\checkmark	\checkmark
Andrew Truax	Geo Technician	\checkmark	\checkmark	√
Andrew Savage	Geo Technician	\checkmark	\checkmark	
Patrick Dunbar	Geo Technician	√	\checkmark	√

Table 1: Summary of GroundTruth personnel involved in the RES/IP data acquisition on the three Brew grid zones.

7.3.2 Program Dates

Zone 1 (BRWIP17-01 - BRWIP17-04):	
Mobilize	August 2 nd
Field Surveys	August 3 rd - August 5 th

Zone 2 (BRWIP17-05 - BRWIP17-07): Field Surveys

August 6th – August 7th

Zone 3 (BRWIP17-08 - BRWIP17-12): Mobilize Field Surveys

August 8th August 9th – August 12th

7.4 Zone 1 (BRWIP17-01 - BRWIP17-04)

7.4.1 Survey Summary

An overview of the RES/IP grid in the Brew Zone 1 is shown in Figure 6. Brief specifications about the survey lines are outlined below.

BRWIP17-01 - BRWIP17-04
84
5m
415m
Extended dipole-dipole

Zone 1 on the Brew property is located in an old burn and the ground surface is either bare or partially covered by grasses, shrubs, and low lying plant material. After saturating the electrodes with calcium chloride solution, the rich but sometimes rocky soil typically lead to sufficient contact resistance (CR) values ranging between 500–3,300 Ohms. In situations where one side of the traverse had better contacts than the other, the array measurement direction was chosen to read from low to high CR.

Figure 6: 2017 completed RES/IP grid on the Brew Zone 1.

7.4.2 Survey Results

The following figures display the inverted resistivity and induced polarization results along each traverse in grid Zone 1. Note that the depth of penetration of the IP results is generally less than the resistivity results.

Figure 7: BRWIP17-01 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B) Inverted IP (scale -10-75 ms).

Figure 8: BRWIP17-02 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B) Inverted IP (scale -10-75 ms).

Figure 9: BRWIP17-03 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B) Inverted IP (scale 0-75 ms).

Figure 10: BRWIP17-04 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B) Inverted IP (scale 0-75 ms).

7.5 Zone 2 (BRWIP17-05 - BRWIP17-07)

7.5.1 Survey Summary

An overview of the RES/IP grid in the Brew Zone 2 is shown in Figure 11. Brief specifications about the survey lines are outlined below.

Lines	BRWIP17-05 - BRWIP17-07
Number of Electrodes	84
Electrode Spacing	5m
Line Length	415m
Array	Extended dipole-dipole

Due to the small number of survey lines on Zone 2 of the Brew, daily helicopter access is provided to the grid from the field crew's initial camped position on Zone 1. This eliminates the need to use a mobilization day to tear down and set up a new camp. Ground cover on Zone 2 is an old burn with variable ground cover, including bare soil, rock, and mid-sized shrubs. Electrode contact resistance values in this zone are quite low, generally in the range of 400–1,500 Ohms. In situations where one side of the traverse had better contacts than the other, the array measurement direction was chosen to read from low to high CR.

Figure 11: 2017 completed RES/IP grid on the Brew Zone 2.

7.5.2 Survey Results

The following figures display the inverted resistivity and induced polarization sections along each traverse in grid Zone 2 on the Brew. Note that the depth of penetration of the IP results is generally less than the resistivity results.

2017

Figure 12: BRWIP17-05 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B) Inverted IP (scale 0-50 ms).

Figure 13: BRWIP17-06 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B) Inverted IP (scale 0-50 ms).

Figure 14: BRWIP17-07 sections. (A) Inverted resistivity (scale 250-10,000 Ohm-m). (B) Inverted IP (scale 0-50 ms).

7.6 Zone 3 (BRWIP17-08 - BRWIP17-12)

7.6.1 Survey Summary

An overview of the 2017 RES/IP grid in the Brew Zone 3 is shown in Figure 15. Brief specifications about the survey lines are outlined below.

Lines	BRWIP17-08 - BRWIP17-12
Number of Electrodes	84
Electrode Spacing	5m
Line Length	415m
Array	Extended dipole-dipole

Placement of the survey lines on the Brew Zone 3 grid maximize north-south and eastwest coverage of gold-in-soil anomalies and geological structures. On top of the ridge the terrain is similar to Zones 1 and 2; electrode contact resistances range between 1,000– 3,000 Ohms and extends to 5,000 Ohms in particularly rocky zones. Terrain closer to the valley (i.e. BRWIP17-08), however, is covered with substantially more talus. This lead CR values on this line to be higher, generally in the range of 3,000–10,000 Ohms.

2017

Figure 15: 2017 completed RES/IP grid on the Brew Zone 3.

7.6.2 Survey Results

The following figures display the inverted resistivity and induced polarization sections along each traverse in Zone 3 of the Brew. Note that the depth of penetration of the IP results can be notably less than the resistivity results.

Figure 16: BRWIP17-08 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B) Inverted IP (scale 0-75 ms).

Figure 17: BRW17-09 sections. (A) Inverted resistivity (scale 50-10,000 Ohm-m). (B) Inverted IP (scale 0-75 ms).

Figure 18: BRWIP17-10 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B) Inverted IP (scale 0-75 ms).

Figure 19: BRWIP17-11 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B) Inverted IP (scale 0-75 ms)

Figure 20: BRWIP17-12 sections. (A) Inverted resistivity (scale 100-10,000 Ohm-m). (B) Inverted IP (scale 0-75 ms).

7.7 IP Survey: Description of Files and File Structure

This section explains the file naming structure and data content for each project.

Each RES/IP traverse has a unique **Line ID** created by combining: (1) the three letter project code for the property or zone, (2) an IP or RES data designation, (3) the last two digits of the year the survey was read, and (4) an identifying number for the traverse within each property or zone.

Example: ALBIP17-01, where ALB is the project code, IP is the type of data collected, 17 represents the year 2017, and 01 means that this is the first RES/IP dataset acquired on this property.

Each array dataset has a unique **Data File ID**. This ID is comprised by the date (yy-mmdd), the first letter of the array type used (e.g. D for dipole-dipole or W for Wenner), and the number of times this array has been used that day.

Example: 170813D1

File Structure and Content:

- DATA
 - L Line ID

- Figures
 - figures of merged data pseudosections and inversions
- GPS
 - Contains the DGPS raw data
- Pictures
 - Pictures along the line
- RAW
 - IP (data with IP data-misfits removed)
 - **RES** (data with RES data-misfits removed)
 - unprocessed data from SuperSting unit
- XYZ
 - Inverted data for RES and IP saved in XYZ format
- TRN

7.8 IP Survey: E SuperSting R1/IP technical specification

Measurement modes	Apparent resistivity, resistance, self potential (SP), induced polarization (IP), battery voltage
Measurement range	+/- 10V
Measuring resolution	Max 30 nV, depends on voltage level
Screen resolution	4 digits in engineering notation
Output current	1mA – 2 A continuous, measured to high accuracy
Output voltage	800 Vp-p, actual electrode voltage depends on transmitted current and
	ground resistivity
Output power	200 W
Input gain ranging	Automatic, always uses full dynamic range of receiver
Input impedance	>20 MΩ
SP compensation	Automatic cancellation of SP voltages during resistivity measurement.
	Constant and linearly varying SP cancels completely.
Type of IP measurement	Time domain chargability (M), six time slots measured and stored in memory
IP current transmission	ON+, OFF, ON-, OFF
IP time cycles	0.5, 1, 2, 4 and 8 seconds (combined resistivity/IP mode)
Measure cycles	Running average of measurement displayed after each cycle. Automatic
	cycle stop when reading errors fall below user set limit or user set max cycles
	are done.
Resistivity time cycles	Basic measure time is 0.4, 0.8, 1.2, 3.6, 7.2 or 14.4 seconds as selected by
	user via keyboard, autoranging and commutation adds about 1.4 s.
Signal processing	Continuous averaging after each complete cycle. Noise errors calculated
	and displayed as percentage of reading. Reading displayed as resistance
	$(\Delta V/I)$ and apparent resistivity (Ωm). Resistivity is calculated using user
	entered electrode array coordinates.
Noise suppression	Better than 100 dB at f>20 Hz
	Better than 120 dB at power line frequencies (16 2/3, 20, 50 and 60 Hz) for
	measure cycles of 1.2 s and above
Total accuracy	Better than 1% of reading in most cases (lab measurements). Field
	measurement accuracy depends on ground noise and resistivity. Instrument
	will calculate and display running estimate of measuring accuracy.
System calibration	Calibration is done digitally by the microprocessor based on correction
	values stored in memory.
Supported manual	Resistance, Schlumberger, Wenner, dipole-dipole, pole-dipole, pole-pole,
	SP-absolute, SP-gradient
Operating system	Stored in re-programmable flash memory. New version can be downloaded
	from our web site and stored in the flash memory.
Data storage	Full resolution reading average and error are stored along with user entered
	coordinates and time of day for each measurement. Storage is effected
	automatically in a job oriented file system
Data display	Apparent resistivity (Ohmmeter), injected current (mAmp) and measured
	voltage (mVolt) are displayed and stored in memory for each measurement
Memory capacity	The memory can store 24,468 measurements in Resistivity Mode and
	14,966 measurements in combined Resistivity/IP Mode

Data transmission	RS-232C channel available to dump data from the instrument to a Windows type computer on user command.
Automatic multi-electrodes	The SuperSting is designed to run dipole-dipole, pole-dipole, pole-pole, Wenner and Schlumberger surveys including roll-along surveys completely automatic with the Swift Dual Mode Automatic Multi-electrode system (patent 6,404,203) or with switch box and passive cables. The SuperSting can run any other array by using user programmed command files. These files are ASCII files and can be created using a regular text editor. The command files are downloaded to the SuperSting RAM memory and can at any time be recalled and run. Therefore there is no need for a fragile computer in the field.
Manual measurements	The instrument has four banana pole screws for connecting current and potential electrodes during manual measurments
User controls	20 key tactile, weather proof keyboard with alpha numeric entry keys and function keys. On/off switch. Measure button. LCD night light switch (push to light).
Display	Graphics LCD display (16 lines x 30 characters) with night light.
Power supply, field	12V or 2x12 V DC external power (one or two 12 V batteries), connector on front panel.
Power supply, office	DC power supply
Operating time	Depends on survey conditions and size of battery used. Internal circuitry in auto mode adjusts current to save energy
Operating temperature	-5 to +50°C
Weight	10.9 kg (24 lb.)
Dimensions	Width 184 mm (7.25"), length 406 mm (16") and height 273 mm (10.75")

7.9 IP Survey: Extended Dipole-Dipole Array

The extended dipole-dipole array provides extended data coverage of the standard dipole-dipole array. The electrode configuration for dipole-dipole is shown below, where the current electrodes (A and B) and potential electrodes (M and N) are equivalently spaced by "a", and separated by a factor "n" times the spacing "a". A measurement of apparent resistivity can be calculated using the equation below the figure, where V = potential difference (V), I = current (Amp), and ρ_A = apparent resistivity (Ohm-m).

Penetration depth of the extended dipole-dipole array (measurement locations shown below) is approximately 14 times the electrode spacing, which is equivalent to 70m using 5m electrode spacing, but is also dependent on: (1) the actual distribution of subsurface resistivity, and (2) the best achievable contact resistance values between the electrodes and the ground. The figure below shows the measurement locations (in pseudo depth) for an extended dipole-dipole array using 84 surface electrodes.

8 GT Probe Program

8.1 Introduction

A total of 388 GT Probe samples were collected over 7 lines on the Brew Property in 2017. Sampling took place on July 12-27 2017.

8.2 Personnel

The survey was conducted by the following GroundTruth Exploration personnel:

1. Jason MarwickGT Probe Operator2. Martin BrouillardGT Probe Assistant3. Dillon LangelaanGT Probe Sampler

8.3 GT Probe Sampling Survey Procedure

The GT Probe a direct push sampling rig mounted on low ground pressure rubber tracks. The rig is driven between sampling sites via wireless remote control and the operator drives a 3 $\frac{1}{2}$ " cased sampling rod to the bedrock interface and pulls up the sample. The Direct push drill is a Geoprobe® MT 540 which has been fitted onto the ground mobile platform designed by Tao Henderson of GroundTruth Exploration Inc.

As the GT Probe sampling rig is ground mobile and on light rubber tracks that significantly reduce ground disturbance, the method is a vast improvement over trenching for bedrock interface mineralization with respect to environmental concerns and is also more productive (~50-75 m/day trenching production vs ~200 m/day GT Probe sampling at 5m spacing). Additionally, the work is classified as Mining Land Use class one activity, and the activities are non-invasive so no reclamation is necessary.

Figure 2 – GT Probe

8.4 GT Probe Survey Results

A location map of GTProbe collected in 2017 is shown below in Figure 22.

Figure 22: Location of 2017 GT Probe Samples. Gold in Soil samples for reference.

Maps shown below are plotted with break points at 80th, 90th, 95th, 98th and 99th percentile for all 2017 samples.

The 2017 GT Probe program was designed to confirm the presence of gold in bedrock below highly anomalous soil samples. This program was successful, on every line, anomalous low grade gold was intersected coincident with anomalous gold in soil results. Of the 388 samples collected, 11 returned values greater than 100ppb Au from fire assay and 2 returned values greater than 1 g/t Au (2.4, 1.41 g/t Au). The highly anomalous samples are characterized by high concentrations of quartz veining throughout the samples.

Figure 23: GT Probe Au over gold in soil, Brew property

Figure 24: GT Probe As, Brew property

597000.000

596500.000

Figure 25: GT Probe Mo, Brew property

596500.000

7007500

8

9

7000.000

7006500.000

0 - 4.4

.

.

597500.000

4.4 - 6.6

6.6 - 10.095

10.095 - 17.4

17.4 - 27.619

> 27.619

< 54.76

600000.000

54.76 - 72.66 (80th Percentile)

110.15 - 134.764 (98th Percentile)

600500.000

• 72.66 - 87.4 (90th Percentile)

• 87.4 - 110.15 (95th Percentile)

> 134.764 (99th Percentile)

.

.

Figure 26: GT Probe Cu, Brew property

9 RAB Drilling Program

9.1 Introduction

GroundTruth drilled 9 Rotary air blast (RAB) holes (804.67m) between August 31 and September 10, 2017. Drillholes were targeting gold bearing structures identified in preceding soil sampling, GT Probe, and IP Surveys.

Hole ID	Easting (m)	Northing (m)	Elevation (m)	Azimuth	Dip	End Depth (m)
17BRW001	596726.4	7006870.8	836.691	50	-60	100.584
17BRW002	596690.5	7006832.4	828.452	50	-60	100.584
17BRW003	596629.2	7006914.4	832.441	50	-60	100.584
17BRW004	596758	7006888	838.085	220	-60	100.584
17BRW005	596801	7006795	829.027	50	-60	100.584
17BRW006	596865	7006723	819.527	50	-60	96.012
17BRW007	596765	7006757	812.894	50	-60	88.392
17BRW008	596899	7006651	806.016	50	-60	68.58
17BRW009	597036	7006589	776.172	50	-60	48.768

A table of hole locations is shown below:

9.2 Personnel

The survey was conducted by the following GroundTruth Exploration personnel:

1. Devin Tabbert	Lead Driller
2. Ankit Kharb	Assistant Driller
3. Zacharary Moore	RAB Geo Technician

9.3 RAB Drill Overview

The RAB Drill (Rotary Air Blast) is a remotely driven tracked platform with a tilting mast and rotary drill head. The RAB Drill has 1650 sq. inches of track coverage with less than 1.0 psi ground pressure allowing it to be extremely versatile and low impact in the field. The entire unit is powered by a 60hp Turbo charged Kubota diesel engine and is completely air / hydraulically operated. Each drill hole is cased from surface to bedrock and entire sample is collected. Once the casing is seated into bedrock then an open hole hammer is used to penetrate into bedrock. Rock chip sample size is 1/4 - 3/8" and is analyzed and catalogued into chip trays by our onsite Geotech XRF Technician. Each sample location is surveyed by DGPS. Sample location database and plotted XRF results available to client next day.

RAB Setup:

Average production is 100m/day sampled at 1.5m intervals using stationary 300/200 air compressor with layflat hose giving the RAB a 500m drilling radius around Stationary 300/200 air compressor without use of helicopter.

- 2 sling loads RAB
- 2 sling loads Drill Rods (100m)
- 1 sling load Layflat Air Hose

RAB Drill Technical Specifications

- Length 96"
- Width 50"
- Height 80"
- Weight 3400 lbs
- Pull Back Force 16,200 lbs
- Onboard Air Compressor 150cfm @ 175psi
- Working Angle 45 to 90 degree
- Less than 1.0 psi ground pressure
- 60hp Turbo Charged Kubota
- Hydrostatic Drive
- Wireless Remote Driving Capability
- 2 sling loads with Astar Helicopter

Stationary 300/200 Air Compressor

- Length 72"
- Width 32"
- Height 60"
- Weight 1750 lbs
- 1 sling load with Astar Helicopter

<u>Tooling</u>

- Diameter of bit 90mm
- Drill rod length 1.5m
- 50m capacity in rod basket
- 1 sling load with Astar Helicopter

XRF – Innovex X-5000 bench top XRF (for use at GT Headquarters)

Survey GPS – Ashtech PROMARK 100 GPS

Data Processing - Laptop computer

Satellite Internet – Portable Satellite Internet for nightly data downloads.

The following outlines the standard operating procedures used to collect rock chips and soil samples which have been extracted by the RAB. This describes the methodology behind the RAB Drill Survey based on Yukon Projects conducted during the 2015 field season.

RAB Drill Sampling:

- **1.** Planned drill collar location is brushed out and RAB Drill is setup.
- 2. Sampling Technician sets up sampling station at drill.
- **3.** Once RAB Drill is in position and setup, the operator drills casing into ground in 1.5m lengths.
- **4.** Sample Bucket (5 gallon) is filled from cyclone, 4 7 minutes average frequency.
- 5. Sample is poured into 8:1 splitter
- 6. Retention Sample is put into a 5 gallon bucket from splitter and a portion is bagged in 12x20 ore bag, Sample ID, Hole ID and Interval written on Sample ID with marker and sealed with zip tie with external Sample ID attached, 5lbs weight. Excess retention is then discarded.
- **7.** Analytical Sample is bagged in 12x20 ore bag , Sample ID Barcode inserted into bag and sealed with zip tie with external barcode Sample ID attached, 5lbs weight
- 8. Buckets and Splitter cleaned with pressurized air.
- 9. Chip Tray chips are collected from Retention bucket using a small plastic container.
- **10.** Chips are then poured into 'dry' wire sieve to discard fine portion, the coarse material in dry strainer is poured into a second 'wet' sieve and washed in a 5 gallon bucket of water.
- **11.**Once chips have been washed with 'wet' sieve, a smaller portion is catalogued in a chip tray with Sample ID and Interval marked.
- **12.** Soil is collected from retention and put into a 40gram bag with sample ID written on bag for XRF analysis back at HQ using Bench-Top XRF in 3 beam (20sec-20sec-20sec) mode directly through sample bag.
- **13.** Analytical Sample Barcode ID is entered into laptop with interval/descriptive info logged.
- **14.** Analytical sample is placed into rice bag with client, Project code, Bag Series and number of samples written in marker on bag, 10 samples per bag then rice bag is sealed with zip tie and then security zip tie and ready for shipment.
- 15. Receive next sample.

RAB Drill Sampling Shift Schedule (12 hours):

- 1. Receive and set up sampling tent near new site while drill is being setup.
- 2. Collect Samples and log while drill is operating.
- 3. At end of shift all analytical samples are placed into rice bag with client, Project code, Bag Series and number of samples written in marker on bag, 10 samples per bag then rice bag is sealed with security zip tie and ready for shipment.
- 4. All retention samples are put into rice bags with client, Project code, Bag Series and number of samples written in marker on bag, 10 samples per bag then rice bag is sealed with zip tie and brought back to HQ for storage

RAB Drill Sampling Gear and Sampling Supplies Required at Site:

(not including actual RAB drilling gear).

- 1. Laptop for data download and logging .
- 2. 8x10 Wall Tent with poles, tie-down ropes/rebar stakes, Table, 2 chairs and kerosene heater.
- 3. Kerosene (20I) and Generator gas (20I), Generator spark plug/wrench and 1I 5w30 oil., 20I water.
- 4. 5 gallon buckets (4 for sample from cyclone, 1 for receiving retention from splitter, 1 filled with water to wash logging samples)
- 5. 2 metal wire sieves w/handles.
- 6. Rubber mallet to dislodge material in splitter
- 7. PPE: Hard Hats, Ear Protection, Eye protection, Masks

Sampling Supplies:

- 1. 12"x20" Ore bags: Retention Sample (65 required for 12h, 100m of drilling)
- 2. 12"x20" Ore bags: Analytical Sample (65 required for 12h, 100m drilling + QAQC samples)
- 3. Barcode Sample ID Tags (65 required for 12h)
- 4. Standard Zip Ties , 5": Retention + Analytical Samples (130 required for 12h, 100m drilling)
- 5. Rice Bag (6 for retention, 6 for analytical required for 12h, 100m of drilling)
- 6. Security Zip Ties for Rice Bag (6 required for 12h, 100m of drilling)
- 7. Chip trays (3 20 slot chip trays required for 12h, 100m drilling)

9.5 Optical Televiewer

The Optical Televiewer Instrument is a downhole imaging tool which provides a 360 degree image of the outer wall of any borehole filled with air or clear water. The tool also provides a high resolution downhole magnetic, inclinometer, gravity survey which provides an azimuth and dip survey throughout the borehole. The tool is operated via an electric winch which lowers the tool into a borehole, data is viewed in real time via laptop. The Data is recorded into a tfd file which can later be used for structural interpretation, geological logging in WellCAD software.

Downhole surveys tables and pdf images of surveyed holes are located in appendix D. Entire drillholes or portions of drillholes may not be surveyed due to ground conditions which can risk losing or damaging equipment.

9.6 RAB Drill Results

Figure 27: 2017 Brew Drillhole Location map, GTProbe, IP Lines for reference.

A table of salient assays >0.1 g/t Au is shown below. All nine drill holes intersected primarily quartz mica schist with variable amounts of quartz veining. All of the mineralization intersected in this drill program was low grade (<0.3g/t Au). Each zone of mineralization was characterized by an increase in quartz veining.

Hole	From (m)	To (m)	Au (g/t)	Interval (m)
17BRW001	0	7.62	0.259	7.62
17BRW001	15.24	22.86	0.2298	7.62
17BRW001	47.244	48.768	0.138	1.524
17BRW002	65.532	67.056	0.133	1.524
17BRW002	70.104	71.628	0.12	1.524
17BRW003	10.668	12.192	0.27	1.524
17BRW003	16.764	22.86	0.121	6.096
17BRW003	60.96	62.484	0.136	1.524
17BRW004	18.288	19.812	0.104	1.524
17BRW004	30.48	38.1	0.15	7.62
17BRW004	42.672	45.72	0.1615	3.048
17BRW004	50.292	60.96	0.196	10.668
17BRW004	82.296	85.344	0.1195	3.048
17BRW004	99.06	100.584	0.103	1.524
17BRW005	9.144	15.24	0.208	6.096
17BRW005	18.288	19.812	0.116	1.524
17BRW005	45.72	47.244	0.115	1.524
17BRW006			nsv	
17BRW007			nsv	
17BRW008			nsv	
17BRW009			nsv	

10.1 Introduction

50km² of XCAM survey at 10cm resolution was completed on July 22, 2017. This survey produced an orthophoto and terrain elevation model over the property.

The XCam pod is a plastic pod containing two cameras set to capture a panoramic shot. The pod is mounted onto bar attached a strut on the plane (Figure 28). The bar is parallel to the wing, which will be parallel to ground in flight, but angled slightly upwards on the ground since the plane is a tail-dragger. The pod is attached with two ring to a curved metal plate on the bar.

Figure 28: XCAM Mounted to airplane strut.

Inside the pod are two Canon cameras and a single usb hub. The cameras are both connected to the hub which is connected to a microcontroller to the rear ports. These ports connect cables (usb and coaxial) to the external GPS unit mounted to the top of the wing, the external batter, and the tablet: the latter two situated inside the plane. The GPS is connected to the microcontroller first to provide location data for the photo metadata. Inside the plane is the tablet, two external camera batteries, and in inverter. The pod does not have an internal power source and can not run off power from the plane, instead custom batteries are used.

The tablet contains software to create and view missions live as they are being surveyed. It has software to utilize the external GPS and provide heading corrections to ensure correct coverage and overlap of photos. It is also possible to view the camera image live via the

tablet and Canon software. All the mission parameters (ie. target area, elevation, flight lines) are chosen with mission creation and can not be changed during a mission. The only settings that can be altered without creating a new mission are camera settings (ie. shutter speed, f-stop, and ISO).

10.2 XCAM Survey Results

The 2017 drone survey covered the entire Brew claim block. The orthorectified image resulting from the drone survey is shown below in Figure 29.

Figure 29: Orthophoto from the 2017 XCAM Survey of the Brew Property.

11 Dighem Survey Program

11.1 Introduction

This report describes data acquisition and preliminary data processing results of 2017 airborne frequency domain electromagnetic FDEM and magnetic survey. The survey has been carried out by CGG Canada Services. GroundTruth Exploration was commissioned by White Gold Corp, Toronto, ON to plan the airborne survey and process the data.

Between August 8 and August 12, 2017, airborne-electromagnetic (AEM) and airborne-magnetic (AM) surveys were completed over Brew claims located in the Yukon Territory. This survey is a part of a comprehensive airborne FDEM and magnetic survey completed in order to target future exploration on the property. Dawson City, Yukon was the base of operations. The airborne-geophysical surveys were undertaken using the DIGHEM frequency-domain system.

11.2 Purpose and Scope

The primary purpose of completing AEM and AM geophysical surveys is to determine the spatial distribution of subsurface electrical and magnetic properties of rocks. This, in turn, will allow the characterization of geophysical signatures for zones of mineralization and support geological models and structural mapping.

11.3 Survey Description

Block 602997-52 of the DIGHEM 2017 survey cover some target areas on the Brew property. Total coverage of the survey block amounted to 214.7 line-km.

Data were acquired using a multi-coil, multi-frequency electromagnetic system, supplemented by a high-sensitivity cesium magnetometer. A GPS electronic navigation system ensured accurate positioning of the geophysical data with respect to the base map coordinates. The outline of survey areas and layout of flight lines are shown in Figure 30.

Block-52 was flown in an azimuthal direction of NE-SW (NE 40°) with line spacing 100m, and SE-NW (NE 130°) with tie lines spacing 1500m. Survey coverage consisted of 195.9 line-km of traverse lines and 18.8 line-km of tie lines. The coordinates of the corner points of the survey blocks are presented in Table 1. Flight line numbers and total line-kilometers are summarized in Table 2 (after CGG report #602997, Oct. 6, 2017).

Figure 30: Location of airborne FDEM and Mag survey 2017 on Brew property.

Table 1. The coordinates of the comer points of the survey blocks.						
Block	Corners	X-UTM (E)	Y-UTM (N)			
602997-52	1	599866	7002219			
Brew	2	595254	7006084			
	3	597189	7008388			
	4	601801	7004523			

Tahle	1.	The	coordinates	of the	corner	noints	of the	SURVA	hlocks
Iable	۰.	me	coordinates	or the	COLLEI	points	or the	Suivey	DOCKS.

Table 2: Flight lines and line kilometers.

Block	Line Numbers	Line direction	Line Spacing	Line km
Block-52	520010-520610	NE-SW (40°)	100 metres	195.9
Brew	529010-529030	SE-NW (130°)	1500 metres	18.8

During the survey GPS base stations were set up to collect data to allow postprocessing of the positional data for increased accuracy. The location of the GPS base stations are shown in Table 3 (after CGG report #602997, Oct. 6, 2017).

Location Name	WGS84 Longitude (deg-min-sec)	WGS84 Latitude (deg-min-sec)	Orthometric Height (m)	Date
Dawson City	139° 25' 34.30630" W	64° 03' 41.59730" N	336.380	31-Oct-16
Dawson City Airport	139° 06' 46.0395" W	64° 02' 51.1498" N	381.961	22-May-17
Camp	139° 25' 22.0172" W	63° 04' 00.3615" N	422.181	28-Aug-17

Table 3: GPS Base Station Location.

The location of the Magnetic base stations are shown in Table 4 (after CGG report #602997, Oct. 6, 2017).

Station Leastin	Location Name	WGS84 Longitude	WGS84 Latitude	Date
Station		(deg-min-sec)	(deg-min-sec)	
A	Dawson City , Yukon	139° 25' 49.22633" W	64° 03' 0.91004" N	31-Oct-16

В	Dawson City , Yukon	139° 25' 48.72540" W	64° 03' 1.10627" N	23-Nov-16
С	Dawson City , YukonAirport	139° 7' 47. 4005" W	64° 02' 25.8578" N	22-May-17
D	Dawson City, Yukon	139° 7' 47.4087" W	64° 02' 25.7904" N	22-May-17
D	Camp	139° 25' 19.572" W	63° 04' 3.144" N	5-Aug-17
E	Camp	139° 25' 19.13448" W	63° 04' 3.00396" N	5-Aug-17

11.4 Survey Theory

11.4.1 Electromagnetic surveys

Electromagnetic (EM) methods can be used to map subsurface variability in electrical properties caused by changes in lithology, structure, alteration, and contamination due to mining activity. These methods are sensitive to low resistivity targets and thus can be used to map the location and moderately conductive bodies. The depth of investigation can range from less than a few tens through hundreds of meters depending on amounts of subsurface conductivity and applied frequency. Resolution of targets and detectability tend to decrease with increasing depth of burial.

The data include in-phase and quadrature components for each frequency. The electrical conductivity of rocks can be modeled by inversion of electromagnetic data. 2D grids and derivative products provide information for mapping lithological and structural features or linear conductors.

In EM surveys, a transmitter generates a time-varying electromagnetic field in the earth, known as the primary field. This field gives rise to small time-varying voltages in the earth. Where the earth is conductive, the voltages drive small time-varying flows of current, which give rise to electromagnetic fields of their own called secondary fields. EM surveys measure the earth's willingness to conduct electricity, or conductivity in siemens/m. The higher the conductivity, the more current will flow in the earth for a given electrical field strength.

Any time-harmonic signal can be expressed by an amplitude factor times an oscillating term of a sinusoidal function. We denote the transmitter current as

 $I_o cos\omega t$, which indicates a peak current I_o and a fixed angular frequency ω . According to Biot-Savart's law, the primary magnetic field generated by this current is $H_p cos\omega t$, where H_p can be determined using the distance from the transmitter to an observation point in the whole-space, and the primary field is entirely in-phase with the transmitter current. Then the primary field induces eddy currents in the subsurface. In most cases, this induced current is no longer in-phase with the primary and usually bears a phase lag ψ . So the secondary magnetic field due to the induction has the form $H_s cos(\omega t - \psi)$, where the amplitude H_s is determined by the distance and geometric coupling. Finally, at the location of the receiver, we can observe the primary field $H_p cos\omega t$ the phase-lagged secondary field $H_s cos(\omega t - \psi)$.

An FDEM system in practice only measures the secondary field $H_s cos(\omega t - \psi)$. The convention in FDEM is to use the primary field $H_p cos\omega t$ as the reference to describe the secondary field data. First, the secondary field is considered as a linear combination of two orthogonal sinusoidal signals

$H_s cos(\omega t - \psi) = H_s cos(\psi) \cdot cos(\omega t) + H_s sin(\psi) \cdot sin(\omega t)$

where $cos(\psi).cos(\omega t)$ represents a signal in-phase with the source and $sin(\psi).sin(\omega t)$ represents a signal out of phase with the source. The first term is also called "real" and the second term "imaginary" or "quadrature". Next, the amplitudes of the two sinusoidal signals are normalized by the amplitude of the primary field at the receiver to obtain the data in real and imaginary components. Figure 31 shows primary and secondary fields, transmitter and receiver. The normalization provides significant convenience, as it eliminates the need for timing the measured signals and the effect of the transmitter and receiver's dipole moments. Because the data are relative quantities, they are expressed in percent or most often in parts per million (ppm).

Figure 31: A time-varying electrical current generates a primary magnetic field which induces secondary currents in the subsurface, and creates the secondary magnetic field. Both the primary and secondary fields reach the receiver (2017, GeoSci Developers).

11.4.2 Magnetic surveys

Magnetic is the most commonly used geophysical method for gold, diamond, platinum group metals and base metal exploration. Measurements of the magnetic field contain information about subsurface variations in magnetic susceptibility. Data can be acquired in the air (planes, satellites), on the ground (stationary, moving platforms, marine) and underground (boreholes, tunnels). The measurements record the sum of Earth's field and fields induced in magnetic materials. More magnetic (i.e. susceptible) materials have stronger induced fields. Removing Earth's field from the observations yields anomalous fields that can be interpreted in terms of where magnetic material lies and also its susceptibility and shape. Processed data are presented as maps or profiles, and advanced processing, involving inversion, yields parametric structures or 3D models of the subsurface susceptibility distribution.

Magnetic surveying is extremely versatile and can be applied in many areas in the geosciences including geologic mapping and mineral exploration. In gold exploration, magnetics helps in direct detection of associated mineralization and for mapping large- and local-scale structure (faults, dikes, and shear zones).

To a first approximation, Earth's magnetic field resembles a large dipolar source with a negative pole in the northern hemisphere and a positive pole in the southern hemisphere. The dipole is offset from the center of the earth and also tilted. The north magnetic pole at the surface of the earth is approximately at Melville Island. The field at any location on the Earth is generally described in terms described of magnitude |B|, declination D and inclination I as illustrated in Figure 32.

When the magnetic source field is applied to earth materials it causes the material to become magnetized. Magnetization is dipole moment per unit volume. This is a vector quantity because a dipole has a strength and a direction. For many cases of interest, the relationship between magnetization M and the source H (earth's magnetic field) is given by:

$M = \kappa H$

where κ is the magnetic susceptibility. Thus the magnetization has the same direction as the earth's field. Because Earth's field is different at different locations

on the earth, then the same object gets magnetized differently depending on where it is situated. As a consequence, magnetic data from a steel drum buried at the north pole will be very different from that from a drum buried at the equator.

The magnetic field that results from the magnetized earth is evaluated with the equation:

$$B_A = \frac{\mu_0}{4\pi} \int_V M \cdot \nabla^2 \left(\frac{1}{r}\right) \, dV$$

where μ_0 is the magnetic permeability of free space, M is the magnetization per unit volume V, and r defines the distance between the object and the location of the observer. This magnetic field is referred to as the "secondary" field or sometimes the "anomalous" field B_A . For geological or engineering problems, these anomalous fields are the data to be interpreted, and this is what we seek to measure.

When the magnetization is governed by the linear relationship (1) then the above anomalous field can be written as:

$$B_A = \frac{\mu_0}{4\pi} \int_V \kappa H_0. \, \nabla^2 \left(\frac{1}{r}\right) \, dV$$

where (·) is a vector inner product. This means that B_x is the projection of the vector B onto a unit vector in the *x*-direction. Similar understandings exist for B_y and B_z .

Figure 32: Earth's magnetic field, declination (D) and inclination angles (2017, GeoSci Developers).

11.5 Field Survey

Details of system information and survey parameters including aircraft, geophysical equipment, quality control and in-field data processing are presented in Appendix-A of this report.

11.6 Deliverables

Report in pdf format

AIRBORNE FDEM AND MAGNETIC SURVEY for Brew Project, January 2018

Database in Geosoft format

602997_Archive-52.gdb

Maps in pdf format

DGM2017_BRW_AppResisivity900Hz_Blk52.pdf DGM2017_BRW_AppResisivity1000Hz_Blk52.pdf DGM2017_BRW_AppResisivity5500Hz_Blk52.pdf DGM2017_BRW_AppResisivity7200Hz_Blk52.pdf DGM2017_BRW_AppResisivity56kHz_Blk52.pdf DGM2017_BRW_TMI_Blk52.pdf DGM2017_BRW_Flight_Lines_Blk52.pdf DGM2017_BRW_LocationMap.pdf Apparent resistivity map at freq. 900 Hz Block-52 Apparent resistivity map at freq. 1000 Hz Block-52 Apparent resistivity map at freq. 5500 Hz Block-52 Apparent resistivity map at freq. 7200 Hz Block-52 Apparent resistivity map at freq. 56 kHz Block-52 Total Magnetic Intensity Block-52 DIGHEM 2017 Flight Lines Block-52 Location Map

12 Discussion and Interpretation

12.1 IP Survey

11.1.1 Zone 1 Interpretation

Interpretation of 2-D resistivity and induced polarization surveys first requires identifying anomalous zones that are caused by real subsurface electrical boundaries versus those that are artefacts formed during the inversion process. Real anomalous zones will trend between adjacent RES/IP lines and show correlation with crossline data. This section provides a brief qualitative description of the electrical conductivity and chargeability anomalies that trend between the RES/IP sections presented in section 4.2. Figure 33 shows a better visual representation of these sections in the grid area.

The resistivity sections show an extensive lateral resistive anomaly that undulates approximately mid-depth in the images and disappears in BRWIP17-04. The layer has highest resistivity on the NE and SW side of the grid and tapers out in the middle. The IP sections show two zones of higher chargeability at depth on the NE and SW side of the grid. These two zones straddle a zone of low chargeability. Note that there are slight differences in the scale of the IP sections, making the background appear slightly more chargeable in BRWIP17-01 and BRWIP17-02 when compared to BRWIP17-03 and BRWIP17-04.

Similarities between the conductive and resistive units throughout Zone 1 of the Brew RES/IP survey lines inflicts confidence that these anomalies define a real subsurface electrical boundary. To further constrain this interpretation, it is recommended that known geological and geochemical information is incorporated. This will aid the interpreter to gain a better understanding of these anomalies and potentially aid them to find the geological structures and mineralized zones inherent to gold deposits.

11.1.2 Zone 2 Interpretation

Figure 34 shows a better visual representation of the RES/IP sections in the Brew Zone 2 grid area. The 2-D RES/IP surveys acquired in this area show similar zones of resistivity and chargeability. Most notably is that the southwest side of the grid is more resistive than the northeast side. The defining electrical boundary trends approximately north-south through the grid. Additionally, there are two correlating chargeability anomalies sandwiched between a zone of low chargeability that are located at depth. To further constrain this interpretation, it is recommended that known geological and geochemical information is incorporated about the site. This will aid the interpreter to gain a better understanding of these anomalies and potentially aid them to identify geological structures and mineralized zones inherent to gold deposits.

Figure 34: Brew Zone 2 RES/IP fence diagrams (A) resistivity profiles and (B) IP profiles.

12.1.3 Zone 3 Interpretation

Figure 35 shows a better visual representation of the RES/IP sections in the Brew Zone 3 grid area. The 2D RES/IP surveys in this zone show good agreement between the data inversions of parallel and adjacent lines. Comparing the sets of parallel lines (BRWIP17-09 and BRWIP17-10 compared to BRWIP17-11 and BRWIP17-12), there are two main resistivity anomalies in the center and SW side of the grid that overlay a conductive layer at depth. Adjacent lines show that the grid is more conductive to the east. Similarly the IP inversions show 2-3 main zones of high chargeability that trend through the grid. To further constrain this interpretation, it is recommended that known geological and geochemical information is incorporated about the site. This will aid the interpreter to gain a better understanding of these anomalies and potentially aid them to identify geological structures and mineralized zones inherent to gold deposits.

Figure 35: Brew Zone 3 RES/IP fence diagrams (A) resistivity profiles and (B) IP profiles.

12.2 GT Probe Survey

The 2017 GT Probe sampling program on the Brew property was successful in sampling anomalous Au and mineralization at the bedrock interface coincident with highly anomalous Au in soil samples. Two maps with interpreted mineralized trends based on GTProbe sampling at the main zone is shown below in Figures 36 and 37.

Figure 36: Interpreted mineralization at the Brew main zone from GTProbe data over IP.

Figure 37: Interpreted mineralization at the Brew main zone from GTProbe data over Resistivity.

12.3 RAB Drilling

The 2017 Brew drill program was successful in intersecting gold mineralization in near surface bedrock below anomalous gold in soil and bedrock interface samples. Drill intercepts greater than 1 g-m (g/t Au from Fire assay x interval in metres) are shown in the below table and plotted in plan view on Figure 38.

Holo	From	То	Au	Interval	a m
поје	(m)	(m)	(g/t)	(m)	g-111
17BRW001	0	7.62	0.259	7.62	1.97
17BRW001	15.24	22.86	0.2298	7.62	1.75
17BRW004	30.48	38.1	0.15	7.62	1.14
17BRW004	50.292	60.96	0.196	10.668	2.09
17BRW005	9.144	15.24	0.208	6.096	1.27

Figure 38: Plan view of drill intercepts >1g-m.

12.4 Dighem Survey

Survey flight lines of DIGHEM 2017 for Block 52 is shown in Figure 39, apparent resistivity maps for different frequencies are presented in Figure 40 through Figure 44. Total magnetic intensity map is presented in Figure 46. The data can be processed in advanced levels using inversion techniques, and be presented in 3D formats for detail analysis and visualization. This will ensure that 3D geological models respect a consistent structural, stratigraphic, and topological framework in addition to ensuring consistency between different geophysical models.

The combination of geophysical models and geological information allows some general correlations to be made. Commonly, the geologic setting of epithermal deposits includes faulted, fractured, and brecciated rocks. Predominantly, geophysical signatures of epithermal deposits for electrical resistivity and magnetic susceptibility can be characterized as:

- Short-wavelength magnetic anomalies are common over volcanic terranes because of variable magnetizations and polarizations. This pattern may contrast with an area of moderate to intense alteration that will display a longerwavelength low, often linear in the case of vein systems, caused by the destruction of magnetite. Local magnetic highs may be associated with intrusions. Magnetic lows will be associated with alteration, however, discriminating such lows from the background may be difficult on a deposit scale.
- Regional resistivity is generally low for weathered and altered rocks as compared to high resistivity typical of buried intrusions. A resistivity high flanked by resistivity lows is characteristic of a simple and idealized quartz vein system with associated argillic to propylitic alteration. However, there may be geologic structures and petrologic complications that distort this ideal picture. More generally, resistivity lows will be associated with: 1) Sulfides when concentrated and connected at about 5-percent volume or more, 2) argillic alteration, and 3) increased porosity related to wet, open fractures and brecciation. Resistivity highs will be associated with zones of silicification, intrusion, or basement uplifts.

The apparent resistivity maps of airborne FDEM survey (Figure 39 to Figure 44) allow the geological structures to be remapped based on their conductivity. The EM results define a pronounced S-N trending conductor, located at the southeast part of the block. This conductor is broken with another major feature striking SE-NW, it is more visible in higher frequency response. Also, these results help us to identify a moderately conductive body at the northwest part of the block. In general, it seems most likely that there is a set of partially subparallel SW-NE trending conductive features, which is mappable after more processing works.

The total magnetic intensity maps (Figure 45) show the magnetic field amplitude variation, which is within a range of about ±175nT near 56900nT for Block-52. Magnetic intensity is higher in the northwest part of the block relative to the southeast. There is also another high magnetic feature at the western edge of the block, striking SE-NW. The survey does not cover the area appropriately so not sure whether it is a high mag anomaly such as a magmatic dike, or a lithology contact. The magnetic results also define an S-N trending low mag linear feature, located at the southeast part of the block. This low mag is also broken across by some other low magnetic anomaly features, predominantly SE-NW trending. There looks a transition zone between low magnetic anomaly located at the southeast and high magnetic anomaly located at northwest of the block.

The lineament interpretations of EM and magnetic results can better identify lithological and structures features, as well as, the fracture zones. Advanced inversion modeling and interpretation of EM and magnetic data is recommended for detailed, and property scale explorational targeting works. Study of regional magnetic grids is recommended.

Figure 39: Flight line of DIGHEM 2017 survey, Brew Block 52.

Figure 40: Apparent resistivity map at frequency 56 kHz from airborne DIGHEM survey 2017, Brew property Block-52.

Figure 41: Apparent resistivity map at frequency 7200 Hz from airborne DIGHEM survey 2017, Brew property Block-52.

Figure 42: Apparent resistivity map at frequency 5500Hz from airborne DIGHEM survey 2017, Brew property Block-52.

Figure 43: Apparent resistivity map at frequency 1000Hz from airborne DIGHEM survey 2017, Brew property Block-52.

Figure 44: Apparent resistivity map at frequency 900 Hz from airborne DIGHEM survey 2017, Brew property Block-52.

Figure 45: Total Magnetic Intensity from airborne DIGHEM survey 2017, Brew property Block-52.

12.5 Interpretation

Gold mineralization encountered in drilling at the Brew main zone is delineated by NW striking gold in soil anomalies at surface and by Resistivity highs and IP lows (Figures 36, 37) in the subsurface. Mineralization is encountered at multiple sites along strike in soil, GTProbe and drill sampling. Mineralization encountered by drilling is characterized by increased quartz veining of host rocks. These characteristics are shared with other gold and deposits and prospects found throughout the White Gold District such as Goldcorp's Coffee Gold Deposit and White Gold Corp's White deposit. It is interpreted that the deposit model for the main zone of the Brew property is of a structurally-hosted hydrothermally altered gold deposit.

13 Recommendations

The drill intercepts encountered in the 2017 drill program on the Brew property were successful in discovering gold and require further work. A NW strike on mineralization is interpreted from Soil sampling, GTProbe, and IP-Resistivity.

While the total gram metres hosted in mineralization encountered in the 2017 drill program are not tremendous, the widths (up to 10.7m) and the presence of gold are encouraging for a preliminary drill program. It is recommended that a drill program of 15 holes be conducted during the 2018 field season targeting the remaining gold in soil anomalies throughout the property. A reconnaissance GT Probe survey across the soil anomalies preceding the drill program is also recommended due to the success of the 2017 GT Probe program on the Brew property.

14 Costs

Brew Expenditures	
Geologist / Project Management	\$4,079.25
DC Restistivity IP Survey	\$43,445.00
GT Probe Sampling Program	\$57,909.00
Bureau Veritas Assay Services	\$21,732.48
GroundTruth RAB Drilling	\$104,704.23
XCAM Aerial Survey	\$4,400.00
Dighem Survey	\$12,595.30
Helicopter Support for 2017 Surveys	\$96,046.25
Management Fee +10% (+8% on Helicopter)	\$32,570.23
Total 2017 expenditures on the Brew Property	\$377,481.74

15 References

CGG Canada Services, SURVEY REPORT, 2017, Airborne magnetic and DIGHEM survey, PROJECT# 602997

Colpron, M., Israel, S., Murphy, D., Pigage, L. and Moynihan, D., 2016. Yukon Bedrock Geology Map. Yukon Geological Survey, Open File 2016-1, 1:1,000,000 scale map and legend.

Deklerk, R. and Traynor, S. (compilers), 2005. Yukon MINFILE 2005 - A database of mineral occurrences. Yukon Geological Survey

GeoSci Developers, 2017, Geophysics for Practicing Geoscientists.

Gordey, S.P. and Makepeace, A.J. (comp.) 2003. Yukon digital geology, version 2.0; Geological Survey of Canada Open File 1749 and Yukon Geological Survey Open File 2003-9(D)

Gordey, S.P. and Ryan, J.J. 2005. Geology, Stewart River Area (115N, 115O and part of 115J), Yukon Territory; Geological Survey and Canada, Open File 4970, scale 1:250,000.

Mortensen, J.K. 1992. Pre-mid-Mesozoic tectonic evolution of the Yukon-Tanana terrane, Yukon and Alaska. Tectonics, 11: 836 – 853.

USGS, 1999, Geologic Interpretation of DIGHEM Airborne Aeromagnetic and Electromagnetic Data over Unga Island, Alaska.

16 Qualification

I, Adam Fage have continuously been involved in Mineral Exploration since 2004. I graduated from Dalhousie University with an Honours Bachelor of Science (Earth Science) in 2008. I graduated from Lakehead University with a Master's of Science (Geology) in 2011.

Dated this 15th day of January, 2018.

Respectfully submitted

Adam Fage

Adam Fage

Appendix A: Claims List

Grant Number	Name	Owner	Operator
YC87746	Brew 1	White Gold Corp 100%	White Gold Corp 100%
YC87747	Brew 2	White Gold Corp 100%	White Gold Corp 100%
YC87748	Brew 3	White Gold Corp 100%	White Gold Corp 100%
YC87749	Brew 4	White Gold Corp 100%	White Gold Corp 100%
YC87750	Brew 5	White Gold Corp 100%	White Gold Corp 100%
YC87751	Brew 6	White Gold Corp 100%	White Gold Corp 100%
YC87752	Brew 7	White Gold Corp 100%	White Gold Corp 100%
YC87753	Brew 8	White Gold Corp 100%	White Gold Corp 100%
YC87754	Brew 9	White Gold Corp 100%	White Gold Corp 100%
YC87755	Brew 10	White Gold Corp 100%	White Gold Corp 100%
YC87756	Brew 11	White Gold Corp 100%	White Gold Corp 100%
YC87757	Brew 12	White Gold Corp 100%	White Gold Corp 100%
YC87758	Brew 13	White Gold Corp 100%	White Gold Corp 100%
YC87759	Brew 14	White Gold Corp 100%	White Gold Corp 100%
YC87760	Brew 15	White Gold Corp 100%	White Gold Corp 100%
YC87761	Brew 16	White Gold Corp 100%	White Gold Corp 100%
YC87762	Brew 17	White Gold Corp 100%	White Gold Corp 100%
YC87763	Brew 18	White Gold Corp 100%	White Gold Corp 100%
YC87764	Brew 19	White Gold Corp 100%	White Gold Corp 100%
YC87765	Brew 20	White Gold Corp 100%	White Gold Corp 100%
YC87766	Brew 21	White Gold Corp 100%	White Gold Corp 100%
YC87767	Brew 22	White Gold Corp 100%	White Gold Corp 100%
YC87768	Brew 23	White Gold Corp 100%	White Gold Corp 100%
YC87769	Brew 24	White Gold Corp 100%	White Gold Corp 100%
YC87770	Brew 25	White Gold Corp 100%	White Gold Corp 100%
YC87771	Brew 26	White Gold Corp 100%	White Gold Corp 100%
YC87772	Brew 27	White Gold Corp 100%	White Gold Corp 100%
YC87773	Brew 28	White Gold Corp 100%	White Gold Corp 100%
YC87774	Brew 29	White Gold Corp 100%	White Gold Corp 100%
YC87775	Brew 30	White Gold Corp 100%	White Gold Corp 100%
YC87776	Brew 31	White Gold Corp 100%	White Gold Corp 100%
YC87777	Brew 32	White Gold Corp 100%	White Gold Corp 100%
YC87778	Brew 33	White Gold Corp 100%	White Gold Corp 100%
YC87779	Brew 34	White Gold Corp 100%	White Gold Corp 100%
YC87780	Brew 35	White Gold Corp 100%	White Gold Corp 100%
YC87781	Brew 36	White Gold Corp 100%	White Gold Corp 100%
YC87782	Brew 37	White Gold Corp 100%	White Gold Corp 100%

YC87783	Brew 38	White Gold Corp 100%	White Gold Corp 100%
YC87784	Brew 39	White Gold Corp 100%	White Gold Corp 100%
YC87785	Brew 40	White Gold Corp 100%	White Gold Corp 100%
YC87786	Brew 41	White Gold Corp 100%	White Gold Corp 100%
YC87787	Brew 42	White Gold Corp 100%	White Gold Corp 100%
YC87788	Brew 43	White Gold Corp 100%	White Gold Corp 100%
YC87789	Brew 44	White Gold Corp 100%	White Gold Corp 100%
YC87790	Brew 45	White Gold Corp 100%	White Gold Corp 100%
YC87791	Brew 46	White Gold Corp 100%	White Gold Corp 100%
YC87792	Brew 47	White Gold Corp 100%	White Gold Corp 100%
YC87793	Brew 48	White Gold Corp 100%	White Gold Corp 100%
YC87794	Brew 49	White Gold Corp 100%	White Gold Corp 100%
YC87795	Brew 50	White Gold Corp 100%	White Gold Corp 100%
YC87796	Brew 51	White Gold Corp 100%	White Gold Corp 100%
YC87797	Brew 52	White Gold Corp 100%	White Gold Corp 100%
YC87798	Brew 53	White Gold Corp 100%	White Gold Corp 100%
YC87799	Brew 54	White Gold Corp 100%	White Gold Corp 100%
YC87800	Brew 55	White Gold Corp 100%	White Gold Corp 100%
YC87801	Brew 56	White Gold Corp 100%	White Gold Corp 100%
YC95901	Brew 57	White Gold Corp 100%	White Gold Corp 100%
YC95902	Brew 58	White Gold Corp 100%	White Gold Corp 100%
YC95903	Brew 59	White Gold Corp 100%	White Gold Corp 100%
YC95904	Brew 60	White Gold Corp 100%	White Gold Corp 100%
YC95905	Brew 61	White Gold Corp 100%	White Gold Corp 100%
YC95906	Brew 62	White Gold Corp 100%	White Gold Corp 100%
YC95907	Brew 63	White Gold Corp 100%	White Gold Corp 100%
YC95908	Brew 64	White Gold Corp 100%	White Gold Corp 100%
YC95909	Brew 65	White Gold Corp 100%	White Gold Corp 100%
YC95910	Brew 66	White Gold Corp 100%	White Gold Corp 100%
YC95911	Brew 67	White Gold Corp 100%	White Gold Corp 100%
YC95912	Brew 68	White Gold Corp 100%	White Gold Corp 100%
YC95913	Brew 69	White Gold Corp 100%	White Gold Corp 100%
YC95914	Brew 70	White Gold Corp 100%	White Gold Corp 100%
YC95915	Brew 71	White Gold Corp 100%	White Gold Corp 100%
YC95916	Brew 72	White Gold Corp 100%	White Gold Corp 100%
YC95917	Brew 73	White Gold Corp 100%	White Gold Corp 100%
YC95918	Brew 74	White Gold Corp 100%	White Gold Corp 100%
YC95919	Brew 75	White Gold Corp 100%	White Gold Corp 100%
YC95920	Brew 76	White Gold Corp 100%	White Gold Corp 100%
YC95921	Brew 77	White Gold Corp 100%	White Gold Corp 100%

YC95922	Brew 78	White Gold Corp 100%	White Gold Corp 100%
YC95923	Brew 79	White Gold Corp 100%	White Gold Corp 100%
YC95924	Brew 80	White Gold Corp 100%	White Gold Corp 100%
YC95925	Brew 81	White Gold Corp 100%	White Gold Corp 100%
YC95926	Brew 82	White Gold Corp 100%	White Gold Corp 100%
YC95927	Brew 83	White Gold Corp 100%	White Gold Corp 100%
YC95928	Brew 84	White Gold Corp 100%	White Gold Corp 100%
YC95929	Brew 85	White Gold Corp 100%	White Gold Corp 100%
YC95930	Brew 86	White Gold Corp 100%	White Gold Corp 100%
YC95931	Brew 87	White Gold Corp 100%	White Gold Corp 100%
YC95932	Brew 88	White Gold Corp 100%	White Gold Corp 100%
YC95933	Brew 89	White Gold Corp 100%	White Gold Corp 100%
YC95934	Brew 90	White Gold Corp 100%	White Gold Corp 100%
YC95935	Brew 91	White Gold Corp 100%	White Gold Corp 100%
YC95936	Brew 92	White Gold Corp 100%	White Gold Corp 100%
YC95937	Brew 93	White Gold Corp 100%	White Gold Corp 100%
YC95938	Brew 94	White Gold Corp 100%	White Gold Corp 100%
YC95939	Brew 95	White Gold Corp 100%	White Gold Corp 100%
YC95940	Brew 96	White Gold Corp 100%	White Gold Corp 100%
YC95941	Brew 97	White Gold Corp 100%	White Gold Corp 100%
YC95942	Brew 98	White Gold Corp 100%	White Gold Corp 100%
YC95943	Brew 99	White Gold Corp 100%	White Gold Corp 100%
YC95944	Brew 100	White Gold Corp 100%	White Gold Corp 100%
YC95945	Brew 101	White Gold Corp 100%	White Gold Corp 100%
YC95946	Brew 102	White Gold Corp 100%	White Gold Corp 100%
YC95947	Brew 103	White Gold Corp 100%	White Gold Corp 100%
YC95948	Brew 104	White Gold Corp 100%	White Gold Corp 100%
YC95949	Brew 105	White Gold Corp 100%	White Gold Corp 100%
YC95950	Brew 106	White Gold Corp 100%	White Gold Corp 100%
YC95951	Brew 107	White Gold Corp 100%	White Gold Corp 100%
YC95952	Brew 108	White Gold Corp 100%	White Gold Corp 100%
YC95953	Brew 109	White Gold Corp 100%	White Gold Corp 100%
YC95954	Brew 110	White Gold Corp 100%	White Gold Corp 100%
YC95955	Brew 111	White Gold Corp 100%	White Gold Corp 100%
YC95956	Brew 112	White Gold Corp 100%	White Gold Corp 100%
YC95957	Brew 113	White Gold Corp 100%	White Gold Corp 100%
YC95958	Brew 114	White Gold Corp 100%	White Gold Corp 100%
YC95959	Brew 115	White Gold Corp 100%	White Gold Corp 100%
YC95960	Brew 116	White Gold Corp 100%	White Gold Corp 100%
YC95961	Brew 117	White Gold Corp 100%	White Gold Corp 100%

YC95962	Brew 118	White Gold Corp 100%	White Gold Corp 100%
YC95963	Brew 119	White Gold Corp 100%	White Gold Corp 100%
YC95964	Brew 120	White Gold Corp 100%	White Gold Corp 100%
YC95965	Brew 121	White Gold Corp 100%	White Gold Corp 100%
YC95966	Brew 122	White Gold Corp 100%	White Gold Corp 100%
YC95967	Brew 123	White Gold Corp 100%	White Gold Corp 100%
YC95968	Brew 124	White Gold Corp 100%	White Gold Corp 100%
YC95969	Brew 125	White Gold Corp 100%	White Gold Corp 100%
YC95970	Brew 126	White Gold Corp 100%	White Gold Corp 100%
YC95971	Brew 127	White Gold Corp 100%	White Gold Corp 100%
YC95972	Brew 128	White Gold Corp 100%	White Gold Corp 100%
YC95973	Brew 129	White Gold Corp 100%	White Gold Corp 100%
YC95974	Brew 130	White Gold Corp 100%	White Gold Corp 100%
YC95975	Brew 131	White Gold Corp 100%	White Gold Corp 100%
YC95976	Brew 132	White Gold Corp 100%	White Gold Corp 100%
YC95977	Brew 133	White Gold Corp 100%	White Gold Corp 100%
YC95978	Brew 134	White Gold Corp 100%	White Gold Corp 100%
YC95979	Brew 135	White Gold Corp 100%	White Gold Corp 100%
YC95980	Brew 136	White Gold Corp 100%	White Gold Corp 100%
YC95981	Brew 137	White Gold Corp 100%	White Gold Corp 100%
YC95982	Brew 138	White Gold Corp 100%	White Gold Corp 100%
YC95983	Brew 139	White Gold Corp 100%	White Gold Corp 100%
YC95984	Brew 140	White Gold Corp 100%	White Gold Corp 100%
YC95985	Brew 141	White Gold Corp 100%	White Gold Corp 100%
YC95986	Brew 142	White Gold Corp 100%	White Gold Corp 100%
YC95987	Brew 143	White Gold Corp 100%	White Gold Corp 100%
YC95988	Brew 144	White Gold Corp 100%	White Gold Corp 100%
YC95989	Brew 145	White Gold Corp 100%	White Gold Corp 100%
YC95990	Brew 146	White Gold Corp 100%	White Gold Corp 100%
YC95991	Brew 147	White Gold Corp 100%	White Gold Corp 100%
YC95992	Brew 148	White Gold Corp 100%	White Gold Corp 100%
YC95993	Brew 149	White Gold Corp 100%	White Gold Corp 100%
YC95994	Brew 150	White Gold Corp 100%	White Gold Corp 100%
YC95995	Brew 151	White Gold Corp 100%	White Gold Corp 100%
YC95996	Brew 152	White Gold Corp 100%	White Gold Corp 100%
YC95997	Brew 153	White Gold Corp 100%	White Gold Corp 100%
YC95998	Brew 154	White Gold Corp 100%	White Gold Corp 100%
YC95999	Brew 155	White Gold Corp 100%	White Gold Corp 100%
YC96000	Brew 156	White Gold Corp 100%	White Gold Corp 100%
YC96001	Brew 157	White Gold Corp 100%	White Gold Corp 100%

YC96002	Brew 158	White Gold Corp 100%	White Gold Corp 100%
YC96003	Brew 159	White Gold Corp 100%	White Gold Corp 100%
YC96004	Brew 160	White Gold Corp 100%	White Gold Corp 100%
YC96005	Brew 161	White Gold Corp 100%	White Gold Corp 100%
YC96006	Brew 162	White Gold Corp 100%	White Gold Corp 100%
YC96007	Brew 163	White Gold Corp 100%	White Gold Corp 100%
YC96008	Brew 164	White Gold Corp 100%	White Gold Corp 100%
YC96009	Brew 165	White Gold Corp 100%	White Gold Corp 100%
YC96010	Brew 166	White Gold Corp 100%	White Gold Corp 100%
YC96011	Brew 167	White Gold Corp 100%	White Gold Corp 100%
YC96012	Brew 168	White Gold Corp 100%	White Gold Corp 100%

Appendix B: Statement of Expenditures

See Data Folder for Expenditures break-down

Appendix C: GT Probe Sample Location, Description and Assay Certificates

Appendix D: RAB Collar Location, Geological Logs and Assay Certificates

Appendix E: XCAM Survey Orthoimage

Appendix F: SURVEY REPORT - AIRBORNE DIGHEM 2017 GENERAL INFORMATION / DATA ARCHIVE After CGG Canada Project 602997 (Oct. 6, 2017)