

KZK

Hole Number:

K98-194

Project:

Prospect:		Hole Type:	DD	Survey Type:	RTK DGPS	Logged By:	Jerome de Pasquale
Grid:	NAD83_Z9	Hole Diameter:	75.7	Survey By:	Challenger_Survey	Date Logging Start:	5/1/2016
UTM Easting	420336.919	Core Size:	NQ	Azimuth:	160	Date Logging Complete:	5/2/2016
UTM Northing:	6814626.854	Casing Pulled?:	No	Dip:	-60	Drill Company:	
UTM Elev. (m):	1314.318	Casing Depth (m):	15	Length (m):	95.7	Drill Rig:	
Local Easting:	10350	Stored?:	Yes	Claims Title		Drill Started:	8/22/1998
Local Northing:	4640	Cemented?:		Core Storage Loc.:	KZK Camp	Drill Completed:	8/24/1998
Local Elev. (m):	1314			Hole Completed?:		Purpose:	Exploration
Comments:						Parent Hole:	

Downhole Surveys:

Depth (m)	Dip	Measured Azimuth	Correction Factor	Corrected Azimuth	Survey Type	Survey By	Survey Date	Mag Field	Accept Comments Values?
0	-60	180		180	ACID				
95.7	-65	180		180	ACID				

From (m)	To (m)	Rocktype & Description	From (m)	To (m)	Width	Sample	Au ppm	Ag ppm	Cu %	Pb %	Zn %

0.00 16.20 OVBN Overburden

16.20 22.80 RHYv Rhyolite volcaniclastic

16.2 - 22.8: Foliated, muscovite altered schist. QZ/CA vein. Some darker beds.

<<Min: 16.2 - 30.07 2% Min: Pyrrhotite>>

<<Alt: 16.2 - 30.07 Moderate-Strong Calcite>>

<<Alt: 22.3 - 30.07 Weak Chlorite>> Heterogeneous sediment. Alteration controlled by lithology.

<<Vein: 19.7 - 20.6 Quarzt-Chlorite-Carbonate>> Discontinuous QZ/CA vein containing CL

22.80 23.98 SED undifferentiated Sediment

22.8 - 23.98: Irregular band size, heterogeneous composition. Strongly foliated, CA in foliation. Locally felsic material (rhyolitic).

23.98 24.43 MAFt Mafic Volcaniclastics

23.98 - 24.43: Chlorite altered, fine grain homogeneous unit. CA in foliation.

24.43 30.07 SED undifferentiated Sediment

24.43 - 30.07: Thinly banded, heterogeneous composition including mafic material.

-				Project: KZr			Hole	Number:	K98			
From (m)	To (m)		Rocktype & Description		From (m)	To (m)	Width	Sample	Au ppm Ag ppm	Cu %	Pb %	Zn %
30.07	31.63 M	IAFi	Mafic Intrusions (primarily footwall mafic intrusion)									
30.07 - 31.6 gradual lowe	3: Or MAFw. (er contact.	Chlorite alte	ered, massive homogeneous unit, low BI content	, CA content. Sharp upper contact,								
< <min: 30.0<="" td=""><td>07 - 31.63 1%</td><td>Min: Pyrrh</td><td>notite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	07 - 31.63 1%	Min: Pyrrh	notite>>									
< <alt: 30.0<="" td=""><td>7-31.63 Wea</td><td>ak-Moderat</td><td>e Chlorite>> Mafic dike.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	7-31.63 Wea	ak-Moderat	e Chlorite>> Mafic dike.									
< <alt: 30.0<="" td=""><td>7-31.63 Wea</td><td>ak Calcite></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	7-31.63 Wea	ak Calcite>	>									
31.63	31.90 N	IAF t	Mafic Volcaniclastics									
31.63 - 31.9	: Foliated mafi	ic tuff, CA v	veining.									
< <min: 31.0<="" td=""><td>63 - 68 0.5% </td><td>Min: Pyrrho</td><td>otite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	63 - 68 0.5%	Min: Pyrrho	otite>>									
< <alt: 31.6<="" td=""><td>3 - 57.2 Mode</td><td>erate-Strong</td><td>g Calcite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	3 - 57.2 Mode	erate-Strong	g Calcite>>									
31.90	33.00 F	LZ	Fault Zone									
31.9 - 33: Fa	ault gouge and	core loss.										
< <struc: 32<br="">on micro fa</struc:>	2.7 - 48.5 Wea ult (alpha ang	ak-Moderat le 25).	e Fault>> Large broken zone. 2 set of fracture	s. Locally sheared and minor offset								
33.00	35.58 N	IAF t	Mafic Volcaniclastics									
33 - 35.58: F	Foliated mafic	tuff, CA vei	ining.									
35.58	38.75 N	IAF t	Mafic Volcaniclastics									
35.58 - 38.7	5: Mixed of ma	afic tuff and	l mudstone (60/40). Some argilitic siliceous band	ls. Thin foliation.								
38.75	48.93 N	IDS	Carbonaceous Mudstone &									
			Tuffaceous Mudstone									
38.75 - 48.9 massive QZ	3: Dominantly veins (from 4	siliceous m 5.69 to 46.4	nudstone. Strong CA veining. Foliated and fractu 45 and from 47.46 to 47.75). Locally sheared.	red with minor MAFt beds. Two								
< <alt: 48.5<="" td=""><td>9 - 69.18 Moc</td><td>lerate Silici</td><td>fication>> Locally strong. Silicification of muds</td><td>tone and dikes. Lithology controlled</td><td>I.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	9 - 69.18 Moc	lerate Silici	fication>> Locally strong. Silicification of muds	tone and dikes. Lithology controlled	I.							
< <vein: 45<="" td=""><td>.69 - 46.45 Q</td><td>uarzt-Chlor</td><td>ite-Carbonate>> QZ/CA massive vein containin</td><td>ng mafic tuff.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	.69 - 46.45 Q	uarzt-Chlor	ite-Carbonate>> QZ/CA massive vein containin	ng mafic tuff.								
< <vein: 47<="" td=""><td>.46 - 48.93 Q</td><td>uartz-Carbo</td><td>onate>> QZ/CA vein.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	.46 - 48.93 Q	uartz-Carbo	onate>> QZ/CA vein.									
48.93	55.90 N	IDS	Carbonaceous Mudstone &									
48 93 - 55 9	· Siliceous mu	dstone Fe	w light arey hand highly silicified (quartzite)									
	. Oniceous mu		w ngint groy band niginy silicined (qualizite).									

*				KZK	Hole Number:			K98-194					
From (m)	To (m)		Rocktype & Description		From (m)	To (m)	Width	Sample	Au ppm	Ag ppm	Cu %	Pb %	Zn %
55.90	56.97	MAFt	Mafic Volcaniclastics										
55.9 - 56.97	: Moderate	y foliated.											
< <struc: 56<="" td=""><td>6.77 - 57.96</td><td>Moderate-St</td><td>rong Fault>> Strongly foliated, fault goug</td><td>e, brittle.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	6.77 - 57.96	Moderate-St	rong Fault>> Strongly foliated, fault goug	e, brittle.									
56.97	57.36	FLZ	Fault Zone										
56.97 - 57.3	6: Fault go	uge and weak	shearing.										
< <alt: 57.2<="" td=""><td>- 92 Mode</td><td>rate Calcite>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	- 92 Mode	rate Calcite>>											
57.36	59.10	MAFt	Mafic Volcaniclastics										
57.36 - 59.1	: Fine grain	, few CA disco	ontinuous veinlets.										
59.10	60.50	MAFw	mafic volcanic flows										
59.1 - 60.5:	Homogene	ous, CL altere	d. Bl/feldspar.										
< <alt: 59.1<="" td=""><td>- 60.56 W</td><td>eak Chlorite></td><td>> Dike.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	- 60.56 W	eak Chlorite>	> Dike.										
60.50	65.65	MAFt	Mafic Volcaniclastics										
60.5 - 65.65	: Interbedd	ed with mudst	one, Some siliceous argillite weakly foliated	beds. Fractured, locally faulted.									
< <struc: 63<="" td=""><td>3.6 - 63.9 N</td><td>Aoderate Faul</td><td>t>> Fautl gouge and brittle.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	3.6 - 63.9 N	Aoderate Faul	t>> Fautl gouge and brittle.										
< <struc: 65<="" td=""><td>5-66.5 Mc</td><td>derate-Strong</td><td>Fault>> Strongly fracture, powder and b</td><td>ittle.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></struc:>	5-66.5 Mc	derate-Strong	Fault>> Strongly fracture, powder and b	ittle.									
65.65	67.31	MDSc	Carbonaceous dominant										
65 65 67 3	1: Strong (A voining in f	mudstone										
05.05 - 07.5	1. Strong C		Shallon. Locally sheared and faulted.										
67.31	68.09	MAFt	Mafic Volcaniclastics										
67.31 - 68.0	9: Calcared	ous mafic tuff o	dominantly. Some mudstone interbedded.										
< <min: 68="" td="" ·<=""><td>95.7 1% </td><td>Vin: Pyrrhotite</td><td>>> Seems to be more concentrated in the</td><td>e brownish, soft beds.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></min:>	95.7 1%	Vin: Pyrrhotite	>> Seems to be more concentrated in the	e brownish, soft beds.									
68.09	69.18	MDS	Carbonaceous Mudstone &										
68 09 - 69 1	8 [.] Some br	own coarser o	rain beds soft 8 to 12 cm wide										
00.00 00.1		own oodioor g											
69.18	70.65	SED	undifferentiated Sediment										
69.18 - 70.6	5: Possibly	felsic dike or	metasandstone (quartzite). Light grey, hom	ogeneous texture, SI/few BI.									
< <alt: 69.1<="" td=""><td>8 - 70.63 S</td><td>Strong Silicifica</td><td>ation>> Dike</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	8 - 70.63 S	Strong Silicifica	ation>> Dike										
< <alt: 70.6<="" td=""><td>3-73.8 M</td><td>oderate Silicifi</td><td>cation>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	3-73.8 M	oderate Silicifi	cation>>										

From (m) To (m) To (m) To (m) To (m) To (m) To (m) Yes (m) Sample Augen Augen <th>-</th> <th colspan="2"></th> <th>En En esta rendeción de de la la</th> <th>Project:</th> <th>KZK</th> <th colspan="2">ΚΖΚ</th> <th>Number:</th> <th colspan="3">K98-194</th> <th></th> <th colspan="3"></th>	-			En En esta rendeción de de la la	Project:	KZK	ΚΖΚ		Number:	K98-194						
70.65 73.80 MDS Tuffaceous Mudstone Carbonaceous Mudstone 70.65 73.80 TA:59 SED Undifferentiated Sediment 73.80 74.59 SED Undifferentiated Sediment 73.8.7 74.59 SED Undifferentiated Sediment 73.8.7 74.59 SED Undifferentiated Sediment 73.8.7 74.59 Stop 73.8.7 74.59 Stop 74.59 76.59 MDS Carbonaceous Mudstone 74.59 76.59 MDS Carbonaceous Mudstone 74.59 76.59 MDS Carbonaceous Mudstone 74.59 77.17 Weak-Moderate Chorte>> Dike. 76.59 77.17 MaFi Mafic Intrusions (primarily footwall mafic intrusion) 78.69-77.17 & latered. Silcited dike. Highly allocous chill margins. Low Bi content. CL concentrated in the middle of the unit. Similar context than at 74.50 Possibly intermetate compositor. 77.17 81.26 MDSc Carbonaceous dominant mudstone 71.17 - 81.26 MDSc Carbonaceous dominant mudstone 71.17 - 81.26 Sitring CA vering. 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 - 81.75 MAFi Mafic Intrusion & mudum size grain bed at lower context. 81.27 - 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 81.75 - 87.34 MDS Carbonaceous Mudston	From (m)	To (m)		Rocktype & Description		From (m)	To (m)	Width	Sample	Au ppm	Ag ppm	Cu %	Pb %	Zn %		
70.85 - 73.8: Thirly foliated multicities containing mate full bands and 20/CA veins. 73.80 74.59 SED undifferentiated Sediment 73.8.7.74.59 F58.81by field dike. Highly siliceous unit (quartzite?), bleached. Chill margin at lower contact. <<4.41: 73.8.7.74.59	70.65	73.80	MDS	Carbonaceous Mudstone 8	k						1		<u> </u>			
73.80 74.59 SED undifferentiated Sediment 73.82 74.59 SPosibly felic dike. Highly siliceous unit (quartile?), bleached. Chill margin at lower contact. <= <alt 73.8<="" td=""> 74.59 76.59 MDS Carbonaceous Mudstone 74.59 76.59 MDS Carbonaceous Mudstone Kurtification> 74.59 76.59 MDS Carbonaceous Mudstone Kurtification> 74.59 76.59 MAFI Mafic Intrusions (primarily footwall margins. Low Bit content. CL concentrated in the middle of the unit. Smilar contact them at 74.58. Possibly intermediate composition. 77.17 81.26 MDS Carbonaceous dhil margins. Low Bit content. CL concentrated in the middle of the unit. Smilar contact them at 74.58. Possibly intermediate composition. 77.17 81.26 MDS Carbonaceous dhil margins. Low Bit content. CL concentrated in the middle of the unit. Smilar contact. 77.17 81.26 MDS Carbonaceous dhilmargins. Low Bit content. CL concentrated in the middle of the unit. Smilar contact. 77.17 81.26 81.75. MAFI Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75. MAFI Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75. MAFI Mafic Intrusions (primarily footw</alt>	70.65 - 73.8	: Thinly fol	iated mudston	e containing mafic tuff bands and QZ/CA v	eins.											
73.8 - 74.59. Possibly felsic dike. Highly silicous unit (quartzite?), bleached. Chill margin at lower contact. < <alt: -="" 73.8="" 74.59<="" td=""> 76.59 MDS Carbonaceous Mudstone & Tuffaceous Mudstone & Tuffaceous Mudstone 74.59 76.59 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 74.59 76.59 77.17 Wask-Moderate Chiorite>> Dike. 76.59 77.17 MAFic Intrusions (primarily footwall mafic intrusion) 75.59 77.17 81.26 MDS 77.17 81.26 MDS Carbonaceous dominant mudstone 77.17 81.26 MAFic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFic Intrusions (primarily footwall mafic intrusion) 81.26 81.75<td>73.80</td><td>74.59</td><td>SED</td><td>undifferentiated Sediment</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	73.80	74.59	SED	undifferentiated Sediment												
<< <alt: -="" 73.8="" 74.58<="" td=""> Strong Silicification>> Dike. 74.59 76.59 MDS Carbonaceous Mudstone & Tuffaceous Mudstone & Tuffaceous Mudstone & Tuffaceous Mudstone & Strong Silicification>> Dike. 76.59 77.17 Weak-Moderate Chlorite>> Dike. 76.59 76.59 77.17 MAFi Maric Intrusions (primarily footwall margins. Low BI content. CL concentrated in the middle of the unit. Similar contact than at 74.58. Possibly intermediate composition. 77.17 81.26 MDSc Carbonaceous dominant mudstone 77.17 81.26 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusion (bin wide) and at lower contact. Thin foliation.<!--</td--><td>73.8 - 74.59</td><td>: Possibly</td><td>felsic dike. Hig</td><td>ghly siliceous unit (quartzite?), bleached. Cl</td><td>hill margin at lower contact.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	73.8 - 74.59	: Possibly	felsic dike. Hig	ghly siliceous unit (quartzite?), bleached. Cl	hill margin at lower contact.											
74.59 76.59 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 74.59 76.59 CA banded. < <alt: 76.39<="" td=""> 77.17 Weak-Moderate Chlorite>> Dike. 76.59 77.17 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 76.59 77.17 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 76.59 77.17 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 76.59 77.17 81.26 MDSc Carbonaceous dominant mudstone 77.17 81.26 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 77.17 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 Moderate Chlorite>> Dike 81.75 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone & Tuffaceou</alt:>	< <alt: 73.8<="" td=""><td>-74.58 S</td><td>trong Silicifica</td><td>tion>> Dike.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	-74.58 S	trong Silicifica	tion>> Dike.												
74.59 - 76.59: CA banded. < <alt: -="" 76.39="" 77.17:="" chlorite="" weak-moderate="">> Dike. 76.59 77.17 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 76.59 - 77.17: CL altered. Stildled dike. Highly silecous chill margins. Low BI content. CL concentrated in the middle of the unit. Similar contact than at 74.58. Possibly intermediate composition. 77.17 81.26 MDSc Carbonaceous dominant mudstone 77.17 - 81.26: Strong CA veining. 81.26 str.5 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 - 81.75: Silicified dike. Granular texture in the middle of the unit. Brown, soft, medium size grain bed at lower contact. <<alt: -="" 81.28="" 81.75:="" mafi<="" td=""> Carbonaceous Mudstone & Tuffaceous Mudstone & Tuffaceous Mudstone & Tuffaceous Mudstone 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone & Carbonaceous Muds</alt:></alt:>	74.59	76.59	MDS	Carbonaceous Mudstone 8 Tuffaceous Mudstone) X											
<catt: -="" 76.39="" 77.17="" chlorite="" weak-moderate="">> Dike. 76.59 77.17 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 76.69 - 77.17 Natered. Silicified dike. Highly siliceous chult margins. Low BI content: CL concentrated in the middle of the unit. Similar contact than at 74.58. Possibly intermediate composition. 77.17 81.26 MDSc Carbonaceous dominant mudstone 77.17 81.26 Strong CA veining. 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 - 81.75. Silicified dike. Granular texture in the middle of the unit. Brown, soft, medium size grain bed at lower contact. <catt: -="" 81.26="" 81.75="" chlorite="" moderate="">> Dike 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 81.75 - 87.34 Wudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.46 - 87.75 Quartz-Carbonate>> QZ/CA vein.</catt:></catt:>	74.59 - 76.5	9: CA ban	ded.													
76.59 77.17 MAFic Intrusions (primarily footwall mafic intrusion) 76.59 77.17: CL altered. Silicified dike. Highly siliceous chill margins. Low BI content. CL concentrated in the middle of the unit. Similar contact than at 74.58. Possibly intermediate composition. 77.17 81.26 MDSc Carbonaceous dominant mudstone 77.17 81.26 MDSc Carbonaceous dominant mudstone 77.17 81.26 81.75 MAFic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFic MAFic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFic Caraular texture in the middle of the unit. Brown, sofl, medium size grain bed at lower contact. exalt: 81.26 -81.75 Noderate Chlorite>> Dike 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone & Tuffaceous Mudstone 81.75 87.34 MDS Carbonaceous Mudstone 81.75 87.34 87.86 SED undifferentiated Sediment 87.34 87.86 SED undifferentiated Sediment 87.34 87.86 SED undifferentiated Sediment 87.34 87.40 89 Moderate Silicification>> <	< <alt: 76.3<="" td=""><td>9 - 77.17</td><td>Weak-Modera</td><td>te Chlorite>> Dike.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	9 - 77.17	Weak-Modera	te Chlorite>> Dike.												
76.59 - 77.17: CL altered. Silicified dike. Highly siliceous chill margins. Low BI content. CL concentrated in the middle of the unit. Similar contact than at 74.58. Possibly intermediate composition. 77.17 81.26 MDSc Carbonaceous dominant mudstone 77.17 - 81.26: Strong CA veining. 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 - 81.75: Silicified dike. Granular texture in the middle of the unit. Brown, soft, medium size grain bed at lower contact. << <alt: -="" 81.26="" 81.75="" chlorite="" moderate="">> Dike 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone & Tuffaceous Mudstone 81.75 - 87.34: Mudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. <</alt:>	76.59	77.17	MAFi	Mafic Intrusions (primarily footwall mafic intrusion)												
77.17 81.26 MDSc Carbonaceous dominant mudstone 77.17 - 81.26: Strong CA veining. 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 - 81.75: Silicified dike. Granular texture in the middle of the unit. Brown, soft, medium size grain bed at lower contact. < <alt: -="" 81.26="" 81.75="" chlorite="" moderate="">> Dike 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone & Tuffaceous Mudstone 81.75 - 87.34: Mudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. <<alt: -="" 87.34="" 89="" moderate="" silicification="">> <<vein: -="" 87.54="" 87.75<="" td=""> Quartz-Carbonate>></vein:></alt:></alt:>	76.59 - 77.1 the unit. Sim	7: CL alter nilar contac	ed. Silicified d t than at 74.58	ike. Highly siliceous chill margins. Low BI c 8. Possibly intermediate composition.	content. CL concentrated in the mide	dle of										
77.17 - 81.26: Strong CA veining. 81.26 81.75 MAFic Intrusions (primarily footwall mafic intrusion) 81.26 - 81.75: Silicified dike. Granular texture in the middle of the unit. Brown, soft, medium size grain bed at lower contact. << <alt: -="" 81.26="" 81.75<="" th=""> Moderate Chlorite>> Dike 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 81.75 - 87.34: Mudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. <<alt: -="" 87.34="" 87.75="" quartz-carbonate="">> QZ/CA vein.</alt:></alt:>	77.17	81.26	MDSc	Carbonaceous dominant mudstone												
81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 81.26 81.75 Silicified dike. Granular texture in the middle of the unit. Brown, soft, medium size grain bed at lower contact. < <alt: 81.26<="" td=""> 81.75 Moderate Chlorite>> Dike 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 81.75 67.34 MDS Carbonaceous Mudstone 81.75 - 87.34: Mudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86 Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. <<alt: -="" 87.34="" 89<="" td=""> Moderate Silicification>> <<vein: -="" 87.54="" 87.75<="" td=""> QZ/CA vein.</vein:></alt:></alt:>	77.17 - 81.2	6: Strong (CA veining.													
81.26 - 81.75: Silicified dike. Granular texture in the middle of the unit. Brown, soft, medium size grain bed at lower contact. < <alt: -="" 81.26="" 81.75="" chlorite="" moderate="">> Dike 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 81.75 - 87.34: Mudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. <<alt: -="" 87.34="" 89="" moderate="" silicification="">> <<vein: -="" 87.54="" 87.75="" quartz-carbonate="">> QZ/CA vein.</vein:></alt:></alt:>	81.26	81.75	6 MAFi	Mafic Intrusions (primarily footwall mafic intrusion)												
< <alt: -="" 81.26="" 81.75="" chlorite="" moderate="">> Dike 81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 81.75 - 87.34 Mudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. <<alt: -="" 87.34="" 89="" moderate="" silicification="">> <<vein: -="" 87.54="" 87.75="" quartz-carbonate="">> QZ/CA vein.</vein:></alt:></alt:>	81.26 - 81.7 contact.	5: Silicified	l dike. Granula	ar texture in the middle of the unit. Brown, s	ofl, medium size grain bed at lower											
81.75 87.34 MDS Carbonaceous Mudstone & Tuffaceous Mudstone 81.75 - 87.34: Mudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. < <alt: -="" 87.34="" 89="" moderate="" silicification="">> <<vein: -="" 87.54="" 87.75="" quartz-carbonate="">> QZ/CA vein.</vein:></alt:>	< <alt: 81.2<="" td=""><td>6 - 81.75</td><td>Moderate Chlo</td><td>orite>> Dike</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	6 - 81.75	Moderate Chlo	orite>> Dike												
81.75 - 87.34: Mudstone containing brown, soft, coarse grain beds (5 to 10 cm wide) and at lower contact. Thin foliation. 87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. < <alt: -="" 87.34="" 89<="" td=""> Moderate Silicification>> <<vein: -="" 87.54="" 87.75<="" td=""> Quartz-Carbonate>> QZ/CA vein.</vein:></alt:>	81.75	87.34	MDS	Carbonaceous Mudstone 8 Tuffaceous Mudstone	k											
87.34 87.86 SED undifferentiated Sediment 87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. < <alt: -="" 87.34="" 89<="" td=""> Moderate Silicification>> <<vein: -="" 87.54="" 87.75<="" td=""> Quartz-Carbonate>> QZ/CA vein.</vein:></alt:>	81.75 - 87.3	4: Mudstor	ne containing t	prown, soft, coarse grain beds (5 to 10 cm	wide) and at lower contact. Thin foli	ation.										
87.34 - 87.86: Siliceous unit, quartzite? Crosscut by QZ vein. Homogeneous, QZ/BI, could be felsic dike. < <alt: -="" 87.34="" 89="" moderate="" silicification="">> <<vein: -="" 87.54="" 87.75="" quartz-carbonate="">> QZ/CA vein.</vein:></alt:>	87.34	87.86	SED	undifferentiated Sediment												
< <alt: -="" 87.34="" 89="" moderate="" silicification="">> <<vein: -="" 87.54="" 87.75="" quartz-carbonate="">> QZ/CA vein.</vein:></alt:>	87.34 - 87.8	6: Siliceou	s unit, quartzit	e? Crosscut by QZ vein. Homogeneous, Q	Z/BI, could be felsic dike.											
< <vein: -="" 87.54="" 87.75="" quartz-carbonate="">> QZ/CA vein.</vein:>	< <alt: 87.3<="" td=""><td>4 - 89 Mo</td><td>derate Silicifica</td><td>ation>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></alt:>	4 - 89 Mo	derate Silicifica	ation>>												
	< <vein: 87<="" td=""><td>.54 - 87.75</td><td>Quartz-Carb</td><td>onate>> QZ/CA vein.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></vein:>	.54 - 87.75	Quartz-Carb	onate>> QZ/CA vein.												

EGOIT	CONSULTANTS LTD.	Project:	KZK		Hole	Number:	K98-194					
To (m)	Rocktype & Description		From (m)	To (m)	Width	Sample	Au ppm Ag ppm	Cu %	Pb %	Zn %		
89.07 MAFi	Mafic Intrusions (primarily footwall mafic intrusion)											
7: Brown, silicified. CA v	einlets set. fine grain biotite, homogeneous, Bl/fe	eldspar.										
- 89.07 Quartz-Carbona	ate 80 deg. >> QZ/CA veinlet set.											
89.90 FLZ : Fault gouge (MAFt)	Fault Zone											
92.80 MAFt	Mafic Volcaniclastics											
Medium grain mafic tuff,	CA in matrix and veining.											
95 Moderate-Strong Ca	lcite>> And in matrix in tuff.											
9.9 - 91.7 Moderate-Stro	ong Fault>> Fault gouge, core loss.											
95.70 MAFi	Mafic Intrusions (primarily footwall mafic intrusion)											
CL/BI/feldspar unit. CL a it, quartzite?.	altered. CA veinlet set. Fine grain. Gradual contac	ct on the last 10 cm with highly										
1 - 95.7 Strong Silicifica	ation>>											
ole @ 95.7												
	To (m) 89.07 MAFi 7: Brown, silicified. CA w - 89.07 Quartz-Carbon: 89.90 FLZ : Fault gouge (MAFt) 92.80 MAFt Medium grain mafic tuff, 95 Moderate-Strong Ca 9.9 - 91.7 Moderate-Strot 95.70 MAFi CL/BI/feldspar unit. CL a it, quartzite?. 1 - 95.7 Strong Silicifica ole @ 95.7	To (m) Rocktype & Description 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 7: Brown, silicified. CA veinlets set. fine grain biotite, homogeneous, Bl/fe- *-89.07 Quartz-Carbonate 80 deg. >> QZ/CA veinlet set. 89.90 FLZ Fault Zone :: Fault gouge (MAFt) 92.80 MAFt Mafic Volcaniclastics Medium grain mafic tuff, CA in matrix and veining. 95 Moderate-Strong Calcite>> And in matrix in tuff. 90-91.7 Moderate-Strong Fault>> Fault gouge, core loss. 95.70 MAFi Mafic Intrusions (primarily footwall mafic intrusion) CL/BI/feldspar unit. CL altered. CA veinlet set. Fine grain. Gradual conta it, quartzite?. 1-95.7 Strong Silicification>>	CONSULTANTS LTD. Project: To (m) Rocktype & Description 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) 7: Brown, silicified. CA veinlets set. fine grain biotite, homogeneous, Bl/feldspar. - 89.07 Quartz-Carbonate 80 deg. >> QZ/CA veinlet set. 89.90 FLZ Fault Zone : Fault gouge (MAFt) 92.80 MAFt Mafic Volcaniclastics Medium grain mafic tuff, CA in matrix and veining. 95 Moderate-Strong Calcite>> And in matrix in tuff. 9.9 - 91.7 Moderate-Strong Fault> Fault gouge, core loss. 95.70 MAFi Mafic Intrusions (primarily footwall mafic intrusion) CL/BI/feldspar unit. CL altered. CA veinlet set. Fine grain. Gradual contact on the last 10 cm with highly it, quartzite?. 1 - 95.7 Strong Silicification>> Note @ 95.7	CONSULTANTS LTD. Project: KZK To (m) Rocktype & Description From (m) 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) From (m) 7: Brown, silicified. CA veinlets set. fine grain biotite, homogeneous, Bl/feldspar. - - 89.07 Quartz-Carbonate 80 deg. >> QZ/CA veinlet set. 89.90 FLZ Fault Zone : Fault gouge (MAFt) 92.80 MAFt Mafic Volcaniclastics Medium grain mafic tuff, CA in matrix and veining. 95 Moderate-Strong Calcite>> 95.70 MAFi Mafic Intrusions (primarily footwall mafic intrusion) CL/Bl/feldspar unit. CL altered. CA veinlet set. Fine grain. Gradual contact on the last 10 cm with highly tiquarzite?. 1 - 95.7 Strong Silicification>>	Project: KZK To (m) Rocktype & Description From (m) To (m) 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) To (m) To (m) 7: Brown, silicified. CA veinlets set. fine grain biotite, homogeneous, Bl/feldspar. - - - - 69.07 Quartz-Carbonate 80 deg. >> QZ/CA veinlet set. 89.90 FLZ Fault Zone - : Fault gouge (MAFt) 92.80 MAFt Mafic Volcaniclastics Medium grain mafic tuff, CA in matrix and veining. 95 Moderate-Strong Calcite>> And in matrix in tuff. - - 95.70 MAFi Mafic Intrusions (primarily footwall mafic intrusion) CL/Bl/feldspar unit. CL altered. CA veinlet set. Fine grain. Gradual contact on the last 10 cm with highly it, quartzite?. 1 - - - to e@ 95.7 95.70 Silicification>> - - - - to e@ 95.7 Silicification> - - - - - -	Project: KZK Hole To (m) Rocktype & Description From (m) To (m) Width 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) From (m) To (m) Width 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) Width Width 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) Width Width 89.07 Quartz-Carbonate 80 deg. >> QZ/CA veinlet set. 89.90 FLZ Fault Zone 89.09 FLZ Fault Zone Fault gouge (MAFt) 92.80 MAFt Mafic Volcaniclastics Medium grain mafic tuff, CA in matrix and veining. 95 Moderate-Strong Calcite>> And in matrix in tuff. 9.9-91.7 Moderate-Strong Fault>> Fault gouge, core loss. 95.70 MAFi Mafic Intrusions (primarily footwall mafic intrusion) CL/Birfeldspar unit. CL altered. CA veinlet set. Fine grain. Gradual contact on the last 10 cm with highly it, quartzite?. 1-95.7 Strong Silicification>> 1-95.7 Strong Silicification>> Mafic Intrusion Gradual contact on the last 10 cm with highly 1-95.7	CONSULTANTS LID. Project: KZK Hole Number: To (m) Rocktype & Description From (m) To (m) Width Sample 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) To (m) Width Sample 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) To (m) Width Sample 89.07 Quartz-Carbonate 80 deg. >> Q2/GA veinlet set. 89.90 FLZ Fault Zone : Fault gouge (MAFt) 92.80 MAFt Mafic Volcaniclastics Medium grain mafic tuff, CA in matrix and veining. S S Moderate-Strong Calcite>> And in matrix in tuff. 3.9.91.71 Moderate-Strong Calcite>> Fault gouge, core loss. 95.70 MAFi Mafic Intrusions (primarily footwall mafic intrusion) C/LBI/feldspar unit. CL altered. CA veinlet set. Fine grain. Gradual contact on the last 10 cm with highly it, quartzite?. 1.95.7 Strong Silicification>> 1-95.7 Strong Silicification>> Strong Silicification> Noterate-Strong Calcite> Noterate-Strong Silicification>	CONSULTANTS LTD. Project: KZK Hole Number: K988 To (m) Rocktype & Description From (m) To (m) Width Sample Au ppm Ag ppm 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) Sample Au ppm Ag ppm 7: Brown, silicified. CA veinlets set. fine grain biotite, homogeneous, Bl/Feldspar. -	Project: KZK Hole Number: K98-194 To (m) Rocktype & Description From (m) To (m) Width Sample Au ppm Ag ppm Cu % 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) To (m) Width Sample Au ppm Ag ppm Cu % 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) To (m) To (m) Width Sample Au ppm Ag ppm Cu % 89.07 Quartz-Carbonate 80 deg. >> QZ/CA veinlet set. Sample Fault Zone Fault Zone Fault Zone Fault gouge (MAFt) Sample Au ppm Ag ppm Cu % Sample Fault zone Fault gouge, core loss. Fault Mafic Intrusions (primarily footwall mafic intrusion) CuBI/feldspar unit. CL aitered. CA veinlet set. Fine grain. Gradual contact on the last 10 cm with highly it, quartzite? Fault Some Fault Some	Project: KZK Hole Number: K98-194 To (m) Rocktype & Description From (m) To (m) Width Sample Au ppm Ag ppm Cu % Pb % 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) To (m) Width Sample Au ppm Ag ppm Cu % Pb % 89.07 MAFi Mafic Intrusions (primarily footwall mafic intrusion) Sample Au ppm Ag ppm Cu % Pb % 90.07 Quartz-Carbonate 80 deg. >> QZ/CA veinlet set. Sample Au ppm Ag ppm Cu % Pb % 89.07 Quartz-Carbonate 80 deg. >> QZ/CA veinlet set. Sample Fault Zone Sample Fault Zone Sample Sample		