Assessment Report

Geochemical Sampling on the McConnells Jest Au Project, Mayo Mining District, Yukon Territory.

July 22nd – August 7th 2015

Prepared For: Bill Koe-Carson Blue Mountain Minerals Inc. Box 387 White Fox, Saskatchewan SOJ 3B0 Canada

Prepared By: Andrew Randell, P.Geo and Fraser Kirk, MSc. Strata GeoData Services 415 - 1035 Pacific Street, Vancouver, British Columbia V6E 1S9, Canada ph: +1 (604) 349 2090 e: info@stratageodata.com

April 24, 2016

1.0 Executive Summary

The McConnells Jest property, located in the central Yukon, lies 65 km northeast of Mayo, Y.T. Access to the property is limited to a 25 minute helicopter trip from the Mayo airstrip. The Hansen-McQuesten Lake road, which lies east of the property provides foot and skidoo access.

The McConnells Jest Property consists of 172 contiguous (quartz) claims, owned 100% by Bill Koe-Carson, and covers an area of approximately 3,371 hectares.

The property itself has seen limited exploration activity. The property was first staked by United Keno Hill Mines in the 1960's, termed the "Zed" (Z) claims (minfile#: 106D055). The property was subsequently staked in 2010 by Bill Koe-Carson. Golden Predator Canada Corp. oversaw soil and rock sampling programs in 2011, 2012 and 2014.

Mapping took place in 1961 (Green, 1972) by L. Green and the Geological Survey of Canada (GSC) as part of a helicopter-supported party known as the Operation Ogilvie (Minfile# 106D055). Directly south of the property, local topographic map sheet 105M was remapped by Roots (1997) of the GSC, and in 2003 the GSC released a geological compilation that included this area (Golden Predator Canada Corp., 2013).

The property underwent glaciation during the McConnell glaciation (>23,000 years ago; Bond, 1999). It has been demonstrated through a number of field seasons that the ground is covered by basal till. The lack of a distinct soil anomaly is attributed to the presence of loess deposits on the property.

The McConnell pluton is one of a series of Cretaceous plutons that have been included in the Tintina Gold Province. The Tintina Gold Province (e.g. Hart, 2004) is a belt of Au-deposits in the Northern Cordillera of Yukon and Alaska that are bounded by two dextral transpressional fault systems - the Denali Fault (southern limit) and the Tintina Fault (northern limit). The belt extends beyond the northern tip of the Tintina Fault, into the Selwyn Basin in the Yukon, and into the western-most NWT. Within the Tintina Gold Province a series of highly prospective Intrusion-Related Gold (IRGS) deposits form the Tombstone Gold Belt, the most significant host to IRGS globally.

Paleozoic clastic rocks of the upper Devonian and Mississippian Earn Group underlie the majority of the McConnell property. These metasedimentary sequences were formed in a submarine fan and channel

deposit setting and subsequently deformed during Cordilleran tectonics. The 7 x 2.5 km McConnell pluton intrudes the Earn Group. The pluton is a mid-Cretaceous Tombstone suite granodiorite intrusion which occupies a large portion of the property.

Two major mineral properties lie adjacent to McConnells Jest, the Dublin Gulch IRGS deposit to the west and the Keno Hill silver district to the south east. Many similarities exist between McConnells Jest and Dublin Gulch (6.3 M oz indicated and inferred, Wardrop Engineering Inc., 2011) and so the IRGS model has been adopted to describe mineralisation.

From July 22nd – August 7th 2015 Mr. Bill Koe-Caron of Blue Mountain Minerals Inc. conducted prospecting and sampling of aligned quartz veins and cross-cutting arsenopyrite/scorodite veins. The prospecting focussed on an area in the centre to the northern edge of the pluton on the western portion of the Property. A total of seven samples were extracted from the site for analysis by Bureau Veritas Mineral Limited in Whitehorse, Yukon. A minimum of CAD\$17,807.31 was filed as assessment work in January, 2016.

Recommendations to explore for an intrusion-related gold system are outlined, including bedrock mapping, sheeted quartz- and arsenopyrite/scorodite- vein prospecting and mineralogical studies. Additionally, it is recommended that exploration for a W-skarn on the margins of the McConnell pluton, should also be considered. Environmental studies should also be conducted to establish baselines as a reference for future monitoring. It is proposed that a team of geologists and field technicians could conduct the proposed work in a single field season.

1.0 Executive Summary	ii
2.0 Introduction	
2.1 Sources of Information	1
3.0 Property Location and Claim Information	
4.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography	3
4.1 Accessibility	
4.2 Climate	3
4.3 Local Resources and Infrastructure	3
4.4 Physiography	4
5.0 History	4
6.0 Geology	5
6.1 Regional Geology	5
6.2 Property Geology	9
7.0 Deposit Setting	10
8.0 Mineralization	11
8.1 Statistics	11
8.2 Principal Component Analysis	15
9.0 Exploration.	19
9.1 Historical Exploration	19
9.2 2015 Exploration Program	21
10.0 Sampling Method and Approach	
11.0 Sample Preparation, Analysis and Security	24
11.1 2010	24
11.2 2011	25
11.3 2012	25
11.4 2014	26
11.5 2015	
12.0 Data Verification	
13.0 Adjacent Properties	
14.0 Other Relevant Data and Information	
14.1 First Nations	
14.2 Environmental Issues	
14.3 Local Populations	
15.0 Interpretation	
15.1 Geochemical Evidence	
15.2 Structural Elements	
15.3 Rock Types	
15.4 Revised Geology	
15.5 Conclusions	
16.0 Recommendations	
17.0 References	44
	. –
Appendix 1: Statement of Qualifications	
Appendix 2: 2015 Expenditures	
Appendix 3: 2015 Sample Photographs	
Appendix 4: Certificates of Analysis	
Appendix 5: Claims List	72

List of Figures

Figure 3.1. Map showing the boundary of the McConnells Jest claim block	2
Figure 6.1. Map of the Tintina Gold Province for the Yukon Territory and Alaska	5
Figure 6.2. Regional geology of the north western Selwyn Basin showing distribution	
of plutons, stratigraphic units and structural features	7
Figure 6.3. Stratigraphy of the Selwyn Basin and thrust stacking	8
Figure 6.4. Regional Geology of the McConnells Jest area	10
Figure 8.1. PCA Scatter plot for the alteration set of elements at McConnells Jest	16
Figure 8.2. PCA Scatter plot for the mineralisation set of elements at McConnells Jest	18
Figure 9.1. Example of scorodite vein at surface	20
Figure 9.2. Map of the McConnells Jest Property showing the extent of prospecting	
activities for 2014 and 2015	22
Figure 9.3. Map showing the location of samples 15601 to 15605	23
Figure 13.1. Claim blocks adjacent to the McConnells Jest property	29
Figure 14.1. Map of administrative boundaries 105M and 106D used to classify	
the potential flora and fauna on the property	. 31
Figure 15.1. Preliminary element zoning from rock sample geochemistry	33
Figure 15.2. Combined aerial photography for the McConnells Jest property	
Figure 15.3. Interpreted structural lineaments on the McConnells Jest property	35
Figure 15.4. Distribution of rock types at McConnells Jest	
Figure 15.5. Rock types and vein orientations on the southern shoulder of the	
central portion of the McConnell pluton	38
Figure 15.6. The proposed revised geologic map of McConnells Jest based on	
structural interpretation of the surrounding geology	39
Figure 15.7. Comparison of structural lineaments at Dublin Gulch and McConnells Jest	40
Figure 16.1. Exploration targets generated from the geologic interpretations of	
McConnells Jest	42

List of Tables

Table 3.1. Claim information for the McConnells Jest property	2
Table 8.1. Pearson's Correlation Coefficient for detected elemental concentrations at	
McConnells Jest	13
Table 8.2. Spearman's Rank Correlation Coefficient for detected elemental concentrations	
at McConnells Jest	14
Table 9.1. Assay results for selected elements from the 2015 exploration program	21
Table 9.1. Details of 2015 Rock Samples.	23
Table 11.1. Geochemical Analytical Procedures for 2010 to 2015	
Table 12.1. Summary of geochemical standards used by laboratories	28

2.0 Introduction

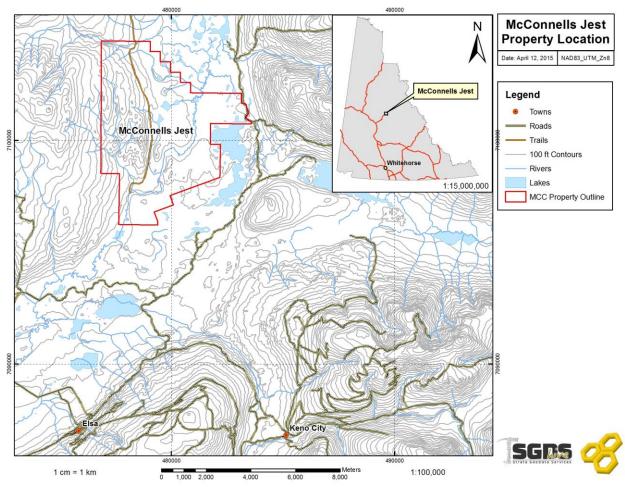
The McConnells Jest property is located in the central Yukon and lies 65 km northeast of Mayo, Y.T. A mid-Cretaceous pluton is the main exploration target for Au and Ag, with a secondary focus on delineating potential W-skarns in the contact zones around the McConnells Jest pluton.

From July 22nd – August 7th 2015 Mr. Bill Koe-Caron of Blue Mountain Minerals Inc. conducted prospecting and sampling of aligned quartz veins and cross-cutting arsenopyrite/scorodite veins. The prospecting focussed on an area in the centre to the northern edge of the pluton on the western portion of the pluton, with a view to identifying areas of outcrop exposure and zones of high concentrations of quartz and arsenopyrite/scorodite veins. A small area on the north-eastern edge of the pluton was also prospected and serves as the only location where W-skarn development would be expected. Due to lack of outcrop exposure, no samples targeting a W-skarn were extracted. A total of seven samples were extracted from the site for analysis for Au-content using atomic absorption spectroscopy (AAS) and a further 36 elements using inductively coupled plasma mass spectrometry (ICP-MS). A single sample (15606) returned a Au value of over 10 g/t using AAS and was re-analysed using gravimetric analysis. All analyses were performed by Bureau Veritas Minerals Limited in Whitehorse, Yukon.

The claims are 100% held by Bill Koe-Carson of Blue Mountain Minerals Inc. in White Fox, Saskatchewan. A minimum of CAD\$17,807.31 was filed as assessment work in January, 2016. This report is prepared to satisfy assessment requirements of the Yukon Mining Recorder (Mayo Mining District).

2.1 Sources of Information

The report of Randell et al., (2015), the first detailed geologic report for the property, as part of the Strata GeoData Services: Hive initiative forms the basis for many sections of this report. Their report, and references therein, should be referred to for more detail.


3.0 Property Location and Claim Information

The property is located in the central Yukon and lies 65 km northeast of Mayo, Y.T. on map sheet 106D03 and 105M14 at 479500m E and 7100000m N in NAD83 Zone 8 (Fig 3.1). The McConnell Property consists of 172 contiguous (quartz) claims and covers an area of approximately 3,371 hectares

(Table 3.1, Fig 3.1). The claims were all staked under terms of the Yukon Quartz Mining Act and are registered with the Mayo Mining Recorder by Mr. Bill Koe-Carson.

Claim Name	Number(s)	Grant Number	Registered Owner
McConnells Jest	1 to 40	YD16701 to YD16740	Bill Koe-Carson - 100%
McConnells Jest	41 to 52	YD54701 to YD54712	Bill Koe-Carson - 100%
McConnells Jest	53 to 56	YD54713 to YD54716	Bill Koe-Carson - 100%
McConnells Jest	57 to 120	YD54717 to YD54780	Bill Koe-Carson - 100%
McConnells Jest	121 to 125	YD61470 to YD61474	Bill Koe-Carson - 100%
McConnells Jest	126 - 172	YD126853 - YD126899	Bill Koe-Carson - 100%

Table 3.1. Claim information for the McConnells Jest property.

Figure 3.1. Map showing the boundary of the McConnells Jest claim block. Inset shows position within the Yukon Territory.

4.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography

4.1 Accessibility

The closest sizeable town is Mayo, located on the Stewart River, approximately 65 km to the southwest. Mayo is accessible from Whitehorse via a 460 km all---weather road and is also serviced by the Mayo airport, which is located just to the north of Mayo. Access to the property is limited to a 25 minute helicopter trip from the Mayo airstrip. The Hansen---McQuesten Lake road, which lies east of the property provides foot and skidoo access.

4.2 Climate

The central Yukon is characterized by a subarctic continental climate with cold winters and warm summers. The mean annual temperature for the area is approximately -3°C, with an annual range of 63.5°C. January is the coldest month, July the warmest. Average temperatures in the winter are between -15 and -20 degrees Celsius (°C) but can reach -60°C. The summers are moderately warm with average temperatures in July around 15°C. Annual precipitation ranges from 375 to 600 mm, about half of which falls as snow, which starts to accumulate in October and remains into May or June. Because of its northern latitude, winter days are short with the sun low on the horizon such that north-facing slopes can experience ten weeks without direct sunlight around the winter solstice. Conversely, summer days are very long, especially in early summer around the summer solstice. Exploration and mining work can be carried out year-round.

4.3 Local Resources and Infrastructure

In terms of manpower, rental equipment, materials, and supplies are very limited. A broader range of services is available in Whitehorse, Yukon, located about six hours by road to the south of the property. Whitehorse has a population of 22,815 (National Household Survey, 2011) and has regularly scheduled air service to Vancouver, Edmonton, Calgary, and Fairbanks. Electrical transmission lines from a hydroelectric facility near Mayo extend to the villages of Elsa and Keno City, about 20 km south of the property.

Mayo has a population of approximately 450 and offers accommodation, fuel, a nursing station, and earth-moving contractors. The Government of Yukon maintains a 1,400 m gravel airstrip, suitable for charter flights, about 3 km north of Mayo. There are no scheduled air services to Mayo.

4.4 Physiography

The property is situated just southwest of the Davidson Range and McQuesten Lake. Topographically, the property lies in the bottom of the McQuesten Valley and is characterized by rolling hills and plateaus; elevation ranges from 640 m to 920 m above sea level. Relief on the property is moderately steep due to creek incising and hills that rise rapidly over lithology changes (Golden Predator Canada Corp., 2011). The property underwent glaciation during the McConnell glaciation (>23,000 years ago; Bond, 1999), and it has been demonstrated through a number of field seasons that the ground is covered by basal till (Golden Predator Canada Corp., 2013). Outcrops are rare, generally less than two percent of the surface area, and are limited to ridge tops and creek walls. Vegetation on the property consists of stunted spruce on north facing slopes and narrow valley floors, as well as slope alder. South facing slopes contain both coniferous trees and areas of deciduous aspen, poplar and birch. Patchy permafrost occurs on north---facing slopes (Golden Predator Canada Corp., 2011). It should be noted that an estimated 50% of the area has been burned in previous forest fires.

5.0 History

There are no historical quartz claims recorded in the immediate vicinity of the property. However, based on the Minfile occurrence report for "Zed" (106D 055), United Keno Hill Mines had some ground over the current McConnells Jest claims. Throughout the 1960s and 1970s, United Keno Hill Mines carried out grid soil sampling and prospecting on its claim groups including over the Zed occurrence. No significant mineralization was recorded, and no assessment report was filed.

The area was regionally mapped (1:250,000) by L. Green (1972) of the GSC, and by C. Roots (1997) of the GSC, who remapped topographic map sheet 105 M located to the immediate south. In 2003, Gordey and Makepeace of the GSC released a geological compilation which included the area (MinFile#: 106D 055, 2008).

The ground remained unclaimed until Bill Koe-Carson staked the ground in 2010.

6.0 Geology

6.1 Regional Geology

The McConnell pluton is one of a series of Cretaceous plutons that have been included in the Tintina Gold Province (see Fig. 6.1). The Tintina Gold Province (e.g. Hart, 2004) is a belt of Audeposits in the Northern Cordillera of Yukon and Alaska that are bounded by two dextral transpressional fault systems - the Denali Fault (southern limit) and the Tintina Fault (northern limit). The belt extends beyond the northern tip of the Tintina Fault, into the Selwyn Basin in the Yukon, and into the western-most NWT. Within the Tintina Gold Province a series of highly prospective Intrusion-Related Gold (IRGS) deposits (Pink belt in Fig. 6.1) form the Tombstone Gold Belt, the most significant host to IRGS globally.

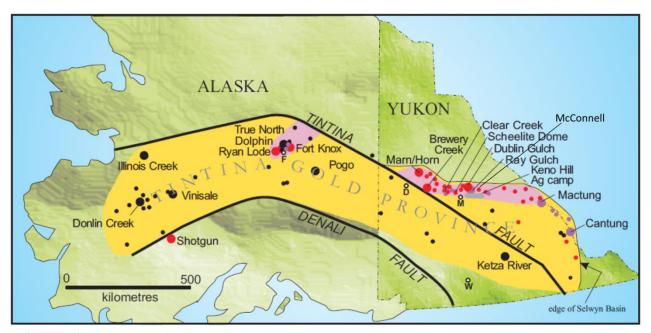
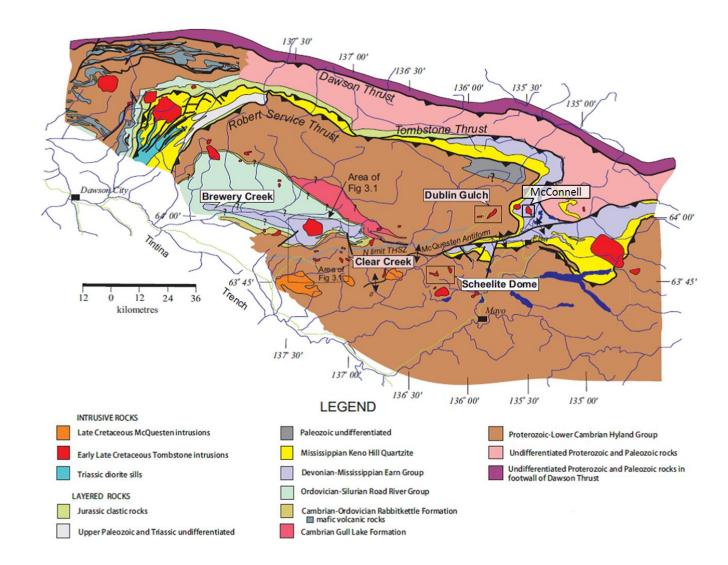
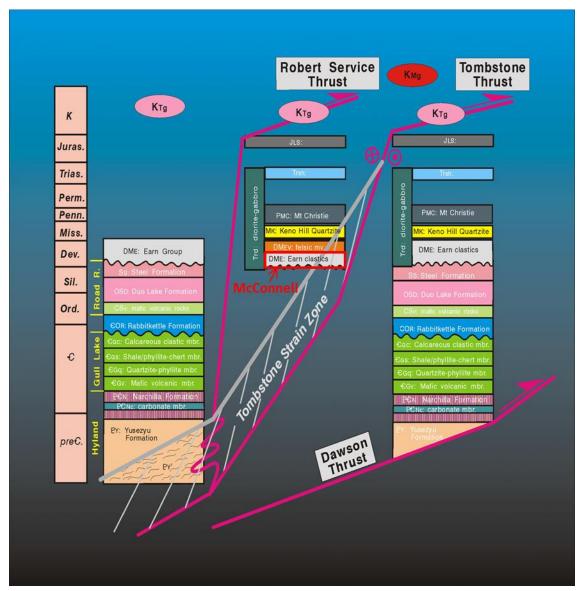



Figure 6.1. Map of the Tintina Gold Province for the Yukon Territory and Alaska. Mineral deposits are shown as large circles, mineral occurrences are shown as small circles. Gold deposits in red dots could be considered under the same genetic model as McConnells Jest. Deposits marked in black dots are not of the same origin, or are ambiguous in origin. Deposits marked in purple are skarn deposits (predominantly W-bearing). Within the TGP is the Tombstone Gold Belt (TGB; marked in pink) which is the major host to gold deposits in the Yukon and Alaska. Mair et al. (2006) suggested ~450 km of post-formation offset along the Tintina Fault, causing displacement of the Fairbanks district. Population centres marked are Whitehorse (W), Mayo (Mayo), Dawson (D) and Fairbanks (F). After Hart (2007).

The property lies on the north central margin of the Selwyn Basin tectonic province. The Selwyn Basin, a passive margin sequence, was deposited on the north-western margin of North America during the late Precambrian through Middle Jurassic (Abbott et al. 1986; Gordey and Anderson, 1993). The McConnell property is underlain by metasedimentary rocks of the Earn Group of the Selwyn Basin (see Fig. 6.2). The Earn Group consists of a series of metasedimentary and meta-volcanic rocks originally deposited during the Devonian to Mississippian. Metasedimentary rocks are commonly grey to black shales, metamorphosed to phyllite, with subordinate chert, siltstone, sandstone, limestone, bedded barite, baritic limestone, and chert-pebble conglomerate. A chlorite-muscovite phyllite unit is proposed to be a metamorphosed felsic volcanic rock (Murphy, 1997). The depositional environment of the Earn Group was a deep marine basin disrupted by faults to cause periods of coarser clastic influx (Abbott et al. 1986).


Deformation within the Selwyn Basin is associated with the Cordilleran Orogeny. Metamorphism is typically of lower greenschist facies. The formation of a series of folds and three thrust sheets initiated in the Jurassic as the localized effects of Cordilleran convergence began (Mair et al. 2006) The Dawson Thrust, the Tombstone Thrust, and the Robert Service Thrusts disrupt the stratigraphy of the basin (see Fig. 6.3) and may have formed structural conduits for magma during ascent through the crust.

The Tombstone Gold Belt has been divided into a number of suites based on the age, location, morphology and geochemical properties of plutons. In the north-central Selwyn Basin these are the Tombstone Suite (94 Ma – 89 Ma), the Mayo Suite (96 Ma – 93 Ma), and the Tungsten Suite (98 Ma – 94 Ma) (Rasmussen, 2013). Although no date exists for the McConnell pluton, its proximity to Dublin Gulch and the Roop Lakes Stock (94.0 Ma and 92.8 Ma; Selby et al. 2003; Roots, 1997) suggests an age of c. 93 Ma and a classification within the Mayo Suite. The Mayo Suite is characterized by 1-5 km² (east)/ 20-80 km² (west), single phase to weakly composite plutons, which are alkalic-calcic to calcic and chiefly composed of quartz monzonite, trending east-west along the northern margin of the Selwyn Basin (Hart et al. 2004).

stratigraphic units and structural features. The McConnell pluton is hosted by the Devonian-Mississippian Figure 6.2. Regional geology of the north western Selwyn Basin showing distribution of plutons, Earn Group. Modified after Scott Wilson Mining (2010).

Metamorphic cooling ages (⁴⁰Ar-³⁹Ar; Mair et al. 2006) indicate that plutonism in the area took place around 10 Ma after the cessation of Cordilleran collisional tectonics. Plutonism took place around 500 km inboard from the active subduction of the Farallon plate beneath North America, indicating that Andean-style subduction related plutonism is not the source of melting. Melting for plutonism took place in the sub continental lithospheric mantle due to mantle upwelling (and associated heat flow) after delamination (Mair et al. 2011).

Figure 6.3. Stratigraphy of the Selwyn Basin and thrust stacking, modified from Murphy (1997). The McConnell pluton was intruded outside of- but proximal (<10 km) to- the Tombstone Strain Zone.

6.2 Property Geology

The property underwent glaciation during the McConnell glaciation (>23,000 years ago; Bond, 1999). It has been demonstrated through a number of field seasons that the ground is covered by basal till. Sampling of the property has been carefully completed, where possible, at sufficient depths (i.e. > 0.50 m) to avoid sampling possible shallow loess deposits. Generally, samples were collected at shallower depths (i.e. <0.3 m) in subalpine terrain with limited overburden or in boulder fields, as this was sufficient to avoid sampling glacial material (Golden Predator Canada Corp., 2013).

Paleozoic clastic rocks of the upper Devonian and Mississippian Earn Group underlie the majority of the McConnell property (Fig. 6.4). These metasedimentary sequences were formed in a submarine fan and channel deposit setting and subsequently deformed during Cordilleran tectonics. Rock types in the Earn Group are predominantly siliceous shales and cherts with interbeds of arenites and wackes, chert pebble conglomerates, siltstones and barite with rare limestone (Murphy, 1997). A quartz mica schist is the most commonly mapped expression of the Earn Group on the property to date (Koe-Carson, 2010).

The 7 x 2.5 km McConnell pluton intrudes the Earn Group. The pluton is a mid-Cretaceous Tombstone suite granodiorite intrusion which occupies a large portion of the property. The pluton trends \sim 120 degrees along its long axis. Due to the little amount of historic exploration and drilling, very little is known about contacts, structures and for the most part mineralization.

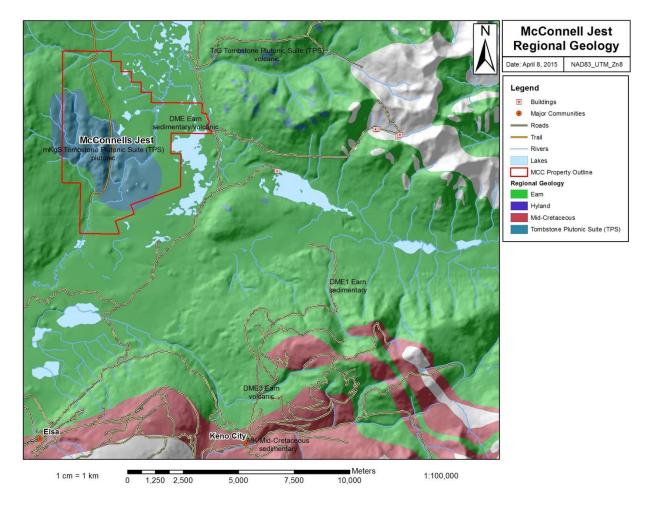


Figure 6.4. Regional Geology of the McConnells Jest area. A mid-Cretaceous pluton intrudes metasedimentary horizons of the Earn Group.

7.0 Deposit Setting

Though the property is underexplored, an initial classification within the intrusion-related gold system (IRGS) deposit model is suggested. Hart (2005) provides the following seven points as a summary of defining points for Intrusion-Related Gold Systems:

1. Metaluminous, sub-alkalic intrusion of intermediate to felsic composition, which are transitional between ilmenite and magnetite series.

2. Carbonic hydrothermal fluids responsible for mineralization;

3. A metal assemblage that variably combines gold with elevated Bi, W, As, Mo, Te, and/or Sb and low concentrations of base metals;

4. A low sulphide mineral content, mostly <5 vol%, with a reduced ore mineral assemblage that typically comprises arsenopyrite, pyrrhotite and pyrite and lacks magnetite or hematite;

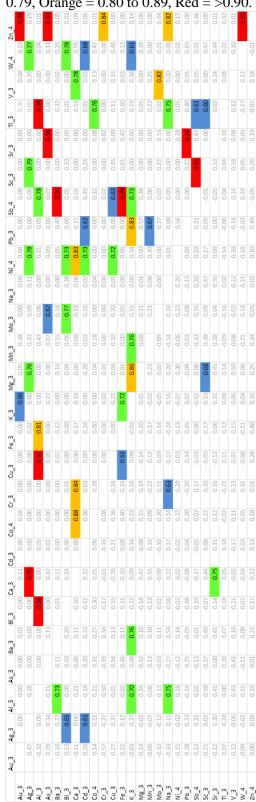
- 5. Spatially-restricted, commonly weak hydrothermal alteration;
- 6. A tectonic setting well inboard of inferred or recognized convergent plate boundaries;
- 7. A location in magmatic provinces best or formerly known for tungsten and/or tin deposits.

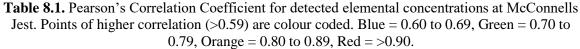
McConnells Jest satisfies the regional geologic requirements of this model and early exploration work suggests that this model is the most appropriate. The proximity and similarity of McConnells Jest to the adjacent Dublin Gulch, 6.3 M oz Au (Wardrop Engineering Inc., 2011), which is a holotypic example of an IRGS, further strengthens the case for this classification. If further exploration clarifies the proposed IRGS classification then gold can be genetically related to the intrusion of the McConnell pluton. Further, the areas of higher potential on the property will be those portions of the pluton which are unroofed. Several examples of elevated tungsten exist in the sample set and suggest that exploration for a skarn deposit would be justified.

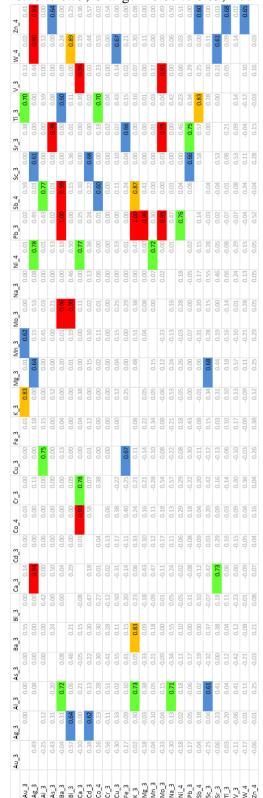
8.0 Mineralization

A partially aligned stockwork of quartz veins, with potassic alteration selvedges, has been identified in multiple locations. Additionally, arsenopyrite veins associated with higher gold grades, with more pervasive clay alteration selvedges, are also present within the current sample set.

8.1 Statistics


8.1.1 Data Preparation


Data was prepared for statistical analysis by replacing values below detection with a zero value. Given the small sample set, values above detection were reset to the value representing the upper detection limit for inclusion. Data transformations were performed on an element by element basis in order to normalise the distribution of values, in order to satisfy the requirement of normally distributed data for statistical techniques. Data were either normalised using a natural logarithm ("_3" suffix in figures and tables) or a double natural logarithm ("_4" suffix in figures and tables) transformation.


8.1.2 Correlations

A linear correlation was performed for 26 elements using the Pearson's Product Moment Correlation coefficient (Pearson, 1896). The Spearman's Rank Correlation Coefficient (Spearman, 1904), values are ranked and then a pearsons correlation is performed on the ranked values. Ranking of the values can be useful for data which, even when transformed, is not entirely normally distributed. Results vary between -1 and 1; a value of 1 represents a perfect positive correlation and a value of -1 represents a perfect negative correlation. A full set of correlation results are available in tables 8.1 (Pearson) and 8.2 (Spearman).

Gold shows statistically significant (≥ 0.70) correlations with Zn (0.98) using Pearson's method and, K (0.83) and Ti (0.70) using Spearman's method. The association of Au with Zn may be due to co-precipitation of Au and Sphalerite ((Zn,Fe)S) during late-stage Au-Ag-Pb-Zn veins. The correlation between Au and K may point to a strong association of gold within veins which have potassic (K-rich) alteration. The presence of hydrothermal rutile (TiO₂) in association with gold and/or gold bearing minerals may be the cause for the correlation of Au with Ti. These associations should be confirmed with a mineralogical investigation of the property and should be considered as hypotheses only.

Table 8.2. Spearman's Rank Correlation Coefficient for detected elemental concentrations atMcConnells Jest. Points of higher correlation (>0.59) are colour coded. Blue = 0.60 to 0.69,Green = 0.70 to 0.79, Orange = 0.80 to 0.89, Red = >0.90.

8.2 Principal Component Analysis (PCA)

The suite of elements from assay data was split into two sets, 1) an "alteration" set (Al, Ba, Ca, Cr, K, Mg, Mn, Na, Sc,Sr, Ti, V), and 2) an "ore mineralization" set (Au, Ag, As, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sb, W, Zn) in order to most clearly portray these complementary aspects of the sample lithologies. Data used in the PCA was selected and transformed using the same criteria as for the element vs element correlations. The PAST software of Hammer et al. (2001) was used to carry out the PCA. These associations should be confirmed with a mineralogical investigation of the property and should be considered as hypotheses only.

Alteration Set (Fig 8.1): Three distinct grouping of elements are present:

- 1) Ti: Ti shows a large divergence from the rest of the elements within the alteration grouping. This may point to, as stated above, a hydrothermal rutile (TiO₂) phase.
- 2) Magmatic (Al, Ba, Ca, K, Mg, Mn, Na, Sc, Sr, V): The close grouping of these elements is most likely explained by their dominant residence within the host rocks to mineralisation.
- 3) Cr: The proximity to the other magmatic elements may point to the residence of Cr within intermediate dykes mapped on the property.

There is no clear pattern of association of any of these elements with high grade gold values in Fig 8.1.

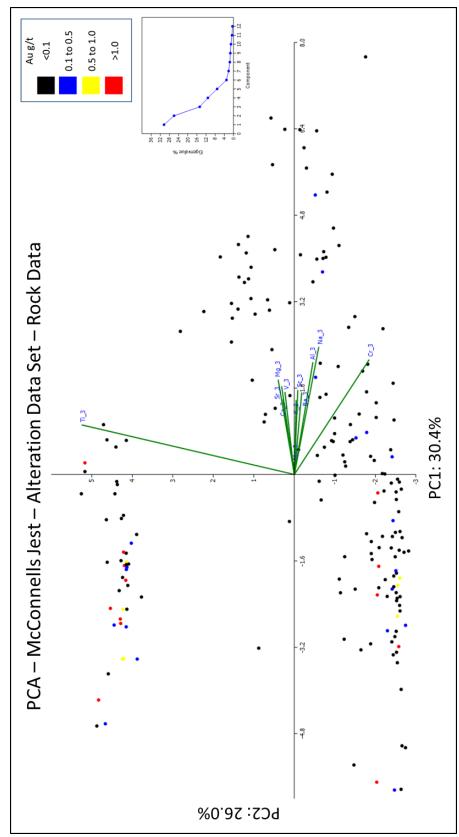


Figure 8.1. PCA Scatter plot for the alteration set of elements at McConnells Jest.

Ore Mineralisation Set (Fig 8.2): Five distinct groupings of elements are present:

- W, Ni, Sb: A number of Ni-Sb minerals could be the result of this association. Minor volumes of scheelite (CaWO₄) are common in quartz veins in IRGS and are the most probably residence of W in this group.
- 2) Mo, Pb, Zn: The grouping of these elements may point to a mineralisation stage with molybdenite (MoS_2), galena (PbS) and sphalerite ((Zn,Fe)S).
- 3) Fe, Bi, Cu, Ag: The sulfosalt mineral tetrahedrite $((Ag,Cu,Fe)_{12}Sb_4S_{13})$ and bismuth minerals may be the dominant residence of these minerals. It should be noted that Sb, an important component of tetrahedrite, is not associated with this group.
- 4) Cd, Au: Cd can occur as an impurity in sphalerite. Given the linear correlation of Au with Zn, the association of native gold with sphalerite is suggested here.
- 5) As: Arsenopyrite (FeAsS) veins are common on the property. Although these generally return elevated Au assay grades, the trajectory of the As component is not towards high Au values. This may indicate that arsenopyrite is a host to gold but is not genetically related to the same fluid which precipitated gold.

Groups 3 and 4 trend towards high grade gold values (red dots) on Fig. 8.2, suggesting that these may be either i) two discrete Au mineralising events or ii) sub-stages of a broader, single Au mineralisation event. An investigation into the hydrothermal paragenesis at McConnells Jest is required to test the above hypotheses.

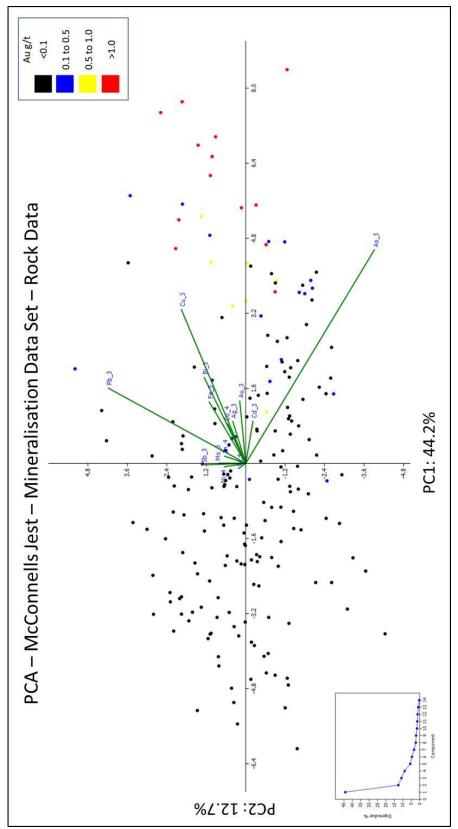


Figure 8.2. PCA Scatter plot for the mineralisation set of elements at McConnells Jest.

9.0 Exploration

9.1 Historical Exploration

In 2010 and with the assistance of a YMIP grant, Bill Koe Carson staked the property and collected 12 stream samples, 44 soil samples and 28 rock samples (Bourne, 2011). Stream sample MJSED-004 returned 11.7 ppm Au, MJSED-006 returned 0.558 ppm Au and MJSED-009 returned 0.305 ppm Au. Of the 28 rock samples, two had weakly anomalous gold assays in the 0.1 to 0.2 ppm range, however several samples contained anomalous pathfinder elements, for example 3722 ppm arsenic and 98 ppm bismuth in sample MJR-24.

In 2011, Golden Predator optioned the ground and contracted All-In Exploration Inc. (Whitehorse, Yukon) to complete the collection of 380 soil samples from a grid covering the western section of the property. Samples were collected every 50m along east-west oriented lines 200m apart, to a total of 19.6km.

The results from this survey outlined several multi-element geochemical anomalies, with sporadic highs (up to 208 ppb Au) and a cluster of elevated values (10 to 17 ppb Au) in the northeast quadrant. This anomaly is around 400m in length and lie within 500m of the anomalous stream sediments collected in 2010. This anomaly is associated with elevated levels of copper and arsenic.

In the southwest part of the grid, there is a strong cluster of arsenic anomalies that are associated with the highest gold result (208 ppb). There were also elevated levels of silver and bismuth in the same quadrant.

Work continued in 2012 with a short field program undertaken again by Golden Predator.

A total of 74 rock samples were taken over the 3 day program on the McConnell claims. The program was undertaken by three geologists and an experienced prospector who has worked with Golden Predator for a number of years. Focus was put on intrusive rocks and sedimentary rocks proximal to those intrusions, as well as rocks which hosted sheeted quartz veins.

2012 work resulted in a number of interesting anomalous targets which warrant follow up work. Most notable is AA064560, a bedrock sample from a quartz-arsenopyrite breccia/vein which assayed over 25 g/t Au. With an orientation of 112 degrees azimuth, and a 38 degree dip, the sample shows a similarity to Dublin Gulch style structural extensional veining. In addition, a number of samples assaying over 0.3 g/t Au were discovered, and a soil sample which assayed 1.47 g/t Au at the north of the property were also discovered.

Figure 9.1. Example of scorodite vein at surface. Sample AA064560 has an assay grade >25g/t Au.

It is understood that no work was undertaken in 2013 due to economic setbacks. Golden Predator did not return to the site, and the claim owner could not raise the cash to return to the property that year.

In 2014, the claim owner did return to the property, and with a small team collected 102 rock samples from across the property, in particular in the two anomalous areas previously identified by Golden Predator in their soil program.

These rocks samples returned values up to 28.8ppm Au (sample 14474), with an additional 16 samples returning grades in excess of 0.5ppm. Many of the samples were from sheeted veins or

scorodite exposures within the two anomalous zones. These zones were subsequently named Bullion Blister (in the west) and Pink Mountain (in the east).

Pink Mountain has an abundance of sheeted vein systems, and covers an area approximately 500m by 375m (although it remains open on three sides). The grades here are slightly lower but more consistent, around 1g/t Au.

Bullion Blister hosts many of the scorodite veins in oxidised rock, and as such has returned the highest assays, including the 28.8g/t.

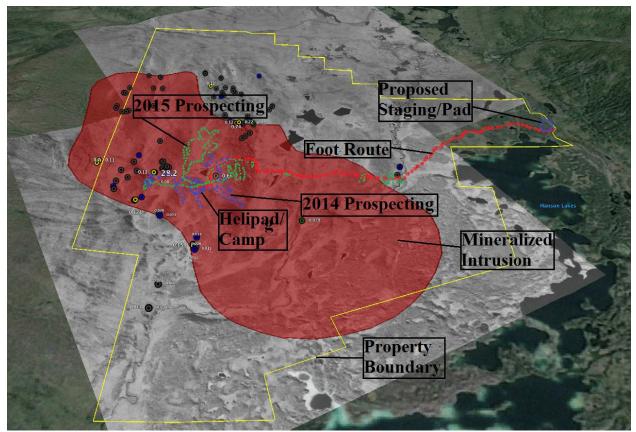
9.2 2015 Exploration Program

The extent of the 2015 prospecting program is shown in Fig. 9.2. The program focussed on expanding the 2014 prospecting program northwards towards the northern margin of the pluton. The exploration found that mineralised veins in the form of sheeted quartz veins and arsenopyrite/scorodite veins which range from sub-millimetre to cm-scale extend northwards inside the margins of the pluton. The strike of the veins were consistently around 050° and are aligned with a set of SW-NE trending lineations (see section 15.2).

A total of seven samples were extracted during the 2015 sampling program. The locations of the samples are shown in figures 9.3 and 9.4. The details of sample analysis for the 2015 program are discussed below in Section 11.5. Table 9.1 shows the assay results for elements of interest for the 2015 exploration samples.

Sample	Au	Ag	As	Bi	Cu	Mo	Pb	Sb	Zn	W
15601	0.615	< 0.1	3350.1	2.3	30	0.6	4.5	1.3	34	0.1
15602	0.026	< 0.1	883.6	1.1	9.5	0.4	3.6	0.8	19	0.1
15603	0.039	0.1	25.1	97.5	68.6	2.6	25.1	0.5	11	< 0.1
15604	3.046	0.6	>10000.0	108.3	14.1	0.5	132.6	13.4	171	0.3
15605	0.094	0.1	1085.2	8.6	12.8	0.4	6.3	2.3	144	0.1
15606	11.6*	3.4	>10000.0	357.1	257.9	1.5	500.8	125	10	< 0.1
15607	0.017	< 0.1	3254.9	1.7	61.4	0.4	12.7	1.3	13	0.6
-1- 4	C 4	1								

 Table 9.1. Assay results for selected elements from the 2015 exploration program. Values are expressed in ppm.


* Average from 4 analyses.

The highest Au values (11.6 ppm on average) were returned from sample 15606, an arsenopyrite/scorodite vein, which accounts for the very high value for As. The elevated values for Bi, Cu, Pb, and Sb are most likely attributed to the presence of sulfosalt minerals. Sample

15604, also contains elevated levels of the aforementioned metals, although in lower concentrations than sample 15606. Silver is generally lower than expected for arsenopyrite/scorodite veins in an IRGS, this may point to the presence of native gold rather than electrum as the predominant gold species in this portion of the pluton. Low to moderate concentrations of Cu and Mo are further evidence of the IRGS classification of the mineralisation.

All of the samples in Table 9.1 contain low concentrations of W, which suggests that the 2015 prospecting area is not a suitable location for further skarn exploration. Instead it is proposed, that the margins of the pluton are the most prospective targets for W-skarn development.

The pattern of metal enrichments relative to gold content in the samples from the 2015 exploration program are consistent with those for an IRGS and are in strong agreement with those of Kirk (2016) for the Dublin Gulch deposit.

Figure 9.2. Map of the McConnells Jest Property showing the access footpath (in red). The extent of prospecting activities for 2014 (in blue) and 2015 (in green) are shown. The boundary of the Property is shown in yellow. Proposed sites for a staging pad area and helipad camp area are shown with blue circles.

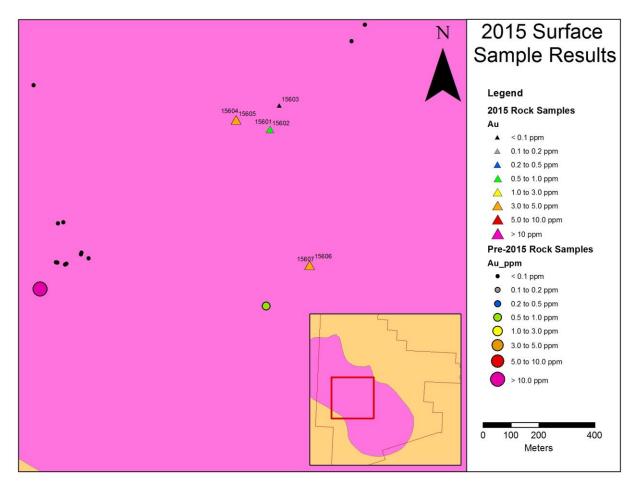


Figure 9.3. Map showing the location of samples 15601 to 15605.

Sample	Easting	Northing	Au g/t	Notes
15601	478501	7100476	0.615	Highly oxidized 10cm vein. Strike 50 deg, Dip 80 deg
15602	478501	7100476	0.026	Wall rock from sample 15601
15603	478531	7100562	0.039	Oxidized rock with possible weathered microvein among similar in small outcrop. Strike 50 deg.
15604	478379	7100505	3.046	Highly oxidized "crumbly" 10cm vein, 45 deg strike, almost vertical dip of 85 deg
15605	478379	7100505	0.094	Wall rock from 15604, around 5cm from each side of vein
15606	478663	7099996	4.825	Apparent 10cm scorodite vein, highly weathered, strike 52deg. Among microveining
15607	478663	7099996	0.017	Wall rock from 15606

 Table 9.2. Details of 2015 rock samples

10.0 Sampling Method and Approach

Sampling of the property has been carefully completed, where possible, at sufficient depths (i.e. > 0.50 m) to avoid sampling possible shallow loess deposits. Generally, samples were collected at shallower depths (i.e. < 0.3 m) in subalpine terrain with limited overburden or in boulder fields, as this was sufficient to avoid sampling glacial material (Golden Predator Canada Corp., 2013).

11.0 Sample Preparation, Analysis and Security

Geochemical analyses for samples from 2010 to 2015 are summarised in Table 11.1. A more detailed description of the analytical techniques is presented below, split by the year of analysis.

Certificate Number	Lab	Туре	Total Samples	Received	Completed	Method
10-360-02341	INSP	Soil	2	26th July 2010	11th August 2010	Pd-1AT-ICP, Ag-1AT-GV, Au-1AT- AA, Ag-4A-OR, Pt-1AT-ICP
10-360-00307	INSP	Rock	9	28th October 2010	10th December 2010	30-4A-TR
10-360-00308	INSP	Moss	1	24th September 2010	4th October 2010	30-4A-TR
10-360-00309	INSP	Rock	28	30th September 2010	12th October 2010	30-4A-TR
10-360-03010	INSP	Soil	44	30th September 2010	19th October 2010	30-4A-TR, Au-1AT-AA
10-360-03200	INSP	Pulp	37	13th October 2010	18th October 2010	Au-1AT-AA
WHI1101802	ACME	Soil	320	24th October 2011	5th December 2011	ACM 1DX15
WHI1101803	ACME	Soil	58	24th October 2011	5th December 2011	ACM 1DX15
12Y640856	AGAT	Rock	78	-	19th October 2012	AGAT 201074
12Y640884	AGAT	Soil	242	-	19th October 2012	AGAT 201074
WHI14000057	ACME	Rock	102	24th July 2014	13th August 2014	FA430, AQ200, FA530
WHI14000057M	ACME	Metallic Screen	4	24th September 2014	8th October 2014	FS651, FA550-Au
WHI15000139	Bureau Veritas	Rock	6	7 th August 2015	3 rd September 2015	FA430, AQ200
WHI15000155	Bureau Veritas	Rock	1	7 th August 2015	3 rd September 2015	FA430, FS631, AQ200

 Table 11.1. Geochemical Analytical Procedures for 2010 to 2015.

11.1 2010

All samples from the 2010 field season were sent to Inspectorate Laboratories, Whitehorse, YT, Canada. A total of 37 rock (certificates: 10-360-00307 – 9 samples, 10-360-00309 – 28 samples), 44 soil (certificate: 10-360-03010) were analysed for 30 elements using inductively coupled plasma emission spectroscopy (ICP-ES) package "30-4A-TR". A 4-acid aqua regia digestion was performed on a 0.5 g split of the sample and subsequently analysed using ICP-ES.

46 soil (certificates: 10-360-02341 - 2 samples, 10-360-03010 - 44 samples) and 37 pulp samples (certificate: 10-360-03200) were analysed for gold using the "Au-1AT-AA" fire assay package. A lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by atomic absorption spectroscopy (AAS).

Platinum, Palladium and Silver were also tested for in 2 soil samples (certificate: 10-360-02341) using the "Pt-1AT-ICP", "Pd-1AT-ICP" and, "Ag-1AT-GV" and "Ag-4A-OR", respectively. For Platinum and Palladium, A lead collection fire assay fusion was made from 50 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by ICP-ES. For silver in the "Ag-1AT-GV" package, a lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed in acid and analysed by gravimetric analysis. For "Ag-4A-OR" the sample was decomposed using a 4-acid digestion and analysed for silver using AAS.

11.2 2011

All samples from the 2011 field season were sent to ACME Analytical Laboratories Ltd. in Whitehorse, YT, Canada. A total of 320 soil (certificate: WHI1101802) and 61 rock (certificate: WHI1101803) samples were analysed using the "ACM 1DX15" package for 36 elements. Samples were dried at 60°C, 100g of the sample was then sieved using an 80 mesh. Sample splits of 0.5 g are leached in hot modified aqua regia and analysed using inductively coupled plasma mass spectrometry (ICP-MS).

11.3 2012

All samples from the 2012 field season were sent to AGAT ISO 9001 certified lab in Whitehorse Y.T, Canada. A total of 242 soil (certificate: 12Y640884) and 78 rock (certificate: 12Y640856) samples were analysed using the "AGAT 201074" package.

Analysis was by aqua-regia digestion and a mass spectrometer finish with a 52 metal analysis package. What follows are excerpts from the AGAT laboratory mining geochemistry package.

Samples were dried at 60 degrees centigrade, crushed to the point of 75% passing through a 2mm mesh, then split with a Jones riffler splitter or rotary split. The sample was then pulverized to the point of 85% passing through a 75 micrometer mesh. Finally, samples were screened after drying, shaken on an 80 mesh sieve with the positive fraction stored and the negative fraction sent to the laboratory for analysis. This concludes the preparation portion of sampling.

Prepared samples are digested with aqua regia for one hour using temperature controlled hot blocks. Resulting digests are diluted with de-ionized water. Sample splits of 1 gram or routinely used. These 1 gram samples are then ran through a mass spectrometer. Perkin Elmer 7300DV and 8300DV ICP-OES (Optical Emission Spetroscopy) and Perkin Elmer Elan 9000 and NexION ICP-MS (Mass Spectrometer) are used in analysis. Inter-Element Correction (IEC) techniques are used to correct for any spectral interferences (Golden Predator Canada Corp., 2013).

It should be noted that determination of gold by this method is semi-quantitative due to small sample size. Samples with arsenic above detection (>10,000 ppm) were re-run using AAS.

11.4 2014

All samples from the 2014 field season were sent to ACME Labs in Whitehorse, YT., Canada. A total of 102 rock (certificate: WHI14000057) samples were analysed using the "FA430" package for gold and "AQ200" package for a further 36 elements. Using the "FA430" package, a lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by atomic absorption spectroscopy (AAS). For "AQ200", Sample splits of 0.5 g are leached in hot modified aqua regia and analysed using inductively coupled plasma mass spectrometry (ICP-MS). Gold samples >10 g/t were rerun using the "FA-530" package, where a lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested. The resulting silver dore was digested in acid and analysed for by gravimetric analysis.

A sub-set of four samples (certificate: WHI14000057M) from the original 102 were selected for additional metallic screening to test for gold using the "FS651" package. Samples underwent metallic pulverizing and a 500 g sample split was screened to 106 μ m. Gravimetric analysis was performed on the plus fraction and instrumentation on the minus fraction. Two of the samples

>10 g/t gold were re-run using the "FA550-Au" package; a lead collection fire assay fusion was made from 50 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by gravimetric analysis.

11.5 2015

All of the samples from the 2015 field season were sent to Bureau Veritas Minerals Limited in Whitehorse, Yukon. 6 samples (certificate: WHI15000139) were analysed using the "FA430" package for gold and "AQ200" package for a further 36 elements. Using the "FA430" package, a lead collection fire assay fusion was made from 30 g of the sample for total sample decomposition. The resulting silver dore was digested in acid and analysed by atomic absorption spectroscopy (AAS). For "AQ200", Sample splits of 0.5 g are leached in hot modified aqua regia and analysed using inductively coupled plasma mass spectrometry (ICP-MS). A single sample, 15607 (certificate: WHI15000155), which was predicted to have anomalously high Au-values, was analysed using both the "FA430" and "AQ200" packages, described above, and the "FS631" package. The sample underwent metallic pulverizing and a 500 g sample split was screened to 106 µm. Gravimetric analysis was performed on the plus fraction of the split.

12.0 Data Verification

All analyses were tested for accuracy and precision using a series of standardised materials, preparation duplicates and procedural blanks at the corresponding laboratories under their respective internal quality control protocol. Field blanks were inserted into soil analyses for 2011 and 2012 at a frequency of ~1 per 50 samples. Table 12.1 lists the standards used for each certificate.

Certificate Number	Standard(s)
10-360-02341	STD-ME-6
10-360-00307	STD-ME-6
10-360-00308	No standard used
10-360-00309	STD-ME-6
10-360-03010	STD-ME-8, STD-OREAS-45P-4A, STD-Oxi67
10-360-03200	STD-Oxi67
WHI1101802	STD DS8
WHI1101803	STD DS8
12Y640856	Standard used but not referenced
12Y640884	Standard used but not referenced
WHI14000057	STD AGPROOF, STD DS10, STD OREAS45EA, STD OXD108, STD OXI121, STD OXN117, STD SP49
WHI14000057M	STD AGPROOF, STD OXD108, STD OXI121, STD OXN117, STD OXP91, STD SP49, STD SQ70
WHI15000139	STD DS10, STD OREAS45EA, STD OXD108, STD OXI121, STD OXN117
WHI15000155	STD DS10, STD OREAS45EA, STD OXD108, STD OXI121, STD OXN117, STD OXP91

Table 12.1. Summary of geochemical standards used by laboratories.

13.0 Adjacent Properties

Two major mineral properties lie adjacent to McConnells Jest, the Dublin Gulch gold deposit to the west and the Keno Hill silver district to the south east (see Fig. 13.1). The Dublin Gulch and Keno Hill properties are owned by Victoria Gold Corp. and Alexco Resources Corp., respectively.

Victoria Gold Corp. acquired the Dublin Gulch property in June, 2009 through the acquisition of StrataGold Corp. Victoria Gold Corp. holds 1,912 quartz claims, 10 quartz leases, and 1 federal Crown grant on the Dublin Gulch property. Currently, Dublin Gulch is an advanced-stage gold exploration project with around 630 diamond drill holes to date and a global resource of 6.3 M oz (4.8 M oz – 222 Mt @ 0.68g/t Au indicated; 1.5 M oz - 78 Mt @ 0.60 g/t Au inferred). The Eagle Zone, which has a 2.3 M oz (proven and probable) gold reserve contained within it (Wardrop Engineering Inc., 2011, 2012) is the most significant zone of mineralization. The property also hosts the Olive Zone - a recent gold exploration target, the Wolf (Mar) tungsten skarn (Indicated: 12.7 Mt @ 0.31 % WO3, 86.2 M lbs contained WO3; Inferred: 1.3 Mt @ 0.30 % WO3, 8.9 M lbs contained WO3; SRK Consulting, 2008) and the Rex-Peso silver prospect (Probable: 0.14 Mt @ 716 g/t Ag, 3.7 % Pb; Hitchins and Orssich, 1995).

Mineralization within the Eagle and Olive Zones at Dublin Gulch is considered a holotypic example of an intrusion-related gold system (IRGS) (e.g. Lang and Baker, 2001). It is likely that any significant gold mineralization at McConnells Jest would align with this deposit type, but cannot be confirmed until further work on the property has been conducted.

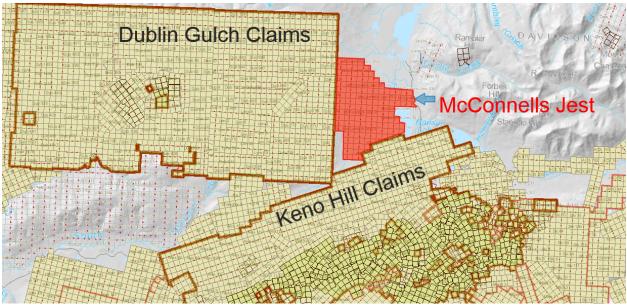


Figure 13.1. Claim blocks adjacent to the McConnells Jest property.

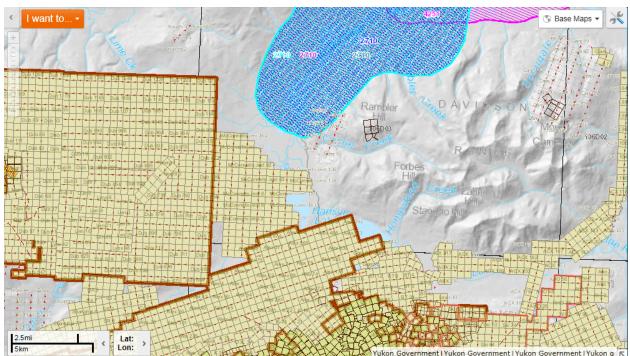
Alexco Resources Corp. acquired the Keno Hill property in February, 2006 through the purchase of the assets of the bankrupt United Keno Hill Mines Limited. The property was purchased using a whollyowned subsidiary, Elsa Reclamation and Development Company. Alexco Resources Corp. holds 695 quartz mining leases and 871 quartz mining claims on the Keno Hill property to the south of McConnells Jest. The Keno Hill silver district is a polymetallic silver-lead-zinc vein district that has been mined since the Klondike gold rush of the 1890's. Historical production up to 1989 for the Keno Hill district is 117.5M oz Ag, 710M lbs Pb and 436M lbs Zn (Cathro, 2006). From 2006 to 2012, Alexco Resources drilled 405 diamond drill holes on the property. The most prominent zone in the district at current is the Bellekeno silver mine (Indicated: 365,000 t @ 659 g/t Ag, 5.3 % Pb, 5.3 % Zn; Inferred: 243,000 @ 428 g/t Ag, 4.1 % Pb, 5.1 % Zn – Alexco Resources Corp., 2012). Historical production (since 1919) for the Bellekeno mine is 7.9 M oz Ag (SRK Consulting, 2014). Commercial production of the Bellekeno mine began on January 1, 2011 until operations were temporarily suspended in August, 2013. The nominal rate of production for the Bellekeno mine during this period was 250 tonnes per day. Production is expected to begin again in Q3 2015. The Lucky Queen, Flame & Moth, Onek and Bermingham occurrences provide additional silver, lead and zinc resources. The deposit model of Hantelmann (2013) to describe mineralization at Bellekeno is unlikely to occur at McConnells Jest, but cannot be entirely ruled out until further work has taken place.

14.0 Other Relevant Data and Information

14.1 First Nations

The property is located within the traditional territory of the Nacho Nyak Dun First Nations. The nearest settlement land or R-block is R-05A on Davidson Range, on the eastern edge of the property and east of McQuesten Lake. Two other nearby R-blocks are R-09B and A-07A, which are located northeast and northwest of the property, respectively.

14.2 Environmental Issues


The surrounding region of the property, which itself is located on the border between the administrative boundaries of 105M and 106D (Fig 14.1), is home to wildlife that range from being very common throughout the Yukon to being only endemic within the territory's central eastern region. The administrative boundaries of 105M and 106D are home to about 43 species of mammals, over 100 species of birds, 38 species of butterflies, 14 species of fish, the common wood frog and the less common boreal snaketail dragonfly.

The nearest significant wildlife key area is located just north of the property and is a summer nesting area shared by four species of raptors: peregrine falcon (*Falco peregrinus*), osprey (*Pandion haliaetus*), golden eagle (*Aquila chrysaetos*) and bald eagle (*Haliaeetus leucocephalus*). This area in turn overlaps a waterfowl breeding area to the east.

Aside from animals, the area is also home to rare vascular plant species endemic to the Yukon's Central Territory. A 2014 edition guide with descriptions of 39 of the rarest plants in the Central Territory of the Yukon can be found on the Yukon Conservation Data Centre website (Yukon Conservation Data Centre, 2014).

Given the concentration of mines and related development within the vicinity of the property, there does not appear to be any urgent conservation issues related to this area. There is however

hunting and trapping activities present in the vicinity, as there is an abundance of small game such as weasels, waterfowl and grouse.

Figure 14.1. Map of administrative boundaries 105M and 106D used to classify the potential flora and fauna on the property.

14.3 Local Populations

The capital city of Yukon Territory, Whitehorse is located ~350km south of the McConnells Jest property. According to the 2011 National Household Survey (NHS) the population of Whitehorse is 22,815 where 19,040 have a non-Aboriginal identity. Amongst the 19,040 people 17,130 have European origins and 1,905 have Asian origins. Filipino (705) and Chinese (535) make up the largest portions of the Asian visible minority. Other notable visible minorities include African (145) and Latin American (125) (Statistics Canada, 2013).

Local communities within ~100km of the McConnells Jest Property include: Elsa (~8km SW), Keno City (~10km SE), Mayo (~45km SW) and Stewarts Crossing (~90km SW). According to the 2011 National Census, amongst the local communities, Mayo is largest with a population of 226, followed by Keno Hill (Keno City) with a population of 28 and Stewarts Crossing with a population of 25 (Statistics Canada, 2012c).

Elsa is considered a ghost town as its population moved out following the closure of the United Keno Hill mine in 1989.

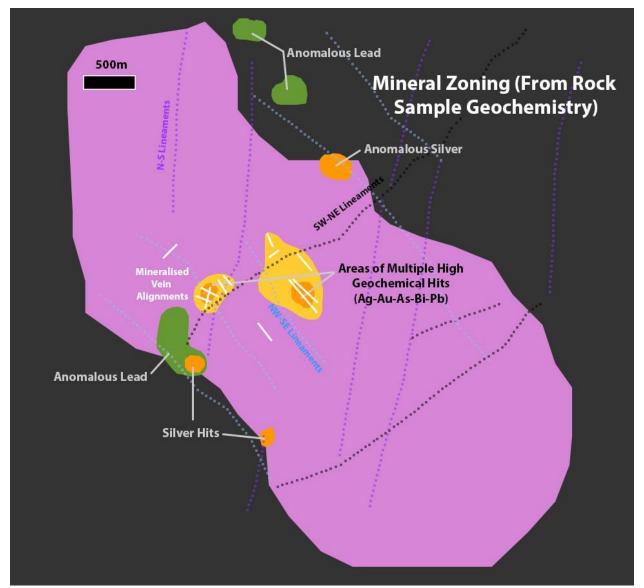
According to Statistics Canada, 2011 NHS data for Mayo, Keno City and Stewarts Crossing has been suppressed for data quality or confidentiality reasons (Statistics Canada 2012a, b and d). Due to this, ethnicities for these communities are not public data.

15.0 Interpretation

The work so far seems to indicate that the McConnells Jest property is geologically very similar to that of Dublin Gulch, and thus has the potential to contain a significant deposit.

15.1 Geochemical Evidence

Through consolidating the geochemical data collected between 2011 and 2015, it becomes clear that there are several zones of interest (Fig. 15.1), although it should be noted that sampling coverage of the property is not complete, and so there is significant potential for other mineral zones.


The main area of interest lies along the SW-NE trending lineations (refer to section 15.2), where multiple elements are in higher proportions, including gold, silver, bismuth, arsenic and lead. These also coincide with veining observed and recorded in field notes.

Around the edges of the pluton, there are several silver and silver-lead anomalies, which could represent either distal (and therefore cooler) systems, or overprinting from Keno Hill style mineralisation.

On the southwestern side of the pluton, there seems to be some correlation to elevated tungsten levels, although the limited number of samples collected from this area allows only limited conclusions to be made from this observation.

This assemblage of elements is in agreement with an intrusion-related gold system classification, and spatially bears resemblance to the geochemical distributions of Dublin Gulch.

Although levels in the soil samples are low, this is to be expected with the glacial cover across the property. Samples directly from veins show much higher results and are more indicative of grade.

Figure 15.1. Preliminary element zoning from rock sample geochemistry. Green = Anomalous Lead, Orange = Anomalous Silver, Yellow = Multi-element anomalies (Ag-Au-As-Bi-Pb).

15.2 Structural Elements

The Energy, Mines and Resources Library in Whitehorse, Yukon Territory, has a considerable library of aerial photography which is publically accessible. Using their online service, Skyline, the flightlines and plates that intersected McConnells Jest were noted and scans of the photos obtained.

The flightline for this property is 'A28301, and plates 185 - 188 (inclusive) cover the ground. The photos were flown in 1996, and have a scale of 1:30,000 (Fig. 15.2).

Figure 15.2. Combined aerial photography for the McConnells Jest property. Flightline A28301 plates 185 to 188 were combined to form the image. Scale is 1:30,000.

These images reveal a wealth of information, and the high contrast black and white photos reveal lineations and structures that can be related to ground based observations.

Interpretation of aerial photography appears to show three sets of lineations;

- North South trends (Set 1)
- Northwest Southeast trends (Set 2)
- Southwest Northeast trends (Set 3)

The lineations have been highlighted in Fig. 15.3. Initially it seems that Set 3 lineations are regional, and expand well beyond the boundaries of the property. The areas of intense mineralisation and geochemical highs are found along the area where Set 3 intersect with the other two sets, most notably Set 2. The orientation of highly prospective veins appear to be closely aligned with Set 3 and also have some development in alignment with Set 2, which could be directly related to this trend, or be propagated from smaller riedel shear systems. Further investigations in the field would be required to take more accurate measurements in order to more vigorously examine the structural relationships.

It should be noted again that these lineaments align well with the mineralising structures observed at Dublin Gulch, especially with the historic high-grade Olive, Shamrock and Catto veins, which suggests that the dominant structural regime during mineralisation at McConnells Jest may have been a regional event aligned with Set 3 lineations.

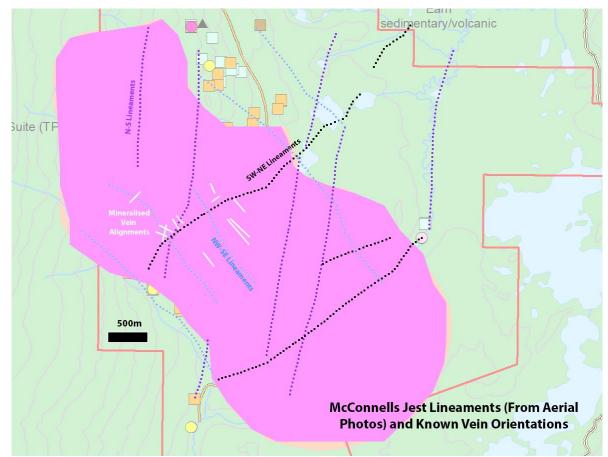
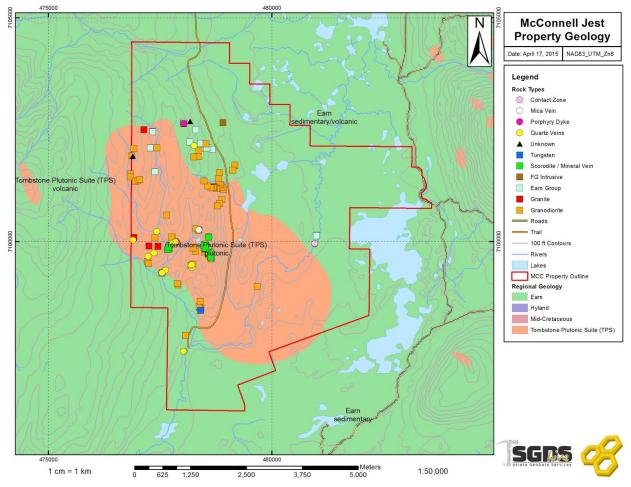


Figure 15.3. Interpreted structural lineaments on the McConnells Jest property. Three main lineaments are present, N-S (Purple), SE-NW (Light Blue), SW-NE (Black). Known vein orientations are shown in white.


15.3 Rock Types

No detailed geology map has ever been generated for this project, and historically only the Yukon Geological Survey maps had been used which are inaccurate due to their scale.

Randell et al., (2015) collected any information pertaining to rock types from available documentation and field notes to construct a preliminary database built for the project. The database contains over two hundred data points, which were consolidated and placed in broad lithological categories. Plotting these points, as well as structural data, created an embryonic geological map for further scrutiny (Figs. 15.4, 15.5). It has shown that the pluton is more or less the right volume and orientation for an IRGS classification, although it is not homogeneous in texture. There are also several outlying igneous exposures, especially in the northeast, which

could represent dyke swarms of a cupola of the main pluton. These also correlate with the Ag-Pb mineralisation in the area.

There also seems to be a significant inlier of Earn Group sedimentary rocks in the northwestern quadrant, which also aligns with one of the north-south lineaments. This could be representative of a roof pendant, or faulting that has created an uneven profile around the pluton.

Figure 15.4. Distribution of rock types at McConnells Jest interpreted from field sampling notes and sample photographs. Rock types are overlain on the current YGS map for the area.

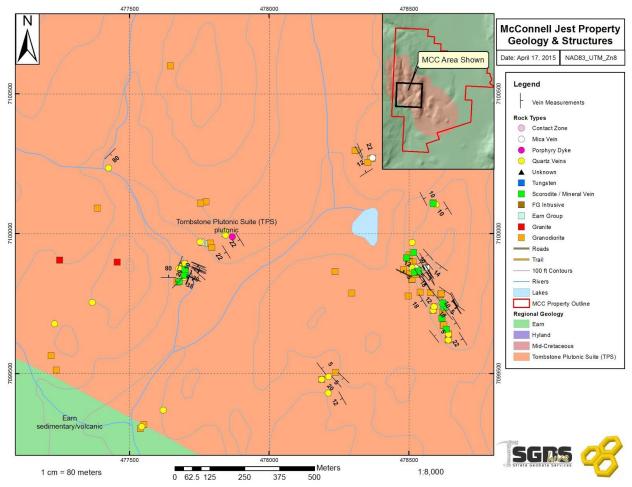


Figure 15.5. Rock types and vein orientations on the southern shoulder of the central portion of the McConnell pluton.

15.4 Revised Geology

Using all of this information, the first geological interpretation of McConnells Jest could be drawn (Fig. 15.6). Although this would need to be followed up in the field, the data used is reliable.

It would appear that the north-south lineations represent normal faults, which have displaced blocks of the pluton either 'up' or 'down' relative to one another. This could also account for the finger of Earn Group sedimentary rocks in the northwest quadrant.

The northwest-southeast trends seem to be the main mineralising systems, and align with the mineral veins observed in the field. It is not known if these are fault related, but they seem local to the pluton and do not extend far into the country rock, although further work would be required to test this.

The last trend, those that run southwest to northeast, could be regional shear zones that pass through the entire area.

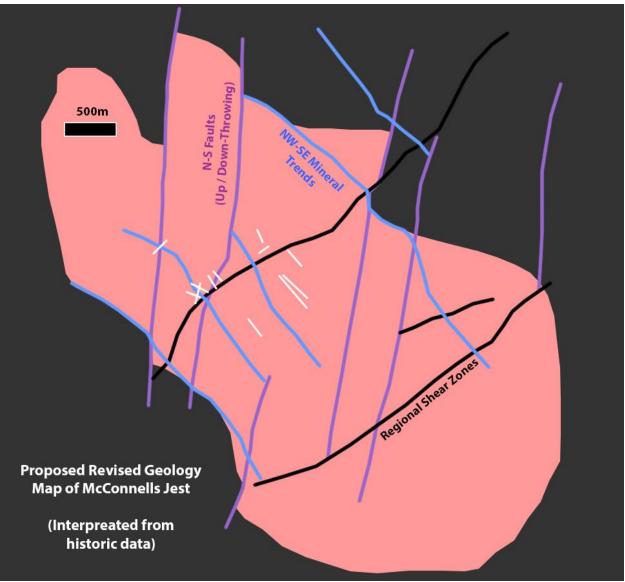


Figure 15.6. The proposed revised geologic map of McConnells Jest based on structural interpretation of the surrounding geology.

15.5 Conclusions

From this gathering and consolidation of data, there are several similarities structurally, geologically and geochemically to Dublin Gulch.

It has to be remembered that the Dublin Gulch discovery was overlooked for sometime due to the lack of a surficial gold anomaly. The lack of a strong gold-in-soil anomaly at McConnells Jest does therefore not preclude the existence of an ore body.

The proximity to Keno Hill may also mean that we see some silver - lead - zinc mineralisation on the property too. These can also be cooler, more distal systems to the pluton, but we cannot rule out some overprinting from the Keno-Elsa corridor.

When a map of McConnells Jest and Dublin Gulch are placed side by side (Fig. 15.7), there is a clear similarity in structural regime, although the McConnells Jest pluton is has around double the surface area.

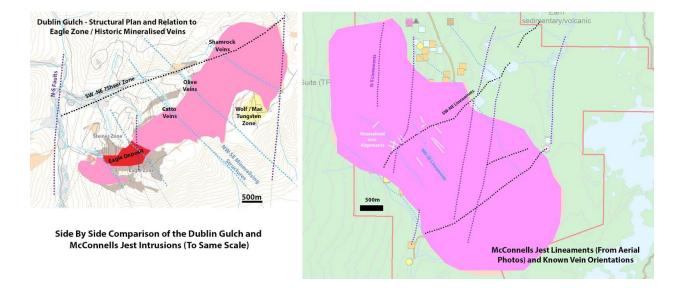
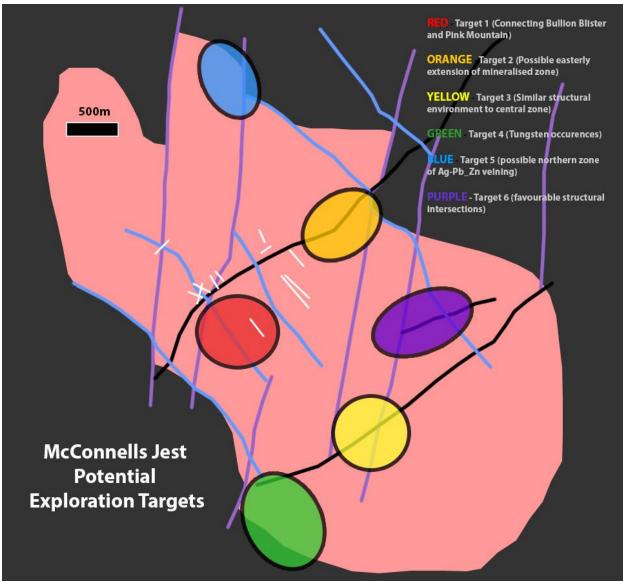


Figure 15.7. Comparison of structural lineaments at Dublin Gulch (left) and McConnells Jest (right).Both plutons share the same three groups of structural alignments N-S (Purple), SE-NW (Light Blue) and SW-NE (Black). The images are drawn to the same scale and show that the exposed surface of the McConnell pluton is significantly larger than that at Dublin Gulch.

Such Ag-Pb-Zn veins also occur at Dublin Gulch, in particular their Olive and Shamrock Zones, located about 1km east from the main deposit. On the surface, these are expressed as outcroppings of scorodite, a mineral that occurs from the weathering of arsenic-rich minerals. Historically, these veins were chased underground in artisanal mining operations and were quite productive, if not short lived.

McConnells Jest has both the sheeted vein systems (Pink Mountain) and scorodite outcrops (Bullion Blister). The presence of till cover has somewhat impeded more extensive mapping and collection methods, which is something that should be addressed in the future.


16.0 Recommendations

Essentially this project is at a crucial point. The work so far has proven several similarities to Dublin Gulch, but the economic downturn has detracted potential investors from a property that shows sporadic anomalous assays. Two main factors have to be remembered here:

- The property is surrounded by mines that have successfully operated for many years, with new sites coming online in the next decade. These are not distal properties, but border the property and have geological continuity.
- The Eagle Zone at Dublin Gulch contains a global resource of 6.3 Moz of gold, yet has little to no geochemical expression on surface.

The McConnells Jest Property would benefit most from the following:

- **Basic Mapping:** The property needs to have a geological map produced, showing the rock types, alteration, structures and mineralisation. Although this is somewhat difficult due to the glacial till cover, there is enough exposure on the high points to get a large portion of the property mapped.
- **Scorodite Prospecting:** If the property follows the Intrusion Related Gold model, then gold was delivered in late stage quartz or arsenopyrite veins which will be spaced 20-50m apart. As scorodite is easy to identify on surface, prospecting this will reveal not only the grades, but also structural alignments. These can then be traced out over the entire property to identify other areas of interest.
- Sheeted Vein Prospecting: Typically, a series of aligned quartz veins host a significant portion of the gold in these systems. Mapping of the area, particularly in the northern and southern shoulders to locate areas of the highest density of veining. Once these are identified, these would produce the first exploration targets for future drill programs.
- **Mineralogical Study**: A representative suite of samples should be sent to an appropriate laboratory to identify the mineralisation assemblage. This will allow the proposed mineral deposit model to either be confirmed or rejected. This work will ensure that exploration strategies are in agreement with the observed, rather than hypothesised, detailed mineral assemblage.
- Identify Calcareous Areas of the Earn Group: Looking for these horizons in the country rock could show evidence of skarn mineralisation. On the south-eastern side of the Dublin Gulch intrusion, contact with such layers produced a large tungsten deposit. A National Instrument 43-101 report authored by SRK Consulting (2008) stated that the Mar-Tungsten deposit contains 65.7 million pounds of tungsten in the Indicated category, and an additional 8.5 million pounds Inferred. This has not been studied at McConnells Jest, and doing so would complete the picture according the regional mineralisation models.
- Figure 16.1 shows **several target areas** that are favourable for a variety of reasons. The most compelling are those that are in intersectional areas of the lineaments.

Figure 16.1. Exploration targets generated from the geologic interpretations of the McConnells Jest property above. A total of 6 targets are proposed based on geochemical and structural data.

Much of this work would be undertaken by geologists in the field, collecting more information and samples from specific outcrops. Knowledge of the Dublin Gulch system will be an asset when looking at this ground.

Methods for sampling till have improved in recent years, especially for geochemical analysis, with several laboratories offering specialised services. It could be proposed that additional soil work be undertaken in the southern and eastern portions, but only when regional trends had been identified from mapping, thus giving confidence in these potential extensions.

Access to the bedrock could also be achieved either by trenching or drilling. In both instances, it would be recommended to look at mobile, heliportable apparatus as the property is not directly accessible by road at this stage. Low impact excavations also fit within existing exploration permits and demonstrate environmental stewardship.

In addition to geological work, it would be prudent at this stage to include some level of environmental assessment projects. Before any ground disturbance occurs through drilling or trenching, it is recommended to take water samples from the streams to analyse for basic composition and dissolved mineral content. This should be prioritised in the areas directly downstream from the scorodite veins that will likely increase the arsenic, lead and antimony in the water. Having these results acts as an 'insurance' policy to prove that any elevated levels measured in the future are not a direct consequence of exploratory work. Water sampling should be planned out in advance, as the samples need to reach a lab within 24 hours of being collected.

Other general environmental studies should be considered also: vegetation mapping, stream delineation (permanent waterways versus ephemeral streams as these will define protective buffers for exploration activity), and also some basic wildlife / plant surveys.

All of this work could be accomplished in a single field season with an experienced team of geologists / geotechnicians. Depending on funding available, the team could either fly camp on the site, or fly in from accommodations in Keno, Mayo or even the camp at Dublin Gulch.

The product of this work program would be to define structures and confirm the geological model. This would generate drill targets for future years and generate further investment interest.

17.0 References

Abbott, J.G., Gordey, S.P., and Templeman-Kluit, D.J., 1986, Setting of stratiform, sediment hosted leadzinc deposits in Yukon and northeastern British Columbia, In: Morin, J.A., (Ed.), Mineral deposits of the northern Cordillera: Canadian Institute of Mining and Metallurgy Special Volume 37, p. 1–18.

Alexco Resources Corp., 2012, Preliminary Reclamation and Closure Plan, Keno District Mine Operations, Keno Hill Silver District, Revision 2 (internal report for Alexco Resources Corp. September 30, 2012), 306 p.

Bond, J.D, 1999, Glacial Limits and Ice Flow Patterns, Mayo Area, Central Yukon, Geoscience Map 1999-13: Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, 1:250,000 scale.

Cathro, R.J., 2006, The history and geology of the Keno Hill Silver Camp, Yukon Territory: Geoscience Canada, v. 33, p. 103–134.

Golden Predator Canada Corp., 2011, Assessment Report, 2010 Sampling Program, McConnell Property, Mayo Mining Division, Yukon Canada, internal report prepared for Bill Koe-Carson dated May 3rd 2011.

Golden Predator Canada Corp., 2013, Assessment Report, 2012 Sampling Program, McConnell Property, Mayo Mining Division, Yukon, Canada, internal report prepared for Bill Koe-Carson dated April 4th 2013.

Gordey, S.P., and Anderson, R.G., 1993, Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories: Geological Survey of Canada, Memoir 248, p. 214.

Green, L.H., 1972, Geology of the Nash Creek, Larsen Creek and Dawson Map areas, Yukon Territory: Geological Survey of Canada, Memoir 364, 157 p.

Hammer, Ø, Harper, D.A.T., and Ryan, P.D., 2001, Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, vol. 4, issue 1, p. 4-9, 178kb. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

Hantelmann, J.J., 2013, The paragenesis and geochemistry of the Bellekeno Ag-Pb-Zn vein, Keno Hill district, Yukon, Canada: Unpublished M.Sc. thesis, University of Alberta, Edmonton, Canada, 292 p.

Hart, C.J.R, 2004, Mid-Cretaceous magmatic evolution and intrusion-related metallogeny of the Tintina Gold Province, Yukon and Alaska: Unpublished PhD. thesis, University of Western Australia, Perth, 188p.

Hart, C.J.R., 2005, Classifying, distinguishing and exploring for intrusion-related gold systems: The Gangue: Newsletter of the Geological Association of Canada Mineral Deposits Division, v. 87, p. 1, 4–9.

Hart, C.J.R., 2007, Reduced intrusion-related gold systems, In: Goodfellow, W.D. (Ed.), Mineral deposits of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 95-112.

Hart, C.J.R., Mair, J.L., Goldfarb, R.J., and Groves, D.I., 2004, Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten belt, Yukon Territory, Canada: Transactions of the Royal Society of Edinburgh, Earth Science, v. 95, p. 319–337.

Hitchins, A.C., and Orssich, C.N., 1995, The Eagle zone gold-tungsten sheeted vein porphyry deposit and related mineralization, Dublin Gulch, Yukon Territory: Canadian Institute of Mining and Metallurgy, Special Volume 46, p. 803–810.

Kirk, F.A., 2016, Paragenesis, Geochemistry and Metallogeny of the Dublin Gulch Intrusion-Related Au Deposit, Yukon Territory, Canada: Unpublished MSc. Thesis, Memorial University, St John's, Canada. 362 p.

Koe-Carson, B., 2010, McConnells Jest, 2010 Field Journal Notes, Final Report, Yukon Mining Incentives Program #10-001, 9 p.

Lang, J.R. and Baker, T., 2001, Intrusion-related gold systems: the present level of understanding: Mineralium Deposita, v. 36, p. 477-489.

Mair, J.L., Hart, C.J.R., and Stephens, J.R., 2006, Deformation history of the western Selwyn Basin, Canada: Implications for orogen evolution and the setting of mid-Cretaceous magmatism: Geological Society of America Bulletin, v. 118, p. 304–323.

Mair, J.L., Farmer, G.L., Groves, D.I., Hart, C.J.R and Goldfarb, R.J., 2011, Petrogenesis of Postcollisional Magmatism at Scheelite Dome, Yukon, Canada: Evidence for a Lithospheric Mantle Source for Magmas Associated with Intrusion-Related Gold Systems, Economic Geology, v. 106, p. 451–480.

Murphy, D.C., 1997, Geology of the McQuesten River region, northern McQuesten and Mayo Map Area, Yukon Territory (115P/14, 15, 16; 105M/13, 14): Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada Bulletin 6.

Pearson, K., 1896, Mathematical contributions to the theory of evolution. III. Regression, heredity, and panmixia: Philosophical Transactions of the Royal Society A, v. 187, p. 253–318.

Randell, A., Kirk, F.A., Marcoux, D., Wong, H. and Wong, C., 2015, Prepared for Bill Koe-Carson, Summary Geological Report for the McConnells Jest Property, Yukon Territory: Internal Report, 231 p.

Rasmussen, K.L., 2013, The timing, composition, and petrogenesis of syn- to postaccretionary magmatism in the northern Cordilleran miogeocline, eastern Yukon and southwestern Northwest Territories: Unpublished Ph.D. Thesis, University of British Columbia, Vancouver, Canada, 810 p.

Roots, C.F., 1997, Geology of the Mayo Map area, Yukon Territory (105M): Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Bulletin 7, 82 p. Scott Wilson Mining, 2010, Technical Report on the Dublin Gulch Property, Yukon Territory, Canada: NI 43-101 technical report (internal report for Victoria Gold Corp., April 23, 2010), 242 p.

Selby, D., Creaser, R.A., Heaman, L.M., and Hart, C.J.R., 2003, Re–Os and U–Pb geochronology of the Clear Creek, Dublin Gulch, and Mactung deposits, Tombstone Gold Belt, Yukon, Canada: absolute timing relationships between plutonism and mineralization, Canadian Journal of Earth Science, v. 40, p. 1839–1852.

Spearman, C.E., 1904, The proof and measurement of association between two things: American Journal of Psychology, v. 15, p. 72-101.

SRK Consulting, 2008, Dublin Gulch Property – Mar-Tungsten zone Mayo District, Yukon Territory, Canada: NI 43-101 technical report, (internal report for StrataGold Corp., Dec. 1 2008), 161 p.

SRK Consulting, 2014, Updated Preliminary Economic Assessment for the Keno Hill Silver District Project – Phase 2, Yukon, Canada: NI 43-101 technical report (internal report for Alexco Resources Corp., December 10, 2014), 381 p.

Statistics Canada, 2012a, Keno Hill, Yukon (Code 6001052) and Yukon (Code 60) (table), Census Profile, 2011 Census: Statistics Canada Catalogue no. 98-316-XWE, Ottawa, Released October 24, 2012.

Statistics Canada, 2012b, Mayo, Yukon (Code 6001022) and Yukon (Code 60) (table), Census Profile, 2011 Census: Statistics Canada Catalogue no. 98-316-XWE, Ottawa, Released October 24, 2012.

Statistics Canada, 2012c, Population and dwelling counts, for Canada, provinces and territories, and census subdivisions (municipalities), 2011 and 2006 censuses (table), Population and Dwelling Count Highlight Tables. 2011 Census: Statistics Canada Catalogue no. 98-310-XWE2011002, released February 8, 2012.

Statistics Canada, 2012d, Stewart Crossing, Yukon (Code 6001050) and Yukon (Code 60) (table), Census Profile, 2011 Census: Statistics Canada Catalogue no. 98-316-XWE, Ottawa, Released October 24, 2012.

Statistics Canada, 2013, Whitehorse, CY, Yukon (Code 6001009) (table), National Household Survey (NHS) Profile, 2011 National Household Survey: Statistics Canada Catalogue no. 99-004-XWE, Ottawa, Released September 11, 2013.

Wardrop Engineering Inc., 2011, Technical report on the Eagle zone, Dublin Gulch property, Yukon Territory, Canada: NI 43-101 technical report, (internal report for Victoria Gold Corp., April 15 2011), 48 p.

Wardrop Engineering Inc., 2012, Technical report on the Eagle zone, Dublin Gulch property, Yukon Territory, Canada: NI 43-101 technical report, (internal report for Victoria Gold Corp., April 05 2012), 419 p.

Yukon Conservation Data Centre, 2014, Rare species database: Yukon Department of Environment, Whitehorse, Yukon, www.env.gov.yk.ca/cdc, accessed April 8, 2015.

Appendix 1

Statement of Professional Qualifications

I, Andrew P. Randell, do hereby certify that:

1) I am a Principal Geoscientist with Strata GeoData Services (SGDS) with an office at Suite 415, 1035 Pacific Street, Vancouver, British Columbia, Canada;

2) I am a graduate of the University of Cardiff, Wales in 1998 with BSc (Honours) Environmental Geoscience. I have practiced my profession continuously since 2007. I worked in exploration of base and precious metals mainly in Canada.

3) I am a Professional Geoscientist registered with the Association of Professional Geoscientists of British Columbia (APEGBC #162700);

4) I have read the definition of qualified person set out in National Instrument 43-101 and certify that by virtue of my education, affiliation to a professional association, and past relevant work experience, I fulfill the requirements to be a qualified person for the purposes of National Instrument 43-101 and this technical report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1;

5) I have co-authored all sections with Fraser Kirk BSc MSc.

6) I have not received, nor do I expect to receive, any interest, directly or indirectly, in the McConnells Jest Property;

7) That, as of the date of this certificate, to the best of my knowledge, information and belief, this report contains all scientific and technical information that is required to be disclosed to make the report not misleading.

Vancouver, British Columbia April 24th, 2016 "signed and sealed" Andrew P. Randell, PGeo (APEGBC #162700) Principal Geoscientist

Appendix 2

Statement of Expenditures

2015 Expenditures for Mineral Claims "McConnells Jest 1" through "McConnells Jest 172"

Travel costs (within Yukon) July 22 through August 7th

Vehicle @ \$50 per day	\$ 850.00
Fuel expenditures	\$ 265.01

Labor costs July 22 through August 7th (17 days)

Field Lead - 17 days @ \$575.00 per day	\$9775.00
Field Assistant - 17 days @ \$375 per day	\$6375.00

Assay costs

Bureau Veritas Commodities Canada Ltd (Acme Labs) ... \$ 310.54

Other expenses (within Yukon)

Foodstuff	.\$	258.47
Maps	.\$	16.80

Subtotal Yukon expenditures	\$17,	850.82	
GST paid minus	\$	43.51	

Total Yukon expenditures for assessment purpose. \$17,807.31

William (Bill) Koe'-Carson

January 21st, 2016.

Appendix 3

2015 Sample Photographs

Appendix 4

Certificates of Analysis

Project

Shipment ID: P.O. Number Number of Samples:

DISP-PUP

DISP-RJT

BUREAU MINERAL LABORATORIES VERITAS Carada

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

www.bureauveritas.com/um

Client: William Koe-Carson Box 387 White Fox SK S0J 3B0 CANADA Submitted By: William Koe-Carson Receiving Lab: Canada-Whitehorse Received: August 07, 2015

Report Date: September 03, 2015 1 of 2

WHI15000139.1

CLIENT JOB INFORMATION

SAMPLE DISPOSAL

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Page:

McConnell	Procedure Code	Number of Samples	Code Description	Test Wat (a)	Report Status	Lab
	PRP70-500	6	Crush, split and pulverize 500g rock to 200 mesh			WHI
6	FA430	6	Lead Collection Fire - Assay Fusion - AAS Finish	30	Completed	VAN
	AQ200	6	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN
AL	BAT01	6	Batch charge of <20 samples			WHI

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Dispose of Pulp After 90 days

Dispose of Reject After 90 days

Invoice To: William Koe-Carson Box 387 White Fox SK S0J 3B0 CANADA

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Eureau Vertices assumes the liabilities for exclusi cost of analysis only. Results apply to samples as submitted. "** astarkis indicates that an analytical result could not be nonised in levels of interference from other elements.

											Clie	nt:	Box	387	COE-Ca 80J 380					
VERITAS Canada	RIES		www	burea	uverita	s.com/u	m				Proje	rt: rt Date:	McC	onnell						
Bureau Veritas Commodities Canada	reau Veritas Commodities Canada Ltd.																			
9050 Shaughnessy St Vancouver BC PHONE (604) 253-3158	V6P 6E5	CANAE	A								Page	:	2 of 3	2				Par	t 1	of 2
CERTIFICATE OF A	NALY	'SIS													W	HI15	5000	139.	1	
Metho	1 WOHT	FA430	A@200	A@200	AQ200	AG200	A@200	AQ200	AG200	AQ200	A@200	A@200	A@200	AG200	AQ200	AG200	AG200	A@200	A@200	A@200
Analyt		Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	Sb	BI	v	Ca
Un		0.006	ppm 0.1	0.1	0.1	ppm	0.1	0.1	0.1	ppm	% 0.01	ppm 0.6	0.6	0.1	ppm	ppm 0.1	0,1	0.1	ppm 2	96
15501 Rock	0.48		0.6	30.0	4.5	34	<0.1	16.4	30.0	888	3.00	3350.1	98.4	13.6	7	0.1	1.3	2.3	~	0.13
15602 Rock	0.67	0.026	0.4	9.5	3.6	19	<0.1	5.2	9.9	870	1.98	883.6	13.1	16.2	7	0.1	0.8	1.1	3	0.12
	0.53	0.039	2.6	68.6	25.1	11	0.1	2.8	2.2	98	1.88	25.1	38.8	2.8	7	⊲0.1	0.5	97.5	4	0.06
15603 Rock																				
15603 Rock 15604 Rock	0.25	3.046	0.5	14.1	132.6	171	0.6	3.5	7.6	546	4.98	>10000	1191.7	9.1	28	0.9	13.4	108.3	<2	0.11
			0.5 0.4	14.1 12.8	132.6 6.3	171 144	0.6 0.1	3.5 3.1	7.6	546 442		>10000	1191.7 550.1	9.1 11.2	28 15	0.9 0.6	13.4 2.3	108.3 8.6	<2 <2	0.11

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unalgoed and should be used for reference only.

												Clier	nt:	Box	lliam 387 e Fox SK					
VERITAS	MINERAL LABORATOR	IES		www	burea	uverita	s.com/u	m				Projec	t	McG	onnell					
Bureau Veritas	s Commodities Canada Lto	d.										Repo	t Date:	Sept	ember 03	8, 2015				
9050 Shaughn PHONE (604)	essy St Vancouver BC V 253-3158	6P 6E5	CANAE	A								Page:		2 of 2	2				Part:	2 of 2
CERTIF	ICATE OF AN	IALY	'SIS													W	HI15	5000	139.1	
	Method	AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	
	Analyte	AG200 P	AQ200 La	AQ200 Cr	AG200 Mg	AG200 Ba	AG200 TI	В	AQ200 AI	AG200 Na	AG200 K	AG200 W	AG200 Hg	AQ200 80	п	AG200 8	AG200 Ga	80	Те	
	Analyte Unit	P %			Mg %	-	п %	B	AI %	%	к %	ppm	ppm	So ppm	TI	8		Se ppm	Te ppm	
15601	Analyte			Cr		Ba	-	В		AG200 Na % 0.001	AG200 K % 0.01		-	80	п	8 % 0.06	Ga	Se ppm 0.5	Те	
15601	Analyte Unit MDL	P % 0.001	La ppm 1	Cr ppm 1	Mg % 0.01	Ba ppm 1	ті % 0.001	B ppm 20	Al % 0.01	% 0.001	K % 0.01	ppm 0.1	0.01	80 ppm 0.1	TI ppm 0.1	8 % 0.06	Ga ppm 1	Se ppm 0.5	Te ppm 0.2	
	Analyte Unit MDL Rock	P % 0.001 0.054	La ppm 1 18	Cr ppm 1 6	Mg % 0.01 0.10	Ba ppm 1 139	TI % 0.001 0.001	B ppm 20 <20	Al % 0.01 0.36	% 0.001 0.007	K % 0.01 0.30	ppm 0.1 0.1	0.01	80 ppm 0.1 1.0	TI ppm 0.1 0.1	8 % 0.06 <0.05	Ga ppm 1	8e ppm 0.6 <0.5	Te ppm 0.2 <0.2	
15602	Analyte Unit MDL Rock Rock	P % 0.001 0.054 0.051	La ppm 1 18 23	Cr ppm 1 6 5	Mg % 0.01 0.10 0.10	Ba ppm 1 139 151	TI % 0.001 0.005	B ppm 20 <20 <20	Al % 0.01 0.36 0.49	% 0.001 0.007 0.012	K 96 0.01 0.30 0.31	ppm 0.1 0.1 0.1	0.01 <0.01 <0.01 <0.01	80 ppm 0.1 1.0 1.1	TI ppm 0.1 0.1 0.1	8 % 0.06 <0.05 <0.05	Ga ppm 1	8e ppm 0.6 <0.5 <0.5 0.8	Te ppm 0.2 <0.2 <0.2	
15602 15603	Analyte Unit MDL Rock Rock Rock	P % 0.001 0.054 0.051 0.014	La ppm 1 18 23 3	Cr ppm 1 6 5 4	Mg % 0.01 0.10 0.10 0.10	Ba ppm 139 151 41 101 125	TI % 0.001 0.005 0.040	B ppm 20 <20 <20 <20	Al % 0.01 0.36 0.49 0.25	% 0.001 0.007 0.012 0.017	K % 0.01 0.30 0.31 0.13	0.1 0.1 0.1 0.1	0.01 <0.01 <0.01 <0.01 <0.01	80 ppm 0.1 1.0 1.1 0.5	TI ppm 0.1 0.1 0.1 <0.1	8 9.06 <0.05 <0.05 0.05	Ga ppm 1 <1 1 1	8e ppm 0.6 <0.5 <0.5 0.8 <0.5	Te ppm 0.2 <0.2 <0.2 <0.2 1.0	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

												Clien	t	Box 3	87	0e-Ca	rson Canada				
VERITAS Canada	LABORATOR	IES		www.	bureau	weritas	.com/u	m				Projec	t	McCo	nnell						
												Report	Date:		mber 03.	2015					
Bureau Veritas Commodit																					
9050 Shaughnessy St Va	ncouver BC V	6P 6E5	CANAE	A																	
PHONE (604) 253-3158												Page:		1 of 1					Part	t 1of	12
		DED		г												14/1	114 5	000/	120	4	
QUALITY CO	NIROL	REP	Űκ													VVF	1115	000	139.	1	
	Method	WOHT	FA430	40200	40200	40200	40200	AG200	40200	40200	40200	40200	AQ200	AQ200	AQ200	40200	AQ200	40200	40200	AQ200	AQ200
	Analyte	Wat	Au	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd	8b	BI	v	Ca
	Unit	kg	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	-
	MDL	0.01	0.006	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1	0.1	0.1	2	0.01
Pulp Duplicates																					
15607	Rock	0.52	0.017	0.4	61.4	12.7	13	<0.1	1.9	4.2	228	4.57	3254.9	11.6	14.4	5	<0.1	1.3	1.7	<2	0.03
REP 15607	QC			0.6	62.8	13.3	14	<0.1	1.9	4.5	235	4.71	3344.9	9.4	15.3	5	<0.1	1.4	1.9	<2	0.03
Reference Materials																					
STD DS10	Standard			13.8	154.0	158.9	378	2.0	76.4	13.4	889	2.73	46.9	63.0	7.7	66	2.7	10.0	12.6	42	1.05
STD OREAS45EA	Standard			1.8	699.3	15.0	29	0.3	374.9	51.8	416	21.59	11.5	53.8	10.2	4	⊲0.1	0.4	0.3	302	0.04
STD OXD108	Standard		0.412																		
STD OXI121	Standard		1.840																		
STD OXN117	Standard		7.913																		
STD DS10 Expected					154.61	150.55	370	2.02	74.6	12.9		2.7188	43.7	91.9	7.5		2.49	8.23	11.65		
STD OREAS45EA Expected				1.6	709	14.3	31.4	0.26	381	52	400	23.51	10.3	53	10.7	3.5	0.03	0.32	0.26	303	0.036
STD OXD108 Expected			0.414																		
STD OXN117 Expected			7.679																		
STD OXI121 Expected			1.834																		
BLK	Blank			<0.1	<0.1	<0.1	<1	<0.1	⊲0.1	⊲0.1	4	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01
BLK	Blank		<0.005																		
BLK	Blank		<0.005																		
Prep Wash																					
ROCK-WHI	Prep Blank		<0.005	0.4	9.6	1.4	40	<0.1	14.7	4.5	483	1.79	0.7	<0.5	2.1	21	<0.1	<0.1	<0.1	20	0.54

This report supersides all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

												Clien	t	Box 38	37	oe-Ca	ITSON CANADA			
BUHEAU MINERAL I VERITAS Canada Bureau Veritas Commoditie	LABORATOR			www.	bureau	veritas	.com/u	m				Project Report		McCor Septer	nnell nber 03,	2015				
9050 Shaughnessy St Var	ncouver BC V	6P 6E5	CANAD	A																
PHONE (604) 253-3158												Page:		1 of 1					Part	2 of 2
011011704.000	ITRO		0.00													1.0.0			100.4	
QUALITY CON	NIROL	REP	OR													WF	1115	000°	139.1	
	Method	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AQ200	AQ200	AQ200	AQ200	AQ200	AG200	AG200	AQ200	
	Analyte	P	La	Cr	Ma	Ba	П	B	AI	Na	K	w	Hg	80	TI	8	Ga	Se	Te	
	Unit	%	ppm	ppm	96	ppm	%	ppm	56	%	56	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	
	MDL	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.06	1	0.5	0.2	
Pulp Duplicates																				
15607	Rock	0.041	13	2	0.02	117	<0.001	<20	0.26	0.006	0.23	0.6	<0.01	0.7	<0.1	0.07	<1	<0.5	<0.2	
REP 15607	QC	0.043	12	2	0.02	124	<0.001	<20	0.28	0.006	0.24	0.5	<0.01	0.8	<0.1	0.07	<1	<0.5	<0.2	
Reference Materials																				
STD DS10	Standard	0.078	17	55	0.76	420	0.077	<20	0.98	0.064	0.33	2.9	0.33	2.8	5.1	0.28	4	2.0	5.2	
STD OREAS45EA	Standard	0.028	7	834	0.09	146	0.098	<20	3.08	0.016	0.05	<0.1	<0.01	76.5	0.1	<0.05	12	0.9	<0.2	
STD OXD108	Standard																			
STD OXI121	Standard																			
STD OXN117	Standard																			
STD DS10 Expected		0.073	17.5	54.6	0.775	412	0.0817		1.0259	0.067	0.338	3.32	0.3	2.8	5.1	0.29	4.3	2.3	5.01	
STD OREA345EA Expected		0.029	7.06	849	0.095	148	0.0984		3.13	0.02	0.053			78	0.072	0.036	12,4	0.78	0.07	
STD OXD108 Expected																				
STD OXN117 Expected																				
STD OXI121 Expected																				
BLK	Blank	<0.001	<	<1	<0.01	<	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1	<0.5	<0.2	
BLK	Blank																			
BLK	Blank																			
Prep Wash																				
ROCK-WHI	Prep Blank	0.041	5	6	0.57	50	0.065	<20	0.86	0.066	0.08	0.1	<0.01	2.4	<0.1	<0.05	4	<0.5	<0.2	

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this cetificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

BUREAU MINERAL LABORATORIES VERITAS Carada

Bureau Veritas Commodities Canada Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

www.bureauveritas.com/um

Client:	William Koe-Carson Box 387 White Fox SK S0J 380 CANADA
Submitted By:	William Koe-Carson
Receiving Lab:	Canada-Whitehorse
Received:	August 07, 2015
Report Date:	September 03, 2015

September 03, 2015 1 of 2

WHI15000155.1

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Page:

Project: Shipment ID:	McConnell	Procedure Code	Number of Samples	Code Description	Test Wat (a)	Report Status	Lab
P.O. Number		PRP70-500	1	Crush, split and pulverize 500g rock to 200 mesh			WHI
Number of Same	oles: 1	F8631	1	Metallic Sleve 500g to 150 mesh			VAN
		Split +150 mesh	1	Analysis sample split/packet			VAN
SAMPLE D	ISPOSAL	Split -150	1	Analysis sample split/packet			VAN
		F8631	1	Metallics Fire Assay for Au	30	Completed	VAN
DISP-PLP	Dispose of Pulp After 90 days	AQ200	1	1:1:1 Aqua Regia digestion ICP-M3 analysis	0.5	Completed	VAN
DISP-RJT	Dispose of Reject After 90 days						

ADDITIONAL COMMENTS

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: William Koe-Carson Box 387 White Fox SK S0J 3B0 CANADA

CC:

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Eureau Vertices assumes the liabilities for exclusi cost of analysis only. Results apply to samples as submitted. "** astarkis indicates that an analytical result could not be nonised in levels of interference from other elements.

											Clier	nt:	Box 3	387		arson CANAD				
VERITAS Canada	IES		www	bureau	verita	s.com/	um				Projec		McCa	onnell						
Bureau Veritas Commodities Canada Lt	d.										Repo	t Date:	Sept	ember 03	3, 2015					
9050 Shaughnessy St Vancouver BC V	6P 6E5	CANAE	AC																	
PHONE (604) 253-3158											Page:		2 of 2	2				Pa	rt 1	of 3
CERTIFICATE OF AN	IALY	SIS													W	HI15	5000	155	.1	
Method	WGHT	M160	FA430	F8600	F8800	F8600	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	A@200	A@200	A@200	AQ200	AG200	AQ200	A@200	A@200
Analyte	Wgt	TotWt	-Au	TotAu	+Au	+Wt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	8r	Cd
Unit	kg		gm/t	gm/t	gmit	0	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm
MDL	0.01	1	0.005	0.01	0.17	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1
15606 Rock	0.69	504	4.825	4,98	7.61	28.90	1.5	257.9	500.8	10	3.4	7.6	69.1	136	24.02	>10000	6289.4	0.9	9	0.1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference on

													Clier	nt:	Box	387	(0e-C					
	BUREAU VERITAS	MINERAL LABORATOR Canada	IES		****	.burea	uverita	s.com/	um				Projec		McC	onnell						
	Bureau Veritas	Commodities Canada Lt	d.										Repor	t Date:	Sept	ember 03	3, 2015					
1	9050 Shaughn	essy St Vancouver BC V	6P 6E5	CANA	DA																	
	PHONE (604)	253-3158											Page:		2 of 3	2				Pa	rt: 2	of 3
	CERTIF	ICATE OF AN	IALY	′SIS													W	HI15	5000)155	.1	
		Method	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200	A@200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	A@200	AQ200	AQ200
		Analyte	8b	BI	v	Ca	P	La	Cr	Mg	Ba	п	в	AI	Na	ĸ	w	Hg	80	п	8	Ga
		Unit	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm
		MDL	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1
	15606	Rock	125.0	357.1	<2	0.01	0.011	8	4	<0.01	65	< 0.001	<20	0.04	0.002	0.05	<0.1	0.02	0.3	<0.1	6.98	<1

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference on

					Client:	William Koe-Carson Box 387 White Fox SK S0J 380 CANADA		
BUREAU VERITAS	MINERAL LABORATORI Catada	IES	www.bure	auveritas.com/um	Project	McConnell		
Bureau Verita	s Commodities Canada Lto	d.			Report Date:	September 03, 2015		
	essy St Vancouver BC V	6P 6E5 C	ANADA					
PHONE (604)	253-3158				Page:	2 of 2	Part:	3 of 3
CERTI	FICATE OF AN	IALYS	SIS			WHI150001	55.1	
	Method	AQ200 A	G200					
	Analyte	Se.	Те					
	Unit	ppm	ppm					
	MDL	0.6	0.2					
15606	Rock	8.3	0.2					

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

												Clien	t	Box 3	87	0e-Ca	rson Canada				
VERITAS Canada	ABORATOR	IES		www.	bureau	veritas	.com/u	m				Project	:	McCo	nnell						
Bureau Veritas Commoditi	es Canada I t	d										Report	Date:	Septe	mber 03,	2015					
9050 Shaughnessy St Var		-																			
PHONE (604) 253-3158	icouver bc v	OF DED	CANAL	MA .																	
FHOME (004) 203-3100												Page:		1 of 1					Part	1 of	3
QUALITY CON		DED		г												\A/F	1115	000	155.1	1	
QUALITICO	IIKOL	KLF	OK													VVI	115	000	155.	<u>ا</u>	
	Method	WOHT	M160	FA430	F8800	F8800	F8800	AG200	A@200	AQ200	AG200	A@200	AG200	AQ200	AQ200	AQ200	A@200	AQ200	AG200	AQ200	AQ200
	Analyte	Wgt	TotWt	-Au	TotAu	+Au	+Wt	Mo	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	Au	Th	81	Cd
	Unit	kg		gm/t	gm/t	gm/t		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm
	MDL	0.01	1	0.005	0.01	0.17	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.6	0.6	0.1	1	0.1
Reference Materials																					
STD DS10	Standard							13.8	154.0	158.9	378	2.0	76.4	13.4	889	2.73	46.9	63.0	7.7	66	2.7
STD OREA345EA	Standard							1.8	699.3	15.0	29	0.3	374.9	51.8	416	21.59	11.5	53.8	10.2	4	<0.1
STD OXD108	Standard			0.412																	
STD OXI121	Standard			1.840																	
STD OXN117	Standard			7.913																	
STD OXP91	Standard					14.98	30.25														
STD OXP91 Expected						14.82															
STD DS10 Expected								14.69	154.61	150.55	370	2.02	74.6	12.9	875	2.7188	43.7	91.9	7.5	67.1	2.49
STD OREA345EA Expected								1.6	709	14.3	31.4	0.26	381	52	400	23.51	10.3	53	10.7	3.5	0.03
BLK	Blank					<0.17	30.00														
BLK	Blank							<0.1	<0.1	<0.1	<1	⊲0.1	⊲0.1	⊲0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1
BLK	Blank			<0.005																	
BLK	Blank			<0.005																	
Prep Wash																					
ROCK-WHI	Prep Blank		492	<0.005	<0.01	<0.17	23.42	0.6	3.3	2.3	32	⊲0.1	1.1	3.7	487	1.88	1.4	<0.5	2.1	20	<0.1

This report supersides all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

												Clien	t	Box 3	87	0e-Ca					
UDEEAU VERITAS Ganada Bureau Veritas Commoditi	LABORATOR			www.	bureau	veritas	.com/u	m				Project Report		McCo Septer	nnell mber 03,	2015					
9050 Shaughnessy St Va	noniver BC V	8P 6E5		Δ																	
PHONE (604) 253-3158			CANAD	~																	
PHONE (004) 233-3136												Page:		1 of 1					Part	2 of	3
QUALITY CO		DED		г													1115	0001	155.	1	
QUALITICO	NIKOL	RLF	UK	•												VVI	115	000	155.		
	Method	AG200	AQ200	AG200	AQ200	AQ200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200	AG200
	Analyte	8b	BI	v	Ca	P	La	Cr	Ma	Ba	п	в	AL	Na	ĸ	w	Ha	80	т	8	Ga
	Unit	ppm	ppm	ppm	%	56	ppm	ppm	*	ppm	%	ppm	%	56	*	ppm	ppm	ppm	ppm	%	ppm
	MDL	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1
Reference Materials																					
STD DS10	Standard	10.0	12.6	42	1.05	0.078	17	55	0.76	420	0.077	<20	0.98	0.064	0.33	2.9	0.33	2.8	5.1	0.28	4
STD OREA345EA	Standard	0.4	0.3	302	0.04	0.028	7	834	0.09	146	0.098	<20	3.08	0.016	0.05	<0.1	⊲0.01	76.5	0.1	<0.05	12
STD OXD108	Standard																				
STD OXI121	Standard																				
STD OXN117	Standard																				
STD OXP91	Standard																				
STD OXP91 Expected																					
STD DS10 Expected		8.23	11.65	43	1.0625	0.073	17.5	54.6	0.775	412	0.0817		1.0259	0.067	0.338	3.32	0.3	2.8	5.1	0.29	4.3
STD OREA345EA Expected		0.32	0.26	303	0.036	0.029	7.06	849	0.095	148	0.0984		3.13	0.02	0.053			78	0.072	0.036	12.4
BLK	Blank																				
BLK	Blank	<0.1	<0.1	<2	<0.01	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	⊲0.1	<0.1	<0.05	<1
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
ROCK-WHI	Prep Blank	<0.1	⊲0.1	19	0.49	0.040	5	3	0.45	52	0.064	<20	0.88	0.076	0.09	<0.1	<0.01	2.5	⊲0.1	<0.05	3

This report supersides all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

		Client:	William Koe-Carson Box 387 White Fox SK S0J 3B0 CANADA		
UUHEAU MINERAL LABORATORIES Canada Bureau Veritas Commodities Canada Ltd.	www.bureauveritas.com/um	Project: Report Date:	McConnell September 03, 2015		
9050 Shaughnessy St Vancouver BC V6P 6E5 CAN PHONE (604) 253-3158	ADA	Page:	1 of 1	Part:	3 of 3
QUALITY CONTROL REPO	RT		WHI15000)155.1	

	Method	AQ200	AQ200
	Analyte	3e	Те
	Unit	ppm	ppm
	MDL	0.6	0.2
Reference Materials			
STD DS10	Standard	2.0	5.2
STD OREAS45EA	Standard	0.9	<0.2
STD OXD108	Standard		
STD OXI121	Standard		
STD OXN117	Standard		
STD OXP91	Standard		
STD OXP91 Expected			
STD DS10 Expected		2.3	5.01
STD OREAS45EA Expected		0.78	0.07
BLK	Blank		
BLK	Blank	⊲.5	₹.2
BLK	Blank		
BLK	Blank		
Prep Wash			
ROCK-WHI	Prep Blank	⊲0.5	⊲.2

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approvel; preliminary reports are unsigned and should be used for reference only.

Appendix 5

Claims List

District	Grant Number	Claim Name	Claim Nbr	Claim Owner	Staking Date	Expiry Date	Status
Mayo	YD16701	McConnells Jest	1	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16702	McConnells Jest	2	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16703	McConnells Jest	3	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16704	McConnells Jest	4	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16705	McConnells Jest	5	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16706	McConnells Jest	6	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16707	McConnells Jest	7	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16708	McConnells Jest	8	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16709	McConnells Jest	9	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16710	McConnells Jest	10	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16711	McConnells Jest	11	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16712	McConnells Jest	12	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16713	McConnells Jest	13	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16714	McConnells Jest	14	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16715	McConnells Jest	15	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16716	McConnells Jest	16	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16717	McConnells Jest	17	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16718	McConnells Jest	18	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16719	McConnells Jest	19	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16720	McConnells Jest	20	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16721	McConnells Jest	21	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16722	McConnells Jest	22	William (Bill) Koe'-Carson - 100%	5/21/2010	5/1/2020	Active
Mayo	YD16723	McConnells Jest	23	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16724	McConnells Jest	24	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16725	McConnells Jest	25	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16726	McConnells Jest	26	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16727	McConnells Jest	27	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16728	McConnells Jest	28	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16729	McConnells Jest	29	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16730	McConnells Jest	30	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16731	McConnells Jest	31	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16732	McConnells Jest	32	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16733	McConnells Jest	33	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16734	McConnells Jest	34	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16735	McConnells Jest	35	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16736	McConnells Jest	36	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16737	McConnells Jest	37	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16738	McConnells Jest	38	William (Bill) Koe'-Carson - 100%	7/9/2010	5/1/2020	Active
Mayo	YD16739	McConnells Jest	39	William (Bill) Koe'-Carson - 100%	7/10/2010	5/1/2020	Active
Mayo	YD16740	McConnells Jest	40	William (Bill) Koe'-Carson - 100%	7/10/2010	5/1/2020	Active

Mayo	YD54701	McConnells Jest	41	William (Bill) Koe'-Carson - 100%	7/10/2010	5/1/2020	Active
Mayo	YD54702	McConnells Jest	42	William (Bill) Koe'-Carson - 100%	7/10/2010	5/1/2020	Active
Mayo	YD54703	McConnells Jest	43	William (Bill) Koe'-Carson - 100%	7/10/2010	5/1/2020	Active
Mayo	YD54704	McConnells Jest	44	William (Bill) Koe'-Carson - 100%	7/10/2010	5/1/2020	Active
Mayo	YD54705	McConnells Jest	45	William (Bill) Koe'-Carson - 100%	7/10/2010	5/1/2020	Active
Mayo	YD54706	McConnells Jest	46	William (Bill) Koe'-Carson - 100%	7/10/2010	5/1/2020	Active
Mayo	YD54707	McConnells Jest	47	William (Bill) Koe'-Carson - 100%	7/11/2010	5/1/2020	Active
Mayo	YD54708	McConnells Jest	48	William (Bill) Koe'-Carson - 100%	7/11/2010	5/1/2020	Active
Mayo	YD54709	McConnells Jest	49	William (Bill) Koe'-Carson - 100%	7/11/2010	5/1/2020	Active
Mayo	YD54710	McConnells Jest	50	William (Bill) Koe'-Carson - 100%	7/11/2010	5/1/2020	Active
Mayo	YD54711	McConnells Jest	51	William (Bill) Koe'-Carson - 100%	7/11/2010	5/1/2020	Active
Mayo	YD54712	McConnells Jest	52	William (Bill) Koe'-Carson - 100%	7/11/2010	5/1/2020	Active
Mayo	YD54713	McConnells Jest	53	William (Bill) Koe'-Carson - 100%	7/11/2010	5/1/2020	Active
Mayo	YD54714	McConnells Jest	54	William (Bill) Koe'-Carson - 100%	7/11/2010	5/1/2020	Active
Mayo	YD54715	McConnells Jest	55	William (Bill) Koe'-Carson - 100%	7/12/2010	5/1/2020	Active
Mayo	YD54716	McConnells Jest	56	William (Bill) Koe'-Carson - 100%	7/12/2010	5/1/2020	Active
Mayo	YD54717	McConnells Jest	57	William (Bill) Koe'-Carson - 100%	7/12/2010	5/1/2020	Active
Mayo	YD54718	McConnells Jest	58	William (Bill) Koe'-Carson - 100%	7/12/2010	5/1/2020	Active
Mayo	YD54719	McConnells Jest	59	William (Bill) Koe'-Carson - 100%	7/12/2010	5/1/2020	Active
Mayo	YD54720	McConnells Jest	60	William (Bill) Koe'-Carson - 100%	7/12/2010	5/1/2020	Active
Mayo	YD54721	McConnells Jest	61	William (Bill) Koe'-Carson - 100%	7/12/2010	5/1/2020	Active
Mayo	YD54722	McConnells Jest	62	William (Bill) Koe'-Carson - 100%	7/12/2010	5/1/2020	Active
Mayo	YD54723	McConnells Jest	63	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54724	McConnells Jest	64	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54725	McConnells Jest	65	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54726	McConnells Jest	66	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54727	McConnells Jest	67	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54728	McConnells Jest	68	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54729	McConnells Jest	69	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54730	McConnells Jest	70	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54731	McConnells Jest	71	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54732	McConnells Jest	72	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54733	McConnells Jest	73	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54734	McConnells Jest	74	William (Bill) Koe'-Carson - 100%	7/13/2010	5/1/2020	Active
Mayo	YD54735	McConnells Jest	75	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54736	McConnells Jest	76	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54737	McConnells Jest	77	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54738	McConnells Jest	78	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54739	McConnells Jest	79	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54740	McConnells Jest	80	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54741	McConnells Jest	81	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54742	McConnells Jest	82	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54743	McConnells Jest	83	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
•							

Mayo	YD54744	McConnells Jest	84	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54745	McConnells Jest	85	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54746	McConnells Jest	86	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54747	McConnells Jest	87	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54748	McConnells Jest	88	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54749	McConnells Jest	89	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54750	McConnells Jest	90	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54751	McConnells Jest	91	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54752	McConnells Jest	92	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54753	McConnells Jest	93	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54754	McConnells Jest	94	William (Bill) Koe'-Carson - 100%	7/15/2010	5/1/2020	Active
Mayo	YD54755	McConnells Jest	95	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54756	McConnells Jest	96	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54757	McConnells Jest	97	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54758	McConnells Jest	98	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54759	McConnells Jest	99	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54760	McConnells Jest	100	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54761	McConnells Jest	101	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54762	McConnells Jest	102	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54763	McConnells Jest	103	William (Bill) Koe'-Carson - 100%	7/16/2010	5/1/2020	Active
Mayo	YD54764	McConnells Jest	104	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54765	McConnells Jest	105	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54766	McConnells Jest	106	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54767	McConnells Jest	107	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54768	McConnells Jest	108	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54769	McConnells Jest	109	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54770	McConnells Jest	110	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54771	McConnells Jest	111	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54772	McConnells Jest	112	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54773	McConnells Jest	113	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54774	McConnells Jest	114	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54775	McConnells Jest	115	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54776	McConnells Jest	116	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54777	McConnells Jest	117	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54778	McConnells Jest	118	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54779	McConnells Jest	119	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD54780	McConnells Jest	120	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD61470	McConnells Jest	121	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD61471	McConnells Jest	122	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD61472	McConnells Jest	123	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD61473	McConnells Jest	124	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD61474	McConnells Jest	125	William (Bill) Koe'-Carson - 100%	7/17/2010	5/1/2020	Active
Mayo	YD126853	McConnells Jest	126	William (Bill) Koe'-Carson - 100%	1/13/2011	5/1/2020	Active
-							

Mayo	YD126854	McConnells Jest	127	William (Bill) Koe'-Carson - 100%	1/13/2011	5/1/2020	Active
Mayo	YD126855	McConnells Jest	128	William (Bill) Koe'-Carson - 100%	1/10/2011	5/1/2020	Active
Mayo	YD126856	McConnells Jest	129	William (Bill) Koe'-Carson - 100%	1/10/2011	5/1/2020	Active
Mayo	YD126857	McConnells Jest	130	William (Bill) Koe'-Carson - 100%	1/10/2011	5/1/2020	Active
Mayo	YD126858	McConnells Jest	131	William (Bill) Koe'-Carson - 100%	1/10/2011	5/1/2020	Active
Mayo	YD126859	McConnells Jest	132	William (Bill) Koe'-Carson - 100%	1/10/2011	5/1/2020	Active
Mayo	YD126860	McConnells Jest	133	William (Bill) Koe'-Carson - 100%	1/10/2011	5/1/2020	Active
Mayo	YD126861	McConnells Jest	134	William (Bill) Koe'-Carson - 100%	1/11/2011	5/1/2020	Active
Mayo	YD126862	McConnells Jest	135	William (Bill) Koe'-Carson - 100%	1/11/2011	5/1/2020	Active
Mayo	YD126863	McConnells Jest	136	William (Bill) Koe'-Carson - 100%	1/11/2011	5/1/2020	Active
Mayo	YD126864	McConnells Jest	137	William (Bill) Koe'-Carson - 100%	1/11/2011	5/1/2020	Active
Mayo	YD126865	McConnells Jest	138	William (Bill) Koe'-Carson - 100%	1/11/2011	5/1/2020	Active
Mayo	YD126866	McConnells Jest	139	William (Bill) Koe'-Carson - 100%	1/11/2011	5/1/2020	Active
Mayo	YD126867	McConnells Jest	140	William (Bill) Koe'-Carson - 100%	1/12/2011	5/1/2020	Active
Mayo	YD126868	McConnells Jest	141	William (Bill) Koe'-Carson - 100%	1/12/2011	5/1/2020	Active
Mayo	YD126869	McConnells Jest	142	William (Bill) Koe'-Carson - 100%	1/12/2011	5/1/2020	Active
Mayo	YD126870	McConnells Jest	143	William (Bill) Koe'-Carson - 100%	1/12/2011	5/1/2020	Active
Mayo	YD126871	McConnells Jest	144	William (Bill) Koe'-Carson - 100%	1/22/2011	5/1/2020	Active
Mayo	YD126872	McConnells Jest	145	William (Bill) Koe'-Carson - 100%	1/22/2011	5/1/2020	Active
Mayo	YD126873	McConnells Jest	146	William (Bill) Koe'-Carson - 100%	1/22/2011	5/1/2020	Active
Mayo	YD126874	McConnells Jest	147	William (Bill) Koe'-Carson - 100%	1/22/2011	5/1/2020	Active
Mayo	YD126875	McConnells Jest	148	William (Bill) Koe'-Carson - 100%	1/23/2011	5/1/2020	Active
Mayo	YD126876	McConnells Jest	149	William (Bill) Koe'-Carson - 100%	1/23/2011	5/1/2020	Active
Mayo	YD126877	McConnells Jest	150	William (Bill) Koe'-Carson - 100%	1/23/2011	5/1/2020	Active
Mayo	YD126878	McConnells Jest	151	William (Bill) Koe'-Carson - 100%	1/24/2011	5/1/2020	Active
Mayo	YD126879	McConnells Jest	152	William (Bill) Koe'-Carson - 100%	1/24/2011	5/1/2020	Active
Mayo	YD126880	McConnells Jest	153	William (Bill) Koe'-Carson - 100%	1/24/2011	5/1/2020	Active
Mayo	YD126881	McConnells Jest	154	William (Bill) Koe'-Carson - 100%	1/25/2011	5/1/2020	Active
Mayo	YD126882	McConnells Jest	155	William (Bill) Koe'-Carson - 100%	1/25/2011	5/1/2020	Active
Mayo	YD126883	McConnells Jest	156	William (Bill) Koe'-Carson - 100%	1/25/2011	5/1/2020	Active
Mayo	YD126884	McConnells Jest	157	William (Bill) Koe'-Carson - 100%	1/25/2011	5/1/2020	Active
Mayo	YD126885	McConnells Jest	158	William (Bill) Koe'-Carson - 100%	1/27/2011	5/1/2020	Active
Mayo	YD126886	McConnells Jest	159	William (Bill) Koe'-Carson - 100%	1/27/2011	5/1/2020	Active
Mayo	YD126887	McConnells Jest	160	William (Bill) Koe'-Carson - 100%	1/27/2011	5/1/2020	Active
Mayo	YD126888	McConnells Jest	161	William (Bill) Koe'-Carson - 100%	1/27/2011	5/1/2020	Active
Mayo	YD126889	McConnells Jest	162	William (Bill) Koe'-Carson - 100%	1/26/2011	5/1/2020	Active
Mayo	YD126890	McConnells Jest	163	William (Bill) Koe'-Carson - 100%	1/26/2011	5/1/2020	Active
Mayo	YD126891	McConnells Jest	164	William (Bill) Koe'-Carson - 100%	1/26/2011	5/1/2020	Active
Mayo	YD126892	McConnells Jest	165	William (Bill) Koe'-Carson - 100%	1/29/2011	5/1/2020	Active
Mayo	YD126893	McConnells Jest	166	William (Bill) Koe'-Carson - 100%	1/29/2011	5/1/2020	Active
Mayo	YD126894	McConnells Jest	167	William (Bill) Koe'-Carson - 100%	1/30/2011	5/1/2020	Active
Mayo	YD126895	McConnells Jest	168	William (Bill) Koe'-Carson - 100%	1/30/2011	5/1/2020	Active
Mayo	YD126896	McConnells Jest	169	William (Bill) Koe'-Carson - 100%	2/2/2011	5/1/2020	Active

Mayo	YD126897	McConnells Jest	170	William (Bill) Koe'-Carson - 100%	2/2/2011	5/1/2020	Active
Mayo	YD126898	McConnells Jest	171	William (Bill) Koe'-Carson - 100%	2/1/2011	5/1/2020	Active
Mayo	YD126899	McConnells Jest	172	William (Bill) Koe'-Carson - 100%	2/1/2011	5/1/2020	Active