2016 AGATE ASSESSMENT REPORT
UAV-AIRBORNE MAGNETIC SURVEY
“Featuring Pioneer Exploration Consultants’ UAV-MAG™ System”

Agate Claims
Quartz Claim Grants YD136501-136680
NTS 115G07
61°28'45"N 138°46'39"W
Whitehorse Mining District
Yukon Territory, Canada

For
IDM Mining
1500-409 Granville Street
Vancouver, BC
V6C 1T2

Report prepared by James Rogers

Program Managed and Operated by
Longford Exploration Services

LONGFORD EXPLORATION
services
longfordexploration.com

6970 Napier Street
Burnaby, BC, V5B 2C4
Tel: (778) 809-7009
www.longfordexploration.com

Survey Flown Using Pioneer Exploration Consultants UAV-MAG™ System

Pioneer Exploration Consultants Ltd.

277 2366 Avenue C North
Saskatoon, SK, S7L 5X5
Tel: (306) 715-6802
www.pioneerexploration.ca
Table of Contents
1. Introduction ... 3
2. Property Description and Location .. 3
3. Survey Area ... 3
4. Property History .. 6
5. Survey Specifications and Procedures .. 6
 5.1 UAV-Multicopter .. 7
 5.2 Magnetometer ... 8
 5.3 Ancillary Systems... 9
6. Personnel ... 10
7. Data Processing and Presentation ... 10
 7.1 Base Map ... 11
 7.2 Flight Path and Terrain Clearance .. 11
 7.3 Magnetic Data .. 11
8. Survey Results and Discussion ... 15
 8.1 Target Model Considerations ... 15
 8.2 Discussion ... 15
9. Statement of Costs .. 16
10. Statement of Qualifications ... 17
Appendices: ... 18
 Appendix 1: Instrument Specification Sheet .. 18
 Appendix 2: UAV Specification Sheet .. 19
Maps .. 22
 Map 1: Total Magnetic Field (RTP) .. 22
 Map 2: First Vertical Derivative .. 23
1. Introduction

This report describes a UAV-MAG™ geophysical survey carried out on behalf of Longford Exploration (Longford) by Pioneer Exploration Consultants (Pioneer) on the Agate Property, near Kluane Lake, Yukon Territory, Canada.

The principal geophysical sensors included in Pioneer’s exclusive UAV-MAG™ system, comprised of a Gem Systems GSMP 35A high sensitivity potassium vapor sensor, specially designed and configured for Pioneer’s UAV flight system. Ancillary equipment included a Novatel GPS navigation system, IMU, laser altimeter, multiplexor (MUX) data acquisition unit, and a UTC time synchronized base station magnetometer. Raw streaming magnetometer data at a rate of 5 times per second, along with IMU, GPS and laser altimeter data was collected and stored on board the UAV, and retrieved post flight.

The total line kilometers flown was 23.2. The survey flying described in this report took place between February 3rd and February 5th 2016. The data were examined for bedrock magnetic anomalies related to anomalous geochemistry survey samples collected during a previous exploration program. A discussion of the results is presented in the Interpretation section of this report. This report also describes the survey specifications, data processing and data presentation.

2. Property Description and Location

The property consists of 180 quartz claims located on NTS map sheet 115G07 in the Whitehorse Mining District between Brooks Arm and Talbot Arm both of Kluane Lake. The claims have the claim name AGATE and are numbered 1 through 180 inclusive. The grant numbers are YD136501-136680 respectively. All claims are 100% owned by IDM Mining Ltd.

3. Survey Area

The Agate Property lies within intermediate intrusive rocks of the Yukon Tanana Terrane near its western boundary with the Insular Belt separated by the Denali fault. It is located approximately 25 km to the East of Copper Joe & Burwash Landing between Brooks Arm and Talbot Arm both of Kluane Lake. Access to the property from Burwash Landing and Copper Joe was facilitated for this winter time survey by snowmobiling across Kluane Lake, and into the claim group through a re-activated trap line trail. Access to the property during the summer months is by helicopter only. The Survey crew was accommodated in Copper Joe Subdivision, Burwash, YT.
Figure 1 Agate Property location and survey location map.
Figure 2: Agate Claim Names and Grant Numbers.
4. Property History

The Agate claims were staked by Ryan Gold in January 2011. In July of 2011 a crew was mobilized to the project and collected 1038 soil samples from a ridge and spur sampling program. These samples highlighted an area potentially anomalous for gold in the southern half of the claim block. In December 2015 Oban Mining Ltd (formerly Ryan Gold Ltd) sold the Agate claims, along with all their Yukon claim holdings, to IDM Mining Ltd.

5. Survey Specifications and Procedures

The survey specifications are summarized in the following table:

<table>
<thead>
<tr>
<th>Area Name</th>
<th>Line Spacing</th>
<th>Line Azimuth</th>
<th>Total Survey (km)</th>
<th>Dates Flown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agate</td>
<td>50</td>
<td>090</td>
<td>9.6</td>
<td>02/04/2016</td>
</tr>
<tr>
<td>Agate</td>
<td>50</td>
<td>090</td>
<td>13.6</td>
<td>02/05/2016</td>
</tr>
</tbody>
</table>

A total of 8 individual flights ranging from 1km to 4km in total line length were flown in order to obtain proper coverage of the survey area and ensure that safe terrain clearance and line of sight with the UAV survey system was maintained.

Nominal sensor terrain clearance was 50m. The magnetometer was suspended from the craft in a fixed orientation by a flexible nylon cable and sensor cables by a length of 2.0m in order to reduce UAV noise and interference. Nominal survey speed was maintained between 7-10 m/s (25-36 km/h). Scan rates for data acquisition were 5 times per second for the magnetometer, gps, laser altimeter, and IMU. This translates into a geophysical reading about every 1-2 meters along the flight track. Flight line position (X,Y,Z) was recorded in real time by GPS, WGS84 Latitude/Longitude and UTM Coordinates.

Navigation of the UAV was maintained by GPS-Compass-barometric altimeter assisted autonomous flight control on the UAV system. Pre-programmed flight plans were uploaded to the UAV upon takeoff, and the craft flew the flight lines autonomously, returning to its takeoff location, or a pre-programed landing location once the lines were completed. Landing and Takeoff were conducted manually by the UAV pilot and ground crew.

The operator was responsible for ensuring the Potassium Vapor magnetometer was properly warmed up prior to departure and that the instruments operated properly during flight. A flight log was also maintained noting the times, locations and any anomalous ground features within the survey area. No surface infrastructure was present on the ground within the survey area.
A new data file was recorded for each flight and stored in real time on-board the UAV with a USB and back-up FlashCard solid state memory. On return of the craft, the magnetometer was shut off and data was downloaded and checked for errors. Survey lines which showed noisy data were re-flown. No flight lines were re-flown due to excessive deviation as the autonomous flight navigation was able to maintain position extremely well.

6. Aircraft and Equipment

6.1.1 UAV-Multicopter

An Infinite Jib Surveyor Coaxial Hexacopter UAV (S/N) 2075 was used as the survey platform. The UAV is owned and operated by Pioneer Exploration Consultants Ltd. Installation of the geophysical and ancillary equipment was carried out by Pioneer at their main office in Saskatoon, SK after interference testing with Gem Systems at their offices in Ontario. The UAV and Mag system was transported by Air North Cargo from Edmonton, AB to Whitehorse, YK, then from Whitehorse to Haines Junction by vehicle, and to the survey site by snowmobile. Figure 2 shows the UAV system in the field with the magnetometer sensor package installed.

![Image of UAV-Multicopter](image)

Figure 3 Pioneer Exploration's 'UAV-MAG™ system.
6.2 Magnetometer

The Pioneer UAV-MAG™ system employs the Gem Systems GSMP-35A potassium Vapor magnetometer sensor which is custom designed and installed as a towed bird configuration with two metres separation between the craft and the sensor. The reported sensitivity of the magnetometer is 0.3 pT at 1Hz with an absolute accuracy of ± 0.1 nT and a dynamic range of 20,000 to 100,000 nT.

Magnetometer Sensor Specifications: GSMP-35A Potassium Vapor Magnetometer (Gem Systems, Canada).

- Sensitivity: 0.3 pT @ 1Hz
- Heading Error ± 0.05nT between 10 and 80 degrees and 360 degrees full rotation about axis
- Resolution: 0.0001 nT
- Absolute Accuracy: ± 0.1 nT
- Dynamic Range: 20,000 to 100,000 nT
- Gradient Tolerance: 35,000 nT/m
- Sampling rate: up to 20Hz
- Orientation: Optimum angle 35 degrees between sensor head axis and field vector
6.3 Ancillary Systems

Magnetometer Base Station

A Gem Systems GSM 19 Overhauser base station magnetometer was set up each day at least one hour prior to flight to record the diurnal variations of the Earth's magnetic field. The base station was automatically time synchronized to UTC time using a GPS-integrated GSM-19 mobile magnetometer by Gem Systems. The Base Station Location for the survey was: WGS 84 Z 7N 610684mE 6801667mN, elevation 795m.

The base station data was collected at a sampling rate of once every 6 seconds to an accuracy of 0.01 nT. The data was downloaded and recorded each day using GEMLink v.5.3 software.

Figure 5 Base station location and setup.
Radar Altimeter

The micro-laser altimeter (MLM-120) was used to record accurate real-time altitude information during flight. It was capable of detecting ranges up to 120 meters in distance.

Navigation Subsystem

A VN-200 integrated Inertial Measurement Unit (IMU) and Novatel GPS antenna from Vector were used to record the absolute position (XYZ) and pitch, yaw and roll of the magnetometer and UAV. The recording acquisition time was 5 times per second.

Digital Acquisition System

A MUX Multiplexor data acquisition and power distribution system by Gem Systems was used to collect and record the analog data stream, and combine the data from the separate sensors into a single string. The data was recorded as .txt files on a 16Gb FlashCard and removable USB stick.

All ancillary equipment except the magnetometer base station was contained onboard the UAV craft during flight.

7. Personnel

Field Party Chief: Michael Burns
Field Data Processors: Michael Burns / Kiyavash Parvar
UAV Pilot: Michael Burns
Project Manager / UAV Ground Crew / Spotter: James Rogers
Office Data Processing & Report: Michael Burns, James Rogers and Kiyavash Parvar
Field Labour: Marcel Dulac

8. Data Processing and Presentation

All post-field data processing was carried out using Geosoft Montaj, Matlab and Microsoft Excel processing software. Presentation of flight lines and final maps used ESRI ArcMap and Oasis/Geosoft Montaj. Results were gridded using minimum curvature and a grid cell size of 8 meters.
8.1 Base Map

The geophysical images accompanying this report are positioned using the WGS 1984 datum. The survey geodetic GPS positions have been map projected using the Universal Transverse Mercator projection in Zone 7N. A summary of the map datum and projection specifications are as follows:

- Datum: WGS 1984 UTM Zone 7N
- False Easting, Northing: 500,000.0m, 0.0m
- Central Meridian: -111.0m
- Scale Factor: .9996
- Latitude of Origin: 0.0
- Linear Unit: Meter (1)

The skeletal topography was obtained from the Canada NTDB base maps for the survey area.

8.2 Flight Path and Terrain Clearance

The position of the UAV survey multicopter was achieved autonomously through the use of a GPS-Compass, Inertial Measurement Unit (IMU) and a barometric altimeter. A 30m minimum terrain clearance threshold was applied to all flights during the flight planning process. Survey flights were flown at variable above ground altitudes in order to accurately drape the survey grid over topography. Certain areas such as steep cliffs and extreme topographic changes were flown at higher average altitudes in order to maintain terrain clearance and still collect useful data. Topographic effects within the final processed data are negligible.

8.3 Magnetic Data

The Magnetic Data was first quality checked and any points lacking sufficient georeferenced data or excessive noise were removed. The resulting data was processed as mosaics throughout the survey area as data was collected each day. A final combination of all data formed the final results.

Initial processing subjected the data to several filters, an upward continuation filter, a FFT filtration to derive the analytical signal which is a measure of the total derivative field, and vertical derivative filters. The filtered aeromagnetic data were then corrected for diurnal variations using the magnetic base station data and tie line intersections. No correction for the regional reference field (IGRF) were applied. The corrected profile data were interpolated onto a grid using the minimum curvature technique with a grid size of 8 meters.
A total of 5.6 line km flown to the east of the main survey block resulted in high noise data which could not be filtered, and was discarded. The high noise was caused by instrumental error, and may have been related to the high winds and stability profile of the sensor during flight.

Figure 6 Flight survey lines mid-survey showing Total Field (RTP) results.
Figure 7 First Vertical Derivative with gold in soil from 2011 sampling program.
Figure 8 Total Field (RTI) with gold in soil from 2011 sampling program.
9. Survey Results and Discussion

9.1 Target Model Considerations

Outcrop is present in approximately 15% of the survey area, with near-surface sub-crop and abundant float. However, the majority of the ground was covered by deep snow during the survey. The survey was positioned to cover areas within the Agate claim group where anomalous Au in soil geochemical samples were collected during a previous ground based geochemical survey. The site has not been mapped in detail and lacks detailed geological information other than the publicly available regional Yukon Geological Survey data.

The target(s) of the airborne and coincident ground magnetometer surveys were proposed to be intrusive bodies such as dikes, or other intrusive rock types cutting the host rocks.

The survey line spacing of 50m was chosen in order to detect potentially small anomalies. Flight altitudes of 65m or more allowed detection of anomalies with deep structures or “roots” and accurate modeling of such anomalies.

9.2 Discussion

There is one main anomaly on the eastern edge of the survey grid, which possibly represents the margin of an intrusive body. Due to the lack of survey coverage in the vicinity of the anomaly, expansion of the survey area is warranted. The vertical derivative map contains a correlating anomaly to the east of the survey margins. There is also a small anomaly on the west margin of the survey area, which due to its location at the edge of the survey area, is possibly a false representation. Further UAV-MAG™ survey coverage throughout the S and SE of the Agate claim block is warranted to better define the extent of the anomalies detected during the present survey.
10. Statement of Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Dates</th>
<th>Rate</th>
<th>Units</th>
<th>Qty</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mike Burns</td>
<td>UAV pilot, Geologist</td>
<td>February 3, 4, 5, 6 (1/2 day)</td>
<td>$400.00</td>
<td>per day</td>
<td>3.5</td>
<td>$1400</td>
</tr>
<tr>
<td>James Rogers</td>
<td>Project Manager</td>
<td>February 3, 4, 5, 6 (1/2 day)</td>
<td>$400.00</td>
<td>per day</td>
<td>3.5</td>
<td>$1400</td>
</tr>
<tr>
<td>Marcel Dulec</td>
<td>Labourer</td>
<td>February 3rd and 4th</td>
<td>$250.00</td>
<td>per day</td>
<td>2</td>
<td>$500</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodge 3500 4x4 Truck</td>
<td></td>
<td></td>
<td>$200.00</td>
<td>per day</td>
<td>3.5</td>
<td>$700</td>
</tr>
<tr>
<td>16 foot flat deck trailer</td>
<td></td>
<td></td>
<td>$50.00</td>
<td>per day</td>
<td>3.5</td>
<td>$175</td>
</tr>
<tr>
<td>Snowmobile Skandic 500 Wide Track</td>
<td></td>
<td></td>
<td>$200.00</td>
<td>per day</td>
<td>3.5</td>
<td>$700</td>
</tr>
<tr>
<td>Snowmobile Arctic Cat 340</td>
<td></td>
<td></td>
<td>$200.00</td>
<td>per day</td>
<td>2</td>
<td>$400</td>
</tr>
<tr>
<td>Snowmobile Polaris SS0</td>
<td></td>
<td></td>
<td>$200.00</td>
<td>per day</td>
<td>3.5</td>
<td>$700</td>
</tr>
<tr>
<td>Magnetometer base station rental</td>
<td></td>
<td></td>
<td>$65.00</td>
<td>per day</td>
<td>3.5</td>
<td>$227.5</td>
</tr>
<tr>
<td>Chainsaw, (3) gps units, (3) VHF Radios, satellite phone, snow shoes, (2) axe, winter survival equipment</td>
<td></td>
<td></td>
<td>$150.00</td>
<td>per day</td>
<td>3.5</td>
<td>$525</td>
</tr>
<tr>
<td>Snowmobile gas and 2-stroke oil</td>
<td></td>
<td></td>
<td>$20.00</td>
<td>per sled day</td>
<td>9</td>
<td>$180</td>
</tr>
<tr>
<td>Food</td>
<td></td>
<td></td>
<td>$40.00</td>
<td>per man day</td>
<td>9</td>
<td>$360</td>
</tr>
<tr>
<td>Lodging</td>
<td>Lodging, Private rental, Copper Joe Road, Burwash Yukon</td>
<td></td>
<td>$100.00</td>
<td>per night for 2 people</td>
<td>2</td>
<td>$200</td>
</tr>
<tr>
<td>Travel</td>
<td>Kilometers, consumables fuel and oil</td>
<td>Haines Junction to Burwash</td>
<td>$0.55</td>
<td>per km</td>
<td>244</td>
<td>$134.2</td>
</tr>
<tr>
<td>Geophysical Survey</td>
<td>UAV Airborne Magnetometer survey</td>
<td></td>
<td>$100.00</td>
<td>per line km</td>
<td>20</td>
<td>$2000</td>
</tr>
<tr>
<td>Report Preparation</td>
<td>Four days at $375/day</td>
<td></td>
<td>$1,500.00</td>
<td>per day</td>
<td>1</td>
<td>$1500</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$11101.7</td>
</tr>
</tbody>
</table>
11.Statement of Qualifications

I, James Douglas Rogers, with business address at 6970 Napier St., Burnaby, BC, V5B 2C4 do hereby certify that:

1. I-authored this report on the Agate Property, Whitehorse Mining District, Yukon Territory, Canada.

2. I supervised and participated in the UAV Survey program and I am therefore personally familiar with the geology of the claim group and the work conducted in 2016.

3. I have been employed in exploration for base and precious metals as a geologist assistant and project manager across Canada, Equatorial Africa and Peru since 2007.

4. I attended Simon Fraser University from 2010-2014 with a major in Geology.

5. I do not have a direct interest in the operations of IDM Mining or the Agate Property.

Dated this 15th day of August, 2016

James Rogers
President and CEO
Longford Exploration Services LTD
Appendices:

Appendix 1: Instrument Specification Sheet

GSMP-35UAV Potassium Vapour Magnetometer Sensor

- Precise time synchronization of field and base station units using a built-in GPS option.
- Flexible scheduling (up to 30 on/off periods).
- Manual start-up.
- Sensitivity – 0.3 pT @ 1 Hz; (0.1 pT option)
- Heading Error – ± / ± 0.05 nT between 10 and 80 degrees and 360 degrees full rotation about axis
- Resolution – 0.0001 nT
- Absolute Accuracy – +/- 0.1 nT
- Dynamic Range – 20,000 to 100,000 nT
- Gradient Tolerance – 35,000 nT/m
- Sampling – 1, 2, 5, 10, 20 Hz (higher optional)
- Orientation – optimum angle 35 degrees between sensor head axis and field vector
Appendix 2: UAV Specification Sheet

INFINITE JIB INC SURVEYOR 630

SPEED:
Maximum speed ... 40 KNOTS GS
Cruise at 75% power .. 20 KNOTS GS
Working speed ... 10 KNOTS GS

RANGE:
@ Maximum speed .. 20 NM
@ Cruise 10% capacity remaining 10 NM
@ Working Speed 20% capacity remaining 4 NM
Infinite Jib recommends to follow local guidelines to maximum range, craft shall remain within sight at all times.
Time 25 min recommended flight times with 20% power capacity left before reserves.
Time 30 min, MAX flight times with 10% power capacity left before reserves.

RATE OF CLIMB .. 1950 FPM
SERVICE CEILING: .. 300 FEET
Infinite Jib recommends operators to follow local Service Ceiling guidelines.

MAXIMUM OPERATING ALTITUDE:
Altitude above sea level .. 19,000 FEET

MAXIMUM WEIGHT:
Takeoff ... 24.2 lb (11kg)
STANDARD EMPTY WEIGHT:

No batteries or sensors.. 10.7 lb (4.85 kg)
MAXIMUM USEFUL LOAD.. 13.5 lb (6.1 kg)
MAXIMUM SENSOR PAYLOAD 8.0 lb (3.6kg)
TYPICAL SENSOR PAYLOAD (camera) 1.3 lb (.6kg)
TYPICAL TAKEOFF WEIGHT WITH PAYLOAD............. 17.5lb (7.9kg)
Craft configured with camera for Photogrammetric flights

FUEL CAPACITY:

2 x 6 Cell Batteries connected in parallel for redundancy
Max Voltage... 25.2 Volts
Minimum Voltage.. 18.0 Volts
Recommend Landing Voltage............................... 21 Volts
Battery Capacity .. 11.0Ah x 2 batteries, 22.0 Ah Total
Battery Weight .. 5.5lb (2.5kg)
Continued On Next Page

PROPULSION:

Motors .. 4120 - 400kV
Motor maximum thrust 9.4lb (4.25kg)
Max current at max thrust 37Amps
Max craft thrust ... 48lb (21.7kg)
Maximum lift capacity.................................... 32lb (14.4kg)
(6 motors coax design = 15% loss in efficiency)
Thrust to hover .. 17.5lb (7.9kg)
Thrust per motor .. 3.3lb (1.5kg)
Current at hover per motor 7.5Amps
Hover as a percentage of total motor capacity........... 35% Power
PROPELLERS:
Diameter .. 17 in (43.2cm)
Fixed Pitch .. 5.8 in (14.7cm)
Construction Carbon fiber

BASIC CONFIGURATION:
Motor Qty 6 Motors
Boom Configuration Y6 configuration with trailing single boom.
Motor Configuration Coaxial design with two motors per boom
Motor Rotation Counter rotating propellers 3 CW and 3 CC

PROPELLER LIFT AREA
Area covered by 3 rotor disk coax configuration 160 sq in (1032.26sq cm)
(53.4 sq in per boom)
The above performance figures are based on calculations derived from thrust and flight tests conducted under controlled conditions by Infinite Jib Inc. Conditions and specifications will change slightly between craft due to numerous factors affecting flight performance.

DIMENSIONS: (Measured blade tip to blade tip)
Overall Height: ... 21 in (53.3 cm)
Overall Length .. 43 in (109.2 cm)
Overall Width .. 48 in (121.9 cm)
Measured blade tip to blade tip
Landing Gear Width 14 in (35.6 cm)
Propeller Ground Clearance 12 in (30.5 cm)
Map 1: Total Magnetic Field (RTP)

<table>
<thead>
<tr>
<th>Pioneer Exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Field nT</td>
</tr>
</tbody>
</table>

By: Kiyavash Parvar

Pioneer Exploration

Consultants Ltd.

Total Field nT

Scale 1:15000
INVOICE

INVOICE TO
IDM Mining
1500-409 Granville Street
Vancouver British Columbia
V6C 1T2

INVOICE # IDM001
DATE 12-02-2016
DUE DATE 16-02-2016
TERMS - Due on receipt

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>QTY</th>
<th>RATE</th>
<th>TAX</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td></td>
<td>3,300.00</td>
<td>GST</td>
<td>3,300.00</td>
</tr>
</tbody>
</table>
| Mike Burns
UAV Pilot, Geologist, February 3-5, 1/2 day February 6th 3.5 days @400/day
James Rogers
Project Manager, February 3-5, 1/2 day February 6th, 3.5 days @400/day
Marcel Dulac
Labourer, February 3-4, 2 days at $250 per day | | | | |
| Equipment | | 200.00 | GST | 700.00 |
| Dodge 3500 4x4 Truck, per day | 3.50| | | |
| Equipment | | 50.00 | GST | 175.00 |
| 16ft flat deck trailer, per day | 3.50| | | |
| Equipment | | 200.00 | GST | 1,800.00 |
| Snowmachines | | | | |
| Skandic WideTtrack 500 - 3.5 days | | | | |
| Arctic Cat 340 - 2 days | | | | |
| Skidoo Expedition 550 - 3.5 days | | | | |
| Equipment | | 65.00 | GST | 227.50 |
| GSM 19 MAgnnetometer Base Station Rental | | | | |
| Equipment | | 150.00 | GST | 525.00 |
| (2) Chainsaw, (3) gps units, (3) VHF Rentals, Satellite
Phone, (2) Snow Shoes, (2) axe, Winter Survival equipment
Consumables
Snowmobile gas and 2-stroke oil, per sled day | 3.50| | | |
<p>| GST # 84929 1398 RT0001 | | | | |</p>
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>QTY</th>
<th>RATE</th>
<th>TAX</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumables</td>
<td>9</td>
<td>20.00</td>
<td>Zero-rated</td>
<td>180.00</td>
</tr>
<tr>
<td>Snowmobile gas and 2-stroke oil, per sledday</td>
<td>9</td>
<td>40.00</td>
<td>Zero-rated</td>
<td>360.00</td>
</tr>
<tr>
<td>Food</td>
<td>2</td>
<td>100.00</td>
<td>Zero-rated</td>
<td>200.00</td>
</tr>
<tr>
<td>Lodging</td>
<td>244</td>
<td>0.55</td>
<td>Zero-rated</td>
<td>134.20</td>
</tr>
<tr>
<td>Vehicle Rate 4x4 Pickup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0.55/km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haines Junction to Burwash,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burwash to Haines Junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysical Survey</td>
<td>20</td>
<td>100.00</td>
<td>GST</td>
<td>2,000.00</td>
</tr>
<tr>
<td>UAV Airborne Magnetometer survey, data collection and processing billed per line kilometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Preparation</td>
<td>1</td>
<td>1,500.00</td>
<td>GST</td>
<td>1,500.00</td>
</tr>
<tr>
<td>Assessment report preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TAX SUMMARY

<table>
<thead>
<tr>
<th>RATE</th>
<th>TAX</th>
<th>NET</th>
</tr>
</thead>
<tbody>
<tr>
<td>GST @ 5%</td>
<td>511.38</td>
<td>10,227.50</td>
</tr>
<tr>
<td>GST @ 0%</td>
<td>0.00</td>
<td>874.20</td>
</tr>
</tbody>
</table>

GST # 84929 1398 RT0001