2015 GEOLOGICAL AND GEOCHEMICAL EXPLORATION ON THE CANYON MOUNTAIN PROPERTY

WHITEHORSE MINING DISTRICT, YUKON

Grant Numbers: CM 1-112 (YF46168-YF46279)

Geographic Coordinates
$60^{\circ} 38^{\prime} \mathrm{N}$ to $60^{\circ} 44^{\prime} \mathrm{N}$ $134^{\circ} 49^{\prime} \mathrm{W}$ to $134^{\circ} 56^{\prime} \mathrm{W}$

NTS Sheet 105D10

Owner:	H. Lole (Client ID 4001170) 18, 10509-81 Avenue Edmonton, Alberta T6E 1X7
Operator:	Graymont Western Canada Inc. 260, 4311-12 Street NE Calgary, Alberta T2E 4P9
Consultant:	Dahrouge Geological Consulting Ltd. $18,10509-81$ Avenue Edmonton, Alberta T6E 1X7
	K. Krueger, B.Sc., Geo. I.T. H. Lole, B.Sc., FGS
	September 11-16, 2015
Field Work:	April 4, 2016

TABLE OF CONTENTS

Page

1. Introduction 1
1.1 Geographic Setting 1
1.1.1 Location and Access 1
1.1.2 Topography, Vegetation, Wildlife and Climate 1
1.2 Property 2
1.3 History and Previous Investigations 5
1.4 Purpose of Work 5
1.5 Summary of Work 6
2. Regional Geology 6
2.1 Stratigraphy 6
2.1.1 Laberge Group 7
2.1.2 Lewes River Group 7
2.2 Structure 7
3. Property Geology 8
3.1 Stratigraphy and Lithology 8
3.1.1 Mount Nansen Group 9
3.1.2 Whitehorse Suite (Group) 9
3.1.3 Laberge Group - Richtofen Formation 9
3.1.4 Aksala Formation - Hancock Member 9
3.2 Structure 10
4. Results of 2015 Exploration 10
5. Discussion and Conclusions 11
6. Statement of Qualifications 12
7. References 14

LIST OF TABLES

Page
Table 1.1 List of Canyon Mountain Claims 2
Table 2.1 Stratigraphy of the Whitehorse Area 8
LIST OF APPENDICES
Appendix 1 Itemized Cost Statement. A1
Appendix 2 Analytical Laboratory Information and Techniques A3
Appendix 3 Assay Results - Central Analytical Laboratory of Graymont Western U.S. Inc. A4
Appendix 42015 Sample Descriptions and Assay Results from the Canyon Mountain Property A7
LIST OF FIGURES
Fig. 3.1 Property Location F1
Fig. 3.2 Access Map F2
Fig. 4.1 Claim Map F3
Fig. 4.2 Geology \& Sample Locations F4
Fig. 4.3 Regional Geology Map F5

INTRODUCTION

The Canyon Mountain quartz claims were staked by Henry Lole in June 2014; Dahrouge Geological Consulting (Dahrouge) completed a surface sampling program from September 1116, 2015. Exploration consisted of collecting 32 rock samples, representing approximately 93.5 m of stratigraphy. A traverse totalling 2.29 km was completed on the Property in order to map geologic units and identify outcrops. The majority of the 2015 work on the claims focused on identifying access routes, mapping geological contacts and locating high-calcium limestone outcrops on the Canyon Mountain Property. This report describes the 2015 exploration and provides an interpretation of the results. Appendix 1 is an itemized cost breakdown of the 2015 work completed on the Canyon Mountain Property. The operator for the exploration described herein was Graymont Western Canada Inc.

The Canyon Mountain Property is comprised of 112 contiguous quartz claims; the Property has been grouped as per Grouping Certificate HW07570.

Structural measurements were obtained at stations throughout the Property. A magnetic declination of $24^{\circ} 2^{\prime} \mathrm{E}$ was used. Attitudes of bedding and other planar features are given as $A^{\circ} / B^{\circ} N W$, where A° is the azimuth of the strike (right-hand rule) and B° is the amount of dip in the direction indicated. Where bedding has been obscured by structure, stratigraphic thicknesses were calculated using orientations from adjacent units. Where more than one bedding orientation was measured, the mean orientation was used.

1.1 GEOGRAPHIC SETTING

1.1.1 Location and Access

The Canyon Mountain Property is located approximately 11 km east of Whitehorse, Yukon along the Grey Mountain Road. The Property is roughly 600 m east of the Grey Mountain radio tower (Fig.'s 3.1 and 3.2). The majority of Grey Mountain Road is paved and well-maintained, with the exception of the last 2 km , which is a rough gravel road. A well-maintained ATV trail, which is approximately 10 km in length, exists south of the Property and can be used to access the southern half of the Property. There is a helicopter pad at the radio tower on top of Grey Mountain which could be utilized for access in the future, if required.

1.1.2 Topography, Vegetation, Wildlife and Climate

Topography in the Canyon Mountain Property area is characterized by northwest trending broad U-shaped glacial valleys and ridges of significant relief. Elevations on the Property range
from 840 m in the eastern portion near Cantlie Lake up to approximately $1,400 \mathrm{~m}$ atop Grey Mountain at the radio tower (Fig. 4.1).

Tree cover in the Whitehorse area is moderate to dense. The most common trees are evergreen (spruce, pine and fir), with common birch, poplar, willow, cottonwood and aspen. There is no evidence of recent clear-cutting and logging in the area.

The rugged mountainous terrane and wetlands in the Canyon Mountain Property area make it an ideal habitat for variety of ungulates, birds and small mammals. The Yukon Government has identified golden eagle, thin-horn sheep and woodland caribou seasonal ranges in the Property area. To the authors' knowledge, there are no restrictions on the area due to the presence of wildlife. During exploration, Dahrouge endeavored to minimize the disturbance to local flora and fauna.

The area is part of the Boreal Cordillera Eco-zone with generally dry and cool conditions. Climate is alpine to sub-arctic with average summer temperatures of 20° to $25^{\circ} \mathrm{C}$ and winter temperatures of -15° to $-25^{\circ} \mathrm{C}$, with extremes of $32^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$. Rainfall averages about 15 cm per year and maximum snowfall occurs from November to February with an average total of 128 cm. Snow often falls as early as September and as late as April.

1.2 PROPERTY

The Canyon Mountain claims are being held in trust for Graymont Western Canada Inc. by Henry Lole of Dahrouge, based out of Edmonton, AB. The claims were staked from June $27^{\text {th }}$ to July $2^{\text {nd }}, 2014$ by a four-person crew based out of Whitehorse. The Canyon Mountain Property consists of 112 quartz claims (CM 1-112) with a combined area of 2,340.8 ha.

TABLE 1.1
LIST OF CANYON MOUNTAIN CLAIMS

Grant Number	Claim Name	Original Size (ha)	Record Date	New Good To Date	Required Spending
YF46168	CM 1	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46169	CM 2	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46170	CM 3	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46171	CM 4	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46172	CM 5	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46173	CM 6	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46174	CM 7	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46175	CM 8	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46176	CM 9	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$

YF46177	CM 10	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46178	CM 11	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46179	CM 12	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46180	CM 13	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46181	CM 14	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46182	CM 15	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46183	CM 16	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46184	CM 17	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46185	CM 18	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46186	CM 19	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46187	CM 20	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46188	CM 21	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46189	CM 22	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46190	CM 23	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46191	CM 24	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46192	CM 25	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46193	CM 26	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46194	CM 27	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46195	CM 28	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46196	CM 29	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46197	CM 30	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46198	CM 31	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46199	CM 32	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46200	CM 33	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46201	CM 34	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46202	CM 35	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46203	CM 36	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46204	CM 37	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46205	CM 38	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46206	CM 39	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46207	CM 40	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46208	CM 41	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46209	CM 42	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46210	CM 43	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46211	CM 44	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46212	CM 45	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46213	CM 46	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46214	CM 47	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46215	CM 48	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46216	CM 49	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46217	CM 50	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46218	CM 51	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46219	CM 52	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46220	CM 53	20.9	14-Jul-2014	14-Jul-2020	\$300.00

YF46221	CM 54	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46222	CM 55	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46223	CM 56	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46224	CM 57	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46225	CM 58	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46226	CM 59	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46227	CM 60	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46228	CM 61	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46229	CM 62	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46230	CM 63	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46231	CM 64	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46232	CM 65	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46233	CM 66	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46234	CM 67	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46235	CM 68	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46236	CM 69	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46237	CM 70	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46238	CM 71	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46239	CM 72	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46240	CM 73	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46241	CM 74	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46242	CM 75	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46243	CM 76	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46244	CM 77	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46245	CM 78	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46246	CM 79	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46247	CM 80	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46248	CM 81	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46249	CM 82	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46250	CM 83	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46251	CM 84	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46252	CM 85	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46253	CM 86	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46254	CM 87	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46255	CM 88	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46256	CM 89	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46257	CM 90	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46258	CM 91	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46259	CM 92	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46260	CM 93	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46261	CM 94	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46262	CM 95	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46263	CM 96	20.9	14-Jul-2014	14-Jul-2020	\$300.00
YF46264	CM 97	20.9	14-Jul-2014	14-Jul-2020	\$300.00

YF46265	CM 98	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46266	CM 99	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46267	CM 100	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46268	CM 101	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46269	CM 102	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46270	CM 103	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46271	CM 104	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46272	CM 105	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46273	CM 106	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46274	CM 107	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46275	CM 108	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46276	CM 109	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46277	CM 110	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46278	CM 111	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
YF46279	CM 112	20.9	14-Jul-2014	14-Jul-2020	$\$ 300.00$
	Total Area:	$2,340.8$	Representation Work Cost:	$\$ 33,600.00$	
			Certification Cost:	$\$ 1,680.00$	

1.3 HISTORY AND PREVIOUS INVESTIGATIONS

Initial prospecting of the area was completed by Dahrouge during the summer of 2012 to assess the quality of the limestone; the Canyon Mountain claims were later staked in 2014. Dahrouge completed a sampling program in September 2014 to investigate carbonate quality on the Property. To the knowledge of the authors, no historic exploration for high-calcium limestone has occurred in the Canyon Mountain Property area. There are, however, four expired quartz claims underlying the Canyon Mountain claims (Golcondo, Florence, Concord and Mohawk) which were staked prior to the Canyon Mountain Property; it is unknown whether the owner registered work for them.

1.4 PURPOSE OF WORK

The work described herein was undertaken to accurately identify the location and extent of limestone units throughout the Canyon Mountain Property, and consisted of mapping and sampling. The 2015 exploration program is a follow-up to work completed in 2014 by Dahrouge (Krueger and Lole, 2014).

1.5 SUMMARY OF WORK

In September 2015, Dahrouge conducted a 6-day geologic mapping and sampling program on the Canyon Mountain Property.

A total of 32 limestone samples were obtained within the Canyon Mountain Property, representing approximately 93.5 m of stratigraphy (Fig. 4.2). A traverse totalling 2.29 km was also completed on and near the Property in order to map geologic units and identify outcrops. Samples were collected by chipping outcrops perpendicular to defined or assumed bedding. Bedding was commonly difficult to identify due to the nondescript and cryptocrystalline nature of the limestone. Where bedding was uncertain or had been obscured by structure, stratigraphic thicknesses were calculated using the best estimated orientation from adjacent units. Where more than one bedding orientation was measured, the mean orientation was used.

Geological observations were recorded, including lithologic information, measurements of structural elements, and other pertinent details (Appendix 4). A solution of $10 \% \mathrm{HCl}$ was used to assess carbonate quality in the field. Samples were shipped to a lab in Salt Lake City, Utah for preparation and analyses by standard ICP techniques, and LOI. Analytical procedures are described in Appendix 2 and assay sheets are provided in Appendix 3.

Personnel were based in a hotel in Whitehorse, Yukon, and access to and from the Property was by rented four-wheel-drive vehicle. Access throughout the Property was by extensive hiking.

2.
 REGIONAL GEOLOGY

2.1 STRATIGRAPHY

The Canyon Mountain Property is located within the Whitehorse Trough, part of the Stikine Terrane. The Whitehorse Trough is a 500 km long, northwest-trending intermontane basin located in south-central Yukon, which originated as a forearc basin, but progressively developed into a piggy-back basin near the end of the Pliensbachian during orogenic events (Colpron, 2014). The basin straddles the Yukon-British Columbia border, with its northernmost margin in the Carmacks area, approximately 175 km north of the Canyon Mountain Property. The area of the Trough covers approximately 2.44 million hectares. The basin contains up to 3 km thick Jurassic Laberge Group sedimentary rocks, underlain by Triassic Lewes River Group sediments. Overlying the sedimentary sequences are Cretaceous and Neogene volcanics (Fig. 4.3).

2.1.1 Laberge Group

The Jurassic Laberge Group has been informally subdivided into the Richthofen, Nordenskiold and Tanglefoot formations. The Richthofen Formation is characterized by thin- to medium-bedded turbidite beds, massive sandstone intervals, and fossiliferous conglomerates. It ranges from 500-10,000 m in thickness, and is restricted to the southern half of the basin, so is not present in the Whitehorse area. The Nordenskiold Formation consists of dark-grey, massive dacites with quartz, plagioclase, biotite and hornblende phenocrysts in a cryptocrystalline groundmass. The Tanglefoot Formation consists of coal-bearing, fluvial to marginal marine interbedded sandstones and mudstones, conglomerates, and rare bioclastic limestones. The limestones locally contain abundant ammonites, pelecypods, and carbonaceous material. It is at least 600 m thick and is restricted to the northern half of the Whitehorse Trough, and has not been seen in outcrop near the Canyon Mountain Property to date. The Richthofen, Nordenskiold and Tanglefoot formations unconformably overlie the Triassic Lewes River Group and are unconformably overlain by the Jurassic-Cretaceous Tantalus Formation (Colpron, 2011).

2.1.2 Lewes River Group

The Lewes River Group was determined to range in age from Carnian to Norian, based on dating of spiriferids, pelecypods, ammonites and colonial corals. It generally consists of limestone, argillite, greywacke and sandstone. Lees (1934) recognized the presence of 3 units: a lower limestone sequence, middle sequence of greywacke and argillite with interbedded limestone intervals, and an upper limestone unit. The Lewes River Group is informally subdivided into the Povoas and Aksala formations. The Povoas Formation is a volcanic unit that consists of basalts and andesites, with minor carbonate rocks. It is overlain by the CarnianNorian Aksala Formation, which has been subdivided into 2 main members: Casca and overlying Hancock. Sequences of sandstones, conglomerates and mudstones comprise the Casca Member, which overlies the reefal carbonates of the Hancock Member (Colpron, 2011). Large areas of the sedimentary sequence were subsequently intruded by granitic rocks during the Cretaceous.

2.2 STRUCTURE

The structural geology of the area is dominated by two major sub-parallel, north-northwest trending faults that divide and define the boundaries between the Cache Creek Terrane (to the east) and the Whitehorse Trough and between the Whitehorse Trough and the Yukon-Tanana

Terrane (to the west). The Nahlin Fault more or less marks the western extent of the Cache Creek Terrane and eastern extent of the Whitehorse Trough. It is a steeply dipping to vertical fault, or series of faults and has seen intermittent activity from the Late Triassic to Tertiary time. The Llewellyn fault marks the boundary between the regionally metamorphosed Yukon-Tanana Terrane and the Whitehorse Trough. It is also steeply dipping and appears to have been active from Late Triassic to Tertiary time (Shaw, 1989).

TABLE 2.1 STRATIGRAPHY OF THE WHITEHORSE AREA*

Period	Stage/Age	Stratigraphic Unit			Lithological Description	Approx. Thickness (m)
		Group	Formation/ Member			
Jurassic	Bathenian		Tantalus Fm.		Quartzite, chert and pebble conglomerate, minor sandstone, shale and minor coal	200-300
	Bajocian Aalenian	Laberge Gp.	Tanglefoot Fm.		Interbedded sandstones and mudstones, conglomerates, rare limestones	Up to 600 m
	Toarcian		Nordenskiold Fm.		Volcanics including dacites	unknown
	Pliensbachian					
	Sinemurian		Richtofen Fm.		Massive sandstones, conglomerates	500-900 m
	Hettangian					
Triassic	Norian	Lewes River Gp.	Aksala Fm.	Casca Mbr.	Sandstones, conglomerates and mudstones, limestone	unknown
				Hancock Mbr.	Massive to thick-bedded limestone	Up to 600
	Carnian		Povoas Fm.		Volcanics including basalts and andesites, minor carbonates	

*Adapted from Clapham et al., 2002.

3.
 PROPERTY GEOLOGY

3.1 STRATIGRAPHY \& LITHOLOGY

As limited work has been performed on the Canyon Mountain Property, a detailed description of the property geology is not yet possible. In the Whitehorse area, carbonate
lithologies are known to occur within Triassic sequences. The Triassic limestones encountered within the Canyon Mountain Property are from the Hancock member of the Carnian-Norian Aksala Formation (Fig. 4.2). The massive, resistant limestone exposures in the Whitehorse area are likely part of the Hancock Member. The following is a brief summary of the units underlying the Canyon Mountain Property.

3.1.1 Mount Nansen Group

Mount Nansen Group outcroppings have yet to be mapped by Dahrouge on any portions of the Canyon Mountain Property. Mapping completed by the Yukon Geological Survey, however, indicates that the unit outcrops in the southwest corner of the Property. The Mount Nansen group consists of Eocene age extrusive volcanics. Typical lithologies include andesite, dacite, and brecciated tuffs (CSPG Lexicon of Canadian Stratigraphy). The Mount Nansen is not a unit with any high-calcium potential.

3.1.2 Whitehorse Suite (Group)

Whitehorse Suite felsic volcanics have yet to be mapped on the Canyon Mountain Property by Dahrouge. However, the Yukon Geological Survey has mapped outcroppings along the eastern border of the Property. The intrusive Middle-Cretaceous Whitehorse Suite consists of two distinct batholiths (Ryan, J.J., et al., 2013). Typical lithologies include; granite, hornblendebiotite rich granodiorite, monzogranite and tonalite. The Whitehorse Suite is not a unit with any high-calcium potential.

3.1.3 Laberge Group - Richtofen Formation

While the Richthofen Formation has yet to be mapped on the Canyon Mountain Property by Dahrouge, the Yukon Geological Survey has confirmed that the unit outcrops along the western edge of the Property. The Formation typically consists of massive sandstones and conglomerates and is not a unit with high-calcium potential.

3.1.4 Aksala Formation - Hancock Member

The massive cliff-forming Hancock Member was mapped in 2015 within the southern and central portions of the Canyon Mountain Property. The member consists of very light-grey to medium-grey weathered, light-grey to medium-grey fresh, cryptocrystalline to micritic lime mudstones. Both massive and resistant, the Hancock Member limestones have minor carbonaceous stringers and oxide alteration along fractures. The Hancock Member is the
geologic unit that was targeted during the 2015 exploration program, as it has the most potential for high-calcium limestone.

3.2 STRUCTURE

Given the early stage of exploration on the Property, the structure is currently largely unknown. Bedding measurements taken along the central-west edge of the Property were steeply dipping (83-89) to the northeast, while beds in the southwest portion exhibited much shallower dips, ranging from 51 to 75° approximately due east. A fault has been mapped by the Yukon Geological Survey along the Richthofen-Aksala contact in the southwest portion of the Property (Fig.'s 4.2 \& 4.3). No evidence of this fault was found during the 2015 exploration.

4. RESULTS OF 2015 EXPLORATION

The 2015 exploration program was conducted in order to further assess the limestone quality of the Aksala Formation, Hancock Member limestone and provide more constraint on geologic contacts with other units in the area. A total of 32 limestone samples were collected at nine separate locations (Fig. 4.2).

The groundwork also involved mapping along the south-central portion of the Property, along the flanks of Grey Mountain.

During the program, geological observations were recorded, including lithologic information, measurements of structural elements, and other pertinent details (Appendix 4). A solution of $10 \% \mathrm{HCl}$ was used to assess carbonate quality in the field. In some instances, interval thicknesses were determined by measuring outcrops perpendicular to bedding, where it could be identified. In many cases the interval thickness can only be considered approximate (at best) due to the lack of reliable bedding surfaces.

All samples from the 2015 program were shipped to a lab in Salt Lake City, Utah for preparation and analyses by standard ICP techniques, and LOI (Appendices 2 and 3). Samples collected from the Hancock Member in 2015 returned minimal variation in quality. The best sample interval examined in 2015 was Section 2015-01, which averaged $94.55 \% \mathrm{CaCO}_{3}, 1.75 \%$ MgCO_{3} and $2.03 \% \mathrm{SiO}_{2}$ over an estimated 52.5 m . Section 2015-01 would have averaged approximately $97 \% \mathrm{CaCO}_{3}$, but three limestone samples (127042-127044) within the section were cross-cut by volcanic dykes (dioritic). The presence of these intrusives resulted in high SiO_{2} percentages over 6.75 m of stratigraphy within the section. Section 2015-02 averaged $98.37 \% \mathrm{CaCO}_{3}, 1.09 \% \mathrm{MgCO}_{3}$ and $0.41 \% \mathrm{SiO}_{2}$ over approximately 12 m . Several isolated
limestone samples in the southwest of the Property (Fig. 4.2) contained argillaceous beds (sample 127071), resulting in high SiO_{2} content.

Dahrouge was able to further delineate the contact between the Richthofen Formation and Hancock Member limestone in the southwest portion of the Property during the 2015 exploration program. Mapping revealed that the Hancock Member extends further west than anticipated prior to the 2015 field work.

5. DISCUSSION AND CONCLUSIONS

Within the Canyon Mountain Property, limestone of the Norian-Carnian Hancock Member of the Aksala Formation was mapped and tested by measuring and sampling stratigraphic sections. A total of 32 Hancock Member limestone samples were collected from the southwest and west-central portions of the Property. Where cross-cutting dykes were absent, Hancock samples exhibited minimal variation in quality, generally averaging in excess of $96 \% \mathrm{CaCO}_{3}$. Intrusive dioritic dykes contaminated sample intervals 2015-01 and 2015-03. Several isolated samples in the southwest contained high silica content, resulting in assays below $75 \% \mathrm{CaCO}_{3}$. The best section of Hancock Member (Section 2015-01) averaged over $94.55 \% \mathrm{CaCO}_{3}$ across an estimated 52.5 m . Limited time for exploration prevented a conclusive analysis of the quality of the Hancock Member throughout the Property.

The next phase of exploration on the Canyon Mountain Property should consist of additional mapping and sampling, focusing on the unexplored northern half of the Property. Identifying and mapping Aksala Formation contacts with adjacent stratigraphic units in the southwest portion of the Property should also be a priority. A ground magnetic survey is recommended in areas surrounding confirmed intrusives, to assess their lateral extent where overburden is thick and outcrops are sparse. Claims CM 38-57 should be allowed to lapse if, during the next exploration program, higher quality limestones are not discovered.
6. STATEMENT OF QUALIFICATIONS

I, Kelly Krueger, residing at 1820 Rutherford Road, Edmonton, Alberta, do hereby certify that:

- I am a geologist of Dahrouge Geological Consulting Ltd., Suite 18, 10509-81 Ave., Edmonton, Alberta, T6E 1X7.
- I am a 2012 graduate of the University of Alberta, Edmonton, Alberta with a B. Sc. in Geology.
- I have practiced my profession as a geologist continuously since 2012.
- I am a registered Geologist in Training with the Association of Professional Engineers and Geoscientists of Alberta, member M96506.
- I managed the 2015 work described in this report.
- I am co-author of the report entitled " 2015 Geological and Geochemical Exploration on the Canyon Mountain Property" and accept responsibility for the veracity of technical data and results.
- I hereby consent to the copying or reproduction of this Assessment Report following the confidentiality period.

Dated this $4^{\text {th }}$ day of April, 2016.

Kelly Krueger, B.Sc., Geo. I.T.
APEGA M96506

I, Henry Lole, residing at 11140 36A Ave, Edmonton, Alberta, do hereby certify that:

- I am a geologist of Dahrouge Geological Consulting Ltd., Suite 18, 10509 - 81 Ave., Edmonton, Alberta, T6E 1X7.
- I am a 2011 graduate of Cardiff University, Cardiff, Wales, with a B.Sc. (Hons) in Exploration and Resource Geology.
- I have practiced my profession as a geologist continuously since 2011.
- I am a registered Fellow of The Geological Society, member 1019264.
- I co-managed the 2015 work described in this report.
- I am co-author of the report entitled " 2015 Geological and Geochemical Exploration on the Canyon Mountain Property" and accept responsibility for the veracity of technical data and results.
- I hereby consent to the copying or reproduction of this Assessment Report following the confidentiality period.

Dated this $4^{\text {th }}$ day of April, 2016.

Henry Lole, B.Sc., FGS
FGS 1019264

REFERENCES
Bond, J.D., Morison, S. and McKenna, K. Surficial Geology of MacRae (1:50,000 scale). Yukon Geological Survey, Geoscience Map 2005-6.

Clapham, M.E., Smith, P.L. and Tipper, H.W., 2002. Lower to Middle Jurassic stratigraphy, ammonoid fauna and sedimentary history of the Laberge Group in the Fish Lake syncline, northern Whitehorse Trough, Yukon, Canada. In: Yukon Exploration and Geology 2001, D.S. Emond, L.H. Weston and L.L. Lewis (eds.), Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 73-85.

Colpron, M., 2011 (compiler). Geological compilation of Whitehorse trough - Whitehorse (105D), Lake Laberge (105E), and parts of Carmacks (115I), Glenlyon (105L), Aishihik Lake (115H), Quite Lake (105F), and Teslin (105C). Yukon Geological Survey, Geological map 2011-1, 1:250,000, 3 maps, legend \& appendices.

Colpron, M., 2014. Birth of the Northern Cordilleran Orogeny, as recorded by Jurassic sedimentation and exhumation in Yukon. Presentation at 2014 Geological Society of America Annual Meeting. Vancouver, Canada, 19-22 October 2014.

Deklerk, R., 2002. Yukon Minfile, 2002. A Database of Mineral Occurrences. Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada.

Doherty, R.A., 1999. Report on the 1997 RC Drill Program on the Mac 1-4 and Jeannie 1-12 claims. Assessment Report 093946 prepared for 145976 Yukon Inc.

Gordey, S.P. and Makepeace, A.J., 1999. Yukon bedrock geology in Yukon digital geology, Geological Survey of Canada, Open File D3826.

Hart, C.J.R., 1997. A transect across northern Stikinia: Geology of the northern Whitehorse map area, southern Yukon Territory (105D/13-16). Exploration and Geological Sciences Division, Yukon, Indian and Northern Affairs Canada, Bulletin 8, p. 112.

Hills, L.V., Sangster, E.V. and Suneby, L.B. (editor). CSPG Lexicon of Canadian Stratigraphy, Volume 2, Yukon Territory and District of Mackenzie.

Krueger, K. and Lole, H. (2014). 2014 Geological and Geochemical Exploration on the Canyon Mountain Property, Assessment Report on Quartz Claims WOLF 57-91(YF46062YF46096), 17 p., 4 app., 5 fig.

Lees, E.J., 1934. Geology of the Laberge Area, Yukon. Transactions of the Royal Canadian Institute, vol. 20, part 1, pp. 1-48.

Lowey, G.W., 2008. Summary of the stratigraphy, sedimentology and hydrocarbon potential of the Laberge Group (Lower-Middle Jurassic), Whitehorse Trough, Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 179-197.

Pickering, K.T., Hiscott, R.N. and Hein, F.J. (1989) Deep-marine environments: Clastic Sedimentation and Tectonics. Allen \& Unwin Australia.

Ryan, J.J., Zagorevski, A., Williams, S.P., Roots, C., Ciolkiewicz, W., Hayward, N. and Chapman, J.B., 2013. Geology, Stevenson Ridge (northeast part), Yukon; Geological Survey of Canada, Canadian Geoscience Map 116 (2nd edition, preliminary), doi: 10.4095/292407

ITEMIZED COST STATEMENT FOR THE 2015 EXPLORATION - CANYON MOUNTAIN

a) Personnel
J. Dahrouge, geologist

0.13 days	Project management		
0.13 days @	\$ 990.00	\$	128.70
P. Kluczny, geologist			
0.26 days	Project management		
0.26 days @	\$ 795.00	\$	206.70
H. Lole, geologist			
5.50 days	Field work and travel Sept 11-16		
0.41 days	Office work, reporting		
5.91 days @	\$ 580.00	\$	3,427.80
K. Krueger, geologist			
5.50 days	Field work and travel Sept 11-16		
1.54 days	Project planning \& preparations, reporting		
7.04 days @	\$ 520.00	\$	3,660.80
D. Hayes, geologist			
8.87 days	Office work, data entry, reporting		
8.87 days @	\$ 475.00	\$	4,213.25
A. Molella, receptionist			
2.25 hours	Data entry, research, reporting		
2.25 hours @	\$ 42.00	\$	94.50

b) Food and Accommodation

11	man-days @
14	man-days @
@	171.73
Accommodation	
60.50 Meals	

$\$$	$1,889.06$		
$\$$	830.52		
$\$$			

c) Transportation

Vehicles:

SUV Rental (Whitehorse)
ATV Rental (Whitehorse)
Parking
Fuel

```
$ 1,191.45
$ 1,374.19
$ 94.38
$ 124.88
\$ 2,784.90
```

d) Instrument Rental
GPS Rental (2)
SPOT Locator (1)

$\$$	42.03		
$\$$	21.01		
$\$$	75.64		
			138.68

e) Analyses

Software Rental
Disposable Supplies
Overhead \& Supply

Total
Central Lab of Graymont Western U.S. Inc.
(32 rock samples)
32 samples @ \$ 4.50 Preparation fee
32 samples @ \$ 25.00 Sample analysis

$\$$	144.00
$\$$	800.00

$\$ 944.00$
f) Other
Software Rental
Disposable Supplies
Overhead \& Supply

Kelly Krueger, B.Sc., Geo. I.T.

APPENDIX 2: ANALYTICAL LABORATORY INFORMATION AND TECHNIQUES

Name and Address of the Lab:

Graymont Western US Inc., Central Laboratory.
670 East 3900 South, Suite 200
Salt Lake City, Utah, 84107

Statement of Qualifications:

Jared Leikam obtained a B.S. in Chemistry from the University of Utah in the class of 2003. Jared started working for Graymont in February of 2004 and has been working with the ICP Spectrometer for two and a half years, under the direct supervision of Carl Paystrup (Lab Supervisor).

Vonda Stuart obtained a B.S. in Chemistry from Weber State University in 2004. Vonda started with Graymont in August of 2007 and started working in the ICP Lab the following September.

Sample Preparation, Procedures, Reagents, Equipment, etc.:

For the ICP sample preparation, 0.5 grams of the sample is mixed with 3 g of lithium carbonate. The sample and the lithium carbonate are then fused together in a muffle furnace at $850^{\circ} \mathrm{C}$. Following the fusion process, the samples are dissolved in $1: 1 \mathrm{HCl}$; a total of $40 \mathrm{~mL} 1: 1 \mathrm{HCl}$ is used in the dissolving process. The samples are then diluted to 200 mL and spiked with 10 ppm Co. Cobalt is used as an internal standard. At this point the samples are ready for analysis on the Perkin Elmer, Optima 7300V.

Mesh Size Fraction, Split and Weight of Sample:

Upon receiving the samples, the prep room technician riffles and then splits the stone down to a manageable size (roughly 200 g). The stone is then dried in an oven at $120^{\circ} \mathrm{C}$. Once the samples have been dried they get pulverized to a -200 mesh size. A split of this pulverized material is then sent for testing in the main part of the lab.

Quality Control Procedures:

The ICP spectrometer is calibrated with two certified reference materials prior to analyzing a batch of samples. A batch typically contains 96 samples. Every $12^{\text {th }}$ sample in a batch is a certified limestone reference sample. In addition to the 8 reference samples imbedded in the batch, there are 2 limestone reference samples analyzed at the beginning and at the end of the batch to ensure the accuracy of our Na and P numbers. Every element being analyzed in a sample is backed up by data from the certified reference materials. We also use an internal standard (10 ppm Co) to further ensure the quality and accuracy of the analysis.

APPENDIX 3: ASSAY RESULTS - CENTRAL ANALYTICAL LABORATORY OF GRAYMONT WESTERN U.S. INC

LabID	Location	Tag \#	$\begin{gathered} \% \\ \mathrm{CaCO}_{3} \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { CaO } \end{gathered}$	$\begin{gathered} \% \\ \mathrm{MgCO}_{3} \end{gathered}$	$\begin{gathered} \% \\ \mathrm{MgO} \end{gathered}$	$\begin{gathered} \% \\ \text { Fe2O3 } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { Al2O3 } \end{gathered}$	ppm SrO	ppm MnO	$\begin{gathered} \text { \% } \\ \text { SiO2 } \end{gathered}$	ppm BaO	ppm K2O	ppm Na 2 O	ppm P2O5	ppm TiO2	$\% \text { ICP }$ Total	\% LOI	\% Sulfur
2015122045	Canyon Mtn	127035	97.6	54.7	1.44	0.69	0.13	0.14	341	42	0.43	18	260	235	323	41	99.8	43.72	0.000
2015122046	Canyon Mtn	127036	96.7	54.2	1.57	0.75	0.12	0.22	308	51	0.74	12	313	265	1213	62	99.4	43.71	0.000
2015122047	Canyon Mtn	127037	96.6	54.1	1.74	0.83	0.12	0.20	309	53	0.99	14	443	281	909	45	99.6	42.58	0.000
2015122048	Canyon Mtn	127038	96.4	54.0	1.36	0.65	0.17	0.25	413	60	0.84	25	376	405	1121	422	99.0	43.76	0.000
2015122049	Canyon Mtn	127039	95.3	53.4	1.84	0.88	0.12	0.30	950	63	1.46	24	458	477	856	73	99.0	43.49	0.006
2015122050	Canyon Mtn	127040	96.0	53.8	1.86	0.89	0.14	0.26	1266	68	1.47	30	473	382	513	170	99.8	43.01	0.000
2015122051	Canyon Mtn	127041	96.6	54.1	1.65	0.79	0.17	0.33	905	72	1.28	29	556	545	574	73	100.0	42.95	0.001
2015122052	Canyon Mtn	127042	86.4	48.4	2.41	1.15	0.56	1.45	359	120	5.71	96	2090	3072	788	695	96.5	39.59	0.021
2015122053	Canyon Mtn	127043	77.1	43.2	3.26	1.56	1.25	2.37	436	242	10.85	234	2654	6455	1135	1652	94.9	33.86	0.062
2015122054	Canyon Mtn	127044	75.1	42.1	2.97	1.42	1.23	2.68	384	199	12.67	248	4150	8393	1192	1695	94.7	33.02	0.033
2015122055	Canyon Mtn	127045	97.8	54.8	1.38	0.66	0.09	0.11	298	45	0.32	12	191	337	315	27	99.7	43.88	0.000
2015122056	Canyon Mtn	127046	97.4	54.6	1.30	0.62	0.25	0.10	287	60	0.41	16	164	221	271	83	99.5	43.81	0.000
2015122057	Canyon Mtn	127047	98.0	54.9	1.17	0.56	0.12	0.10	299	67	0.36	11	161	222	365	5	99.7	43.77	0.000
2015122058	Canyon Mtn	127048	95.8	53.7	1.86	0.89	0.13	0.29	933	60	1.15	39	807	256	669	70	99.3	43.51	0.000
2015122059	Canyon Mtn	127049	98.0	54.9	1.19	0.57	0.10	0.10	225	60	0.52	12	157	248	406	7	99.9	43.62	0.000
2015122060	Canyon Mtn	127050	97.1	54.4	1.74	0.83	0.08	0.22	320	41	0.71	12	358	263	452	53	99.8	43.48	0.000
2015122061	Canyon Mtn	127051	96.2	53.9	2.07	0.99	0.08	0.22	289	50	1.16	11	273	204	232	49	99.7	43.44	0.000
2015122076	Canyon Mtn	127066	96.0	54.0	1.07	0.51	0.07	0.08	710	49	2.80	15	156	216	490	8	100.0	42.25	0.000
2015122077	Canyon Mtn	127067	98.2	55.0	1.13	0.54	0.09	0.10	560	41	0.65	13	148	233	620	14	100.1	43.35	0.000
2015122078	Canyon Mtn	127068	98.4	55.7	1.09	0.52	0.10	0.08	554	48	0.37	11	88	210	448	45	100.0	43.00	0.000
2015122079	Canyon Mtn	127069	98.7	55.5	1.02	0.49	0.09	0.10	686	71	0.28	22	118	229	418	11	100.2	43.20	0.000
2015122080	Canyon Mtn	127070	98.4	55.5	1.09	0.52	0.11	0.09	527	51	0.33	19	135	234	492	33	100.0	43.25	0.004
2015122081	Canyon Mtn	127071	55.7	31.2	4.12	1.97	2.10	3.63	1121	567	21.44	232	2775	12103	1757	2709	87.0	24.32	0.003
2015122082	Canyon Mtn	127072	79.4	44.5	6.97	3.33	0.23	0.45	1807	116	10.72	39	890	435	1087	177	97.8	38.14	0.009
2015122083	Canyon Mtn	127073	66.9	37.5	3.22	1.54	1.07	2.91	1249	433	17.14	389	7986	4857	1384	1416	91.3	31.07	0.043
2015122084	Canyon Mtn	127074	84.6	47.4	2.07	0.99	0.74	1.65	1876	208	8.05	134	1271	3636	1360	685	97.1	38.20	0.040
2015122085	Canyon Mtn	127075	92.5	51.8	4.33	2.07	0.13	0.17	1024	86	3.37	20	330	322	593	35	100.5	42.05	0.000
2015122086	Canyon Mtn	127076	74.8	41.9	1.61	0.77	0.42	0.97	3174	170	16.39	120	1847	461	2792	374	94.2	34.12	0.034
2015122087	Canyon Mtn	127077	97.4	54.6	1.23	0.59	0.13	0.10	753	49	0.40	15	93	323	480	8	99.3	43.89	0.000
2015122088	Canyon Mtn	127078	98.5	55.2	1.09	0.52	0.06	0.08	523	39	0.26	8	82	207	382	11	100.0	43.70	0.000
2015122089	Canyon Mtn	127079	99.4	55.7	1.09	0.52	0.11	0.07	533	50	0.31	10	76	208	536	6	101.0	43.00	0.000
2015122090	Canyon Mtn	127080	98.2	55.0	0.98	0.47	0.09	0.09	478	50	0.44	15	85	243	648	0	99.8	43.80	0.000

APPENDIX 4: 2015 SAMPLE DESCRIPTIONS AND ASSAY RESULTS FROM THE CANYON MOUNTAIN PROPERTY

Notes: Stratigraphic thicknesses are based on measured attitudes of bedding listed below, with appropriate interpolations. Attitudes are strike and dip (right-hand rule). Sections are listed in numerical order of samples, which does not necessarily represent stratigraphic order. Most samples consist of chips at 30 cm intervals. UTM coordinates are NAD83, Zone 8N. Section locations are shown in Figure 4.2. Stratigraphy Abbreviations: Th - Triassic Aksala Formation (Hancock Member)

Sample	Strat Unit	$\begin{gathered} \text { Strat } \\ \text { Tkns (m) } \end{gathered}$	Description	CaCO_{3} (\%)	MgCO_{3} (\%)	SiO_{2} (\%)	$\mathrm{Al}_{2} \mathrm{O}_{3}$ (\%)	$\begin{gathered} \mathrm{Fe}_{2} \mathrm{O}_{3} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{SrO} \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \mathrm{MnO} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{P}_{2} \mathrm{O}_{5} \\ (\mathrm{ppm}) \end{gathered}$
Isolated Samples											
$\begin{aligned} & 127066 \\ & \text { UTM } 506 \end{aligned}$	Th OE,	$5433 N^{3}$	Lime Mudstone, very-light grey to light grey weathered and fresh, micritic, thinly-bedded to moderately-bedded, resistant, vuggy (open), alteration: oxide, localized, weak intensity, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, moderate; bedding (definite), outcrop-scale, 4/62 E	96.00	1.07	2.80	0.080	0.070	710	49	490
127071 UTM 50	Th 3E,	5330N	Argillaceous Lime Mudstone, light grey to medium grey weathered and fresh, micritic, thinly-bedded to massively-bedded, resistant, homogeneous, strong HCl reaction, structure(s): calcite vein, outcrop-scale, strong	55.68	4.12	21.44	3.630	2.100	1121	567	1757
$\begin{aligned} & 127075 \\ & \text { UTM } 507 \end{aligned}$	$\begin{aligned} & \text { Th } \\ & 34 \mathrm{E}, 6 \end{aligned}$	$\frac{2.5}{5263 \mathrm{~N}}$	Slightly Dolomitic Lime Mudstone, light grey to medium grey weathered, medium grey fresh, micritic, moderately-bedded to thickly-bedded, resistant, fissile, strong HCl reaction, structure(s): fracture, outcrop-scale, moderate; calcite veinlet, outcrop-scale, weak; bedding (undulatory), outcrop-scale, 342/60 NE	92.45	4.33	3.37	0.170	0.130	1024	86	593
$\begin{aligned} & 127076 \\ & \text { UTM } 507 \end{aligned}$	Th 7E,	${ }_{221 \mathrm{~N}}^{2.5}$	Argillaceous Lime Mudstone, light grey weathered, medium grey to black fresh, micritic to very fine-grained, thinly-bedded, slightly resistant, fissile, argillaceous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	74.78	1.61	16.39	0.970	0.420	3174	170	2792
127077 UTM 50	$\begin{gathered} \text { Th } \\ 2 \mathrm{E}, 6 \end{gathered}$	$216 N^{3}$	Lime Mudstone, very-light grey to light grey weathered, light grey to medium grey fresh, micritic, thinly-bedded to moderately-bedded, resistant, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, moderate; bedding (definite), outcrop-scale, $12 / 75 \mathrm{E}$	97.45	1.23	0.40	0.100	0.130	753	49	480
Section 2015-01 (UTM 504807E, 6728082N)											
127035	Th	2	Lime Mudstone, very-light grey weathered, light grey to medium grey fresh, cryptocrystalline to micritic, thinly-bedded to moderately-bedded, resistant, fissile, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, moderate	97.63	1.44	0.43	0.140	0.130	341	42	323
127036	Th	4	Lime Mudstone, very-light grey weathered, light grey to medium grey fresh, cryptocrystalline to micritic, thinly-bedded to moderately-bedded, resistant, fissile, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, moderate	96.73	1.57	0.74	0.220	0.120	308	51	1213
127037	Th	4	Lime Mudstone, very-light grey weathered, light grey to medium grey fresh, cryptocrystalline to micritic, thinly-bedded to moderately-bedded, resistant, fissile, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, moderate; bedding (definite), outcrop-scale, 310/74 NE	96.56	1.74	0.99	0.200	0.120	309	53	909
127038	Th	3	Lime Mudstone, very-light grey weathered, light grey to medium grey fresh, cryptocrystalline to micritic, thinly-bedded to moderately-bedded, resistant, fissile, strong HCl reaction, structure(s): calcite vein, outcrop-scale, weak; bedding (definite), outcrop-scale, 326/70 NE	96.38	1.36	0.84	0.250	0.170	413	60	1121
127039	Th	3	Lime Mudstone, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	95.31	1.84	1.46	0.300	0.120	950	63	856

Sample	Strat Unit	$\begin{gathered} \text { Strat } \\ \text { Tkns (m) } \end{gathered}$	Description	$\begin{gathered} \mathrm{CaCO}_{3} \\ (\%) \\ \hline \end{gathered}$	MgCO_{3} (\%)	SiO_{2} (\%)	$\mathrm{Al}_{2} \mathrm{O}_{3}$ (\%)	$\mathrm{Fe}_{2} \mathrm{O}_{3}$ (\%)	$\begin{gathered} \mathrm{SrO} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \hline \mathrm{MnO} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{P}_{2} \mathrm{O}_{5} \\ (\mathrm{ppm}) \end{gathered}$
127040	Th	2.25	Lime Mudstone, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	96.02	1.86	1.47	0.260	0.140	1266	68	513
127041	Th	3.75	Lime Mudstone, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	96.56	1.65	1.28	0.330	0.170	905	72	574
127042	Th	1.75	Lime Mudstone to Volcanic, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCI reaction, structure(s): dyke, outcrop-scale, very strong, $328 / 83 \mathrm{NE}$; calcite veinlet, outcrop-scale, weak	86.38	2.41	5.71	1.450	0.560	359	120	788
127043	Th	2.5	Lime Mudstone to Volcanic, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): dyke, outcrop-scale, strong; calcite veinlet, outcrop-scale, weak	77.10	3.26	10.85	2.370	1.250	436	242	1135
127044	Th	2.5	Lime Mudstone to Volcanic, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): dyke, outcrop-scale, moderate; calcite veinlet, outcrop-scale, weak	75.14	2.97	12.67	2.680	1.230	384	199	1192
127045	Th	3.75	Lime Mudstone, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	97.81	1.38	0.32	0.110	0.090	298	45	315
127046	Th	3.5	Lime Mudstone, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	97.45	1.30	0.41	0.100	0.250	287	60	271
127047	Th	5.5	Lime Mudstone, light grey to very-light grey weathered, light grey to medium grey fresh, micritic, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	97.98	1.17	0.36	0.100	0.120	299	67	365
127048	Th	1.25	Lime Mudstone, light grey to very-light grey weathered, medium grey to dark grey fresh, micritic, fossils: fragment (indeterminate), rare, resistant, hard, fissile, argillaceous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	95.84	1.86	1.15	0.290	0.130	933	60	669
127049	Th	1.75	Lime Mudstone, light grey weathered and fresh, cryptocrystalline to micritic, thinly-bedded to thickly-bedded, resistant, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	97.98	1.19	0.52	0.100	0.100	225	60	406
127050	Th	3.25	Lime Mudstone, light grey weathered and fresh, cryptocrystalline to micritic, thinly-bedded to thickly-bedded, resistant, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak; bedding (definite), outcrop-scale, 340/85 NE	97.09	1.74	0.71	0.220	0.080	320	41	452
127051	Th	4.75	Lime Mudstone, light grey weathered and fresh, cryptocrystalline to micritic, thinly-bedded to thickly-bedded, resistant, sucrosic, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	96.20	2.07	1.16	0.220	0.080	289	50	232
Section 2015-02 (UTM 506898E, 6725350N)											
127067	Th	3	Lime Mudstone, light grey to medium grey weathered and fresh, micritic, thinly-bedded to massively-bedded, resistant, homogeneous, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, moderate	98.16	1.13	0.65	0.100	0.090	560	41	620
127068	Th	2.75	Lime Mudstone, light grey to medium grey weathered and fresh, micritic, thinly-bedded to massively-bedded, resistant, homogeneous, strong HCI reaction, structure(s): calcite veinlet, outcrop-scale, moderate	98.41	1.09	0.37	0.080	0.100	554	48	448

Sample	Strat Unit	Strat Tkns (m)	Description	CaCO_{3} (\%)	MgCO_{3} (\%)	SiO_{2} (\%)	$\mathrm{Al}_{2} \mathrm{O}_{3}$ (\%)	$\begin{gathered} \mathrm{Fe}_{2} \mathrm{O}_{3} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{SrO} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{MnO} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{P}_{2} \mathrm{O}_{5} \\ (\mathrm{ppm}) \end{gathered}$
127069	Th	1.25	Lime Mudstone, light grey to medium grey weathered, medium grey to tan fresh, micritic, thinly-bedded to massively-bedded, resistant, homogeneous, moderate HCl reaction, structure(s): calcite veinlet, outcrop-scale, moderate	98.70	1.02	0.28	0.100	0.090	686	71	418
127070	Th	5	Lime Mudstone, light grey to medium grey weathered and fresh, micritic, thinly-bedded to massively-bedded, resistant, homogeneous, strong HCI reaction, structure(s): calcite veinlet, outcrop-scale, moderate; bedding (definite), outcrop-scale, 0/51E	98.40	1.09	0.33	0.090	0.110	527	51	492
Section 2015-03 (UTM 507129E, 6725390N)											
127072	Th	2.25	Argillaceous Lime Mudstone, light grey weathered, medium grey to dark grey fresh, micritic, thinly-bedded to moderately-bedded, resistant, fissile, moderate HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	79.42	6.97	10.72	0.450	0.230	1807	116	1087
127073	Th	4.5	Lime Mudstone to Volcanic, light grey weathered, medium grey to dark grey fresh, micritic, thinly-bedded to moderately-bedded, resistant, fissile, strong HCI reaction, structure(s): dyke, outcrop-scale, strong; calcite veinlet, outcrop-scale, weak	66.93	3.22	17.14	2.910	1.070	1249	433	1384
127074	Th	2.5	Argillaceous Lime Mudstone, light grey weathered, medium grey to dark grey fresh, micritic, thinly-bedded to moderately-bedded, resistant, fissile, moderate HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	84.60	2.07	8.05	1.650	0.740	1876	208	1360
Section 2015-04 (UTM 506977E, 6725231N)											
127078	Th	1.5	Lime Mudstone, light grey weathered and fresh, micritic, moderately-bedded to thickly-bedded, resistant, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak; bedding (definite), outcrop-scale, 358/74 E	98.52	1.09	0.26	0.080	0.060	523	39	382
127079	Th	1	Lime Mudstone, light grey weathered and fresh, micritic, moderately-bedded to thickly-bedded, resistant, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	99.41	1.09	0.31	0.070	0.110	533	50	536
127080	Th	1.75	Lime Mudstone, light grey weathered and fresh, micritic, moderately-bedded to thickly-bedded, resistant, strong HCl reaction, structure(s): calcite veinlet, outcrop-scale, weak	98.16	0.98	0.44	0.090	0.090	478	50	648

