MOD LEAD-ZINC-SILVER PROSPECT

Patience 1-4 claims (YE85697-YE85700)

Patience 5-8 (YD10896-YD10899)

105B-3

REPORT OF FIELDWORK 2015:

Excavation, mapping, channel sampling,

ground magnetic survey

and mineragraphy

Fieldwork from 20th. August to 3rd. September 2015

T. Liverton

W.D. Mann

December 2015
CONTENTS

LOCATION p. 4

CLAIMS p. 4

INTRODUCTION p. 7

GEOLOGY p. 9

2015 WORK p. 9

RESULTS 2015 Magnetometer survey p. 10

Surveying and mapping p. 15

Assay p. 20

Petrography and mineragraphy p. 21

CONCLUSIONS AND RECOMMENDATIONS p. 21

REFERENCES p. 22

COST STATEMENT p. 23

STATEMENT OF QUALIFICATIONS p. 24

APPENDIX 1: Petrography / mineragraphy p. 25

APPENDIX 2: Assay certificates p. 34

INVOICES
FIGURES

Location p. 5
Claims p. 6
Regional geology p. 8
Magnetic contour map p. 12
Magnetic grid p. 13
Magnetic first vertical derivative p. 14
Lower showing p. 16
Upper showing p. 17
Survey, 1: 2000 scale p. 18
Photo: reference for orientation p. 19
LOCATION

The Mod (Bom) property is located at the southwestern headwaters of the Swift River. Claim map sheet 105B-3 shows the Patience 1-4 claims that cover the original Mod 1-4 claims and peripheral claims Patience 5-8. The centre of the block is at 60°08’N, 131°13W. Access is possible using a four wheel drive road from the Alaska Highway via the Pine Lake airstrip.

CLAIMS

Eight quartz claims cover the prospect as follows:

Patience 1, YE85697, held by Hardy Hibbing; Patience 2, YE85698, held by Hardy Hibbing;

Patience 3, YE85700, held by Hardy Hibbing; Patience 4, YE85699, held by Hardy Hibbing;

Patience 5, YD10896, held by Hardy Hibbing; Patience 6, YD10897, held by Timothy Liverton;

Patience 7, YE10898, held by Hardy Hibbing; Patience 8, YD10899, held by Hardy Hibbing.
LOCATION AND BEDROCK TERRANES - MOD PROJECT
Hibbing, Liverton & Mann
INTRODUCTION

The Mod property (Minfile 105B-028), originally called the Bom prospect, was discovered in 1946 by prospectors working for Hudson Bay Mining and Smelting Co. Ltd. They drilled 18 diamond drill holes in the region in 1947, as well as trenching three localities. A map and some cross sections remain (Assessment report A092107), but no detailed logs are available. Drill core is no longer preserved. Boswell River Mines also drilled on the property, but documentation of this work is sketchy and no identifiable core remains. None of the drill sites are now recognizable. In more recent times the obvious showings were covered by four (‘Mod’) claims held by Henry Regehr until 2013. The prospect is now covered by the Patience claims held by Hardy Hibbing and Timothy Liverton.

During the time that Henry Regehr held the property the only work done was bulldozer stripping. This obliterated the original Hudson Bay trenching and actually obscured much of the mineralization since the cuts were never cleaned down to the irregularly shaped rock surface. Less than one metre of sulphide was visible at either locality in 2014.

It was planned to uncover outcropping sulphide mineralization in existing bulldozer trenches at the Mod property.

This present work consisted of using a Candig backhoe and much pick-and-shovel effort to clean a small part of two of the original dozer cuts. The topographically lower showing was then channel sampled using a jackhammer. The thickness of mineralization uncovered by this present work is consistent with that shown in the trenches drawn on the Hudson Bay 1947 map.

In addition the immediate region of the prospect was covered by a ground magnetic survey to investigate response of the mineralization and control points were established with a theodolite/EDM survey for mapping. Detailed maps of the mineralization were prepared.
EKSg - early Cretaceous Seagull Batholith
EKg - early Cretaceous granite
EJd - early Jurassic diorite

YUKON TANANA TERRANE
PSR - Swift River Group grit, argillite
PSRb - chert & phyllite
Dorsey Complex - PPDp - Upper Dorsey phyllite
PPDc - marble & limestone
PPDs - biotite schist

GEOLOGY after Roots, Nelson & Stevens, 2004
GEOLGY

The prospect occurs within the Yukon Tanana terrane in a sequence of siliciclastic sediments, volcanics and marble that are assigned to the Dorsey assemblage of Devonian age. The Mod mineralization is peripheral to a marble horizon that crops out intermittently along the local ESE strike of the metasediments. The metsediments have been polydeformed and metamorposed to greenschist facies. The style of folding is indicated in Silva (2000) and it would result in major folds with perhaps 200m wavelength. To the north and northeast of the prospect a granite stock that is an apophysis of the Cretaceous Seagull batholith is exposed in the deep canyon below the prospect and on the ridge to the northeast. The proximity of the stock has resulted in contact metamorphism of the greenschist grade metasediment forming abundant pyroxene around the prospect. Whether the original mineralization was of stratiform (VMS), high-temperature replacement of carbonate, or skarn origin is currently debated. If the mineralized horizon is of regional extent, then repetition by folding is likely. Mineralogy at the Mod consists predominantly of pyrrhotite-sphalerite-tetrahedrite-galena in a pyroxene gangue. A kilometre to the east the on-strike mineralization consists of sphalerite with magnetite.

2015 WORK

The 2015 work was aimed primarily at cleaning up two the sulphide showings that had been partially exposed in the old bulldozer trenches. Two locations were chosen: the lowest being 20 metres above the creek and the upper showing immediately below the common corner of the Patience 1, 2, 3 and 4 claims. At the lower showing a 2.2m thickness of mineralization was exposed. The outcrop was drilled with spacing every 10cm or less using a cobra drill to define the channel and the rock between holes removed with the breaker tool to yield a small channel sample of 80.2 kg total. These samples were passed through a jaw crusher to reduce particle size to a final ≤ 6mm and split three times with a riffle splitter. The final split was submitted to ALS for assay of base metals, silver and gold. The upper showing of 6.8 m exposed thickness remains to be sampled. Nine specimens of the mineralization and three from surrounding country rock were collected and sent to Vancouver Petrographics for thin and polished thin section preparation.
A ground magnetic survey was performed by Bill Mann, using base station and roving instrument with GPS location. Reduction and compilation of the data was carried out by Aurora Geophysics.

A preliminary topographic survey using theodolite and laser EDM equipment was performed to provide control for detailed mapping.

RESULTS

2015 Magnetometer Survey

A ground magnetometer survey was conducted between August 19 to 22 at the property by W.D. Mann. The survey was partly conducted along the roads and trails that cross the property for ease of travel. Much of the lower part of the claims is covered by very dense vegetation. Some traverses were also conducted roughly midway between trails in order to improve survey density. One upper level traverse was conducted on rocky terrain near treeline on the south side of the property.

The survey used a Gem Systems GSM-19 Overhauser unit as a base station and a GSM-19T Proton unit as a mobile unit. The equipment was rented from Aurora Geosciences Ltd., with instruction provided by Dave Hildes. The magnetometer system was time-synched with a Garmin handheld GPS, and the GPS track (with 10 second readings) used for mag station positioning. GPS location during the survey was generally accurate to within 3 meters. Magnetometer readings were collected at roughly 5m intervals. The magnetometer data was downloaded into Gemlink V5.3 software, and the results processed, reviewed and plotted by Aurora Geosciences Ltd.

The valley bottom on the claims is covered with thick buckbrush and thickets of balsam fir. There is little outcrop present in the valley, though the ridges on each side have abundant outcrop. The valley vegetation overlies glacial material that is sometimes boggy, but mostly very sandy soil with large, rounded boulders. Soil geochemistry is not likely to be very useful in this
type of surficial material, which led to the decision to try geophysics. The main mineralized zone contains variable quantities of both magnetite and pyrrhotite, so a strong magnetic response was expected. It was hoped that additional magnetic anomalies would be present under the valley cover, indicating repetition of the mineralized horizon.

The results of the Total Field Magnetometer survey are presented in three maps. The first shows the magnetic field strength in contours, the second shows the results in colour coded grid, and the third shows the Calculated First Vertical Derivative of TMI in colour coded grid. The survey locations are shown as dark circles, and the main road is a dashed gold colour. The main mineral zone is located near the boundary between the Patience 1 and 4 claims and the 2 and 3 claims. The strongest, most continuous anomaly follows the zone. In addition to this anomaly several other anomalies are evident on the claims. Additional work to follow up on these anomalies is recommended.
Surveying and Mapping

The lower and upper showings are shown in sketches (Figs. 5 & 6) which were prepared using tape and offset measurements. The control survey is presented as Fig. 7. The surveying was performed using a Kern K1-S theodolite and DM502 laser distance meter. For this equipment precision in turning angles is \(\leq 0.2 \) minutes and distance is typically \(\pm 1\text{cm} \pm 2\text{ppm} \). This is of course far more precise than is needed for the present work, but use of this instrument allowed rapid measurement from a single set-up at station ‘A’ and if vertical control is needed in the future, this will be accurate. Orientation was obtained from a measurement with a tripod-mounted surveyor’s compass (\(\pm 15 \) minutes angle). A peak to the west of station A was found to bear 204° magnetic. UTM coordinates were calculated for station A as origin using a long-averaged reading with a hand held GPS instrument. Magnetic variation and convergence were calculated using the NRCan interactive program. GPS readings with the hand-held instrument at several of the other stations were compared to the calculated coordinates. All agreed to within 5 metres. Detailed geological sketches were prepared using tape and offset measurements from survey stations E, F and G.

At the lower showing the southernmost rock exposure was mapped as a hornfels. The petrographic examination (specimen ML1) indicates that it has a quartz-muscovite-chlorite-biotite mineralogy and it is considered to be a meta-tuff. The prominent foliation in the surrounding metasediments and tuffs is designated \(S_1 \) and it dips steeply WSW at the lower showing and to the SW at the upper excavation. Country rock immediately adjacent to the mineralization is pyroxene-rich and possibly is a replacement of original carbonates.
Fig. 7

MOD PROSPECT
LOWER SHOWING

Edge of old dozer cut

Drill bed logs

1 metre

S2 Joints

Meta-volcanic

Fracture zone with limonite

clay, gouge

Sulphide zone

bleached, 1-5mm veinlets

Hornfels

Sulphide zone

Petrographic samples ML-

Hornfels

Channel samples

C6 C5 C4 C3 C2 C1 ML1 ML11 ML10 ML9 ML8 ML6.7 ML5 ML22 ML4

clay, gouge

Natural outcrop

massive

foliated

70

78 85 74

85 78 57.5

S2 Joints

Edge of old dozer cut
Road surveyed by compass & tape

Fig. 9

Control points 1, J & K are on the east bank of the creek

At edge of moraine

Trend of mineralization at 70 SW dip

Patience 1

Patience 2

Patience 3

Patience 4
PEAK USED AS A REFERENCE POINT FOR GRID ORIENTATION: 204 DEGREES MAGNETIC
Assay

The sample from the lower showing was taken in six portions (lengths are shown on Fig 2 and on Table 1). The six portions of the channel were passed through a jaw crusher then split three times with a Jones riffle. The reduced specimens were submitted to ALS for assay of base metals, silver and gold. Certificates giving methods and results are appended. Table 1 gives results and calculation of an average grade.

A weighted average of 8.42 oz/ton Ag, 5.12% Pb and 7.49% Zn results for the whole 2.2 m interval. Gold values were ≤ 0.09 g/t.

The upper showing was not sampled this season due to difficulty in breaking the rock with a jackhammer and chisel. It will be necessary to drill and blast out a channel sample next year to obtain representative results.

Table 1: assay results for channel sample, lower showing

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Ag g/t</th>
<th>Pb %</th>
<th>Zn %</th>
<th>S %</th>
<th>width metres</th>
<th>Ag width x grade</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>1.47</td>
<td>5.00</td>
<td>12.0</td>
<td>0.50</td>
<td>36.00</td>
<td>0.74</td>
<td>2.50</td>
</tr>
<tr>
<td>2</td>
<td>92</td>
<td>1.70</td>
<td>7.00</td>
<td>21.9</td>
<td>0.15</td>
<td>13.80</td>
<td>0.26</td>
<td>1.05</td>
</tr>
<tr>
<td>3</td>
<td>141</td>
<td>2.73</td>
<td>6.63</td>
<td>21.0</td>
<td>0.35</td>
<td>49.35</td>
<td>0.96</td>
<td>2.32</td>
</tr>
<tr>
<td>4</td>
<td>493</td>
<td>9.38</td>
<td>9.99</td>
<td>27.8</td>
<td>0.48</td>
<td>236.64</td>
<td>4.50</td>
<td>4.80</td>
</tr>
<tr>
<td>5</td>
<td>244</td>
<td>3.27</td>
<td>6.53</td>
<td>24.3</td>
<td>0.22</td>
<td>53.68</td>
<td>0.72</td>
<td>1.44</td>
</tr>
<tr>
<td>6</td>
<td>492</td>
<td>8.20</td>
<td>8.74</td>
<td>27.3</td>
<td>0.50</td>
<td>246.00</td>
<td>4.10</td>
<td>4.37</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.20</td>
<td>635.47</td>
<td>11.27</td>
<td>16.47</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.42</td>
<td>288.85</td>
<td>5.12</td>
<td>7.49</td>
</tr>
</tbody>
</table>

20
Petrography / Mineragraphy

Twelve specimens were prepared: three were country rock; two were polished blocks from the upper showing and the remaining seven were from the channel sample at the lower showing (Fig. 2). Sulphide mineralogy consists of pyrrhotite-sphalerite-tetrahedrite/tennantite-galena±arsenopyrite in a diopside-hedenbergite gangue. A coarse layering (dm–scale) across the lower showing was evident from the channel sampling and proportions of tetrahedrite/tennantite and galena vary considerably. The sulphosalt has a distinct brownish tinge in polished section, so it is likely close to the tetrahedrite end member. Whether this mineral is the principal source of the silver content is not confirmed at present but possible. Of the various channel samples, sample C4 from which petrographic specimens ML5 to 8 were collected does show the highest Ag content and notable tetrahedrite in two of the polished sections; sample C6, from which specimens ML 10 and 11 were also high in tetrahedrite, showed the next highest grade in Ag. In some of the mineragraphic specimens a mm-scale layering is evident, most often as elongated galena grains. This would represent S2 foliation. Notes and photomicrographs are appended.

CONCLUSIONS AND RECOMMENDATIONS

The historical bulldozer workings at the Mod property when cleaned down to outcrop demonstrated sulphide mineralization of 2.2m thickness at the lower and 6.8m at the upper showing, which is a considerable improvement on the original exposure of ≤ 1m. Average grade over the lower showing was 8.4 oz/ton Ag, 5.1% Pb and 7.5% Zn, which is potentially economic. Examination of hand specimens from the upper showing indicates that Pb grades should be higher there. The highest content of tetrahedrite is found at the lower showing. If the Ag content is primarily in the sulphosalt, then mineralogy variation along strike should be investigated.

The magnetic survey showed an obvious anomaly over the known showings and also a smaller response close to the northern boundary of claims 1 and 2. This could represent the same mineralized horizon on a northern limb of a fold.

Work that should be attempted in the 2016 season is:
a) drilling and blasting at the upper showing to obtain a channel sample of, say, between 1 and 2 tonnes weight. This should be crushed and split to provide a manageable representative assay sample. Sampling for mineragraphy should be carried out according to observed mineralogy.

b) In the ancient bulldozer cut at the lower showing there is room to clean up the eastern end and allow a further channel sample to be taken.

c) Mapping of the hillside to the west of the showings is needed to locate the marble unit as a stratigraphic marker. Detailed mapping westward to the TBMB prospect is needed to investigate whether the marble unit at the TBMB is within a different structural unit to that of the Mod.

d) Another limb on a major fold may exist to the north of the known mineralization. Some sulphide float has been reported (H. Hibbing, pers. comm.) close to the No. 2 post of the Patience 1 and 2 claims. There is a historical bulldozer trench in that locality, but outcrop is not visible. This excavation could be cleaned up with a backhoe.

e) If finances allow, further geophysical surveys are desirable. The coverage of ground magnetics could be extended westward and detailed I.P. work would be desirable to attempt to locate fold repetition of the obvious mineralization.

REFERENCES

Hudsons Bay Mining and Smelting Co. Ltd. Maps and sections from 1947 drill programme. Assessment report 092107.

COST STATEMENT

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Mann, consulting</td>
<td>$2100.00</td>
</tr>
<tr>
<td>Aurora Geophysics</td>
<td>$1987.13</td>
</tr>
<tr>
<td>ALS Minerals, assay</td>
<td>$364.37</td>
</tr>
<tr>
<td>Vancouver Petrographics, sample preparation</td>
<td>$455.70</td>
</tr>
<tr>
<td>Vehicle use (Landrover, Toyota), 1280km @ $0.62</td>
<td>$1587.20</td>
</tr>
<tr>
<td>Candig, 3 days @ $100-</td>
<td>$300.00</td>
</tr>
<tr>
<td>Camp costs, $100 per man-day</td>
<td>$1600.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$8394.40</td>
</tr>
</tbody>
</table>
QUALIFICATIONS

Timothy Liverton: Geologist

Qualifications: BSc in Geology & Geophysics, University of Sydney, conferred 1965
BSc (Hons) in Economic Geology, University of Adelaide, conferred 1968
PhD in petrology, structural geology & metallogeny, Royal Holloway, University
Chartered Geologist, Fellow of the Geological Society, Fellow of the Geological
Association of Canada, Member of the Geological Society of America, Member
of the Society of Economic Geologists

Experience: 49 years’ experience in engineering geology, mine geology and mineral
exploration for tin, tungsten, uranium, manganese, base metals, silver, gold and industrial
minerals in Australia, Canada, U.S.A., Brasil, Guyana, Norway, Portugal and Egypt.

Watson Lake, Yukon

December 2015

[Signature] Timothy Liverton
APPENDIX 1: PETROGRAPHY

The location of specimens is shown in Figure 2.

MU1 (polished block)

Consists of galena (60%) with mostly 0.25-1mm grains of pyrrhotite. There is little sphalerite (10%) in often 1mm grainsize and quite anhedral. It has occasional inclusions of euhedral arsenopyrite (<0.3mm size and <0.5% content) included in galena. Subhedral to euhedral tetrahedrite, 0.2-0.25mm is also present. [MU1-20ppin] shows arsenopyrite, sphalerite and pyrrhotite in galena with gangue; [MU1-10ppin] shows galena, sphalerite and pyrrhotite with a tetrahedrite crystal in the centre. [MU1-20ppin2] shows sphalerite with euhedral tetrahedrite with a little arsenopyrite and pyrrhotite in galena.

MU2 (polished block)

There is little gangue in this rock. Contains roughly equal proportions of sphalerite, galena and pyrrhotite. Sphalerite masses (layers) are up to 20 x 6mm. Galena is in layers 10mm thick that cross the whole section. The pyrrhotite forms some large fields, but is mostly is in 0.5-1mm rounded grains that are included in the galena and sphalerite. Tetrahedrite occurs as ≤0.3mm rounded grains that are included in galena and sphalerite (total ≤5%). There are no small oriented inclusions in either tetrahedrite or sphalerite such as are seen at the lower showing. A network of brittle fractures crosses the section. Where these cross the galena they step around cleavages. Fracture filling is probably carbonate. A few arsenopyrite crystals to 0.12mm are included in the galena. [MU2-10ppin] shows sphalerite, galena and pyrrhotite with small inclusions of subhedral tetrahedrite. Note: a trace of chalcopyrite is present as inclusions in sphalerite to 0.07mm long and also along sphalerite margins associate with pyrrhotite. One 0.03mm grain of (?) ruby silver, associated with chalcopyrite at the margin of sphalerite against galena was noted.

ML1 (covered thin section)

(Somewhat weathered).

This is a fine-grained, highly foliated rock composed of quartz, muscovite and chlorite with some biotite layers [ML1-20pp]. In [ML1-20pp2] the slightly greenish layers are chlorite. No undulose extinction is seen in quartz and no plagioclase was noted in the thin section. 1-2mm wide quartz veins cut the rock at 80° to foliation.
ML2-5,0xp
Diopside-hedenbergite

MU1-20ppin
Sphalerite, pyrrhotite, arsenopyrite & gangue in galena

MU1-10ppin2
Pyrrhotite, sphalerite & tetrahedrite in galena

MU2-10ppin
Galena, sphalerite & pyrrhotite

ML1-20pp
Biotite in muscovite-chlorite ‘schist’: meta-tuff

ML2-5,0xp
Diopside-hedenbergite

ML2-5,0pp
Pyroxene in sulphide
ML2 (covered thin section)

This is diopside-hedenbergite with some sulphides. Coarse pyroxene is granular and anhedral [ML2-5,0xp], but where individual crystals are totally included in sulphide they are subhedral [ML2-5,0pp].

ML3 (covered thin section)

The rock is composed of pyroxene with some masses of anorthite and a few anhedral to euhedral sphene crystals. Fields of anorthite are up to 6mm across and include a few 0.04-0.2mm diopside crystals. The main pyroxene mass is of anhedral crystals to 1mm grain size. Sphene occupies ≈0.5% of the rock. One 0.1mm wide chlorite-filled fracture cuts the rock. [ML3-10xp] shows pyroxene with small sphene grains in the SW and NE quadrants, plus the vein. [ML3-20xp] shows euhedral sphene. A little remnant carbonate is present, mostly within anorthite.

ML5 (polished block)

This has about 60% pyrrhotite, approximately 5% galena (but locally to 30%): the remainder is sphalerite and tetrahedrite (almost half tetrahedrite). Gangue (pyroxene) amounts to 15%. The grain boundaries of the sphalerite are marked by thin (0.005-0.25mm) fields of pyrite and rare chalcopyrite. Oriented inclusions occur within the sphalerite. Acicular inclusions are of pyrite (ML5-100ppin oil) and coarser short, anhedral inclusions are pyrrhotite. This differs from the upper showing in that the tetrahedrite forms irregular-shaped masses intergrown with the sphalerite, often constituting 15% of any field. The tetrahedrite occasionally has planar oriented inclusions of pyrrhotite as well as coarser anhedral inclusions to 0.015mm long. The smaller masses of tetrahedrite are found along sphalerite grain boundaries. Apart from internal grain boundaries within sphalerite masses the grains are mostly subrounded. Galena forms irregular elongate masses to 2 x 8 mm [ML5-10ppin]. About ten 0.6mm euhedral to anhedral arsenopyrite crystals were noted. [ML5-10ppin] shows pyrrhotite, galena, tetrahedrite and sphalerite. [ML5-10ppin2] shows arsenopyrite in pyrrhotite, sphalerite and tetrahedrite. The pyrrhotite grains define a weak foliation. [ML5-20ppin4] shows pyrrhotite, galena and sphalerite (with pyrrhotite inclusions) intergrown with tetrahedrite, plus little gangue.
ML3-10xp
Chlorite vein

ML3-20xp
Pyroxene & sphene

ML5-100ppin oil
Sphalerite containing pyrrhotite and pyrite inclusions

ML5-10ppin
Pyrrhotite, sphalerite, tetrahedrite, galena & arsenopyrite

ML5-10ppin2
Tetrahedrite included in sphalerite, pyrrhotite and arsenopyrite

ML5-20ppin4
Tetrahedrite with pyrrhotite inclusions in sphalerite, with pyrrhotite and arsenopyrite
ML6 (polished thin section)

Contains sphalerite, tetrahedrite, pyrrhotite, galena and arsenopyrite. One end of the section has a field predominantly of sphalerite which contains oriented, elongate pyrrhotite inclusions and is intergrown with ≈20% tetrahedrite. Pyrrhotite also is found as thin masses along sphalerite grain boundaries. The remainder of the section is of coarse (≤7mm) masses of galena and pyrrhotite with lesser amounts of sphalerite. Some coarse anhedral arsenopyrite (3mm) with sphalerite inclusions is also found in this coarser grained section. Tetrahedrite is not prominent in the coarser material. [ML6-20ppin oil] shows sphalerite (mid grey) containing oriented pyrrhotite inclusions, tetrahedrite (upper part), galena in the centre with a pyrrhotite rim. The acicular black material is a weathering product. [ML6-20ppin oil2] shows galena with curved cleavages, pyrrhotite and sphalerite; [ML6-5,0ppin] shows a large arsenopyrite field with pyrrhotite inclusions with galena and pyrrhotite masses; [ML6-10ppin] shows detail of arsenopyrite with galena, pyrrhotite and sphalerite. The gangue is of subhedral diopside mostly in 0.5mm crystals. Much is included in the sulphide as individual grains. Total gangue is ≈30%.

ML8 (polished thin section)

Coarse-grained. Consists of a field of sphalerite containing minor tetrahedrite (≤10%) and pyrrhotite along grain boundaries. Masses of coarse pyrrhotite (2mm) are also included in the sphalerite as well as elongate irregular shaped galena (layers to 15mm long). Two anhedral grains of arsenopyrite to 3mm long are included in sphalerite. [ML8-5,0ppin] gives a general view. The gangue is entirely pyroxene, ≈30%.

ML9 (polished thin section)

The gangue is up to 50% volume (average 40%). [ML9-5,0xp] shows this. Subhedral to rare euhedral pyroxenes are from 0.1-1.0 mm, with a little carbonate (1mm). Sphalerite and pyrrhotite are overall in equal proportion, but vary considerable as to individual fields. Only a little tetrahedrite (≈10% overall) is included in the sphalerite. Grain boundaries of sphalerite are invaded by pyrrhotite. Oriented, acicular inclusions of pyrrhotite are seen in the tetrahedrite. Coarser, elongate, pyrrhotite and occasional chalcopyrite inclusions are in the sphalerite. Only a few 1-2mm grains of galena are present. Anastomosing fractures (two sets at 70-80° apart) cut both sulphides and pyroxene [ML9-10-ppin].
ML6-20ppin oil
Sphalerite containing oriented pyrrhotite inclusions, tetrahedrite, galena in the centre with a pyrrhotite rim

ML6-20ppin oil2
Galena showing deformed cleavages

ML6-5,0ppin
Arsenopyrite with pyrrhotite inclusions with galena & a little tetrahedrite

ML6-10ppin
Arsenopyrite with galena, pyrrhotite and sphalerite

ML8-5,0ppin
Sphalerite with tetrahedrite, galena & pyrrhotite

ML9-5,0xp
Pyroxene in sulphide
ML10 (polished thin section)

Similar to ML9. Sphalerite with tetrahedrite and pyrrhotite form large masses. Only a little galena (six grains of 1-2mm) is seen and one subhedral crystal of arsenopyrite. [ML10-5,0ppin] gives a general view showing a little galena. Gangue amounts to ≈45%.

ML11 (polished thin section)

[ML11-20ppin] shows detail of tetrahedrite in sphalerite with pyrrhotite. Acicular crystals along cleavages are pyrrhotite. Contains about 35% pyroxene with some carbonate gangue. Diopside is anhedral to subhedral and 0.2-2mm grainsize. In the coarser pyroxene grains the boundaries are embayed [ML11-10xp]. Shows tetrahedrite rimmed with pyrrhotite and sphalerite with pyrrhotite inclusions. The section contains about 30% pyrrhotite as fine (0.05mm) to coarse (2mm long) masses. The remainder of the sulphides are tetrahedrite and sphalerite in subequal proportions. Galena forms only rare 0.1mm grains. A 2mm wide distinctly foliated layer of fine grained pyrrhotite is enclosed in the tetrahedrite and sphalerite. Fine fractures cross at 60-90° to this layering [ML11-5,0ppin]. One end of the specimen only shows a 2mm wide galena-rich layer [ML11-5,0ppin2]. Some fracturing follows this layer (but this may have been induced by breaking the rock).

ML12 (polished thin section)

This specimen is predominantly of sphalerite-pyrrhotite, with only rare tetrahedrite and no galena [ML12-5,0ppin]. Pyrrhotite forms oriented inclusions in sphalerite [ML12-20ppin]. Gangue (pyroxene) comprises up to 70% of the volume in anhedral rounded and embayed forms. Sphalerite is often rimmed by pyrrhotite and contains frequent oriented inclusions. Pyrrhotite forms some discrete masses to 2mm size. Galena is seen as only rare 0.2mm grains. Gangue is ≈50%.

ML12 (polished thin section: second slide)

Similar to the above, but galena is seen as few elongate anhedral grains to 1mm long (still <1% total, however). No fabric is evident. [ML12b-5,0ppin]. Gangue is ≈50%.
ML9-10ppin
Fractures

ML10-5,0ppin
Tetrahedrite along grain boundaries in sphalerite (with pyrrhotite, galena & gangue)

ML11-20ppin
Spahlerite, tetrahedrite & pyrrhotite

ML11-10xp
Rounded & embayed pyroxene in sulphides

ML11-5,0ppin
Weak foliation and fractures

ML12-20ppin
Pyrrhotite inclusions in sphalerite
ML11-5,0ppin
Foliation parallel fractures

ML12-5,0ppin
Sphalerite, tetrahedrite, pyrrhotite & galena
APPENDIX 2: ASSAY CERTIFICATES

Copies of the ALS Minerals certificates follow
CERTIFICATE WH15140802

SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEI-21</td>
<td>Received Sample Weight</td>
</tr>
<tr>
<td>CRU-QC</td>
<td>Crushing QC Test</td>
</tr>
<tr>
<td>PUL-QC</td>
<td>Pulverizing QC Test</td>
</tr>
<tr>
<td>SPL-21</td>
<td>Split sample - riffle splitter</td>
</tr>
<tr>
<td>PUL-31</td>
<td>Pulverize split to 85% <75 um</td>
</tr>
<tr>
<td>CRU-31</td>
<td>Fine crushing - 70% <2mm</td>
</tr>
<tr>
<td>LOG-21</td>
<td>Sample logging - ClientBarcode</td>
</tr>
</tbody>
</table>

ANALYTICAL PROCEDURES

<table>
<thead>
<tr>
<th>ALS CODE</th>
<th>DESCRIPTION</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME-IOPRE</td>
<td>Oxidizing Digestion w/ ICP-AES Finish</td>
<td>ICP-AES</td>
</tr>
<tr>
<td>Au-AA25</td>
<td>Ore Grade Au 30g FA AA finish</td>
<td>AAS</td>
</tr>
</tbody>
</table>

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****
An IAB accredited testing laboratory Reg. No. 173T. Accredited methods are listed in the Scope of Accreditation available on request.

CERTIFICATE OF ANALYSIS

WH15140802

Sample Description	Method	Ag	As	Bi	Ca	Cd	Co	Cu	Fe	Hg	Mn	Mo	Ni	Pb	ppm	%				
5055001	ME-ICP-MS	72	0.005	0.005	2.97	0.030	<0.001	0.005	0.01	0.001	0.005	0.01	18.15	<8	0.54	4.68	<0.001	0.001	0.03	1.47
5055002	ME-ICP-MS	92	<0.005	<0.005	0.36	0.030	<0.001	0.180	28.1	<8	1.06	13.50	<0.001	0.001	0.02	1.70				
5055003	ME-ICP-MS	141	<0.005	<0.005	0.30	0.025	<0.001	0.151	28.9	<8	1.85	14.40	<0.001	0.001	0.02	2.73				
5055004	ME-ICP-MS	493	0.181	<0.005	0.72	0.040	<0.001	0.113	22.8	9	1.71	19.80	<0.001	0.001	0.04	9.38				
5055005	ME-ICP-MS	244	0.085	<0.005	0.63	0.025	<0.001	0.106	25.9	<8	1.81	18.10	<0.001	0.001	0.04	9.38				
5055006	ME-ICP-MS	492	0.310	<0.005	0.63	0.024	<0.001	0.094	23.3	<8	1.73	17.26	<0.001	0.001	0.02	8.20				

**** See Appendix Page for comments regarding this certificate *****
<table>
<thead>
<tr>
<th>Sample Description</th>
<th>Method</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>ppm</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>S055001</td>
<td>ME-ICPORE</td>
<td>12.00</td>
<td><0.005</td>
<td><0.005</td>
<td>5.00</td>
<td>0.09</td>
<td>1.31</td>
</tr>
<tr>
<td>S055002</td>
<td>ME-ICPORE</td>
<td>21.9</td>
<td><0.005</td>
<td><0.005</td>
<td>7.76</td>
<td><0.01</td>
<td>1.62</td>
</tr>
<tr>
<td>S055003</td>
<td>ME-ICPORE</td>
<td>21.0</td>
<td>0.014</td>
<td><0.005</td>
<td>6.63</td>
<td><0.01</td>
<td>1.70</td>
</tr>
<tr>
<td>S055004</td>
<td>ME-ICPORE</td>
<td>27.8</td>
<td>0.037</td>
<td><0.005</td>
<td>9.99</td>
<td><0.01</td>
<td>2.27</td>
</tr>
<tr>
<td>S055005</td>
<td>ME-ICPORE</td>
<td>24.3</td>
<td>0.010</td>
<td><0.005</td>
<td>6.83</td>
<td><0.01</td>
<td>2.03</td>
</tr>
<tr>
<td>S055006</td>
<td>ME-ICPORE</td>
<td>27.3</td>
<td>0.027</td>
<td><0.005</td>
<td>6.14</td>
<td><0.01</td>
<td>1.10</td>
</tr>
</tbody>
</table>

*See Appendix Page for comments regarding this certificate***
To: LIVERTON, TIMOTHY
PO BOX 393
WATSON LAKE YT Y0A 1C0

INVOICE NUMBER 3430962

BILLING INFORMATION

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>CODE</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BAT-01</td>
<td>Administration fee</td>
<td>30.00</td>
</tr>
<tr>
<td>6</td>
<td>PUL-31</td>
<td>Pulverize split to 85% < 75 um</td>
<td>4.30</td>
</tr>
<tr>
<td>6</td>
<td>LOG-21</td>
<td>Sample logging - ClientBarCode</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>ME-ICPORE</td>
<td>Oxidizing Digestion w/ ICP-AES Finish</td>
<td>25.10</td>
</tr>
<tr>
<td>6</td>
<td>Au-AA25</td>
<td>Ore Grade Au 30g FA AA finish</td>
<td>16.70</td>
</tr>
<tr>
<td>10.03</td>
<td>SPL-21</td>
<td>Weight Charge (kg) - Split sample - riffle splitter</td>
<td>0.38</td>
</tr>
<tr>
<td>6</td>
<td>SPL-21</td>
<td>Split sample - riffle splitter</td>
<td>1.90</td>
</tr>
<tr>
<td>10.03</td>
<td>CRU-31</td>
<td>Weight Charge (kg) - Fine crushing - 70% <2mm</td>
<td>0.48</td>
</tr>
<tr>
<td>6</td>
<td>CRU-31</td>
<td>Fine crushing - 70% <2mm</td>
<td>2.80</td>
</tr>
</tbody>
</table>

SUBTOTAL (CAD) $347.02

R100938885 GST $17.35

TOTAL PAYABLE (CAD) $364.37

Payment may be made by: Cheque or Bank Transfer

Beneficiary Name: ALS Canada Ltd.
Bank: Royal Bank of Canada
SWIFT: ROYCCAT2
Address: Vancouver, BC, CAN
Account: 003-00010-1001098

Please send payment info to accounting.canusa@alsglobal.com
CERTIFICATE OF ANALYSIS

WH15140802

CERTIFICATE COMMENTS

ISO 17025:2005 Accredited. INAB Registration No: 173T
Au-AA25 ME-ICP-ORE

APPLICABLE METHODS

Applies to Method:
ISO 17025:2005 Accredited. INAB Registration No: 173T
Au-AA25 ME-ICP-ORE

LABORATORY ADDRESSES

Processed at ALS Loughrea located at Dublin Road, Loughrea, Co. Galway, Ireland.
Applies to Method:
CRU-31 CRU-QC SFL-21 WEI-21

Processed at ALS Whitehorse located at 78 Mt. Sima Rd, Whitehorse, YT, Canada.
Applies to Method:
CRU-31 CRU-QC SFL-21 WEI-21

Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.
Applies to Method:
Au-AA25

ACCREDITATION COMMENTS

Applies to Method:
Au-AA25 ME-ICP-ORE

PROJECT: MOD

Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 12-OCT-2015
Account: TLIVER
William D. Mann, P.Geo.

GEOLOGICAL CONSULTANT

#15-154

19 Hayes Cres.
Whitehorse, Y.T., Y1A 0E1
Phone: 867-667-7409
e-mail: wdmgeology@gmail.com

DATE: 2015-09-02

Bill To: Timothy Liverton
For: Geological Consulting: Yukon

<table>
<thead>
<tr>
<th>DATE</th>
<th>WORK</th>
<th>Project</th>
<th>RATE</th>
<th>UNITS</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-08-19</td>
<td>work on PATIENCE claims</td>
<td></td>
<td>500</td>
<td>1</td>
<td>$500.00</td>
</tr>
<tr>
<td>2015-08-20</td>
<td>work on PATIENCE claims</td>
<td></td>
<td>500</td>
<td>1</td>
<td>$500.00</td>
</tr>
<tr>
<td>2015-08-21</td>
<td>work on PATIENCE claims</td>
<td></td>
<td>500</td>
<td>1</td>
<td>$500.00</td>
</tr>
<tr>
<td>2015-08-22</td>
<td>work on PATIENCE claims</td>
<td></td>
<td>500</td>
<td>1</td>
<td>$500.00</td>
</tr>
</tbody>
</table>

SUBTOTAL $2,000.00

GST (5%) $100.00

TOTAL $2,100.00

Note: rate for office work $400 per day, field work $500 per day, QP $750 per day

Make all cheques payable to William Mann

A.P.E.G.B.C. License # 31907
GST # 118617992

THANK YOU!
Aurora Geosciences Ltd.
3506 McDonald Drive
Yellowknife, NT X1A 2H1

Tel: 867-920-2729 Fax: 867-920-2739

E-mail: accounting@aurorageosciences.com

Invoice

Date: 24/09/2015 Invoice #: 12741

Invoice To
William Mann
19 Hayes Crescent
Whitehorse, YT Y1A 0E1

Terms
P.O. No.

Project

WMN-15530-YT Mag Rental & Data Processing

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
<th>Unit</th>
<th>Rate</th>
<th>Amount</th>
<th>Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG RENTAL & DATA PROCESSING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Location: YT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Invoice August 13 - September 4, 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Job Prep & equipment checks, Dave Hildes</td>
<td>3.5</td>
<td>Hours</td>
<td>75.00</td>
<td>262.50T</td>
<td>G</td>
</tr>
<tr>
<td>Project management, data, map & report review, Dave Hildes</td>
<td>3.25</td>
<td>Hours</td>
<td>100.00</td>
<td>325.00T</td>
<td>G</td>
</tr>
<tr>
<td>Mag data processing, map production & database clean-up: technical time</td>
<td>7</td>
<td>Hours</td>
<td>75.00</td>
<td>525.00T</td>
<td>G</td>
</tr>
<tr>
<td>Magnetometer rental: 2 units, Aug 19-22</td>
<td>4</td>
<td>Days</td>
<td>180.00</td>
<td>720.00T</td>
<td>G</td>
</tr>
<tr>
<td>1 kW generator rental, Aug 19-22</td>
<td>4</td>
<td>Days</td>
<td>15.00</td>
<td>60.00T</td>
<td>G</td>
</tr>
<tr>
<td>GST on Sales</td>
<td></td>
<td></td>
<td>5.00%</td>
<td>94.63</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: $1,892.50

GST/HST: $94.63

Total: $1,987.13

Approved by

Bank Info: Bank ID #003, Transit #09879, Account #1013606, RBC Royal Bank.

Please quote invoice # and amount paid when making payments by emailing accounting@aurorageosciences.com
Vancouver Petrographics Ltd.
8080 Glover Road
Langley BC
V1M 3S3
604-888-1323

Invoice

Date: 10/18/2015
Invoice #: 150703

Invoice To
Tim Liverton
P.O. Box 393
Watson Lake, Yukon
Y0A 1C0

Ship To
Tim Liverton

P.O. No.
Terms
Due Date
Ship Date
Ship Via
Project

<table>
<thead>
<tr>
<th>P.O. No.</th>
<th>Terms</th>
<th>Due Date</th>
<th>Ship Date</th>
<th>Ship Via</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Net 30</td>
<td>11/17/2015</td>
<td>10/18/2015</td>
<td>Mail</td>
<td></td>
</tr>
</tbody>
</table>

Description Qty | Rate | Amount |
Thin Sections 2 | 25.00| 50.00 |
Polished Thin Sections 7 | 50.00| 350.00 |
Display Polishing 9 | 9.00 | 9.00 |
Shipping 2 | 25.00| 25.00 |
GST On Sales 5.00%| | 21.70 |

Total | | CAD 455.70 |
Payments/Credits | | CAD 0.00 |
Balance Due | | CAD 455.70 |

E-mail
vanpetro@vanpetro.com

GST/HST No. 105484687
ERRATUM

For the assessment report entitled: "REPORT OF FIELDWORK 2015:
Excavation, mapping, channel sampling, ground magnetic survey and mineragraphy. Fieldwork from 20th. August to 3rd. September 2015"
Relevant to: Patience 1-4 claims (YE85697-YE85700) and Patience 5-8 (YD10896-YD10899)

Further examination of hand specimens and mineragraphy on polished or polished thin sections has shown that the mineral identified as tetrahedrite is in fact magnetite. The texture of this mineral and surrounding sulphides lead to the identification error. The faint brownish tint to the grey of the magnetite mirrors the colour of the antimonial end member of the tetrahedrite-tennantite series. Pyrrhotite inclusions within the magnetite crystals further complicated the issue. Examination of the assays, particularly for specimens C4 and C6 confirm this identification by the low values for Cu and Sb. Presence of some Cu and Sb may well indicate a trace of tetrahedrite-tennantite in the rock.

Magnetite (mid grey) containing oriented pyrrhotite inclusions. Sphalerite is a lighter grey and it also contains inclusions of pyrrhotite. Galena and silicate gangue are also present. PP reflected light. Specimen ML6.
Specimen ML11. Banded sulphide/magnetite 'ore'. PP reflected light, scale bar 1mm. The yellow box indicates detail below.

Detail of magnetite (Mid grey), sphalerite (lighter), pyrrhotite and gangue. PP reflected light, scale bar 0.1mm.

T. Liverton, January 2017