Assessment report on the 2012 geochemical survey of the CH claims

Dawson Mining District – NTS 115N/ 10

LATITUDE 63° 32′ N, LONGITUDE 140° 37′ 30″ W

UTM NAD 83 ZONE 7: 519000E, 7045000 N

CH CLAIMS 1-182

GRANT NUMBERS YF25501 TO YF25682

SURVEY CONDUCTED SEPTEMBER 15-17 2012

REPORT BY DANIÈLE HÉON, P. GEO.

WITH CONTRIBUTIONS BY ROBERT W. STROSHEIN, P. ENG.

WHITEHORSE, MARCH 17 2014

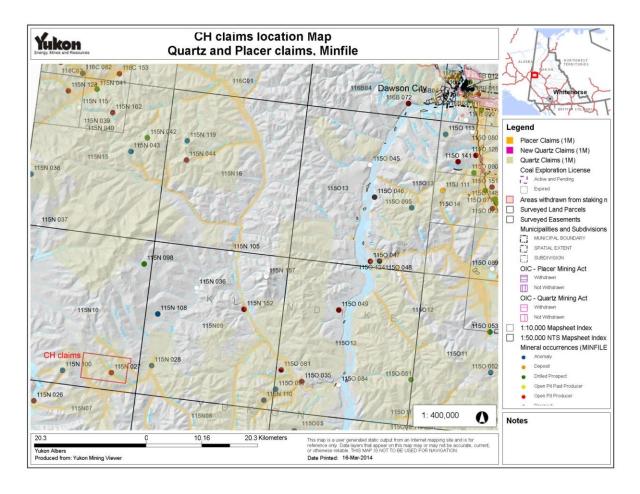
TABLE OF CONTENTS

Summary	1
LOCATION AND ACCESS	2
CLAIM DATA	2
Regional Data	3
Regional Geology	3
Regional Geochemistry	6
Regional Geophysics	7
Regional Mineralization	7
Previous Work	8
2012 Soil Survey	9
Description of work	9
Methodology	
Results	
Soil pulps re-analysis	
2012 Prospecting Survey	11
Conclusions and Recommendations	14
STATEMENT OF QUALIFICATIONS	15
References	16
List of Figures	
Figure 1- General Location Map	
Figure 2- Regional Geology- YGS Mapmaker	
Figure 3- Regional Geology- MDRU Yukon Gold Project	
Figure 4- Geology- Property scale	
Figure 5- RGS DATA: a: Au, b: Ag, C: Pb	
Figure 6- Regional First Derivative Mag	
Figure 7 –Location of 2012 Soil Grid	12
FIGURE OF DUCK MATHOR FOLGHOU MAD	13

List of Appendices

Appendix A- Claim Map	17
Appendix B- Claim Data	
Appendix C- Soil Sample Location Map and Data	
Appendix D- Soil Geochemistry	
Appendix E- Rock Sample Data	21
Appendix F- Minfile Descriptions and Metals Creek News Releases	
Appendix G- Statement of Expenditures	36
Appendix H- Assay Certificates	37

SUMMARY


The CH claims consist of 182 quartz claims located on NTS map sheet 115N/10 and registered in the Dawson Mining District. A total of three days of fieldwork were conducted on the CH Claims between September 15 and 17 2012. A total of 345 soil samples and a total of 32 rock samples were analyzed for gold and multi-element ICP. Since the sample size of the original soil assays was very small (0.5g), a total of 41 soil pulps were later selected for re-analysis for gold using a larger sample size (30g) and a different analytical technique.

The 2012 phase of fieldwork consisted of prospecting and grid soil sampling designed to expand on the initial 2011 soil survey. Significant Au, Ag, Cu, Pb and Zn anomalies were obtained in 2012 and require follow-up. The existing soil grid should be expanded and in-filled.

Historical and recent regional mapping show the property to be underlain by the Permian Klondike Schist, a metavolcanic assemblage of the Yukon Tanana Terrane known to host gold and base metal mineralization further east in the Klondike district and elsewhere in Yukon Tanana Terrane. The western portion of the Yukon Tanana Terrane is under-explored but is now the focus of exploration for White Gold/ Coffee orogenic gold-type targets. Recent exploration in the area led to a significant new discovery in 2013 on the adjacent Squid East property: a trench 22m long assayed 1.96g/t Au for the length of the trench, and follow-up drilling intersected 1.55g/t Au and 114.1 Ag/ 21m. The magnetic feature hosting this mineralization trends onto the CH property. Favourable host rocks, significant soil anomalies and linear features possibly representing mineralizing structures therefore indicate good potential for mineralization, such as that found at the Squid East property and also at the Lonestar (Minfile 1150 072), White Gold (Minfile 1150 165, Golden Saddle) and Coffee (Minfile 115J 110) deposits.

Robert W. Stroshein, P. Eng., was the geologist on this project, contracted by Coureur des Bois Ltée Ltd. Sadly, Robert passed away suddenly in December 2012. This report is based on information supplied by Coureur des Bois Ltée Ltd, which includes Robert's data. It is to note that the author has therefore not been involved in the fieldwork described herein, but is simply documenting and interpreting the results of the 2012 season, based on the information supplied.

LOCATION AND ACCESS

FIGURE 1- GENERAL LOCATION MAP

The CH property is located in the Matson Creek placer district in north-central Yukon, approximately 80 km SW of Dawson City, and approximately 15 km east of the Yukon/ Alaska border, on NTS map sheet 115N/10 (Figure 1). The claim block is bisected by Christmas Creek, a tributary to Matson Creek, which is a known producer of placer gold. The property was accessed from helicopter chartered from Dawson City.

The center of the property lies approximately at Latitude 63° 32 ′ N and Longitude 140° 37′ 30″ W, or UTM NAD 83 Zone 7 coordinates 519000E, 7045000 N.

CLAIM DATA

The CH property consists of 182 contiguous mineral claims registered in the Dawson Mining District. The claims are still currently held in the names of the stakers, all employees of Coureur des Bois Ltée Ltd, the contracting company that staked the claims and executed the soil survey. The claim map is in Appendix A. The detailed claim data is found in Appendix B. All 182 claims will be renewed till March 09 2015, pending acceptance of this filing.

The summary claim data is as follows:

CH 1 to 182	YF25501 - YF25682
I CH I IU IOZ	I LEZDOUT - LEZDOUZ

REGIONAL DATA

REGIONAL GEOLOGY

This area of north-central Yukon has not been glaciated. The weathering profile and oxidation level is deeper than in glaciated areas, causing metal response in soils to be muted due to prolonged weathering and possibly resulting in dilution. Interpretation of soil geochemical results must take this fact into consideration.

The bedrock geology in the property area is part of the Yukon-Tanana terrane (YTT), a belt of metamorphosed sedimentary, volcanic and plutonic rocks which document a complex magmatic and structural history. Rocks of YTT are interpreted to have started off as a Paleozoic (Devono-Mississippian) magmatic arc built on the margin of the Laurentian craton as a response to subduction of the oceanic lithosphere under the craton. Subsequent rifting created the Slide Mountain Ocean between YTT and Laurentia and lasted until mid Permian time. In late Permian time, the polarity of the subduction reversed, and the Slide Mountain Ocean began to subduct under YTT, creating a new (Permian) continental arc package. In latest Permian time, YTT collided with and overrode the Laurentian margin. Continued convergence led to several other episodes of subduction and their associated magmatic response.

The digital regional geology map published by the Yukon Geological Survey (Figure 2) shows the area to be underlain by the Permian Klondike Schist, consisting of quartzite, quartz-muscovite ± chlorite schist, augen gneiss, amphibolites, phyllite and is generally interpreted as a metavolcanic arc package. A northwest trending fault (either on the claim block or just northeast of it, depending on the source), separates these Permian metavolcanic rocks from rocks of the Fiftymile Batholith orthogneiss (unit DMqPW) a foliated muscovite quartz monzonite with local k-spar augen gneiss. A small sliver of ultramafic rocks in the trace of this northwest-trending fault is assigned to the Permian Slide Mountain Terrane. The late Cretaceous volcanic rocks of the Carmacks group overlie these older rocks and faults.

This mapping, originally published in 1996, has now been updated by regional mapping and metallogenic studies conducted by UBC's Mineral Deposit Research Unit (MDRU) and summarized in their Yukon Gold Project report (2012). Recent age dating shows the Fiftymile Batholith (here assigned to the Simpson Range Plutonic Suite) to have a Devono-Mississippian igneous age but a Cretaceous metamorphic cooling age.

No new geological information was collected during Coureur des Bois' programs, the regional geology maps are therefore the most detailed ones available at this time.

Age	Name YGS Map	Name MDRU Map	Rock type
Paleocene to Eocene	Carmacks Volcanics uKC2	Skukum volcanics	Porphyry,volcaniclastics, felsic flows and subvolcanic rx.
Upper Cretaceous	Carmacks Volcanics uKC2	Carmacks Volcanics	Basalt, andesite, dacite breccias, flows, subvolcanics and tuffs.
*see below			
Late Permian		Sulphur Creek Plutonic Suite	Quartz-kspar monzogranite, gneiss, orthogneiss.
Carboniferous to Permian	Klondike Schist CK1	Klondike Schist	Musc/chl quartzite, gneiss and schist, augen gneiss, amphibolites.
Devono-Mississippian	Fiftymile Batholith DMqPW	Simpson Range Plutonic suite	Kspar-rich granitic orthogneiss, amphibolite, qtz-mica schist, granodiorite to monzogabbro.
*Carboniferous to Triassic or Devono-Mississippian?	Slide Mountain Terrane SM1	Devono-Mississippian	Ultramafic rocks

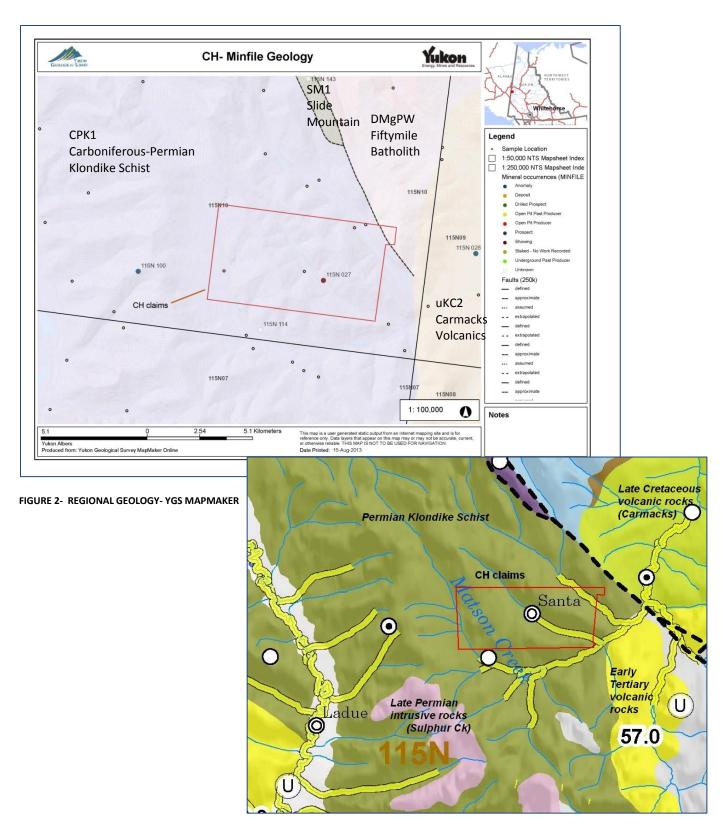
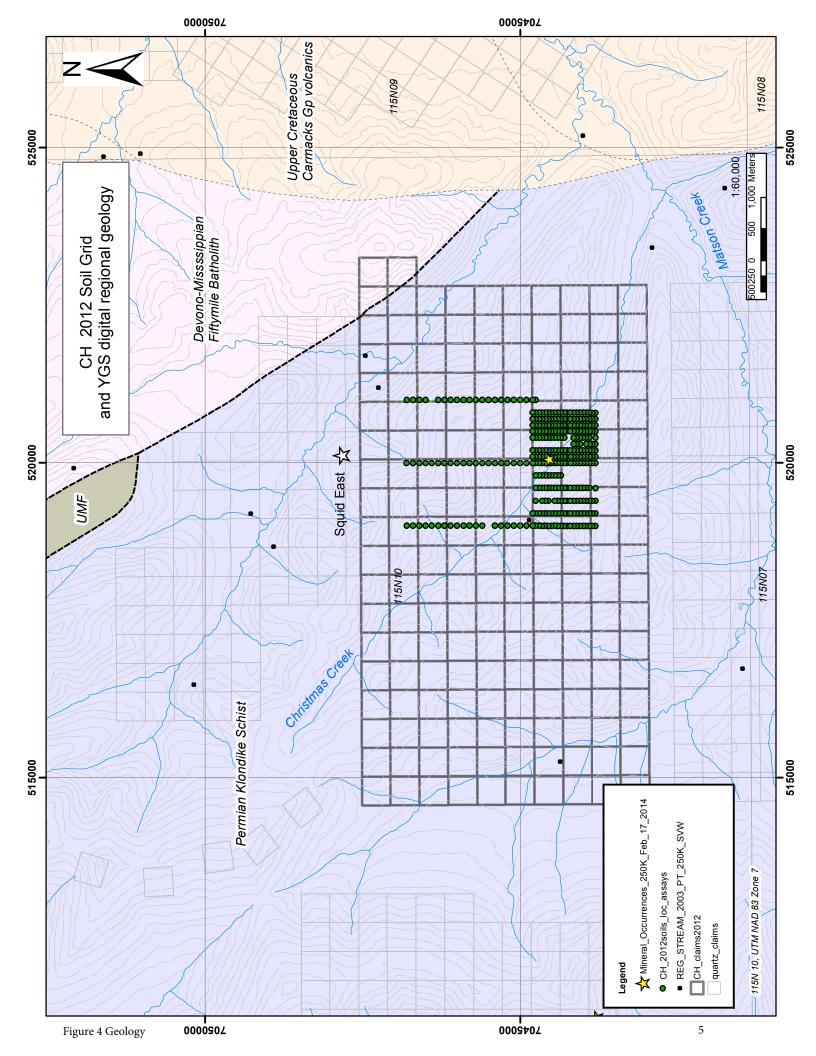
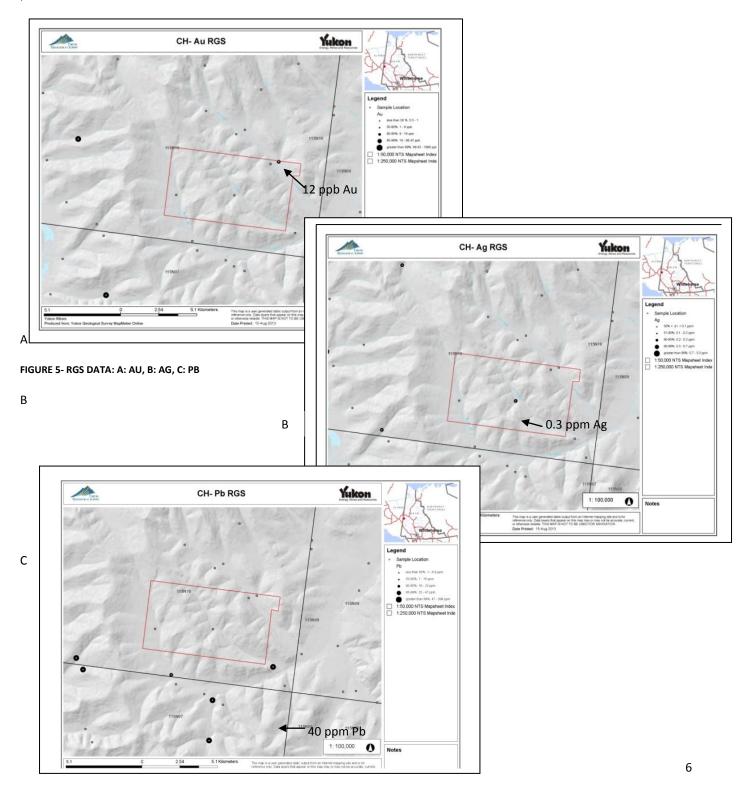
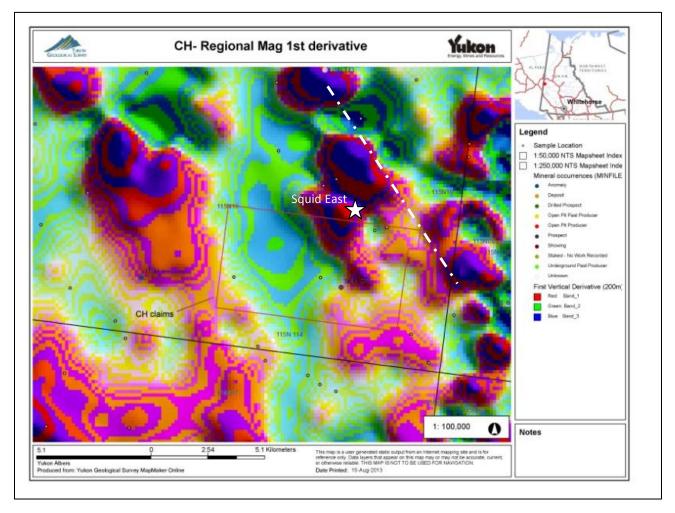




FIGURE 3- REGIONAL GEOLOGY- MDRU YUKON GOLD PROJECT


REGIONAL GEOCHEMISTRY

A few RGS sample sites are located on or near the claim block, values are generally subdued but within the 90th percentile when compared to other samples within Yukon Tanana Terrane (max 12 ppb Au, 0.3 ppm Ag) (Figure 5A to B). Note that the sample running 12 ppb Au is near the Squid East gold occurrence, which demonstrates that RGS signatures can be quite muted in this terrain. The sample at the mouth of Christmas Creek ran 40 ppm Pb (figure 5C), which corresponds to the 95th percentile for that element.

REGIONAL GEOPHYSICS

Regional magnetic data is available from the YGS website. Figure 6 below shows the first derivative mag, with the outline of the CH claim block shown in red. Magnetic signature for the area shows distinct magnetic domains with a NW/SE orientation, parallel to the structural grain of the area. The northeastern part of the claim block is underlain by a high mag linear domain that probably corresponds to a magnetic member of the Permian Klondike Schist. This feature also hosts the Au-Ag-Pb mineralization in the adjoining Squid East Property (white star, and see next section), and appears to be bisected, possibly by a fault. The regional fault documented on the YGS website is traced in a white dashed line over the magnetic data. Ground-truthing and property-scale mapping would be necessary to explain the magnetic signatures.

FIGURE 6- REGIONAL FIRST DERIVATIVE MAG

REGIONAL MINERALIZATION

Several significant deposits hosted in Yukon Tanana Terrane occur in similar rocks and structural environments that occur on the CH claims.

In Allan et al, 2012 (p.22), the **Klondike Schist** is said to host "disseminated to locally semi-massive Pb- Zn-Cu-Au-Ag mineralization that has an inferred syngenetic origin. This style of mineralization is represented regionally in the Klondike district, Sixtymile district (e.g., Boundary occurrence), and the Ladue River area (Bore occurrence)", and "disseminated gold mineralization may represent a significant component of the economic gold potential" Further, "the recently discovered

Touleary Cu-Ag-Au-Zn prospect (1.44% Cu, 16.5 g/t Ag, 0.77 g/t Au and 0.29% Zn across 14.15 m) southeast of the White Gold area likely represents a Late Permian VMS system; however, an older, Devonian to Mississippian age of formation may also be possible."

Most of the Klondike Goldfields overlie rocks of the Klondike schist. The Lone Star deposit (Minfile 1150 072) occurs in rocks of the Klondike Schist, which appears to be the dominant rock type on the CH claims. This deposit is interpreted to be a gold-rich VMS deposit hosted in quartz-muscovite schist. The Klondike Schist is therefore considered of high potential to host gold-rich VMS occurrences.

Kinross' White Gold (Golden Saddle Minfile 1150 165, > 1M oz Au) deposit, gold-bearing orogenic veins in the Klondike and Kaminak's Coffee deposits (Minfile 115J 110, > 1M oz Au), are all classified as **orogenic gold deposits**, with White Gold and the Klonkike veins being associated with a Middle to Late Jurassic orogenic event while the Coffee mineralization is postulated to be controlled by a mid-Cretaceous mineralizing event, with possibly some older (Jurassic) mineralization for some zones (Allan et al, 2012, pp. 23-25).

Although very little is known of the geology of the CH claims, northwest trending faults and linear structures are interpreted in the regional mapping and from regional geophysics. Such linear structures could very well host orogenic gold mineralization. Christmas Creek and the two neighbouring creeks from prominent linear northwest-trending drainages.

Metals Creek Resources's **Squid East** property adjoins the CH claim block along its northern edge and a recent discovery supports the potential for structurally-controlled gold mineralization in the area. In 2012, a strong northwest trending gold + pathfinder elements soil anomaly returned anomalous values grading up to 1086 ppb Au, 78.5 ppm Ag, 4493.5 ppm Pb, 241.2 ppm Sb, 2370 ppm Ba, and 36.32 ppm Hg. The anomaly has minimum dimensions of approximately 450m long by 200m wide and is open along strike. (News Release dated October 23, 2012, Appendix F).

A 22m long trench, testing this soil anomaly in 2013, assayed 1.96g/t Au for the whole 22m length of the trench, including a high grade section grading 6.39g/t Au/ 4m. (News Release dated August 06 2013, Appendix F). Four shallow drill holes further tested this area, and three of them returned significant mineralization. The company reports an intersection grading 1.55g/t Au and 114.1g/t Ag/ 21m.

According to the maps available on the company's website (www.metalscreek.com), this mineralized occurrence is located on a magnetic feature that trends into the CH property. Following the initial soil survey, Metals Creek staked additional claims to close the gap between the two properties and the Squid East property is now adjacent to the CH claim block.

Placer gold, both fine and coarse, is reported on Matson Creek, which hosts at least one commercial placer operation. Cassiterite has been reported in Christmas Creek (Minfile 15N 027). Although Christmas Creek is covered by placer claims, it is not known to the author whether any commercial production has taken place.

PREVIOUS WORK

MINFILE occurrence **115N 027** is located on the current claims block. Known as the Santa occurrence, it was first staked in 1970 by Atlas Exploration who conducted soil sampling and prospecting. It was later re-staked as the Nora claims in 1987 and re-staked again in 1992 as the She claims. Trenching was done in 1993. A 1m wide quartz galena vein is documented (see Appendix F for Minfile description).

The CH claims were staked in June 2011. A reconnaissance soil line outlined along the creek outlined an anomalous area in the vicinity of the documented Minfile occurrence.

2012 SOIL SURVEY

DESCRIPTION OF WORK

Three days of sampling were conducted by Coureur des Bois on September 15th to 17th 2012. A total of 345 soil samples were assayed. The location of the soil grid with respect to the claim block is seen below in Figure 7 and the sample location data is found in Appendix C.

Grid lines were oriented north-south. The western portion of the grid consisted of lines spaced 200m apart, and samples were collected at every 50m along those lines. Line spacing for the eastern portion of the grid was 100m, with samples also collected every 50m. Three lines, one at either end of the grid and one in the middle, were extended for another 2km past the northern edge of the main grid.

The sample ID numbers were defined as follows: the prefix 'CH' was assigned to all samples, followed by an alphabetical line number (A, B, C,...) increasing from west to east. Numerical station numbers on each line (1, 2, 3,...) increase from south to north. Sample location data is found in Appendix C.

Five samples are not plotted on the map as their location is imprecise. These are samples CHB22, 23 and 24, as well as CHI5a and b.

METHODOLOGY

Sample sites were pre-determined and stored in the sampler's GPS unit. The samplers navigated to the planned waypoints using their GPS, and sampled the B or C horizon at the sample site using a mattock or soil auger. The soil sample was put in a Kraft bag which was labeled with the waypoint number. Notes were taken in a notebook describing the different features (depth, colour, etc) of each sample.

Samples were bagged, brought to Whitehorse and shipped directly to ALS Minerals' sample prep facility in Whitehorse.

Samples were prepped according to prep code 41, where the samples were dried at <60°C/140F, sieved to -180 micron (80 mesh) and both fractions retained. The samples were then assayed using the ME-MS41L multi-element package using an aqua regia digestion. A total of 41 pulps were later selected to re-assay using Au-ICP21 method to test if a fire assay (Au-ICP21) with a larger sample size (30g) would give more reliable gold assay results than the ME-MS41L, which only analyzed 0.5g of pulp material. Results were mixed, see next section for discussion of results. Both sets of assay results are displayed on the soil geochemistry map for gold (Appendix D).

RESULTS

As mentioned earlier, the non-glaciated nature of the terrain may cause a subdued metal response is soils due to their prolonged weathering and oxidation. The material sampled may have been leached from its original metal content. Significant metal values would therefore be lower than in glaciated areas.

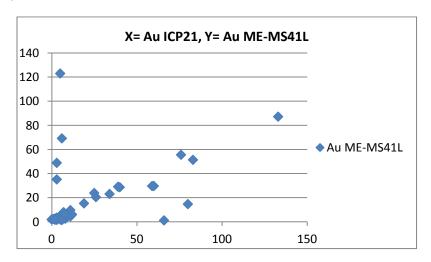
Soil geochemical maps for Au, Ag, Cu, Pb and Zn are in Appendix D. Complete assay results are listed in the assay certificates compiled in Appendix H. Values below detection limit in the digital data were converted to half of that detection limit.

The geochemical maps display the range of values for selected elements. The ranges of values were chosen in order to best represent the population distribution for each element. The highest values in each data set are portrayed in red. This does not always mean that this highest range is significant; it simply means that it is the highest in the data set.

Although the detailed portion of the grid is relatively small compared to the size of the property and the anomalous soils are not closed off by the current sampling, the following observations can be made:

-Soils are strongly to moderately anomalous in Au, Ag, Pb and pathfinder elements. Maximum values obtained in soils were: 133 ppb Au, 12.65 ppm Ag, 84.6 ppm As, 1370 ppm Ba, 48.4 ppm Bi, 339 ppm Cu, 6.77% Fe, 3.3 ppm Hg, 4050 ppm Mn, 94.4 ppm Mo, 2100 ppm Pb, 26.2 ppm Sb, 290 ppm W and 1160 ppm Zn.

-Three main anomalous zones are outlined, all located at the edge of the grid and therefore still open in multiple directions. All three zones have coincident anomalous Ag- Cu- Pb and Zn, one other zone is also strongly anomalous in Au as well as Sb:


- 1. A two-point anomaly at the western edge of the grid shows elevated values in Ag, Cu, Pb, As, Bi, and Mo. The anomaly is open to the east and west.
- 2. Straddling the northern end of lines CH G to K, and including the bottom of line CH P, soils are strongly anomalous in Pb and W, and moderately anomalous in Bi, Cu, Mn, Mo and Zn.
- 3. At the southern end of line CH H, south of the creek, three consecutive samples are highly anomalous in Pb and Bi and moderately anomalous in Ag. This anomalous zone may be on trend with another one across the creek: Located at the eastern end of the grid, these soils show coincident strong Au-Pb-Cu anomalies and moderate Ag-As-Ba-Bi-Cu-Sb-Zn values.

These initial results are encouraging and worthy of follow up. The metal association could be indicative of a VMS environment.

SOIL PULPS RE-ANALYSIS

A total of 41 pulps samples were re-analyzed using a 30g sample by the Au-ICP21 fire assay method. The original analysis was a very low detection ICP (aqua regia (partial) digestion) that used only 0.5 g of sample. In order to test for nugget effect, a fire assay was thought to be more accurate as the whole sample is processed. On the other hand the ME-MS41L ICP offered very low detection.

Results of this study were mixed; the sample population was small which perhaps did not allow for conclusive results. In general, the fire assay (Au ICP 21) results were higher than the original ME-MS41L. About five samples (~10% of the population) graded significantly higher the fire assay re-analysis while four samples (another 10% of samples) grading 35.2 to 123 ppb Au by ME-MS41L gave results of 3 to 5 ppb Au by fire assay. When values are low, a doubling or halving of the original assay is not necessarily significant, but at higher values, re-analyses higher by a factor of 1.5 to 2, or lower by a factor of 0.5 to 0.04 are significant. The data is displayed in the chart and table below. Both sets of results are displayed on the Au soil map (Appendix D).

TABLE 1 AU RE-ANALYSES- RAW DATA

			X change				X change
		Au ME-	in re-			Au ME-	in re-
sample	Au-ICP21	MS41L	analysis	sample	Au-ICP21	MS41L	analysis
id	ppb	ppb	by ICP	id	ppb	ppb	by ICP
CH M7	66	1.2	55.000	CH L2	39	29.1	1.340
CH N12	80	14.7	5.442	CH 18	3	2.3	1.304
CH-L19	6	1.5	4.000	CH E-19	6	4.6	1.304
CH G14	8	2.6	3.077	CH H15	5	3.9	1.282
CH B-20	5	1.9	2.632	CH P-26	26	20.5	1.268
CH H19	11	4.6	2.391	CH P-25	19	15.3	1.242
CH H18	8	3.4	2.353	CH L8	8	6.5	1.231
CH 09	11	4.7	2.340	CHF30	2	1.7	1.176
CH 05	60	29.7	2.020	CH H20	11	9.7	1.134
CH 06	59	29.7	1.987	CH N8	25	23.9	1.046
CH J19	12	6.1	1.967	CH H14	5	5	1.000
CH 12	7	3.7	1.892	CH A-10	7	8	0.875
CH A-11	6	3.3	1.818	CH 13	3	3.5	0.857
CH A-27	3	1.7	1.765	CH D-20	2	2.7	0.741
CH B-21	3	1.8	1.667	CH J21	1	2.4	0.417
CH M9	83	51.4	1.615	CH N9	6	69.2	0.087
CH 15B	9	5.8	1.552	CH M10	3	35.2	0.085
CH K10	133	87.2	1.525	CH M8	3	48.9	0.061
CH L14	34	23.1	1.472	CH A-35	5	123	0.041
CH A-29	40	28.7	1.394	CH L9	0	2	0.000
CH P-24	76	55.6	1.367				

2012 PROSPECTING SURVEY

A total of 32 rocks samples were assayed. Robert Stroshein, P. Eng, collected 9 of them, and these consisted of pieces of quartz float. Another 23 samples were collected from soil pits or near them, and were given the same sample number as the soil station, but the suffix _R was added after the sample number to distinguish the rock samples from the soil samples. There are no rock descriptions for these samples. Only a very small portion of the property was prospected and yet this limited prospecting yielded some interesting results:

K 931798	199 ppb Au, 22.6 ppm Ag, 1 ppm Hg
K931799	360 ppm W
CH F30_R	6100 ppm Pb
CH K16_R	34.2 ppm Ag, 769 ppm Bi, 1140 pm Pb and 290 ppm W

The map showing the rock sample location is below in Figure 8 and assay results are found in Appendix E.

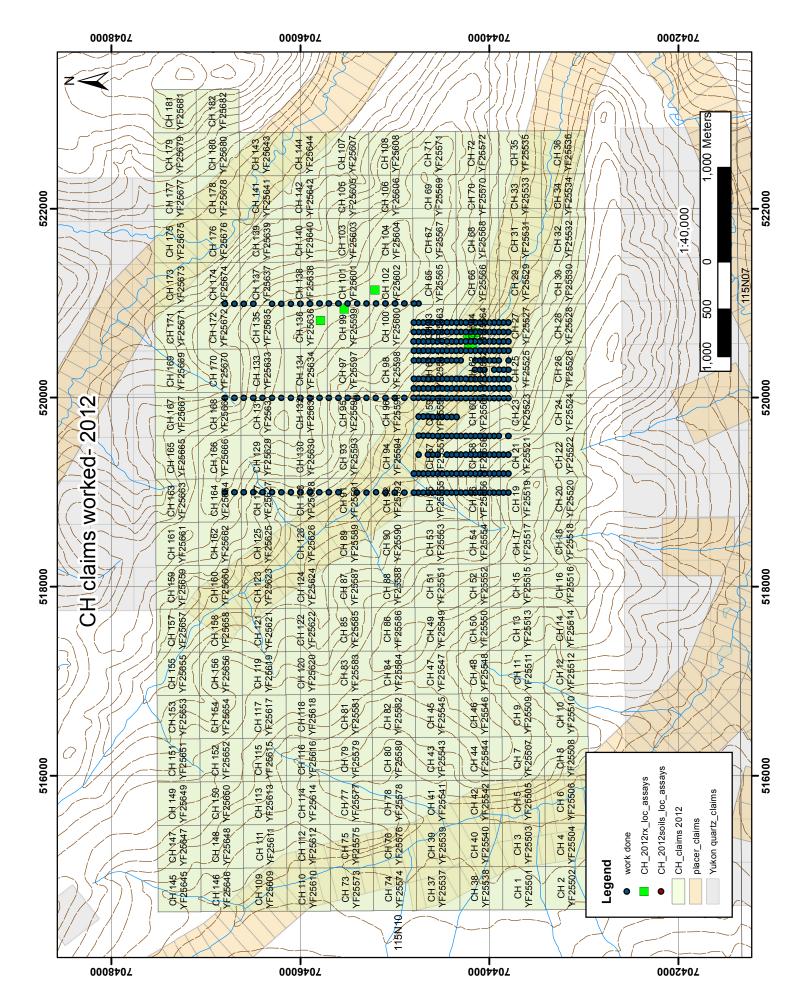


Figure 7 Location of 2012 work

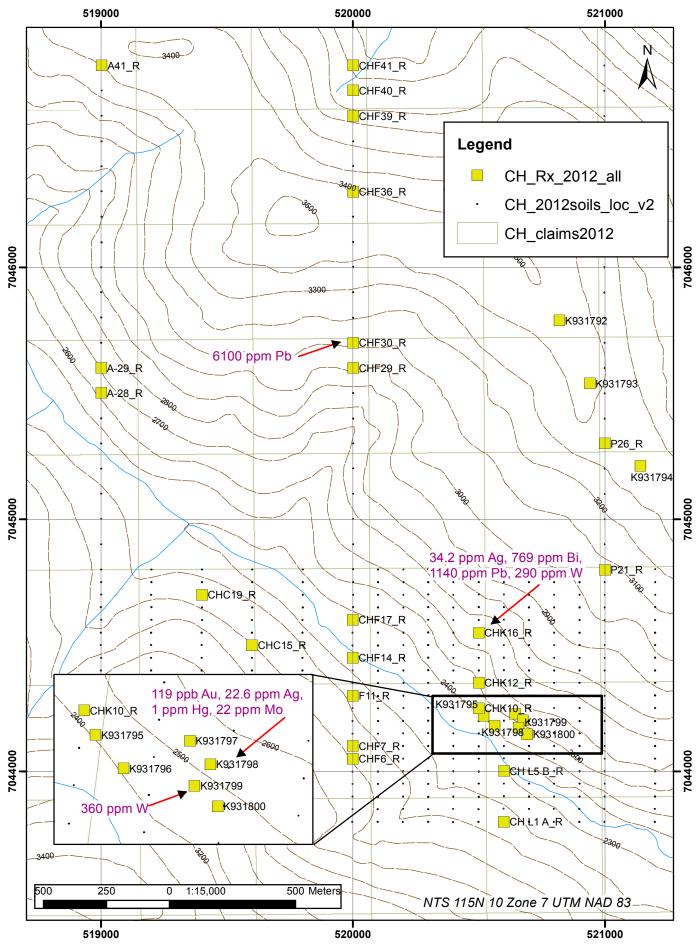


Figure 8

CONCLUSIONS AND RECOMMENDATIONS

The CH claims are located in unglaciated portion of Yukon Tanana Terrane. According to the regional geology map, the claims are underlain mainly by the Carboniferous to Permian Klondike Schist, a metavolcanic arc assemblage prospective for VMS and orogenic gold mineralization. Historical work had previously documented a 1m quartz-galena vein known as the Santa Minfile Occurrence (115N 027). It is not known if this vein has been located during the recent work.

A total of 345 soil samples and 32 rock samples were collected and assayed in 2012. The main portion of the soil grid measured approximately 2 km x 1 km, three of the lines extended an extra 2km north of the main portion of the grid.

The 2012 program was successful in outlining several coincident soil Au-Ag-Pb-Cu anomalies, with locally high As, Ba, Bi, Mn, Mo, Sb, W and Zn. Maximum values obtained in soils were: 133 ppb Au, 12.65 ppm Ag, 84.6 ppm As, 1370 ppm Ba, 48.4 ppm Bi, 339 ppm Cu, 6.77% Fe, 3.3 ppm Hg, 4050 ppm Mn, 94.4 ppm Mo, 2100 ppm Pb, 26.2 ppm Sb, 290 ppm W and 1160 ppm Zn. These anomalies remain open in several directions, and a large portion of the property remains untested.

Cursory prospecting yielded a few anomalous results: four samples yielded anomalous results: up to 199 ppb Au; 6100 ppm Pb, 360 ppm W and one sample grading 34.2 ppm Ag and 769 ppm Bi.

Soil sampling, trenching and drilling on the adjacent Squid East property outlined significant Au-Ag mineralization associated with NW-trending structures. Such structures are thought to extend and be present on the CH claims. Christmas Creek forms a northwest-trending linear topographic feature, parallel to neighbouring creeks. These linear features could very well reflect structural zones potentially controlling mineralization. Several of the anomalous soils are near the base of the drainage.

The favourable geology and the promising sampling work to date indicate that this property is worthy of continued exploration.

In light of these results, the following work is recommended:

- -Digital compilation of 2011 geochemical data and available Squid East data.
- -Air photo interpretation, looking for evidence of N to NW trending structures, as controls to orogenic gold mineralization.
- -Geological mapping and prospecting of the property, follow up and documentation of 2012 prospecting results
- -Field checking of soil anomalies

Signed, in Whitehorse, March 17 2014

-Infill and expansion of 2012 soil grid to have at least 200m x 50m soil coverage throughout the property.

A mag/EM survey could be proposed, with its location and orientation being dependant on the soil results.

STATEMENT OF QUALIFICATIONS

I, Danièle Héon, of:

12 Marigold Place Whitehorse, Yukon Y1A 6A2

do hereby declare that;

I am an independent contracting geologist.

I graduated with a Bachelor of Science degree from McGill University in Montréal in 1984.

I have worked as a geologist since graduation from University and in the Yukon since 1990.

I am a member in good standing of the Ordre des Géologues du Québec (OGQ), no. 1510, and of the Association of Professional Engineers and Geoscientists of BC (APEGBC), no. 38518.

I have not visited the property.

I am the author of this report in which I compile and present the work of Robert Stroshein, P. Eng (deceased) as well as the results of the soil survey conducted by Coureur des Bois Exploration Ltée Ltd., based on the data provided by Coureur des Bois Exploration Ltée Ltd.

I have not been involved in the fieldwork described herein, so therefore my responsibility is limited to the interpretation and presentation of the data provided.

This report is intended to satisfy assessment requirements only.

Danièle Héon, P. Geo.

REFERENCES

Allan, M.M., Hart. C.J.R., and Mortensen, J.K. (eds), 2012, Yukon Gold Project Final technical Report, Mineral Deposit Research Unit, University of British Columbia.

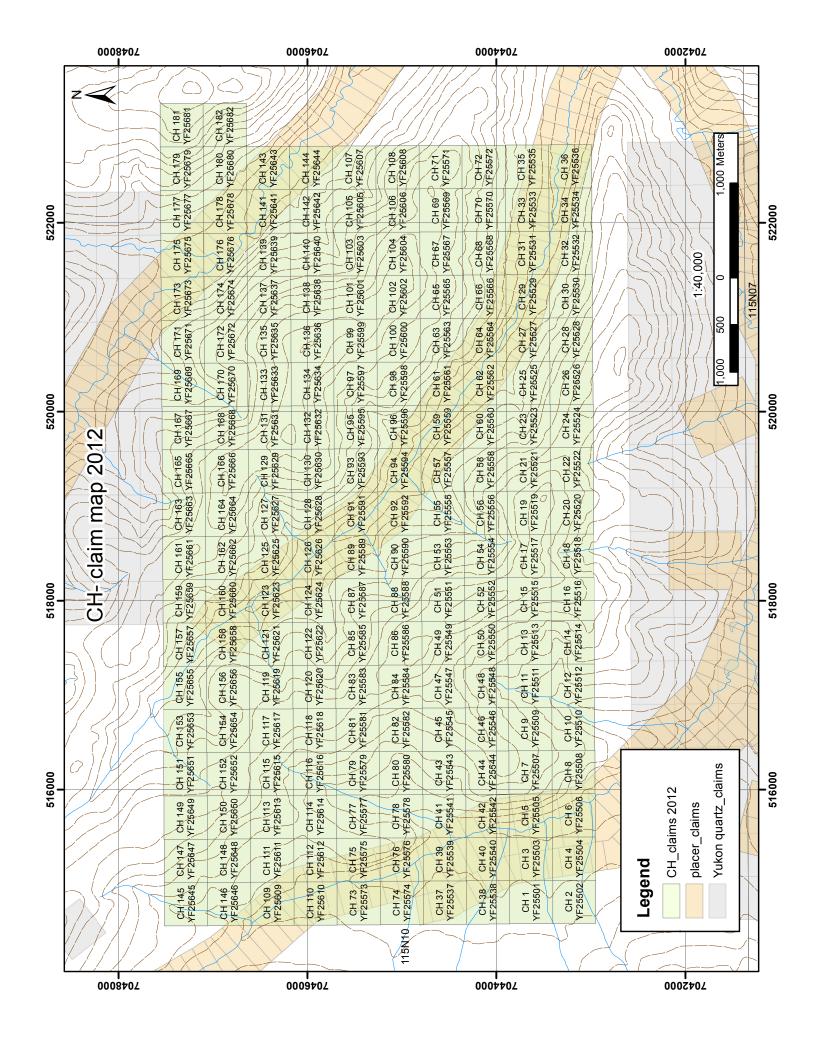
Allan, M.M., Hart. C.J.R., and Mortensen, J.K. (eds), 2012, Geological Map of the Dawson Range- White Gold Area, Yukon and East-Central Alaska, 1: 400,000, Mineral Deposit Research Unit, University of British Columbia.

Metals Creek Resources, News releases and property information downloaded from their website: www.metalscreek.com.

Stroshein, R.W., 2011, Assessment report of the reconnaissance geochemical sampling program, Assessment Report 096250, closed.

Digital data as provided by the Yukon Geological Survey and government agencies, in particular:

Deklerk, R. (compiler), 2003. Yukon MINFILE 2003 – A database of mineral occurrences. Yukon Geological Survey. And Yukon MINFILE, 2012. Yukon MINFILE – A database of mineral occurrences. Yukon Geological Survey, http://data.geology.gov.yk.ca/databases gis.html and at http://data.geology.gov.yk.ca/


Gordey, S.P., Makepeace, A.J., (compilers), , <u>2003-9(D)</u>, Open File (Geological - Bedrock); Yukon Digital Geology (version 2) Yukon Geological Survey.

Mineral Claims (Yukon Mining Recorder) http://www.yukonminingrecorder.ca/

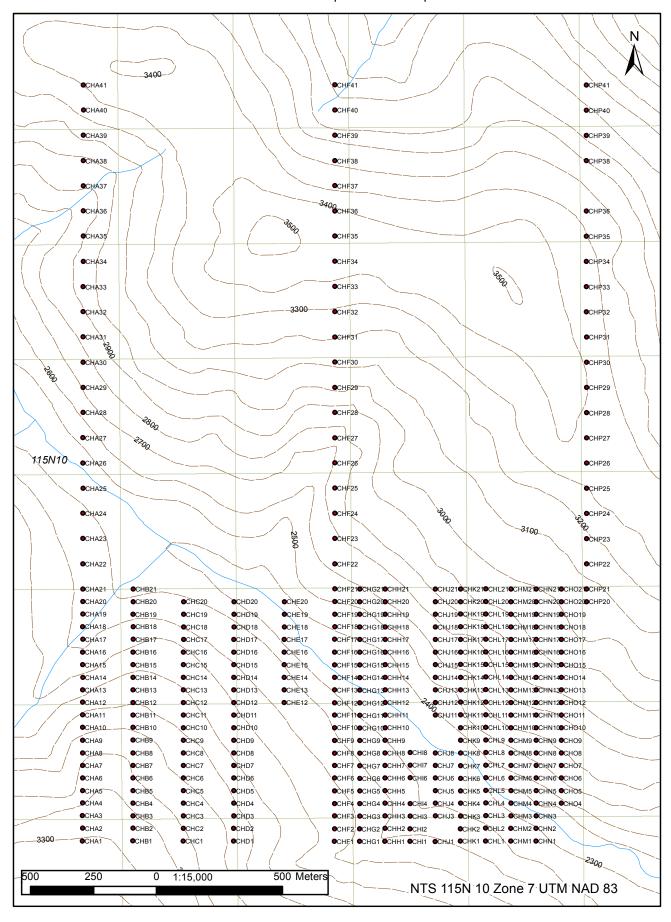
Geomatics Yukon for regional shape file data: http://geomaticsyukon.ca/data/datasets

Yukon Geological Survey, 2011. YGS Mapmaker online http://maps.gov.yk.ca/imf.jsp?site=YGS

APPENDIX A- CLAIM MAP

APPENDIX B- CLAIM DATA

					Claim	New		
	Grant	Claim	Claim		Expiry	Expiry		NTS Map
District	Number	Name	Nbr	Claim Owner	Date	Date	Status	Number
Dawson	YF25501	СН	1	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25502	СН	2	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25503	СН	3	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25504	СН	4	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25505	СН	5	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25506	СН	6	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25507	СН	7	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25508	СН	8	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25509	СН	9	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25510	СН	10	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25511	СН	11	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25512	СН	12	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25513	СН	13	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25514	СН	14	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25515	СН	15	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25516	СН	16	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25517	СН	17	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25518	СН	18	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25519	СН	19	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25520	СН	20	William A. Bromell - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25521	СН	21	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25522	СН	22	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25523	СН	23	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25524	СН	24	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25525	СН	25	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25526	СН	26	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25527	СН	27	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25528	СН	28	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25529	СН	29	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25530	СН	30	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25531	СН	31	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25532	СН	32	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25533	СН	33	Sophie Jessome - 100%	9/9/2013			115N10
Dawson	YF25534	СН	34	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25535	СН	35	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25536	СН	36	Sophie Jessome - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25537	СН	37	Mark Hockley - 100%	9/9/2013			115N10
Dawson	YF25538	СН	38	Mark Hockley - 100%	9/9/2013			115N10
Dawson	YF25539	СН	39	Mark Hockley - 100%	9/9/2013			115N10
Dawson	YF25540	СН	40	Mark Hockley - 100%	9/9/2013			115N10
Dawson	YF25541	СН		Mark Hockley - 100%	9/9/2013			115N10
Dawson	YF25542	СН		Mark Hockley - 100%	9/9/2013			115N10
Dawson	YF25543	СН	-	Mark Hockley - 100%	9/9/2013			115N10
Dawson	YF25544	CH	44	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10


					Claim	New		
	Grant	Claim	Claim		Expiry	Expiry		NTS Map
District	Number	Name	Nbr	Claim Owner	Date	Date	Status	Number
Dawson	YF25545	СН	45	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25546	СН	46	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25547	СН	47	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25548	СН	48	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25549	СН	49	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25550	СН	50	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25551	СН	51	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25552	СН	52	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25553	СН	53	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25554	СН	54	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25555	СН	55	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25556	СН	56	Mark Hockley - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25557	СН	57	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25558	СН	58	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25559	СН	59	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25560	СН	60	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25561	СН	61	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25562	СН	62	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25563	СН	63	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25564	СН	64	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25565	СН	65	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25566	СН	66	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25567	СН	67	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25568	СН	68	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25569	СН	69	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25570	СН	70	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25571	СН	71	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25572	СН	72	Yann LeRoy - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25573	СН	73	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25574	СН	74	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25575	СН	75	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25576	СН	76	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25577	СН	77	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25578	СН	78	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25579	СН	79	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25580	СН	80	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25581	СН	81	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25582	СН	82	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25583	СН	83	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25584	СН	84	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25585	СН	85	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25586	СН	86	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25587	СН	87	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25588	СН	88	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10

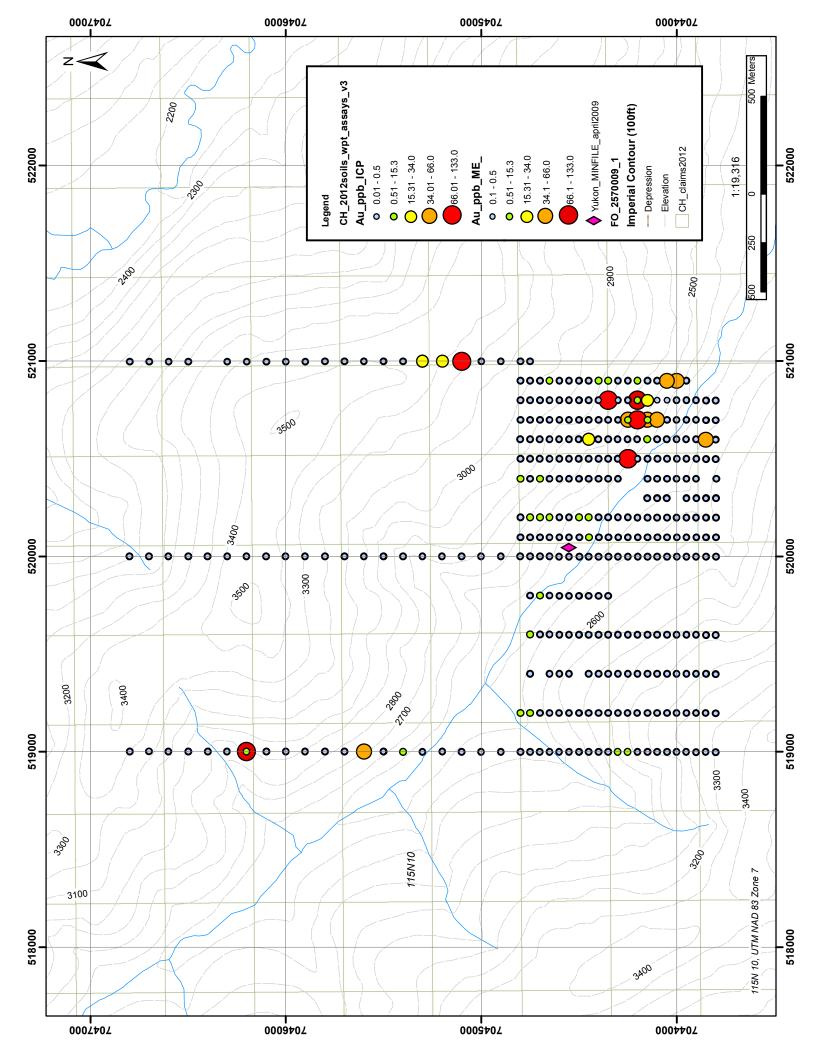
					Claim	New		
	Grant	Claim	Claim		Expiry	Expiry		NTS Map
District	Number	Name	Nbr	Claim Owner	Date	Date	Status	Number
Dawson	YF25589	СН	89	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25590	СН	90	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25591	СН	91	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25592	СН	92	Glen Emond - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25593	СН	93	Cody Wilkinson - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25594	СН	94	Cody Wilkinson - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25595	СН	95	Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25596	СН	96	Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25597	СН		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25598	СН		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25599	СН		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25600	СН		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25601	СН		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25602	СН		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25603	CH		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25604	CH		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25605	CH		Cody Wilkinson - 100%		3/9/2016		115N10
Dawson	YF25606	CH		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25607	CH		Cody Wilkinson - 100%	9/9/2013			115N10
Dawson	YF25608 YF25609	СН		Cody Wilkinson - 100% Travis Belisle - 100%	9/9/2013			115N10 115N10
Dawson Dawson	YF25610	СН		Travis Belisle - 100%	9/9/2013			115N10 115N10
Dawson	YF25611	CH		Travis Belisle - 100%	9/9/2013			115N10 115N10
Dawson	YF25612	CH		Travis Belisle - 100%	9/9/2013			115N10
Dawson	YF25613	CH		Travis Belisle - 100%	9/9/2013			115N10
Dawson	YF25614	CH		Travis Belisle - 100%	9/9/2013			115N10
Dawson	YF25615	CH		Travis Belisle - 100%	9/9/2013			115N10
Dawson	YF25616			Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25617	СН		Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25618	СН		Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25619	СН	119	Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25620	СН	120	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25621	СН	121	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25622	СН	122	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25623	СН	123	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25624	СН	124	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25625	СН	125	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25626	СН	126	Travis Belisle - 100%	9/9/2013			115N10
Dawson	YF25627	СН	127	Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25628	СН	128	Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25629	СН		Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25630	СН		Travis Belisle - 100%	9/9/2013			115N10
Dawson	YF25631	СН		Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25632	CH	132	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10

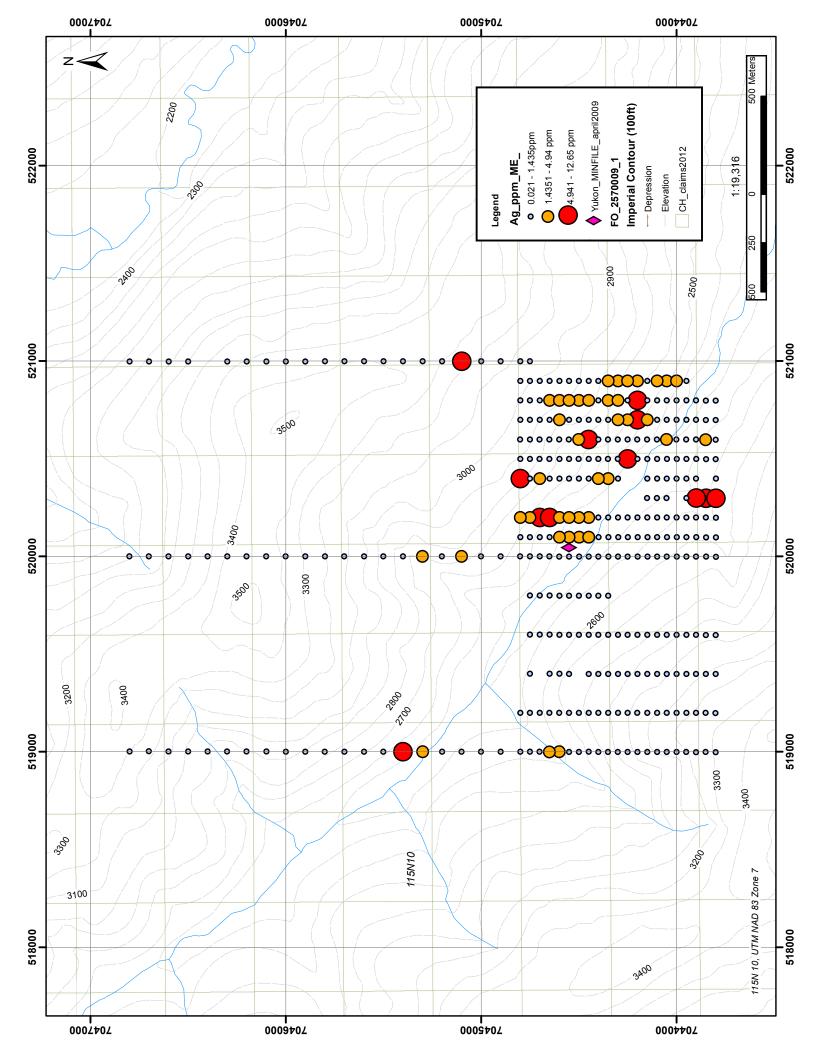
					Claim	New		
	Grant	Claim	Claim		Expiry	Expiry		NTS Map
District	Number	Name	Nbr	Claim Owner	Date	Date	Status	Number
Dawson	YF25633	СН	133	Travis Belisle - 100%	9/9/2013	3/9/2016		115N10
Dawson	YF25634	СН	134	Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25635	СН		Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25636	СН		Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25637	СН		Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25638	СН	138	Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25639	СН		Travis Belisle - 100%	9/9/2013			115N10
Dawson	YF25640	СН	140	Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25641	СН	141	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25642	СН	142	Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25643	СН	143	Travis Belisle - 100%		3/9/2016		115N10
Dawson	YF25644	СН	144	Travis Belisle - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25645	СН	145	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25646	СН	146	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25647	СН	147	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25648	СН	148	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25649	СН	149	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25650	СН	150	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25651	СН	151	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25652	СН	152	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25653	СН	153	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25654	СН	154	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25655	СН	155	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25656	СН	156	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25657	СН	157	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25658	СН	158	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25659	СН		Normand Jacob - 100%		3/9/2016		115N10
Dawson	YF25660	СН	160	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25661	СН	161	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25662	СН	162	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25663	СН	163	Normand Jacob - 100%	9/9/2013	3/9/2016		115N10
Dawson	YF25664	СН		Normand Jacob - 100%	9/9/2013			115N10
Dawson	YF25665	СН		Normand Jacob - 100%	9/9/2013			115N10
Dawson	YF25666	СН		Normand Jacob - 100%	9/9/2013			115N10
Dawson	YF25667	СН		Normand Jacob - 100%		3/9/2016		115N10
Dawson	YF25668	СН		Normand Jacob - 100%		3/9/2016		115N10
Dawson	YF25669	СН		Normand Jacob - 100%		3/9/2016		115N10
Dawson	YF25670	СН		Normand Jacob - 100%	9/9/2013			115N10
Dawson	YF25671	СН		Normand Jacob - 100%		3/9/2016		115N10
Dawson	YF25672	СН		Normand Jacob - 100%	9/9/2013			115N10
Dawson	YF25673	СН		Normand Jacob - 100%		3/9/2016		115N10
Dawson	YF25674	СН		Normand Jacob - 100%		3/9/2016		115N10
Dawson	YF25675	СН		Normand Jacob - 100%		3/9/2016		115N10
Dawson	YF25676	CH	176	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10

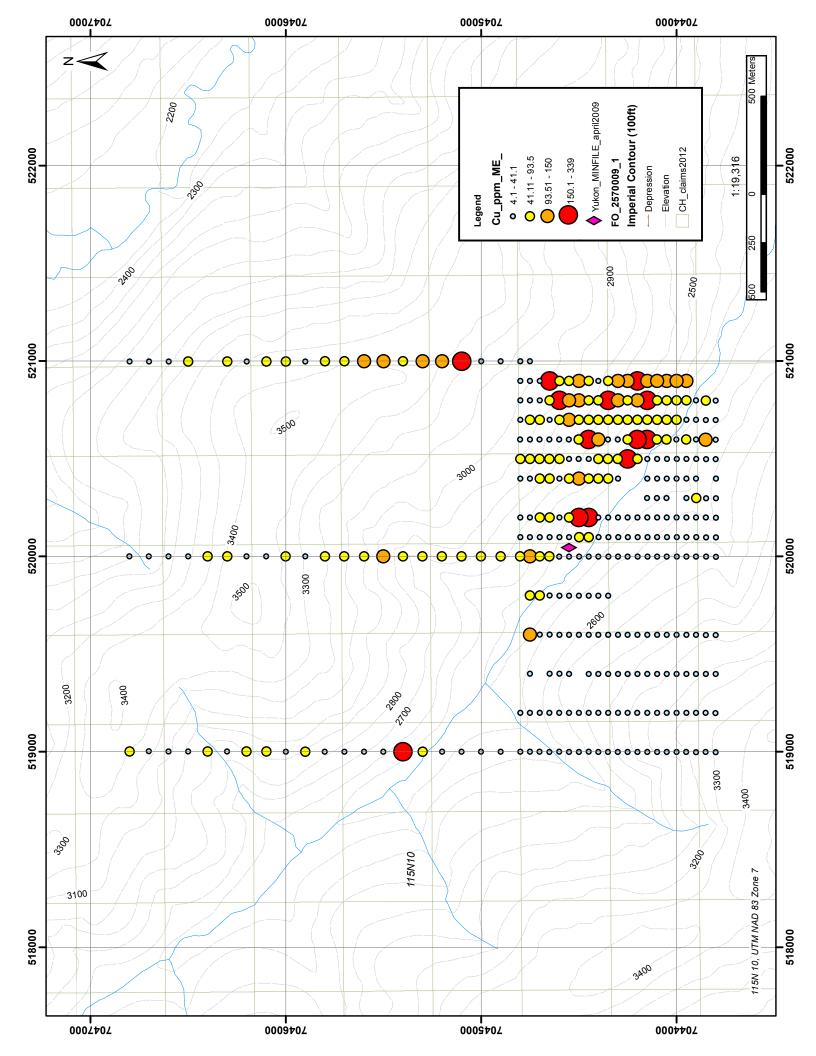
					Claim	New		
	Grant	Claim	Claim		Expiry	Expiry		NTS Map
District	Number	Name	Nbr	Claim Owner	Date	Date	Status	Number
Dawson	YF25677	СН	177	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25678	СН	178	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25679	СН	179	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25680	СН	180	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25681	СН	181	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10
Dawson	YF25682	СН	182	Normand Jacob - 100%	9/9/2013	3/9/2016	Active	115N10

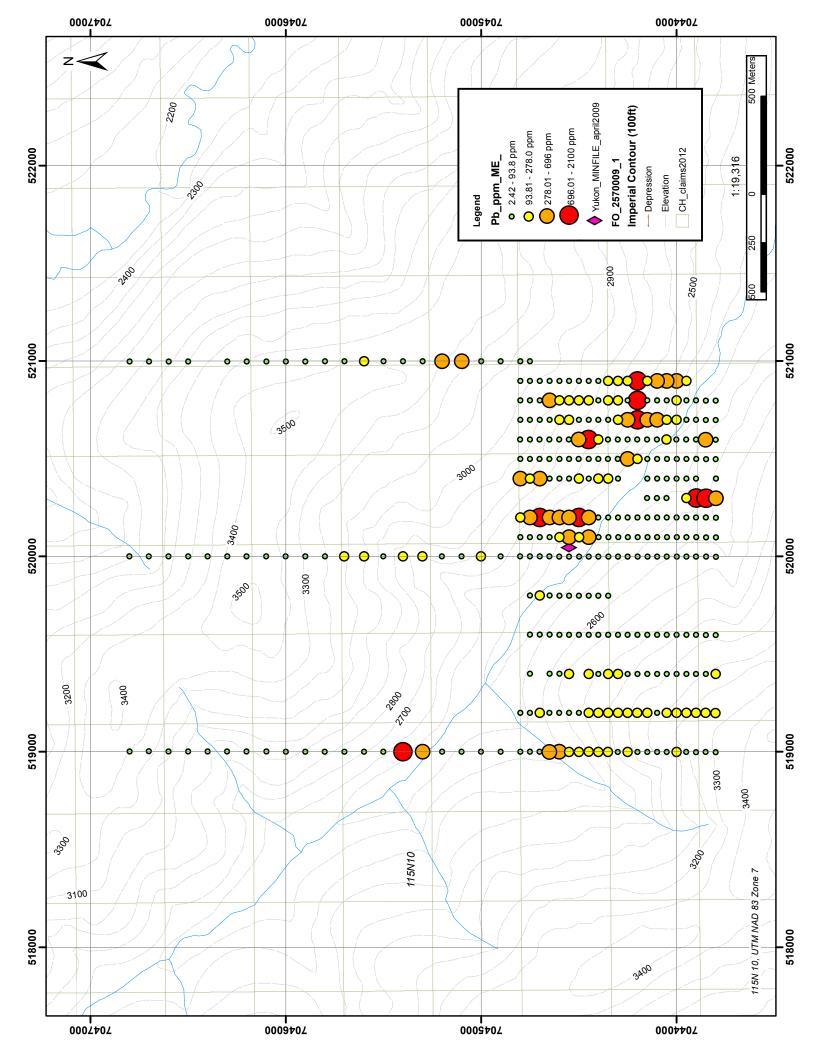
APPENDIX C- SOIL SAMPLE LOCATION MAP AND DATA

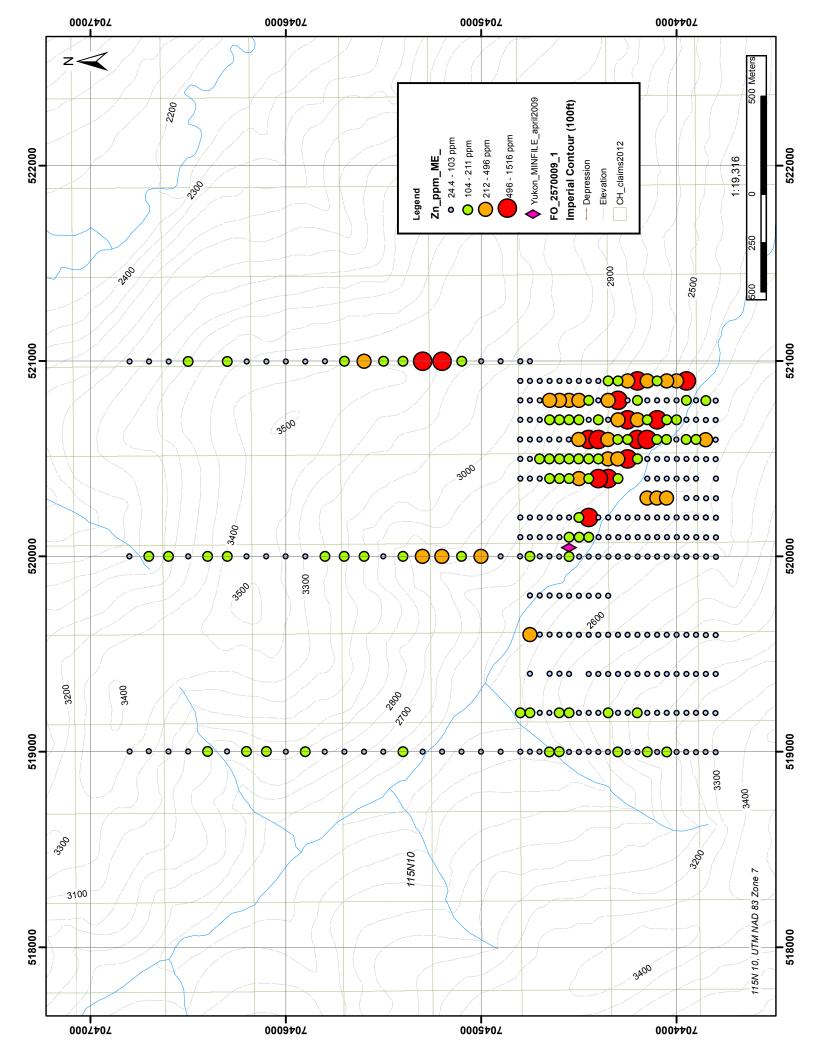
Waypoint_no	Zone	UTM_E	UTM_N	Waypoint_no	Zone	UTM_E	UTM_N
CHA1	7V	518999	7043799	CHB14	7V	519200	7044449
CHA10	7V	519000	7044250	CHB15	7V	519200	7044499
CHA11	7V	519000	7044300	CHB16	7V	519200	7044549
CHA12	7V	519000	7044350	CHB17	7V	519201	7044600
CHA13	7V	519000	7044399	CHB18	7V	519201	7044650
CHA14	7V	519001	7044449	CHB19	7V	519200	7044699
CHA15	7V	519000	7044499	CHB2	7V	519200	7043850
CHA16	7V	519000	7044549	CHB20	7V	519201	7044749
CHA17	7V	519001	7044600	CHB21	7V	519201	7044799
CHA18	7V	519000	7044650	CHB3	7V	519200	7043899
CHA19	7V	519001	7044700	CHB4	7V	519200	7043949
CHA2	7V	519000	7043850	CHB5	7V	519200	7043999
CHA20	7V	519001	7044750	СНВ6	7V	519200	7044049
CHA21	7V	519001	7044799	CHB7	7V	519200	7044099
CHA22	7V	519001	7044899	CHB8	7V	519200	7044149
CHA23	7V	519001	7045000	CHB9	7V	519200	7044200
CHA24	7V	519001	7045100	CHC1	7V	519399	7043799
CHA25	7V	519002	7045199	CHC10	7V	519400	7044249
CHA26	7V	519001	7045299	CHC11	7V	519400	7044299
CHA27	7V	519001	7045400	CHC12	7V	519400	7044349
CHA28	7V	519002	7045500	CHC13	7V	519400	7044399
CHA29	7V	519002	7045599	CHC14	7V	519400	7044449
CHA3	7V	518999	7043900	CHC15	7V	519400	7044499
CHA30	7V	519002	7045699	CHC16	7V	519400	7044549
CHA31	7V	519002	7045800	CHC17	7V	519401	7044599
CHA32	7V	519002	7045900	CHC18	7V	519401	7044649
CHA33	7V	519002	7045999	CHC19	7V	519401	7044699
CHA34	7V	519003	7046099	CHC2	7V	519400	7043849
CHA35	7V	519003	7046200	CHC20	7V	519401	7044749
CHA36	7V	519003	7046300	CHC21	7V	519401	7044799
CHA37	7V	519003	7046399	CHC3	7V	519400	7043899
CHA38	7V	519003	7046499	CHC4	7V	519400	7043949
CHA39	7V	519003	7046600	CHC5	7V	519400	7043999
CHA4	7V	519000	7043950	CHC6	7V	519400	7044049
CHA40	7V	519004	7046700	CHC7	7V	519400	7044099
CHA41	7V	519003	7046799	CHC8	7V	519400	7044149
CHA5	7V	519000	7043999	CHC9	7V	519400	7044199
CHA6	7V	519000	7044049	CHD1	7V	519599	7043799
CHA7	7V	519000	7044099	CHD10	7V	519600	7044249
CHA8	7V	519000	7044149	CHD11	7V	519600	7044299
CHA9	7V	519000	7044199	CHD12	7V	519600	7044349
CHB1	7V	519199	7043800	CHD13	7V	519600	7044399
CHB10	7V	519200	7044250	CHD14	7V	519600	7044449
CHB11	7V	519200	7044299	CHD15	7V	519600	7044499
CHB12	7V	519200	7044349	CHD16	7V	519600	7044549
CHB13	7V	519200	7044399	CHD17	7V	519600	7044599


Waypoint_no	Zone	UTM_E	UTM_N	Waypoint_no	Zone	UTM_E	UTM_N
CHD18	7V	519601	7044649	CHF21	7V	520001	7044800
CHD19	7V	519601	7044699	CHF22	7V	520001	7044899
CHD2	7V	519599	7043849	CHF23	7V	520001	7045000
CHD20	7V	519601	7044749	CHF24	7V	520001	7045100
CHD21	7V	519601	7044799	CHF25	7V	520001	7045200
CHD3	7V	519600	7043899	CHF26	7V	520001	7045300
CHD4	7V	519600	7043949	CHF27	7V	520001	7045399
CHD5	7V	519600	7043999	CHF28	7V	520001	7045500
CHD6	7V	519600	7044049	CHF29	7V	520001	7045599
CHD7	7V	519600	7044099	CHF3	7V	520000	7043899
CHD8	7V	519600	7044149	CHF30	7V	520001	7045700
CHD9	7V	519600	7044199	CHF31	7V	520001	7045799
CHE1	7V	519799	7043799	CHF32	7V	520001	7045900
CHE10	7V	519800	7044249	CHF33	7V	520001	7046000
CHE11	7V	519800	7044299	CHF34	7V	520001	7046100
CHE12	7V	519800	7044349	CHF35	7V	520001	7046200
CHE13	7V	519800	7044399	CHF36	7V	520001	7046299
CHE14	7V	519800	7044449	CHF37	7V	520001	7046400
CHE15	7V	519800	7044499	CHF38	7V	520001	7046499
CHE16	7V	519800	7044549	CHF39	7V	520001	7046600
CHE17	7V	519800	7044599	CHF4	7V	520000	7043948
CHE18	7V	519801	7044649	CHF40	7V	520001	7046700
CHE19	7V	519801	7044699	CHF41	7V	520001	7046800
CHE2	7V	519799	7043849	CHF5	7V	520000	7043998
CHE20	7V	519801	7044749	CHF6	7V	520000	7044049
CHE21	7V	519801	7044799	CHF7	7V	520000	7044099
CHE3	7V	519800	7043899	CHF8	7V	520000	7044148
CHE4	7V	519800	7043949	CHF9	7V	520000	7044198
CHE5	7V	519800	7043999	CHG1	7V	520099	7043798
CHE6	7V	519800	7044049	CHG10	7V	520100	7044248
CHE7	7V	519800	7044099	CHG11	7V	520100	7044298
CHE8	7V	519800	7044149	CHG12	7V	520100	7044348
CHE9	7V	519800		CHG13	7V	520100	7044398
CHF1	7V	519999	7043798		7V	520100	7044448
CHF10	7V	520000		CHG15	7V	520100	7044498
CHF11	7V	520000	7044299	CHG16	7V	520100	7044549
CHF12	7V	520000		CHG17	7V	520100	7044599
CHF13	7V	520000		CHG18	7V	520100	7044649
CHF14	7V	520000		CHG19	7V	520100	7044699
CHF15	7V	520000	7044498		7V	520099	7043848
CHF16	7V	520000	7044549	CHG20	7V	520100	7044749
CHF17	7V	520000		CHG21	7V	520100	7044799
CHF18	7V	520001	7044650	CHG3	7V	520100	7043898
CHF19	7V	520001	7044699	CHG4	7V	520100	7043948
CHF2	7V	520000		CHG5	7V	520100	7043998
CHF20	7V	520001	7044750	CHG6	7V	520100	7044048


Waypoint_no	Zone	UTM_E	UTM_N	Waypoint_no	Zone	UTM_E	UTM_N
CHG7	7V	520100	7044098	CHJ1	7V	520399	7043797
CHG8	7V	520100	7044148	CHJ10	7V	520400	7044249
CHG9	7V	520100	7044198	CHJ11	7V	520400	7044299
CHH1	7V	520199	7043798	CHJ12	7V	520400	7044349
CHH10	7V	520201	7044249	CHJ13	7V	520400	7044399
CHH11	7V	520201	7044299	CHJ14	7V	520400	7044449
CHH12	7V	520201	7044349	CHJ15	7V	520400	7044499
CHH13	7V	520201	7044399	CHJ16	7V	520400	7044549
CHH14	7V	520201	7044449	CHJ17	7V	520400	7044599
CHH15	7V	520201	7044499	CHJ18	7V	520400	7044649
CHH16	7V	520201	7044549	CHJ19	7V	520400	7044699
CHH17	7V	520201	7044599	CHJ2	7V	520399	7043849
CHH18	7V	520201	7044649	CHJ20	7V	520400	7044749
CHH19	7V	520201	7044699	CHJ21	7V	520400	7044799
CHH2	7V	520200	7043849	CHJ3	7V	520400	7043899
CHH20	7V	520201	7044749	CHJ4	7V	520400	7043949
CHH21	7V	520201	7044799	CHJ5	7V	520400	7043999
СНН3	7V	520200	7043899	CHJ6	7V	520400	7044049
CHH4	7V	520200	7043949	CHJ7	7V	520400	7044099
CHH5	7V	520200	7043999	CHJ8	7V	520400	7044149
СНН6	7V	520200	7044049	CHJ9	7V	520400	7044199
CHH7	7V	520200	7044099	CHK1	7V	520499	7043799
СНН8	7V	520200	7044149	CHK10	7V	520500	7044249
СНН9	7V	520200	7044199	CHK11	7V	520500	7044300
CHI1	7V	520299	7043798	CHK12	7V	520500	7044350
CHI10	7V	520300	7044250	CHK13	7V	520500	7044399
CHI11	7V	520300	7044300	CHK14	7V	520500	7044449
CHI12	7V	520300	7044350	CHK15	7V	520500	7044500
CHI13	7V	520300	7044400	CHK16	7V	520500	7044549
CHI14	7V	520300	7044450	CHK17	7V	520500	7044599
CHI15A	7V	520300		CHK18	7V	520500	7044650
CHI15B	7V	520300		CHK19	7V	520500	7044700
CHI16	7V	520300		CHK2	7V	520499	7043848
CHI17	7V	520300	7044600	CHK20	7V	520500	7044749
CHI18	7V	520300		CHK21	7V	520500	7044799
CHI19	7V	520300	7044700	СНКЗ	7V	520500	7043898
CHI2	7V	520299		CHK4	7V	520500	7043949
CHI20	7V	520300		CHK5	7V	520500	7043998
CHI21	7V	520300		CHK6	7V	520500	7044048
CHI3	7V	520300			7V	520500	7044098
CHI4	7V	520300	7043948	CHK8	7V	520500	7044149
CHI5	7V	520300		СНК9	7V	520500	7044199
CHI6	7V	520300		CHL1	7V	520599	7043799
CHI7	7V	520300		CHL10	7V	520600	7044250
CHI8	7V	520300		CHL11	7V	520600	7044300
CHI9	7V	520300	7044200	CHL12	7V	520600	7044350


Waypoint_no	Zone	UTM_E	UTM_N	Waypoint_no	Zone	UTM_E	UTM_N
CHL13	7V	520600	7044400	CHN17	7V	520800	7044599
CHL14	7V	520600	7044450	CHN18	7V	520800	7044649
CHL15	7V	520600	7044500	CHN19	7V	520800	7044699
CHL16	7V	520600	7044550	CHN2	7V	520799	7043849
CHL17	7V	520600	7044600	CHN20	7V	520800	7044749
CHL18	7V	520600	7044650	CHN21	7V	520800	7044799
CHL19	7V	520600	7044700	CHN3	7V	520800	7043899
CHL2	7V	520599	7043850	CHN4	7V	520800	7043949
CHL20	7V	520600	7044750	CHN5	7V	520800	7043999
CHL21	7V	520600	7044800	CHN6	7V	520800	7044049
CHL3	7V	520600	7043900	CHN7	7V	520800	7044099
CHL4	7V	520600	7043950	CHN8	7V	520800	7044149
CHL5	7V	520600	7044000	CHN9	7V	520800	7044199
CHL6	7V	520600	7044050	CHO1	7V	520899	7043799
CHL7	7V	520600	7044100	CHO10	7V	520900	7044249
CHL8	7V	520600	7044150	CHO11	7V	520900	7044299
CHL9	7V	520600	7044200	CHO12	7V	520900	7044349
CHM1	7V	520699	7043799	CHO13	7V	520900	7044399
CHM10	7V	520700	7044249	CHO14	7V	520900	7044449
CHM11	7V	520700	7044299	CHO15	7V	520900	7044499
CHM12	7V	520700	7044349	CHO16	7V	520900	7044549
CHM13	7V	520700	7044399	CHO17	7V	520900	7044599
CHM14	7V	520700	7044449	CHO18	7V	520900	7044649
CHM15	7V	520700	7044499	CHO19	7V	520900	7044699
CHM16	7V	520700	7044549	CHO2	7V	520899	7043849
CHM17	7V	520700	7044599	CHO20	7V	520900	7044749
CHM18	7V	520700	7044649	CHO21	7V	520900	7044799
CHM19	7V	520700	7044699	CHO3	7V	520900	7043899
CHM2	7V	520699	7043849	CHO4	7V	520900	7043949
CHM20	7V	520700		CHO5	7V	520900	
CHM21 CHM3	7V 7V	520700	7044799	CHO6 CHO7	7V 7V	520900 520900	7044049 7044099
CHM4	7V	520700 520700	7043899 7043949	CHO8	7V 7V	520900	7044099
CHM5	7V	520700	7043949	CHO9	7V 7V	520900	7044149
CHM6	7V	520700	7043939	CHP1	7V 7V	520999	7044199
CHM7	7V	520700	7044099	CHP10	7V	521000	7043733
CHM8	7V	520700	7044149	CHP11	7V	521000	7044299
CHM9	7V	520700	7044199	CHP12	7V	521000	7044349
CHN1	7V	520799	7043799	CHP13	7V	521000	7044399
CHN10	7V	520800	7044249	CHP14	7V	521000	7044449
CHN11	7V	520800	7044299	CHP15	7V	521000	7044499
CHN12	7V	520800	7044349	CHP16	7V	521000	7044549
CHN13	7V	520800	7044399	CHP17	7V	521000	7044599
CHN14	7V	520800	7044449	CHP18	7V	521000	7044649
CHN15	7V	520800	7044499	CHP19	7V	521000	7044699
CHN16	7V	520800	7044549	CHP2	7V	520999	7043849


Waypoint_no	Zone	UTM_E	UTM_N	Waypoint_no	Zone	UTM_E	UTM_N
CHP20	7V	521000		CHQ6	7V	521200	7044049
CHP21	7V	521000	7044799	CHQ7	7V	521200	7044100
CHP22	7V	521000	7044899	CHQ8	7V	521200	7044149
CHP23	7V	521000		CHQ9	7V	521200	7044199
CHP24	7V	521000	7045099	,			
CHP25	7V	521000					
CHP26	7V	521000	7045299				
CHP27	7V	521000	7045399				
CHP28	7V	521000	7045499				
CHP29	7V	521000	7045599				
СНРЗ	7V	521000					
CHP30	7V	521000	7045699				
CHP31	7V	521000	7045799				
CHP32	7V	520999	7045899				
CHP33	7V	520999	7045999				
CHP34	7V	520999	7046099				
CHP35	7V	520999	7046199				
CHP36	7V	520999	7046299				
CHP37	7V	520999	7046399				
CHP38	7V	520999	7046499				
CHP39	7V	520999	7046599				
CHP4	7V	521000	7043949				
CHP40	7V	520999	7046699				
CHP41	7V	520999	7046799				
CHP5	7V	521000	7043999				
СНР6	7V	521000	7044049				
CHP7	7V	521000	7044099				
CHP8	7V	521000	7044149				
CHP9	7V	521000	7044199				
CHQ1	7V	521199	7043799				
CHQ10	7V	521200	7044249				
CHQ11	7V	521200	7044300				
CHQ12	7V	521200	7044349				
CHQ13	7V	521200	7044399				
CHQ14	7V	521200	7044450				
CHQ15	7V	521200	7044499				
CHQ16	7V	521200	7044549				
CHQ17	7V	521200	7044599				
CHQ18	7V	521201	7044650				
CHQ19	7V	521201	7044699				
CHQ2	7V	521199					
CHQ20	7V	521201	7044749				
CHQ21	7V	521201	7044800				
CHQ3	7V	521200					
CHQ4	7V	521200	7043950				
CHQ5	7V	521200	7043999				


APPENDIX D- SOIL GEOCHEMISTRY

APPENDIX E- ROCK SAMPLE DATA

CH claims- 2012 rock samples

assay_cert s	sample no	UTM_E	N_MTU	Au_ppb	Ag	As	Ba	Bi	ر ر	Fe	Мо	Pb	Sb	>	Zn	method	
WH12235051 /	A-28_R	519002	7045500	2	0.1	1	70	1	0.5	1.33	2	21	<2	<10	30	AU_ICP21_	MEICP41
WH12235051 /	A-29_R	519002	7045599	2	0.1	12	40	1	1	0.42	2	16	<2	<10	23	AU_ICP21_	MEICP41
WH12235051	K931792	520820	7045788	0.5	0.1	3	10	1	29	2.51	1	1	<2	<10	39	AU_ICP21_	MEICP41
WH12235051	K931793	520941	7045538	3	0.1	1	630	1	161	1.16	1	4	<2	<10	412	AU_ICP21_	MEICP41
WH12235051	K931794	521141	7045212	2	0.1	1	740	1	0.5	4.28	0.5	10	<2	<10	77	AU_ICP21_	MEICP41
WH12235051	K931795	520519	7044219	11	2.8	1	190	9	89	1.05	24	472	<2	<10	63	AU_ICP21_MEICP41	MEICP41
WH12235051	K931796	520562	7044180	0.5	0.1	1	210	1	6	2.36	2	15	<2	<10	80	AU_ICP21_	MEICP41
WH12235051	K931797	520644	7044228	2	6.6	2	200	47	9	0.67	4	546	<2	40	9/	AU_ICP21_	_MEICP41
WH12235051	K931798	520675	7044201	199	22.6	1	490	25	94	0.75	22	835	<2	20	75	AU_ICP21_	_MEICP41
WH12235051	K931799	520658	7044170	4	9.0	2	10	2	9	0.57	3	26	<2	180	38	AU_ICP21_	MEICP41
WH12235051 K931800	K931800	520692	7044147	4	4.2	1	30	24	23	0.45	3	700	<2	360	63	AU_ICP21_MEICP41	_MEICP41
WH12235176	CH L1 A_R	520599	7043799	3.9	7.67	5.81	36.5	0.24	13.75	0.69	0.84	7.55	1.54	0.11	19.7	ME_MS41	
WH12235176	CH L5 B_R	520600	7044000	0.3	0.756	14.1	27.9	0.52	23.1	1.99	0.31	69.9	1.11	1.03	11.1	ME_MS41	
WH12250084	CHF29_R	520001	7045599	0.1	0.259	0.87	66.1	1.37	13.4	0.71	1.37	31.1	0.061	0.27	75.4	ME_MS41	
WH12250084	CHF30_R	520001	7045700	0.4	3.37	6.58	10.6	4.09	6.52	0.4	0.33	6100	0.346	0.06	39.1	ME_MS41L	
WH12250084 CHF36	CHF36_R	520001	7046299	0.1	0.282	1.27	91.8	0.89	5.63	0.68	1.66	6'28	0.039	0.2	20.8	20.8 ME_MS41L	
WH12250084	CHF39_R	520001	7046600	0.1	0.203	3.61	21.3	0.1	25.6	1.01	2.01	71.5	0.06	0.05	12.9	ME_MS41	
WH12250084	CHF40_R	520001	7046700	0.1	0.183	0.95	55.6	0.38	47.1	1.72	4.17	51.3	0.046	0.12	86.9	ME_MS41	
WH12250084	CHF41_R	520001	7046800	0.1	0.042	21.4	221	0.08	42	2.51	6.81	13.4	0.094	0.23	86.3	ME_MS41	
WH12250085	CHC15_R	519600	7044499	0.5	0.049	20.8	53	0.23	8.45	1.7	1.3	50.1	1	0.26	38	ME_MS41L	
WH12250085 CHC19	CHC19_R	519401	7044699	0.5	1.22	2.97	83.8	0.04	4.3	1.89	0.23	30.9	0.841	0.17	55	ME_MS41L	
WH12250085	CHF14_R	520000	7044449	0.2	1.575	9.97	87.3	3.11	4.8	1.41	1.08	29.5	0.781	0.21	28.7	ME_MS41	
WH12250085	CHF17_R	520000	7044600	0.4	0.191	2.92	611	0.44	6.47	5.55	0.45	14.75	1.515	7.03	95.8	ME_MS41	
WH12250085	CHF6_R	520000	7044049	0.7	8.63	11.6	238	0.13	14.45	2.4	1.3	86.6	5.62	0.5	99	ME_MS41l	
WH12250085	CHF7_R	520000	7044099	0.5	0.537	4.52	138	0.25	9.74	1.58	0.81	23.2	0.473	0.32	23.6	ME_MS411	
WH12250086	P21_R	521000	7044799	0.5	0.1	1	09	2	5	0.69	0.5	3	<2	<10	15	AU_ICP21_MEICP41	MEICP41
WH12254153	A41_R	519003	7046799	0.1	0.235	1.61	236	4.84	37.4	3.76	0.1	13.25	0.339	1.05	67.2	ME_MS41	
WH12254153	CHK10_R	520500	7044249	2.1	0.302	3.96	1975	0.66	107.5	5.6	8.85	75	0.184	1.16	894	ME_MS411	
WH12254153	CHK12_R	520500	7044350	0.4	0.067	0.38	486	0.07	25.4	5.33	0.17	16.75	0.057	0.91	276	ME_MS41	
WH12254153	CHK16_R	520500	7044549	1.5	34.2	2.05	111	769	11.4	0.98	2.31	1140	0.427	290	223	ME_MS41L	
WH12254153	F11_R	520000	7044299	0.2	0.035	3.21	121	0.34	8.53	2.24	0.57	14.15	0.125	0.16		54.1 ME_MS41L	
WH12254153	P26_R	521000	7045299	1.9	0.421	5.55	377	1.83	32.4	0.74	2.19	54.1	0.204	0.63	70.5	ME_MS41	

CH claims- 2012 Rock sampling

assay_cert	sample_no	assay_cert sample_no rx_description	UTM_East	UTM_North	JTM_East UTM_North Au_ppb Cu_ppm	n Mo_ppm	Mo_ppm Pb_ppm Zn_ppm	Zn_ppm
WH12235051 K931792		otc Feld-qz-chl sch lim	520820	7045788	0.5	. 62	1 <2	39
WH12235051 K931793	K931793	otc Qz-chl-bio-musc sch lim	520941	7045538	8	161	7	412
WH12235051 K931794	K931794	otc Qz-fld-chl-musc sch lim	521141	7045212	2	0.5 0.5	5 10	77
WH12235051 K931795	K931795	otc Qz-musc sch lim	520519	7044219	11	68 24	t 472	63
WH12235051 K931796	K931796	otc Qz-musc-chl sch lim	520562	7044180	0.5	6	2 15	80
WH12235051 K931797	K931797	float Qz-musc sch-lim-galena	520644	7044228	2	, 9	t 249	92
WH12235051 K931798	K931798	float Qz-musc sch-lim	520675	7044201	199	94 2.	2 835	75
WH12235051 K931799	K931799	float Qz vn - galena	520658	7044170	4	9	3 26	38
WH12235051 K931800		float Qz-musc sch	520692	7044147	4	23	3 200	63

APPENDIX F- MINFILE DESCRIPTIONS AND METALS CREEK NEWS RELEASES

MINFILE DETAILS

Occurrence Number: 115N 027
Occurrence Name: SANTA

Occurrence Type: Hard-rock

Status: Showing

Deposit Type(s): Polymetallic Veins Ag-Pb-Zn+/-Au

Location(s): 63°31'43" N - -140°35'49" W

NTS Mapsheet(s): 115N10

Work History

Date	Work Type	Comment
12/31/1970	Geochemistry	
12/31/1970	Other	

Capsule

Work History

Staked as Santa cl 1-21 (Y56885) in Jul/70 by Atlas Explorations Ltd and explored by soil sampling and prospecting. Restaked as Nora cl 1-16 (YB4394) in Oct/87 by M. Elson.

Restaked as the more easterly of two groups of She cl 1-36 (YB41198) in Jul/92 by S. Savage, who explored with trenching in Jul/93.

Capsule Geology

The claims cover an area of Paleozoic metasedimentary rocks. A quartz vein was found which has a width of about a metre and contains galena with a silver to lead ratio of 34.3 g/t Ag :1% Pb. Cassiterite is reported to have been found in placer concentrates from Matson Creek.

References

This content has been downloaded from Metals Creek Resources' Website: www.metalscreek.com

Yukon Gold - Squid East - YK

Metals Creek acquired through staking, 166 claim units in four separate blocks in the Dawson Range gold district in 2011. Three of the claim blocks are located in the Matson Creek area, proximal to the Matson Creek placer gold camp, and the fourth block is located west of the Yukon River, 40 km north of Kinross Gold's White Gold property. The claims were staked to cover a number of gold geochemical anomalies, interpreted to be underlain by favorable geology similar to that hosting the recently discovered gold deposits in the White Gold area.

In July 2011, the company initiated an exploration program consisting of prospecting and soil sampling. A total of 924 soil samples were taken on these claim holdings, mainly along "ridge and spur" and contour lines. Five separate gold-in soil anomalies have been defined on the two most western claim blocks near Matson Creek where anomalous values ranged between 10 and 178 ppb Au. These gold trends were the focus of the 2012 program of detailed sampling and prospecting. The work was carried out in August of 2012 and consisted of detailed soil sampling on 100 to 200m (meters) spaced line with soils taken every 25m resulting in a total of 988 samples being collected. The 2012 soil results delineated a strong northwest trending gold plus pathfinder element anomaly located on the Squid East claim block. Anomalous values are remarkably continuous between sample locations with gold ranging from 15 ppb (parts per billion) to 1086 ppb. Associated with the gold assays are strong pathfinder element results which include Ag up to 78.5 parts per million (ppm), Pb up to 4493.5 ppm, As up to 50.9 ppm, Sb up to 241.2 ppm, Ba up to 2370 ppm, and Hg up to 36.32 ppm. The anomaly has minimum dimensions of approximately 450m long by 200m wide and is coincident with a distinct northwesterly trending magnetic low. Several other Au, As and Ba anomalies are also present within this mag low and will require additional follow-up sampling. The strength and size of this newly discovered anomaly is comparable to soil anomalies associated with the recent discoveries in the White Gold District and the associated pathfinder elements are typical of these new discoveries. Metals Creek would also like to thank the Yukon Government for its support of this project through a financial contribution thru the Yukon Mining Incentive Program (YMIP).

Following the 2012 field results, an additional 46 quartz claims have been staked, increasing the Squid East land package and bringing the company's claim total to 242 claims. These gold in soil anomalies will continue to be evaluated in 2013 and will be the focus of a detailed sampling and trenching program.

From Metals Creek website:

http://www.metalscreek.com/article/yukon-gold--squid-east--yk-268.asp

MEK Reports 81.75 % Silver Recovery from Squid East Project

Metals Creek Resources Reports 81.75 % Silver Recovery in addition to previously reported 92.0 % Gold Recovery from Bottle Roll Tests Completed on Samples from Squid East Project, White Gold District, Yukon

Toronto, Ontario, February 26, 2014 – Metals Creek Resources Corp. (the "Company" or "Metals Creek") (TSXV: MEK) reports silver results from bottle roll cyanide extraction test work, reporting an average of 81.75% silver recovery from drill core and trench samples at the Squid East project. Previously, Metals Creek reported bottle roll tests averaging 92% gold recovery from the same zone. (See news-release dated-14-January 2014).

The analysis was carried out to provide preliminary metallurgical information on MEK's new gold-silver discovery located in west central Yukon. This new discovery included values of 1.96 grammes per tonne (g/t) gold and 160.6 g/t Ag over 22.0 meters from trenching and 1.55 g/t gold and 114.1 g/t Ag over 21.0 m from subsequent drilling (see MEK press releases dated August 6, 2013 and October 8, 2013). The recent precious metal results enhances the potential of the zone and the possibility for a near surface bulk tonnage gold/silver system. The mineralized zone is characterized as highly weathered sericite schist with associated porphyritic sections and remains completely open both along strike and down dip. Additionally, the thickness of the zone has not been ascertained as the three holes which intersected the zone all collared in mineralization. This new discovery, located in the northwest extension of the White Gold District, is within the unglaciated portion of the Yukon, proximal to an existing placer mine and trail accessible.

The silver results, reported here, were obtained from four samples collected from drill core and channel samples. The bottle roll cyanidation process confirmed that the silver recovery in these samples averaged 81.75% indicating that the weathered material could potentially react well to leach extraction methods. Silver recoveries for these four samples ranged from 60.6 to 92.6% and averaged 81.75%. Silver grades for these four samples ranged from 53.7 g/t to 158 g/t. Table 1, below, details the silver results.

Table 1. Bottle Roll Cyanidation Performance (Silver)

Test No	Sample ID	P80	NaCN	Measured	Calc. Head	Recovery	Residue
		μm	g/L	Ag (g/t)	Ag (g/t)	Ag (%)	Ag (g/t)
C7	1308705	95	1.0	138	163.5	89.7	16.9
C8	SE13-01-006	182	1.0	53.7	51.5	60.6	20.3
C9	SE13-02-005	174	1.0	81.6	80.5	84.1	13.0
C10	SE13-02-015	96	1.0	158	161.8	92.6	12.0

In a news release dated 14 January 2014, Metals Creek reported gold recoveries for six samples which ranged from 83.8 to 95.7% and averaged 92% overall. Gold grades for these six samples ranged from 0.71 grammes per tonne (g/t) Au to 9.99 g/t Au. The following table details those results.

Table 2. Bottle Roll Cyanidation Performance (Gold)

Test Sample ID P80 NaCN Measured Calc. Recovery Residue

No	μm	g/L	Au (g/t)	Head	Au (%)	Au (g/t)
				Au (g/t)		
C1	1308701 80	1.0	8.55	8.18	95.7	0.35
C2	1308707 89	1.0	2.53	2.76	91.0	0.25
C3	SE13-001-86	1.0	1.95	1.98	93.2	0.14
	005					
C4	SE13-002- 106	1.0	0.71	0.68	83.8	0.11
	007					
C5	SE13-002- 103	1.0	9.99	8.36	95.1	0.41
	008					
C6	SE13-002- 101	1.0	1.76	1.58	93.4	0.11
	013					

Alexander (Sandy) Stares, President & CEO of Metals Creek Resources stated "We are highly encouraged with the precious metal recoveries obtained from the strongly weathered host rock at Squid East. These positive results help enhance the potential of the mineralization and reinforce management's high regard for the project."

Michael MacIsaac, P.Geo and VP Exploration for the Corporation and a qualified person as defined in National Instrument 43-101, is responsible for this release, and supervised the preparation of the information forming the basis for this release.

The samples were comprised of reject material from the above noted core and channel samples which were delivered to Inspectorate Exploration & Mining Services ltd. of Vancouver B.C. The silver assays were obtained utilizing a standard fire assay with an atomic absorption finish. The bottle roll cyanidation process entailed grinding to $105\mu m$ and leaching for 72 hours at 40 wt% solids in 1.0~g/L NaCN based on a 300g sample size.

About Metals Creek Resources Corp.

Metals Creek Resources Corp. is a junior exploration company incorporated under the laws of the Province of Ontario, is a reporting issuer in Alberta, British Columbia and Ontario, and has its common shares listed for trading on the Exchange under the symbol "MEK". The Ogden Property is held under a joint venture in which Metals Creek owns 50% and is the operator, and Goldcorp Canada Ltd. ("Goldcorp") owns 50% (as manager and on behalf of the Porcupine Joint Venture, a joint venture between Goldcorp Inc. and Goldcorp Canada Ltd.) and is located 6 km south of Timmins, Ontario. Metals Creek also holds approximately 15% interest in Sokoman Iron Corp. (TSX-V SIC). The Corporation has also recently made a new gold/silver discovery in the "White Gold District" on the Squid East project in the Yukon. Metals Creek is engaged in the identification, acquisition, exploration and development of other mineral resource properties, and presently has mining interests in Ontario, Yukon and Newfoundland and Labrador. Additional information concerning the Corporation is contained in documents filed by the Corporation with securities regulators, available under its profile at www.sedar.com.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Alexander (Sandy) Stares, President and CEO

http://www.metalscreek.com/article/mek-reports-8175--silver-recovery-from-squid-east-project-339.asp

 $\frac{\text{http://www.metalscreek.com/article/drilling-results-at-newly-discovered-\%E2\%80\%9Cexploits-zone\%E2\%80\%9D-on-squideast-property-yukon--329.asp}{\text{http://www.metalscreek.com/article/drilling-results-at-newly-discovered-\%E2\%80\%9Cexploits-zone\%E2\%80\%9D-on-squideast-property-yukon--329.asp}{\text{http://www.metalscreek.com/article/drilling-results-at-newly-discovered-\%E2\%80\%9Cexploits-zone\%E2\%80\%9D-on-squideast-property-yukon--329.asp}{\text{http://www.metalscreek.com/article/drilling-results-at-newly-discovered-\%E2\%80\%9Cexploits-zone\%E2\%80\%9D-on-squideast-property-yukon--329.asp}{\text{http://www.metalscreek.com/article/drilling-results-at-newly-discovered-\%E2\%80\%9Cexploits-zone\%E2\%80\%9D-on-squideast-property-yukon--329.asp}{\text{http://www.metalscreek.com/article/drilling-results-at-newly-discovered-\%E2\%80\%9Cexploits-zone\%E2\%80\%9D-on-squideast-property-yukon--329.asp}{\text{http://www.metalscreek.com/article/drilling-results-at-newly-discovered-\%E2\%80\%9Cexploits-zone\%E2\%80\%9D-on-squideast-property-yukon--329.asp}{\text{http://www.metalscreek.com/article/drilling-results-at-newly-discovered-\%E2\%80\%9Cexploits-at-newly-discovered-%E2\%80\%9Ce$

Home > News Updates > October 8, 2013

Drilling at newly discovered "Exploits Zone" returns 1.54 g/t Gold and 114 g/t Silver over 21m on Squid East Property in the White Gold District, Yukon.

Toronto, Ontario- 08 October, 2013. Metals Creek Resources Corp. (TSXV: "MEK") is pleased to announce that final assay results have been received from its recently completed four hole (428 meter) drill program at the Exploits Zone on the Squid East Project in the Yukon. The recent results show the new zone to have significant gold and silver mineralization returning assay results up to 1.54 grammes per tonne (g/t) gold (Au), 114 g/t silver (Ag) and 0.31% lead (Pb) over 21 meters (m) in hole SE13-002. This hole also contained a higher grade zone of 2.43 g/t Au and 185 g/t Ag and 0.47% Pb over 12 meters.

The drill program targeted mineralization recently reported (News Release: Sept. 12, 2013) from the completed trenching program and has an associated strong northwest trending gold plus pathfinder element soil anomaly. This program was designed to obtain a better understanding of the geometry and style of mineralization encountered at the Exploits Zone. The initial three holes appear to have all collared in the zone and the fourth hole, which was drilled in the opposite direction, was drilled down dip and remained in the interpreted footwall for its entire length. A table of results is shown below:

Hole	From	<u>To</u>	Length	Au g/t	Ag g/t	<u>Pb %</u>
SE13-001	<u>(m)</u> 9.00	(m) 21.00	(m) 12.00	1.699	81.775	0.312
SE13-002 incl.	12.00 14.00	33.00 26.00	21.00 12.00	1.547 2.431	114.121 185.254	
SE13-003	6.50	13.00	6.50	0.371	39.892	0.664
SE13-004	NO SIGNIFICANT	ASSAYS				

The trenching and drilling carried out over the past season was intended to find a bedrock source to the strong gold plus pathfinder soil anomaly defined in 2012. Results to date indicate that the trenching and drilling may have clipped the eastern side of a gold-silver alteration system which is wide open for expansion. The intersected mineralization is completely oxidized and the combined gold and silver values make this zone somewhat unique in the White Gold District. A more systematic drill program is being contemplated for 2014. Metals Creek would also like to thank the Yukon Government for its support of this project through a financial contribution from the Yukon Mining Incentive Program (YMIP).

All split core samples were sent to Acme Analytical Laboratories Ltd located in Vancouver, B.C. The precious metals were analyzed utilizing a standard fire assay with an atomic absorption finish and the lead assays were fire assay with an ICP finish. As part of the Corporations QAQC protocol,

approximately 10% of the samples submitted for assay were also sent for check assays. Standards and blanks were inserted randomly into the sample shipments as part of the sampling protocol.

GTA can earn an initial 51% interest in the Squid East property from Metals Creek Resources Corp. ("MEK") and can increase its interest to 70% as previously announced in a press release dated 12 January 2013. MEK will be the operator during the initial earn-in period.

MEK initially staked the Yukon properties in February, 2011 and has a 100% interest in four separate claim blocks (242 claims) within the White Gold District. The Squid East claims are located proximal to the Matson Creek placer gold operations, approximately 90km southwest of Dawson City. A four wheel drive access road and airstrip service the placer camp and MEK's current field work availed of the placer camp airstrip, accommodations and equipment to help carry out the program. During the trenching program, a six km access trail was completed from the Matson Creek four wheel drive road to the target area making access more cost effective.

The Corporation also announces it is currently in the final planning stage of an upcoming drill program on its Flagship Ogden gold project in the Timmins Mining Camp. Details will be released once finalized.

Michael MacIsaac, P. Geo, VP Exploration for the Corporation and a qualified person as defined in National Instrument 43-101, is responsible for this release, and supervised the preparation of the information forming the basis for this release.

About Metals Creek Resources Corp.

Metals Creek Resources Corp. is a well funded junior exploration company incorporated under the laws of the Province of Ontario, is a reporting issuer in Alberta, British Columbia and Ontario, and has its common shares listed for trading on the Exchange under the symbol "MEK". Metals Creek has earned a 50% interest in the Ogden Gold Property, including the former Naybob Gold mine, located 6 km south of Timmins, Ontario and has a 8 km strike length of the prolific Porcupine-Destor Fault (P-DF) that stretches between Timmins, Ontario and Val d'Or, Quebec. The Corporation is also engaged in the identification, acquisition, exploration and development of other mineral resource properties, and presently has mining interests in Ontario, Yukon and Newfoundland and Labrador. Additional information concerning the Corporation is contained in documents filed by the Corporation with securities regulators, available under its profile at www.sedar.com

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Alexander (Sandy) Stares, President and CEO Metals Creek Resources Corp telephone: (709)-256-6060

fax: (709)-256-6061

email: astares@metalscreek.com

MetalsCreek.com

<u>Twitter.com/MetalsCreekRes</u> <u>Facebook.com/MetalsCreek</u>

Home > News Updates > August 19, 2013

■Commencement of drill program at newly discovered Exploits Zone

Commencement of drill program at newly discovered Exploits Zone on the Squid East Property in the White Gold District, Yukon.

Toronto, Ontario. 19 August, 2013. Metals Creek Resources Corp. (TSXV: "MEK") is pleased to announce the commencement of a drill program on the newly discovered Exploits Zone at the Squid East project in the Matson Creek area in the Yukon. This initial drilling will focus on the recently reported chip sampling which returned 1.96 grammes per tonne (g/t) gold over the entire 22.0 meter (m) trench length. Included in this is a higher grade interval of 6.39 g/t gold over 4.0 m. (see news release dated 6 August 2013).

A 400 m drill program is initially planned to better define the orientation and size of the Exploits gold zone. The Matson Creek placer camp and airstrip will be used as a staging point and a recently completed access trail will be used to service the drill. In addition to diamond drilling, an attempt will be made to further expose bedrock by mechanical trenching in areas where bedrock could not be exposed due to frost conditions in early July.

"We are extremely excited to initiate drill testing of this exciting target in the White Gold District. This program will give us a better understanding of the geometry and mineralization of this newly discovered Exploits Zone. In addition, the existing infrastructure will help ensure that exploration is carried out in a cost effective manner." states Alexander (Sandy) Stares, President and CEO of Metals Creek.

GTA can earn an initial 51% interest in the Squid East property as previously announced in a press release dated 12 January 2013. Terms include cash payments of \$60,000 over three years (\$20,000 on signing), issuance of a total of 2,000,000 GTA shares over three years (200,000 on signing) and work expenditures of \$2,000,000 over three years (\$500,000 firm including a minimum 400 meters of drilling by the 1st anniversary). Metals Creek will be the operator during the earn-in period. Once a 51% interest is earned by GTA, either a 51/49 joint venture will be formed, or GTA may elect to increase its interest to 70% by incurring additional payments of \$210,000 and 400,000 GTA shares and expenditures of \$1,000,000 by the 5th anniversary. GTA would assume operatorship once it had earned a 51% interest.

MEK initially staked the Yukon properties in February, 2011 and has a 100% interest in four separate claim blocks (242 claims) within the White Gold District. The Squid East claims are located proximal to the Matson Creek placer gold operations, approximately 90km southwest of Dawson City. A four wheel drive access road and airstrip service the placer camp and MEK's current field work availed of the placer camp airstrip, accommodations and equipment to help carry out the program. A six km access trail was completed from the Matson Creek four wheel drive road to the target area making access more cost effective.

Michael MacIsaac, P. Geo, VP Exploration for the Corporation and a qualified person as defined in National Instrument 43-101, is responsible for this release, and supervised the preparation of the information forming the basis for this release.

About Metals Creek

Metals Creek Resources Corp. is a well-funded junior exploration company incorporated under the laws of the Province of Ontario, is a reporting issuer in Alberta, British Columbia and Ontario, and has its common shares listed for trading on the Exchange under the symbol "MEK". Metals Creek recently formed a 50/50 joint venture with Goldcorp, to continue exploring the Ogden Gold property, including the former Naybob Gold mine, located 6 km south of Timmins, Ontario. The Company will be the operator and subsequent programs will be funded on a 50/50 basis while both companies contribute its share of required funding in the Ogden Gold Property. Metals Creek is also engaged in the identification, acquisition, exploration and development of other mineral resource properties, and presently has mining interests in Ontario, Yukon and Newfoundland and Labrador. Additional information concerning the Company is contained in documents filed with securities regulators, available under the Company's profile at www.sedar.com

Alexander (Sandy) Stares, President and CEO Metals Creek Resources Corp telephone: (709)-256-6060

fax: (709)-256-6061

email: astares@metalscreek.com ca.linkedin.com/in/sandystares/

MetalsCreek.com

Twitter.com/MetalsCreekRes

Facebook.com/Metals.CreekResources

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

New Gold Discovery Squid East Property in the White Gold District

New Gold Discovery on the Squid East Property in the White Gold District, Yukon. Trench results include 1.96 g/t Gold over 22.0 meters

Toronto, Ontario. 06 August, 2013. Metals Creek Resources Corp. (TSXV: "MEK") is pleased to announce the discovery of a new gold occurrence on the Squid East project in the Matson Creek area in the Yukon. The initial phase of exploration consisted of a trenching program focused on a strong northwest trending gold plus pathfinder element soil anomaly located on the Squid East claim block. Chip sampling at the newly discovered "Exploits Zone" from recently completed trench E4-3 returned 1.96 grammes per tonne (g/t) gold over the entire 22 meter (m) trench length. Included in this is a higher grade interval of 6.39 g/t gold over 4.0 m. Individual chip samples within this zone were 2.0 meters long and ranged from 0.25 g/t to 8.55g/t gold. Trenching was limited to 22m within this portion of the trench due to frost conditions on both ends. Mineralization has not been cut-off in terms of defining the width of the zone and remains open in all directions. A follow up drill program is scheduled to begin in mid-August to follow-up on these encouraging results and better define the orientation and geometry of the newly discovered zone.

Bedrock mapped in the trenches consisted of heavily bleached and weathered broken rock which is considered to be in place and is typical for the White gold district. The host rock to the gold mineralization consists of sericite schist with local quartz veining, and local hematite alteration.

These initial results compare favorably to other significant initial trenching results in the White Gold District which includes Kaminak Gold Corporation's Coffee Project which returned trench assays of 2.3 g/t Au over 21.0 m (Kaminak News Release, August 13th, 2009).

Alexander (Sandy) Stares, President and CEO of Metals Creek states, "We are extremely pleased with the results of this initial trenching program. These assay results demonstrate strong similarities to other proven projects in the White Gold district. We are looking forward to the upcoming drill program and continuing to advance the Squid East Project."

GTA can earn an initial 51% interest in the Squid East property as previously announced in a press release dated 12 January 2013. Terms include cash payments of \$60,000 over three years (\$20,000 on signing), issuance of a total of 2,000,000 GTA shares over three years (200,000 on signing) and work expenditures of \$2,000,000 over three years (\$500,000 firm including a minimum 400 meters of drilling by the 1st anniversary). Metals Creek will be the operator during the earn-in period. Once a 51% interest is earned by GTA, either a 51/49 joint venture will be formed, or GTA may elect to increase its interest to 70% by incurring additional payments of \$210,000 and 400,000 GTA shares and expenditures of \$1,000,000 by the 5th anniversary. GTA would assume operatorship once it had earned a 51% interest.

MEK initially staked the Yukon properties in February, 2011 and has a 100% interest in four separate claim blocks (242 claims) within the White Gold District. The Squid East claims are located proximal to the Matson Creek placer gold operations, approximately 90km southwest of Dawson City. A four wheel drive access road and airstrip service the placer camp and MEK's current field work availed of

the placer camp airstrip, accommodations and equipment to help carry out the program. During the trenching program, a six km access trail was completed from the Matson Creek four wheel drive road to the target area making access more cost effective.

Michael MacIsaac, P. Geo, VP Exploration for the Corporation and a qualified person as defined in National Instrument 43-101, is responsible for this release, and supervised the preparation of the information forming the basis for this release.

About Metals Creek

Metals Creek Resources Corp. is a well-funded junior exploration company incorporated under the laws of the Province of Ontario, is a reporting issuer in Alberta, British Columbia and Ontario, and has its common shares listed for trading on the Exchange under the symbol "MEK". Metals Creek recently formed a 50/50 joint venture with Goldcorp, to continue exploring the Ogden Gold property, including the former Naybob Gold mine, located 6 km south of Timmins, Ontario. The Company will be the operator and subsequent programs will be funded on a 50/50 basis while both companies contribute its share of required funding in the Ogden Gold Property. Metals Creek is also engaged in the identification, acquisition, exploration and development of other mineral resource properties, and presently has mining interests in Ontario, Yukon and Newfoundland and Labrador. Additional information concerning the Company is contained in documents filed with securities regulators, available under the Company's profile at www.sedar.com

Alexander (Sandy) Stares, President and CEO Metals Creek Resources Corp telephone: (709)-256-6060 fax: (709)-256-6061

email: astares@metalscreek.com ca.linkedin.com/in/sandystares/

MetalsCreek.com

Twitter.com/MetalsCreekRes

Facebook.com/Metals.CreekResources

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Metals Creek/GTA initiates exploration program on the Squid East Property in the White Gold District

Toronto, July 02, 2013. Metals Creek Resources Corp. (TSXV: "MEK") and GTA Resources (TSXV:"GTA") are pleased to announce commencement of its exploration program on the Squid East project in the Matson Creek area in the Yukon. The initial phase of exploration will consist of a trenching program focused on a strong northwest trending gold plus pathfinder element soil anomaly located on the Squid East claim block. Anomalous values are remarkably continuous between sample locations with gold ranging from 15 ppb (parts per billion) to 1086 ppb. Associated with the gold assays are strong pathfinder element results which include Ag from below detection up to 78.5 parts per million (ppm), Pb from 5.3 up to 4493.5 ppm, Sb from 0.1 up to 241.2 ppm, Ba from 133 up to 2370 ppm, and Hg from below detection up to 36.32 ppm. The anomaly has minimum dimensions of approximately 450m long by 200m wide and is coincident with a distinct northwesterly trending magnetic low. (See MEK News Release dated October 23, 2012).

Several other Au, As and Ba anomalies are also present within this mag low and will be followed up with infill soil sampling. The strength and size of this newly discovered anomaly is comparable to soil anomalies associated with the recent discoveries in the White Gold District and the associated pathfinder elements are typical of these new discoveries. The trenching and soil sampling program will be followed by a drill program scheduled for mid August.

GTA can earn an initial 51% interest in the Squid East property as previously announced in a press release dated 12 January 2013. Terms include cash payments of \$60,000 over three years (\$20,000 on signing), issuance of a total of 2,000,000 GTA shares over three years (200,000 on signing) and work expenditures of \$2,000,000 over three years (\$500,000 firm including a minimum 400 meters of drilling by the 1st anniversary). Metals Creek will be the operator during the earn-in period. Once a 51% interest is earned by GTA, either a 51/49 joint venture will be formed, or GTA may elect to increase its interest to 70% by incurring additional payments of \$210,000 and 400,000 GTA shares and expenditures of \$1,000,000 by the 5th anniversary. GTA would assume operatorship once it had earned a 51% interest.

MEK initially staked the Yukon properties in February, 2011 and has a 100% interest in four separate claim blocks (242 claims) within the White Gold District. The Squid East claims are located proximal to the Matson Creek placer gold operations, approximately 90km southwest of Dawson City. A four wheel drive access road and airstrip service the placer camp and MEK's current field work will avail of the placer camp airstrip, accommodations and equipment to help carry out the program. The soil anomaly is 3 km from the Matson Creek four wheel drive road and permits are in place to complete an access trail to the target area.

By Optioning/Joint venturing its non-core properties, Metals Creek intends to reserve its current cash to explore the corporation's flagship property, the Ogden Gold Project in the Timmins Gold Camp, which is a 50/50 joint venture between the Corporation and Goldcorp Canada Ltd. and Goldcorp Inc...

Michael MacIsaac, P. Geo, VP Exploration for the Corporation and a qualified person as defined in National Instrument 43-101, is responsible for this release, and supervised the preparation of the information forming the basis for this release.

About Metals Creek Resources Corp.

Metals Creek Resources Corp. is a well funded junior exploration company incorporated under the laws of the Province of Ontario, is a reporting issuer in Alberta, British Columbia and Ontario, and has its common shares listed for trading on the Exchange under the symbol "MEK". Metals Creek has earned a 50% interest in the Ogden Gold Property, including the former Naybob Gold mine, located 6 km south of Timmins, Ontario and has a 8 km strike length of the prolific Porcupine-Destor Fault (PDF) that stretches between Timmins, Ontario and Val d'Or, Quebec. The Corporation is also engaged in the identification, acquisition, exploration and development of other mineral resource properties, and presently has mining interests in Ontario, Yukon and Newfoundland and Labrador. Additional information concerning the Corporation is contained in documents filed by the Corporation with securities regulators, available under its profile at www.sedar.com.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Alexander (Sandy) Stares, President and CEO Metals Creek Resources Corp telephone: (709)-256-6060

fax: (709)-256-6061

email: astares@metalscreek.com

MetalsCreek.com

Twitter.com/MetalsCreekRes

Facebook.com/Metals.CreekResources

MMEK REPORTS STRONG GOLD IN SOIL ANOMALY IN THE WHITE GOLD DISTRICT, YUKON

Metals Creek reports strong gold in soil anomaly from its Matson Creek claims in the White Gold District, Yukon.

Toronto, October 23, 2012. Metals Creek Resources Corp. (the "Corporation", TSXV: "MEK") is pleased to announce geochemical analysis results from a recently completed C-horizon soil sampling program on its Matson Creek properties in Yukon. This program was following up on anomalous results obtained from a reconnaissance ridge and spur soil sampling program carried out in 2011 (MEK News Release December 1, 2011) The recent program was completed on MEK's two most westerly claim blocks (Squid East and West Blocks) located near Matson Creek, in the northwest part of the White Gold District. The work was carried out in August of 2012 and consisted of detailed soil sampling on 100 to 200m (meters) spaced line with soils taken every 25m resulting in a total of 988 samples being collected.

The 2012 soil results delineated a strong northwest trending gold plus pathfinder element anomaly located on the Squid East claim block. Anomalous values are remarkably continuous between sample locations with gold ranging from 15 ppb (parts per billion) to 1086 ppb. Associated with the gold assays are strong pathfinder element results which include Ag from below detection up to 78.5 parts per million (ppm), Pb from 5.3 up to 4493.5 ppm, As from 6.9 up to 50.9 ppm, Sb from 0.1 up to 241.2 ppm, Ba from 133 up to 2370 ppm, and Hg from below detection up to 36.32 ppm. The anomaly has minimum dimensions of approximately 450m long by 200m wide and is coincident with a distinct northwesterly trending magnetic low. Several other Au, As and Ba anomalies are also present within this mag low and will require additional follow-up sampling. The strength and size of this newly discovered anomaly is comparable to soil anomalies associated with the recent discoveries in the White Gold District and the associated pathfinder elements are typical of these new discoveries. Metals Creek would also like to thank the Yukon Government for its support of this project through a financial contribution thru the Yukon Mining Incentive Program (YMIP).

Sandy Stares, President and CEO of the Corporation states, "These strong gold in soil results combined with a strong association with pathfinder elements has management highly encouraged regarding the potential of the Matson Creek claim blocks and we look forward to next years field season to continue to advance this project with additional detailed soil sampling and trenching."

MEK initially staked the Yukon properties in February, 2011 and has a 100% interest in four separate claim blocks (242 claims) within the White Gold District. The Matson claims are located upslope from the Matson Creek placer gold operations, approximately 90km southwest of Dawson City. A four wheel drive road accessing the placer operations passes within 3 km of the MEK property. These gold in soil anomalies will continue to be evaluated in 2013 and will be the focus of a detailed sampling and trenching program. The Matson Creek claims continue to add to the Corporations strong portfolio of gold properties which include the Flint Lake, Jackson's Arm Projects and the Corporation's Flagship property the Ogden Gold Project which is a 50/50 joint venture between the Corporation and Goldcorp Canada Ltd. and Goldcorp Inc.

All samples were sent to Acme Analytical Laboratories, an accredited lab based in Vancouver, British Columbia, for 36 elements analysis using 15g Aqua Regia digestion with an ICP –MS finish.

Michael MacIsaac, P. Geo, VP Exploration for the Corporation and a qualified person as defined in National Instrument 43-101, is responsible for this release, and supervised the preparation of the information forming the basis for this release.

About Metals Creek Resources Corp.

Metals Creek Resources Corp. is a well funded junior exploration company incorporated under the laws of the Province of Ontario, is a reporting issuer in Alberta, British Columbia and Ontario, and has its common shares listed for trading on the Exchange under the symbol "MEK". Metals Creek has earned a 50% interest in the Ogden Gold Property, including the former Naybob Gold mine, located 6 km south of Timmins, Ontario and has a 8 km strike length of the prolific Porcupine-Destor Fault (PDF) that stretches between Timmins, Ontario and Val d'Or, Quebec. The Corporation is also engaged in the identification, acquisition, exploration and development of other mineral resource properties, and presently has mining interests in Ontario, Yukon and Newfoundland and Labrador. Additional information concerning the Corporation is contained in documents filed by the Corporation with securities regulators, available under its profile at www.sedar.com

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

For further information, please contact: Alexander (Sandy) Stares, President and CEO telephone: (709)-256-6060 fax: (709)-256-6061 email: astares@metalscreek.com

APPENDIX G- STATEMENT OF EXPENDITURES

CH claims- 2012-2013	Expenditures
wages and food	\$13,590.00
Helicopter	\$12,180.00
trucks	\$1,350.00
fuel and travel	\$1,000.00
Protore geological	
(mapping,	
prospecting)	\$1,875.00
data	
management,compila	
tion, interpretation,	
report, printing	\$2,400.00
Total ALS assays	\$14,569.91
TOTAL	\$46,964.91
No of claims	182
\$ spent/ claim	\$258.05
enough to renew all	,
claims for	2.5 years
renewal fee	\$2,275.00

345 soils, 33 rocks, 40 soil re-analyses

Prepared based on information supplied by contractor

Signed in Whitehorse, Wednesday September 04, 2013

Danièle Héon, P.Geo

APPENDIX H- ASSAY CERTIFICATES

See Data Folder for Secured Assay Certificates