Telephone: 604-688-2568

Fax: 604-688-2578

ASSESSMENT REPORT

describing

PROSPECTING, GEOLOGICAL MAPPING AND GEOCHEMICAL SAMPLING

Field work performed from August 12 to 17, 2013

at the

ROSE PROPERTY

Rose 1-60 YD58591-YD58650 61-64 YC97725-YC97728

NTS 105K/5 Latitude 62°20'N; Longitude 133°33'W

in the

Whitehorse Mining District Yukon Territory

prepared by

Archer, Cathro & Associates (1981) Limited

for

SILVER RANGE RESOURCES LTD.

by

A.C. Graham, B.Sc. (Hons)

November 2013

CONTENTS

INTRODUCTION	1
PROPERTY LOCATION, CLAIM DATA AND ACCESS	1
HISTORY AND PREVIOUS WORK	1
GEOMORPHOLOGY AND CLIMATE	3
GEOLOGY	3
MINERALIZATION	5
GEOCHEMICAL SAMPLING	7
DISCUSSION AND CONCLUSIONS	8
REFERENCES	10

APPENDICES

- I STATEMENT OF QUALIFICATIONS
- II STATEMENT OF EXPENDITURES
- III ROCK SAMPLE DESCRIPTIONS
- IV CERTIFICATES OF ANALYSIS

FIGURES

<u>No.</u>	Description	Follows Page
1	Property Location	1
2	Claim Locations	1
3	Tectonic Setting	3
4	Regional Geology	4
5	Property Geology and Mineralization	In Pocket
6	Sample Locations	7
7	Gold Geochemistry	7
8	Arsenic Geochemistry	7
9	Copper Geochemistry	7
10	Silver Geochemistry	7
11	Antimony Geochemistry	7
12	Lead Geochemistry	7
13	Zinc Geochemistry	7
14	Cobalt Geochemistry	7
	TABLES	

Ι	Regional Lithologies in the Rose Mountain Area	3
II	Geochemical Data for Geochemical Samples	8

INTRODUCTION

The Rose property lies on the southwest flank of the Anvil lead-zinc-silver district in southeastern Yukon. It was staked by Strategic Metals Ltd. in the spring of 2010 to cover anomalous gold values reported by a reconnaissance-scale stream sediment survey. Silver Range Resources Ltd. bought the property from Strategic Metals in 2011.

This report describes an exploration program of prospecting, geological mapping and geochemical sampling conducted between August 12 and 17, 2013 by Archer, Cathro & Associates (1981) Limited on behalf of Silver Range. The author participated in the field program and has compiled and interpreted the data resulting from this work. Her Statement of Qualifications is in Appendix I. A Statement of Expenditures is included in Appendix II.

PROPERTY LOCATION, CLAIM DATA AND ACCESS

The Rose property comprises 64 contiguous mineral claims, located in southeastern Yukon at latitude 62°20′ north and longitude 133°33′ west on NTS map sheet 105K/5 (Figure 1). The property covers an area of about 1280 hectares (12.8 km²). The claims are registered with the Whitehorse Mining Recorder in the name of Archer Cathro, which holds them in trust for Silver Range. Specifics concerning claim registration are tabulated below, while the locations of individual claims are shown on Figure 2.

Claim Name	Grant Number	Expiry Date*
Rose 1-60	YD58591-YD58650	March 13, 2019
61-64	YC97725-YC97728	June 13, 2014

* Expiry dates do not include 2013 work which has not yet been filed for assessment credit.

The 2013 exploration program was conducted from a three-person fly camp located on the property. The crew was mobilized and supplied using a Bell 206B helicopter operated by Trans North Helicopters of Whitehorse from the Faro airport, approximately 20 km southeast of the property.

The town of Faro is the nearest supply centre to the Rose property. The closest road access is a bush trail that extends 18 km northwest from Faro to within two kilometres of the property. Faro is accessible via the Robert Campbell Highway in all seasons using two-wheel drive vehicles.

HISTORY AND PREVIOUS WORK

The property area was mapped at 1:250,000 scale in 1987 by the Geological Survey of Canada (Gordey and Irwin, 1987) and at 1:100,000 scale in 2001 when the Yukon Geological Survey remapped the Anvil District (Pigage 2004).

There are five known stratiform massive sulphide deposits in the Anvil District with a total inventory of 120.1 million tonnes averaging 9.3% combined zinc and lead (Pigage, 1999). Three of the five deposits – the Faro, Vangorda and Grum Deposits – have been mined. The Faro mine

site is located 12.5 km east of the Rose property. Due to the proximity to Anvil deposits, most exploration activities in the area have focused on lead-zinc. The area has received little exploration for other metals, including gold and silver.

In 1981, Cypress Anvil Mining Corporation conducted an exploration program on its Urn property, which overlapped part of the current Rose property and extended further to the southeast. The Urn property comprised 131 contiguous claims. Sampling revealed two or three barite beds, which are each 5 to 12 m thick, over a possible strike length of 3.7 km. The barite beds are hosted in Devonian to Carboniferous Mount Aho Group (Read, 1982). An independent prospector currently holds two claims that cover the centre of the barite occurrence; the remaining length extends northwest into the Rose property and southeast into unstaked ground.

In 1988, Curragh Resources Inc. conducted an exploration program on its Northwest Faro project, located approximately three kilometres northeast of the Rose property. The program consisted of regional mapping and one drill hole. The purpose of the drill hole was to test the boundary between the Vangorda and Mt. Mye Formations, which is the stratigraphic interval that hosts the Anvil deposits. The drill hole failed to intersect mineralization.

In 1998, the Geological Survey of Canada collected six stream sediment samples from creeks near the current Rose property. The highest gold value (23 ppb) came from a large creek draining the east side of the property. Strategic Metals staked the Rose property in spring 2010 to cover the drainage that produced this anomalous stream sediment sample.

Stream sediment samples collected by Strategic Metals in summer 2010 yielded some significant gold and copper anomalies. The highest gold value was 40 ppb, while the highest copper value was 338 ppm. A large creek draining the eastern part of the property and a smaller creek to the west returned most of the moderately to strongly anomalous gold values. Soil samples collected by Strategic Metals in 2010 returned slightly elevated gold values, mostly on the eastern portion of the claim block, and a cluster of moderately to strongly anomalous silver and antimony values further to the west. The peak soil values were 18 ppb gold, 135 ppm copper, 5 ppm silver and 27 ppm antimony (Phillips and Eaton, 2011).

In summer 2011, Strategic Metals sold the property to Silver Range.

Silver Range continued exploration on the Rose property in 2011 with additional soil sampling, focusing mainly on the western portion of the property. Contour soil sampling identified a cluster of anomalous gold values along a ridge near the southwestern property boundary (Dumala, 2012).

In summer 2012, Silver Range conducted prospecting in previously identified clusters of anomalous soil values and extended soil sampling on the east side of the property. The sampling outlined two zones of anomalous geochemical values (Chung, 2013).

GEOMORPHOLOGY AND CLIMATE

The Rose property lies six kilometres northeast of the Tintina Trench, within the Anvil Range of the Pelly Mountains. The property covers the north and southeast slopes of a northwest-trending ridge with several smaller ridges extending to the north and south. Outcrop is abundant along the main ridge and on a southward extending spur in the centre of the property. A number of northwest-trending recessive linears incise a small ridge in the eastern part of the property. Several seasonal streams drain northward off the property into Rose Creek, which ultimately connects to the Pacific Ocean via the Pelly and Yukon rivers.

The Rose area is predominantly forested, hilly terrain with elevations ranging from 1200 to 1800 m above sea level (asl). Treeline is at approximately 1500 m asl. Valley bottoms are blanketed by varying thicknesses of glaciofluvial outwash and glacial till from the Late Wisconsinan McConnell glaciation. In these areas outcrop limited to creek cuts. Black spruce and alder with an understory of low shrubs, moss and grass cover lower slopes and valley floors. Permafrost is extensive due to thick moss cover. Upper slopes are characterized by open talus with garlands of grass and shrubs.

The climate in the Rose area is typical of northern continental regions with long, cold winters, truncated fall and spring seasons and short, mild summers. The property is mostly snow free from early May to late September.

GEOLOGY

The Rose property lies on the southwest flank of the Anvil District (Figure 3), where rocks of the Cordilleran Miogeocline are juxtaposed by thrust faults against a thin sliver of Yukon-Tanana Terrane, the easternmost of the accreted terranes in the Canadian Cordillera. The property is six kilometres northeast of the Tintina Fault, a regional strike-slip fault with approximately 460 m of dextral offset during Tertiary times.

The Cordilleran Miogeocline is a predominantly sedimentary package of Precambrian to Middle Jurassic rocks that were deposited along the western margin of ancestral North America (Pigage, 1999). Rocks older than Jurassic are assumed to have been part of a west to southwest facing marine passive margin of ancestral North America, while sedimentary rocks younger than Jurassic represent a depositional linkage to Cordilleran deformation that resulted from exotic terranes being accreted onto North America (Pigage, 1999). Table I summarizes rock units that occur near the Rose property.

Unit	Map name	Age	Description	
Yukon-Tanana Terrane				
Nasina Assemblage	Руq	Devonian- Mississippian	Medium to dark grey, locally gritty, muscovite meta- quartzite to quartzose schists containing bands of greywacke, gabbro and phyllite and eclogite lenses.	
Cordilleran Miogeocline				
Faro Peak	TFP	Triassic	Resistant, massive, polymictic conglomerate	

Table I - Regi	onal Lithologies	of the Rose	Mountain Area	(After Pigage	2001)
1 abic 1 - Kegi	unai Littioiogies	of the Rose	Mountain Area	(After I iguge,	2001)

Formation			interbedded with: carbonaceous shale or siltstone, fine-grained limestone, grey, green, red or black bedded chert, sandstone, mafic greywacke and aphanitic basalt.
Anvil Range Group	PARG	Permian	Epidotized, locally hematitic, dark green, resistant, massive, poorly foliated basalt or brecciated basalt containing lesser grey, green, red and black bedded chert and pale green epivolcaniclastic sandstone or conglomerate.
	PZum	Permian	Mafic and ultramafic intrusive rocks including serpentinite, harzburgite, gabbro and diabase; locally extensively sheared.
Rose Mountain Formation	CPRm	Carboniferous- Permian	Pale green, tan-weathering, bedded phyllitic chert interbedded with lesser maroon chert and argillite, especially near the top of unit; contains minor black bedded chert, black chert-pebble conglomerate, siltstone, limestone and argillite.
Mount Aho Group	DCMAb	Devonian- Carboniferous	Dark grey to black, noncalcareous, siliceous argillite and bedded chert with lesser grey siltstone, sandstone, chert-pebble conglomerate and rhythmically bedded limestone; contains silvery cream, tan-weathering, bedded phyllitic chert with light grey barite beds.
	DCMAg	Devonian- Carboniferous	Pale green, noncalcerous argillite and bedded chert with lesser pale green shale chip and siltstone breccia, grey sandstone and grey to green chert-pebble conglomerate. Locally contains maroon argillite and bedded chert, especially near the bottom and top of the unit, and silvery cream, tan-weathering, bedded phyllitic chert with light barite beds.
Swim Lakes Formation	SDSL	Silurian- Devonian	Dark grey to black argillite with lesser medium to pale grey siltstone and fine sandstone, medium grey limestone and basalt flows; locally contains Middle Devonian limestone beds with two-hole crinoid macrofossils.
Menzie Creek Formation	OSMCb	Ordovician- Silurian	Undivided dark grey-green foliated basalt; includes massive and pillowed locally amygdaloidal flows and heterolithic or monolithic breccias with lesser limestone, argillite and tuff.
	OSMCg	Ordovician- Silurian	Dark green, locally magnetic, fine- to coarse-grained, massive to foliated gabbro with lesser pyroxenite; subvolcanic dykes and sills to Menzie Creek basalts (OSMCb); adjacent phyllites locally display thin contact metamorphic aureoles.
Vangorda Formation	COVp	Cambrian- Ordovician	Soft, silvery grey, calcareous phyllite with lesser medium-grained crystalline grey marble, dark grey to black phyllite, and dark green gabbro sills and dykes; greenschist facies.

The Rose property is underlain by southeast-trending packages of metasedimentary and volcanic units of the Cordilleran Miogeocline, which dip moderately to the southwest. These units

include, from northeast to southeast, an upward younging sequence comprising Menzie Creek Formation, Swim Lakes Formation, Mount Aho Group, Rose Mountain Formation and Anvil Range Group (Figure 4).

According to regional mapping, the northeast corner of the property is underlain by **Menzie Creek Formation** (OSMcb) and **Swim Lakes Formation** (SDSL) composed of basalts with lesser limestone, argillite and tuff, and argillite with lesser medium siltstone, sandstone, limestone and basalt, respectively.

Mount Aho Group (DCMA) is exposed in the central part of the property, conformably overlying Swim Lakes Formation. It comprises pale green phyllitic chert to soft phyllite with interbeds of maroon chert, siliceous siltstone and argillite (DCMAg) and variably foliated dark grey to black siliceous siltstone, ranging from massive to slaty locally (DCMAb). DCMAg weathers tan and shows varying degrees of deformation and metamorphism, often on outcrop scale. Mount Aho Group also contains some massive to moderately foliated, dense, light grey chert and chert-pebble conglomerate. In places, siltstone beds host quartz veins and weather purple.

Rose Mountain Formation mostly consists of light green, tan weathering phyllitic chert with minor interbedded siliceous siltstone and maroon chert. This is exposed in a northwest-trending band conformably overlying Mount Aho Group. Minor chert-pebble conglomerate is also found within Mount Aho Group.

Fine- to medium-grained dark green basalt of the **Anvil Range Group** is exposed in a strip of cliffs along the south trending spur. This basalt hosts wide-spaced quartz, epidote and limonitic quartz-carbonate veining. Along the contact with Rose Mountain Formation, the basalt contains cherty swales and xenoliths. Chert at the contact has been pervasively epidotized and is cut by quartz and epidote veining.

Regional mapping shows approximately 500 m of offset of unit contacts along a high-angle fault that cuts east-northeast across the property. The displacement of contacts could have resulted from predominantly dip-slip movement with the east side down or from sinistral strike-slip movement.

A series of southeast-trending folds and recessive linear features are observed in the eastern part of the property. On the west side of the property, north-northeast to northeast-trending faults offset the basalt-chert contact and are associated with extensive quartz veining and brecciation of the basalt.

MINERALIZATION

In 2013, Silver Range collected 30 rock samples from the Rose property. Sample locations and results are shown on Figure 5. Rock sample descriptions are provided in Appendix III, while Certificates of Analysis are given in Appendix IV.

Rock geochemical sample sites were marked with orange flagging tape labelled with the sample number. The location of each sample was determined using a handheld GPS unit. Samples were submitted to the ALS Minerals prep laboratory in Whitehorse where they were dried and screened to -2 mm. A 250 g split of each sample was then pulverized to 75 micron and a portion of this material was sent to ALS Minerals in North Vancouver where it was digested in aqua regia before being analyzed for 48 elements by four acid digestion with inductively coupled plasma-atomic emission spectroscopy and inductively coupled plasma-mass spectrometry (ME-MS61). All rock samples were also analyzed for gold using fire assay technique (Au-AA24).

Most of the rock samples returned background values for all metals of interest.

A five metre wide quartz vein was traced for approximately 300 metres along the ridge upslope from anomalous gold and arsenic soil samples in the southwestern part of the property (Anomaly A). This vein trends east-northeasterly and dips moderately to the south, parallel to an adjacent recessive linear. It is hosted within rusty quartz-brecciated basalt and rusty, recrystallized chert with abundant millimetre- to centimetre-scale light green siliceous crystals. No sulphides were observed in the vein; however, it is very dense and strongly limonitic. A sample of this quartz vein returned a weakly elevated gold value (0.190 g/t) and slightly elevated arsenic relative to background values (70.1 ppm).

A second chip sample collected from a parallel quartz vein, 200 m to the west, returned less than detection limit gold and background arsenic. However, this sample yielded the highest chromium (1,100 ppm) and nickel (1,120 ppm) values reported from the property.

A significant stream sediment and soil geochemical anomaly (Anomaly B) is associated with the easternmost creek. In the headwaters of this creek, very dense light grey, moderately foliated chert with millimetre- to sub-millimetre scale sulphide veinlets was discovered in outcrop. Zones of strong oxidation within these rocks coincide with areas of centimetre-scale quartz veinlets filling a 030°/40°S joint set that parallels an adjacent recessive linear. Recrystallized siliceous and oxidized rock also crops out in this area at the contact between the chert and siliceous siltstone. Rock samples collected from this area in 2013 did not yield any anomalous values for any of the metals of interest.

On a hill east of this creek, sheeted metre-scale quartz veins cut light green phyllitic chert upslope from a 2012 soil sample that returned 21 ppb gold. These veins contain chlorite, epidote, pyrite and iron carbonate. Sub-millimetre dark grey-purple stringers within the quartz veins may represent very fine sulphide mineralization. The quartz veins have an attitude of $140^{\circ}/50^{\circ}$ W and cross-cut foliation.

Very dense oxidized and foliated light teal chert with black crackle veinlets is observed adjacent to the basalt contact in the central portion of the property, upslope from a single strong gold-insoil value.

GEOCHEMICAL SAMPLING

Reconnaissance-scale geochemical sampling in 2010 returned some slightly elevated gold values, mostly in the eastern portion of the claim block, and a cluster of moderately to strongly anomalous silver and antimony values in the west-central part. Follow-up sampling in 2011 was mostly done on a northeastern slope located along the southwest edge of the property, and produced values up to 123 ppb gold, 8.87 g/t silver, 295 ppm copper, 48.3 ppm lead, 351 ppm zinc and 118 ppm cobalt (Dumala, 2012).

Peak chromium (1060 ppm) and nickel (1655 ppm) values were returned from a soil sample collected along a contour line near Anomaly A in 2011. None of the surrounding samples produced anomalous values for these elements. This sample is located 220 m northeast of a chip sample collected in 2013, which yielded similar metal values.

Geochemical sampling in 2012 better defined two zones of anomalous geochemical values. The anomaly in the western portion of the property (Anomaly A) is northwest-trending and approximately 1.5 km long. Peak values from this anomaly were 96 ppb gold, 299 ppm arsenic, 295 ppm copper, 8.87 ppm silver, 15.75 ppm antimony, 42.2 ppm lead, 351 ppm zinc and 118 ppm cobalt. The anomalous zone in the eastern part of the property (Anomaly B) is approximately 1.5 km in diameter. Samples from this zone returned up to 269 ppb gold, 231 ppm arsenic, 807 ppm copper, 6.52 ppm silver, 114.5 ppm lead and 2440 ppm zinc.

In 2013, a total of 20 soil samples were collected uphill from a gold-in-silt anomaly on the north side of the property. Sample locations are shown on Figure 5, while results for gold, arsenic, copper, silver, antimony, lead, zinc and cobalt are compiled on Figures 6 to 13, respectively. Certificates of Analysis are given in Appendix IV.

Soil samples were collected from 20 to 30 cm deep holes dug with hand-held augers. All samples were placed into individually pre-numbered Kraft paper bags. Sample sites are marked by aluminum tags inscribed with the sample numbers and affixed to 0.5 m wooden lath that were driven into the ground. Sample locations were recorded using hand-held GPS units.

The stream sediment samples were collected by hand and placed in individually pre-numbered Kraft paper bags. Their locations were marked with orange flagging labelled with the sample number. Locations were recorded using hand-held GPS units.

All geochemical samples were sent to ALS Minerals in Whitehorse where they were dried, screened to -180 microns. The fine fractions were then sent to ALS Minerals in North Vancouver where they were analyzed for 51 elements using an aqua regia digestion followed by inductively coupled plasma combined with mass spectroscopy and atomic emission spectroscopy (ME-MS41). An additional 30 g charge was further analyzed for gold by fire assay with inductively coupled plasma-atomic emissions spectroscopy finish (Au-ICP21). Anomalous thresholds and peak values for all geochemical samples are listed in Table II.

Element	Anomalous Thresholds					
	Weak	Moderate	Strong	Very	Peak	Peak
				Strong	(Soil)	(Stream Sed)
Gold (ppb)	\geq 10 < 20	$\geq 20 < 50$	$\geq 50 < 100$	≥ 100	269	40
Arsenic (ppm)	\geq 50 < 100	\geq 100 < 200	\geq 200		299	28
Copper (ppm)	\geq 50 < 100	\geq 100 < 200	\geq 200 < 500	\geq 500	563	807
Silver (ppm)	$\geq 1 < 2$	$\geq 2 < 5$	≥ 5		8.87	1.06
Antimony (ppm)	\geq 10 < 20	\geq 20			27	4
Lead (ppm)	≥ 100				115	38.1
Zinc (ppm)	$\geq 100 < 200$	\geq 200 < 500	\geq 500 < 1000	≥ 1000	494	2440

Table II – Geochemical Data for Geochemical Samples

All of the 2013 soil samples returned low values for most metals of interest. Three of the samples returned weakly elevated gold values (12 ppb).

DISCUSSION AND CONCLUSIONS

The 2013 exploration program was aimed at identifying bedrock sources for silt and soil anomalies and developing an understanding of potential structural controls of mineralization. While bedrock sources for geochemical anomalies were not identified, some understanding was gained of potential mineralization styles.

The eastern creek has returned some very high silt values for copper and zinc. Results from soil samples taken in the vicinity in 2012 were much less anomalous. This discrepancy may be due to hydromorphic transport of the relatively mobile copper and zinc ions. When sulphide bodies weather, copper and zinc are often taken into solution at a point where pH in groundwater is low and are then transported through soil and into nearby creeks. The soluble metals stay in solution until the pH in the water increases by dilution with non-acidic water or by buffering with rocks in the creek bed. It is possible that the source for the metals is a buried sulphide body in the headwaters of the creek.

Mineralization within quartz veins upslope of Anomaly A in the west and sulphide veinlets upslope of Anomaly B in the east does not adequately explained these soil geochemical anomalies. However, these features may be genetically related to areas of stronger mineralization. Both vein sets are adjacent to east-northeast trending recessive linears, which may represent faults or other conduits that allowed metals to be transported from a buried sulphide body and concentrated in soil at the surface.

Further work on the Rose property should further investigate topographic features, which likely represent the surface expressions of structures that could have acted as fluid conduits. Topographic features such as recessive linears, particularly those adjacent to quartz and sulphide veining, should be trenched to expose bedrock.

Anomalous soil sample sites should be visited in order to assess sediment cover and soil type. If the sites are covered with glacial outwash or till material, a close-spaced soil grid should be placed over anomalies to determine whether or not there is a dispersion train pointing to a potential source area. Sample sites not covered by glacial overburden should be dug to bedrock where possible.

Prospecting, detailed geological mapping and hand pitting should be conducted around anomalous soil sample sites, and closely spaced grid soil sampling should be completed within the anomalous zones. Particular attention should be paid to the headwaters of the creek where strongly elevated copper and zinc values were returned from stream sediment samples.

Respectfully submitted,

ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

audrey Graham

A.C. Graham, B.Sc. (Hons)

REFERENCES

Chung, C. J. 2013	Assessment Report describing Prospecting and Geochemical Sampling at the Rose Property; prepared for Silver Range Resources Ltd.
Colpron, M. and 2011	Nelson, J.L., A Digital Atlas of Terranes for the Northern Cordillera; accessed online from Yukon Geological Survey (<u>www.geology.gov.yk.ca</u>).
Dumala, M. R. 2012	Assessment Report describing Soil Geochemical Sampling at the Rose Property; prepared for Silver Range Resources Ltd.
Gordey, S.P. and 1987	d Irwin S.E. Geology of Sheldon Lake and Tay River map areas; Geological Survey of Canada.
Pigage, L.C. 1999	Preliminary geology of Rose Mountain, Anvil District, central Yukon (105K/05); <i>in:</i> Yukon Exploration and Geology 1998, C.F. Roots and D.S. Emond (eds.); Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 91-103.
2001	Geological map of Anvil District (NTS 105K/2, 3, 5, 6, 7, 11), central Yukon (1:100 000 scale); Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 2001-31.
2004	Bedrock geology compilation of the Anvil District (parts of NTS 105K/2, 3, 5, 6, 7 and 11), central Yukon; Yukon Geological Survey, Bulletin 15, 103.
Phillips, R. and 2011	Eaton, S. Assessment Report describing Stream Sediment and Soil Geochemical Sampling at the Rose Property; prepared for Strategic Metals Ltd.; AR #095489.
Read, W.S.	

1982 Report on Urn Barite Property; prepared for Cyprus Anvil Mining Corporation; AR #091369.

Yukon Geological Survey

2012 MapViewer Online http://mapservices.gov.yk.ca/Mining/WebMap.aspx

APPENDIX I

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Audrey Graham, geologist, with business addresses in Vancouver, British Columbia and Whitehorse, Yukon Territory and residential address in Victoria, British Columbia do hereby certify that:

- 1. I graduated from the University of Victoria in 2013 with a B.Sc. (Hon.) majoring in Geoscience, which is a combined major of Earth and Ocean Sciences and Physical Geography.
- 2. From 2011 to present, I have been actively engaged in mineral exploration in the Yukon Territory.
- 3. I am eligible to apply to be a Geoscientist in Training (GIT) with the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have personally participated in and supervised the field work reported herein and have interpreter all data resulting from this work.

audrey Graham

A.C. Graham, B.Sc. (Hons)

APPENDIX II

STATEMENT OF EXPENDITURES

Statement of Expenditures Rose 1-64 Mineral Claims March 13, 2014

Labour

W.D. Eaton – geologist – 6 hours June to November at \$120/hr	\$ 756.00
M Dumala – engineer – 6 hours June to November at \$96/hr	541.80
C. Chung – geologist – 15 hours October at \$87/hr	1,370.25
J. Tarswell – field assistant – 8 hours June at \$77/hr	646.80
I. Ames – field assistant – 40 hours August at \$74/hr	3,108.00
A. Graham – field assistant – 66 ½ hours August to November at \$64/hr	4,468.80
A. Tuzlak – field assistant – 40 hours August at \$45/hr	1,890.00
L. Smith – office – 11 ¹ / ₂ hours June to November at \$62/hr	748.65
	13,530.30
Expenses (incl. management)	
Field room and board – 16 mandays @ \$135/day	2,449.44
Trans North Helicopters – 2.4 hours Bell 206B @ \$990/hr plus fuel	3,314.91
ALS Chemex	2,016.89
	7,781.24
Total	<u>\$ 21,311.54</u>

Total 50 soil, silt and rock samples = \$426.23/sample

APPENDIX III

ROCK SAMPLE DESCRIPTIONS

Rock Sample Des	criptions	Prop	perty: Rose	
Sample Number: Elevation:	K280925 1685 m	UTM: UTM:	575613 mE 6912695 mN	Nad83, Zone 8
Comments:	Bedrock grab. Stror	ngly folia	ted siliceous light teal	phyllite with ~5% limonite in fractures.
Sample Number: Elevation:	K280926 1675 m	UTM: UTM:	575519 mE 6912756 mN	Nad83, Zone 8
Comments:	Float grab. Semi-vit area.	reous qu	uartz pegmatite with $$	7% limonite and white clay in fractures. Similar material observed in float in
Sample Number: Elevation:	K280927 1397 m	UTM: UTM:	575840 mE 6913233 mN	Nad83, Zone 8
Comments:	Near-source float c	omposite	e (5 pieces over 4x4m). Coarse-grained quartz vein with ~10% limonite in vugs.
Sample Number: Elevation:	K280928 1398 m	UTM: UTM:	575841 mE 6913232 mN	Nad83, Zone 8
Comments:	Near-source float g oxidized and with ~	rab adjao 5% hone	cent to dm-scale quar eycomb limonite.	tz vein. Dark purplish green phyllitic chert with cm-scale quartz veining,
Sample Number: Elevation:	K280929 1427 m	UTM: UTM:	575838 mE 6913122 mN	Nad83, Zone 8
Comments:	Bedrock composite intensely oxidized,	(10 piec pervasive	es over 4x4m). Interm e white powder on su	nixed concordant quartz veining and foliated cherty siltstone. Minor limonite, rfaces.
Sample Number: Elevation:	K280930 1715 m	UTM: UTM:	574508 mE 6913156 mN	Nad83, Zone 8
Comments:	Float composite alc	ong strike	e of limonitic quartzos	e material with black crackle veinlets in basalt.

Rock Sample Des	criptions	Proj	perty: Rose	
Sample Number: Elevation:	K280931 1683 m	UTM: UTM:	574207 mE 6913262 mN	Nad83, Zone 8
Comments:	Float grab, approxir limonite.	mately ir	n situ. Quartz-carbonal	te brecciation of grey chert with ~10% black crackle veinlets, oxidized to
Sample Number: Elevation:	K280932 1664 m	UTM: UTM:	574128 mE 6913384 mN	Nad83, Zone 8
Comments:	Float composite (10 limonite.) pieces	over 4x4m). Quartz-ca	rbonate brecciation of grey chert with \sim 10% black crackle veinlets, oxidized to
Sample Number: Elevation:	K280933 1671 m	UTM: UTM:	574048 mE 6913409 mN	Nad83, Zone 8
Comments:	Near-source float co	omposit	e (10 pieces over 5x5n	n). Basalt breccia with limonitic quartz-calcite matrix support.
Sample Number: Elevation:	K280934 1703 m	UTM: UTM:	573428 mE 6913642 mN	Nad83, Zone 8
Comments:	Bedrock grab. Light	teal che	ert with ~15% black cra	ackle veinlets, oxidized and with silica blebs. Heavy.
Sample Number: Elevation:	L840385 1581 m	UTM: UTM:	572645 mE 6913617 mN	Nad83, Zone 8
Comments:	Light grey-green fre	esh buff	to rusty weathering. Si	trongly ex
Sample Number: Elevation: Comments:	L840386 1579 m	UTM: UTM:	572715 mE 6913647 mN	Nad83, Zone 8
Sample Number: Elevation: Comments:	L840387 1556 m	UTM: UTM:	572848 mE 6913583 mN	Nad83, Zone 8

ock Sample Des	criptions	Prope	erty: Rose	
Sample Number: Elevation:	M676965 1349 m	UTM: UTM:	576705 mE 6912086 mN	Nad83, Zone 8
Comments:	Siliceous/recrystalli cm scale veins are p observed parallel w	zed chert. present in ith 120-13	. Sampled from a zor the viscinity, parallel 30/70 foliation in the	ne of strong oxidation. Control over oxidation is unknown. Quartz veinlets and with 030/70 joints. Thin, 1-3 mm sulphide seams (discontinuous) are locality.
Sample Number: Elevation:	M676966 1349 m	UTM: UTM:	576698 mE 6912104 mN	Nad83, Zone 8
Comments:	Siliceous/recrystalli cm scale veins are p observed parallel w	zed chert present in ith 120-13	. Sampled from a zor the viscinity, parallel 30/70 foliation in the	ne of strong oxidation. Control over oxidation is unknown. Quartz veinlets an with 030/70 joints. Thin, 1-3 mm sulphide seams (discontinuous) are locality.
Sample Number: Elevation:	M676967 1360 m	UTM: UTM:	576685 mE 6912123 mN	Nad83, Zone 8
Comments:	Siliceous/recrystalli cm scale veins are p observed parallel w	zed chert. present in ith 120-13	. Sampled from a zor the viscinity, parallel 30/70 foliation in the	ne of strong oxidation. Control over oxidation is unknown. Quartz veinlets an with 030/70 joints. Thin, 1-3 mm sulphide seams (discontinuous) are locality.
Sample Number:	M676968	UTM:	576676 mE	Nad83, Zone 8
Elevation:	1364 m	UTM:	6912133 mN	
Comments:	Sampled from poor is very siliceous. Lir exposure between	exposure nonite an two large	e outcrop between ch d other oxides are pr resistive outcrops.	nerty siltstone and pale grey chert. Rock appears extensively recrystallized and resent at surface. 'Grotty' texture of oxidized rock may account for the poor
Sample Number:	M676969	UTM:	576233 mE	Nad83, Zone 8
Elevation:	1609 m	UTM:	6912571 mN	
Comments:	Light green phyllitic sulphides.	chert wit	h concordant oxidize	ed horizons. Mm-scale crackle veinlets appear to contain disseminated

Rock Sample Des	criptions	Prop	perty: Rose	
Sample Number: Elevation:	M676970 1616 m	UTM: UTM:	576220 mE 6912523 mN	Nad83, Zone 8
Comments	Light green phyllitic sulphides.	chert w	ith concordant oxidize	ed horizons. Mm-scale crackle veinlets appear to contain disseminated
Sample Number:	M676971	UTM:	576483 mE	Nad83, Zone 8
Elevation:	1507 m	UTM:	6912500 mN	
Comments	Light grey, strongly planes and the rock	foliated is very	chert. Appears recrys dense.	stallized and siliceous in some areas. Oxidation is prevelent along foliation
Sample Number:	M676972	UTM:	576542 mE	Nad83, Zone 8
Elevation:	1467 m	UTM:	6912800 mN	
Comments	Light green phyllitic runs parallel to 300	c chert sł 1/60 join	nowing extensive oxid	ation. Oxidation is most prevelent adjacent to a 5 cm thick quartz vein which
Sample Number:	M676973	UTM:	576492 mE	Nad83, Zone 8
Elevation:	1456 m	UTM:	6912866 mN	
Comments	Siliceous siltstone v sampled in this case	vith 50 c e.	m thick limonitic and v	uggy/grotty quartz vein concordant with 130/40 foliation. Quartz vein was
Sample Number:	M676974	UTM:	576903 mE	Nad83, Zone 8
Elevation:	1485 m	UTM:	6913981 mN	
Comments	Quartz veining with pyrite crystals.	nin phylli	tic chert. Vein appear	s propylitically altered and contains chlorite, epidote, carbonate, and mm scale
Sample Number:	M676975	UTM:	576962 mE	Nad83, Zone 8
Elevation:	1522 m	UTM:	6913808 mN	
Comments	Phyllitic chert show	ving local	zones of strong oxida	tion.

Rock Sample Des	criptions	Prop	perty: Rose	
Sample Number: Elevation:	M676976 1608 m	UTM: UTM:	577219 mE 6913740 mN	Nad83, Zone 8
Comments:	Quartz veining with pyrite crystals.	in phylli	tic chert. Vein appear	s propylitically altered and contains chlorite, epidote, carbonate, and mm scale
Sample Number:	M676977	UTM:	577229 mE	Nad83, Zone 8
Elevation:	1386 m	UTM:	6913718 mN	
Comments:	Quartz veining with pyrite crystals.	in phylli	tic chert. Vein appear	s propylitically altered and contains chlorite, epidote, carbonate, and mm scale
Sample Number:	M676978	UTM:	572675 mE	Nad83, Zone 8
Elevation:	1589 m	UTM:	6913642 mN	
Comments:	Oxidized quartz veir green coloured min	n, quite eral (apj	dense. Adjacent chert pears like a silicate the	t shows extensive recrystallization and contains an abundance of a malachite bugh). Quartz vein appears to be over 5 metres thick in areas.
Sample Number:	M676979	UTM:	572770 mE	Nad83, Zone 8
Elevation:	1567 m	UTM:	6913576 mN	
Comments:	Oxidized quartz veir green coloured min	n, quite eral (apj	dense. Adjacent chert pears like a silicate the	shows extensive recrystallization and contains an abundance of a malachite bugh). Quartz vein appears to be over 5 metres thick in areas.
Sample Number:	M676980	UTM:	572888 mE	Nad83, Zone 8
Elevation:	1559 m	UTM:	6913614 mN	
Comments:	Oxidized quartz veir green coloured min	n, quite eral (apj	dense. Adjacent chert pears like a silicate the	shows extensive recrystallization and contains an abundance of a malachite bugh). Quartz vein appears to be over 5 metres thick in areas.
Sample Number:	M676981	UTM:	572888 mE	Nad83, Zone 8
Elevation:	1559 m	UTM:	6913614 mN	
Comments:	Oxidized basalt adja	acent to	quartz vein.	

APPENDIX IV

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST

VANCOUVER BC V6B 1L8

Page: 1 Finalized Date: 3-SEP-2013 Account: RANSIL

CERTIFICATE WH13150590

Project: Rose

P.O. No.:

This report is for 30 Rock samples submitted to our lab in Whitehorse, YT, Canada on 19-AUG-2013.

The following have access to data associated with this certificate:

HEATHER BURRELL	MATT DUMALA	JOAN MARIACHER

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI-21	Received Sample Weight						
LOG-22	Sample login - Rcd w/o BarCode						
CRU-31	Fine crushing - 70% < 2mm						
CRU-QC	Crushing QC Test						
SPL-21	Split sample - riffle splitter						
PUL-QC	Pulverizing QC Test						
PUL-31	Pulverize split to 85% <75 um						

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-AA24	Au 50g FA AA finish	AAS
ME-MS61	48 element four acid ICP-MS	

TO: SILVER RANGE RESOURCES LTD. ATTN: JOAN MARIACHER C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 3-SEP-2013 Account: RANSIL

Project: Rose

Sample Description	Method	WEI-21	Au-AA24	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Recvd Wt.	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.02	0.005	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
M676965		1.12	0.009	0.06	0.60	6.0	4140	0.19	0.03	0.02	0.02	6.77	1.4	9	0.60	12.5
M676966		1.33	<0.005	0.05	0.27	1.7	6030	0.08	0.02	0.02	<0.02	3.32	0.3	6	0.14	7.5
M676967		1.42	<0.005	0.05	0.11	1.1	4230	<0.05	0.01	<0.01	<0.02	1.16	0.1	3	0.09	1.9
M676968		1.42	<0.005	0.22	0.48	0.5	1650	0.51	0.05	0.34	0.89	3.81	7.9	10	0.66	95.9
M676969		1.07	<0.005	0.01	2.60	1.0	7000	0.36	0.11	0.03	<0.02	23.4	14.7	34	1.90	29.7
M676970		0.99	<0.005	0.04	2.68	2.7	7150	0.94	0.13	0.12	0.04	27.2	4.5	53	4.51	79.5
M676971		1.19	<0.005	0.12	0.80	1.1	3030	0.31	0.06	0.01	<0.02	10.55	0.3	17	1.21	8.3
M676972		1.16	0.015	0.06	3.03	76.1	>10000	0.68	0.15	0.01	0.02	35.9	4.7	56	1.91	43.2
M676973		1.18	<0.005	0.20	1.24	4.0	1670	0.18	0.43	0.01	0.03	12.60	1.3	30	0.57	38.1
M676974		1.30	<0.005	0.05	5.51	2.1	4100	0.79	0.19	0.64	0.03	49.9	5.2	27	1.04	27.1
M676975		1.01	0.009	0.48	0.49	10.5	1060	0.50	0.06	<0.01	<0.02	4.49	0.2	28	0.33	7.8
M676976		1.03	<0.005	0.04	1.25	1.6	1450	0.37	0.12	0.11	0.06	11.90	3.3	27	0.53	23.9
M676977		1.18	<0.005	0.07	1.28	0.7	670	0.12	0.13	0.94	0.05	8.83	1.7	18	1.16	6.9
M676978		1.05	0.029	0.15	0.65	37.7	290	0.06	0.03	0.04	<0.02	1.26	2.0	64	0.83	4.4
M676979		1.30	<0.005	0.02	0.29	14.9	800	0.16	0.01	0.02	<0.02	0.27	0.7	39	1.14	2.3
M676980		1.08	0.049	0.08	0.96	69.0	510	0.08	0.01	0.03	<0.02	3.49	1.1	51	0.77	2.8
M676981		0.92	<0.005	0.12	5.09	9.9	610	0.50	0.02	6.22	0.05	9.47	23.2	49	6.38	71.7
L840385		1.37	<0.005	0.11	0.57	2.6	190	0.06	0.01	1.14	0.02	0.07	54.5	1100	1.68	15.7
L840386		1.12	<0.005	0.03	0.46	5.4	190	0.06	0.01	0.07	<0.02	1.05	1.2	75	0.38	3.4
L840387		1.10	0.190	0.07	0.61	70.1	220	0.07	0.02	0.03	0.03	4.10	0.9	71	0.52	3.0
K280925 K280926 K280927 K280928 K280928 K280929		1.02 1.79 1.12 0.96 1.20	<0.005 <0.005 <0.005 <0.005 0.005	0.02 0.01 0.04 0.13 0.21	3.45 0.85 1.01 5.90 1.64	2.3 6.7 0.8 2.6 9.4	2420 60 1540 7960 3800	1.15 0.10 0.26 2.39 0.41	0.19 <0.01 0.06 0.21 0.07	0.03 1.20 0.02 0.16 0.02	0.02 0.04 0.38 2.03 0.08	41.0 5.54 6.60 74.4 12.05	13.5 3.7 2.8 13.1 1.6	43 33 22 44 26	4.00 0.12 0.42 5.66 1.60	33.2 1.5 21.8 89.2 31.9
K280930		1.64	<0.005	0.01	5.74	1.4	1280	0.53	0.05	6.64	0.11	11.55	24.5	121	3.93	47.4
K280931		1.36	<0.005	0.02	2.45	<5	1280	0.34	0.06	14.10	0.24	19.55	20.5	27	1.03	18.5
K280932		1.43	<0.005	0.04	3.42	11	1010	0.45	0.08	10.75	0.11	7.09	19.9	73	2.12	21.3
K280933		1.30	<0.005	0.03	5.29	4.7	1840	0.40	0.04	6.56	0.12	10.05	25.7	119	1.06	32.4
K280933		1.06	<0.005	0.04	1.87	1.1	2220	0.50	0.11	0.55	0.10	20.3	4.5	42	2.11	52.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981)

LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 3-SEP-2013 Account: RANSIL

Project: Rose

Sample Description	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm
	LOR	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10
M676965		0.45	2.25	0.09	0.3	<0.005	0.13	3.2	6.5	0.03	12	2.13	<0.01	1.4	7.1	180
M676966		0.30	1.07	0.12	0.1	<0.005	0.02	1.9	5.7	0.01	18	1.45	<0.01	0.6	1.7	90
M676967		0.08	0.50	0.10	0.1	<0.005	0.02	0.6	1.3	0.01	<5	1.84	<0.01	0.3	0.5	50
M676968		6.12	1.54	0.06	0.1	<0.005	0.10	2.4	2.7	0.05	554	4.39	0.02	0.9	41.5	570
M676969		3.66	15.35	0.07	0.9	0.024	0.39	10.7	25.5	0.78	453	0.37	<0.01	2.9	88.2	260
M676970		1.59	11.15	0.11	1.4	0.021	1.06	13.2	14.0	0.33	563	0.33	<0.01	4.5	23.7	350
M676971		0.38	3.52	0.08	0.5	<0.005	0.25	5.0	7.0	0.06	12	0.68	<0.01	1.8	3.7	80
M676972		2.09	10.30	0.12	1.3	0.017	1.56	16.7	14.0	0.51	224	0.92	0.03	5.5	27.2	180
M676973		2.89	2.49	0.07	0.5	0.008	0.15	5.7	16.9	0.04	132	3.87	<0.01	2.3	15.6	560
M676974		1.87	11.25	0.13	3.6	0.027	0.87	24.1	13.4	0.58	1630	0.21	2.96	8.4	15.6	340
M676975		0.50	1.53	0.08	0.3	<0.005	0.24	2.3	3.0	0.05	42	5.79	0.01	1.1	3.8	40
M676976		0.94	3.12	0.08	0.6	0.005	0.41	5.5	4.7	0.20	992	0.20	0.37	1.9	11.4	140
M676977		0.91	2.19	0.08	0.5	<0.005	0.15	6.7	2.6	0.19	1320	0.16	0.75	0.9	3.9	150
M676978		0.89	1.56	0.06	0.2	<0.005	0.14	0.5	25.2	0.03	55	0.50	0.01	0.3	5.4	10
M676979		0.85	3.17	0.06	<0.1	<0.005	0.05	<0.5	29.2	0.01	72	0.32	0.01	0.1	4.0	20
M676980		1.05	2.91	0.06	0.1	<0.005	0.25	1.3	37.0	0.06	56	0.63	0.01	0.2	4.3	10
M676981		5.51	9.37	0.10	1.9	0.045	0.83	2.9	29.6	3.47	1400	0.10	0.58	2.5	34.2	180
L840385		4.04	1.27	0.05	<0.1	<0.005	0.08	<0.5	14.0	16.40	682	0.09	0.01	<0.1	1120	10
L840386		0.46	1.09	<0.05	0.1	<0.005	0.10	<0.5	21.7	0.08	59	0.48	0.01	0.2	7.4	10
L840387		0.83	1.53	0.05	0.2	<0.005	0.17	2.0	23.1	0.13	60	1.26	0.01	0.6	14.6	10
K280925		2.12	12.35	0.10	1.9	0.024	1.46	16.4	16.9	0.54	1430	0.70	0.02	6.6	39.6	170
K280926		1.31	2.15	0.09	0.1	<0.005	0.05	2.7	10.0	1.18	171	0.28	0.03	0.9	16.3	610
K280927		0.71	2.01	0.07	0.3	<0.005	0.27	3.0	7.6	0.14	270	0.55	0.01	1.3	18.2	90
K280928		3.58	19.10	0.14	3.7	0.058	3.15	36.0	26.6	1.29	3060	2.42	0.02	11.8	52.3	600
K280929		1.36	3.69	0.06	0.5	<0.005	0.34	5.7	9.0	0.08	81	2.06	<0.01	1.8	20.3	180
K280930 K280931 K280932 K280933 K280933 K280934		5.31 5.87 5.70 6.08 1.20	12.90 3.50 7.26 10.20 7.30	0.08 0.06 0.06 0.07 0.05	2.0 1.0 1.2 1.9 0.9	0.058 0.040 0.034 0.057 0.023	0.67 0.24 0.55 0.26 0.68	3.7 8.9 2.5 3.2 7.3	20.2 3.9 10.3 13.4 9.0	2.27 3.85 4.33 2.37 0.39	1310 4120 3050 1810 1220	0.15 0.19 0.19 0.15 0.34	2.57 1.44 1.41 3.18 0.03	1.9 2.2 1.2 2.0 2.6	48.1 44.1 45.5 53.1 19.5	430 630 240 390 140

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981)

LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 3-SEP-2013 Account: RANSIL

Project: Rose

Sample Description	Method Analyte Units LOR	ME-MS61 Pb ppm 0.5	ME-MS61 Rb ppm 0.1	ME-MS61 Re ppm 0.002	ME-MS61 S % 0.01	ME-MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME-MS61 Se ppm 1	ME-MS61 Sn ppm 0.2	ME-MS61 Sr ppm 0.2	ME-MS61 Ta ppm 0.05	ME-MS61 Te ppm 0.05	ME-MS61 Th ppm 0.2	ME-MS61 Ti % 0.005	ME-MS61 TI ppm 0.02	ME-MS61 U ppm 0.1
M676965 M676966 M676967 M676968		4.5 2.9 0.5 2.2	11.4 2.2 1.5 10.0	<0.002 <0.002 <0.002 <0.002	0.10 0.07 0.07 0.33	0.75 0.19 0.18 0.17	2.3 0.8 0.3 1.7	1 1 <1 1	0.2 0.2 <0.2 <0.2	934 248 223 441	0.10 0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05	1.0 0.4 0.2 0.3	0.045 0.019 0.010 0.021	0.11 0.03 0.02 0.07	0.6 0.2 0.1 0.4
M676969		1.5 4.4	28.8	<0.002	0.16	0.34	9.5	1	0.9	47.2	0.19	0.05	3.1	0.122	0.11	0.6
M676971 M676972 M676973 M676974		2.2 5.1 54.8 26.8	23.5 54.3 7.5 36.0	<0.002 <0.002 <0.002 <0.002 <0.002	0.12 0.18 0.10 0.09	0.33 0.55 0.48 0.25	3.2 8.6 3.9 6.5	1 1 1	0.8 0.8 0.3 1.3	499 69.9 58.3 288	0.13 0.39 0.14 0.54	<0.05 0.08 0.05 <0.05	1.6 5.4 2.0 14.7	0.057 0.172 0.069 0.149	0.01 0.47 1.02 0.14 0.24	0.8 1.3 0.5 3.2
M676975 M676976 M676977 M676978 M476979		4.8 9.5 16.5 1.0	11.7 17.1 5.6 9.2 3.1	<0.002 <0.002 <0.002 <0.002 <0.002	0.02 0.01 <0.01 0.04 0.02	0.75 0.21 0.13 7.78 14.25	1.9 2.8 1.5 1.9 0.5	1 <1 <1 <1	0.2 0.5 0.2 0.2 0.2	8.6 42.2 261 8.1 7 7	0.07 0.13 0.06 <0.05	0.05 <0.05 <0.05 0.05 0.05	0.9 2.3 1.9 0.2	0.027 0.048 0.022 0.052 0.08	0.12 0.10 0.03 0.11 0.05	1.0 0.6 0.5 <0.1
M676980 M676981 L840385 L840386 L840387		1.5 2.7 <0.5 0.5 2.5	15.3 40.5 6.2 5.5 8.8	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.02 0.03 0.20 0.14 0.01 0.05	2.94 3.31 7.63 1.74 2.98	3.2 27.2 7.5 1.3 1.3	<1 2 <1 <1 <1 1	0.2 0.7 <0.2 <0.2 <0.2 0.3	12.3 517 162.5 9.9 5.7	<0.05 0.12 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	0.2 0.2 <0.2 <0.2 <0.2 0.6	0.056 0.673 0.011 0.018 0.026	0.20 0.51 0.07 0.07 0.11	<0.1 0.1 <0.1 <0.1 <0.1 0.2
K280925 K280926 K280927 K280928 K280929		15.3 5.2 8.0 26.4 4.5	68.1 2.4 11.9 142.0 20.8	<0.002 <0.002 <0.002 <0.002 <0.002	0.01 <0.01 0.01 0.01 0.10	0.51 0.34 0.29 0.80 1.02	10.2 1.9 1.6 11.1 3.2	1 <1 <1 2 1	1.3 0.2 0.3 2.6 0.4	13.6 34.6 13.1 69.3 41.4	0.48 0.05 0.08 1.02 0.13	0.05 <0.05 <0.05 <0.05 <0.05	6.2 0.4 1.4 17.6 2.0	0.190 0.038 0.022 0.203 0.052	0.38 <0.02 0.08 0.88 0.31	1.2 0.1 0.8 4.9 1.0
K280930 K280931 K280932 K280933 K280933 K280934		2.4 8.5 5.6 3.5 4.9	29.9 8.8 20.5 10.5 32.5	<0.002 <0.002 <0.002 <0.002 <0.002	0.03 0.02 0.05 0.09 0.05	0.95 0.43 1.05 1.48 0.60	28.6 11.1 18.5 29.4 6.0	1 1 2 1	0.8 0.4 0.5 0.6 0.6	393 1380 1030 715 38.4	0.13 0.13 0.07 0.12 0.16	<0.05 <0.05 0.05 <0.05 0.06	0.4 1.6 0.2 0.2 2.3	0.671 0.135 0.402 0.705 0.102	0.18 0.07 0.13 0.06 0.24	0.1 0.6 0.1 0.2 0.7

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 3-SEP-2013 Account: RANSIL

Project: Rose

	Method	ME-MS61	ME-MS61	ME-MS61	ME-MS61	ME-MS61
	Analyte	V	W	Y	Zn	Zr
Sample Description	Units	ppm	ppm	ppm	ppm	ppm
	LOK	1	0.1	0.1	2	0.5
M676965		21	0.3	3.0	37	13.2
M676966		17	0.1	1.5	8	8.0
M676967		9	0.1	0.5	<2	2.7
M676968		40	0.5	9.5	187	7.2
M676969		42	0.8	7.6	108	33.7
M676970		68	1.0	10.3	57	56.8
M676971		30	0.3	2.8	11	20.5
M676972		50	0.8	6.8	33	50.5
M676973		19	0.6	3.1	63	22.2
M676974		35	0.7	17.7	58	129.0
M676975		46	0.7	1.6	9	14.5
M676976		18	0.2	5.4	22	23.3
M676977		6	0.2	6.2	23	17.9
M676978		12	0.1	1.2	4	4.7
M676979		5	<0.1	0.4	2	0.8
M676980		29	0.1	3.2	2	6.3
M676981		200	0.4	36.0	57	63.6
L840385		34	<0.1	0.7	32	<0.5
L840386		12	<0.1	1.2	4	2.9
L840387		12	<0.1	1.6	19	9.3
K280925		62	1.1	9.4	64	65.9
K280926		12	0.1	5.7	25	4.7
K280927		10	0.3	3.8	92	13.0
K280928		77	2.0	25.0	505	115.0
K280929		35	1.0	2.8	41	20.3
K280930		248	0.3	21.4	62	63.7
K280931		117	0.2	17.2	125	40.0
K280932		166	0.5	15.6	79	46.9
K280933		215	0.5	20.7	61	65.0
K280934		35	0.5	6.3	41	37.0

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 3-SEP-2013 Account: RANSIL

Project: Rose

		CERTIFICATE COMMENT	S						
		ANALYTICAL C	OMMENTS						
Applies to Method:	REE's may not be totally soluble in this method. ME-MS61								
Applies to Method:	Interference: Samples with Ca>10% on ICP-MS As. ICP-AES As results reported (5 ppm DL) ME-MS61								
		LABORATORY	ADDRESSES						
Applies to Method:	Processed at ALS Whitehorse located CRU-31 PUL-QC	at 78 Mt. Sima Rd, Whitehorse, YT, CRU-OC SPL-21	Canada. LOG-22 WEI-21	PUL-31					
Applies to Method:	Processed at ALS Vancouver located a Au-AA24	at 2103 Dollarton Hwy, North Vanco ME-MS61	ouver, BC, Canada.						

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 1 Finalized Date: 6-SEP-2013 Account: RANSIL

CERTIFICATE WH13150591

Project: Rose

P.O. No.:

This report is for 20 Soil samples submitted to our lab in Whitehorse, YT, Canada on 19-AUG-2013.

The following have access to data associated with this certificate:

HEATHER BURRELL	MATT DUMALA	JOAN MARIACHER

SAMPLE PREPARATION									
ALS CODE	DESCRIPTION								
WEI-21 LOG-22 SCR-41	Received Sample Weight Sample login - Rcd w/o BarCode Screen to -180um and save both								
	ANALYTICAL PROCEDURES								

ALS CODE		INSTROMENT
Au-ICP21	Au 30g FA ICP-AES Finish	ICP-AES
ME-MS41	51 anal. aqua regia ICPMS	

To: SILVER RANGE RESOURCES LTD. ATTN: JOAN MARIACHER C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981)

LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2013 Account: RANSIL

Project: Rose

Sample Description	Method	WEI-21	Au-ICP21	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41	ME-MS41
	Analyte	Recvd Wt.	Au	Ag	AI	As	Au	B	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	0.02	0.001	0.01	0.01	0.1	0.2	10	10	0.05	0.01	0.01	0.01	0.02	0.1	1
ZZ84810		0.46	0.004	0.16	1.40	8.6	<0.2	<10	560	0.43	0.15	0.32	0.25	38.1	12.0	52
ZZ84811		0.30	0.004	0.53	1.00	8.4	<0.2	<10	460	0.28	0.14	0.17	0.26	18.85	7.0	33
ZZ84812		0.40	0.004	0.27	1.20	4.5	<0.2	<10	730	0.46	0.14	0.37	0.36	30.9	10.0	37
ZZ84813		0.38	0.005	0.45	1.72	8.4	<0.2	<10	920	0.51	0.21	0.24	0.34	27.6	9.2	44
ZZ84814		0.37	0.003	0.23	1.04	7.4	<0.2	<10	540	0.34	0.16	0.16	0.39	23.6	8.2	29
ZZ84815		0.33	0.001	0.07	0.72	5.9	<0.2	<10	70	0.11	0.17	0.04	0.08	13.80	2.8	23
ZZ84816		0.30	0.002	0.10	0.31	1.6	<0.2	<10	140	0.05	0.06	0.09	0.06	5.33	2.1	11
ZZ84817		0.23	0.014	0.80	1.10	9.5	<0.2	<10	790	0.37	0.19	0.22	0.16	20.6	9.2	24
ZZ84818		0.36	0.011	0.10	0.77	12.5	<0.2	<10	110	0.14	0.28	0.03	0.10	24.0	4.2	26
ZZ84818		0.35	0.006	0.44	0.88	7.1	<0.2	<10	850	0.31	0.15	0.35	0.25	17.90	8.4	28
ZZ84820 ZZ84821 ZZ84828 ZZ84829 ZZ84830		0.35 0.25 0.26 0.32 0.24	0.010 0.004 0.001 0.007 0.002	0.65 0.24 0.11 0.51 0.24	0.78 0.83 0.27 1.54 0.27	4.4 13.8 0.8 9.9 0.4	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	870 710 220 2100 290	0.21 0.17 0.06 0.57 0.09	0.14 0.26 0.03 0.26 0.03	0.13 0.07 0.07 0.38 0.31	0.48 0.20 0.08 0.75 0.25	15.30 18.30 3.61 28.3 6.13	12.6 6.9 0.7 14.1 2.8	45 71 4 39 3
ZZ84831 ZZ84832 ZZ84833 ZZ84834 ZZ84834 ZZ84835		0.41 0.27 0.41 0.32 0.26	0.009 0.005 0.004 0.002 0.003	0.20 0.27 0.14 0.06 0.62	0.98 0.96 1.42 0.26 0.46	11.9 8.3 9.5 2.3 1.8	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	1150 1150 790 160 690	0.34 0.26 0.43 0.06 0.15	0.26 0.16 0.09 0.07	0.10 0.17 0.31 0.11 0.13	0.63 0.48 0.37 0.08 0.54	19.65 23.7 45.1 13.05 11.05	17.9 12.7 14.7 1.6 4.6	99 75 57 22 28

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2013 Account: RANSIL

Project: Rose

Sample Description	Method Analyte Units LOR	ME-MS41 Cs ppm 0.05	ME-MS41 Cu ppm 0.2	ME-MS41 Fe % 0.01	ME-MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME-MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME-MS41 K % 0.01	ME-MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME-MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME-MS41 Na % 0.01
ZZ84810 ZZ84811 ZZ84812 ZZ84813 ZZ84814		0.70 0.63 0.63 1.14 0.68	36.8 27.7 35.8 35.9 30.3	2.52 1.93 1.84 2.27 1.85	4.78 3.55 4.04 5.10 3.81	0.06 <0.05 0.05 0.05 <0.05	<0.02 <0.02 0.03 0.04 <0.02	0.04 0.09 0.06 0.09 0.04	0.022 0.016 0.018 0.024 0.018	0.05 0.06 0.04 0.08 0.06	20.7 10.4 15.9 15.1 12.5	12.5 7.7 9.9 14.8 9.0	0.80 0.43 0.57 0.59 0.38	352 303 250 339 581	1.70 5.00 1.09 2.70 3.56	0.02 0.02 0.02 0.01 0.01
ZZ84815 ZZ84816 ZZ84817 ZZ84818 ZZ84818 ZZ84819		0.53 0.28 1.05 0.74 0.93	10.7 10.6 38.2 21.8 35.5	1.55 0.91 1.66 2.62 1.98	5.00 2.14 3.68 6.48 3.52	<0.05 <0.05 <0.05 <0.05 <0.05	<0.02 <0.02 <0.02 <0.02 <0.02	0.01 0.03 0.10 0.02 0.06	0.010 0.005 0.017 0.016 0.018	0.03 0.02 0.05 0.03 0.05	7.4 3.0 12.4 12.6 10.2	2.8 1.9 7.7 2.8 7.7	0.15 0.08 0.26 0.14 0.32	166 58 1880 202 973	1.32 0.44 2.57 3.10 2.54	0.01 0.02 0.02 <0.01 0.02
ZZ84820 ZZ84821 ZZ84828 ZZ84829 ZZ84829 ZZ84830		0.80 0.68 0.16 0.86 0.15	23.3 26.9 8.1 42.9 9.8	1.48 2.82 0.34 2.60 0.48	3.11 4.84 0.99 4.85 0.97	<0.05 <0.05 <0.05 0.05 <0.05	<0.02 <0.02 <0.02 0.05 <0.02	0.10 0.03 0.03 0.13 0.04	0.015 0.020 <0.005 0.027 <0.005	0.05 0.04 0.03 0.09 0.03	7.9 9.9 2.5 15.3 3.1	4.7 3.4 0.5 12.3 0.5	0.26 0.18 0.03 0.48 0.06	1400 253 51 795 330	1.19 3.93 0.38 3.37 0.40	0.02 0.01 0.03 0.01 0.04
ZZ84831 ZZ84832 ZZ84833 ZZ84833 ZZ84834 ZZ84835		0.74 0.96 0.59 0.54 0.37	26.2 38.6 39.9 8.4 19.7	2.58 2.11 2.83 0.68 0.73	4.06 3.47 4.67 2.43 1.64	<0.05 <0.05 0.08 <0.05 <0.05	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	0.02 0.03 0.04 0.01 0.04	0.021 0.026 0.021 <0.005 0.009	0.04 0.06 0.05 0.02 0.03	9.7 12.2 24.3 6.9 5.8	6.0 9.6 14.1 0.7 1.9	0.56 0.77 0.95 0.04 0.18	881 781 395 41 367	2.38 2.09 2.13 1.10 0.63	0.01 0.02 0.01 0.01 0.03

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

To: SILVER RANGE RESOURCES LTD.

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2013 Account: RANSIL

Project: Rose

Sample Description	Method Analyte Units LOR	ME-MS41 Nb ppm 0.05	ME-MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME-MS41 Re ppm 0.001	ME-MS41 S % 0.01	ME-MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME-MS41 Sn ppm 0.2	ME-MS41 Sr ppm 0.2	ME-MS41 Ta ppm 0.01	ME-MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
ZZ84810 ZZ84811 ZZ84812 ZZ84813 ZZ84814		0.86 0.50 0.69 0.79 0.61	45.3 26.3 32.3 40.3 28.3	960 860 960 980 770	8.9 9.2 8.0 11.9 9.9	6.2 6.2 5.5 10.3 6.9	<0.001 0.001 0.001 <0.001 0.001	0.01 0.02 0.02 0.02 0.02	0.89 1.96 0.58 0.85 0.96	3.8 1.6 3.1 3.3 1.9	1.3 1.0 1.1 1.3 1.2	0.3 0.3 0.4 0.3	23.2 21.5 23.9 20.7 17.7	<0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.04 0.02 0.04 0.03	3.2 0.6 2.1 1.9 1.2
ZZ84815 ZZ84816 ZZ84817 ZZ84818 ZZ84818 ZZ84819		0.74 0.40 0.74 1.54 0.44	11.3 4.8 24.8 17.0 28.6	260 340 720 430 890	6.7 3.4 9.8 11.0 8.7	4.1 2.6 9.1 5.4 7.5	<0.001 <0.001 <0.001 <0.001 0.001	0.01 0.02 0.04 0.02 0.04	0.56 0.13 0.53 1.23 0.83	0.7 0.7 2.2 1.3 1.5	0.4 0.3 1.3 0.9 1.5	0.5 <0.2 0.3 0.7 0.3	6.6 12.1 25.0 7.7 36.5	<0.01 <0.01 <0.01 <0.01 <0.01	0.01 <0.01 0.02 0.05 0.03	0.2 0.2 0.6 1.0 0.3
ZZ84820 ZZ84821 ZZ84828 ZZ84829 ZZ84829 ZZ84830		0.38 0.74 0.26 0.90 0.25	25.6 31.7 4.8 35.8 3.8	950 1410 310 1070 630	9.0 16.3 1.2 16.0 2.0	7.6 6.6 1.5 9.9 1 7	<0.001 <0.001 <0.001 <0.001 <0.001	0.04 0.05 0.02 0.03 0.04	0.45 1.58 0.23 1.37 0.26	1.4 1.2 0.4 3.9 0.5	0.7 1.5 0.5 1.5 0.2	0.2 0.5 <0.2 0.4 <0.2	18.7 21.3 9.7 30.1 19.2	<0.01 <0.01 <0.01 <0.01 <0.01	0.03 0.08 <0.01 0.04 <0.01	0.3 0.5 <0.2 2.0 <0.2
ZZ84831 ZZ84832 ZZ84833 ZZ84833 ZZ84834 ZZ84835		0.93 0.43 0.66 0.32 0.33	66.0 94.7 54.7 7.3 32.0	1010 1000 1160 190 580	14.6 12.5 9.9 2.8 3.4	7.0 8.0 5.2 3.4 4.0	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.03 0.04 0.01 0.01 0.03	1.08 1.05 1.13 0.33 0.29	1.7 1.2 4.0 0.3 0.9	1.0 0.9 1.0 0.3 0.5	0.4 0.2 0.3 0.3 <0.2	16.3 21.3 25.8 8.7 13.1	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.06 0.03 0.03 0.01 <0.01	1.1 0.3 4.2 <0.2 0.2

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 6-SEP-2013 Account: RANSIL

Project: Rose

CERTIFICATE OF ANALYSIS	WH13150591
-------------------------	------------

	Method Analyte	ME-MS41 Ti %	ME-MS41 TI	ME-MS41 U	ME-MS41 V	ME-MS41 W	ME-MS41 Y	ME-MS41 Zn	ME-MS41 Zr	
Sample Description	LOR	0.005	0.02	0.05	1	0.05	0.05	2	0.5	
ZZ84810		0.038	0.09	0.79	44	0.14	9.05	72	<0.5	
ZZ84811		0.021	0.13	0.74	54	0.16	4.25	59	<0.5	
ZZ84812 7704012		0.024	0.08	0.87	35	0.48	8.29	58	1.0	
ZZ84813 7704014		0.020	0.14	0.77	49 35	0.16	7.05	91 71	1.0	
2204014		0.013	0.10	0.77	55	0.13	4.45	21	0.5	
ZZ84815 7784816		0.040	0.07	0.29	30 30	0.21	2 15	31 16	<0.5	
7784817		0.026	0.04	1.51	29	0.00	10.85	52	<0.5	
ZZ84818		0.042	0.11	0.46	73	0.32	2.08	52	<0.5	
ZZ84819		0.023	0.10	0.96	38	0.11	6.74	79	<0.5	
ZZ84820		0.022	0.13	0.96	30	0.11	4.55	52	<0.5	
ZZ84821		0.018	0.15	0.53	64	0.15	2.03	66	<0.5	
ZZ84828		0.015	0.03	0.33	8	<0.05	2.04	8	<0.5	
ZZ84829		0.022	0.14	1.75	53	0.18	11.95	90	1.4	
ZZ84830		0.020	0.03	0.50	12	<0.05	2.96	10	<0.5	
ZZ84831		0.034	0.15	0.76	46	0.17	3.27	70	<0.5	
ZZ84832		0.024	0.12	0.91	38	0.12	4.61	93	<0.5	
ZZ84833		0.032	0.08	0.97	43	0.12	9.50	86	0.5	
ZZ84834		0.022	0.06	0.23	22	0.11	0.92	16	<0.5	
2284835		0.021	0.07	0.93	17	0.05	3.61	25	<0.5	

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: SILVER RANGE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 6-SEP-2013 Account: RANSIL

Project: Rose

		CERTIFICATE CO	DMMENTS								
Applies to Method:	ANALYTICAL COMMENTS Gold determinations by this method are semi-quantitative due to the small sample weight used (0.5g). ME-MS41										
	Processed at ALS Whitehorse located	LABC	DRATORY ADDRESSES								
Applies to Method:	LOG-22	SCR-41	WEI-21								
Applies to Method:	Processed at ALS Vancouver located a Au-ICP21	at 2103 Dollarton Hwy, ME-MS41	North Vancouver, BC, Canada.								

