on the B PROJECT

PHASE 1 2012 WORK PROGRAM

(B 14-15, 20-23, 25, 27-30: YB81306-7, 312-15, 17, 319-22) (B 47, 49-62, 77-99: YB81331, 333-46, 349-371) (B 103-119: YC02750 - YC02763, YC39579-81)

NTS: 105M/14

Latitude: 63°59'N Longitude: 135°15'W

Mayo Mining Division

Work performed on August 4, 2012

Owner/Operator Richard E. Fischer Calgary, Alberta

By Jean Pautler, P. Geo. JP Exploration Services Inc. 103-108 Elliott St. Whitehorse, Yukon Y1A 6C4

February 4, 2013

SUMMARY:

The 1310 ha B property, NTS map sheet 105M/14, is located 7 km north-northeast of Keno City, approximately 360 km north of Whitehorse, Yukon Territory. The property is situated in the Mayo Mining Division with a latitude and longitude of 63°59'N, 135°15'W. Road access exists to the property, although all-terrain vehicle use is necessary past Wernecke. Richard E. Fischer of Calgary Alberta is the registered owner and funded the 2012 programs on the B property.

The B property lies just north of the Keno Hill silver mining camp which produced 4,872,423 tonnes averaging 1,389 g/t Ag, 5.6% Pb and 3.1% Zn, from 1921 to 1988. Alexco Resource Corp. acquired the majority of the camp in 2007, and is currently mining the Bellekeno deposit and actively developing the Lucky Queen deposit, 8 km and 3 km south of the B property, respectively. The Bellekeno Mine produced 2.02 million ounces of silver during 2011 and contained an indicated mineral resource of 246,400 tonnes grading 925 g/t Ag, 0.5 g/t Au, 7.9% Pb and 6.9% Zn as of September 30, 2012 (Alexco website). The Lucky Queen contains an indicated mineral resource of 124,000 tonnes grading 1,227 g/t Ag, 0.2 g/t Au, 2.6% Pb and 1.7% Zn (Alexco website). Gold and silver bearing quartz veins occur peripheral to the silver-lead-zinc deposits at Keno Hill.

The Moon mineral occurrence, located near the centre of the B property on adjacent ground, hosts a longitudinal fissure vein containing 3.65% Pb, 2.17% Zn, 292.0 g/t Ag and 1.19 g/t Au over 0.4m with values up to 7.99% Pb, 7.89% Zn, 586.0 g/t Ag and 5.18 g/t Au from the aplite host.

The property is primarily underlain by phyllitic metasedimentary rocks of the Devono-Mississippian Earn Group possibly cut by narrow sills and dykes of Earn Group felsic metavolcanic schist and intruded by Triassic greenstone and Cretaceous porphyritic aplite dykes and sills. Two northeasterly trending faults, which are the orientation of the structures hosting Keno Hill type silver-lead-zinc mineralization, were mapped on the property.

Previous exploration has included many old pits, hand and excavator trenches and three drill holes, some of which have been located in the B property area, but no documentation of this work has been uncovered to date. Recent work, from 2001 to 2010, has included geological mapping, geochemical sampling, prospecting and grid and contour soil geochemistry, with the collection of 93 rock, 285 soil and 49 stream sediment samples, and 23 line km of VLF-EM geophysics.

The Phase 1, 2012 work program consisted of whole rock analysis of fresh aplite from the Moon adit area to determine its composition, a geochemical analysis of high sulphide bearing concentrate material to determine the indium and trace element signatures of the mineralization, and ICP and Au analyses of variably altered aplite. The aplite at the Moon adit was found to be quartz rich monzogranite in composition. The high sphalerite bearing specimen of concentrate from the adit returned 43.3 ppm indium, adding to the economic potential of the mineralization here.

There is potential for five northeast trending Keno Hill type vein systems to transect the B property, the highly productive Sadie-Ladue structure, two veins on the Lake leases, the Moon, the Stone and the Nabob No. 2 veins.

The significant precious metal and indium results from the Moon Adit warrant further work to trace the Moon fissure vein along strike on to the B property and indicate that the aplite is a

favourable host. The abundance of aplite encountered on the B property is also suggestive of the presence of a Cretaceous stock that may have intrusion associated gold potential. An airborne magnetic survey would be useful to delineate the presence of a buried intrusion.

At the Moon Adit a 045°/85°W trending fissure vein is exposed in an aplite sill at the contact with overlying phyllite in a classic Keno Hill "schist cap" type of ore shoot, which is observed at the Bellekeno Mine, one of the main deposits within the Keno mining camp. Previous VLF-EM and stream sediment surveys on the B property suggest continuity of mineralization at the Moon Adit extending for at least another 400m to the southwest on the B property. The conductor extends over the 2.5 km extent of the baseline.

The 2010 grid soil survey on the Moon Grid was successful in delineating two sub-parallel coincident gold-silver-lead-zinc anomalies. The first lies 500m directly along strike to the southwest from the Moon Adit, with maximum values of 45 ppb Au, 27.2 ppm Ag, 1755 ppm Pb and 836 ppm Zn. Elevated lead-zinc values occur 1 km along trend to the northeast. The second lies 400m to the southeast, with maximum values of 55 ppb Au, 12.5 ppm Ag, 162 ppm Pb and 470 ppm Zn. Additional soil sampling is necessary, particularly in the southwest Moon Grid area to more accurately define the anomalies.

Enhanced zinc values hosted by the phyllite unit (0.7% Zn previously obtained on B 87 and 0.09% Zn obtained in 2009 on B 47) occur approximately 350m northwest of the Sadie-Ladue structure. Additional soil sampling is recommended across the projected Sadie-Ladue structure to define it since a reconnaissance soil program in 2008 was successful in outlining anomalies despite poor conditions related to permafrost.

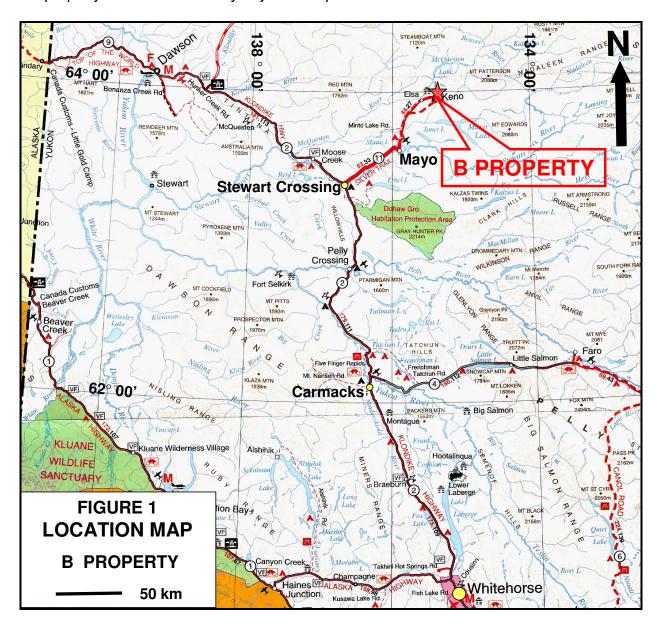
In 2008 a mineralized aplite was encountered containing 3365 ppm Pb between the projections of the Stone and Nabob #2 structures. This may indicate proximity to a mineralized structure and warrants further prospecting and trenching. The area is primarily underlain by greenstone, another favourable host rock for Keno Hill type mineralization. An outcrop of quartzite overlain by phyllite was encountered in McKay Gulch along trend of the Nabob #2 structure. Additional prospecting is warranted here to locate a vein fault since this represents a "schist cap" type environment.

The 2008 reconnaissance soil survey outlined significant base and precious metal anomalies including a spot 365 ppb Au anomaly within a broad >100 ppm zinc anomaly. Significant silver-lead-zinc results were also obtained 250m northeast of quartz veins hosted by aplite (±arsenopyrite) and phyllite that previously returned 0.7% Zn with minor silver-gold-lead. Additional reconnaissance soil sampling completed in 2010 was unsuccessful in tracing the 2008 anomalies and could not duplicate the original 365 ppb Au value possibly due to excessive permafrost encountered in the 2010 sampling, which was conducted early in the season.

Following more detailed delineation of the possible extension of the Moon fissure vein, a phase 2 program of diamond drilling is recommended to trace the structure. Alternatively (less expensive but not as accurate) rotary air blast drilling, widely used to trace mineralization in the Keno mining camp, may be considered.

TABLE OF CONTENTS

SLIMI	MARY		Page
OOWII	vi/ \(\(\(\) \		1
1.0	LOCATION AND A	CCESS	1
2.0	LEGAL DESCRIPT	ION	2
3.0	PHYSIOGRAPHY.		2
4.0	HISTORY		2
5.0	PHASE 1 2012 WC	ORK PROGRAM	3
6.0	GEOLOGY		7
	6.1 Regional 6.2 Property 6.3 Mineralization		7 7 12
7.0	PREVIOUS EXPLO	DRATION	14
	7.1 Geochemistry 7.2 Geophysics		14 16
8.0	GEOCHEMISTRY.		21
9.0	CONCLUSIONS A	ND RECOMMENDATIONS	21
10.0	SELECTED REFER	RENCES	24
11.0	APPENDICES		25
	Appendix I	Statement of Claims	
	Appendix II	Sample Descriptions	
	Appendix III	Geochemical Procedure and Results	
	Appendix IV	Statement of Expenditures	
	Appendix V	Statement of Qualifications	


LIST OF FIGURES

		Page
Figure 1	Location Map (scale as shown)	1
Figure 2	Claim and Index Map (1:30,000)	4
Figure 3	Regional Geology Map (as shown)	5
LEGEND	Legend for Figure 3	6
Figure 4	Property Geology (1:25,000)	9
Figure 5	Sun Grid - Geology and Geochemistry (as shown)	10
Figure 6	Moon Showing Area - Geology and Geochemistry (as shown)	11
Figure 7	Stacked VLF Profiles (1:15,000)	17
Figure 8	VLF Fraser Filtered InPhase (1:15,000)	18
Figure 9	Sample Location Map	19
	LIST OF TABLES	
Table 1	Summary of claims	2
Table 2	Location of adits	12
Table 3	Diamond drill hole locations	14
Table 4	Trench Locations	14
	LIST OF PHOTOGRAPHS	
Photo 1	Photographs of Select Rock Specimens	20

1.0 LOCATION AND ACCESS (Figure 1)

The B property, NTS map sheet 105M/14, is located 7 km north-northeast of Keno City, approximately 360 km north of Whitehorse, Yukon Territory, in the Mayo Mining Division. It is situated on the northwestern slope of Keno Hill, approximately 1-2 km south of Gambler Lake. Latitude and longitude of the property are 63°59'N, 135°15'W.

Access is via the Gambler Gulch road/trail, which passes through Wernecke and crosses Gambler Gulch and Faro Gulch. The trail heads south at Faro Gulch and transects the B property. The trail is road accessible to just beyond the old mining camp at Wernecke (approximately 6 km from Keno City). All-terrain vehicle (ATV) use for the remaining 5 km to the property centre is necessary beyond this point.

2.0 LEGAL DESCRIPTION (Figure 2)

The B Claim Group consists of 66 contiguous claims covering an area of approximately 1310 hectares. The registered owner of the B property is, and current program funded by, Richard Fischer of Calgary, Alberta. A table showing pertinent claim data follows and a full statement of claims is shown in Appendix I.

Claim	Record	No. of	Current	New
Name	No.	Claims	Expiry Date	Expiry Date*
B 14-15	YB81306-7	2	Aug. 22, 2013	Aug. 22, 2013*
B 20-23,25,27-30	YB81312-15,17, 319-22	9	Aug. 22, 2013	Aug. 22, 2013*
B 47, 49-56	YB81331, 33-340	9	Aug. 22, 2013	Aug. 22, 2013*
B 57-62	YB81341-346	6	Nov. 22, 2012	Nov. 22, 2013
B 77 - 95	YB81349-81367	19	Nov. 22, 2012	Nov. 22, 2013
B 96	YB81368	1	Nov. 22, 2012	Nov. 22, 2013
B 97-99	YB81359-365, 367, 369-371	3	Nov. 22, 2012	Nov. 22, 2013
B 103 - 116	YC02750 - 02763	14	Sept. 6, 2013	Sept. 6, 2013*
B 117 - 119	YC39579-581	3	Nov. 11, 2012	Nov. 11, 2013
TOTAL		66		

TABLE 1: Summary of claims

3.0 PHYSIOGRAPHY

The B property is situated within the Stewart Plateau, characterized by individual and isolated small ranges separated by broad deep valleys. The lower slopes have been glaciated with westerly trending ice flow directions. The claims cover the northwestern tree covered slope of Keno Hill. Muskeg and sparse black spruce cover the lower half of the claim group. Exposure is extremely poor but does exist along some of the creeks, as cliff exposures above Gambler Lake and at the higher elevations on Keno Hill, such as on the B 14 and B 15 claims. Elevations on the property range from 2350' (716m) to 4720' (1439m). Vegetation includes spruce, alder, willow and muskeg.

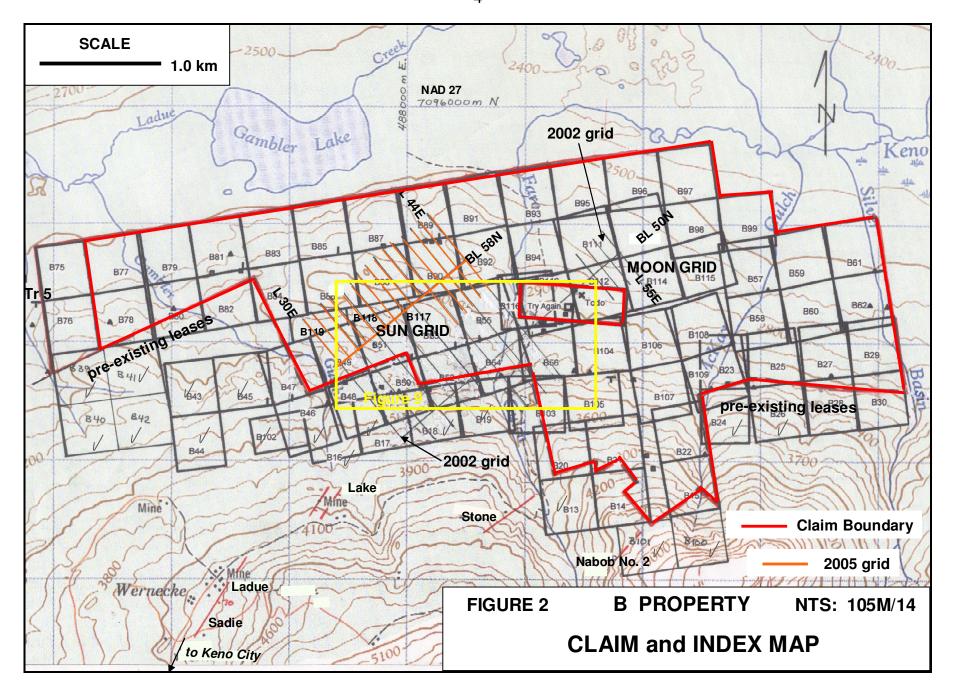
4.0 HISTORY (Figure 3)

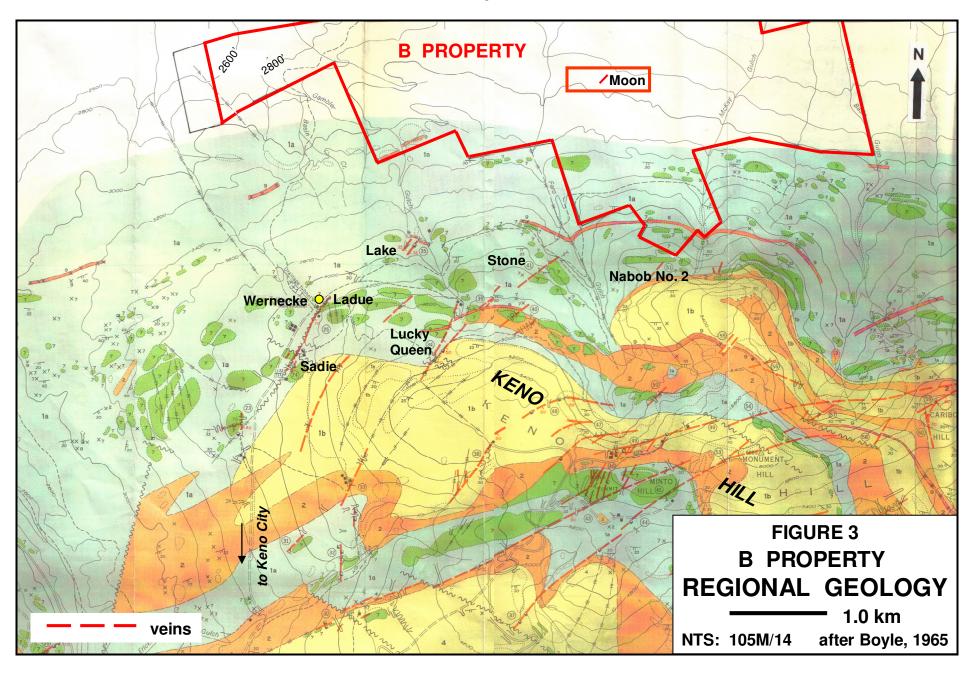
The B property lies approximately 1 km north of the old mine workings at Wernecke, an active mining camp from 1921 to 1933, with production principally from the Sadie-Ladue (24-25) and Lucky Queen (34) veins. Production figures from 1921 to 1941, which include some production from the Galena Hill area, are 588,503.4 tonnes of 2,605 g/t Ag and 7.5% Pb. More recent work in the Wernecke area includes high-grading of the Sadie-Ladue, Shamrock and Lucky Queen veins in the 1980's to 1990. Production figures include 999.5 tonnes of 8,588.6 g/t Ag, 221 tonnes of 7,153.8 g/t Ag and 100 tonnes (including average grades of over 13,713 g/t Ag from the Lucky Queen) in addition to lead (*Deklerk and Traynor, 2004*). The Lucky Queen silver deposit, under development by Alexco Resource

^{*} Note: New expiry date based on acceptance of this report.

Corp., contains an indicated mineral resource of 124,000 tonnes grading 1,227 g/t Ag, 0.2 g/t Au, 2.6% Pb and 1.7% Zn (*Alexco website*). The B property also adjoins showings on the northern slope of Keno Hill with significant silver-lead-zinc veins such as the Nabob No. 2 (51), Lake (35) and Stone occurrences (41). (*Refer to Figure 3.*)

The Moon mineral occurrence (105M 046) is located near the centre of the B property. The main showing, which consists of an adit, occurs on the adjoining Try Again and Todd claims, owned by Walter Malicky of Whitehorse, Yukon. Previous trenching and drilling extends on to the B property. The Moon showing was first staked in 1921 and later explored by a 30m long adit. Several periods of hand and excavator trenching were undertaken from the 1960's to 1990's and 3 holes (27.4m) were drilled by Colonial Mines Limited in 1965 (Deklerk and Traynor, 2004). A longitudinal fissure vein, traced for 30.5m (Deklerk and Traynor, 2004), and a possible transverse vein are exposed at the mouth of the adit.


Many of the old pits, hand and excavator trenches and drill sites have been located on the B property but no documentation of this work has been uncovered to date. Locations are shown in Figures 4-6.


In 2001 to 2002 and in 2005 geological mapping, with concurrent geochemical sampling and prospecting, and a 23 line km VLF-EM geophysical survey were undertaken on the B property to trace the structures hosting mineralization at the Moon, Lake and Sadie-Ladue showings on to the B property. The geophysical data was integrated and compiled by a qualified geophysicist, Dr. Dave Hildes, Ph.D., P.Geo. of Aurora Geosciences, Whitehorse, Yukon Territory in 2006. Trail rehabilitation, geological mapping, prospecting with concurrent rock and soil geochemical sampling was undertaken in 2008. The 2009 program consisted of geological mapping and prospecting with concurrent rock geochemical sampling. The 2010 program consisted of contour and grid soil geochemistry on the northeastern Sun Grid and along strike of the Moon Adit.

5.0 PHASE 1 2012 WORK PROGRAM

The Phase 2 2012 work program consisted of whole rock analysis of fresh aplite from the Moon adit area to determine its composition, a geochemical analysis of high sulphide bearing concentrate material to determine the indium and trace element signatures of the mineralization, and ICP and Au analyses of variably altered aplite. Control was provided by topographic maps and GPS.

The 2010 program will be discussed under section 8.0 "Geochemistry".

		LEGEND			
			Road, all weather		
-					
1	CRETACEOUS	5 (?)			
	9	Quartz-feldspar porphyry, rhyolite			
	#				
			Marsh		यहर -
1			Contours (interval 20	00 feet)	
1	8	Biotite lamprophyre			
			Geological ca	ortography by the Geological	Survey of Canada 1964
1			Base man ca	rtography by the Geological	Survey of Canada, from
	19 Sept. 196-19		maps prepare	ed by the Surveys and Map	ping Branch, 1956, with
	7	Diorite, gabbro (greenstone)		ns by the Geological Survey	
-		YUKON GROUP	Approximate ma	gnetic declination 33° 46' E.	decreasing by 4.3' annually
		TOKON GROUP			The second second second
1		UPPER SCHIST FORMATION (5,6)		INDEX TO MINING PROPER	TIES AND PROSPECTS
-	6	Graphitic schist, graphitic phyllite, thin	-bedded	1. Silver King	21. Moth
	0	quartzite, argillite, quartz-mica schist, li	imestone	2. Elsa	22. Onek
				3. Dixie	23. Klondyke-Keno
				4. Coral and Wigwam	24. Sadie-Friendship
	5	Quartz-sericite schist		5. Arctic and Mastiff	25. Ladue
	3	Quartz-sericite scriist		6. Ruby	26. Bellekeno
				7. No Càsh	27. Mount Keno (Hogan ve
				8. Betty	28. Ankeno 29. Mount Keno (Runer ve
		CENTRAL QUARTITE FORMATION (3,4)		9. Cream	30. Dorothy
		3. White to pale grey, thick-bedded c	herty quartzite	10. Hector 11. Calumet	31. Kijo
1	3 4	4. Thick-bedded quartzite, thin-bedde	d quartzite,	12. Dragon (U. N.)	32. Croesus No. 1
		graphitic phyllite, graphitic schist, a		13. Formo	33. Black Cap and Shephe
				14a. Galkeno (McLeod vein)	34. Lucky Queen
				14b. Galkeno (Sime and	35. Lake
l		LOWER SCHIST FORMATION (1,2)		Sugiyama veins)	36. Vanguard
				15. Eagle	37. Apex
	2	Quartz-sericite schist		16. Fisher Creek	38. Shamrock
		J		17. Bluebird	39. Highlander
-			and the second	18. Tin Can	40. Cub and Bunny 41. Stone
		1a. Graphitic schist, graphitic phyllite,	thin-bedded	19. Rico 20. Duncan Creek	42. Homestake
-	1a 1b	quartzite, argillite, calcareous schis some quartz-sericite schist (2) on	Colons Hill	20. Dulican Creek	
		1b. Thick-bedded quartzite, thin-bedde	ed quartrite		43. No. 6
1	_	phyllite, graphitic schist	ed quarterte,		44. Porcupine-Kinmar
		priymte, grapinae comet			45. Comstock
	a of rook outo	rop and local float (small, large)	v (*)		46. No. 9 47. No. 1
					48. Gambler
		known (inclined, dip known)			49. Main Fault and Na
16	nament from a	ir photographs (in some places may of a vein fault or post-ore fault)	#		50. Lake View
		or a vent radit or post-ore radity			51. Nabob, No. 2
					52. Helen Fraction
					53. Gold Hill No. 2
		cut			54. Ladue Fraction
					55. Fox
		caved)			56. Silver Basin
n	ing property of	or prospect (referred to in text)			57. Gold Queen
			1052 1054 11055		58. Duncan 59. Alice
G	eology compil	led by R. W. Boyle from field work in 1	953, 1954 and 1955;		59. Alice 60. Caribou
G	eological Surv	rey of Canada Summary Report Part A, I da, Preliminary Map 50-20 A; various pri	viap 1800; Geological		61. Divide
	urvey of Canad	ua, Freiminary iviap 50-20 A; various pri	vate reports and maps		62. Devon
S					

6.0 GEOLOGY

6.1 Regional (Figure 3)

The regional geology of the B property is represented on the Keno Hill (105 M/14) Map Sheet, Murphy and Roots, 1992. The area is underlain by highly deformed rocks of the Devono-Mississippian Earn Group (a metavolcano-sedimentary package), the Early Carboniferous Keno Hill Quartzite and Triassic diorite to greenstone, which occur within the easterly trending, southerly dipping Tombstone Thrust Sheet. The deformation, characterized by intense foliations and lineations, appears to be related to displacement along the Tombstone Thrust. The foliations and lineations were later deformed by north to northwest trending open folds. All of the above lithological units are intruded by Cretaceous aged aplite and granite dykes and sills. North to northeast and northwest trending faults are evident through the area, with Keno Hill type mineralization associated with the former faults. The mineralized vein faults have been K/Ar dated at 90 Ma.

The B property lies just north of the Keno silver mining camp, which hosts more than 65 deposits and occurrences with all of the mineable silver veins occurring in a 26 km by 1 to 6.4 km wide area. The Keno mining camp produced silver from 1914 until 1989, with production from 1921 to 1988 totalling 4,872,423 tonnes averaging 1,389 g/t Ag, 5.6% Pb and 3.1% Zn. Mineralization primarily consists of galena, sphalerite and freibergite in a gangue of siderite ±quartz and is commonly associated with northeast trending, southeast dipping fault fissures. Most of the deposits occur within the Keno Hill Quartzite. Gold and silver bearing quartz veins occur peripheral to the silver-lead-zinc deposits at Keno Hill.

The Keno Hill camp is an example of a clastic metasediment hosted silver-lead-zinc enriched polymetallic vein deposit model such as the Coeur d'Alene district in Idaho, USA. Commodities in this type of deposit typically include silver, lead, zinc with lesser gold, copper and manganese and individual vein systems range from several hundred to several million tonnes grading from 5 to 1500 g/t Ag, 0.5 to 20% Pb and 0.5 to 8% Zn.

6.2 Property (Figures 4 - 5)

The B property is primarily underlain by phyllitic metasedimentary rocks of the Devono-Mississippian Earn Group, with minor Keno Hill Quartzite, intruded by Triassic greenstone and Cretaceous porphyritic aplite dykes and sills. Two northeasterly trending faults, which are the orientation of the structures hosting Keno Hill type silver-lead-zinc mineralization, were mapped on the property.

The phyllitic metasedimentary rocks comprise the oldest unit on the property (Unit 1) and consist of carbonaceous or graphitic (gf) phyllite that can be calcareous (calc). They generally consist of metamorphosed shales, mudstones and marls. Some of the phyllitic rocks exhibit a variation in grain size and composition, so have been subdivided into rocks that were originally siltstones (ss), arenites (ar) and greywackes (gw). Grey to black limestone (lst), commonly grading to graphitic calcareous phyllite and thought to be related to Unit 1, is exposed on B 49, B 87 and to the west of the property at Trench 5 (see Figure 5). Unit 1 represents the Lower Schist Unit at Keno Hill, which has been known to host Keno Hill type silver veins, but is not the most favourable host due to its incompetent character resulting in small, irregular and discontinuous veins.

Numerous foliation-parallel boudins of Triassic greenstone (Unit 4) to meta-diorite (Unit 4d) and meta-gabbro (Unit 4g) thought to represent deformed sills and/or dykes are contained within the phyllitic metasedimentary unit. Unit 4, a favourable host for mineralized fissure veins in the Keno Hill Camp, predominates in the northwestern and southeastern property areas and as more isolated exposures in the central property area, covered by the Sun Grid.

Quartzite (Unit 3), the main host for mineralized fissure veins in the Keno Hill Camp, occurs in the vicinity of Trench 6 on B 105 with float identified on B 56. This area lies just west of the projection of the fault that hosts the vein at the Stone occurrence to the southwest (Figure 4). Quartzite occurs beneath grey phyllite and minor metavolcanic schist along McKay Gulch, along trend of the Nabob No. 2 vein (Figure 4).

Cretaceous porphyritic aplite dykes and sills cut Unit 1 in the Moon showing area on the Try Again and Todd claims and in several locations across the B property. A porphyritic aplite sill (Unit 5) intrudes Unit 1 at the Moon Adit and a similar dyke occurs just to the southwest (Figure 6). A similar sill to that at the Moon Adit is exposed on the B 87 claim (Figure 4). A large sill has been traced across Gambler Gulch on the B 47 and 49 claims (Figure 4). This sill may be offset to the north, where it appears on the B 51 claim on the Sun Grid. Another aplite cuts the greenstone in the B14 – B15 claim area (Figure 4). A sill is also exposed just south of the southeastern corner of the B property along Silver Basin Gulch.

Two northeasterly trending faults, which are the orientation of the structures hosting Keno Hill type mineralization, were mapped on the property. One of the faults was mapped on the B 90 claim and another mapped at the adit. Trench 2 occurs proximal to the postulated intersection between the Lake and Moon fissure vein faults, a favourable environment for ore shoots in the Keno Hill Mining Camp. Minor north to northwesterly trending drag folds were also mapped on B 90 and B 50, with the former fold showing vergence to the northeast. The lithological units on the B property appear to form the southern limb of an anticline.

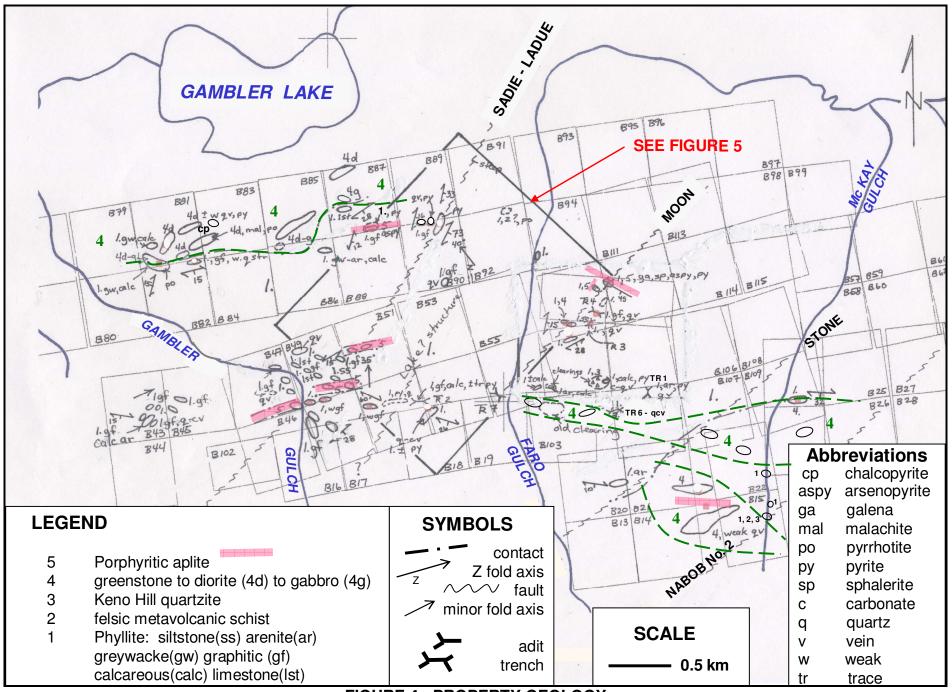


FIGURE 4: PROPERTY GEOLOGY

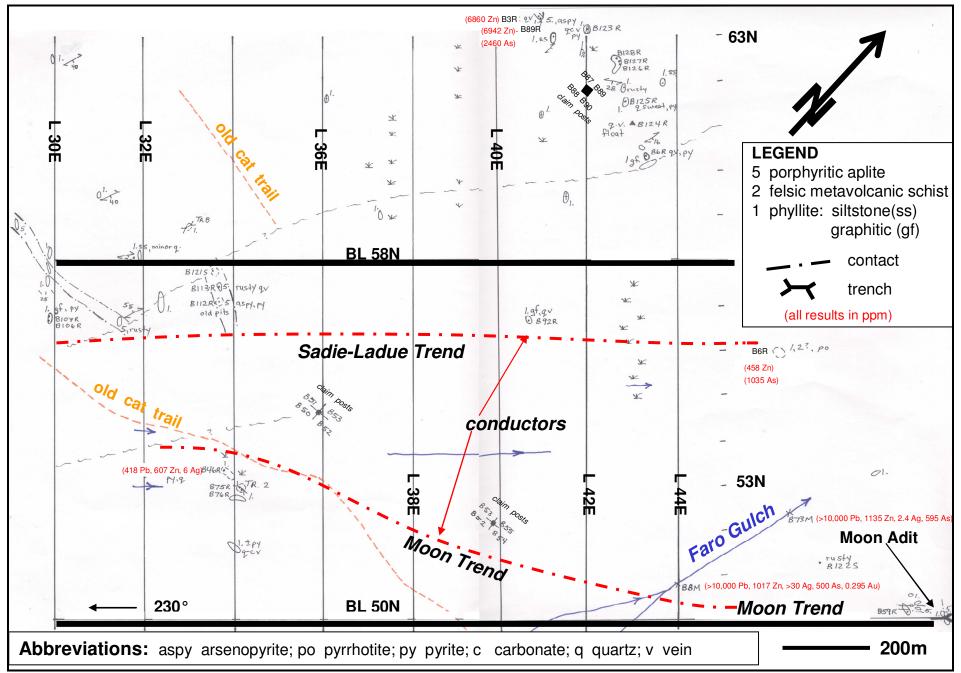


FIGURE 5: SUN GRID - GEOLOGY AND GEOCHEMISTRY

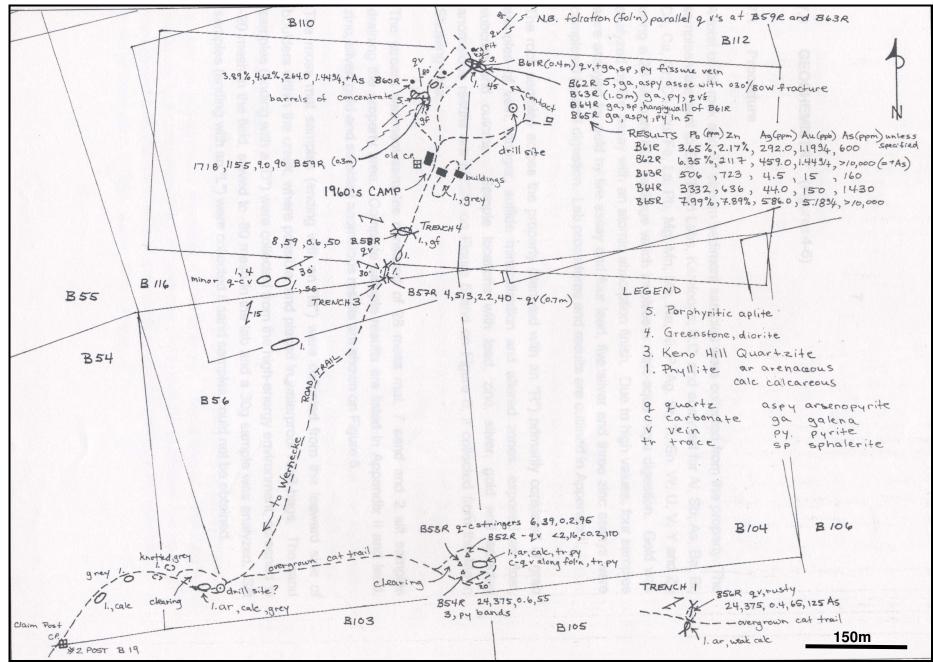


FIGURE 6: MOON SHOWING - GEOLOGY AND GEOCHEMISTRY

6.3 Mineralization (Figures 2-5)

Significant mineralized structures that lie proximal to and have potential to extend on to the B property include, from west to east, the highly productive Sadie-Ladue, the Lake, the Moon, Stone and Nabob No. 2 (see Figure 3). The adits and associated showings do not occur on the B property.

Three caved adits were located at the Stone occurrence, one caved adit on the Lake occurrence and one caved adit at the Moon occurrence. UTM coordinates were recorded by GPS using Nad 83 projection, Zone 8 and are shown in Table 2, below.

Name	Easting (mE)	Northing(mN)	Elevation (m)
Moon	489364	7094591	871
Stone 1	488816	7092624	1190
Stone 2	488719	7092555	1250
Stone 3	488662	7092512	1290
Lake	487381	7092835	1155

TABLE 2: Location of adits

The Sadie-Ladue vein system consists of at least two longitudinal veins trending 030 to 040°, dipping to the southeast and hosted by greenstone, thin bedded quartzite, phyllite and interbedded schist. The veins are offset dextrally by northwest trending cross-faults. Prior to 1965 the Ladue mine produced 200,000 tons of 54.5 oz/ton Ag, 12.6% Pb and the Sadie-Friendship mine, 113,000 tons of 55.3 oz/ton Ag, 7.8% Pb (*Boyle, 1965*).

Two parallel veins exposed at the Lake occurrence by open cuts and an adit may represent the northern extension of the Sadie – Ladue system. The northeast trending, southeast dipping veins range from 0.9 to 2.4m wide (Boyle, 1965).

A 050° trending, southeast dipping 3m wide vein, explored by three adits and several open cuts and pits, is documented at the Stone occurrence (Jersey Silver Mine), which may represent the northeastern extent of the Lucky Queen system. The Lucky Queen mine produced 123,000 tons averaging 97.8 oz/ton Ag and 8.7% Pb prior to 1965 (Boyle, 1965). The mineralized part of the Stone vein fault is hosted by greenstone below a schist capping (Boyle, 1965). Vein mineralization from the dumps of the three caved Stone adits, primarily from the lower adit (Stone 1) returned anomalous results of 456 g/t Ag, 0.64% Pb, 0.26% Zn with 0.25 g/t Au. The silver values are high compared to the Pb suggestive of high silver content in the galena. The projection of this vein fault would trend across the B 20, 21, 107 and 109 claims and beyond, near the contact between the phyllite and greenstone (Figure 4).

The Nabob No. 2 vein, explored by at least three shafts, trends 050° and is hosted by graphitic schist, quartzite, phyllite and greenstone. There is no record of any ore shoots (Boyle, 1965), The extension of this structure projects on to the B 15, 25, 60 and 62 claims.

At the Moon Adit (located within the central B property, but not part of the property holdings) a Keno Hill type longitudinal fissure vein, trending 045°/85°W, and a transverse vein (030°/80°W) are exposed at the contact between the phyllite and a Cretaceous

porphyritic aplite sill. The longitudinal vein is mineralized with galena, sphalerite, pyrite and pyrrhotite. Transverse structures are mineralized with quartz, arsenopyrite, galena and sphalerite, and galena, arsenopyrite and pyrite. Results from the Moon showing include 3.65% Pb, 2.17% Zn, 292.0 g/t Ag and 1.19 g/t Au with 600 ppm As over 0.4m from the longitudinal fissure vein and values up to 7.99% Pb, 7.89% Zn, 586.0 g/t Ag and 5.18 g/t Au with >10,000 ppm As from the mineralized aplite.

Three Cretaceous aplite sills, a competent host rock with potential to host Keno Hill type veins as illustrated at the Moon Adit, have been mapped on the B property. The sills are commonly mineralized with pyrite, arsenopyrite, ±sphalerite and/or galena. The aplite sill in the B14 – B15 claim area contains fine disseminated galena, returning 3365 ppm Pb.

An aplite sill mineralized with pyrite and arsenopyrite (referred to as the Gambler Sill) crosses Gambler Gulch just upstream of the bend. The sill has been traced for 600m (Figure 4) and lies 1.5 km along trend to the northeast of the Sadie-Ladue fissure vein, a significant past producer. The eastern end of the sill is exposed on the Sun Grid (Figure 5) where it was previously explored by several old pits and appears to be locally sinistrally offset. There is very limited exposure in the area.

An arsenopyrite-bearing mineralized aplite and phyllite occurs on the B 87 claim at approximately L43E/6350N, with maximum results of 145 ppb Au, 2675 ppm As and 6,942 ppm Zn in B2R and B89R (Figures 4 and 5). This mineralized zone lies within 400m of a northeast trending fault, which may represent the strike extent of the fault that hosts the productive Sadie-Ladue Vein, approximately 1.2 km along trend to the northeast of the Gambler Sill. Mineralized aplite (arsenopyrite and pyrite-bearing) also occurs southeast of the property, on the eastern bank of Silver Basin Gulch, with values of 5.73 g/t Au, 9.2 g/t Ag over 0.6m from arsenopyrite-bearing quartz veins with pyrite and minor sphalerite and galena.

No significant mineralization has been located within the greenstone-diorite unit on the property, another favourable competent host rock. However, Keno Hill type mineralization is recessive, so not generally exposed in outcrop. Minor pyrite, chalcopyrite and malachite have been found within the greenstone in the northwestern property area (*Figure 4*).

Quartz and quartz-carbonate veins, hosted by the phyllite and altered phyllite occur across the property.

It is possible that both the Lake and Moon vein faults represent the northern extension of the Sadie-Ladue system, dextrally offset by northwest trending cross-faults.

The results of the 1965 drill program on the Moon/B property are not in the public record and the core has not been located. Diamond drill hole collars located in the field are documented in Table 3 below using UTM coordinates Nad 83 datum, Zone 8 projection and plotted in Figures 8 and 11. The third drill hole may have been collared within a clearing approximately 300m south of DDH 65-02.

Table 3: Diamond drill hole locations

Drill	UTM	NAD83	Elevation
Hole	Northing	Easting	(m)
65-01	7094581	489402	869
65-02	7094008	488935	952
65-03	not	located	

The old trenches and pits encountered on the property are documented in Table 4 below using UTM coordinates Nad 83 datum, Zone 8 projection and are shown in Figures 2, 4 and 5.

Table 4: Trench locations

Trench	UTM	NAD83	Elevation
No.	Northing	Easting	(m)
Tr 1	7093851	489653	1012
Tr 2	7093795	488049	1008
Tr 3	7094385	489255	923
Tr 4	7094433	489270	914
Tr 5	7094472	484775	778
Tr 6	7093730	489348	1059
Tr 8	7094075	4887510	998
Pit 1 (Tr 7)	7093818	488635	988
Pit 2	7093857	488615	984
Pit 3	7093866	488604	992
Pit 4	7094036	4887661	985
Pit 5	7094032	4887648	987
Pit 6	7094051	4887617	988

7.0 PREVIOUS EXPLORATION (Figures 5 to 8)

7.1 GEOCHEMISTRY (Figures 5 to 6)

A total of 93 rock, 285 soil and 49 stream sediment samples were collected from the property area between 2001 and 2010. Complete details, results and locations are documented in past assessment reports (*Pautler, 2001, 2002, 2006a, 2008b, 2009 and 2010*).

Work has been concentrated along trend of the past producing Sadie-Friendship and Ladue mines, and the Moon, Lake, Stone and Nabob #2 occurrences. The Sun grid covers the possible extensions of the Sadie-Ladue, Lake and Moon showings. The Moon showing was investigated in detail in an attempt to evaluate the potential for its continuity along strike on to the B claims.

The rock samples across the property (denoted with an "R") primarily consisted of grab samples of vein mineralization and altered wallrock, exposed as float and outcrop. The soil samples (denoted with an "S"), generally not useful in this environment due to thick overburden and permafrost, were collected from areas of old workings, generally with poor

exposure, in order to evaluate the significance of the workings. The moss mat samples (ending with an "M") were collected from the leeward side of boulders within the creek, where possible, and placed in waterproof Kraft bags. The sand samples (ending with a "D") were collected from the high-energy environment, screened to -20 mesh in the field, sieved to -80 mesh in the lab and a 30g sample was analyzed. Silt samples (ending with an "L") were collected if sand samples could not be obtained.

All samples were sent to Eco Tech Laboratory, Kamloops, British Columbia and analyzed for Al, Sb, As, Ba, Bi, Cd, Ca, Cr, Co, Cu, Fe, La, Pb, Mg, Mn, Mo, Na, Ni, P, Ag, Sr, Ti, Sn, W, U, V, Y and Zn using a 28 element ICP package which involves a nitric-aqua regia digestion. Gold was analyzed by fire assay with an atomic absorption finish.

The best results from rock sampling on the property are 145 ppb Au, 2675 ppm As and 6,942 ppm Zn from quartz bearing aplite and phyllite at L43E/6350N proximal to the projection of the Sadie-Ladue structure, approximately 3 km along trend to the northeast of the past producer. Anomalous zinc (886 ppm) occurs in graphitic phyllite with quartz near the bend in Gambler Gulch (Sample B09-006), which also lies proximal to the projection of the Sadie-Ladue structure (*Figure 4*).

The best soil results were obtained from a sample collected from the vicinity of Trench 6, which returned an anomalous 90 ppm Pb and 30 ppb Au (B119S) with elevated Zn (161 ppm). Low anomalous silver (0.9 g/t), lead (32 ppm) and zinc (153 ppm) were obtained from the Trench 7 area (B78S). Low anomalous silver (0.9 g/t) and gold (20 ppb) are associated with a northwest trending fault (Sadie-Ladue structure?) on B 90 (B84S).

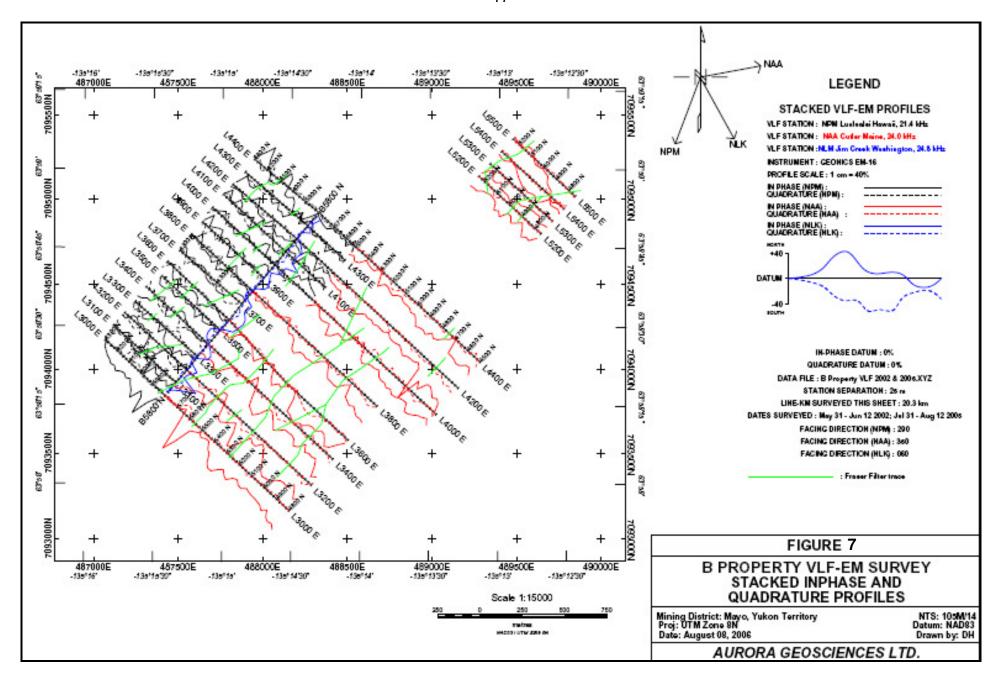
A reconnaissance soil line across the trend of the Sadie-Ladue, Lake and/or Moon structures in 2008 on the northeastern Sun Grid was useful in outlining base and precious metal anomalies despite the poor environment for good soil development. Of particular interest are the gold in soil results including a spot 365 ppb Au anomaly within a broad >100 ppm zinc anomaly. Significant silver-lead-zinc results were also obtained from the northwest end of the line, 400m northeast of quartz veins hosted by aplite (±arsenopyrite) and phyllite that previously returned 0.7% Zn with minor silver-gold-lead.

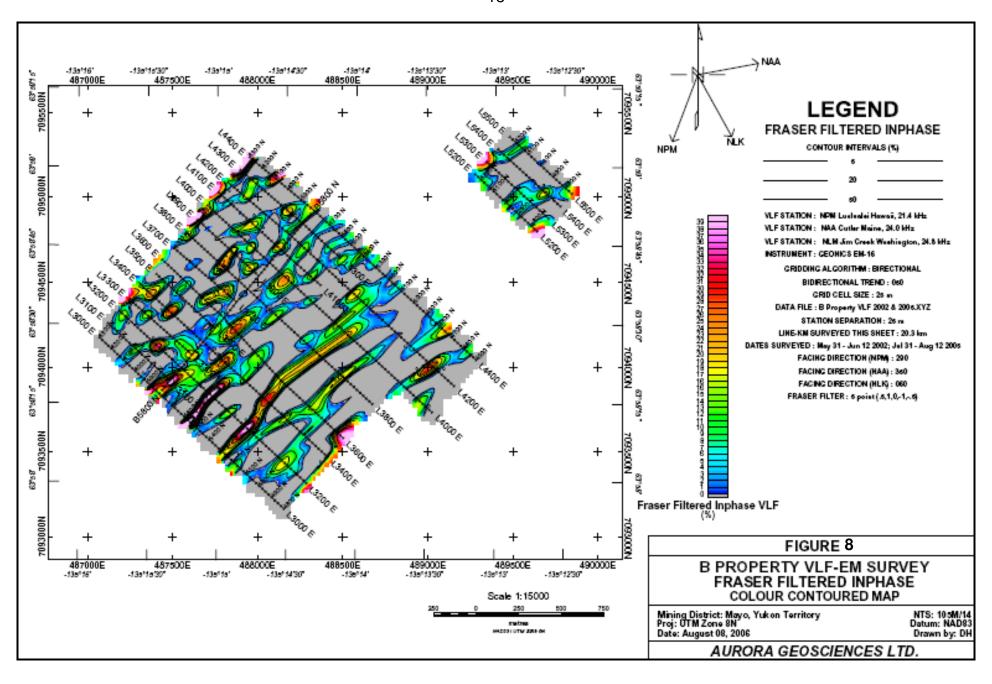
Stream sediment geochemistry in Faro Gulch, with values up to >10,000 ppm Pb, 1,260 ppm Zn, >30 ppm Ag, 730 ppb Au and 925 ppm As from sample B55M, suggests that mineralization associated with the Moon fissure vein continues on to the B property and extends for at least another 400m. Anomalous gold in stream sediment values, up to 760 ppb Au, were obtained from the eastern property area in the Silver Basin Gulch area. The Nero Showing, consisting of quartz veins with minor galena, is reported in this area approximately 1 km southeast of the B property.

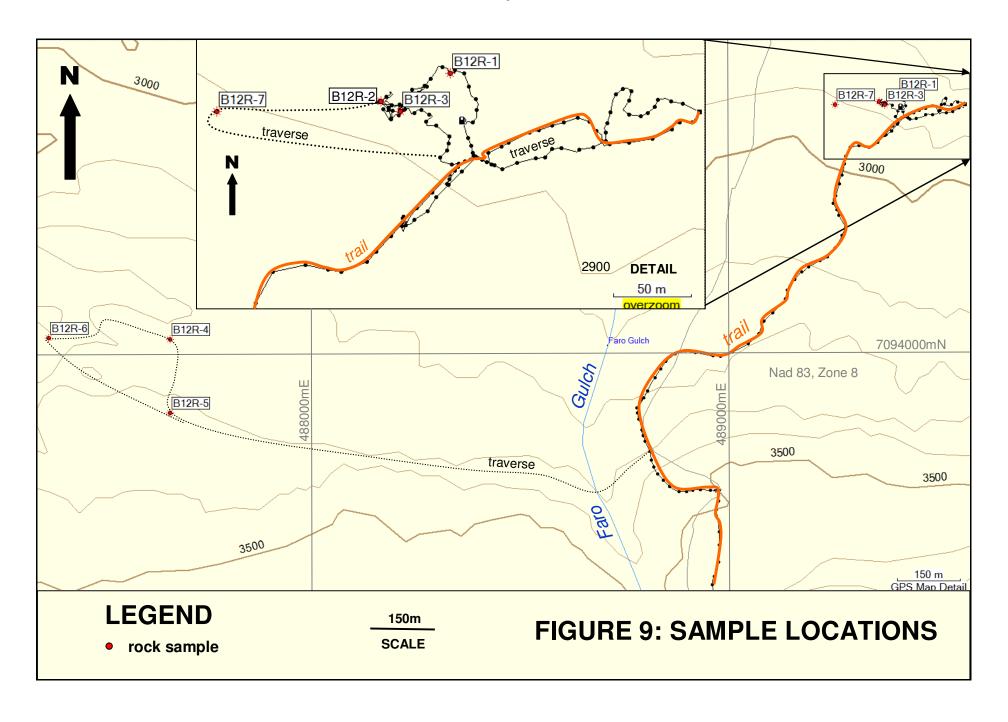
The 2010 grid soil survey on the Moon Grid was successful in delineating two sub-parallel coincident gold-silver-lead-zinc anomalies. The first lies 500m directly along strike to the southwest from the Moon Adit, with maximum values of 45 ppb Au, 27.2 ppm Ag, 1755 ppm Pb and 836 ppm Zn. Elevated lead-zinc values occur 1 km along trend to the northeast. The second lies 400m to the southeast, with maximum values of 55 ppb Au, 12.5 ppm Ag, 162 ppm Pb and 470 ppm Zn.

7.2 GEOPHYSICS (Figures 7 and 8)

VLF - EM surveys were carried out in 2002 and 2005 over 23.0 line kilometres of grid. The 23 line km grid consists of a 230° trending, 2.5 km long baseline (BL 50N) with eight 1.0 km lines spaced 200m apart, southwest of the Moon Adit (Sun Grid) and four 500m long lines spaced 100m apart, northeast of the Moon Adit (Moon Grid) and a 1.5 km long baseline on the west side of the Sun Grid (BL 58N) with ten 0.5 km lines and five 0.8 km long lines, spaced 100m apart. The locations of the grids are shown on Figure 2.


The surveys utilized a Geonics EM-16 unit using the Cutler Maine station in 2002 and the Hawaii station in 2005 for the northeast trending structures and the Jim Creek, Washington (Seattle) station for the cross-structures. Readings were taken at 25m intervals on lines spaced 100m and 200m apart. The null for the Hawaii station was obtained at 020° with readings taken facing 290°. The null for the Cutler station was obtained at 080° with readings taken facing 350°. The null for the Jim Creek station was obtained at 150° with readings taken facing 060°. Both inphase and quadrature readings were measured in degrees.


It should be noted that no reception was obtained on the Hawaii station in 2002, the optimum station to pick up the northeasterly trending Keno Hill type structures and associated vein faults, with poor reception in 2005 for the duration of the survey. Consequently, the Cutler, Maine station was utilized in 2002. The geophysical data was integrated and compiled by a qualified geophysicist, Dr. Dave Hildes, Ph.D., P.Geo. of Aurora Geosciences, Whitehorse, Yukon Territory in 2006 (see Pautler 2006b). There appears to be a fair bit of noise on both the Cutler and Hawaii channels in both surveys, particularly making dip directions difficult to determine.


The stacked section (*Figure 7*) shows the inphase and quadrature profiles with the traces of the conductors from the Fraser filtered map shown in green. The results were Fraser filtered to more accurately define the conductors, and contoured with a colour scheme only showing the positive Fraser filtered results (*Figure 8*). In general the quadrature response is very subdued, indicating that the conductivity-thickness of the identified conductors is low.

The interpretation and compilation of the 2002 and 2005 VLF-EM geophysical surveys shows a continuous conductor southeast of the 5800N baseline that may correspond to the Sadie-Ladue structure. The structure appears to offset aplite dykes near L3200E/5700N and continue through to just northeast of the grid at approximately 4500E/5600N where pyrrhotite bearing phyllite and felsic schist returned anomalous values of 458 ppm Zn and 1035 ppm As. (*Refer to Figure 5*).

Another continuous conductor (although line spacing is fairly coarse at 200m) extends just northwest of the 5000N baseline that may correspond to the Moon structure. The highest conductivity occurs at L3200E/5275N near Trench 2, an old trench with anomalous values of 418 ppm Pb, 607 ppm Zn and 6.0 ppm Ag from pyritic phyllite with minor quartz. (Refer to Figure 5).

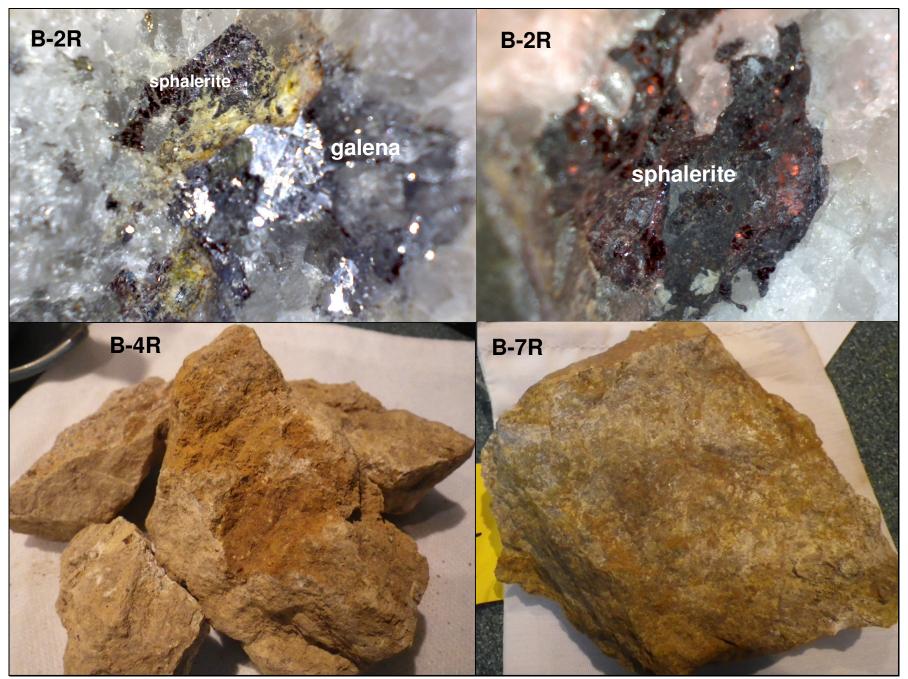


Photo 1: Photographs of Select Rock Specimens

8.0 GEOCHEMISTRY (Figure 9)

8.1 Procedure

The Phase 1, 2012 work program consisted of whole rock analysis of fresh aplite from the Moon adit area to determine its composition, a geochemical analysis of high sulphide bearing concentrate material to determine the indium and trace element signatures of the mineralization, and ICP and Au analyses of variably altered aplite. A total of 7 rocks were collected, but only five were sent in for geochemical analysis. Sample locations and traverses are outlined on Figure 9. Sample descriptions with select results are documented in Appendix II and complete results are shown in Appendix III. Photographs of select rock specimens are shown in Photo 1.

8.2 Results

The aplite at the Moon adit was found to contain 72% silica (Si) with almost equal proportions of sodium (Na) and potassium (K), indicating a quartz rich monzogranite composition. The high galena (2% Pb) and sphalerite (4% Zn) bearing specimen of concentrate from the adit returned 1.5 g/t Au, >200 g/t Ag with >10,000 ppm As, 680 ppm Sb and 43.3 ppm In (B2R). The more quartz rich specimen with visible arsenopyrite and less galena (1% Pb) and sphalerite (0.35% Zn) returned 5.9 g/t Au, >200 g/t Ag with >10,000 ppm As, 234 ppm Sb and only 1.16 ppm In (B3R).

Indium (In) occurs in the crystal lattice of sphalerite, combining with copper to replace zinc. Iron-rich ("blackjack") sphalerite from the Moon adit (see Photo 1-B2R) appears to be enriched in indium. The Eagle vein on the southeast flank of Galena Hill within the Keno mining camp is highly enriched in indium. Consequently high sphalerite bearing veins should be analyzed for indium, which would add to the economic potential of the mineralization.

The limonitic aplite (B4R) returned elevated lead and zinc, but no significant precious metal values. The silicified aplite (B7R) did not return significant results.

9.0 CONCLUSIONS AND RECOMMENDATIONS

There is potential for five northeast trending Keno Hill type vein systems to transect the B property, the highly productive Sadie-Ladue structure, two veins on the Lake leases, the Moon, the Stone and the Nabob No. 2 veins.

The significant precious metal and indium results from the Moon Adit warrant further work to trace the Moon fissure vein along strike on to the B property and indicate that the aplite is a favourable host. The abundance of aplite encountered on the B property is also

suggestive of the presence of a Cretaceous stock that may have intrusion associated gold potential. An airborne magnetic survey would be useful to delineate the presence of a buried intrusion.

At the Moon Adit a 045°/85°W trending fissure vein is exposed in an aplite sill at the contact with overlying phyllite of Unit 1. The aplite represents a competent host rock and an ore shoot appears to have developed at the junction of the aplite (a competent host rock) and an overlying incompetent unit. This is a classic Keno Hill type "schist cap" type of ore shoot, which is observed at the Bellekeno Mine, one of the main deposits within the Keno mining camp currently being brought back into production by Alexco Resource Corp. (*Alexco Resource Corp. website*).

VLF-EM and stream sediment surveys on the B property suggest continuity of mineralization at the Moon Adit extending for at least another 400m to the southwest on the B property. The conductor extends over the 2.5 km extent of the baseline. The 2010 grid soil survey on the Moon Grid delineates two sub-parallel coincident gold-silver-lead-zinc anomalies. The first lies 500m directly along strike to the southwest from the Moon Adit, with maximum values of 45 ppb Au, 27.2 ppm Ag, 1755 ppm Pb and 836 ppm Zn. Elevated lead-zinc values occur 1 km along trend to the northeast. The second lies 400m to the southeast, with maximum values of 55 ppb Au, 12.5 ppm Ag, 162 ppm Pb and 470 ppm Zn. Additional soil sampling is necessary, particularly in the southwest Moon Grid area to more accurately define the anomalies.

It should be noted that the VLF-EM survey results are difficult to interpret due to the poor reception of appropriate stations to pick up the northeasterly trending Keno Hill type structures and associated vein faults. VLF-EM with a radio transmitter or a horizontal loop electromagnetic survey (HLEM) at 50m line spacings and a 50m coil length may be more qualitative and could be run across the projected extent of the Moon showing on the Sun Grid (southwest extent) and the Moon Grid (northeast extent) to more accurately delineate the Moon structure.

Enhanced zinc values hosted by the phyllite unit (0.7% Zn previously obtained on B 87 and 0.09% Zn obtained in 2009 on B 47) occur approximately 350m northwest of the Sadie-Ladue structure. Additional soil sampling is recommended across the projected Sadie-Ladue structure to define it since a reconnaissance soil program in 2008 was successful in outlining anomalies despite poor conditions related to permafrost.

In 2008 a mineralized aplite was encountered containing 3365 ppm Pb between the projections of the Stone and Nabob #2 structures. This may indicate proximity to a mineralized structure and warrants further prospecting and trenching. The area is primarily underlain by greenstone, another favourable host rock for Keno Hill type mineralization. An outcrop of quartzite overlain by phyllite was encountered in McKay Gulch along trend of the Nabob #2 structure. Additional prospecting is warranted here to locate a vein fault since this represents a "schist cap" type environment.

23

The 2008 reconnaissance soil survey outlined significant base and precious metal anomalies including a spot 365 ppb Au anomaly within a broad >100 ppm zinc anomaly. Significant silver-lead-zinc results were also obtained 250m northeast of quartz veins hosted by aplite (±arsenopyrite) and phyllite that previously returned 0.7% Zn with minor silver-gold-lead. Additional reconnaissance soil sampling completed in 2010 was unsuccessful in tracing the 2008 anomalies and could not duplicate the original 365 ppb Au value. Since sample quality was good in the 2008 sample, it is possible that the 2010 sampling was hampered by excessive permafrost since it was conducted early in the season.

Following more detailed delineation of the possible extension of the Moon fissure vein, a Phase 2 program of diamond drilling is recommended to trace the structure. Alternatively (less expensive but not as accurate) rotary air blast drilling, widely used to trace mineralization in the Keno mining camp, may be considered.

10.0 SELECTED REFERENCES

- Alexco Resource Corp. Web site at www.alexcoresource.com.
- Bostock, H.S. (1947): Mayo, YT; Geological Survey of Canada Map 890A, scale 1:253,440.
- Boyle, R. W. (1965): Geology, geochemistry and origin of the lead-zinc-silver deposits of the Keno Hill Galena Hill area, YT; Geological Survey of Canada Bulletin 111 (includes Map 1147A).
- Deklerk, R. and Traynor, S. (compilers), (2004): Yukon MINFILE 2004 A database of mineral occurrences. Yukon Geological Survey, CD-ROM.
- Kindle, E. D. (1962): Geology of the Mayo map area, YT; Geological Survey of Canada, Map, scale 1:253,440
- Lefebure, D.V. and Church, B. N., (1996): Polymetallic veins Ag-Pb-Zn+/-Au, in Selected British Columbia Mineral Deposit Profiles, Volume 2 Metallic Deposits, Lefebure, D.V. and Hőy, T, Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1996-13, pages 67-70.
- Murphy D. C. (1997): Geology of the McQuesten River region, northern McQuesten and Mayo map areas, Yukon (115P/14, 15, 16, 105 M/13, 14); Geological Survey of Canada Bulletin 6.
- Murphy D. C. and Roots C. M. (1996): Geological map of Keno Hill area, Central Yukon (105 M/14); Exploration and Geological Services Division, Indian and Northern Affairs Canada, Geoscience Map 1996-1, scale 1:50,000.
 - (1992): Geology of Keno Hill Map Area, YT (105 M/14); Geological Survey of Canada Open File 1992-3, scale 1:50,000.
- Pautler, J.M. (2012): GIS compilation on the B Project. Yukon assessment report.
 - (2010): Geochemical report on the B Project; Yukon assessment report.
 - (2009): Geological, geochemical and prospecting report on the B Project; Yukon Geological Survey assessment report.
 - (2008b): Geological, geochemical and prospecting report on the B Project; Yukon Geological Survey assessment report.
 - (2008a): Geological, geochemical geophysical, trenching and evaluation report on the Keno-Lightning Project; In house report for Northex Ventures Inc.
 - (2006b): Compilation and geophysical interpretation on the B property; Yukon Geological Survey assessment report.
 - (2006a): 2005 geological, geochemical and geophysical report on the B property; Yukon Geological Survey assessment report.
 - (2002): 2002 geological and geochemical report on the B property; Yukon Geological Survey, assessment report.
 - (2001): 2001 geological geochemical and geophysical report on the B property; Yukon Geological Survey assessment report.
- Roots C. M. and Murphy D. C. (1992): Geology of Mayo Map Area (105 M); Geological Survey of Canada Open File 2483, scale 1:250,000.

11.0 APPENDICES

APPENDIX I: Statement of Claims

Grant	Claim	Claim	Claim	Record	Expiry	New
Number	Name	No.	Owner	Date	Date	Expiry
YB81306	В	14	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81307	В	15	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81312	В	20	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81313	В	21	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81314	В	22	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81315	В	23	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81317	В	25	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81319	В	27	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81320	В	28	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81321	В	29	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81322	В	30	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81331	В	47	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81333	В	49	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81334	В	50	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81335	В	51	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81336	В	52	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81337	В	53	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81338	В	54	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81339	В	55	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81340	В	56	Richard Fischer - 100%.	8/22/1997	22/08/2013	22/08/2013*
YB81341	В	57	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81342	В	58	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81343	В	59	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81344	В	60	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81345	В	61	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81346	В	62	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81349	В	77	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81350	В	78	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81351	В	79	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81352	В	80	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81353	В	81	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81354	В	82	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81355	В	83	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81356	В	84	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013

Grant	Claim	Claim	Claim	Record	Expiry	New
Number	Name	No.	Owner	Date	Date	Expiry
YB81357	В	85	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81358	В	86	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81359	В	87	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81360	В	88	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81361	В	89	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81362	В	90	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81363	В	91	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81364	В	92	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81365	В	93	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81366	В	94	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81367	B 95		Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81368	B 96		Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81369	B 97		Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YB81370	В	98	Richard Fischer - 100%.	8/22/1997	22/11/2013	
YB81371	В	99	Richard Fischer - 100%.	8/22/1997	22/11/2012	22/11/2013
YC02756	В	103	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02757	В	104	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02758	В	105	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02759	В	106	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02760	В	107	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02761	В	108	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02762	В	109	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02763	В	110	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02764	В	111	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02765	В	112	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02766	В	113	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02767	В	114	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02768	В	115	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC02769	В	116	Richard Fischer - 100%.	6/6/2001	06/09/2013	06/09/2013*
YC39579	В	117	Richard Fischer - 100%.	8/11/2005	11/11/2012	11/11/2013
YC39580	В	118	Richard Fischer - 100%.	8/11/2005	11/11/2012	11/11/2013
YC39581	В	119	Richard Fischer - 100%.	8/11/2005	11/11/2012	11/11/2013
TOTAL	66 cla	aims				

^{*} based on acceptance of this report

APPENDIX II

Sample Descriptions

				201	B PROJECT, Yukon Territory 2 ROCK SAMPLE DESCRIPTIONS AND RESULTS	Au in re	ed in g/t	t		
SAMPLE	NAD 83	ZONE	ELEV.	2017		Au	Ag	As	Sb	In
NUMBER	EASTING	NORTHING	(m)	TYPE	DESCRIPTION	ppb	ppm	ppm	ppm	ppm
B12R-1	489403	7094616	871	rock grab	aplite wallrock, from Moon adit, analyzed for whole rock to determine composition					
B12R-2	489358	7094598	866	rock grab	sulphide (galena and sphalerite) from concentrate bucket at Moon adit	1.5	>200	>10,000	680.4	43.3
B12R-3	489371	7094592	865	rock grab	quartz with sulphide (arsenopyrite, galena, sphalerite chalcopyrite) from box of old truck at Moon adit	5.9	>200	>10,000	234.2	1.16
B12R-4	487661	7094036	805	rock grab	orange weathering, strongly limonitic, altered aplite	20	3.3	281.1	2.2	459 Pb 927 Zn
B12R-5	487661	7093860	808	rock grab	orthogneiss/aplite?, not assayed					
B12R-6	487372	7094040	808	rock grab	fresh aplite from B claims with fine quartz eyes, not assayed					
B12R-7	489253	7094592	776	rock grab	silicified aplite from Moon adit area	11	0.9	173.1	0.5	76 Pb 56 Zn

APPENDIX III

Geochemical Procedure and Results

Acme Analytical Laboratories Ltd. GEOCHEMICAL PROCEDURES

SAMPLE PREPARATION

SOIL, SEDIMENT AND VEGETATION SAMPLES SS80 Dry at 60 °C, sieve (up to) 100 g to -80 mesh

ROCK AND DRILL CORE

R250 Crush 1 kg to 80% passing 10 mesh, split 250 g and pulverize to 85% passing 200 mesh

Group 4X Whole Rock by XRF

LiBO2 fusion followed by XRF analysis for major oxides and LOI. Requires a 25g sample pulp.

Group 2A Leco Analysis Geochemical Carbon & Sulphur

Sample minimum 2g pulp. Total C Leco (total as C or CO2) Total S by Leco

Group 1T-MS Ultratrace by ICP-MS

ICP Mass Spec analysis of a 4-acid digestion on a 0.25g split giving total to near total values for all elements.

Requires minimum 1g sample pulp. Detection limits may change without notice due to the nature of some samples. Massive sulphide samples will cause elevated detection limits

GROUP 1DX: ICP-MS ANALYSIS - AQUA REGIA

Sample splits of 0.5g are leached in hot (95°C) Aqua Regia. Refractory and graphitic samples can limit Au solubility. Solubility of some elements* will be limited by mineral species present. A total of 36 elements are assayed in the ICP-MS analysis.

* Al, B, Ba, Ca, Cr, Fe, Ga, Hg

† K, La, Mg, Mn, Na, Sr, Th, Ti, Tl

† U, V, W,

GROUP 3B-MS AU & PGMs BY FIRE GEOCHEM

A lead-collection fire-assay 30g fusion for total sample decomposition, digestion of the Ag dore bead and ICP-MS (Group 3B-MS) analysis. Group 6 precious metals assay recommended for Au or PGMs over 1000 ppb.

Group 3B-MS Detection Limits

Au 1 ppb, **Pt** 0.1 ppb, **Pd** 0.5 ppb, **(Rh)** (0.1 ppb)

Au* detection limit may vary due to natural contamination in commercial flux and sample size.

(Rh) available at client's request, results are qualitative to semi-quantitative depending on nature of samples.

Note: Sulphide-rich samples require a 15g or smaller sample for proper fusion.

	IALYTICAL	LABOR				Final Re	eport																					
Client:			Richa	rd E Fi	scher				Numb	er of S	Samples	5																
File Creat	ed:		17-	Jan-13					Projec	et:		B project	et															
Job Numb	er:		WHI1	200100)7				Recei	ved:		07-D	ec-12															
	Method	WGHT	/X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	2A Leco	2Δ Ι αςς	<u> </u>	
	Analyte	Wgt	LOI	SiO2		Fe2O3			Na2O		MnO			Cr203		Cu	Ni	Pb	Sr	Zn	Zr	S03	V205		TOT/C	TOT/S		
	Unit	KG	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%		
	MDL	0.01	-5.11	-	0.01	0.01		0.01			0.01	0.01		0.001		_		-			_		0.002		0.02	0.02		
Sample	Type	0.01	-3.11	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001	0.01	0.001	0.001	0.001	0.002	0.001	0.002	0.002	0.002	0.01	0.02	0.02		
B12-R1	Rock	1.95	2.97	71 0	14.77	1.33	1.63	0.10	2.99	2 88	0.05	0.12	0.05	0.003	0.17	<0.001	1<0.001	0.002	0.021	0.014	0.005	<0.002	<0.002	00.1	0.39	<0.02		
Pulp Dupli		1.03	2.51	11.5	14.77	1.55	1.03	0.13	2.55	2.00	0.03	0.12	0.03	0.003	0.17	₹0.00	1 40.001	0.002	0.021	0.014	0.003	40.002	V0.002	33.1	0.33	40.02		
B12-R1	Rock	1.95	2.97	71.0	14.77	1.33	1.63	0.10	2.99	2 22	0.05	0.12	0.05	0.003	0.17	<0.001	1<0.001	0.002	0.021	0.014	0.005	<0.002	<0.002	00.1	0.39	<0.02		
B12-R1	REP	1.03	2.31	11.3	14.77	1.00	1.03	0.13	2.33	2.00	0.03	0.12	0.03	0.003	0.17	٧٥.٥٥	1 40.001	0.002	0.021	0.014	0.003	40.002	40.002	33.1	0.33	<0.02		
B12-R1	Rock	1.95	2.97	71 0	14.77	1.33	1.63	0.10	2.99	2 22	0.05	0.12	0.05	0.003	0.17	<0.001	1<0.001	0.002	0.021	0.014	0.005	<0.002	<0.002	00.1	0.39	<0.02		
B12-R1	REP	1.03	2.98	72	14.77	1.33		0.13			0.05				_	_			_		_	<0.002			0.33	30.02		
Reference			2.90	12	14.00	1.55	1.04	0.10	3	2.00	0.03	0.11	0.04	0.002	0.10	₹0.00	1 <0.001	0.001	0.020	0.013	0.003	₹0.002	0.003	99.3				
STD GS3																									1.03	2.25		
STD GS3																									2.72	8.34		
STD GS9			4.56	50.4	20.86	6.19	8.06	0.52	7.21	1.61	0.11	0.28	0.13	0.002	0.05	<0.004	1<0.001	<0.004	0 121	0.01	0.052	0.211	<0.002	100	2.12	0.34		
STD ORE	. ,		1.63	49.5	13.76	13.68					0.11	1.67						_				0.211						
BLK	BLK		1.03	49.3	13.10	13.00	0.23	0.00	2.91	0.7	0.14	1.07	0.20	0.037	0.03	0.023	0.71	-0.00	0.034	0.012	0.009	0.004	0.020	99.3	<0.02	<0.02		
BLK	BLK		0	0.2	<0.01	<0.01	<0.04	<0.01	<0.04	<0.01	<0.04	<0.01	<0 01	<0.001	<0.04	<0.004	1<0.004	<0.004	<0.000	<0.004	<0.000	<0.002	<0.002	0.21	>0.02	~U.UZ		
Prep Was			U	U.Z	NU.U1	NU.U1	NU.U1	~U.U1	~∪.∪1	NU.U1	70.01	₹0.01	40.01	~U.UU1	NU.U1	*0.00	1 70.001	~U.UU	₹0.002	~U.UU1	*0.002	. ~0.002	~U.UUZ	0.21				
-	Prep Blank	<0.01	0.71	67.2	15.45	3.3	3.44	10	2 66	3.59	0.1	0.41	O 10	0.005	0.11	<0 00°	1 < 0, 004	<0.004	0.073	0.005	0.01	<0.002	0.011	00.4	<0.02	<0.02		
OI-WII	Lieb Digiti	\ \U.U1	0.71	01.2	15.45	3.3	3.44	1.2	3.00	3.09	U. I	0.41	0.10	0.003	0.11	~0.00	1 ~0.001	~0.00	0.073	0.005	0.01	NO.002	0.011	99.4	NU.UZ	~U.U2		
	Mathad	MOUT	4T	4.T	1T	4T	4.	4.T	4.	1T	1T	4.T	1T	4T	4T	4.	4.	4T	4.T	4.T	4T	4.T	4T	1T	1T	1T	1T	1T
	Method		_	1T Cu	Pb	1T	1T	1T	1T			1T	U	1T	1T Th	1T Sr	1T Cd	1T Sb	1T Bi	1T V	1T	1T P	1T			Ba		
	Analyte	Wgt	Mo		PPM	Zn	Ag PPM	Ni	Co PPM	Mn PPM	Fe	As PPM		Au PPM	PPM		PPM	PPM		_	Ca	%	La PPM	Cr PPM	Mg	PPM	Ti 0/	Al
	Unit	KG	PPM 0.05			PPM		PPM			%		PPM						PPM	PPM	%				%		%	%
Comple	MDL	0.01	0.05	0.02	0.02	0.2	0.02	0.1	0.2	2	0.02	0.2	0.1	0.1	0.1	1	0.02	0.02	0.04	1	0.02	0.001	0.1	1	0.02	1	0.001	0.02
Sample	Type	4 OF	0.7	264	>10000	>10000	>000	4.0	7.4	217	0.44	>10000	0.7	4 E	0.6	<1	2500	600.4	20.60	-1	40.00	0.000	0.6	7	0.02	39	0.000	0.26
B12-R2 B12-R3	Rock Rock	1.25 0.81			>10000				7.1	43		>10000		1.5 5.9	0.6	_	3522			<1	<0.02		0.6	8	0.03 <0.02	44	0.002	0.36
		0.01	0.93	134	>10000	3336	~200	42.0	31.2	43	14.1	>10000	0.9	5.9	0.7	13	33.01	234.2	45.64	4	0.03	0.004	8.0	0	<0.02	44	0.001	0.23
Pulp Dupli		0.01	0.02	134	>10000	3558	>200	40.0	31.2	43	111	>10000	0.0	F 0	0.7	13	33.61	234.2	45.64	4	0.03	0.004	0.8	8	<0.02	44	0.001	0.23
B12-R3	Rock REP	0.81	0.93											5.9	0.7	_	32.49	_		5	_			7		44		
B12-R3			0.78	133	>10000	3031	>200	40.2	30.8	40	14.3	>10000	0.9	5.6	0.6	13	32.49	230	44.31	Э	0.03	0.003	0.7	- 1	<0.02	24	0.001	0.23
Reference			4.40	F4 7	4.00	440.4	0.40	450	40.0	4000	7 74	F 0	0.0	40.4	0.7	400	0.07	0.40	40.04	450	r 0r	0.404	47.0	005	4.44	070	4.054	7.00
STD ORE			1.43	51.7	4.38	112.1	0.12	150	48.6	1080		5.8	0.6	<0.1	2.7	403	0.07	0.12	<0.04	158	5.85	0.131	17.9	205	4.14	279	1.054	7.66
STD ORE			2.2	772	17.2	41	0.31	461	56.5	519	24.2	18.7	2.2		11.8		0.07	0.88	0.25	300	<0.02	0.03	10.4	1031	0.15	229	0.494	6.55
BLK	BLK Drap Blank		<0.05			4	0.04	0.2	<0.2	<2	<0.02		<0.1	<0.1	<0.1	<1	<0.02		<0.04	<1	<0.02		<0.1	2	<0.02	<1	< 0.001	<0.02
GI-WHI	Prep Blank	√ ~ 0.01	0.12	2.07	19.04	59.8	<20	3.9	4.7	130	2.15	6.6	2.6	<0.1	7.2	703	0.13	0.2	0.24	48	2.3	0.075	23.6	10	0.61	1027	0.237	7.12
	Mothod	MOUT	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	1DV	4DV
		WGHT			1DX	1DX	1DX	1DX	1DX	1DX Mp	1DX	1DX	1DX	1DX	1DX		1DX	1DX	1DX	1DX	1DX P	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Wgt	Mo PPM	Cu	Pb PPM	Zn PPM	Ag	Ni	Co PPM	Mn	Fe 04	As PPM	Au PPB	Th PPM	Sr PPM	Cd PPM	Sb	Bi PPM	V PPM	Ca 0/-	-	La PPM	Cr PPM	Mg 0/-	Ba PPM	Ti 0/-	B PPM	Al 0/-
	Unit	KG 0.01						PPM		PPM	%						PPM			%	%			%		%		%
Comple	MDL	0.01	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01
Sample	Type	0.75	4	6.4	450.4	007	2.2	2.2	2.0	ere.	4.00	004.4	16.7	0.5	20	10.4	0.0	0.4	40	0.00	0.040	20	_	0.00	105	0.000	200	0.00
B12-R4	Rock	0.75	4	6.1	459.4	927	3.3	3.3	3.6	659	1.92	281.1	16.7	9.5	32	12.1	2.2	0.1	13	2.69	0.018	39	2	0.08	105	0.002	<20	0.32
B12-R7	Rock	0.72	1.2	2.3	75.6	56	0.9	2.6	1.6	310	0.81	173.1	19.5	4.1	17	0.6	0.5	0.1	6	1.42	0.006	18	3	0.07	477	<0.001	<20	0.18
	Materials																											
STD ORE			47	747	11.1	20	0.0	205	E0.0	400	00.0	44.0	E4 0	10.1		40.4	0.0	0.0	000	0.04	0.000	-	000	0.4	100	0.000	200	201
STD ORE				717	14.1	32	0.3					11.2			4	<0.1	0.2	0.2	299		0.029		882	0.1	166	0.093		3.24
STD DS9			12.8	109	126.6	335	1.8	40	1.5	5/6	2.35	26.2	116	5.9	77	2.4	5.6	6.5	41	0.74	0.087	13	11/	0.63	354	0.107	<20	0.96
STD OXD																												
STD OXG			10.1	0.4	10.4		-0.				10.0:	-0.5	10.5			40 :		10 :		10.01	10.00			10.01		10.00:	100	10.0
BLK	BLK		<0.1	0.4	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1	<0.1	<0.1	<2	<0.01	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01
BLK	BLK																											
BLK	BLK																1											
G1-WHI	Prep Blank	<0.01	<0.1	1.5	2.8	43	<0.1	4.2	4.3	580	1.94	<0.5	<0.5	4.9	54	<0.1	<0.1	<0.1	38	0.47	0.082	8	7	0.54	231	0.125	<20	1

	Method	MOLIT	4.	4.	4.	4.	4.	4.	4.	4.	4.	4T	4.	4.	4T	4.	4T	4.	4.	4T	4.	4T	4.	4T	4T	4.	4T	4T	4.	4T	4.	4.	4.	4T	4T	4T
	Analyte		Na	1T K	1T W	1T Zr	1T Sn	1T Be	_	1T S		1T Ce		1T Nd		1T Eu		1T Tb		1T Ho			1T Yb	1T Lu		1T Li	Rb	1T Ta	1T Nb	1T Cs	1T Ga		1T Re	1T Se		1T TI
	Unit	KG	wa %			PPM		_	_	-	-	PPM							-	_	_	_	_	_	_			_		_					PPM	
			0.002							0.04	0.1																	_					0.002			
Sample		0.01	0.002	0.02	0.1	0.2	0.1	-	0.1	0.04	0.1	0.02	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.1	0.1	0.04	0.1	0.02	0.01	0.002	0.5	0.03	0.03
B12-R2		1 25	0.06	0.03	<0.1	5.7	2 2	<1	<0.1	>10	0.6	1 45	0.1	0.5	0.3	<0.1	<0.1	<0.1	1 <0 1	<0.1	<0.1	<0.1	<0.1	<0.1	0.21	6.6	2.5	<0.1	0.20	0.2	1 /	13.3	0.004	100	3 62	0.00
B12-R3						_	_	_	_		0.4						_	_	_	_	_	_	_	_	_			_	_	_			<0.004	_		
Pulp Du		0.01	0.001	0.00	-0.1				.0.1	. 10	0.1	1.52	0.1	0.1	0.2		-0.1					-0.1			0.11	0.1	0.0		0.11	0.2	0.10	1.10	-0.002		0.21	0.00
B12-R3	•	0.81	0.034	0.05	<0.1	3	17	<1	<0.1	>10	0.4	1 92	0.1	0.7	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0 17	3 1	3.6	<0.1	0 47	0.2	0.49	1 16	<0.002	29	3 24	0.05
B12-R3		0.01	0.031			_		_	_	_								_	_	_		_	_	_				_					< 0.002			
Referen		rials																																		
STD OR	EAS24F)	2.573	0.69	0.4	133	1.4	1	18.5	<0.04	21.2	37.36	4.6	20	4.8	1.7	4.3	0.8	4.5	0.9	2.1	0.3	1.8	0.2	3.28	8	21.6	1.1	18.4	0.8	19.9	0.06	<0.002	<0.3	0.37	<0.05
STD OR	EAS45E		0.056	0.29	1	85.7	1.1	<1	87.2	0.04	6.9	21.1	2.4	8.4	1.8	0.5	1.5	0.2	1.4	0.3	1	0.1	1.1	<0.1	2.28	6.6	20	0.5	5.76	1.1	16.2	0.05	<0.002	1.8	0.21	0.09
BLK	BLK		<0.002	<0.02	<0.1	<0.2	<0.1	<1	<0.1	<0.04	<0.1	<0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	0.1	<0.1	<0.04	<0.1	0.04	<0.01	<0.002	<0.3	<0.05	<0.05
G1-WHI	Prep B	<0.01	2.617	3.02	0.2	13.9	1.2	2	5.2	<0.04	14.4	49.71	6	21	3.9	0.9	2.6	0.5	2.8	0.5	1.7	0.2	1.8	0.3	0.83	33	117	1.5	24.7	4.2	18	0.09	<0.002	<0.3	<0.05	0.97
	Method	WGHT	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	3B																							
	Analyte	Wgt	Na	K	W	Hg	Sc	TI	S	Ga	Se	Te	Au																							
	Unit	KG	%	%	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	PPB																							
	MDL	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1	0.5	0.2	2																							
Sample																																				
B12-R4											<0.5		20																							
B12-R7			0.001	0.05	<0.1	<0.01	1	<0.1	<0.0	<1	<0.5	<0.2	11																							
Referen																																				
STD OR						L																														
STD OR		A	0.025								0.9																									
STD DS			0.082	0.4	3	0.27	2.3	5.7	0.15	5	6.5	5.3																								
STD OX													417																							
STD OX													914																							
BLK	BLK		<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.0	<1	<0.5	<0.2																						$\overline{}$		-
BLK	BLK							-					<2						-															$\overline{}$		-
BLK	BLK Dran B	40 04	0.070	0.5	40.4	ZO 04	0.0	0.2	ZO 0	-	-0 F	40.0	<2																							
G1-WHI	Prep B	<0.01	0.076	0.5	<0.1	≤0.01	2.2	0.3	<u.0< td=""><td>q 5</td><td><0.5</td><td><0.2</td><td><2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></u.0<>	q 5	<0.5	<0.2	<2																							

APPENDIX IV

Statement of Expenditures August, 2012

Wages: Jean Pautler 1 day @ 850.00/day <u>850.00</u>

Total: 1 man-day \$850.00

Mobilization/demobilization: (from Carcross, including wages & fuel) 650.00

Geochemistry: 1 rock @ 40/ea. Whole Rock \$40.00

2 rocks @ 40/ea. Ultratrace 80.00 2 rocks @ 40/ea. Au, ICP 80.00

Total: 200.00

Equipment Rental: Trucks 2 days @ 100/day 200.00

ATV 1 day @ 100/day 100.00 Sat phone 1 day @ 20/day 20.00

Total: 320.00

Room and Board: 2 man days @ \$100/day **200.00**

Field Supplies: (flagging tape, batteries, sample bags, markers, tags) 20.00

Maps, Copies Preparation, Report & Drafting: 1.5 days @850.00/day 1,275.00

TOTAL: \$3,515.00

Filed for Assessment \$3,400.00

APPENDIX V

STATEMENT OF QUALIFICATION

I, Jean Marie Pautler, do hereby certify that:

I, Jean Marie Pautler of 103-108 Elliott Street, Whitehorse, Yukon Territory am self-employed as a consultant geologist and authored this report.

I am a geologist with more than thirty years of experience in the North American Cordillera.

I am a graduate of Laurentian University, Sudbury, Ontario with an Honours B.Sc. degree in geology (May, 1980).

I am a Professional Geoscientist, registered in the province of British Columbia, Registration No 19804.

I conducted the Phase 1, 2012 work program on the B claims.

I have no direct or indirect interest in the B property, which is the subject of this report.

Jean Pautler, P.Geo.

JP Exploration Services Inc.

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

PHONE (604) 253-3158

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Submitted By: Richard E Fischer
Receiving Lab: Canada-Whitehorse
Received: December 07, 2012
Report Date: January 17, 2013

Page: 1 of 2

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

CERTIFICATE OF ANALYSIS

WHI12001007.1

CLIENT JOB INFORMATION

Project: B project
Shipment ID:
P.O. Number
Number of Samples: 5

SAMPLE DISPOSAL

DISP-PLP Dispose of Pulp After 90 days
DISP-RJT Dispose of Reject After 90 days

Acme does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Richard E Fischer

2616 - 126th Ave, SW Calgary AB T2W 3V6

CANADA

CC: Jean Pautler

Method	Number of	Code Description	Test	Report	Lab
Code	Samples		Wgt (g)	Status	
R200-250	5	Crush, split and pulverize 250 g rock to 200 mesh			WHI
4X03	1	Li2B4O7/LiBO2 fusion, analysis by XRF		Completed	VAN
2A Leco	1	Analysis by Leco	0.1	Completed	VAN
Group 1T	2	4 Acid digestion Ultratrace ICP-MS analysis	0.25	Completed	VAN
3B	2	Fire assay fusion Au by ICP-ES	30	Completed	VAN
1DX	2	1:1:1 Aqua Regia digestion ICP-MS analysis	0.5	Completed	VAN

ADDITIONAL COMMENTS

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted.

"*" asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements.

www.acmelab.com

Client:

Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page:

2 of 2

1 of 1

Part:

CERTIFIC	CATE OF AN	IALY	SIS													W	HI12	2001	007	.1	
	Method	WGHT	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X		4X	4X	4X
	Analyte	Wgt	LOI	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K20	MnO	TiO2	P2O5	Cr2O3	Ва	Cu	Ni	Pb	Sr	Zn	Zr
	Unit	%	%	%	%	%	%	%	%	%	%	%	%	%							
															0.001	0.001	0.001	0.002	0.001	0.002	
G1-WHI	Prep Blank	<0.01	0.71	67.2	15.45	3.30	3.44	1.20	3.66	3.59	0.10	0.41	0.18	0.005	0.11	<0.001	<0.001	<0.001	0.073	0.005	0.010
B12-R1	Rock	1.85	2.97	71.9	14.77	1.33	1.63	0.19	2.99	2.88	0.05	0.12	0.05	0.003	0.17	<0.001	<0.001	0.002	0.021	0.014	0.005
B12-R2	Rock	1.25	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R3	Rock	0.81	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R4	Rock	0.75	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R7	Rock	0.72	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

www.acmelab.com

Client:

Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page:

2 of 2

Part: 2 of 1

CERTIFIC	ATE OF AN	IALY	′SIS													WH	1 112	001	007.	1	
	Method		4X	4X 2	2A Leco 2	2A Leco	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T
	Analyte	SO3	V2O5	SUM	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd
	Unit	%	%	%	%	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.002	0.002	0.01	0.02	0.02	0.05	0.02	0.02	0.2	20	0.1	0.2	2	0.02	0.2	0.1	0.1	0.1	1	0.02
G1-WHI	Prep Blank	<0.002	0.011	99.39	<0.02	<0.02	0.12	2.07	19.04	59.8	<20	3.9	4.7	730	2.15	6.6	2.6	<0.1	7.2	703	0.13
B12-R1	Rock	<0.002	<0.002	99.11	0.39	<0.02	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R2	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	0.70	264.2	>10000	>10000>	200000	1.2	7.1	217	9.41	>10000	0.7	1.5	0.6	<1	3522
B12-R3	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	0.93	134.4	>10000	3558>	200000	42.8	31.2	43	14.10	>10000	0.9	5.9	0.7	13	33.61
B12-R4	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R7	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

www.acmelab.com

Client:

Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page:

2 of 2

Part: 3 of 1

CERTIFICATE OF ANALYSIS WHI12001007.1 Method 1T Analyte Sb Bi ٧ Ca Ρ Cr Mg Ва Ti ΑI Na Κ W Zr Sc s La Sn Be Unit % % % % % % ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm MDL 0.02 0.04 1 0.02 0.001 0.1 1 0.02 1 0.001 0.02 0.002 0.02 0.1 0.2 0.1 1 0.1 0.04 0.1 2 G1-WHI 14.4 Prep Blank 0.20 0.24 48 2.30 0.075 23.6 10 0.61 1027 0.237 7.12 2.617 3.02 0.2 13.9 1.2 5.2 < 0.04 B12-R1 Rock N.A. N.A B12-R2 Rock 680.4 30.69 <1 < 0.02 0.002 0.03 0.002 0.36 0.060 0.03 < 0.1 3.3 <1 0.6 B12-R3 234.2 < 0.02 0.001 0.034 0.05 0.4 Rock 45.64 4 0.03 0.004 0.8 8 44 0.23 < 0.1 3.0 1.7 <1 < 0.1 >10 B12-R4 Rock N.A. N.A N.A. B12-R7 Rock N.A. N.A N.A. N.A.

www.acmelab.com

Client:

Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page:

2 of 2

Part: 4 of 1

CERTIFIC	CATE OF AN	IALY	SIS													W	HI12	001	007.	.1	
	Method	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T
	Analyte Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm pp															Li	Rb	Та	Nb	Cs	Ga
Unit ppm ppm ppm ppm ppm ppm ppm ppm ppm pp															ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.02	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.1	0.1	0.04	0.1	0.02
G1-WHI	Prep Blank	49.71	6.0	20.5	3.9	0.9	2.6	0.5	2.8	0.5	1.7	0.2	1.8	0.3	0.83	32.6	116.5	1.5	24.73	4.2	18.02
B12-R1	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R2	Rock	1.45	0.1	0.5	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.21	6.6	2.5	<0.1	0.29	0.2	1.40
B12-R3	Rock	1.92	0.1	0.7	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.17	3.1	3.6	<0.1	0.47	0.2	0.49
B12-R4	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R7	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.

www.acmelab.com

Client:

Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page:

2 of 2

Part: 5 of 1

CERTIFIC	ATE OF AN	IALY	′SIS													Wł	- 1112	001	007.	.1	
	Method					1T	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	In	Re	Se	Te	TI	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd
	Unit	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm
	MDL	0.01	0.002	0.3	0.05	0.05	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1
G1-WHI	Prep Blank	0.09	<0.002	<0.3	<0.05	0.97	<2	<0.1	1.5	2.8	43	<0.1	4.2	4.3	580	1.94	<0.5	<0.5	4.9	54	<0.1
B12-R1	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R2	Rock	43.31	0.004	109.3	3.62	0.09	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R3	Rock	1.16	<0.002	29.0	3.24	0.05	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R4	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	20	4.0	6.1	459.4	927	3.3	3.3	3.6	659	1.92	281.1	16.7	9.5	32	12.1
B12-R7	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	11	1.2	2.3	75.6	56	0.9	2.6	1.6	310	0.81	173.1	19.5	4.1	17	0.6

www.acmelab.com

Client:

Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page:

2 of 2

Part: 6 of 1

CERTIFIC	ATE OF AN	IALY	SIS													W	- 1112	001	007	.1	
	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte Sb Bi V Ca P La Cr Mg Ba Ti B Al Na Unit ppm ppm ppm % % ppm ppm % ppm % ppm % %															w	Hg	Sc	TI	S	Ga
	Unit ppm ppm ppm % ppm ppm % ppm % ppm % %															ppm	ppm	ppm	ppm	%	ppm
	MDL	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1
G1-WHI	Prep Blank	<0.1	<0.1	38	0.47	0.082	8	7	0.54	231	0.125	<20	1.00	0.076	0.50	<0.1	<0.01	2.2	0.3	<0.05	5
B12-R1	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R2	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R3	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
B12-R4	Rock	2.2	0.1	13	2.69	0.018	39	2	0.08	105	0.002	<20	0.32	0.008	0.13	<0.1	0.02	1.5	<0.1	<0.05	1
B12-R7	Rock	0.5	0.1	6	1.42	0.006	18	3	0.07	477	<0.001	<20	0.18	0.001	0.05	<0.1	<0.01	1.0	<0.1	<0.05	<1

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

Client: Richard E Fischer

2616 - 126th Ave, SW Calgary AB T2W 3V6 CANADA

Project: B project

Report Date: January 17, 2013

PHONE (604) 253-3158 2 of 2 Part: 7 of 1 Page:

CERTIFICATE OF ANALYSIS

WHI12001007.1

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Part:

1 of 1

Project:

B project

1 of 2

Report Date:

January 17, 2013

PHONE (604) 253-3158

QUALITY CON	NTROL	REP	ORT													WH	1112	0010	07.	1	
	Method	WGHT	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X		4X	4X	4X
	Analyte	Wgt	LOI	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K20	MnO	TiO2	P2O5	Cr2O3	Ва	Cu	Ni	Pb	Sr	Zn	Zr
	Unit	kg	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	-5.11	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001	0.01	0.001	0.001	0.001	0.002	0.001	0.002
Pulp Duplicates																					
B12-R1	Rock	1.85	2.97	71.9	14.77	1.33	1.63	0.19	2.99	2.88	0.05	0.12	0.05	0.003	0.17	<0.001	<0.001	0.002	0.021	0.014	0.005
REP B12-R1	QC		2.98	72.0	14.88	1.33	1.64	0.18	3.00	2.88	0.05	0.11	0.04	0.002	0.18	<0.001	<0.001	0.001	0.026	0.013	0.005
B12-R3	Rock	0.81	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP B12-R3	QC																				
Reference Materials																					
STD DS9	Standard																				
STD GS311-1	Standard																				
STD GS910-4	Standard																				
STD OREAS24P	Standard																				
STD OREAS45EA	Standard																				
STD OREAS45E	Standard																				
STD OREAS72A	Standard		1.63	49.5	13.76	13.68	8.23	6.86	2.97	0.70	0.14	1.67	0.28	0.037	0.03	0.023	0.710	<0.001	0.034	0.012	0.009
STD OXD87	Standard																				
STD OXG99	Standard																				
STD SY-4(D)	Standard		4.56	50.4	20.86	6.19	8.06	0.53	7.21	1.61	0.11	0.28	0.13	0.002	0.05	<0.001	<0.001	<0.001	0.121	0.010	0.053
STD GS311-1 Expected																					
STD GS910-4 Expected																					
STD OREAS45EA Expected																					
STD DS9 Expected																					
STD OXD87 Expected																					
STD OXG99 Expected																					
STD SY-4(D) Expected				49.9	20.69	6.21	8.05	0.54	7.1	1.66	0.108	0.287	0.131		0.034					0.0093	0.0517
STD OREAS72A Expected				48.9	13.6	13.6422	8.28	6.66	2.91	0.72	0.13	1.7	0.296	0.0399	0.0209	0.0333	0.692		0.0338	0.0083	0.0108
STD OREAS24P Expected																					
STD OREAS45E Expected																					
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 1 of 2 Part: 2 of 1

QUALITY CONTR	ROL															WH	1120	010	07.1		
ı	Method		4X	4X 2	2A Leco 2	2A Leco	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T
	Analyte	SO3	V2O5	SUM	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd
	Unit	%	%	%	%	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.002	0.002	0.01	0.02	0.02	0.05	0.02	0.02	0.2	20	0.1	0.2	2	0.02	0.2	0.1	0.1	0.1	1	0.02
Pulp Duplicates																					
B12-R1 Rock		<0.002	<0.002	99.11	0.39	<0.02	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP B12-R1 QC		<0.002	0.003	99.29	0.40	<0.02															
B12-R3 Rock		N.A.	N.A.	N.A.	N.A.	N.A.	0.93	134.4	>10000	3558>	200000	42.8	31.2	43	14.10	>10000	0.9	5.9	0.7	13	33.61
REP B12-R3 QC							0.78	132.7	>10000	3631>	200000	40.2	30.8	40	14.30	>10000	0.9	5.6	0.6	13	32.49
Reference Materials																					
STD DS9 Standa	ard																				
STD GS311-1 Standa	ard				1.03	2.25															
STD GS910-4 Standa	ard				2.72	8.34															
STD OREAS24P Standa	ard						1.43	51.67	4.38	112.1	118	149.8	48.6	1080	7.71	5.8	0.6	<0.1	2.7	403	0.07
STD OREAS45EA Standa	ard																				
STD OREAS45E Standa	ard						2.20	772.3	17.20	41.0	314	460.6	56.5	519	24.24	18.7	2.2	<0.1	11.8	11	0.07
STD OREAS72A Standa	ard	0.004	0.028	99.45																	
STD OXD87 Standa	ard																				
STD OXG99 Standa	ard																				
STD SY-4(D) Standa	ard	0.211	<0.002	99.99																	
STD GS311-1 Expected					1.02	2.35															
STD GS910-4 Expected					2.65	8.27															
STD OREAS45EA Expected																					
STD DS9 Expected																					
STD OXD87 Expected																					
STD OXG99 Expected																					
STD SY-4(D) Expected																					
STD OREAS72A Expected		0	0																		
STD OREAS24P Expected							1.5	52	2.9	119	60	141	44	1100	7.53	1.2	0.75		2.85	403	0.15
STD OREAS45E Expected							2.4	780	18.2	46.7	311	454	57	550	24.12	16.3	2.41	0.05	12.9	15.9	0.06
BLK Blank					<0.02	<0.02															
BLK Blank																					
BLK Blank																					

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 1 of 2 Part: 3 of 1

QUALITY COI	NTROL	REP	ORT													WH	1120	010	07.	1	
	Method	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T
	Analyte	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ва	Ti	Al	Na	K	w	Zr	Sn	Ве	Sc	s	Y
	Unit	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ppm	%	ppm
	MDL	0.02	0.04	1	0.02	0.001	0.1	1	0.02	1	0.001	0.02	0.002	0.02	0.1	0.2	0.1	1	0.1	0.04	0.1
Pulp Duplicates																					
B12-R1	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP B12-R1	QC																				
B12-R3	Rock	234.2	45.64	4	0.03	0.004	0.8	8	<0.02	44	0.001	0.23	0.034	0.05	<0.1	3.0	1.7	<1	<0.1	>10	0.4
REP B12-R3	QC	230.0	44.31	5	0.03	0.003	0.7	7	<0.02	24	0.001	0.23	0.031	0.05	<0.1	2.7	1.9	<1	<0.1	>10	0.4
Reference Materials																					
STD DS9	Standard																				
STD GS311-1	Standard																				
STD GS910-4	Standard																				
STD OREAS24P	Standard	0.12	<0.04	158	5.85	0.131	17.9	205	4.14	279	1.054	7.66	2.573	0.69	0.4	132.9	1.4	1	18.5	<0.04	21.2
STD OREAS45EA	Standard																				
STD OREAS45E	Standard	0.88	0.25	300	<0.02	0.030	10.4	1031	0.15	229	0.494	6.55	0.056	0.29	1.0	85.7	1.1	<1	87.2	0.04	6.9
STD OREAS72A	Standard																				
STD OXD87	Standard																				
STD OXG99	Standard																				
STD SY-4(D)	Standard																				
STD GS311-1 Expected																					
STD GS910-4 Expected																					
STD OREAS45EA Expected																					
STD DS9 Expected																					
STD OXD87 Expected																					
STD OXG99 Expected																					
STD SY-4(D) Expected																					
STD OREAS72A Expected																					
STD OREAS24P Expected		0.09		158	5.83	0.136	17.4	196	4.13	285	1.1	7.66	2.34	0.7	0.5	141	1.6		20		21.3
STD OREAS45E Expected		1	0.28	322	0.065	0.034	11	979	0.156	252	0.559	6.78	0.059	0.324	1.07	110	1.32		93	0.046	8.28
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				

www.acmelab.com

Client: R

Richard E Fischer 2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 1 of 2 Part: 4 of 1

QUALITY COI	NTROL	REP	ORT													WH	1120	010	07.1	1	
	Method	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T
	Analyte	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Li	Rb	Та	Nb	Cs	Ga
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.02	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.1	0.1	0.04	0.1	0.02
Pulp Duplicates																					
B12-R1	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP B12-R1	QC																				
B12-R3	Rock	1.92	0.1	0.7	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.17	3.1	3.6	<0.1	0.47	0.2	0.49
REP B12-R3	QC	1.63	0.2	0.4	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.24	2.9	3.3	<0.1	0.35	0.2	0.43
Reference Materials																					
STD DS9	Standard																				
STD GS311-1	Standard																				
STD GS910-4	Standard																				
STD OREAS24P	Standard	37.36	4.6	19.6	4.8	1.7	4.3	0.8	4.5	0.9	2.1	0.3	1.8	0.2	3.28	8.0	21.6	1.1	18.44	0.8	19.88
STD OREAS45EA	Standard																				
STD OREAS45E	Standard	21.10	2.4	8.4	1.8	0.5	1.5	0.2	1.4	0.3	1.0	0.1	1.1	<0.1	2.28	6.6	20.0	0.5	5.76	1.1	16.20
STD OREAS72A	Standard																				
STD OXD87	Standard																				
STD OXG99	Standard																				
STD SY-4(D)	Standard																				
STD GS311-1 Expected																					
STD GS910-4 Expected																					
STD OREAS45EA Expected																					
STD DS9 Expected																					
STD OXD87 Expected																					
STD OXG99 Expected																					
STD SY-4(D) Expected																					
STD OREAS72A Expected																					
STD OREAS24P Expected		37.6	4.7	22	4.7	1.6	5.3	0.81	4.6	0.8	2.2	0.3	1.83	0.25	3.6	8.7	22.4	1.04	21	0.8	19.43
STD OREAS45E Expected		23.5	2.57	9.57	2.28	0	1.99	0	2.05		1.2		1.19	0.17	3.11	6.58	21.2	0.56	6.8	1.26	16.5
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Part:

5 of 1

Project:

Page:

B project

1 of 2

Report Date:

January 17, 2013

PHONE (604) 253-3158

QUALITY COI	NTROL	REP	PORT													WH	1120	0010	07.1	1	
	Method					1T	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	In	Re	Se	Te	TI	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd
	Unit	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm
	MDL	0.01	0.002	0.3	0.05	0.05	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1
Pulp Duplicates																					
B12-R1	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP B12-R1	QC																				
B12-R3	Rock	1.16	<0.002	29.0	3.24	0.05	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP B12-R3	QC	1.39	<0.002	29.8	2.81	<0.05															
Reference Materials																					
STD DS9	Standard							12.8	108.5	126.6	335	1.8	40.0	7.5	576	2.35	26.2	115.5	5.9	77	2.4
STD GS311-1	Standard																				
STD GS910-4	Standard																				
STD OREAS24P	Standard	0.06	<0.002	<0.3	0.37	<0.05															
STD OREAS45EA	Standard							1.7	717.0	14.1	32	0.3	395.0	53.6	438	23.89	11.2	51.8	10.1	4	<0.1
STD OREAS45E	Standard	0.05	<0.002	1.8	0.21	0.09															
STD OREAS72A	Standard																				
STD OXD87	Standard						417														
STD OXG99	Standard						914														
STD SY-4(D)	Standard																				
STD GS311-1 Expected																					
STD GS910-4 Expected																					
STD OREAS45EA Expected								1.78	709	14.3	30.6	0.311	357	52	400	22.65	11.4	53	10.7	4.05	0.03
STD DS9 Expected								12.84	108	126	317	1.83	40.3	7.6	575	2.33	25.5	118	6.38	69.6	2.4
STD OXD87 Expected							417														
STD OXG99 Expected							932														
STD SY-4(D) Expected																					
STD OREAS72A Expected																					
STD OREAS24P Expected																					
STD OREAS45E Expected		0.099		2.97	0.1	0.15															
BLK	Blank																				
BLK	Blank							<0.1	0.4	<0.1	<1	<0.1	<0.1	<0.1	<1	<0.01	<0.5	<0.5	<0.1	<1	<0.1
BLK	Blank						<2														

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 1 of 2 Part: 6 of 1

QUALITY CON	ITROL															1					
	Method	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
	Analyte	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	w	Hg	Sc	TI	s	Ga
	Unit	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm
	MDL	0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1
Pulp Duplicates																					
B12-R1	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP B12-R1	QC																				
B12-R3	Rock	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
REP B12-R3	QC																				
Reference Materials																					
STD DS9	Standard	5.6	6.5	41	0.74	0.087	13	117	0.63	354	0.107	<20	0.96	0.082	0.40	3.0	0.27	2.3	5.7	0.15	5
STD GS311-1	Standard																				
STD GS910-4	Standard																				
STD OREAS24P	Standard																				
STD OREAS45EA	Standard	0.2	0.2	299	0.04	0.029	7	882	0.10	166	0.093	<20	3.24	0.025	0.06	<0.1	<0.01	80.3	<0.1	<0.05	14
STD OREAS45E	Standard																				
STD OREAS72A	Standard																				
STD OXD87	Standard																				
STD OXG99	Standard																				
STD SY-4(D)	Standard																				
STD GS311-1 Expected																					
STD GS910-4 Expected																					
STD OREAS45EA Expected		0.64	0.26	295	0.032	0.029	8.19	849	0.095	148	0.106		3.32	0.027	0.053		0.34	78	0.072	0.044	11.7
STD DS9 Expected		4.94	6.32	40	0.7201	0.0819	13.3	121	0.6165	330	0.1108		0.9577	0.0853	0.395	2.89	0.2	2.5	5.3	0.1615	4.59
STD OXD87 Expected																					
STD OXG99 Expected																					
STD SY-4(D) Expected																					
STD OREAS72A Expected																					
STD OREAS24P Expected																					
STD OREAS45E Expected																					
BLK	Blank																				
BLK	Blank	<0.1	<0.1	<2	<0.01	<0.001	<1	<1	<0.01	<1	<0.001	<20	<0.01	<0.001	<0.01	<0.1	<0.01	<0.1	<0.1	<0.05	<1
BLK	Blank																				

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

PHONE (604) 253-3158

Client: Richard E Fischer 2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project: B project

Report Date: January 17, 2013

Page: 1 of 2 Part: 7 of 1

QUALITY CONTROL REPORT

WHI12001007.1

	Method	1DX	1DX
	Analyte	Se	Te
	Unit	ppm	ppm
	MDL	0.5	0.2
Pulp Duplicates			
B12-R1	Rock	N.A.	N.A.
REP B12-R1	QC		
B12-R3	Rock	N.A.	N.A.
REP B12-R3	QC		
Reference Materials			
STD DS9	Standard	6.5	5.3
STD GS311-1	Standard		
STD GS910-4	Standard		
STD OREAS24P	Standard		
STD OREAS45EA	Standard	0.9	<0.2
STD OREAS45E	Standard		
STD OREAS72A	Standard		
STD OXD87	Standard		
STD OXG99	Standard		
STD SY-4(D)	Standard		
STD GS311-1 Expected			
STD GS910-4 Expected			
STD OREAS45EA Expected		2.09	0.11
STD DS9 Expected		5.2	5.02
STD OXD87 Expected			
STD OXG99 Expected			
STD SY-4(D) Expected			
STD OREAS72A Expected			
STD OREAS24P Expected			
STD OREAS45E Expected			
BLK	Blank		
BLK	Blank	<0.5	<0.2
BLK	Blank		

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 2 of 2

Part: 1 of 1

QUALITY	CONTROL	REP	ORT													WH	1112	0010	007.	1	
		WGHT	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X	4X		4X	4X	4X
		Wgt	LOI	SiO2	AI2O3	Fe2O3	CaO	MgO	Na2O	K20	MnO	TiO2	P2O5	Cr2O3	Ва	Cu	Ni	Pb	Sr	Zn	Zr
		kg	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
		0.01	-5.11	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001	0.01	0.001	0.001	0.001	0.002	0.001	0.002
BLK	Blank																				
BLK	Blank		0.00	0.2	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.001	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.002
BLK	Blank																				
Prep Wash	_																				
G1-WHI	Prep Blank	<0.01	0.71	67.2	15.45	3.30	3.44	1.20	3.66	3.59	0.10	0.41	0.18	0.005	0.11	<0.001	<0.001	<0.001	0.073	0.005	0.010

www.acmelab.com

Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Part:

2 of 1

Project:

Client:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 2 of 2

QUALITY	CONTROL	REP	OR													WH	1120	010	07.	1	
			4X	4X 2	2A Leco 2	A Leco	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T
		SO3	V2O5	SUM	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd
		%	%	%	%	%	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
		0.002	0.002	0.01	0.02	0.02	0.05	0.02	0.02	0.2	20	0.1	0.2	2	0.02	0.2	0.1	0.1	0.1	1	0.02
BLK	Blank																				
BLK	Blank	<0.002	<0.002	0.21																	
BLK	Blank						<0.05	<0.02	2.02	4.0	35	0.2	<0.2	<2	<0.02	9.0	<0.1	<0.1	<0.1	<1	<0.02
Prep Wash																					
G1-WHI	Prep Blank	<0.002	0.011	99.39	<0.02	<0.02	0.12	2.07	19.04	59.8	<20	3.9	4.7	730	2.15	6.6	2.6	<0.1	7.2	703	0.13

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Part:

3 of 1

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 2 of 2

QUALITY C	CONTROL	REP	ORT													WH	1120	010	07.	1	
		1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T
		Sb	Bi	V	Ca	Р	La	Cr	Mg	Ва	Ti	Al	Na	K	W	Zr	Sn	Be	Sc	S	Y
		ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	%	%	%	ppm	ppm	ppm	ppm	ppm	%	ppm
		0.02	0.04	1	0.02	0.001	0.1	1	0.02	1	0.001	0.02	0.002	0.02	0.1	0.2	0.1	1	0.1	0.04	0.1
BLK	Blank																				
BLK	Blank																				
BLK	Blank	0.05	<0.04	<1	<0.02	<0.001	<0.1	2	<0.02	<1	<0.001	<0.02	<0.002	<0.02	<0.1	<0.2	<0.1	<1	<0.1	<0.04	<0.1
Prep Wash																					
G1-WHI	Prep Blank	0.20	0.24	48	2.30	0.075	23.6	10	0.61	1027	0.237	7.12	2.617	3.02	0.2	13.9	1.2	2	5.2	<0.04	14.4

www.acmelab.com

Client:

Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 2 of 2

Part: 4 of 1

QUALITY	CONTROL	REP	ORT													WH	11120	010	07.	1	
		1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T	1T
		Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Li	Rb	Та	Nb	Cs	Ga
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		0.02	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.02	0.1	0.1	0.1	0.04	0.1	0.02
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<0.02	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.02	<0.1	0.1	<0.1	<0.04	<0.1	0.04
Prep Wash																					
G1-WHI	Prep Blank	49.71	6.0	20.5	3.9	0.9	2.6	0.5	2.8	0.5	1.7	0.2	1.8	0.3	0.83	32.6	116.5	1.5	24.73	4.2	18.02

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 2 of 2 Part:

5 of 1

QUALITY (CONTROL	REP	ORT													WH	1120	010	07.1	1	
						1T	3B	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
		In	Re	Se	Te	TI	Au	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au	Th	Sr	Cd
		ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm
		0.01	0.002	0.3	0.05	0.05	2	0.1	0.1	0.1	1	0.1	0.1	0.1	1	0.01	0.5	0.5	0.1	1	0.1
BLK	Blank						<2														
BLK	Blank																				
BLK	Blank	<0.01	<0.002	<0.3	<0.05	<0.05															
Prep Wash																					
G1-WHI	Prep Blank	0.09	<0.002	<0.3	<0.05	0.97	<2	<0.1	1.5	2.8	43	<0.1	4.2	4.3	580	1.94	<0.5	<0.5	4.9	54	<0.1

www.acmelab.com

Client: Richard E Fischer

2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project:

B project

Report Date:

January 17, 2013

PHONE (604) 253-3158

Page: 2 of 2 Part: 6 of 1

QUALITY	CONTROL	REP	ORT	Г												WH	11120	010	07.	1	
		1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX	1DX
		Sb	Bi	V	Ca	Р	La	Cr	Mg	Ва	Ti	В	ΑI	Na	K	W	Hg	Sc	TI	S	Ga
		ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	%	ppm
		0.1	0.1	2	0.01	0.001	1	1	0.01	1	0.001	20	0.01	0.001	0.01	0.1	0.01	0.1	0.1	0.05	1
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
Prep Wash																					
G1-WHI	Prep Blank	<0.1	<0.1	38	0.47	0.082	8	7	0.54	231	0.125	<20	1.00	0.076	0.50	<0.1	<0.01	2.2	0.3	<0.05	5

www.acmelab.com

Acme Analytical Laboratories (Vancouver) Ltd.

PHONE (604) 253-3158

Client: Richard E Fischer 2616 - 126th Ave, SW

Calgary AB T2W 3V6 CANADA

Project: B project

Report Date: January 17, 2013

Page: 2 of 2 Part: 7 of 1

QUALITY CONTROL REPORT

WHI12001007.1