Assessment Report

Describing

Diamond Drilling, Reverse Circulation Drilling,Soil Sampling, and Prospecting

Performed on the

Kaminak Gold Corporations 100\% Owned Coffee Property

March 1st 2012 to October $11^{\text {th }} 2012$

NTS map sheets 115J/13, 115J/14 and 115J/15
Latitude $62^{\circ} 52^{\prime} \mathrm{N}$ and Longitude $139^{\circ} 20^{\prime} \mathrm{W}$
In the Whitehorse Mining District
Prepared by
Craig S. Finnigan, PhD, PGeo
February 2012

Claim Group

COFFEE1-16	YC46734-YC46749	2028/12/15 115J14
COFFEE17-36	YC53949-YC53968	2024/12/15 115J14
COFFEE37-54	YC54445-YC54462	2024/12/15 115J14
COFFEE55-62	YC54463-YC54470	2023/12/15 115J14
COFFEE63-68	YC54471 - YC54476	2024/12/15 115J14
COFFEE69-92	YC54477-YC54500	2023/12/15 115J14
COFFEE105-112	YC60176-YC60183	2024/12/15 115J14
COFFEE113-226	YC83190-YC83303	2022/12/15 115J14
COFFEE227-276	YC83652-YC83701	2022/12/15 115J14
COFFEE277-344	YC89405-YC89472	2022/12/15 115J14
COFFEE345-404	YC93441 - YC93500	2019/12/15 115J13,115J14
COFFEE405-410	YC97368 - YC97373	2019/12/15 115J14
COFFEE411-578	YC92601 - YC92768	2019/12/15 115J13,115J14
COFFEE587-610	YC92777 - YC92800	2019/12/15 115J14,115J13
COFFEE611-625	YC93351 - YC93365	2019/12/15 115J14,115J13
COFFEE627-726	YC96801 - YC96900	2019/12/15 115J13,115J14
COFFEE727-792	YC92535 - YC92600	2019/12/15 115J14
COFFEE793-865	YC92818-YC92890	2019/12/15 115J14
COFFEE866-894	YC93271 - YC93299	2019/12/15 115J14
COFFEE895-910	YC92801 - YC92816	2019/12/15 115J14
COFFEE911-960	YD12701 - YD12750	2020/12/15 115J14
COFFEE961-969	YD13231 - YD13239	2020/12/15 115J14
COFFEE970-1416	YD13241-YD13687	2020/12/15 115J14
COFFEE1421-1429	YD13692-YD13700	2020/12/15 115J14
COFFEE1430	YD42501	2020/12/15 115J14
COFFEE1435-1496	YD42506 - YD42567	2020/12/15 115J14
COFFEE1497-1714	YD42701 - YD42918	2020/12/15 115J14,115J15
COFFEE1715-1718	YD43085 - YD43088	2020/12/15 115J14
COFFEE1719-1781	YD43929 - YD43991	2020/12/15 115J14,115J13
COFFEE1782-1954	YD43992-YD44164	2019/12/15 115J13,115J14
COFFEE1955-2124	YD16283-YD16452	2020/12/15 115J14
COFFEE2125-2346	YD89255 - YD89476	2020/12/15 115J15,115J14
COFFEE2347-2596	YD91501 - YD91750	2018/09/29 115J15
COFFEE2597-2724	YD91751 - YD91878	2017/09/29 115J14,115J15
COFFEE2725-2740	YD91879-YD91894	2018/09/29 115J15
COFFEE2741-2812	YD91895-YD91966	2017/09/29 115J15
COFFEE2813-2846	YD91967-YD92000	2018/09/29 115J15
COFFEE2847-2936	YD90101 - YD90190	2018/09/29 115J15
COFFEE93-104	YC60164-YC60175	2024/12/15 115J14
COFFEE579-586	YC92769 - YC92776	2019/12/15 115J14
CREAM 1-22	YC60088 - YC60109	2020/12/15 115J13
CREAM 23-68	YC83144-YC83189	2019/12/15 115J13
LION 1-16	YC83761-YC83776	2020/12/15 115J14
SUGAR 1-10	YC95568-YC95577	2021/12/15 115J15

Table of Contents

Page
Table of Contents iii
List of Figures v
List of Tables viii
List of Appendices x
Summary and Recommendations 1
Introduction 3
Location, Access and Land Tenure 3
Climate and Physiography 3
Land Tenure. 3
Property History. 3
Regional Geology 6
Property Geology 7
Lithologies 9
Structure 11
Alteration and Mineralization 11
Supremo 12
Latte 16
Double Double 18
Kona. 18
Americano, Americano West and Espresso 20
Macchiato and Cappuccino 20
Current Work 20
Core Drilling. 20
RC Drilling. 26
Soil Sampling 43
Mapping and Prospecting 43
Sampling Methods and Approach. 46
Drill Core Sampling 46
Reverse Circulation Chip Sampling 46
Soil Sampling 47
Rock Chip Sampling. 47
Sample Preparation, Analyses and Security 48
Specific Gravity Data 50
Quality Assurance and Quality Control Programs. 50
Data Verification 52
Mineral Processing and Metallurgical Testing 53
Phase 1: Cyanidation Testwork (2011) 53
Phase 2: Column Leach Testwork (2012) 55
Phase 3: Cyanidation Testwork (2012) 58
Mineral Resource Estimate. 61
Interpretations and conclusions. 90
Recommendations 91
Preliminary Economic Assessment. 92
Statement of Expenditures 94
References 97

List of Figures

No.
1

Description Page
Property Location 5
Geological Setting 6
Property Geology 8
Main Lithologies 10
Location of Main Discoveries 15
Gold Mineralization and Textures Supremo 16
Alteration and Mineralization from Latte 17
Gold Mineralization and Textures Double Double 19
Gold Mineralization and Textures at Kona 19
Plan View of Drilling targets 35
Plan View of Drilling Completed at
Northern Supremo 36
Plan View of drilling completed at Southern Supremo and Double Double 37
Plan View of Drilling Completed at Sugar 38
Schematic Supremo T3 Long Section 39
Schematic Supremo T4 Long Section 40
Schematic Supremo T5 Long Section 41
Schematic Double Double Long Section 42
Soil Samples Collected from 2009 to 2012 by Kaminak 44

19

20

Sugar Area Soil Samples Collected by
Kaminak 2009 to 20012
Metal Extraction Rate 57
Isometric View Showing the Distribution of DrillHoles and Deposit Areas 62
Structural Domains at Supremo Latte, Double Double and Kona 63
Individual Structural Zones Defined at Supremo, Latte and Double Double 64
Planes representing Trends of Mineralization in each Structural Zone 64
Distribution of DD and RC Holes 65
Boxplot for Gold in Structural Domains at Supremo 69
Boxplot for Gold in Structural Domains at Latte 69
Boxplot for Gold in Structural Domains at Double Double 69
Boxplot for Gold in Structural Domains at Kona 70
Contact Profile Comparing Samples Inside / Outside the Structural Zones at Latte 71
Structural Zones at Supremo 72
Structural Zones at Latte 73
Structural Zones at Double Double 73
Structural Zones at Kona 74
Examples of Herco Plots 81

Exaples of Swath Plots 84

Isometric Views of the Distribution of Base Case Resources

List of Tables

No.1 Main Mineralized Zones Investigated by Drilling on the Coffee Project Area13
2 Core Diameter Drilled in 2012 201Characteristics of the Core Boreholes Drilled in 201221
4 Salient Assay Results from the 2012 Core Drilling Program 24
5 Characteristics of the Reverse Circulation Boreholes Drilled in 2012 26Salient Assay Results from the 2012 Reverse Circulation Drill Program30
7
Supremo Drilling per Structure in 2012 3448
Specific Gravity Database Per Domain and Weathering Profile 50
51
Specifications of the Certified Control Samples Used by Kaminak in 2012
Count of Batch Re-runs by Year 53
Summary of Sample Selection 54
Summary of Gold Extraction Results 54
Initial Crush Size Results 56
Summary of Test Results 57
1617

Summary of Sample Selection
Summary of Sample Selection 58
Summary of Bottle Roll Test Results 59
Summary of CIP/CIL Test Results 60
Summary of Drilling Used in Each Model Area to Estimate Mineral Resources 66
Statistical Summary of Gold Assay Data 67
Summary of Estimation Domains 72
Summary of Specific Gravity Data by Area and Domain 75
Summary of Capping Levels and Outlier Limitations Applied 76
Gold Variogram Parameters 78
Block Model Limits 79
Interpolation Parameters 80
Estimated Inferred Mineral Resource Statement* 86
Quantities and Grade Estimates at Various Cut-off Grades by Material Type 89
Recommended Exploration Program for the Coffee Project 2013 92
Recommended Preliminary Economic Assessment for the Coffee Project 2013 93

List of Appendices

No. Description Page
A Kaminak Claims on the Coffee Project 99
B Key Vertical Cross Sections Displaying Geological Model and Block Model 123
C Statement of Qualifications 144

Summary and Recommendations

The Coffee project is a gold property located approximately 130 km southwest of Dawson City. It consists of approximately 3000 claims that are staked under the Yukon Territory Quartz mining act and covers approximately 60,000 hectares. The property is 100% owned by Kaminak Gold Corporation out of Vancouver British Columbia.

The property lies within the Yukon-Tanana terrane and underlies part of the Tintina gold belt which is host to several gold and base metal deposits in Yukon and Alaska.

Rocks in the Coffee area are divided into two main west-northwest trending, south- to southwest-dipping panels of moderate to high strain metamorphosed metavolcanic / metasediment rocks that have been subsequently intruded by a Cretaceous age granite (Coffee Creek Granite) that is exposed in the southern portion of the property. Mineralization on the Coffee property appears to be controlled by northeast - southwest trending structures and north-south trending structures which have been subsequently dextrally displaced along a major shear structure designated by Kaminak as the "Latte Shear". The shear zone itself is mineralized over several kilometres along strike and is considered the most prospective gold target on the Coffee property to date. Other highly significant diamond drill hole discoveries made on the Coffee property include: Supremo, Double Double, Kona, and Americano. Exploration on the Coffee property in 2012 consisted of diamond drilling, RC drilling soil sampling, and a minor amount of trenching. Drilling, was concentrated in the Supremo and Double Double areas of the property generally at 100 metre step outs on 50 metre spacing. Exploration in the Sugar area of the property consisted of 12 diamond drill holes and soil sampling.

Mineralization is found to be associated with steeply dipping structures that crosscut all lithologies on the property. Styles of mineralization at coffee are characterized by high, moderate and low grades. High grade gold is associated with hydrothermal breccias and felsic to intermediate dykes which appear to have utilized the same structures as the mineralizing fluids. Moderate to lower grade gold is characterized by pevasive, foliation parallel mineralization in mafic schist. Research to date indicates a "gold only" system with gold being very fine and associated with arsenian pyrite and less commonly arsenopyrite.

In 2012, the exploration work completed on the Coffee gold project included:

- Soil geochemical sampling;
- Bedrock mapping and sampling;
- 125 core boreholes (29,650 metres); and
- 223 reverse circulation boreholes (39,450 metres).

The following recommendations have been provided by SRK Consulting Ltd based on review of all of the data outlined in this report.

The exploration work completed by Kaminak at Coffee since 2010 was reviewed by independent Qualified Persons. The exploration work was conducted using procedures that generally meet industry best practices and the Qualified Persons are of the opinion that the exploration data is reliable. The results of the additional exploration work completed by Kaminak during 2012 are of sufficient merit to recommend additional exploration expenditures. The proposed work program includes core and reverse circulation drilling to investigate the lateral and depth continuity of the gold mineralization with the objective to improve the delineation of the gold mineralization and
expand the mineral resources. The recommended exploration program includes approximately 70,000 metres of drilling targeting:

- Delineation drilling of the Supremo, Latte, Double Double, and Kona zones along regularly spaced sections to improve definition of the boundaries of the gold mineralization, increase understanding of geological and structural controls, and improve classification of mineral resources from Inferred to the Indicated and Measured category;
- Step-out drilling at the Supremo, Double Double, Kona, Connector, Latte, Americano, and Espresso areas to investigate and define geometry and distribution of the gold mineralization and test its lateral and depth continuity with the objective of extending current resources and supporting initial mineral resource evaluation on new zones; and
- Parametric drilling of other gold-in-soil anomalies, including additional drill targets at Sugar.Additional metallurgical testing work should also be undertaken to characterize the metallurgical characteristics of the gold mineralization identified on the Coffee project. Supplementary mineralogical, petrographic and geochemical studies should be completed to study the gold deportment and help understand its geological and structural setting. Geochronological studies would help to understand the timing of the goldmineralization with respect to the metamorphic and magmatic history of the project area.Engineering, metallurgical, environmental and other studies should be initiated to complete the characterization of the gold mineralization delineated at Coffee with the view of evaluating, at a conceptuallevel, the viability of a mining project targeting the Inferred mineral resource at Supremo, Latte, Double Double and Kona and preparing a preliminary Economic Assessment. The studies should examine several mining and processing scenarios to determine the most attractive option for the potential development. The recommended work program includes mining optimization studies, additional metallurgical testwork, conceptual flowsheet design, and scheduling and economic modelling. The following components are recommended:
- Additional core drilling and bulk sampling to collect metallurgical samples to undertake a comprehensive metallurgical test program with the objective to study gold recovery from each zone at varying depths/degree of oxidation, and by various possible process paths;
- Core drilling for geotechnical and hydrogeological studies; and
- Ongoing environmental baseline data collection, additional flora and fauna habitat studies, and geochemical characterization studies. The total cost for the recommended work program for 2013 exploration program is estimated at $\mathbf{C} \$ 23,500,000$.

Respectively Submitted,

Kaminak Gold Corporation

Craig Finnigan, Chief Geologist, PhD, PGeo

Introduction

The Coffee project is an early-stage gold exploration project located in the White Gold district of west-central Yukon. It is located approximately 130 kilometres south of Dawson City, Yukon. The project encloses several gold occurrences within a large $\sim 600 \mathrm{~km}^{2}$ exploration concession. In 2012 125 core boreholes (29,650 metres); and 223 reverse circulation boreholes (39,450 metres) were drilled at the project program tested several geochemically and geophysically defined targets. This work was done in conjunction with an extensive soiling. A total of $\mathbf{\$ 2 1 , 8 6 7 , 4 6 0 . 7 9}$ was spent over the course of this work. The material in this report outlines the details of the 2012 program and has been largely taken from the NI-43101 prepared for Kaminak by SRK Consulting Ltd..

Location, Access and Land Tenure

The Coffee property is located in south-western Yukon centred at latitude $62^{\circ} 52^{\prime} \mathrm{N}$ and longitude $139^{\circ} 0^{\prime}$ ' W. The property lies within the Dawson Range, approximately 130 kilometres south of Dawson City and approximately 160 kilometers northwest of Carmacks. The claims are situated between Coffee creek and Independence creek, approximately 2-5 kilometers south of the Yukon River on NTS map sheets 115J/13, 115J/14 and 115J/15 (Figure 1).

The property and the region have no established towns, villages or electricity. Barge access is available to the nearby Coffee Creek camp and a new 22 kilometre access road has been constructed to the exploration site from the barge landing. Access to the property is also available by helicopter from Dawson or Carmacks, or conversely, by airplane to the Coffee Creek camp airstrip and from there by helicopter.

Climate and Physiography

The area is unglaciated and consists of subdued topography ranging from 1400 feet (430 meters) to 4400 feet (1340 meters). The majority of the property is above tree line and contains short shrubby vegetation. The property has mature pine forests with thick moss cover on the ground. Bedrock exposure is generally limited to less than 5%, except at the north western edge of the property where cliffs face the Yukon River. Yukon has a sub-arctic continental climate with a summer mean of 10° Celsius and a winter mean of minus 23° degrees Celsius. Summer and winter temperatures can reach up to 35 and minus 55° Celsius, respectively. Dawson City, the nearest access point, has a daily average above freezing for 180 days per year.

Land Tenure

The Coffee property consists of 3021 contiguous claims of which 2428 are covered for assessment in this report. The claims were staked under the Yukon Quartz Mining Act and are registered as with the Whitehorse mining recorder in the name of Kaminak Gold Corp. A ful list of Claims can be found in Appendix 5 with an accompanying map at the back of this report.

Property History

The Dawson Range has been exploited historically for placer gold, while hard rock exploration for porphyry copper began in the 1960s. Modern gold exploration began in the Coffee Creek area in 1999 and work in the region increased in 2007 with the discovery of the Golden Saddle deposit by

Underworld Resources, 30 kilometres north of the Coffee Project. Exploration by Kaminak began in late 2009 and the first drill program was initiated in May 2010.
Areas of the current land tenure of the Coffee property were historically staked by Prime Properties Syndicate (Yogo, Bingo, and Orego claims) and Deltango Gold Limited (Dan, Man and Indy claims) in 1999. Work by Prospector International under option from Prime Properties Syndicate in1999 and 2000 consisted of stream sediment and reconnaissance and grid soil sampling delineating a 400 by 900 m gold in soil anomaly with anomalous arsenic, antimony and mercury on the Orego claims (Jaworski, 2001) corresponding to the current southeastern Supremo to Americano zones. Additional soil sampling and trenching was recommended but the claims were allowed to lapse. Work by Deltango Gold Limited in 1999 consisted of reconnaissance geological mapping, and stream sediment, soil and rock sampling (Jilson, 2000). The program delineated four possible source areas for the anomalous stream sediment geochemistry, two of which correspond to the Supremo-Mocha-Arabica zones and the Latte-Double Double zones. A soil survey, prospecting and additional stream sediment sampling was recommended, but the claims were allowed to lapse.

Part of the southern Coffee claims were staked as the Leo Lion claims in 1969-70 by Atlas Explorations Limited, who conducted initial prospecting, geological and geochemical surveys while exploring for porphyry copper mineralization following the Casino discovery in 1968 (Pearse et al., 1970). The original Coffee claims were staked by Shawn Ryan in 2006, with additional claims added in 2007 to 2009. Work consisted of soil geochemistry, primarily in the Supremo area, and a ground magnetic survey on the Supremo zone. Anomalous gold, arsenic, antimony and mercury soil geochemistry was outlined at Supremo, with some reconnaissance indications at the KonaExpresso, Mocha-Arabica and Java zones (Ryan, 2008a). Kaminak Gold Corporation optioned the Coffee and Cream claims in 2009 and contracted Ryanwood exploration to carry out a ground magnetic survey, soil sampling program and trenching.

Figure 1. Coffee Property Location

Regional Geology

The Coffee Project is located in the Yukon-Tanana terrane; an accreted pericratonic rock sequence that covers a large portion of the Omineca Belt, and extends into Alaska and British Columbia. The terrane underlies part of the Tintina gold belt and hosts gold deposits thought to be related to Mesozoic intrusions, including the Sonora Gulch gold deposit and the Casino copper-goldmolybdenum porphyry, located southeast of the Coffee Project (Bennett et al., 2009). The YukonTanana terrane consists of schists and gneisses that were deformed and metamorphosed in the late Paleozoic, and intruded by a number of suites of Mesozoic intrusions, including the Dawson Suite intrusions (Mortensen, 1992, Colpron et. al., 2006; Figure 2).

Rocks in the region are pervasively foliated and contain at least two overprinting rock fabrics (Ryan and Gordey, 2004; MacKenzie et al., 2008; Mackenzie and Craw, 2010). During the early Jurassic, the rocks were tectonically stacked along foliation-parallel thrust faults (Mortensen, 1996) and subsequent regional extension occurred between the middle Cretaceous and Eocene, accompanied by fault-controlled mafic and felsic magmatism (Gabrielse and Yorath 1991).

Drafted by A.J. Wainwright November 30, 2011

Figure 2: Geological Setting of the Coffee Project Area (modified after Gordey and Makepeace, 1999)

Property Geology

The geology of the Coffee Project area is generally characterized by two west-northwest trending, south- to southwest-dipping rock sequences that have been subsequently intruded by a Cretaceous age granite in the southern portion of the property (Figure 3). From north to south, these are divided into an augen gneiss-mafic schist sequence which is overlain by a variable package of interbanded biotite schist / mafic metavolcanic rocks and metacarbonate rocks. The contact between these foliated rocks and the Coffe Creek Granite is characterized as intrusive based on observed hornfelsing of these older schists. The granite is texturally equigranular with biotite and minor hornblende being the mafic phases. The entire rock sequence is cut by intermediate to felsic dikes. The geology as interpreted in Figure 3 is interpetted based on soil geochemistry, drilling and trencing and airborne magnetics.

Figure 3: Geological Map of the Coffee Project Area. Coordinate System is UTM NAD83 Zone 7

Lithologies

Augen Gneiss

Gold mineralization in the Supremo area occurs in augen gneiss characterized by variable quartz, feldspar augen, biotite and muscovite (Figure 4a). The augen gneiss is intercalated with volumetrically minor biotite-feldspar (\pm quartz \pm muscovite \pm amphibole) schist. Typical drill core intervals of biotite schist within the dominant augen gneiss sequence vary in thickness from 0.3 to 10 metres. They represent approximately 30 percent of the rock volume.

Biotite Schist

Biotite-feldspar (\pm quartz \pm muscovite \pm amphibole) schists dominate the central rock panel in the Coffee area (Figure 4b). This rock type exhibits variable mineral componentry and schistose to mylonite textures. The biotite-feldspar schists are locally intercalated with metacarbonate bands that range from 0.3 to over 5.0 metres in width. The metacarbonate bands increase in volumetric importance toward the top of the sequence. The lower parts of the biotite-feldspar schist panel typically contain a 5 to 50 metre thick mafic metavolcanic sequence (Figure 4c). In these rock types, the foliation can be convoluted and strained about relict pyroxene porphyroclasts. Relatively thin talc schist intervals are spatially associated with the metavolcanic zones, and are characterized by strongly altered pale green fine-grained foliated material with local coarse magnetite crystals suggesting an ultramafic precursor.

Granite

Equigranular granite underlies the southern third of the map area (Figure 3). This rock type is equigranular, unfoliated and characterized by coarse plagioclase, potassium feldspar, quartz, biotite and hornblende (Figure 4d).

Dikes

Unfoliated dacite porphyry dikes are spatially associated with intervals of gold mineralization. The dikes are characterized by feldspar phenocrysts and minor quartz set in an aphanitic groundmass (Figure 4e). Typically, ferromagnesian minerals (hornblende and possible biotite) are destroyed by alteration, and where identified, have been pervasively replaced by fine-grained pyrite.

Andesite dikes are characterized by fine-grained to coarse plagioclase-porphyritic textures with a dark groundmass (Figure 6f). They are typically unaltered, although there is an apparent spatial association between the andesite dikes and the gold-bearing structures.

Figure 4: Main Lithologies from the Coffee Project Area.
A. Augen gneiss. Borehole CFD004 at 102 metres.
B. Biotite-feldspar schist with interbanded metacarbonate. Borehole CFD087 at 21.3 metres.
C. Mafic metavolcanic rocks. Borehole CFD087 at 342 metres.
D. Granite. Borehole CFD056 at 160 metres.
E. Dacite dike. Borehole CFD007 at 103 metres.
F. Andesite dike. Borehole CFD020 at 42 metres.

Structure

Structural data collected from oriented drill core indicates that the main penetrative foliation in the Supremo area dips shallowly to the southwest, whereas the same fabric in the Latte and Double Double areas dips somewhat more steeply to the southwest. Faults are common in drill core; however, major offsets of rock units have not been detected on the Coffee Project. The relationships between augen gneiss, metavolcanic rocks and biotite-feldspar schist units are poorly constrained due to the metamorphic overprint on possible depositional, structural or intrusive contacts.

Gold-bearing structures are generally steeply-dipping and cross-cut all rock units on the Coffee Project. The best evidence for this geometry is taken from interpreting the distribution of auriferous intervals between boreholes drilled on the same section. Structural measurements of vein orientations and margins of breccia zones on oriented drill core are less reliable because of the often incohesive nature of drill core inside gold-rich zones, thus the drill core is not oriented in those zones. The moderately- to steeply-dipping gold zones are hosted in discrete corridors that correspond to a variety of orientations. These structures include damage zones characterized by polyphase breccias, intense alteration and abundant sulphides. Major fault offsets of gold mineralization or dilution of gold systems by major post-mineral dikes have not been detected by drilling to date.

In the Supremo zone, gold is hosted within a corridor of north-south trending structures crosscutting the augen gneiss; whereas in the Latte and Double Double zones (1.5 kilometres south and southeast of Supremo, respectively, gold is associated with a regionally-significant, east-west trending, south-dipping structure (the "Latte Structure") and interpreted related splays. The Latte Structure is characterized by breccias that overprint older ductile strain fabrics, consistent with a multiply-reactivated shear zone environment. Other gold prospects located west-southwest of Supremo (Kona, Espresso and Americano) are hosted west of the inferred Latte Structure, but in the granite, within steeply-dipping planar structures that correspond to linear gold-in-soil anomalies. These may represent an array of faults connected by linking structures.

Alteration and Mineralization

Exploration drilling completed since 2012 has led to the discovery of significant gold mineralization in 9 separate areas of the Coffee Project: Supremo, Latte, Double Double, Kona, Espresso, Americano, Americano West, Macchiato and Cappuccino (Figure 5 and 10)Supremo

The Supremo zone is hosted in the northern augen gneiss sequence and consists of a number of discrete north-trending, steeply-dipping structures, spaced by 50 to 100 metres, based on linear gold-in-soil anomalies and limited drilling (mineralized structures are named T 1 to T 8).

Core drilling in 2010-2011 and core/reverse circulation drilling in 2011 have focused on significant high-grade gold mineralization identified in the north-northeast trending, steeply east-dipping T3 structure, associated with breccias and dikes. The T3 gold corridor is 5 to 30 metres wide and mineralized intervals are associated with intense clay and sericite alteration in addition to abundant (typically oxidized) pyrite. Similar gold grades and mineralized rock textures have been observed 150 metres to the west in the T2 structure, sub-parallel to T3.

The gold mineralization at Supremo can generally be characterized by two distinct styles. The highest grades are associated with hydrothermal breccias exhibiting evidence for several episodes of brecciation (Figure 6a). This style of gold mineralization generally yields grades between 5 and 60 grams of gold per tonne ("gpt gold").

Breccia textures range from mature matrix-dominant phases with rounded fragments to wall-rock crackle breccias, and matrix compositions range from incompetent limonite-clay material to strongly silicified material. Angular to subrounded clasts range from 0.5 to 3 centimetres in diameter and consist predominantly of highly silicified fragments and subordinate altered wallrock and dacite porphyry fragments.

The lower grade gold mineralization is associated with pervasive hydrothermal alteration and yields grades ranging between 2 and 10 gpt gold (Figure 66b). The hydrothermal alteration is characterized by an overall removal of potassium and aluminum with the addition of sulphide and silica.

Andesite and dacite dikes appear to have utilized the same structures as mineralizing fluids, but they are themselves altered and locally auriferous (Figure 6c). In other cases, altered dikes with elevated arsenic and antimony are barren. Thus the relationship between dikes and the auriferous hydrothermal system remains poorly constrained.

Preliminary Portable Infrared Mineral Analyzer ("PIMA") and electron microprobe work indicate that illite and iron-carbonate compose part of the alteration mineral assemblage associated with gold at Supremo. Micron-scale gold is strongly associated with pyrite and gold grains are located in the oxidized rims of pyrite and cracks within pyrite grains, in addition to various growth bands within the pyrite grains (Figure 6d).

The microscopy and microprobe work also reveal micron sized crystals of barite associated with gold and trace amounts of iron-barium arsenate, an iron-calcium-silver-phosphorus mineral phase, monazite and zircon in alteration zones.

Table A number of regional targets have also been investigated by drilling with significant gold intercepts.

Supremo

The Supremo zone is hosted in the northern augen gneiss sequence and consists of a number of discrete north-trending, steeply-dipping structures, spaced by 50 to 100 metres, based on linear gold-in-soil anomalies and limited drilling (mineralized structures are named T 1 to T 8).

Core drilling in 2010-2011 and core/reverse circulation drilling in 2011 have focused on significant high-grade gold mineralization identified in the north-northeast trending, steeply east-dipping T3 structure, associated with breccias and dikes. The T3 gold corridor is 5 to 30 metres wide and mineralized intervals are associated with intense clay and sericite alteration in addition to abundant (typically oxidized) pyrite. Similar gold grades and mineralized rock textures have been observed 150 metres to the west in the T2 structure, sub-parallel to T3.

The gold mineralization at Supremo can generally be characterized by two distinct styles. The highest grades are associated with hydrothermal breccias exhibiting evidence for several episodes of brecciation (Figure 6a). This style of gold mineralization generally yields grades between 5 and 60 grams of gold per tonne ("gpt gold").

Breccia textures range from mature matrix-dominant phases with rounded fragments to wall-rock crackle breccias, and matrix compositions range from incompetent limonite-clay material to strongly silicified material. Angular to subrounded clasts range from 0.5 to 3 centimetres in diameter and consist predominantly of highly silicified fragments and subordinate altered wallrock and dacite porphyry fragments.

The lower grade gold mineralization is associated with pervasive hydrothermal alteration and yields grades ranging between 2 and 10 gpt gold (Figure 66b). The hydrothermal alteration is characterized by an overall removal of potassium and aluminum with the addition of sulphide and silica.

Andesite and dacite dikes appear to have utilized the same structures as mineralizing fluids, but they are themselves altered and locally auriferous (Figure 6c). In other cases, altered dikes with elevated arsenic and antimony are barren. Thus the relationship between dikes and the auriferous hydrothermal system remains poorly constrained.

Preliminary Portable Infrared Mineral Analyzer ("PIMA") and electron microprobe work indicate that illite and iron-carbonate compose part of the alteration mineral assemblage associated with gold at Supremo. Micron-scale gold is strongly associated with pyrite and gold grains are located in the oxidized rims of pyrite and cracks within pyrite grains, in addition to various growth bands within the pyrite grains (Figure 6d).

The microscopy and microprobe work also reveal micron sized crystals of barite associated with gold and trace amounts of iron-barium arsenate, an iron-calcium-silver-phosphorus mineral phase, monazite and zircon in alteration zones.

Table 1: Main Mineralized Zones Investigated by Drilling on the Coffee Project Area.

Zone	Host Rocks	Summary Description
Supremo	Augen gneiss	Narrow gold-bearing brittle structures with gold commonly hosted in matrix-supported breccia and dacite dikes. Gold associated with quartz-sericite-pyrite alteration.
Latte	Biotite-feldspar schist, Augen gneiss	Gold is hosted in zones of brecciation and strong fracturing as well as areas with pervasive sericite alteration and disseminated sulphides. Some high- grade zones associated with quartz vein breccias.
Double Double	Augen gneiss	Narrow gold-bearing brittle structures hosted in matrix- supported breccia including dacite porphyry fragment breccia. Anastamosing quartz vein networks and microbreccia associated with high-grade.
Kona	Granite	Broad zones of fracture-controlled and disseminated pyrite associated with dacite dikes. Gold hosted in quartz-sericite altered granite. Iron oxides after

		disseminated pyrite, pyrite veinlets stockworks and sooty-pyrite rich shear zones.
Americano,	Granite	Zones of fracture-controlled and disseminated pyrite. Americano West Gold hosted in quartz-sericite altered granite similar to
and Espresso Macchiato and Augen Gneiss	Kona. Stibnite noted at Americano West.	
Strong oxidation, silica flooding, abundant limonite and		
brecciation noted at Macchiato		

Figure 5: Location of the main Discoveries to date on the Coffee Property

Figure 6: Gold Mineralization Textures at Supremo
A. Mineralized crackle breccia. Borehole CFD001, from 19.6 to 20.0 metres with 14.35 gpt gold.
B. Pervasively altered, auriferous augen gneiss. Note the "pitted" appearance of feldspar augen. Borehole CFD029, from 178 to 179 metres with 11.0 gpt gold.
C. Mineralized, clay altered dacite dike. Borehole CFD018, from 76 to 77 metres with 6.1 gpt gold.
D. Backscatter Image of pyrite grain in Supremo breccia showing the extremely fine-grained nature of gold (denoted by arrows) and its association with pyrite. Note linear trains of gold grains suggest gold was likely precipitated with pyrite and captured within the pyrite structure in addition to later precipitation along oxidized rims. Borehole CFD001, from 24 to 25 metres with 31.9 gpt gold.

Latte

Drilling across an east-west trend of gold-in-soil anomalies at Latte has intersected gold mineralization beginning at surface. This linear trend defines the Latte Shear zone. The zone consists of multiple strands within a moderately to steeply south-dipping east-west mineralized corridor that strikes obliquely across the host rock sequences for at least 1,550 metres. From west to east at Latte, gold is hosted in the biotite-feldspar-quartz (\pm muscovite, \pm amphibole) schist, the mafic metavolcanic sequence and augen gneiss host rocks.

In the central part of the corridor, wide low to moderate grade intervals are characterized by preservation of schist textures and introduction of sericite, fine-grained "sooty" disseminated pyrite and rare arsenopyrite, in addition to illite detected by PIMA (Figure 7a).

Certain high grade intervals in the Latte West area contain quartz vein breccias in addition to disseminated total sulphide exceeding 10 percent. The quartz vein fragments are angular, opaque white to blue-grey translucent and display complex internal structures such as plumose and mosaic textures (Figgure 7b). Realgar and orpiment have been noted in certain high-grade gold zones in the Latte West area, associated with high-sulphide areas as well as in vugs within quartz veins. Highgrade intervals in Latte East are relatively narrow, steeply-dipping and characterized by fault fabrics and high fine-grained sulphide content that locally exceeds 20 percent (Figure 7c).

Backscatter electron microscope images show that gold grains are micron-scale and associated with (typically oxidized) pyrite (Figure 7d). Microscopic petrography indicates that Latte gold zones are also associated with secondary hydrothermal phases consisting of barite, monazite, apatite, zircon and rare arsenopyrite.

Figure 7: Alteration and Mineralization Textures from Latte
A. Sericite-altered, oxidized biotite-feldspar schist. Borehole CFD010, from 132 to 133 metres with 12.6 gpt gold.
B. Cockade textured quartz vein cutting sulphide-rich biotite-feldspar schist. Borehole CFD082, from 110 to 111 metres with 15.65 gpt gold.
C. Biotite feldspar schist with disseminated sulphide; cut by grey sulphide veins. Borehole CFD115A, from 149 to 150 metres with 20 gpt gold.
D. Backscatter electron microscope image showing fine grained gold (yellow arrows) within and around oxidized pyrite at Latte. Note the "rhythmic" distribution of gold in bands within the oxidized pyrite structure. Borehole CFD009, from 43 to 44 metres with 3.18 gpt gold.

Double Double

The Double Double zone trends east-northeast, dips steeply to the north and corresponds to a number of discrete high-grade strands up to several metres wide. Host rocks are augen-bearing gneissic rocks with interleaved biotite-feldspar-quartz (\pm muscovite \pm amphibole) schist. The gold mineralization at Double Double appears to be structurally controlled and associated with a north easterly trending splay off the main Latte Structure.

Gold-rich intervals at Double Double are characterized by relict schistose to mylonitic textures overprinted by mottled silica and sericite alteration in addition to limonite-filled microfracture networks and oxidized pyrite cubes. Breccia domains locally exceed 50 percent by volume within gold zones, characterized by silicified fragments as well as strongly altered wallrock and porphyry dike clasts (Figure 8a). Some of these fragments exhibit rounding and imbrication in addition to textures consistent with re-fragmentation of earlier breccia events (i.e. polyphase breccia). Networks of anastamosing chalcedonic silica veins with local microbreccia domains within the veins have been noted in the high-grade intervals (Figure 8b). Similar to the Supremo zone, gold is micron-scale (Figure 8c), and illite has been detected by PIMA spectroscopy within the mineralized intervals. Other alteration minerals observed at Double Double include sericite, epidote, leucoxene, hematite and carbonate.

Kona

Drilling in the Kona area was designed to investigate gold-in-soil anomalies and encountered a different style of mineralization hosted in granitic rocks. The gold mineralization is hosted in nearvertical brittle structural zones directly underlying gold-in-soil anomalies.

The Kona zone is hosted in equigranular granite and consists of east-northeast trending, steeply south-dipping stacked structures. The gold structures are associated with narrow, less than five metres, andesite to dacite dikes characterized by sparse feldspar phenocrystic to aphanitic textures. Alteration typically consists of sericite, clay and limonite, with illite being detected during reconnaissance PIMA work at Kona. Sulphide is dominated by sooty pyrite which typically replaces ferromagnesian minerals (Figure 9a) and also occurs as veins/veinlets or fracture fill, and in sulphide-matrix fault breccias (Figure 9b). Minor realgar and orpiment have both been observed in reverse circulation cuttings from Kona during the 2011 drill program.

Figure 8: Gold Mineralization Textures at Double Double
A. Cement supported, silicified-clast breccia. Borehole CFD028, from 215 to 216 metres with 28.6 gpt gold.
B. Silica vein network cutting intensely silicified host rocks. Borehole CFD090, from 105 to 106 metres with 120.25 gpt gold.
C. Micron-scale gold (circled in red) associated with fractures within pyrite and pyrite grain rims. Borehole CFD027, from 156 to 157 metres with 14.75 gpt gold.

Figure 9: Gold Mineralization Textures at Kona
A. Quartz-sericite altered granite; mineralization controlled by sulphide (steel grey mineral) replacement of amphibole and biotite. Borehole CFD053, from 172 to 173 metres with 9.54 gpt gold.
B. Sulphide-matrix fault breccia cutting granite. Borehole CFD053, from 156 to 157 metres with 0.94 gpt gold.

Americano, Americano West and Espresso

The Americano area is underlain by granite and comprises two parallel northeast trending linear gold-in-soil trends totalling over 4 kilometres in length. These two trends become linked to the east by a north by northeast trending gold-in-soil anomaly informally known as the Americano "link" structure.

Widely-spaced boreholes were drilled at Americano in 2010-2011 in order to test for the presence of steeplydipping gold-bearing brittle structures analogous to the nearby Kona gold zone. The Espresso zone is located between Kona and Americano, associated with a large gold-in-soil anomaly. This area was tested with limited drilling in 2010.

Gold zones drilled at Americano and Espresso are hosted in sulphidic and clay altered brittle fault zones cross-cutting granite, similar to the Kona zone.

Limited scout drill testing beneath gold-in-soil anomalies at Americano West in 2011, four kilometers southwest of the Americano "link" structure, yielded several narrow gold intervals. The Americano West area is underlain by equigranular granite and the gold-bearing intervals are characterized by silica-sericiteclay alteration and fine-grained pyrite replacing mafic minerals. Minor pyrite stringers, sulphide-matrix fault breccias in addition to clots/dissemination and veins of stibnite were also noted at Americano West.

Macchiato and Cappuccino

The Macchiato and Cappuccino zones located north and northeast of the Supremo zone, respectively, are underlain by the augen gneiss host rock sequence with significant gold intervals intersected at Macchiato and minor gold encountered at Cappuccino during preliminary diamond drilling in 2011. Significant gold intervals at Macchiato are characterized by strong oxidation and silica flooding associated with pervasive limonite and hematite. Crackle breccias with silicalimonite or clay cement were observed in addition to silica-limonite vein and veinlet networks cutting strongly altered host wallrock. The steeply-dipping gold zone appears to trend northeast and the mineralization style encountered at Macchiato is very similar to that observed in the Supremo zone.

Current Work

Work on the Coffee property in 2012 consisted of diamond drilling, reverse circulation drilling, soil sampling, trenching and mapping and prospecting. A description of each of these activities is presented below.

Drilling

During 2012, 348 boreholes ($69,103.59$ metres) were drilled: 125 core boreholes ($29,648.25$ metres) and 223 reverse circulation boreholes ($39,455.34$ metres) at Supremo, Double Double, and Sugar.

Core Drilling

Core drilling took place between April and September, 2012 and was contracted to Cyr Drilling International Ltd. of Winnipeg, Manitoba. Drilling was completed using coring equipment capable of recovering NQ, NQ2, and HQ core diameters (Table 2).

Drill rigs were skidded by excavator or bulldozer between drilling sites, or moved using a helicopter for the Sugar area drilling and part of the initial Double Double drilling program.

The purpose of the 2012 core drilling program was to expand upon results from the 2010 and 2011 drilling programs, focusing on the Supremo and Double Double zones. In addition, a limited program designed to test the Sugar soil anomalies identified in 2011 was completed. Borehole locations were planned and marked by Kaminak geologists using a handheld GPS. A compass was used to determine borehole azimuth and inclination. Boreholes were drilled at an angle of between 70 and 45 degrees from the horizontal, depending upon the target. Downhole surveys were completed for all boreholes using a Reflex EZ-Shot ${ }^{8}$ electronic single shot (magnetic) device. Downhole deviation of boreholes was measured using these tools at nominal 30 -metre intervals. Collar locations were surveyed following completion by Challenger Geomatics Ltd. of Whitehorse, YT with a Real Time Kinematic (RTK) GPS using five established control points.

Table 2: Core Diameter Drilled in 2012

Core Size	Core Diameter (millimetres)	Number of Holes	Total Length (metres)
HQ	63.5	5	$1,378.00$
NQ	47.6	64	$13,401.84$
NQ2	50.6	56	$14,868.41$

Core retrieved from boreholes was moved from the drilling sites to the base camp at Coffee Creek by either truck or helicopter. At the camp, core was examined for consistency, re-assembled, and marked for orientation. RQD was measured by a trained technician. Core pieces were then selected on the metre marks every metre in mineralization and every two metres in non-mineralized rock for XRF analyses on portable devices from Innov-X. Core was then described and photographed by a geologist and marked for sampling. Finally, SG measurements were recorded for each major lithology and for each potentially mineralized interval. All descriptive information was captured digitally on-site using a Microsoft Access database.

The physical characteristics of the boreholes are presented in Table 3 and the salient assay results are summarized inTable 3. The distribution of the core boreholes completed in 2012 is shown in Figure 10 through Figure 13.

Table 3: Characteristics of the Core Boreholes Drilled in 2012

Borehole ID	Easting* (metre)	$\begin{array}{r} \hline \text { Northing }{ }^{\star} \\ \text { (metre) } \end{array}$	Elevation (metre)	Length (metre)	Azimuth (degree)	Dip (degree)	Prospect
CFD0178	584,151	6,974,202	1,258	173.0	274.0	-50	Supremo T3
CFD0179	584,151	6,974,150	1,243	146.0	270.0	-50	Supremo T3
CFD0180	584,175	6,974,200	1,259	146.0	270.0	-50	Supremo T3
CFD0181	584,201	6,974,198	1,257	161.0	270.0	-50	Supremo T3
CFD0182	584,173	6,974,152	1,243	155.0	265.0	-50	Supremo T3
CFD0183	584,225	6,974,200	1,258	194.0	270.0	-50	Supremo T3
CFD0184	584,201	6,974,152	1,244	170.0	270.0	-50	Supremo T3
CFD0185	584,223	6,974,153	1,244	223.1	266.0	-50	Supremo T3
CFD0186	584,125	6,974,100	1,230	128.0	270.0	-50	Supremo T3

Borehole ID	$\begin{array}{r} \hline \text { Easting }{ }^{*} \\ \text { (metre) } \\ \hline \end{array}$	Northing* (metre)	Elevation (metre)	Length (metre)	Azimuth (degree)	Dip (degree)	Prospect
CFD0187	584,123	6,974,047	1,215	119.0	270.0	-50	Supremo T3
CFD0188	584,148	6,974,099	1,228	134.0	270.0	-50	Supremo T3
CFD0189	584,175	6,974,101	1,228	152.0	270.0	-50	Supremo T3
CFD0190	584,147	6,974,052	1,214	185.0	275.0	-50	Supremo T3
CFD0191	584,200	6,974,100	1,230	200.0	276.0	-50	Supremo T3
CFD0192	584,174	6,974,054	1,215	188.0	271.0	-50	Supremo T3
CFD0193	584,101	6,974,003	1,202	155.0	263.0	-50	Supremo T3
CFD0194	584,126	6,974,001	1,201	143.0	270.0	-50	Supremo T3
CFD0195	584,202	6,974,052	1,215	212.0	273.0	-50	Supremo T3
CFD0196	584,150	6,974,002	1,201	188.0	275.0	-50	Supremo T3
CFD0197	584,103	6,973,951	1,186	119.0	275.0	-53	Double Double
CFD0198	585,327	6,973,377	1,088	254.0	180.0	-45	Supremo T3
CFD0199	584,175	6,974,000	1,201	209.0	268.0	-50	Supremo T3
CFD0200	584,132	6,973,953	1,186	191.0	275.0	-50	Supremo T3
CFD0201	584,076	6,973,849	1,152	201.8	275.0	-50	Double Double
CFD0202	585,327	6,973,378	1,088	335.0	182.0	-61	Supremo T3
CFD0203	584,161	6,973,951	1,185	202.0	276.0	-51	Supremo T3
CFD0204	584,111	6,973,849	1,152	182.0	270.0	-50	Double Double
CFD0205	585,028	6,973,276	1,098	290.0	177.5	-45	Supremo T3
CFD0206	584,138	6,973,847	1,153	191.0	274.0	-50	Supremo T3
CFD0207	584,190	6,973,951	1,187	221.0	272.0	-50.5	Supremo T3
CFD0208	584,167	6,973,848	1,153	230.0	272.0	-50	Double Double
CFD0209	585,028	6,973,277	1,098	308.0	180.0	-61	Supremo T3
CFD0210	584,051	6,973,751	1,120	122.0	270.0	-50	Supremo T3
CFD0211	584,081	6,973,752	1,121	151.4	271.0	-49	Supremo T3
CFD0212	584,023	6,973,649	1,088	107.0	273.5	-50	Supremo T3
CFD0213	584,057	6,973,650	1,089	149.0	275.0	-50	Supremo T3
CFD0214	584,107	6,973,750	1,123	227.0	272.0	-50	Double Double
CFD0215	584,977	6,973,276	1,094	245.0	180.0	-45	Supremo T3
CFD0216	584,080	6,973,650	1,090	191.0	274.5	-50	Supremo T3
CFD0217	584,112	6,973,649	1,091	242.0	275.0	-50	Supremo T3
CFD0218	584,138	6,973,751	1,124	250.7	272.0	-50	Double Double
CFD0219	584,977	6,973,276	1,094	275.0	176.0	-61.5	Supremo T3
CFD0220	584,030	6,973,551	1,049	272.0	272.0	-51	Supremo T3
CFD0221	584,277	6,974,201	1,257	273.0	270.0	-51	Double Double
CFD0222	584,929	6,973,253	1,084	230.0	180.0	-45	Supremo T3
CFD0223	584,063	6,973,552	1,055	329.0	271.0	-49	Supremo T3
CFD0224	584,153	6,974,250	1,272	92.0	270.0	-50	Double Double
CFD0225	584,929	6,973,254	1,084	182.0	180.0	-61	Supremo T3
CFD0226	584,092	6,973,554	1,059	233.0	275.0	-52	Supremo T3
CFD0227	584,188	6,974,252	1,270	124.0	276.0	-51	Supremo T3
CFD0228	584,232	6,974,249	1,270	221.0	274.0	-50	Supremo T3
CFD0229	584,122	6,973,553	1,063	223.4	273.0	-49	Double Double
CFD0230	585,371	6,973,427	1,087	328.0	174.0	-45	Supremo T3
CFD0231	584,266	6,974,251	1,270	267.0	273.0	-51	Supremo T3
CFD0232	584,332	6,974,501	1,262	251.0	270.0	-53.5	Double Double
CFD0233	585,371	6,973,429	1,086	245.0	176.0	-61.5	Supremo T3
CFD0234	584,301	6,974,250	1,268	308.0	270.0	-50	Supremo T3
CFD0235	584,328	6,974,555	1,259	248.0	270.0	-55	Double Double
CFD0236	584,826	6,973,249	1,068	245.0	187.0	-45	Double Double
CFD0237	584,877	6,973,252	1,077	245.0	180.0	-45	Supremo T3
CFD0238	584,301	6,974,248	1,268	260.0	271.0	-51	Supremo T3
CFD0239	584,260	6,974,274	1,272	212.0	275.0	-50	Double Double
CFD0240	584,826	6,973,249	1,068	305.0	180.0	-60	Double Double
CFD0241	584,877	6,973,253	1,077	311.0	180.0	-60	Supremo T3
CFD0242	584,291	6,974,275	1,271	253.8	269.0	-50	Double Double
CFD0243	585,429	6,973,428	1,078	254.0	177.0	-45	Supremo T3
CFD0244	584,277	6,974,151	1,244	260.0	272.0	-50	Double Double
CFD0245	585,026	6,973,302	1,102	281.0	186.0	-62	Double Double
CFD0246	585,429	6,973,429	1,079	194.6	181.0	-62	Supremo T3
CFD0247	584,242	6,974,101	1,227	239.0	270.0	-50	Supremo T3

Borehole ID	Easting* (metre)	Northing* (metre)	Elevation (metre)	Length (metre)	Azimuth (degree)	$\begin{array}{r} \text { Dip } \\ \text { (degree) } \\ \hline \end{array}$	Prospect
CFD0248	584,248	6,974,051	1,215	308.0	271.0	-49	Double Double
CFD0249	585,027	6,973,328	1,107	317.0	178.0	-62	SupremoT3
CFD0250	584,227	6,974,001	1,202	278.0	270.0	-50	Double Double
CFD0251	585,030	6,973,328	1,107	239.0	182.0	-62	Supremo T3
CFD0252	584,250	6,973,951	1,188	320.0	277.0	-50	Supremo T3
CFD0253	584,316	6,974,450	1,265	221.0	277.0	-53	Double Double
CFD0254	585,075	6,973,301	1,103	236.0	188.0	-71	Supremo T3
CFD0255	584,311	6,974,501	1,263	212.0	275.0	-55	Double Double
CFD0256	585,075	6,973,326	1,108	299.5	178.0	-70	Supremo T3
CFD0257	584,347	6,974,450	1,263	266.0	268.0	-55	Supremo T3
CFD0258	584,359	6,974,500	1,260	260.0	270.0	-55	Double Double
CFD0259	585,126	6,973,325	1,106	299.4	180.0	-70	Supremo T4
CFD0260	584,353	6,974,549	1,258	281.0	266.0	-62	Double Double
CFD0261	585,125	6,973,350	1,110	404.8	180.0	-70	Supremo T3
CFD0262	584,330	6,974,600	1,256	251.0	265.0	-55	Supremo T3
CFD0263	584,255	6,974,404	1,274	155.0	268.0	-60	Supremo T3
CFD0264	584,305	6,974,400	1,268	263.0	272.0	-60	Double Double
CFD0265	585,225	6,973,355	1,099	287.0	182.0	-71	Supremo T4-5
CFD0266	584,487	6,974,402	1,252	146.0	277.0	-45	Supremo T4-5
CFD0267	584,536	6,974,401	1,247	201.0	270.0	-45	Double Double
CFD0268	585,227	6,973,378	1,105	335.0	175.0	-72	Supremo T4-5
CFD0269	584,536	6,974,397	1,247	221.0	270.0	-45	Supremo T4-5
CFD0270	584,587	6,974,400	1,243	287.0	280.0	-45	Double Double
CFD0271	585,279	6,973,374	1,097	251.0	182.0	-70	Supremo T4-5
CFD0272	584,637	6,974,400	1,239	359.0	275.0	-43	Double Double
CFD0273	585,278	6,973,399	1,103	458.0	184.0	-70	Supremo T4-5
CFD0274	584,631	6,974,352	1,242	207.9	272.0	-50	Double Double
CFD0275	585,326	6,973,403	1,096	197.0	179.0	-62	Supremo T4-5
CFD0276	584,630	6,974,345	1,242	317.0	270.0	-50	Double Double
CFD0277	585,177	6,973,401	1,116	401.0	180.0	-70	Supremo T4-5
CFD0278	584,605	6,974,250	1,245	238.0	273.0	-50	Double Double
CFD0279	584,929	6,973,286	1,091	203.0	185.0	-62	Supremo T4-5
CFD0280	584,635	6,974,199	1,242	299.0	278.0	-50	Supremo T5
CFD0281	584,786	6,973,651	1,153	95.0	271.0	-50	Supremo T5
CFD0282	584,786	6,973,649	1,153	198.0	272.0	-50	Supremo T4-5
CFD0283	584,685	6,974,099	1,235	299.0	275.0	-50	Supremo T5
CFD0284	584,872	6,973,557	1,139	272.0	273.0	-45	Supremo T4-5
CFD0285	584,711	6,974,050	1,231	272.0	272.0	-50	Supremo T5
CFD0286	584,813	6,973,555	1,133	197.0	268.0	-45	Supremo T5
CFD0287	584,753	6,973,552	1,127	104.0	273.0	-45	Supremo T4
CFD0288	584,182	6,973,299	997	39.5	280.0	-44	Supremo T4
CFD0289	584,182	6,973,300	996	323.0	272.0	-45	Supremo T4
CFD0290	584,272	6,973,299	1,005	366.4	274.0	-45	Supremo T3
SGD0001	603,450	6,964,750	1,019	365.0	0.0	-50	Sugar
SGD0002	603,450	6,964,750	1,019	227.0	0.0	-71	Sugar
SGD0003	603,450	6,964,750	1,019	272.0	180.0	-45	Sugar
SGD0004	603,550	6,964,888	956	272.0	180.0	-45	Sugar
SGD0005	602,350	6,964,850	1,135	348.0	177.0	-45	Sugar
SGD0006	602,850	6,965,150	1,024	257.0	178.0	-45	Sugar
SGD0007	602,750	6,964,950	1,038	326.0	178.0	-43	Sugar
SGD0008	603,090	6,965,965	827	329.0	181.0	-45	Sugar
SGD0009	602,565	6,966,025	870	272.0	181.0	-45	Sugar
SGD0010	604,000	6,965,820	672	257.0	180.0	-45	Sugar
SGD0011	600,450	6,964,750	1,282	311.0	45.0	-45	Sugar
SGD0012	600,350	6,964,875	1,266	275.0	45.0	-45	Sugar

* UTM Coordinates (Nad83 datum, Zone 7)

Table 4: Salient Assay Results from the 2012 Core Drilling Program

Borehole ID	From (metre)	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length (metre)	Gold (gpt)	Prospect	Borehole ID	From (metre)	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	Gold (gpt)	Prospect
CFD0178	38.0	40.0	2.0	1.10	Supremo	CFD0191	129.0	134.0	5.0	2.49	Supremo
CFD0178	69.0	74.0	5.0	1.74	Supremo	CFD0191	160.0	163.0	3.0	1.69	Supremo
CFD0178	137.0	139.0	2.0	2.49	Supremo	CFD0192	145.0	149.0	4.0	9.99	Supremo
CFD0179	30.0	44.0	14.0	1.64	Supremo	CFD0195	102.0	103.0	1.0	1.32	Supremo
CFD0179	80.0	90.0	10.0	1.49	Supremo	CFD0196	126.0	127.0	1.0	5.68	Supremo
CFD0180	72.0	74.0	2.0	8.16	Supremo	CFD0197	67.0	69.0	2.0	16.55	Supremo
CFD0180	84.0	89.0	5.0	1.60	Supremo	CFD0197	79.0	80.0	1.0	12.95	Supremo
CFD0180	104.0	111.0	7.0	4.47	Supremo	CFD0198	44.0	45.0	1.0	5.61	DD
CFD0181	62.0	64.0	2.0	1.51	Supremo	CFD0198	71.0	75.5	4.5	16.53	DD
CFD0181	103.0	126.0	23.0	1.34	Supremo	CFD0199	14.0	16.0	2.0	1.83	Supremo
CFD0182	58.0	64.0	6.0	1.35	Supremo	CFD0199	158.0	171.0	13.0	12.53	Supremo
CFD0182	109.0	112.0	3.0	0.89	Supremo	CFD0200	101.0	105.0	4.0	2.34	Supremo
CFD0182	131.0	133.0	2.0	1.14	Supremo	CFD0202	62.0	64.0	2.0	7.37	DD
CFD0183	68.0	70.0	2.0	3.98	Supremo	CFD0202	78.5	83.5	5.0	2.02	DD
CFD0183	144.0	152.0	8.0	1.54	Supremo	CFD0202	316.0	317.0	1.0	1.76	DD
CFD0183	164.0	170.0	6.0	19.14	Supremo	CFD0203	156.0	159.0	3.0	2.35	Supremo
CFD0183	173.0	175.0	2.0	1.74	Supremo	CFD0204	107.0	109.0	2.0	2.68	Supremo
CFD0184	85.0	87.0	2.0	1.39	Supremo	CFD0205	51.5	55.0	3.5	36.29	DD
CFD0184	97.0	105.0	8.0	1.08	Supremo	CFD0205	120.9	124.4	3.5	0.80	DD
CFD0184	141.0	143.0	2.0	4.65	Supremo	CFD0206	136.0	138.0	2.0	1.27	Supremo
CFD0184	160.0	162.0	2.0	2.21	Supremo	CFD0207	42.0	44.0	2.0	2.04	Supremo
CFD0185	169.0	187.0	18.0	1.81	Supremo	CFD0207	181.0	182.0	1.0	11.15	Supremo
CFD0185	207.0	208.0	1.0	4.57	Supremo	CFD0207	187.0	198.0	11.0	6.11	Supremo
CFD0186	70.0	75.0	5.0	6.68	Supremo	CFD0208	176.0	179.0	3.0	3.01	Supremo
CFD0188	77.0	78.0	1.0	4.42	Supremo	CFD0209	72.5	74.0	1.5	4.02	DD
CFD0188	82.0	83.0	1.0	1.42	Supremo	CFD0209	79.0	87.0	8.0	5.85	DD
CFD0188	88.0	89.0	1.0	2.56	Supremo	CFD0210	31.0	42.0	11.0	15.52	Supremo
CFD0188	95.0	112.0	17.0	1.40	Supremo	CFD0211	50.0	72.0	22.0	2.18	Supremo
CFD0189	95.0	96.0	1.0	3.00	Supremo	CFD0212	17.0	29.0	12.0	2.81	Supremo
CFD0189	102.0	134.0	32.0	2.56	Supremo	CFD0213	61.0	63.0	2.0	25.83	Supremo
CFD0190	106.0	116.0	10.0	1.00	Supremo	CFD0214	71.0	73.0	2.0	1.51	Supremo
CFD0191	97.0	99.0	2.0	5.47	Supremo	CFD0214	108.0	110.0	2.0	13.36	Supremo
CFD0215	64.0	68.5	4.5	34.95	DD	CFD0254	137.5	141.0	3.5	1.20	DD
CFD0215	71.0	72.5	1.5	39.35	DD	CFD0254	175.5	181.5	6.0	1.93	DD
CFD0215	112.5	114.0	1.5	1.25	DD	CFD0255	134.0	145.0	11.0	1.71	Supremo
CFD0216	81.0	82.0	1.0	4.02	Supremo	CFD0255	185.0	188.0	3.0	2.22	Supremo
CFD0216	91.0	97.0	6.0	7.50	Supremo	CFD0255	191.0	192.0	1.0	2.39	Supremo
CFD0217	28.0	30.0	2.0	1.83	Supremo	CFD0255	197.0	198.0	1.0	1.19	Supremo
CFD0217	135.0	138.0	3.0	7.53	Supremo	CFD0256	157.0	158.5	1.5	3.85	DD
CFD0218	124.0	125.0	1.0	2.99	Supremo	CFD0256	168.0	170.0	2.0	6.74	DD
CFD0218	150.0	153.0	3.0	8.96	Supremo	CFD0256	174.0	175.0	1.0	4.97	DD
CFD0219	85.3	90.5	5.2	6.93	DD	CFD0256	178.0	180.0	2.0	40.64	DD
CFD0220	34.0	35.0	1.0	5.20	Supremo	CFD0257	233.0	234.0	1.0	2.53	Supremo
CFD0220	41.0	47.0	6.0	2.03	Supremo	CFD0258	200.0	203.0	3.0	2.53	Supremo
CFD0220	201.0	205.0	4.0	3.98	Supremo	CFD0258	211.0	228.0	17.0	2.08	Supremo
CFD0221	212.0	225.0	13.0	10.48	Supremo	CFD0259	140.0	145.5	5.5	1.41	DD
CFD0222	30.5	33.0	2.5	4.78	DD	CFD0259	193.0	194.0	1.0	2.10	DD
CFD0222	49.5	50.5	1.0	2.21	DD	CFD0259	250.0	257.0	7.0	0.92	DD
CFD0222	54.0	58.0	4.0	4.67	DD	CFD0260	225.0	230.0	5.0	1.15	Supremo
CFD0223	41.0	42.0	1.0	9.72	Supremo	CFD0261	14.5	15.5	1.0	3.80	DD
CFD0223	77.0	78.0	1.0	2.56	Supremo	CFD0261	168.0	171.5	3.5	8.74	DD
CFD0223	86.0	89.0	3.0	29.23	Supremo	CFD0261	179.5	184.0	4.5	4.18	DD
CFD0223	267.0	269.0	2.0	1.10	Supremo	CFD0261	188.5	192.5	4.0	1.78	DD
CFD0223	280.0	283.0	3.0	0.96	Supremo	CFD0261	204.5	217.0	12.5	1.14	DD
CFD0224	29.0	32.0	3.0	3.44	Supremo	CFD0261	233.5	243.5	10.0	1.88	DD
CFD0224	53.0	54.0	1.0	3.21	Supremo	CFD0261	250.0	253.5	3.5	10.18	DD
CFD0225	43.5	54.0	10.5	5.08	DD	CFD0261	263.5	267.5	4.0	1.09	DD
CFD0226	134.0	137.0	3.0	27.80	Supremo	CFD0261	290.0	300.0	10.0	0.95	DD
CFD0227	73.0	75.0	2.0	2.92	Supremo	CFD0261	304.5	328.5	24.0	4.33	DD
CFD0228	129.0	135.0	6.0	36.55	Supremo	CFD0261	349.5	353.0	3.5	4.27	DD

Borehole ID	$\begin{array}{r} \text { From } \\ \text { (metre) } \end{array}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length (metre)	Gold (gpt)	Prospect	Borehole ID	$\begin{array}{r} \text { From } \\ \text { (metre) } \end{array}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	$\begin{aligned} & \hline \text { Gold } \\ & \text { (gpt) } \end{aligned}$	Prospect
CFD0229	172.0	176.0	4.0	1.28	Supremo	CFD0262	133.0	136.0	3.0	1.11	Supremo
CFD0231	181.0	191.0	10.0	8.08	Supremo	CFD0262	157.0	160.0	3.0	2.07	Supremo
CFD0232	171.0	180.0	9.0	1.14	Supremo	CFD0263	125.0	127.0	2.0	2.06	Supremo
CFD0232	200.0	211.0	11.0	1.32	Supremo	CFD0264	197.0	212.0	15.0	2.30	Supremo
CFD0234	141.0	143.0	2.0	0.98	Supremo	CFD0265	137.0	139.0	2.0	3.52	DD
CFD0234	226.0	240.0	14.0	8.26	Supremo	CFD0265	150.5	152.0	1.5	2.23	DD
CFD0235	145.0	172.0	27.0	2.37	Supremo	CFD0265	169.0	170.0	1.0	2.95	DD
CFD0236	32.0	33.5	1.5	5.29	DD	CFD0265	176.5	178.0	1.5	3.36	DD
CFD0237	31.0	33.0	2.0	1.00	DD	CFD0265	184.0	185.0	1.0	3.46	DD
CFD0238	148.0	150.0	2.0	16.69	Supremo	CFD0265	265.0	267.0	2.0	1.17	DD
CFD0238	167.0	176.0	9.0	1.23	Supremo	CFD0266	27.0	33.0	6.0	1.31	Supremo
CFD0238	228.0	234.0	6.0	5.36	Supremo	CFD0266	59.0	62.0	3.0	2.93	Supremo
CFD0239	166.0	168.0	2.0	21.45	Supremo	CFD0267	126.0	137.0	11.0	3.16	Supremo
CFD0240	52.0	54.0	2.0	2.38	DD	CFD0267	142.0	149.0	7.0	1.03	Supremo
CFD0242	217.0	220.0	3.0	6.94	Supremo	CFD0267	155.0	160.0	5.0	4.04	Supremo
CFD0243	96.5	102.0	5.5	3.92	DD	CFD0268	105.5	106.5	1.0	1.79	DD
CFD0244	143.0	144.0	1.0	1.61	Supremo	CFD0268	143.5	147.0	3.5	1.79	DD
CFD0245	149.5	158.0	8.5	2.97	DD	CFD0268	178.5	181.5	3.0	5.09	DD
CFD0247	165.0	166.0	1.0	7.58	Supremo	CFD0269	126.0	138.0	12.0	2.04	Supremo
CFD0247	207.0	212.0	5.0	7.76	Supremo	CFD0269	149.0	154.0	5.0	2.72	Supremo
CFD0248	227.0	229.0	2.0	13.26	Supremo	CFD0270	165.0	166.0	1.0	2.74	Supremo
CFD0248	232.0	233.0	1.0	1.33	Supremo	CFD0270	196.0	214.0	18.0	1.13	Supremo
CFD0248	277.0	281.0	4.0	3.98	Supremo	CFD0270	219.0	228.0	9.0	10.21	Supremo
CFD0248	286.0	288.0	2.0	3.72	Supremo	CFD0270	240.0	241.0	1.0	2.84	Supremo
CFD0249	187.0	189.0	2.0	2.98	DD	CFD0270	250.0	252.0	2.0	6.71	Supremo
CFD0250	112.0	116.0	4.0	3.31	Supremo	CFD0271	79.0	81.5	2.5	3.69	DD
CFD0250	224.0	225.0	1.0	13.35	Supremo	CFD0271	109.0	110.0	1.0	2.71	DD
CFD0251	174.0	174.5	0.5	1.99	DD	CFD0271	189.0	191.0	2.0	6.58	DD
CFD0252	130.0	131.0	1.0	1.26	Supremo	CFD0272	59.0	63.0	4.0	1.36	Supremo
CFD0252	261.0	266.0	5.0	7.76	Supremo	CFD0272	73.0	83.0	10.0	1.36	Supremo
CFD0253	160.0	179.0	19.0	1.14	Supremo	CFD0272	248.0	252.0	4.0	1.71	Supremo
CFD0254	125.5	127.0	1.5	11.68	DD	CFD0272	280.0	290.0	10.0	4.58	Supremo
CFD0254	130.0	131.5	1.5	1.70	DD	CFD0272	351.0	353.0	2.0	1.27	Supremo
CFD0273	53.0	55.5	2.5	5.08	DD	CFD0286	142.0	144.0	2.0	2.06	Supremo
CFD0273	294.5	296.0	1.5	21.41	DD	CFD0287	69.0	75.0	6.0	1.10	Supremo
CFD0273	311.0	313.0	2.0	2.09	DD	CFD0289	194.0	197.0	3.0	0.94	Supremo
CFD0273	327.0	334.0	7.0	2.02	DD	CFD0289	232.0	234.0	2.0	1.20	Supremo
CFD0273	395.5	420.0	24.5	1.65	DD	CFD0289	284.0	285.0	1.0	1.57	Supremo
CFD0274	6.0	8.0	2.0	1.43	Supremo	CFD0289	290.0	291.0	1.0	3.71	Supremo
CFD0274	131.0	135.0	4.0	2.47	Supremo	CFD0290	257.0	272.0	15.0	1.90	Supremo
CFD0276	141.0	143.0	2.0	2.78	Supremo	SGD0001	30.0	38.0	8.0	2.29	Sugar
CFD0276	229.0	232.0	3.0	1.04	Supremo	SGD0001	151.0	154.0	3.0	0.98	Sugar
CFD0276	248.0	265.0	17.0	1.65	Supremo	SGD0001	323.0	326.0	3.0	1.15	Sugar
CFD0276	273.0	277.0	4.0	1.01	Supremo	SGD0001	336.0	339.0	3.0	0.94	Sugar
CFD0276	294.0	298.0	4.0	1.10	Supremo	SGD0002	173.0	175.0	2.0	0.98	Sugar
CFD0276	311.0	314.0	3.0	3.73	Supremo	SGD0002	179.8	199.0	19.2	1.34	Sugar
CFD0277	299.5	300.5	1.0	1.77	DD	SGD0002	206.7	216.0	9.3	1.26	Sugar
CFD0277	318.0	319.0	1.0	0.97	DD	SGD0003	60.0	62.2	2.2	0.79	Sugar
CFD0278	165.0	185.0	20.0	3.01	Supremo	SGD0003	73.0	74.0	1.0	2.39	Sugar
CFD0279	110.0	111.0	1.0	1.22	DD	SGD0004	94.4	94.7	0.3	11.90	Sugar
CFD0280	52.0	53.0	1.0	4.51	Supremo	SGD0004	120.0	123.0	3.0	1.17	Sugar
CFD0280	180.0	181.0	1.0	4.74	Supremo	SGD0004	184.5	187.5	3.0	1.18	Sugar
CFD0280	190.0	191.0	1.0	2.26	Supremo	SGD0004	202.0	203.0	1.0	2.51	Sugar
CFD0280	202.0	207.0	5.0	2.59	Supremo	SGD0005	105.0	111.0	6.0	0.54	Sugar
CFD0280	216.0	223.0	7.0	1.34	Supremo	SGD0005	186.0	187.6	1.6	1.77	Sugar
CFD0282	80.0	81.0	1.0	1.76	Supremo	SGD0005	304.0	306.0	2.0	1.26	Sugar
CFD0282	155.0	158.0	3.0	0.76	Supremo	SGD0006	236.0	237.0	1.0	1.46	Sugar
CFD0283	37.0	39.0	2.0	2.71	Supremo	SGD0007	105.0	107.0	2.0	0.73	Sugar
CFD0283	221.0	235.0	14.0	1.37	Supremo	SGD0007	117.0	124.0	7.0	0.74	Sugar
CFD0283	240.0	246.0	6.0	5.08	Supremo	SGD0008	137.0	138.0	1.0	2.29	Sugar
CFD0283	256.0	259.0	3.0	2.06	Supremo	SGD0008	147.0	149.0	2.0	0.71	Sugar

Borehole ID	From (metre)	To (metre)	Length (metre)	Gold Prospect (gpt)	Borehole ID	From (metre)	To (metre)	Length* (metre)	Gold (gpt)
CFD0284	128.0	130.0	2.0	2.61	Supremo	SGD0008	178.0	179.0	1.0
SFDect									

* There is insufficient information to determine if the reported core length intervals represent true widths

Reverse Circulation Drilling

Reverse circulation drilling took place between March and October 2012 and was contracted out to Northspan Explorations Ltd. of Kelowna, British Columbia. Two drill rigs, one skid-mounted and one track-mounted rig, were skidded between drilling sites by excavator or bulldozer. Both drills rigs produced a 92 millimetre diameter borehole.

The purpose of the 2012 reverse circulation drilling program was to expand upon drilling from 2010 and 2011 completed in the Supremo area. Borehole locations were planned and marked by Kaminak geologists using a handheld GPS. A compass was used to determine borehole azimuth and inclination. Most boreholes were drilled at an angle of between 45 and 50 degrees from the horizontal. Borehole deviation was monitored using gyroscopic readings at nominal 20-metre spacing. With the exception of 31 unsurveyed boreholes, downhole surveys were completed for all boreholes using the Icefield Tools Gyro Shot device.

Reverse circulation chips were logged on-site by Kaminak geologists, prior to being transported back to the Coffee Creek camp by truck. At the camp, the sample bags were analyzed by XRF prior to being shipped to the primary analytical laboratory for preparation.

The characteristics of the reverse circulation boreholes are presented in Table 5 and the salient assay results are summarized in Table 6. The distribution of the reverse circulation boreholes completed in 2012 is shown in Figure 10 through Figure 12.

Table 5: Characteristics of the Reverse Circulation Boreholes Drilled in 2012

Borehole ID	$\begin{gathered} \text { Easting }^{*} \\ \text { (metre) } \\ \hline \end{gathered}$	Northing* (metre)	Elevation (metre)	Length (metre)	Azimuth (degree)	$\begin{array}{r} \text { Dip } \\ \text { (degree) } \end{array}$	Prospect
CFR0135	584,495	6,974,346	1,252	121.9	270	-50	Supremo T4-5
CFR0136	584,495	6,974,346	1,252	151.8	270	-70	Supremo T4-5
CFR0137	584,402	6,974,349	1,259	199.0	270	-55	Supremo T4-5
CFR0138	584,448	6,974,353	1,256	206.4	270	-53	Supremo T4-5
CFR0139	584,522	6,974,348	1,250	199.0	270	-65	Supremo T4-5
CFR0140	584,551	6,974,349	1,248	201.2	270	-68	Supremo T4-5
CFR0141	584,450	6,974,304	1,255	199.6	270	-57	Supremo T4-5
CFR0142	584,477	6,974,305	1,253	202.7	270	-54	Supremo T4-5
CFR0143	584,499	6,974,304	1,252	114.3	270	-55	Supremo T4-5
CFR0144	584,507	6,974,304	1,251	201.2	270	-57	Supremo T4-5
CFR0145	584,525	6,974,300	1,250	201.2	270	-58	Supremo T4-5
CFR0146	584,554	6,974,300	1,248	202.7	270	-52	Supremo T4-5
CFR0147	584,576	6,974,301	1,247	167.6	270	-53	Supremo T4-5
CFR0148	584,580	6,974,301	1,247	201.2	270	-53	Supremo T4-5
CFR0149	584,524	6,974,251	1,248	201.2	270	-49	Supremo T4-5

Borehole ID	$\begin{gathered} \hline \text { Easting* } \\ \text { (metre) } \end{gathered}$	Northing* (metre)	Elevation (metre)	Length (metre)	Azimuth (degree)	$\begin{array}{r} \text { Dip } \\ \text { (degree) } \\ \hline \end{array}$	Prospect
CFR0150	584,499	6,974,251	1,249	201.2	270	-50	Supremo T4-5
CFR0151	584,553	6,974,250	1,246	185.9	270	-49	Supremo T4-5
CFR0152	584,577	6,974,250	1,245	201.2	270	-50	Supremo T4-5
CFR0153	584,523	6,974,201	1,244	201.2	270	-43	Supremo T4-5
CFR0154	584,553	6,974,200	1,243	201.2	270	-45	Supremo T4-5
CFR0155	584,577	6,974,199	1,242	201.2	270	-44	Supremo T4-5
CFR0156	584,601	6,974,203	1,242	201.2	270	-45	Supremo T4-5
CFR0157	584,553	6,974,151	1,238	201.2	270	-46	Supremo T4-5
CFR0158	584,577	6,974,152	1,237	141.7	270	-44	Supremo T4-5
CFR0159	584,602	6,974,152	1,238	201.2	270	-48	Supremo T4-5
CFR0160	584,628	6,974,149	1,238	201.2	270	-44	Supremo T4-5
CFR0161	584,580	6,974,101	1,232	201.2	270	-42	Supremo T4-5
CFR0162	584,611	6,974,101	1,232	201.2	270	-43	Supremo T4-5
CFR0163	584,643	6,974,100	1,233	172.2	270	-45	Supremo T4-5
CFR0164	584,648	6,974,099	1,233	201.2	270	-43	Supremo T4-5
CFR0165	584,583	6,974,057	1,225	9.1	270	-50	Supremo T4-5
CFR0166	584,580	6,974,050	1,226	181.4	270	-49	Supremo T4-5
CFR0167	584,610	6,974,050	1,227	201.2	270	-44	Supremo T4-5
CFR0168	584,642	6,974,053	1,228	201.2	270	-46	Supremo T4-5
CFR0169	584,675	6,974,050	1,228	201.2	270	-44	Supremo T4-5
CFR0170	584,611	6,974,000	1,218	126.5	270	-43	Supremo T4-5
CFR0171	584,641	6,974,001	1,220	196.6	270	-45	Supremo T4-5
CFR0172	584,671	6,973,999	1,221	201.2	270	-46	Supremo T4-5
CFR0173	584,581	6,974,000	1,216	201.2	270	-46	Supremo T4-5
CFR0174	584,612	6,973,952	1,209	201.2	270	-45	Supremo T4-5
CFR0175	584,641	6,973,950	1,211	201.2	270	-45	Supremo T4-5
CFR0176	584,672	6,973,949	1,212	201.2	270	-46	Supremo T5
CFR0177	584,582	6,973,953	1,208	201.2	270	-45	Supremo T4-5
CFR0178	584,701	6,973,951	1,214	201.2	270	-43	Supremo T5
CFR0179	584,669	6,973,855	1,192	201.2	270	-43	Supremo T5
CFR0180	584,731	6,973,852	1,197	201.2	270	-45	Supremo T5
CFR0181	584,699	6,973,855	1,195	199.6	270	-44	Supremo T5
CFR0182	584,500	6,973,855	1,179	201.2	270	-43	Supremo T4
CFR0183	584,530	6,973,854	1,183	201.2	270	-43	Supremo T4
CFR0184	584,562	6,973,853	1,185	193.6	270	-46	Supremo T4
CFR0185	584,702	6,973,755	1,171	196.6	270	-46	Supremo T5
CFR0186	584,732	6,973,751	1,173	190.5	270	-43	Supremo T5
CFR0187	584,759	6,973,752	1,174	201.2	270	-43	Supremo T5
CFR0188	584,501	6,973,750	1,154	178.3	270	-44	Supremo T4
CFR0189	584,463	6,973,752	1,150	169.2	270	-43	Supremo T4
CFR0190	584,432	6,973,753	1,148	181.4	270	-47	Supremo T4
CFR0191	584,427	6,973,649	1,119	111.3	270	-45	Supremo T4
CFR0192	584,428	6,973,650	1,120	126.5	270	-46	Supremo T4
CFR0193	584,390	6,973,650	1,116	179.8	270	-44	Supremo T4
CFR0194	584,463	6,973,652	1,124	152.4	270	-44	Supremo T4
CFR0195	584,354	6,973,652	1,113	185.9	270	-43	Supremo T4
CFR0196	584,412	6,973,553	1,091	201.2	270	-43	Supremo T4
CFR0197	584,369	6,973,554	1,087	176.8	270	-45	Supremo T4
CFR0198	584,332	6,973,554	1,084	166.1	270	-45	Supremo T4
CFR0199	584,337	6,973,454	1,054	144.8	270	-47	Supremo T4
CFR0200	584,295	6,973,449	1,050	134.1	270	-45	Supremo T4
CFR0201	584,257	6,973,451	1,048	166.1	271.5	-45	Supremo T4
CFR0202	584,215	6,973,452	1,044	149.4	270	-45	Supremo T4
CFR0203	584,291	6,973,553	1,081	94.5	270	-46	Supremo T4
CFR0204	584,818	6,973,652	1,156	167.6	271	-45	Supremo T5
CFR0205	584,752	6,973,652	1,150	182.9	270	-42	Supremo T5
CFR0206	584,948	6,974,170	1,254	201.2	268	-63	Supremo T7
CFR0207	584,979	6,974,170	1,254	201.2	270	-64	Supremo T7
CFR0208	584,900	6,974,251	1,250	152.4	270	-45	Supremo T7
CFR0209	584,961	6,974,251	1,252	201.2	270	-44	Supremo T7
CFR0210	585,021	6,974,252	1,254	201.2	270	-43	Supremo T7

Borehole ID	Easting ${ }^{*}$ (metre)	Northing* (metre)	Elevation (metre)	Length (metre)	Azimuth (degree)	$\begin{array}{r} \text { Dip } \\ \text { (degree) } \end{array}$	Prospect
CFR0211	585,082	6,974,251	1,254	201.2	270	-44	Supremo T7
CFR0212	584,882	6,974,350	1,243	201.2	270	-44	Supremo T7
CFR0213	584,941	6,974,350	1,245	201.2	270	-43	Supremo T7
CFR0214	585,001	6,974,349	1,249	201.2	270	-42	Supremo T7
CFR0215	585,062	6,974,352	1,250	201.2	270	-42	Supremo T7
CFR0216	584,854	6,974,447	1,227	201.2	270	-46	Supremo T7
CFR0217	584,911	6,974,449	1,227	201.2	270	-45	Supremo T7
CFR0218	584,970	6,974,450	1,229	201.2	272	-43	Supremo T7
CFR0219	585,032	6,974,449	1,231	201.2	270	-45	Supremo T7
CFR0220	584,972	6,974,352	1,247	201.2	270	-43	Supremo T7
CFR0221	585,033	6,974,350	1,250	201.2	270	-45	Supremo T7
CFR0222	584,931	6,974,252	1,251	199.6	270	-48	Supremo T7
CFR0223	584,994	6,974,253	1,253	201.2	270	-43	Supremo T7
CFR0224	584,881	6,974,448	1,227	201.2	270	-45	Supremo T7
CFR0225	584,941	6,974,452	1,228	201.2	270	-42	Supremo T7
CFR0226	585,002	6,974,450	1,230	202.7	270	-45	Supremo T7
CFR0227	584,954	6,974,395	1,241	201.2	270	-46	Supremo T7
CFR0228	584,986	6,974,396	1,242	201.2	270	-43	Supremo T7
CFR0229	585,015	6,974,397	1,244	201.2	270	-44	Supremo T7
CFR0230	585,047	6,974,401	1,244	201.2	274	-45	Supremo T7
CFR0231	585,080	6,974,400	1,246	201.2	275	-45	Supremo T7
CFR0232	584,950	6,974,301	1,249	59.4	279	-45	Supremo T7
CFR0233	584,955	6,974,301	1,249	201.2	270	-45	Supremo T7
CFR0234	584,980	6,974,300	1,250	189.0	270	-42	Supremo T7
CFR0235	585,011	6,974,300	1,251	201.2	270	-47	Supremo T7
CFR0236	585,040	6,974,300	1,252	201.2	270	-42	Supremo T7
CFR0237	584,933	6,974,201	1,253	196.6	270	-45	Supremo T7
CFR0238	584,450	6,974,451	1,253	201.2	270	-42	Supremo T4
CFR0239	584,959	6,974,201	1,254	152.4	270	-44	Supremo T7
CFR0240	584,481	6,974,451	1,250	201.2	270	-46	Supremo T4-5
CFR0241	584,514	6,974,449	1,248	201.2	270	-46	Supremo T4-5
CFR0242	584,543	6,974,452	1,244	184.4	270	-45	Supremo T4-5
CFR0243	584,991	6,974,201	1,254	201.8	270	-45	Supremo T7
CFR0244	584,422	6,974,500	1,254	201.2	270	-45	Supremo T4
CFR0245	585,021	6,974,200	1,255	200.3	270	-45	Supremo T7
CFR0246	584,452	6,974,500	1,251	201.2	270	-44	Supremo T4-5
CFR0247	584,423	6,974,448	1,256	201.2	270	-43	Supremo T4
CFR0248	584,482	6,974,500	1,249	193.6	270	-44	Supremo T4-5
CFR0249	584,477	6,974,549	1,246	201.5	270	-61	Supremo T5
CFR0250	584,495	6,974,547	1,242	201.2	270	-57	Supremo T5
CFR0251	584,510	6,974,500	1,246	201.2	270	-43	Supremo T4-5
CFR0252	584,380	6,974,651	1,247	214.9	270	-50	Supremo T4
CFR0253	584,423	6,974,601	1,247	178.3	270	-49	Supremo T4
CFR0254	584,410	6,974,653	1,243	201.2	270	-49	Supremo T4-5
CFR0255	584,450	6,974,602	1,244	201.2	270	-48	Supremo T4
CFR0256	584,440	6,974,650	1,241	173.7	270	-48	Supremo T4
CFR0257	584,480	6,974,602	1,239	201.2	270	-48	Supremo T5
CFR0258	584,441	6,974,649	1,241	201.5	270	-50	Supremo T5
CFR0259	584,510	6,974,602	1,235	65.5	270	-50	Supremo T4
CFR0260	584,510	6,974,602	1,235	201.2	270	-50	Supremo T5
CFR0261	584,470	6,974,650	1,234	181.7	270	-50	Supremo T5
CFR0262	584,408	6,974,703	1,239	182.9	270	-45	Supremo T4
CFR0263	584,452	6,974,751	1,220	201.2	270	-60	Supremo T5
CFR0264	584,435	6,974,700	1,234	184.4	270	-50	Supremo T5
CFR0265	584,467	6,974,702	1,228	201.2	270	-50	Supremo T5
CFR0266	584,481	6,974,752	1,214	201.8	270	-44	Supremo T5
CFR0267	584,493	6,974,702	1,220	199.6	270	-50	Supremo T5
CFR0268	584,510	6,974,750	1,207	201.8	270	-44	Supremo T5
CFR0269	584,244	6,974,575	1,264	201.2	270	-44	Supremo T3
CFR0270	584,573	6,974,750	1,189	202.1	270	-43	Supremo T5
CFR0271	584,277	6,974,578	1,261	201.2	274	-44	Supremo T3

Borehole ID	$\begin{array}{r} \hline \text { Easting }{ }^{*} \\ \text { (metre) } \end{array}$	Northing* (metre)	Elevation (metre)	Length (metre)	Azimuth (degree)	$\begin{array}{r} \text { Dip } \\ \text { (degree) } \end{array}$	Prospect
CFR0272	584,632	6,974,750	1,172	201.8	270	-44	Supremo T5
CFR0273	584,260	6,974,601	1,261	41.2	270	-45	Supremo T3
CFR0274	584,260	6,974,601	1,261	185.9	268	-57	Supremo T3
CFR0275	584,688	6,974,753	1,153	136.3	270	-43	Supremo T5
CFR0276	584,302	6,974,750	1,244	201.2	268	-46	Supremo T3
CFR0277	584,425	6,974,811	1,214	168.3	270	-43	Supremo T3
CFR0278	584,332	6,974,750	1,242	112.8	270	-45	Supremo T3
CFR0279	584,332	6,974,750	1,242	199.6	270	-43	Supremo T3
CFR0280	584,425	6,974,811	1,214	189.6	270	-44	Supremo T3
CFR0281	584,364	6,974,754	1,238	112.8	270	-45	Supremo T3
CFR0282	584,364	6,974,754	1,238	140.2	270	-44	Supremo T3
CFR0283	584,457	6,974,810	1,207	201.8	270	-44	Supremo T5
CFR0284	584,392	6,974,751	1,234	134.1	270	-43	Supremo T3
CFR0285	584,517	6,974,809	1,195	201.8	270	-45	Supremo T5
CFR0286	584,392	6,974,751	1,234	201.2	270	-44	Supremo T3
CFR0287	584,576	6,974,808	1,179	201.8	270	-43	Supremo T5
CFR0288	584,422	6,974,750	1,227	201.2	270	-47	Supremo T5
CFR0289	584,352	6,974,854	1,219	128.6	270	-46	Supremo T3
CFR0290	584,332	6,974,810	1,232	118.9	270	-45	Supremo T3
CFR0291	584,390	6,974,903	1,199	47.2	270	-45	Supremo T3
CFR0292	584,390	6,974,951	1,190	199.6	270	-46	Supremo T3
CFR0293	584,379	6,974,852	1,214	89.0	270	-45	Supremo T3
CFR0294	584,420	6,974,951	1,187	196.6	270	-42	Supremo T3
CFR0295	584,380	6,974,852	1,214	174.4	270	-44	Supremo T3
CFR0296	584,453	6,974,950	1,183	184.4	270	-47	Supremo T3
CFR0297	584,410	6,974,852	1,207	183.5	270	-46	Supremo T3
CFR0298	584,482	6,974,953	1,179	181.4	270	-45	Supremo T3
CFR0299	584,441	6,974,850	1,201	195.7	270	-45	Supremo T3
CFR0300	584,402	6,975,000	1,181	201.2	270	-44	Supremo T3
CFR0301	584,433	6,975,001	1,177	201.2	270	-43	Supremo T3
CFR0302	584,460	6,975,000	1,174	182.9	272	-45	Supremo T3
CFR0303	584,442	6,975,099	1,165	201.2	270	-45	Supremo T3
CFR0304	584,471	6,975,101	1,161	201.2	271	-47	Supremo T3
CFR0305	584,368	6,974,902	1,202	183.8	270	-45	Supremo T3
CFR0306	584,501	6,975,099	1,156	176.8	270	-46	Supremo T3
CFR0307	584,827	6,973,449	1,110	144.8	275	-45	Supremo T5
CFR0308	584,519	6,975,201	1,138	202.1	270	-45	Supremo T3
CFR0309	584,865	6,973,454	1,116	146.3	270	-45	Supremo T5
CFR0310	584,546	6,975,203	1,133	186.8	270	-44	Supremo T3
CFR0311	584,801	6,973,450	1,107	103.6	270	-45	Supremo T5
CFR0312	584,769	6,973,449	1,102	140.2	270	-44	Supremo T5
CFR0313	584,485	6,975,201	1,143	202.1	270	-44	Supremo T3
CFR0314	584,923	6,973,452	1,123	143.3	270	-43	Supremo T5
CFR0315	584,982	6,973,452	1,127	163.1	270	-43	Supremo T5
CFR0316	584,893	6,973,452	1,118	117.4	270	-45	Supremo T5
CFR0317	584,895	6,973,452	1,118	86.9	270	-44	Supremo T5
CFR0318	584,894	6,973,351	1,100	106.7	265	-45	Supremo T5
CFR0319	584,919	6,973,349	1,102	141.7	270	-45	Supremo T5
CFR0320	584,951	6,973,351	1,105	131.1	270	-45	Supremo T5
CFR0321	584,859	6,973,352	1,094	125.0	260	-43	Supremo T5
CFR0322	584,831	6,973,351	1,090	121.9	270	-45	Supremo T5
CFR0323	584,801	6,973,353	1,085	106.7	270	-44	Supremo T5
CFR0324	584,742	6,973,352	1,074	112.8	270	-44	Supremo T5
CFR0325	584,681	6,973,354	1,065	85.3	270	-45	Supremo T5
CFR0326	584,942	6,974,103	1,253	201.2	270	-43	Supremo T7
CFR0327	584,973	6,974,103	1,253	201.2	270	-46	Supremo T7
CFR0328	585,002	6,974,103	1,252	201.2	270	-43	Supremo T7
CFR0329	585,034	6,974,103	1,250	189.0	270	-45	Supremo T7
CFR0330	584,542	6,974,501	1,240	201.2	270	-44	Supremo T5
CFR0331	584,532	6,974,553	1,237	201.2	270	-50	Supremo T5
CFR0332	584,486	6,974,809	1,204	173.7	270	-50	Supremo T5

Borehole ID	Easting* (metre)	Northing* (metre)	Elevation (metre)	Length (metre)	Azimuth (degree)	$\begin{array}{r} \text { Dip } \\ \text { (degree) } \end{array}$	Prospect
CFR0333	584,486	6,974,807	1,204	79.3	270	-50	Supremo T5
CFR0334	584,486	6,974,811	1,204	102.1	270	-50	Supremo T5
CFR0335	584,466	6,974,852	1,197	201.2	275	-42	Supremo T5
CFR0336	584,496	6,974,854	1,191	196.6	270	-45	Supremo T5
CFR0337	584,531	6,974,853	1,186	201.2	270	-43	Supremo T5
CFR0338	584,560	6,974,851	1,176	201.2	270	-43	Supremo T5
CFR0339	584,499	6,974,902	1,182	201.2	270	-45	Supremo T5
CFR0340	584,528	6,974,902	1,178	201.2	270	-43	Supremo T5
CFR0341	584,473	6,974,901	1,187	115.8	270	-50	Supremo T5
CFR0342	584,470	6,974,901	1,187	201.2	266	-50	Supremo T5
CFR0343	584,511	6,974,953	1,173	190.5	274	-43	Supremo T5
CFR0344	584,539	6,974,950	1,168	201.2	270	-45	Supremo T5
CFR0345	584,520	6,974,999	1,166	201.2	270	-45	Supremo T5
CFR0346	584,548	6,975,000	1,160	201.2	270	-45	Supremo T5
CFR0347	584,489	6,975,000	1,171	167.6	270	-43	Supremo T5
CFR0348	584,923	6,973,252	1,084	143.3	270	-45	Supremo T5
CFR0349	584,891	6,973,252	1,079	85.3	270	-44	Supremo T5
CFR0350	584,862	6,973,249	1,074	124.9	270	-42	Supremo T5
CFR0351	584,803	6,973,250	1,064	51.8	270	-45	Supremo T5
CFR0352	584,775	6,973,252	1,058	114.3	270	-43	Supremo T5
CFR0353	584,981	6,973,347	1,108	146.3	270	-45	Supremo T5
CFR0354	584,950	6,973,248	1,086	118.9	270	-43	Supremo T5
CFR0355	584,130	6,974,650	1,262	201.2	270	-42	Supremo T2
CFR0356	584,163	6,974,650	1,261	201.2	270	-43	Supremo T2
CFR0357	584,193	6,974,650	1,260	158.5	270	-43	Supremo T2

* UTM Coordinates (Nad83 datum, Zone 7)

Table 6: Salient Assay Results from the 2012 Reverse Circulation Drilling Program

Borehole ID	$\begin{gathered} \text { From } \\ \text { (metre) } \end{gathered}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	$\begin{aligned} & \begin{array}{l} \text { Gold } \\ \text { (gpt) } \end{array} \\ & \hline \end{aligned}$	Prospect	Borehole ID	$\begin{array}{r} \text { From } \\ \text { (metre) } \end{array}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	$\begin{aligned} & \begin{array}{l} \text { Gold } \\ \text { (gpt) } \end{array} \\ & \hline \end{aligned}$	Prospect
CFR0135	4.57	7.62	3.05	0.70	Supremo	CFR0163	155.50	172.20	16.76	1.14	Supremo
CFR0135	42.67	44.20	1.53	4.01	Supremo	CFR0164	153.90	167.60	13.72	3.92	Supremo
CFR0135	83.82	89.92	6.10	5.45	Supremo	CFR0166	21.34	38.10	16.76	1.36	Supremo
CFR0136	14.63	23.77	9.14	1.37	Supremo	CFR0166	96.01	99.06	3.05	2.29	Supremo
CFR0136	29.87	34.44	4.57	2.58	Supremo	CFR0167	74.68	77.72	3.04	1.57	Supremo
CFR0136	45.11	63.40	18.29	2.40	Supremo	CFR0167	115.80	118.90	3.05	0.82	Supremo
CFR0136	125.90	127.40	1.53	2.56	Supremo	CFR0168	27.43	30.48	3.05	1.36	Supremo
CFR0136	148.70	151.80	3.05	2.44	Supremo	CFR0168	41.15	44.20	3.05	4.20	Supremo
CFR0138	8.23	18.90	10.67	1.72	Supremo	CFR0168	118.90	125.00	6.10	13.12	Supremo
CFR0139	1.52	4.57	3.05	0.99	Supremo	CFR0168	143.30	144.80	1.52	1.47	Supremo
CFR0139	115.80	152.40	36.58	2.11	Supremo	CFR0169	67.06	71.63	4.57	1.90	Supremo
CFR0140	38.10	59.44	21.34	2.06	Supremo	CFR0169	172.20	181.40	9.15	5.64	Supremo
CFR0140	79.25	85.34	6.09	6.15	Supremo	CFR0170	45.72	57.91	12.19	2.21	Supremo
CFR0141	5.49	10.36	4.87	1.21	Supremo	CFR0171	36.58	39.62	3.04	2.89	Supremo
CFR0142	0.00	4.57	4.57	0.99	Supremo	CFR0171	85.34	102.10	16.77	2.09	Supremo
CFR0142	50.29	59.44	9.15	2.20	Supremo	CFR0172	30.48	33.53	3.05	1.66	Supremo
CFR0143	6.10	9.14	3.04	5.18	Supremo	CFR0172	155.50	160.00	4.57	1.25	Supremo
CFR0143	32.00	41.15	9.15	1.65	Supremo	CFR0172	190.50	192.00	1.52	5.74	Supremo
CFR0143	88.39	91.44	3.05	4.39	Supremo	CFR0173	1.53	15.24	13.71	4.28	Supremo
CFR0144	21.34	27.43	6.09	7.33	Supremo	CFR0173	103.60	105.20	1.53	2.18	Supremo
CFR0144	82.30	114.30	32.00	3.62	Supremo	CFR0173	117.40	120.40	3.05	2.06	Supremo
CFR0145	54.86	59.44	4.58	1.29	Supremo	CFR0174	28.96	33.53	4.57	4.50	Supremo
CFR0145	65.53	92.96	27.43	1.18	Supremo	CFR0175	12.19	15.24	3.05	1.10	Supremo
CFR0145	163.10	166.10	3.05	1.62	Supremo	CFR0175	64.01	73.15	9.14	1.70	Supremo
CFR0146	85.34	106.70	21.34	1.01	Supremo	CFR0175	169.20	181.40	12.20	3.03	Supremo
CFR0146	114.30	117.40	3.05	1.25	Supremo	CFR0176	67.06	68.58	1.52	2.17	Supremo

Borehole ID	$\begin{array}{r} \text { From } \\ \text { (metre) } \end{array}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	Gold (gpt)	Prospect	$\begin{aligned} & \hline \text { Borehole } \\ & \text { ID } \\ & \hline \end{aligned}$	$\begin{gathered} \text { From } \\ \text { (metre) } \end{gathered}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	$\begin{aligned} & \hline \text { Gold } \\ & \text { (gpt) } \end{aligned}$	Prospect
CFR0146	129.50	138.70	9.14	0.60	Supremo	CFR0176	111.30	114.30	3.05	1.04	Supre
CFR0146	157.00	160.00	3.05	3.84	Supremo	CFR0176	125.00	129.50	4.57	4.74	Supremo
CFR0146	187.50	193.60	6.10	4.85	Supremo	CFR0177	126.50	128.00	1.53	1.54	Supremo
CFR0147	108.20	112.80	4.58	1.77	Supremo	CFR0178	102.10	105.20	3.05	0.83	Supremo
CFR0147	131.10	134.10	3.05	0.80	Supremo	CFR0178	155.5	158.50	3.05	0.96	Supremo
CFR0148	102.10	109.70	7.62	1.33	Supremo	CFR0179	59.4	62.48	3.04	10.88	Supremo
CFR0148	150.90	153.90	3.04	4.25	Supremo	CFR0180	120.40	128.00	7.62	1.33	Supremo
CFR0148	198.10	199.60	1.52	1.28	Supremo	CFR0181	85.34	102.10	16.77	1.60	Supremo
CFR0149	47.24	50.29	05	1.37	Supremo	CFR0182	88.39	89.92	1.53	2.54	Supremo
CFR0149	74.68	79.25	4.57	1.38	Supremo	CFR018	190.50	192.00	1.52	2.08	Supremo
CFR0150	16.76	22.86	6.10	0.59	Supremo	CFR018	57.91	59.44	1.53	2.14	Supremo
CFR0151	21.34	22.86	1.52	2.05	Supremo	CFR0183	115.80	117.40	1.53	3.85	Supremo
CFR0151	79.25	83.82	4.57	1.17	Supremo	CFR0184	141.70	144.80	3.05	0.89	Supremo
CFR0151	94.49	106.70	12.19	2.34	Supremo	CFR0185	25.91	30.48	4.57	2.57	Supremo
CFR0152	85.34	88.39	3.05	6.49	Supremo	CFR0185	53.34	59.44	6.10	1.39	Supremo
CFR0152	121.90	129.50	7.62	1.72	Supremo	CFR0185	74.68	76.20	1.52	2.03	Supremo
CFR0153	36.58	38.10	1.52	1.23	Supremo	CFR0186	77.72	79.25	1.53	1.89	Supremo
CFR0154	48.77	59.44	10.67	1.15	Supremo	CFR0186	108.20	109.70	1.53	1.56	Supremo
CFR0154	79.25	82.30	3.05	0.96	Supremo	CFR0187	86.87	88.39	1.52	1.06	Supremo
CFR0155	56.39	62.48	6.09	0.92	Supremo	CFR0187	141.70	146.30	4.57	3.66	Supremo
CFR0155	70.10	74.68	4.58	1.34	Supremo	CFR0188	126.50	134.10	7.62	1.67	Supremo
CFR0155	82.30	83.82	1.52	6.35	Supremo	CFR0189	100.60	103.60	3.05	1.21	Supremo
CFR0155	99.06	111.30	12.19	2.33	Supremo	CFR0190	57.91	68.58	10.67	1.32	Supremo
CFR0156	108.20	111.30	3.05	7.11	Supremo	CFR0190	74.68	79.25	4.57	2.69	Supremo
CFR0156	121.90	138.70	16.76	1.64	Supremo	CFR0190	131.10	132.60	1.53	3.03	Supremo
CFR0157	47.24	48.77	1.53	2.16	Supremo	CFR0191	83.82	100.60	16.76	1.26	Supremo
CFR0158	74.68	77.72	3.04	4.06	Supremo	CFR0192	88.39	89.92	1.53	3.35	Supremo
CFR0159	112.80	117.40	4.57	2.57	Supremo	CFR0193	22.86	24.38	1.52	2.72	Supremo
CFR0160	16.76	21.34	4.58	2.52	Supremo	CFR0193	57.91	64.01	6.10	1.20	Supremo
CFR0160	137.20	146.30	9.14	1.29	Supremo	CFR0193	73.15	86.87	13.72	1.19	Supremo
0161	54.86	56.39	1.53	0.97	Supremo	CFR0194	132.60	134.10	1.52	5.63	Supremo
CFR0162	86.87	94.49	7.62	1.24	Supremo	CFR0195	24.38	28.96	4.58	1.45	Supremo
CFR0195	45.72	51.82	6.10	6.06	Supremo	CFR0225	27.43	28.96	1.53	2.03	Supremo
CFR0196	155.50	157.00	1.52	1.38	Supremo	CFR0225	39.62	42.67	3.05	0.99	Supremo
CFR0196	195.10	196.60	1.53	3.09	Supremo	CFR0226	15.24	19.81	4.57	1.27	Supremo
CFR0197	135.60	147.80	12.19	2.84	Supremo	CFR0226	70.10	73.15	3.05	3.25	Supremo
CFR0198	97.54	108.20	10.66	4.70	Supremo	CFR0226	97.54	102.10	4.57	0.82	Supremo
CFR0200	80.77	112.80	32.01	2.94	Supremo	CFR0226	123.40	128.00	4.58	3.85	Supremo
CFR0200	123.40	129.50	6.10	3.19	Supremo	CFR0227	13.72	45.72	32.00	1.05	Supremo
CFR0201	35.05	39.62	4.57	0.95	Supremo	CFR0227	137.20	138.70	1.52	4.14	Supremo
CFR0201	105.20	108.20	3.04	1.05	Supremo	CFR0227	182.90	184.40	1.52	7.50	Supremo
CFR0201	120.40	123.40	3.04	1.40	Supremo	CFR0228	10.67	16.76	6.09	1.56	Supremo
CFR0202	48.77	51.82	3.05	1.32	Supremo	CFR0228	32.00	33.53	1.53	2.98	Supremo
CFR0202	141.70	149.40	7.62	5.06	Supremo	CFR0228	64.01	73.15	9.14	1.47	Supremo
CFR0203	44.20	59.44	15.24	3.58	Supremo	CFR0228	80.77	88.39	7.62	0.96	Supremo
CFR0204	123.40	128.00	4.58	5.77	Supremo	CFR0229	51.82	70.10	18.28	1.41	Supremo
CFR0205	15.24	19.81	4.57	0.99	Supremo	CFR0229	100.60	108.20	7.62	1.06	Supremo
CFR0205	94.49	100.60	6.09	6.74	Supremo	CFR0230	111.30	115.80	4.57	2.26	Supremo
CFR0206	56.39	79.25	22.86	1.67	Supremo	CFR0230	125.00	149.40	24.38	1.04	Supremo
CFR0206	172.20	182.90	10.67	1.98	Supremo	CFR0231	94.49	100.60	6.09	1.20	Supremo
CFR0207	62.48	70.10	7.62	2.57	Supremo	CFR0231	157.00	163.10	6.10	2.78	Supremo
CFR0207	105.20	106.70	1.52	2.08	Supremo	CFR0231	173.70	187.50	13.71	1.30	Supremo
CFR0208	146.30	150.90	4.58	1.64	Supremo	CFR0232	13.72	15.24	1.52	1.11	Supremo
CFR0209	33.53	35.05	1.52	2.00	Supremo	CFR0232	28.96	30.48	1.52	1.07	Supremo
CFR0209	50.29	51.82	1.53	2.25	Supremo	CFR0232	41.15	50.29	9.14	0.70	Supremo
CFR0209	96.01	97.54	1.53	4.15	Supremo	CFR0233	16.76	19.81	3.05	4.23	Supremo
CFR0210	120.40	129.50	9.14	1.24	Supremo	CFR0233	44.20	47.24	3.04	2.56	Supremo
CFR0211	152.40	163.10	10.67	1.04	Supremo	CFR0233	143.30	147.80	4.57	1.26	Supremo
CFR0212	85.34	89.92	4.58	1.15	Supremo	CFR0234	7.62	10.67	3.05	0.97	Supremo
CFR0213	13.72	16.76	3.04	1.53	Supremo	CFR0234	30.48	35.05	4.57	1.09	Supremo
CFR0213	22.86	25.9	3.05	2.33	Supremo	CFR0234	67.06	71.63	4.5	1.01	Supremo

Borehole ID	$\begin{array}{r} \text { From } \\ \text { (metre) } \end{array}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	$\begin{aligned} & \hline \text { Gold } \\ & \text { (gpt) } \end{aligned}$	Prospect	$\begin{aligned} & \text { Borehole } \\ & \hline \end{aligned}$ ID	$\begin{gathered} \text { From } \\ \text { (metre) } \end{gathered}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	Gold (gpt)	Prospect
CFR0213	38.10	42.67	4.57	1.37	Supr	CFR0234	77.72	80.77	3.05	1.79	Su
CFR0214	41.15	48.77	7.62	0.75	Supremo	CFR0234	181.40	184.40	3.04	1.60	Supremo
CFR0214	60.96	70.10	9.14	0.76	Supremo	CFR0235	21.34	36.58	15.24	2.16	Supremo
CFR0214	82.30	96.01	13.71	1.21	Supremo	CFR0235	60.96	64.01	3.05	1.86	Supremo
FR0214	114.30	118.90	4.57	2.54	Supremo	CFR023	117.40	128.00	10.67	1.50	Supremo
CFR0215	1.53	3.05	1.52	1.92	Supremo	CFR023	54.86	56.39	1.53	1.48	Supremo
CFR0215	15.24	18.29	3.05	1.54	Supremo	CFR023	65.53	67.06	1.53	1.34	Supremo
CFR0215	150.90	158.50	7.62	1.03	Supremo	CFR023	144.80	149.40	4.57	1.03	Supremo
CFR0216	25.91	27.43	1.52	1.57	Supremo	CFR023	4.57	15.24	10.67	0.97	Supremo
CFR0217	3.05	9.14	6.09	1.11	Supremo	CFR023	22.86	24.38	1.52	6.14	Supremo
CFR0217	21.34	24.38	3.04	2.33	Supremo	CFR023	35.05	36.58	1.53	2.38	Supremo
CFR0217	30.48	41.15	10.67	0.94	Supremo	CFR0238	68.58	70.10	1.52	1.27	Supremo
CFR0217	88.39	144.80	56.39	0.98	Supremo	CFR0238	86.87	88.39	1.52	2.01	Supremo
CFR0218	28.96	36.58	7.62	2.08	Supremo	CFR0239	1.53	4.57	3.04	2.45	Supremo
CFR0218	62.48	74.68	12.20	1.05	Supremo	CFR0239	56.39	67.06	10.67	1.49	Supremo
CFR0218	85.34	89.92	4.58	1.04	Supremo	CFR0240	32.00	51.82	19.82	1.61	Supremo
CFR0219	4.57	9.14	4.57	2.26	Supremo	CFR0241	86.87	91.44	4.57	3.39	Supremo
CFR0219	42.67	47.24	4.57	2.89	Supremo	CFR0241	163.10	164.60	1.52	1.83	Supremo
CFR0219	115.80	118.90	3.05	1.95	Supremo	CFR0242	135.60	146.30	10.66	2.91	Supremo
CFR0220	33.53	35.05	1.52	5.09	Supremo	CFR0242	181.40	184.40	3.04	7.06	Supremo
CFR0220	48.77	67.06	18.29	1.31	Supremo	CFR0243	44.81	52.43	7.62	0.97	Supremo
CFR0220	82.30	94.49	12.19	2.43	Supremo	CFR0243	61.57	63.09	1.52	3.13	Supremo
CFR0221	0.00	1.52	1.52	1.56	Supremo	CFR0243	98.15	102.70	4.57	2.2	Supremo
CFR0221	117.40	126.50	9.14	2.07	Supremo	CFR0243	148.40	150.00	1.52	2.04	Supremo
CFR0222	9.14	15.24	6.10	2.97	Supremo	CFR0244	59.44	68.58	9.14	0.95	Supremo
CFR0222	22.86	33.53	10.67	1.38	Supremo	CFR0245	26.52	28.04	1.52	1.26	Supremo
CFR0222	67.06	73.15	6.09	0.72	Supremo	CFR0245	53.95	63.09	9.14	0.5	Supremo
CFR0223	71.63	73.15	. 52	2.42	Supremo	CFR0245	92.05	96.62	4.57	2.0	Supremo
CFR0223	92.96	105.20	12.20	1.89	Supremo	CFR0245	107.30	116.40	9.14	1.82	Supremo
CFR0224	16.76	19.81	3.05	1.83	Supremo	CFR0245	148.40	150.00	1.52	1.52	Supremo
CFR0224	56.39	67.06	10.67	1.27	Supremo	CFR0245	182.00	189.60	7.62	0.63	Supremo
CFR0224	131.10	137.20	6.10	1.32	Supremo	CFR0245	198.70	200.30	1.52	1.39	Supremo
CFR0246	10.67	13.72	3.05	0.86	Supremo	CFR0281	71.63	74.68	3.05	2.78	Supremo
CFR0246	89.92	97.54	7.62	0.74	Supremo	CFR0281	106.70	112.80	6.10	1.73	Supremo
CFR0247	44.20	45.72	1.52	1.33	Supremo	CFR0282	57.91	60.96	3.05	4.65	Supremo
CFR0248	41.15	48.77	7.62	2.00	Supremo	CFR028	71.63	74.68	3.05	1.7	Supremo
CFR0248	138.70	141.70	3.05	2.41	Supremo	CFR028	103.60	118.90	15.24	3.5	Supremo
CFR0249	50.60	68.88	18.28	1.34	Supremo	CFR0283	9.75	29.57	19.82	5.27	Supremo
CFR0250	65.53	67.06	1.53	1.51	Supremo	CFR0284	99.06	108.20	9.14	1.65	Supremo
CFR0250	88.39	109.70	21.34	3.96	Supremo	CFR0285	162.20	163.70	1.53	2.04	Supremo
CFR0251	88.39	97.54	9.15	2.74	Supremo	CFR0286	102.10	114.30	12.19	8.33	Supremo
CFR0252	56.39	59.44	3.05	1.78	Supremo	CFR028	137.20	144.80	7.62	1.52	Supremo
CFR0252	182.90	201.20	18.29	14.51	Supremo	CFR0287	47.85	50.90	3.05	1.04	Supremo
CFR0253	94.49	97.54	3.05	1.32	Supremo	CFR0287	139.30	145.40	6.10	1.58	Supremo
CFR0253	137.20	147.80	10.67	1.22	Supremo	CFR0288	7.62	12.19	4.57	1.49	Supremo
CFR0254	1.53	53.34	51.81	3.09	Supremo	CFR0288	176.80	182.90	6.10	1.05	Supremo
CFR0254	181.40	184.40	3.04	6.58	Supremo	CFR0289	35.66	40.23	4.57	2.19	Supremo
CFR0254	201.20	202.70	1.52	6.97	Supremo	CFR0290	35.05	38.10	3.05	2.72	Supremo
CFR0255	19.81	21.34	1.53	1.81	Supremo	CFR0290	64.01	73.15	9.14	1.23	Supremo
CFR0255	80.77	82.30	1.53	1.27	Supremo	CFR0292	73.15	76.20	3.05	6.77	Supremo
CFR0256	3.05	9.14	6.09	2.16	Supremo	CFR0293	79.86	84.43	4.57	1.00	Supremo
CFR0256	94.49	96.01	1.52	5.03	Supremo	CFR0294	12.19	15.24	3.05	2.54	Supremo
CFR0257	44.20	48.77	4.57	1.20	Supremo	CFR0294	74.68	80.77	6.09	2.04	Supremo
CFR0257	67.06	70.10	3.04	1.01	Supremo	CFR0294	108.20	115.80	7.62	3.90	Supremo
CFR0257	91.44	105.20	13.72	1.32	Supremo	CFR0295	76.81	79.86	3.05	2.09	Supremo
CFR0258	7.01	11.58	4.57	2.31	Supremo	CFR0295	87.48	90.53	3.05	1.21	Supremo
CFR0258	94.79	99.36	4.57	3.91	Supremo	CFR0296	120.40	140.20	19.81	1.62	Supremo
CFR0260	105.20	117.40	12.19	4.70	Supremo	CFR0297	124.10	127.10	3.05	1.42	Supremo
CFR0260	135.60	138.70	3.04	2.62	Supremo	CFR0297	148.40	150.00	1.52	2.36	Supremo
CFR0260	157.00	158.50	1.53	1.54	Supremo	CFR0298	9.14	24.38	15.24	0.89	Supremo
CFR0261	58.22	67.36	9.14	2.29	Supremo	CFR0298	50.29	51.82	1.53	2.93	Supremo

Borehole ID	$\begin{array}{r} \text { From } \\ \text { (metre) } \end{array}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	Gold (gpt)	Prospect	Borehole ID	$\begin{array}{r} \text { From } \\ \text { (metre) } \end{array}$	$\begin{array}{r} \text { To } \\ \text { (metre) } \end{array}$	Length* (metre)	$\begin{aligned} & \hline \text { Gold } \\ & \text { (gpt) } \end{aligned}$	Prospect
CFR0262	157.00	178.30	21.34	1.95	Supremo	CFR0298	80.77	89.92	9.15	1.58	Supremo
CFR0263	9.75	21.34	11.59	1.39	Supremo	CFR0298	103.60	108.20	4.57	1.34	Supremo
CFR0263	44.20	45.72	1.52	2.04	Supremo	CFR0298	125.00	138.70	13.71	1.35	Supremo
CFR0264	21.34	22.86	1.52	1.60	Supremo	CFR0298	152.40	172.20	19.81	1.58	Supremo
CFR0265	53.34	62.48	9.14	1.99	Supremo	CFR0299	169.80	185.00	15.24	1.65	Supremo
CFR0265	91.44	97.54	6.10	1.20	Supremo	CFR0300	99.06	108.20	9.14	3.24	Supremo
CFR0266	31.09	40.23	9.14	2.22	Supremo	CFR0301	70.10	80.77	10.67	1.22	Supremo
CFR0266	72.24	73.76	1.52	2.02	Supremo	CFR0301	158.50	163.10	4.57	5.99	Supremo
CFR0267	89.92	92.96	3.04	3.70	Supremo	CFR0302	102.10	106.70	4.57	6.65	Supremo
CFR0267	109.70	111.30	1.52	3.52	Supremo	CFR0303	24.38	32.00	7.62	0.80	Supremo
CFR0267	128.00	132.60	4.57	1.99	Supremo	CFR0304	18.29	24.38	6.09	4.30	Supremo
CFR0267	152.40	161.50	9.14	5.42	Supremo	CFR0305	28.35	31.39	3.04	4.71	Supremo
CFR0267	169.20	170.70	1.53	3.66	Supremo	CFR0305	54.25	57.30	3.05	8.08	Supremo
CFR0267	189.00	195.10	6.09	1.79	Supremo	CFR0306	100.60	103.60	3.05	2.33	Supremo
CFR0268	64.62	67.67	3.05	8.86	Supremo	CFR0307	135.60	138.68	3.04	2.25	Supremo
CFR0268	128.60	145.40	16.76	5.10	Supremo	CFR0308	43.59	55.78	12.19	0.56	Supremo
CFR0269	24.38	30.48	6.10	5.09	Supremo	CFR0309	56.39	83.82	27.43	1.24	Supremo
CFR0269	86.87	88.39	1.52	1.87	Supremo	CFR0310	74.07	92.35	18.28	2.86	Supremo
CFR0269	172.20	176.80	4.57	1.59	Supremo	CFR0311	89.92	97.54	7.62	0.92	Supremo
CFR0270	132.00	135.00	3.05	5.16	Supremo	CFR0312	56.39	57.91	1.52	2.35	Supremo
CFR0271	53.34	56.39	3.05	27.42	Supremo	CFR0313	2.44	17.68	15.24	1.54	Supremo
CFR0271	111.30	114.30	3.05	2.11	Supremo	CFR0314	137.20	141.70	4.57	1.38	Supremo
CFR0272	195.70	200.30	4.57	2.44	Supremo	CFR0316	99.06	102.10	3.05	2.89	Supremo
CFR0274	45.72	48.77	3.05	4.15	Supremo	CFR0316	114.30	115.80	1.52	2.61	Supremo
CFR0275	26.52	29.57	3.05	1.23	Supremo	CFR0318	77.72	82.30	4.58	8.16	Supremo
CFR0276	24.38	32.00	7.62	21.90	Supremo	CFR0319	6.10	9.14	3.04	3.50	Supremo
CFR0276	71.63	76.20	4.57	2.51	Supremo	CFR0319	131.10	132.60	1.53	1.62	Supremo
CFR0277	151.50	154.50	3.04	1.19	Supremo	CFR0320	1.53	13.72	12.19	3.03	Supremo
CFR0277	160.60	163.70	3.05	1.58	Supremo	CFR0320	21.34	22.86	1.52	5.08	Supremo
CFR0278	71.63	74.68	3.05	1.53	Supremo	CFR0320	30.48	35.05	4.57	3.17	Supremo
CFR0279	68.58	71.63	3.05	14.85	Supremo	CFR0321	3.05	16.76	13.71	8.49	Supremo
CFR0281	57.91	60.96	3.05	5.37	Supremo	CFR0321	53.34	57.91	4.57	6.25	Supremo
CFR0322	115.80	117.40	1.53	2.61	Supremo	CFR0339	190.50	195.07	4.57	3.40	Supremo
CFR0323	83.82	91.44	7.62	2.82	Supremo	CFR0340	120.40	134.11	13.71	3.20	Supremo
CFR0324	6.10	15.24	9.14	2.64	Supremo	CFR0341	9.14	18.29	9.15	3.60	Supremo
CFR0327	18.29	41.15	22.86	0.81	Supremo	CFR0341	27.43	30.48	3.05	3.41	Supremo
CFR0327	147.80	152.40	4.57	2.31	Supremo	CFR0341	44.20	57.91	13.71	4.96	Supremo
CFR0328	60.96	82.30	21.34	1.09	Supremo	CFR0341	73.15	109.73	36.58	1.52	Supremo
CFR0329	88.39	89.92	1.53	2.76	Supremo	CFR0342	36.58	94.49	57.91	1.72	Supremo
CFR0329	103.60	115.80	12.19	1.95	Supremo	CFR0343	36.58	38.10	1.52	1.89	Supremo
CFR0329	129.50	134.10	4.57	2.10	Supremo	CFR0343	106.68	112.78	6.10	1.85	Supremo
CFR0329	155.50	167.60	12.19	2.62	Supremo	CFR0344	185.93	187.45	1.52	2.39	Supremo
CFR0330	141.70	153.90	12.19	3.44	Supremo	CFR0345	36.58	38.10	1.52	8.42	Supremo
CFR0330	184.40	187.50	3.05	1.51	Supremo	CFR0345	103.63	105.16	1.53	4.65	Supremo
CFR0330	199.60	201.20	1.53	1.46	Supremo	CFR0345	126.49	128.02	1.53	2.60	Supremo
CFR0331	190.50	196.60	6.10	11.86	Supremo	CFR0346	141.73	143.26	1.53	16.85	Supremo
CFR0332	108.20	123.44	15.24	1.74	Supremo	CFR0347	15.24	18.29	3.05	2.75	Supremo
CFR0332	158.50	167.64	9.14	1.23	Supremo	CFR0347	105.16	111.25	6.09	0.99	Supremo
CFR0335	140.20	141.70	1.52	2.58	Supremo	CFR0347	117.35	121.92	4.57	2.05	Supremo
CFR0336	112.80	120.40	7.62	1.80	Supremo	CFR0348	3.05	4.57	1.52	1.33	Supremo
CFR0337	147.80	149.50	1.52	2.85	Supremo	CFR0353	24.38	25.91	1.53	3.81	Supremo
CFR0339	60.96	73.15	12.19	2.94	Supremo	CFR0354	39.62	42.67	3.05	1.35	Supremo
CFR0339	118.87	141.70	22.86	3.63	Supremo	CFR0355	60.96	70.10	9.14	1.17	Supremo

[^0]
Supremo

Two hundred and seventeen reverse circulation boreholes (38,667 metres) and 83 core boreholes (17,682 metres) were drilled at Supremo in 2012. Drilling targeted the T3, T4, T5, and T7 structures (Table 7). These structures are roughly north-south trending steeply east-dipping structural zones with coincident soil anomalies. All boreholes were drilled to the west at angles of between 45 and 70 degrees from the horizontal.

Table 7: Supremo Drilling per Structure in 2012

Prospect	RC Holes	RC Metres	Core Holes Core Metres	Total Holes Total Metres		
Supremo T2	3	561	0	0	3	561
Supremo T3	34	5,728	63	12,959	97	18,687
Supremo T4	28	4,734	4	1,010	32	5,744
Supremo T4-5	52	9,798	11	2,847	63	12,645
Supremo T5	64	10,831	5	866	69	11,697
Supremo T7	39	7,577	0	0	39	7,577
Supremo All	$\mathbf{2 1 7}$	$\mathbf{3 8 , 6 6 7}$	$\mathbf{8 3}$	$\mathbf{1 7 , 6 8 2}$	$\mathbf{3 0 0}$	$\mathbf{5 6 , 3 4 9}$

A plan view of 2012 Supremo drilling is presented in

Figure 10 through Figure 12. Long-sections that summarize the results from the drilling on the T3, T4, and T5 structures are given in Figure 14 through Figure 17.

Double Double

Thirty core boreholes ($8,455.3$ metres) were drilled to continue the investigation of the Double Double target on sections spaced 50 metres apart with between two and five boreholes per section. Boreholes were inclined between 45 and 70 degrees from the horizontal.

Drilling information suggests that the inferred auriferous structures dip steeply north. A plan view of drilling at Double Double is presented in Figure 12. A long-section that summarizes the results from the Double Double drilling program is presented in Figure 17.

Sugar

Twelve core boreholes ($3,511.1$ metres) were drilled to investigate the Sugar area. In total six soil anomalies were tested with up to three boreholes per section at inclinations of between 45 and 70 degrees from the horizontal. Boreholes were dominantly drilled to the south with the exception of SGD0001 and SGD0002 (drilled north) and SGD0011 and SGD0012 (drilled northeast).

Drilling at Sugar in 2012 indicates that the inferred auriferous structures dip nearly vertically, at roughly 80 degrees to the north. A plan view of drilling at Sugar is presented in Figure 13.

Figure 10: Plan View of 2012 Drilling Targets

Figure 11: Plan View of Drilling Completed at Northern Supremo

Figure 12: Plan View of Drilling Completed at Southern Supremo and Double Double

Figure 13: Plan View of Drilling Completed at Sugar

Figure 14: Schematic Supremo T3 Long Section

Figure 15: Schematic Supremo T4 Long Section

Figure 16: Schematic Supremo T5 Long Section

Figure 17: Schematic Double Double Long Section

Soil Sampling

An additional 4,510 soil samples were collected in 2012 to expand the footprint of the existing gold-in-soil anomalies, add soil grids on areas with anomalous reconnaissance samples, and add regional coverage with further ridge-and-spur sampling. Samples in grids were taken at regular 50-metre spacing along 100-metre-spaced lines (Figure 18 and Figure 19). Reconnaissance ridge-and-spur samples were taken at 50 -metre intervals (Figure 18).

This program significantly expanded the Sugar anomaly, located approximately 20 kilometres southeast of Supremo.

Mapping and Prospecting

Approximately 40 man-days of reconnaissance mapping and prospecting traverses were completed across various areas of the Coffee project claims in order to increase the understanding of the district geology as well as to develop context for the ridge-and-spur soil samples. In total 61.4 kilometres of traverses were completed on the property in 2012, with 110 grab samples collected for analyses on site.

Figure 19: Sugar Area Soil Samples Collected from 2009-2012 by Kaminak

Sampling Method and Approach

Sampling of geological materials completed by Kaminak during 2009 through 2012 was performed by experienced geological technicians under the supervision of appropriately qualified geologists. The following paragraphs summarize the sampling methodology and approach for the soil and rock chip samples.

Drill Core Sampling

The drilling approach was to target the structural trends with fences of one or more core boreholes drilled perpendicular to the strike of the inferred structures on variably spaced sections. Most sections received two to five boreholes per structure, designed to sample the targeted structures at different depths (above 200 metres below surface). This strategy was used to provide maximum geological information about each target. The drilling approach was adjusted during drilling to allow testing extensions of interesting geology or assay results on adjacent sections. Drill core was transported daily by truck or helicopter to the logging facility at the Coffee Creek camp. Core was reviewed for consistency and each metre marked clearly for reference. Core recovery and RQD were measured and recorded, and the core oriented when possible. XRF analyses were performed at nominal 1-metre intervals, as close to the metre mark as possible. Core was then logged by a geologist, recording lithology, alteration, structure, and mineralogy, directly into a laptop computer. Core photographs were then taken prior to sampling. Core samples were taken from half core sawed lengthwise with a diamond saw. Half core samples were bagged and prepared for dispatch to ALS Minerals. The remaining half was returned to the core boxes. Commercial blank and control samples were inserted at a rate of one every 10 samples, alternating between a blank and a reference material sample. Following sampling, core boxes were labelled with metal tags and stored on crossstacked pallets at the Coffee Creek camp for future reference and testing. Sample books provided by ALS Minerals were used to record borehole number, location, sampling interval, and date of sampling. All sample books are organized and archived at the Kaminak Vancouver office for future reference.

Reverse Circulation Chip Sampling

In 2012, Kaminak completed its second reverse circulation drilling program on the Coffee project, expanding upon results from the 2010 and 2011 programs on the Supremo area. The drilling approach was to target the structural trends identified in 2010 and 2011 with multiple boreholes spaced 25 to 30 metres along each fence, with fences spaced between 25 metres and 100 metres apart depending upon geological confidence of the structural trend. The reverse circulation drill works by compressed air that drives a pneumatic hammer attached to a semi-permeable bit, which acts like a jack hammer. Chips and rock dust generated by the hammer are forced through openings in the face of the bit and up into the sample return tube inside the rod string. The 5 -foot rods are attached to an air and sample hose that continues into a cyclone module. The sample is separated from the air in the cyclone and drops out of the bottom into a 5 gallon pail.
Each sample comprises one 5 -foot run, with the borehole and rods being blown out between each run. The sample is then tipped out of the pail through a 1:7 riffle splitter into sample and retention bags. Sample chips are sieved from a spear sample of the retention bag and logged by the geologist on-site directly into a field laptop, which is in turn backed up digitally each night. Sample bags are
transported daily by truck or helicopter to the processing facility at the Coffee Creek camp. Each sample is then analyzed on the XRF instrument before being shipped to ALS Minerals for analysis.

Soil Sampling

The purpose of the soil sampling was to map the distribution of gold and associated metals in the soils with the hypothesis that gold (and other metals) in soil bears direct relationship with gold mineralization in bedrock that outcrops poorly over the project area. Soil sampling was carried out by Ground Truth Exploration from Dawson City, Yukon. Soil samples were collected over a grid pattern of northerly directed lines spaced by 100 metres with sampling stations spaced by 50 metres. The exception to this orientation is the 2011 Sugar area sampling, in which the grid was rotated to easterly directed lines spaced by 100 metres with sampling stations spaced by 50 metres. In 2012, the Sugar area sampling returned to a pattern of northerly directed lines following the better understanding of mineralization distribution gained from soil sampling and trenching completed in 2011. Samples were collected using a hand auger to various depths depending on the soil profile. The organic A horizon material was discarded, and augering continued until the C horizon rock chips were encountered, checking for false bottoms on the A horizon profile. Soil samples were collected over intervals varying from 60 to 70 centimetres, with maximum depth not exceeding the 1.25 metre length of the auger. Samples were placed directly in pre-marked bags. A field duplicate sample was
collected at a rate of one every 25 samples. Sample number, location, depth, and geological parameters were recorded directly into a handheld computer with a GPS reading of sample location, also stored separately as a backup. The sample location was marked with flagging tape and a metal tag on a nearby tree. Samples were submitted by the contractor to Acme Analytical Laboratories in Vancouver, British Columbia. The sample information was downloaded from the handheld computers into spreadsheets, and subsequently integrated into Kaminak's Coffee project database. Soil samples were submitted to the accredited Acme Analytical Laboratories in Vancouver, British Columbia. The samples were prepared and assayed using the same methodology used to assay samples submitted by Shawn Ryan in 2007. Soil samples were prepared using standard preparation procedures and analysed for a suite of 36 elements using aqua regia digestion followed by Inductively Coupled Plasma-Atomic Emission Spectrometry on 15 grams sub-samples ("ICP ES", method code 1DX2).

Rock Chip Sampling

Rock samples were taken in trenches over 5-metre horizontal intervals. Samples were collected by chipping subcropping rock with a rock hammer on the wall or base of the trench over the desired interval taking care to collect a representative sample of the interval. Inherently, this selective sampling approach can introduce sampling bias, but the purpose of this sampling was to link gold-in-soil anomalous areas to outcropping or subcropping bedrock and to define worthy drilling targets. In such circumstances, a positive sampling bias is generally desirable.

The location of the centre of each sample was recorded using a handheld GPS unit. Other descriptive attributes and geological information about the sample were recorded into logging software on a daily basis and incorporated into the project database.

Sample Preparation, Analyses and Security

Kaminak used two primary laboratories for assaying samples collected during the 2009 through 2012 programs.

Soil samples collected in 2009 through 2012 were submitted to the accredited Acme laboratory. The samples were prepared and assayed using the same methodology used to assay samples submitted by Mr. Ryan in 2007. Soil samples were prepared using standard preparation procedures and analyzed for a suite of 36 elements using aqua regia digestion followed by ICP-AES on 15-gram subsamples (method code 1DX2).

All core, reverse circulation, trench, and grab samples collected in 2010 through 2012 were submitted to ALS Minerals for preparation and assaying. The management system of the ALS Group of laboratories is accredited ISO 9001:2000 by QMI Management Systems Registration. Samples were crushed and pulverised by the Whitehorse preparation facility and shipped to North Vancouver for assaying. The North Vancouver laboratory is accredited ISO/IEC 17025:2005 by the Standards Council of Canada for certain testing procedures, including those used to assay samples submitted by Kaminak. ALS Minerals laboratories also participate in international proficiency tests such as those managed by CANMET and Geostats Pty Ltd.

All samples were individually sealed in polyore bags on-site and shipped to ALS Minerals’ preparation facility in Whitehorse in rice sacs sealed by uniquely numbered security tags to minimize voluntary or inadvertent tampering. Security tags were tracked through the transport until receipt by ALS Minerals. No rice sacs were reported tampered with during 2010, 2011, and 2012.

Rock and core samples were prepared for assaying at the ALS Minerals preparation facility using a conventional preparation procedure (dry at 60 degrees Celsius, crushed and sieved to 70 percent passing 10 mesh ASTM, pulverised to 85 percent passing 75 micron or better). Prepared samples were then transferred to ALS Minerals laboratory in North Vancouver where they were assayed for gold using a conventional fire assay procedure (ICP-AES) on 30-gram subsamples (50-gram samples were used in 2010). In 2010 and 2011 all samples were also submitted for a suite of 35 elements using an aqua regia digestion and ICP-AES finish on 5-gram subsamples. In 2012, samples from only select boreholes were submitted for the 35 -element analysis (Table 8).

Table 8: Boreholes Sampled for 35-element ICP-AES in 2012

Prospect	Double Double	$\begin{gathered} \hline \text { Supremo } \\ \text { T3 } \end{gathered}$	$\begin{gathered} \text { Supremo } \\ \text { T4 } \end{gathered}$	$\begin{gathered} \hline \text { Supremo } \\ T 4-5 \end{gathered}$	$\begin{gathered} \text { Supremo } \\ \text { T5 } \end{gathered}$	Supremo T7	Sugar
	CFD0198	CFR0271	None	CFD0266	CFD0287	None	SGD0001
	CFD0202	CFR0274		CFD0267	CFR0272		SGD0002
	CFD0205			CFD0269	CFR0309		SGD0003
	CFD0209			CFD0270	CFR0315		SGD0004
	CFD0215			CFD0272	CFR0316		SGD0005
	CFD0219						SGD0006
	CFD0222						SGD0007
	CFD0225						SGD0008
	CFD0230						SGD0009
	CFD0233						SGD0010
	CFD0236						SGD0011
	CFD0237						SGD0012

Prospect	Double Double	$\begin{gathered} \text { Supremo } \\ \text { T3 } \end{gathered}$	$\begin{gathered} \hline \text { Supremo } \\ \text { T4 } \end{gathered}$	$\begin{gathered} \hline \text { Supremo } \\ \mathrm{T} 4-5 \end{gathered}$	$\begin{gathered} \text { Supremo } \\ \text { T5 } \end{gathered}$	$\begin{gathered} \text { Supremo } \\ \text { T7 } \end{gathered}$	Sugar
	CFD0240 CFD0241 CFD0243 CFD0245 CFD0246 CFD0249 CFD0251 CFD0254 CFD0256 CFD0259 CFD0261 CFD0265 CFD0268 CFD0271 CFD0273 CFD0275 CFD0277 CFD0279						
Zone Total	30	2	0	5	5	0	12

Samples grading in excess of 10 gpt gold were re-assayed from a second 30-gram split (50-gram split in 2010) using a fire assay procedure and a gravimetric finish. In 2012, samples grading in excess of 20 gpt gold were submitted for screened fire assay from a 1,000 gram coarse reject split. The screened fire assay was passed through a 100 micron mesh, with the oversize fraction (roughly four weight percent on Kaminak samples in 2012) undergoing gravimetric analysis following fusion, whereas the undersize fraction was split into two 50 -gram samples and finished using atomic absorption. The average between the two minus fractions was then combined together with the plus fraction to give the total weighted average gold.

In 2010, samples assaying more than 100 gpt silver (two samples) were re-assayed using either an "ore grade" digestion followed by ICP-AES or by conventional fire assay with gravimetric finish on 50 -gram charges. Two samples from 2011 reported more than 100 gpt silver, but were not reassayed. No samples from 2012 drilling returned greater than 100 gpt silver.

Roughly one in 100 master pulps from core and reverse circulation samples submitted to ALS Minerals in 2010, 2011, and 2012 were submitted annually at the conclusion of each exploration season to Acme Labs for umpire check assaying. Sample pulps for check assay were selected in groups of between nine and 30 sequential samples from analytical batches.

All zones drilled in a given year were represented in the check assay samples, and although samples covered a wide range of assay results (from detection limit to greater than 40 gpt gold), preference was given to groups of sequential samples that dominantly ran greater than 1.0 gpt gold in order to provide an accurate test of lab performance and avoid running a large number of near-detection samples. Kaminak did not use an umpire laboratory to verify the assay results for soil samples delivered by Acme in 2009 through 2012.

In 2010, two composite core samples were submitted to the Inspectorate Exploration \& Mining Services Ltd (Inspectorate) in Burnaby, British Columbia for preliminary metallurgical testing. In

2011, Kaminak submitted one additional composite core sample for follow-up heap leach column testing to the Inspectorate Laboratory. The Inspectorate laboratory is part of the Veritas Bureau Group, which provides a wide range of testing services to the mineral industry. The Inspectorate laboratories are accredited to relevant national and international standards including ISO 17025. In 2012, Kaminak submitted additional core samples for further metallurgical testing by the Inspectorate Laboratory.

Specific Gravity Data

Specific gravity measurements were made using the water immersion method. In 2011, measurements were made at nominal 10-metre intervals in non-mineralized rock and at nominal 5metre intervals in structural zones or apparent gold mineralized rock. In 2012, measurements were selected at a rate of one sample per mineralized zone, and one sample per major lithology in nonmineralized rock. In areas of multiple mineralized zones separated by non-mineralized intervals less than 10 metres wide, specific gravity was measured for the mineralized zones only. The average interval between specific gravity samples was 17 metres in 2012.

Samples were weighed dry in air, coated with paraffin wax and weighed immersed in water. A standard was measured roughly every 10 samples in order to measure instrumental drift. Results were recorded directly into a Microsoft Excel spreadsheet.

Specific gravity measurements less than 2.40 or greater than 3.50 were re-weighed by technicians to ensure accuracy. Independent specific gravity testing was also conducted on a randomly selected batch of 35 samples in 2011 and 30 samples in 2012 by ALS Minerals in North Vancouver, British Columbia in order to verify accuracy of the on-site methodology. ALS Minerals results are in close agreement with field measurements, and, therefore, indicate good reproducibility.

Field specific gravity measurements indicate a mean of 2.61 from 4,413 samples representing all deposit areas (Table 9). The standard deviation of the sample population is 0.157 , with only 5 percent of all samples including outliers reporting outside two standard deviations from the mean.

Table 9: Specific Gravity Database Per Domain and Weathering Profile

Domain	Oxide			Transition			Sulphide		
	No. of Samples	$\begin{gathered} \hline \text { Mean } \\ \text { SG } \end{gathered}$	Std. Dev.	No. of Samples	$\begin{gathered} \hline \text { Mean } \\ \text { SG } \end{gathered}$	Std. Dev.	No. of Samples	$\begin{array}{r} \text { Mean } \\ \text { SG } \end{array}$	Std. Dev.
Double Double	136	2.51	0.10	485	2.65	0.15	89	2.72	0.10
Kona	41	2.45	0.11	150	2.57	0.09	46	2.57	0.07
Latte	342	2.55	0.12	1010	2.65	0.14	460	2.72	0.13
Supremo	448	2.47	0.16	959	2.58	0.16	247	2.68	0.13
Weighted Average	967	2.50	0.14	2604	2.62	0.15	842	2.70	0.12

Quality Assurance and Quality Control Programs

Quality control measures are typically set in place to ensure the reliability and trustworthiness of the exploration data. These measures include written field procedures and independent verifications of aspects such as drilling, surveying, sampling and assaying, data management, and database
integrity. Appropriate documentation of quality control measures and regular analysis of quality control data are important as a safeguard for project data and form the basis for the quality assurance program implemented during exploration.

Analytical control measures typically involve internal and external laboratory control measures implemented to monitor the precision and accuracy of the sampling, preparation, and assaying processes. They are also important to prevent sample mix-up and monitor the voluntary or inadvertent contamination of samples. Assaying protocols typically involve regular duplicate and replicate assays and insertion of quality control samples. Check assaying is typically performed as an additional reliability test of assaying results. This typically involves re-assaying a set number of sample rejects and pulps at a secondary umpire laboratory.

The exploration work conducted by Kaminak was carried out using a quality assurance and quality control program meeting industry best practices for early stage exploration properties. Standardized procedures are used in all aspects of the exploration data acquisition and management including mapping, surveying, drilling, sampling, sample security, assaying, and database management.

During 2009, Kaminak did not implement specific analytical quality control measures to monitor the assay results delivered by Acme. The 2009 exploration program involved primarily soil sampling and trenching. Kaminak relied on the laboratory internal analytical quality control measures to monitor the reliability of assay results delivered by Acme.

With the beginning of core drilling in 2010, Kaminak began implementing external analytical quality control measures, in addition to choosing an ISO accredited primary laboratory. The analytical quality control measures involved the use of control samples (certified reference material, blanks, field duplicates) and independent check assaying at an umpire laboratory.

Certified reference materials were sourced from CDN Resource Laboratories Ltd. (CDN) of Langley, British Columbia. In 2012, Kaminak used 18 standards, with certified assay values ranging from 0.229 to 47.12 gpt gold and two blanks with certified assay value of less than 0.01 gpt gold (Table 10). For 2011 and 2012 drill core samples, reverse circulation chip samples, and 2011 trench samples, blanks and certified references materials were alternated and inserted at a rate of one every 10 samples. For 2010 rock samples, certified reference materials were inserted approximately at a rate of one every 30 samples.

Field and laboratory duplicates were also inserted within the samples submitted for assaying. Field duplicate samples were collected by splitting the remaining half core in half and assigning a separate sample number out of sequence from the original samples. Reverse circulation field duplicates were collected by running the retention bag of the original sample through the riffle splitter, splitting a second sample from the original sample directly at the drill site. Laboratory duplicates are repeat assays on pulverized samples originally assayed by ALS Minerals.

Table 10: Specifications of the Certified Control Samples Used by Kaminak in 2012

Reference Material	Gold (gpt)	Standard Deviation (gpt)	Number of Samples
CDN-BL-9	<0.01	-	143
CDN-BL-10	<0.01	-	2,621
CDN-GS-P2A	0.229	0.030	181

CDN-GS-P3C	0.263	0.020	271
CDN-GS-P3B	0.409	0.042	178
CDN-GS-P5D	0.44	0.04	1
CDN-GS-P7E	0.766	0.086	167
CDN-GS-1J	0.946	0.102	437
CDN-GS-1G	1.14	0.09	1
CDN-GS-2K	1.97	0.18	449
CDN-GS-2J	2.36	0.1	5
CDN-GS-3G	2.59	0.09	3
CDN-GS-3J	2.71	0.13	175
CDN-GS-6A	5.69	0.24	454
CDN-GS-9A	9.31	0.69	443
CDN-GS-10D	9.5	0.28	3
CDN-GS-10C	9.71	0.65	1
CDN-GS-20B	20.23	1.09	1
CDN-GS-40	39.95	1.99	5
CDN-GS-47	47.12	1.99	4

Comments

The Qualified Persons reviewed the field procedures and analytical quality control measures used by Kaminak. The analysis of the analytical quality control data is presented in Section below. In the opinion of the Qualified Persons, Kaminak personnel used care in the collection and management of field and assaying exploration data.

In the opinion of the Qualified Persons, the sample preparation, security, and analytical procedures used by Kaminak are consistent with generally accepted industry best practices and are, therefore, adequate for the purpose of mineral resource estimation.

Data Verification

The exploration work carried out on the Coffee project was conducted by Kaminak personnel and qualified subcontractors. Kaminak implemented a series of routine verifications to ensure the collection of reliable exploration data. All work was conducted by appropriately qualified personnel under the supervision of qualified geologists. In the opinion of the Qualified Persons, the field exploration procedures used at Coffee generally meet industry practices.

The quality assurance and quality control program implemented by Kaminak is comprehensive and supervised by adequately qualified personnel. Exploration data were recorded digitally to minimize data entry errors. Core logging, surveying, and sampling were monitored by qualified geologists and verified routinely for consistency. Electronic data were captured and managed using an internally-managed Microsoft Access database, and backed up daily. Data from 2010 were managed by Maxwell, and later in that season were managed by Kaminak personnel using Maxwell data management applications. In early 2011, the 2010 data were migrated to the internally-managed and internally-designed Microsoft Access database.

Assay results were delivered by the primary laboratory electronically to Kaminak and were examined for consistency and completeness. Kaminak personnel reviewed assay results for analytical quality control samples using bias charts to monitor reliability and detect potential
assaying problems. Batches under review for potential failures were recorded in a quality control spreadsheet, investigated and corrective measures were taken when required.

The failure threshold for control samples was set at two times the standard deviation, based on recommended values provided by CDN. Quality control samples exceeding that threshold were investigated. Batches of barren samples containing a quality control failure were not re-assayed. Batches of samples containing more than one quality control failures were re-assayed completely. In batches containing one control sample failure, samples surrounding the failed control sample were re-assayed. After review, Kaminak requested either partial or complete batches of samples be re-assayed by ALS Minerals (Table 11). Re-assayed batches passed the quality control failure thresholds and were accepted. The assay database was updated, accordingly.

Table 11: Count of Batch Re-runs by Year

Year	Number of Sample Batches Partially or Wholly Re-assayed
2010	44
2011	28
2012	31

Mineral Processing and Metallurgical Testing

Kaminak commissioned SRK to supervise preliminary metallurgical testing on core sample rejects collected on the Coffee Project. The metallurgical testing work was conducted by Inspectorate Exploration \& Mining Services Ltd. ("Inspectorate") of Richmond, British Columbia under the supervision of John Starkey, P.Eng., of Starkey \& Associates Inc., an SRK associate metallurgist. The following summary of the testing results was reviewed by Mr. Starkey, a Qualified Person for the purpose of National Instrument 43-101.

Phase 1: Cyanidation Testwork (2011)

The scope of the testing included preliminary cyanide leach on two composite pulverized samples and leaching tests on different reagent levels to investigate commercial recovery levels. The purpose of the testing was to investigate preliminary cyanide leaching potential of the oxidized gold mineralization of the Supremo and Latte gold zones.

The objective of this program was to assess cyanidation response on two samples, including the following:

- Sample blending and preparation
- Head assaying
- Test grinds to determine grind time versus grind size curve
- Standard seventy-two (72) hour bottle roll cyanide leach in $0.5,1.0$, and $2.0 \mathrm{~g} / \mathrm{L}$ NaCN
- CIL 72 hour bottle roll test
- CIP 72 hour bottle roll test

Sample Selection

Table 12: Summary of Sample Selection
$\left.\begin{array}{llrrrrr}\hline \text { Sample \# } & \begin{array}{l}\text { Borehole } \\ \text { ID }\end{array} & \begin{array}{r}\text { From } \\ \text { (metre) }\end{array} & \begin{array}{r}\text { To } \\ \text { (metre) }\end{array} & \begin{array}{r}\text { No. of } \\ \text { Samples }\end{array} & \begin{array}{r}\text { Weight } \\ \text { (kilogram) }\end{array} & \begin{array}{c}\text { Grade } \\ \text { (gpt) }\end{array}\end{array} \begin{array}{c}\text { Head Grade } \\ \text { (gpt) }\end{array}\right]$

Sample 1 was derived from a blend of coarse assay rejects from two boreholes (CFD0001 and CFD0023). Sample A includes 20 samples of mineralized breccia hosted in felsic augen gneiss, with a weighted average grade of 16.56 gpt gold. Sample B includes 18 samples of fractured and brecciated dacite dike and felsic augen gneiss, with a weighted average grade of 1.95 gpt gold. Samples A and B were homogenized individually and assayed separately to determine their gold grade. Fractions of each sample were mixed to yield a calculated weighted average grade of 3.94 gpt gold. Sample 1 was re-homogenized and a split was assayed using a fire assay procedure yielding a grade of 4.01 gpt gold.

Sample 2 was derived from a blend of coarse assay rejects from one borehole (CFD0011). The sample includes a blend of 23 samples of strongly fractured and brecciated quartz-ribbon mylonite, with a weighted average grade of 2.52 gpt gold. Sample 2 was homogenized and a split was assayed using a fire assay procedure yielding a grade of 2.45 gpt gold.

Preparation of Test Samples

Testing material was collected from bulk assay rejects from oxidized core samples from the 2010 drilling program. Two composite samples were prepared: a higher grade sample (Sample 1) from the Supremo zone and a lower grade sample (Sample 2) from the Latte zone. Both samples were prepared by ALS Minerals in Whitehorse, Yukon by mixing and homogenizing selected coarse assay rejects. Sample 1 weighs approximately 42 kilograms and grades approximately 3.94 gpt gold. Sample 2 weighs 50 kilograms and grades approximately 2.52 gpt gold (Table 13).

Cyanidation Test Work Results

The testing program examined three leaching processes including standard 72 hour cyanide bottle roll, carbon in leach ("CIL") and carbon in pulp ("CIP") tests. Each composite sample was homogenized, pulverized and assayed using a fire assay procedure and multi-element inductively coupled plasma spectrometry, and split into 2-kilogram sub-samples for testing. Each sub-sample was pulverized separately to yield at least 80 percent passing 80 microns.

The results of the testing program are summarized in Table 13.
Table 13: Summary of Gold Extraction Results

Extraction Method	Sample 1 Supremo	Sample 2 Latte	Average
Cyanidation (bottle roll)	96.3%	97.9%	97.1%
Carbon-in-leach (CIL)	96.6%	98.5%	97.6%
Carbon-in-pulp (CIP)	96.7%	97.4%	97.1%

The salient conclusions of the tests completed by Inspectorate are as follows:

- All three variations of leaching methods produced very similar results with high levels of gold extraction;
- Basic cyanidation yields high extraction rates. There is no benefit to higher cyanide dosages;
- Carbon in leach results are very similar at 96.6 and 98.5 percent for Sample 1 and Sample 2, respectively;
- Carbon in pulp testing yields similar results with 96.7 and 97.4 percent extraction for Sample 1 and Sample 2, respectively;
- In all cases, the residues contain very low levels of gold, indicating that the tailings are ready for discharge; and
- There is no indication of refractory or coarse free gold in the two samples tested.

The results of the preliminary test work suggest that the oxidized gold mineralization tested at Supremo and Latte is amenable to conventional cyanide leaching and that excellent gold extraction can be achieved. Future testing should investigate the benefits of a coarser grind for the oxidized ores to reduce grinding requirements and flotation of the sulphide ore zones to determine recoveries and reduce leaching requirements.

Phase 2: Column Leach Testwork (2012)

The scope of the testing comprised column leach testwork of the material which returned high Au recoveries on the initial cyanidation testwork to assess the potential for heap leaching the oxide material. Testing was conducted on drill core derived from the same holes and intervals as the previously completed cyanidation test samples from Supremo and Latte.

Inspectorate Exploration and Mining Services Ltd. was retained by Mr. John Starkey on behalf of Kaminak Gold Corporation to continue metallurgical testing. The objective of this program was to assess heap leach column cyanidation response on a sample, including the following:

- head sample analysis
- preliminary 14 day bottle roll tests at two different crushes to select an optimum crush size for the main test.
- three (3) month continuous column leach test.

The composite tested was a mix of fifty (50) samples of split half drill core with a grade of 3.70 gpt Au and 0.89 gpt Ag .

Sample Selection

The 2012 composite sample used in the column leach testwork was derived from oxide mineralized samples selected and used in the 2011 initial cyanidation testwork completed on oxide material from the Supremo and Latte gold zones. The composite sample was prepared using half-core of the same core intervals from the 2011 testwork. Approximately equal proportions of core were selected from Supremo and Latte (Supremo 28 samples for 57 kg ; Latte 23 samples for $\sim 54 \mathrm{~kg}$) with the aim
to simulate a blend from two mining sources. The total composite was 111.2 kg at a weighted average grade of 3.52 gpt Au .

The Supremo mineralized samples consist of high-grade oxidized mineralized breccia hosted in felsic augen gneiss and lower grade fractured and brecciated dacite dike and felsic gneiss. The Latte gold zone samples consisted of strongly fractured and oxidized brecciated quartz-ribbon mylonite.

Preparation of Test Samples

The samples were collected on-site and delivered to Inspectorate in Vancouver. The 111.2 kg sample was crushed to 1 " and blended. Three samples were split out for further testing. One sample of 0.3 kg was sent for head analysis, returning a grade of 3.70 gpt Au . Two 5 kg samples were prepared for bottle roll testing. Test C 1 used the 1 inch $(2.54 \mathrm{~cm})$ crush size, while test C 2 used the second split, crushed to minus 0.5 inch (1.27 cm).

A standard 14 day bottle roll leach test was conducted on both samples to establish baseline data for selection of a size, at which to run the full column test. At the end of the 14 day test, the 0.5 inch crush produced an extraction rate of 92.1 percent gold versus 87.0 percent for the 1 inch crush size. The finer 0.5 inch crush was selected for the main column leach test.

Table 14: Initial Crush Size Results

Test No.	Sample	Crush inch	Measured Head		Calculated Head		Extraction		Residue		Consumption (kg / t)	
			$\begin{gathered} \mathrm{Au} \\ \text { (gpt) } \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{gpt}) \end{gathered}$	$\begin{gathered} \mathrm{Au} \\ (\mathrm{gpt}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \text { (gpt) } \end{gathered}$	Au (\%)	Ag (\%)	$\begin{gathered} \mathrm{Au} \\ \text { (gpt) } \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \text { (gpt) } \end{gathered}$	NaCN	Lime
C1	C	$1 "$	3.70	0.89	3.76	0.37	87.0	37.6	0.49	0.23	1.49	1.09
C2	Comp 1	1/2"	3.70	0.89	3.73	0.90	92.1	50.1	0.29	0.45	1.79	1.19

On the basis of the higher Au recovery (92.1%) on the 0.5 " crush, it was determined to proceed with 0.5 " crushing on the remaining composite for column leach testing.

Column Leach Testwork Results

The three month heap leach test at a 0.5 " $(1.27 \mathrm{~cm})$ crush resulted in cyanidation extraction rates of 90.4 percent Au and 43.9 percent Ag from a bulk sample with a head grade of 3.70 gpt Au and 0.89 gpt Ag. Leach recoveries are detailed in Table 15

Table 15: Summary of Test Results

Leach Days (80)	S/L Ratio (L/kg)	Weight (kg)	$\mathrm{C}_{\mathrm{NaCN}}$ (g / L)	Gold Leach Data				Silver Leach Data			
				(mg/L)		(mg)	\% Rec	(mg/L)	(g/t)	(mg)	\% Rec
Leach Inventory	4.99		0.30	0.04		6.61	6.4	0.02		2.75	13.8
1st Wash Solution	0.32		0.34	<0.01		0.00	0.00	<0.01		0.00	0.00
2nd Wash Solution	0.32		0.10	<0.01		0.00	0.00	<0.01		0.00	0.00
3rd Wash Solution	0.35		0.05	<0.01		0.00	0.00	<0.01		0.00	0.00
Carbon						86.81	84.0			6.01	30.2
Total Recovered							90.4				43.9
**Residue		30.08			0.33	9.93	9.6		0.37	11.18	56.1
Total	5.98		0.27			103.34	100			19.94	100
Calculated Head Measured Head					$\begin{aligned} & 3.44 \\ & 3.70 \end{aligned}$				$\begin{aligned} & 0.66 \\ & 0.89 \\ & \hline \end{aligned}$		

Figure20: Metal Extraction Rate

The salient conclusions of the tests completed by Inspectorate are as follows:

- Gold leaching started rapidly, with recovery reaching 80 percent within the first 10 days. Following the initial period, leaching continued at a relatively constant rate to reach 90.4 percent on day 80 .
- The grade of the gold remaining in the column residue upon completion was relatively constant across all size ranges, for both the top and bottom halves of the column. The Au distribution was higher in the coarser fractions due to the higher percentage of that sized material.
- Silver leaching was significantly lower reaching an ultimate level of 43.9 percent extraction on day 80 . This is due to the very low grade of metal in the feed and the possibility of some refractory silver present.

Phase 3: Cyanidation Testwork (2012)

The scope of the testing included preliminary cyanide leach on material/deposits not previously tested, including sulphide material from Latte, deep Oxide/Transitional material from Supremo and Oxide material from Double Double.

Inspectorate Exploration and Mining Services Ltd. was retained by Mr. John Starkey on behalf of Kaminak Gold Corporation to continue metallurgical testing on samples from the Coffee Project. The objective of this program was to assess cyanidation response on three samples, including the following:

- Sample blending and preparation
- Head assaying
- Test grinds to determine grind time versus grind size curve
- Standard seventy-two (72) hour bottle roll cyanide leach in $0.5,1.0$, and $2.0 \mathrm{~g} / \mathrm{L}$ NaCN
- CIL 72 hour bottle roll test
- CIP 72 hour bottle roll test

Sample Selection

Three composite samples derived from the three main deposits on the Coffee Property were selected for metallurgical test work based on average grade and oxidation states. Samples were selected from Latte, Supremo and Double Double zones to test metallurgical recovery of gold hosted in sulphide, transitional oxide and oxide facies respectively.

Table 16: Summary of Sample Selection

Comp. No.	Prospect	Sample Description	\# of Samples	Weight (kg)	Av Grade (gpt)
COMP 1	Latte	FRESH (Sulphide)	64	44.74	$\mathbf{4 . 1 6}$
COMP 2	Supremo	TRANS / OXIDE	48	41.43	$\mathbf{3 . 3 6}$
COMP 3	Double Double	OXIDE	89	47.20	$\mathbf{6 . 2 7}$

COMP 1 from Latte was collected from one drill hole (CFD164 from 343m to 478m) downhole comprising fresh Sulphide facies mineralization. Mineralization is hosted in ribbon-quartz mylonite and breccia, and is associated with silicification and approximately 15 percent sooty and finely disseminated sulphide.

COMP 2 from Supremo was collected from four drill hole intercepts within the T3 structure at depths of 211 m to 243 m downhole. The core is predominantly oxidized with approximately 5 percent remnant fresh sulphide-bearing material, therefore it is interpreted to be within the upper Transitional Zone. Mineralization is hosted within brecciated felsic gneiss and dacite dike.

COMP 3 from Double Double was collected from six drill holes at depths ranging from 28.5 m to 102.5 m downhole. The core is predominantly oxidized, with minor sulphide-bearing material occurring mainly on the low grade edges of the mineralized structures, therefore it is classified as Oxide Zone.

Preparation of Test Samples

Bulk rejects stored after initial assaying at ALS were used for the testwork. Individual samples were dispatched by ALS Minerals in Whitehorse, Yukon, to Inspectorate Exploration and Mining Services Ltd. In Richmond, BC. Samples were blended and splits taken for head assaying and test grinding.

Cyanidation Testwork Results

Each composite sample representing sulphide, oxide transitional and oxide facies was subjected to 72 hour bottle roll kinetic cyanide leach at three (3) different NaCN dosages. Leach recoveries are detailed in Table 17.

Table 17: Summary of Bottle Roll Test Results

Test No.	Sample ID	P80	$\mathbf{N a C N}$						
$\boldsymbol{\mu m}$	$\mathbf{g / L}$	Measured Head $\mathbf{A u}(\mathrm{gpt})$	Calc. Head (gpt)	Recovery $\mathbf{A u}(\%)$	Residue $\mathbf{A u}(\mathrm{gpt})$	Consumption (kg/t)			
C1	Comp 1	88	0.5	4.4	4.1	5.1	3.85	0.85	1.00
C2	Comp 1	90	1.0	4.4	4.1	5.0	3.87	1.65	0.66
C3	Comp 1	90	2.0	4.4	3.9	3.2	3.73	2.63	0.55
C4	Comp 2	117	0.5	3.4	3.6	92.3	0.28	0.81	0.50
C5	Comp 2	112	1.0	3.4	3.6	91.9	0.29	1.50	0.40
C6	Comp 2	121	2.0	3.4	3.8	93.0	0.27	1.98	0.38
C7	Comp 3	97	0.5	7.0	7.2	96.8	0.23	0.81	0.66
C8	Comp 3	95	1.0	7.0	6.9	97.1	0.20	1.53	0.47
C9	Comp 3	93	2.0	7.0	6.9	96.8	0.22	2.23	0.37

Following Tests C1-C9 at varying NaCN dosage, CIL/CIP testwork was undertaken on Comp 2 and Comp 3 at $0.5 \mathrm{~g} / \mathrm{L} \mathrm{NaCN}$. Due to the low bottle roll recoveries on Comp 1, samples were prepared at three grind sizes $(90 \mu \mathrm{~m}, 35 \mu \mathrm{~m}$ and $20 \mu \mathrm{~m})$ and submitted for CIL testing. Leach recoveries are detailed in Table 18.

Table 18: Summary of CIP/CIL Test Results

Test No.	Test Type	Sample ID	$\begin{aligned} & \mathrm{P} 80 \\ & \mu \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{NaCN} \\ \mathrm{~g} / \mathrm{L} \end{gathered}$	Measured Au (gpt)	Calc. Head Au (gpt)	Recovery Au (\%)	Residue Au (gpt)	Consumption (kg/t)	
									NaCN	Lime
C10	CIL	Comp 2	108	0.5	3.4	3.2	90.7	0.30	1.00	0.46
C11	CIL	Comp 3	96	0.5	7.0	6.1	96.0	0.24	0.99	0.45
C12	CIP	Comp 2	114	0.5	3.4	3.2	91.5	0.27	1.03	0.61
C13	CIP	Comp 3	99	0.5	7.0	6.2	96.5	0.22	1.08	0.56
C14	CIL	Comp 1	90	0.5	4.4	3.8	2.0	3.71	1.03	0.77
C15	CIL	Comp 1	35	0.5	4.4	3.8	2.8	3.82	1.04	1.00
C16	CIL	Comp 1	20	0.5	4.4	3.8	5.3	3.74	1.82	0.78

The salient conclusions of the tests completed by Inspectorate are as follows:

- Recovery results for Comp2 and Comp3 representing oxide transitional and oxide facies mineralization returned excellent results. Average gold recoveries of 92.4 percent for Comp 2 (Supremo) and 96.9 percent for Comp 3 (Double Double) are consistent with previous metallurgical results produced from wholly to partially oxidized material.
- Sulphide mineralization in Comp1 (Latte) returned recovery rates ranging from 2.0 percent to 5.3 percent. At the time of publication of this Report diagnostic leach testwork is underway with the aim to determine the mineral association of gold. Further testwork will then be determined to assess possible processing options for gold recovery from this type of mineralization.

Mineral Resource Estimate

Introduction

The Mineral Resource Statement presented herein represents the maiden mineral resource evaluation prepared for the Coffee project in accordance with the Canadian Securities Administrators' National Instrument 43-101.

The mineral resource estimation process was a collaborative effort between Kaminak Gold Inc. (Kaminak) and SIM Geological Inc. (SIM Geological) staff. The interpretation of the geologic model was prepared by Kaminak personnel and was reviewed by SIM Geological and used as resource domains to constrain grade estimation. The geostatistical analysis, variography, selection of resource estimation parameters, construction of the block model, and the conceptual pit optimization work were completed by Mr. Robert Sim, P.Geo. of SIM Geological, with the assistance of Bruce Davis, FAusIMM of BD Resource Consulting Inc. Based on his education; work experience that is relevant to the style of mineralization and deposit type under consideration and to the activity undertaken; and, membership to a recognized professional organization, Mr. Sim, is a Qualified Person pursuant to National Instrument 43-101 and independent from Kaminak. The effective date of the Mineral Resource Statement is December 13, 2012.

This section of the technical report describes the resource estimation methodology and summarizes the key assumptions considered by SIM Geological to prepare the initial mineral resource model for the gold mineralization delineated by trenching and drilling on the Coffee project. In the opinion of the Qualified Persons, the resource evaluation reported herein is a reasonable representation of the gold mineralization found in the Coffee project at the current level of sampling. The mineral resource has been estimated in conformity with generally accepted CIM Estimation of Mineral Resource and Mineral Reserves Best Practices Guidelines and is reported in accordance with the Canadian Securities Administrators' National Instrument 43-101. Mineral resources are not mineral reserves and they do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resource will be converted into a mineral reserve upon application of modifying factors.

Estimates of mineral resources for the Supremo, Latte, Double Double and Kona deposit areas are prepared using three-dimensional block models based on geostatistical applications, and are created using commercial mine planning software (MineSight ${ }^{\circledR} \mathrm{v} 7.50$). The project limits are based on the local UTM coordinate system (NAD83 Zone7). The block size varies between deposit areas: 5×5 x 2 metres at Kona and Double Double, and increasing to $10 \times 5 \times 3$ metres at Latte and Supremo. The long axis of the blocks is aligned with the strike of the zone, and the shorter dimension is aligned across the strike direction. The database was developed by Kaminak during exploration programs conducted during the summer field seasons of 2010-2012. There are 659 holes in the database: 290 diamond drill core holes, and 369 reverse circulation holes. The location of each deposit and its relative distribution of drill holes are shown in Figure 10.

Figure 21: Isometric View Showing the Distribution of Drill Holes and Deposit Areas

The majority of the drilling is conducted with holes located on north-south or east-west oriented cross sections and is designed to intersect the interpreted mineralized zones at right angles. Where holes are fanned from a single setup, the pierce angles between drill holes, and the typically steepdipping target horizons, become smaller with depth. In such cases, Kaminak will often drill parallel holes on-section from individual setup locations. The distribution of pierce points into the target horizons is variable: 50×25 metre or 50×50 metre grid patterns in many areas, expanding to $100 \times$ 50 metre or 100×25 metre grid patterns in other areas (100-metre section spacing x 50 -metre to 25 metre spacing down-dip). There are several gaps that exceed 100 metres in the drilling information, but these are rare. Overall, drilling has been conducted on a systematic pattern throughout the majority of the areas containing mineral resources.

Mineral resource estimates are generated using drill hole sample assay results and the interpretation of a geologic model that relates to the spatial distribution of gold in the deposits. Interpolation characteristics were defined based on a combination of the geology, drill hole spacing, and geostatistical analysis of the data. The mineral resources are classified according to their proximity to the sample locations and are reported, as required by NI 43-101, according to the CIM Definition Standards for Mineral Resources and Mineral Reserves (November 2010).

Geologic Model and Estimation Domains

Gold mineralization at Coffee is located within a series of steeply dipping structures that cross-cut all rock units on the property. The structural zones are identified in the drill core, and from surface mapping and trenching. Soil sampling has also located favourable horizons in many areas which have been subsequently drilled. Although the nature of these structural zones can exhibit a variety of characteristics, including faulting, brecciation, silicification, alteration, and local sulphide veining, they can be traced with regularity over strike lengths greater than 2 km .

A series of structural domains have been interpreted in each resource area using a combination of surface mapping, geologic core (and reverse circulation chip) logging, and the distribution of gold grades in drilling sample data. These structural domains represent the known geologic conditions
that have the potential to host gold mineralization. In addition, Kaminak geologists have developed a more detailed interpretation within each structural domain that represents the interconnected nature of the (generally) higher-grade gold mineralization. Although it is believed that the gold mineralization is interconnected between drill holes, the detailed interpretation typically isolates only the higher-grade samples and represents a somewhat optimistic selection of the data between drill holes. For future modeling, when the volume and density of drilling data has increased, this level of detailed interpretation may be more confidently applied and used. However, at this relatively early stage of project evaluation, a more conservative modeling approach has been adopted which includes some degree of internal dilution in the estimate. As a result, the larger structural domains have been used to constrain grade estimation. The extent of these structural domains is shown in Figure 22. The individual areas at Supremo, (T2, T3, T4, T5, and T7) are named after the trenches that were initially used to investigate the surface mineralization in these areas.

Figure 22: Structural Domains at Supremo, Latte, Double Double, and Kona

Each deposit area is comprised of a series of sub-parallel, braided structural domains that coalesce and bifurcate along the general strike-orientation of the zone. Individual structural zones have been sub-divided for modeling purposes, and, within each zone, a three-dimensional plane was interpreted that represents the overall trend of the gold mineralization. These trend planes are then used to orient search directions so that samples of a similar nature are interconnected during grade interpolation in the block model. This approach introduces a dynamic, anisotropic search process that reproduces the somewhat complex, undulating, and banded nature of the gold mineralization in the block model that would otherwise be impossible to achieve using traditionally-oriented search ellipses. The overall distribution of gold in the model is similar to the detailed interpretation domains, but, as previously stated, some degree of internal dilution has been incorporated into the process.

Figure 23 shows the individual zones defined at Supremo, Latte, and Double Double. Figure 24 shows the trend planes defined for each individual structural zone at Supremo, Latte, and Double Double.

Figure 23: Individual Structural Zones Defined at Supremo, Latte, and Double Double

Figure 24: Planes Representing Trends of Mineralization in Each Structural Zone

The distribution of surface weathering was also interpreted using drilling results. Based on qualitative, visual estimates, "Oxide" resources refer to rocks that are completely oxidized. "Transition" resources refer to rocks that contain some degree ($5-95$ percent) of oxidation. "Sulphide" resources refer to rocks that exhibit primary sulphides and show no signs of oxidation. Preliminary metallurgical test results show that the oxide material is amenable to cyanide leaching. And although the Transition zone is, by definition, a mix of oxide and sulphide material, there is often a correlation between the presence of gold and the amount of oxidation observed. The depth of oxidation tends to be quite shallow close to the deposits, but it is strongly influenced by the relatively permeable rocks of the hosting structural zones. These areas have channelled pervasive oxidation to depths exceeding 200 metres below surface in some locations.

A surface that represents the base of colluvial overburden was also generated. Although overburden is present across most of the deposit areas, it is typically less than 5 metres thick.

Available Data

There are a total of 659 individual drill holes in the project database with a total of 129,699 metres of drilling; 290 holes (70,705 metres) are diamond drill core holes and 369 holes (58,994 metres) were drilled using reverse circulation drilling rigs.

Analysis of gold assay data shows that there is no apparent bias between diamond drill and reverse circulation samples. The distribution of diamond drill and reverse circulation holes is shown in Figure 25. Note that there are no reverse circulation holes at Latte or Double Double. Kona was primarily delineated using reverse circulation drilling. Supremo was tested with a combination of diamond drill holes and reverse circulation holes.

Figure 25: Distribution of Diamond Drill (DD) and Reverse Circulation (RC) Drill Holes

The project database includes resource delineation drilling plus other drill holes that test surrounding exploration targets. Only drill holes that intersect the structural zone domains in each
of the deposit areas have been considered for use in the resource models. A summary of the drill holes used in the resource models for the four deposit areas is listed in Table 19.

Table 19: Summary of Drilling Used in Each Model Area to Estimate Mineral

 Resources| Deposit | Number of
 Holes | Drilling
 (metres) |
| :--- | ---: | ---: |
| Supremo | 421 | 78,073 |
| Latte | 76 | 19,821 |
| Double Double | 45 | 12,162 |
| Kona | 39 | 6,273 |
| Total | $\mathbf{5 8 1}$ | $\mathbf{1 1 6 , 3 2 9}$ |

The majority of the drilling was conducted on cross sections oriented north-south or east-west and designed to intersect at approximately right angles to the strike orientation of the mineralized zones.

The majority of drilling at Double Double and Kona was conducted on north-south sections, spaced at 50-metre intervals. The majority of on-section holes intersect the target horizon at 25 -metre intervals down the dip plane.

Most of the drilling at Latte was completed on north-south sections spaced at 100 -metre intervals, with pierce points at 50 -metre intervals along the dip plane. There are three areas in the centre of Latte that have drilling on 50-metre spaced sections.

Drilling at Supremo is conducted on east-west -oriented cross sections, typically spaced at 50-metre intervals, with pierce points spaced at 25 metre intervals on each section. For a strike distance of 400 metres in the central part of the T3 zone, detailed drilling was conducted on sections spaced at 25 metres. The section spacing increases to 100 metres, with on-section pierce points at 25 -metre intervals, at the north end of T3, and the southern ends of T3, T4, and T5. Rather than fan multiple holes from single setups, most drill holes at Supremo have unique setup locations that result in parallel holes that consistently intersect the target horizon at approximately right angles.

At the end of each drilling campaign, the drill hole collar locations are surveyed using a differential GPS. The collar location of each drill hole correlates very well with the local digital terrain (topographic) surface.

Although elevated arsenic values can often identify the structural zones in drilling, only the gold data has been extracted from the assay database and imported into MineSight ${ }^{\circledR}$ for use in the development of the resource models. The statistical summary of the available gold sample data for each deposit area is presented in
Table 20.

Additional data used in the interpretation of the geologic model includes lithologic designations obtained during geologic logging of the drill core and reverse circulation chips. Surface geologic mapping has provided the location of the structures on surface. Kaminak provided a topographic

Table 20: Statistical Summary of Gold Assay Data

Element	Count	Total Length (metres)	Minimum Maximum	Mean ${ }^{(1)}$	Std. Dev.	
Supremo	64,476	73,562	0.001	86.800	0.242	1.696
Latte	29,731	19,451	0.001	48.700	0.230	1.325
Double Double	17,390	11,878	0.001	120.250	0.218	2.661
Kona	5,927	6,209	0.001	36.500	0.211	0.996

${ }^{(1)}$ Statistics are weighted by sample length.
digital terrain surface as a gridded point file ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) that was originally produced using contour lines spaced at 10 -metre intervals. This data was originally derived from a LiDAR survey of the conducted by Eagle Mapping in 2010.

Individual sample intervals range from 0.1 metres to 7 metres in length and average 1.18 metres. The standard sample interval for a diamond drill hole is 1 metre, except at Double Double where 2012 drilling was sampled on 0.5 -metre intervals. Reverse circulation drilling is sampled on 1.52metre (5 foot) intervals.

Bulk density measurements were conducted for 4,822 samples in the database. Specific gravity measurements are typically made at 10 -metre intervals down most of the diamond drill holes. The frequency of specific gravity measurements may be increased within the structural zones.

Recovery data is available for essentially all diamond drill holes with an average of 95 percent. Ninety-four percent of the sample intervals show recoveries greater than 80 percent, and only 391 samples have recoveries less than 50 percent. There is no apparent correlation between recovery and gold content. Recovery data is not available for reverse circulation drilling. Personal site inspection of the procedures indicates that recoveries are very good. There is a loss of very fine dust during drilling, but this represents a very small volume of material and it is not believed to bias the samples to any measurable degree. Numerous reverse circulation reject samples were observed in the field; they show very consistent sample sizes which is a reflection of the nature of reverse circulation recoveries throughout the drilling process. There were no adjustments or omissions to the database in response to diamond drill or reverse circulation recoveries.

Compositing

Compositing drill hole samples standardizes the database for further statistical evaluation. This step eliminates any effect the sample length may have on the data.

To retain the original characteristics of the underlying data, a composite length that reflects the average, original sample length is selected: a too long composite can sometimes result in a degree of smoothing that can mask certain features of the data. The majority of samples were taken at two standard lengths: 1.00 metre in diamond drilling, and 1.53 metres in reverse circulation drilling, with an average of 1.18 metres. A standard composite length of 1.00 metre was used for geostatistical analysis and grade estimation.

Drill hole composites are length-weighted and are generated down-the-hole, meaning composites begin at the top of each hole and are generated at 1 metre intervals down the length of the hole. Composites honour the structural domain contacts (in other words, individual composites begin and
end at the point where a drill hole crosses the domain boundary). Several holes were randomly selected and the composited values were checked for accuracy. No errors were found.

Exploratory Data Analysis

Exploratory data analysis (EDA) involves statistically summarizing the database to better understand the characteristics of the data that may control grade. One of the main purposes of EDA is to determine if there is evidence of spatial distinctions in grade. This would require the separation and isolation of domains during interpolation. The application of separate domains prevents unwanted mixing of data during interpolation, and the resulting grade model will better reflect the unique properties of the deposit. However, applying domain boundaries in areas where the data is not statistically unique may impose a bias in the distribution of grades in the model. A domain boundary, which segregates the data during interpolation, is typically applied if the average grade in one domain is significantly different from another. A domain boundary may also be applied where a significant change in the grade distribution exists across the contact.

Basic Statistics by Domain

Summary statistics are evaluated using a series of boxplots; these boxplots compare the individual structural zone domains in each model area. Examples from the four deposit areas are shown in Figures 26, 27, 28, and 29.

There are differences between the individual structural zones, and these typically show higher gold content compared to the surrounding samples. Note the variability between some of the individual structural zones. Some of the interpreted zones contain relatively low amounts of gold.

Figure 26: Boxplot for Gold in Structural Zone Domains at Supremo

Figure 27: Boxplot for Gold in Structural Zone Domains at Latte

Figure 28: Boxplot for Gold in Structural Zone Domains at Double Double

Figure 29: Boxplot for Gold in Structural Zone Domains at Kona

Contact Profiles

Contact profiles evaluate the nature of grade trends between two domains; they graphically display the average grades at increasing distances from the contact boundary. Those contact profiles that show a marked difference in grades across a domain boundary indicate that the two datasets should be isolated during interpolation. Conversely, if a more gradual change in grade occurs across a contact, the introduction of a hard boundary (in other words, segregation during interpolation) may result in much different trends in the grade model; in this case, the change in grade between model domains is often more abrupt than the trends seen in the raw data. Finally, a flat contact profile indicates that there are no grade changes across the boundary; in this case, hard or soft domain boundaries will produce similar results in the model.

A series of contact profiles were generated that compare sample data inside compared to sample data outside of the interpreted structural zone domains. Figure 30 shows an example from Latte. There is a marked drop in gold grade between samples inside the structural zones compared to the surrounding data. This trend is similar for all deposit areas.

Figure 30: Contact Profile Comparing Samples Inside/Outside the Structural Zones at Latte

Modeling Implications

Boxplots show that similarities and differences exist between the gold content of the individual structural zones in each of the deposit areas, but, overall, the individual structural zones all differ from samples located outside of the domains. This feature is also supported by the contact profiles that show the structural zone domains contain gold grades that exceed those in surrounding sample data. The author concludes that the interpreted structural zone domains contain data that is sufficiently different than surrounding sample data and these data should be segregated during model grade interpolations.

Although the results show that some differences exist between individual structural zones, they tend to be somewhat subtle. The individual structural zones represent individual bands of mineralization. The segregation of these zones is primarily based on differences in the trends and continuity of the mineralization rather than differences in grade between zones. Therefore, segregation of these zones allows for better reproduction of the interpreted trends of gold mineralization in the resource model.

Conclusions

Each deposit area contains two or more individual structural zones that are used as hard boundary domains during the development of the resource model. This means that data is not mixed between zones during block grade interpolation. The resulting structural zone domains are summarized in Table 21 and shown in Figures 44-47. Note that the area outside of the structural zone is essentially barren and shows no potential for economic gold resources. No grade estimates were conducted outside of the structural zone domains.

Table 21: Summary of Estimation Domains

Area	Comments
Supremo	
T2 area	3 structural zones. All with 25° azimuth and -70° dip to the east. One larger main zone and two smaller ones to the FW side.
T3 area	3 structural zones. One zone extends over 2 km with 20° azimuth and -80° dip to the east. The other 2 zones are less continuous but similar orientation. T3 contains some of the higher grade resources on the property.
T4 area	3 structural zones with 30° azimuth and -60° dip to the south-east. The larger of the 3 zones has strike length of about 1 km .
T5 area	3 structural zones. One of which has a strike length of over 1.6 km . In general, these have 345° azimuth and -80° dip to the east. The north end of T5 swings sub-parallel to T 3 .
T7 area	5 structural zones. All trend north-south and are vertically oriented.
Latte	2 structural zones. A thicker main zone with 110° azimuth and -65° dip to the south. A second thinner zone on the FW side with W-E orientation and vertical dip.
Double Double	4 structural zone domains with 255° azimuth and -85° dip to the north.
Kona	2 structural zone domains with 70° azimuth and -85° dip to the south.

Figure 31: Structural Zones at Supremo

Figure 32: Structural Zones at Latte

Figure 33: Structural Zones at Double Double

Figure 34: Structural Zones at Kona

Specific Gravity Data

The methodology used to generate the specific gravity database is described in detail in Section 10.3 of this report.

Although there is a relatively large specific gravity database, and the frequency of samples is generally quite good, the fact that these measurements have only been conducted on diamond drill core holes results in a lack of specific gravity data for both Kona and parts of Supremo. It is felt that the distribution of specific gravity data is insufficient to interpolate individual values in model blocks. However, there is sufficient data to estimate an average value that can be applied to the models. The basic statistical summary of specific gravity data is shown in Table 22.

Table 22: Summary of Specific Gravity Data by Area and Domain

Element	$\begin{aligned} & \hline \text { In/out } \\ & \text { domains } \end{aligned}$	Minimum	Maximum	Mean ${ }^{(1)}$	Comments
Supremo	Inside	1.45	3.69	2.51	Data clusters in specific areas
	Outside	1.44	3.08	2.60	
Latte	Inside	1.37	3.01	2.61	Good distribution of data
	Outside	1.17	3.63	2.67	
Double Double	Inside	1.85	3.05	2.57	Good distribution of data
	Outside	2.18	3.72	2.65	
Kona	Inside	2.21	2.68	2.47	Limited data available
	Outside	2.12	2.75	2.54	
Total	Inside	1.45	3.69	2.56	
	Outside	1.17	3.72	2.64	

${ }^{(1)}$ Statistics are arithmetic weighted.
There is relatively little difference in specific gravity values between the four deposit areas; the only exception is at Kona where specific gravity data is quite limited. Specific gravities show little variability due to similar host rock assemblages and low sulphide content. The average values tend to be slightly lower in the structural domains and this can be attributed to the fact that these zones are often oxidized to some extent. Based on these results, a specific gravity of $2.56 \mathrm{t} / \mathrm{m}^{3}$ was assigned to all blocks within the structural domains; an average of $2.64 \mathrm{t} / \mathrm{m}^{3}$ was assigned to all other blocks in the model. Blocks coded as overburden are assigned a specific gravity of $1.9 \mathrm{t} / \mathrm{m}^{3}$.

Evaluation of Outlier Grades

Histograms and probability plots were generated to show the distribution of gold in each structural zone. These were used to identify the existence of anomalous outlier grades in the composite database. The physical location of these potential outlier samples were reviewed in relation to the surrounding data. It was decided that, in most cases, potential outlier samples would be controlled through a combination of traditional top-cutting and the use of outlier limitations during block grade interpolation. An outlier limitation approach limits samples above a defined threshold to a maximum distance of influence during grade estimates. In most cases, a maximum range of 30 metres was applied to outlier samples. A 50-metre range was used in Latte zone 1 and Supremo zone 9 in response to the wider-spaced drilling in these areas. The various thresholds and the resulting effects on the model areas are listed in Table 23.

The reduction in gold metal in all areas is considered reasonable for this deposit at this stage of evaluation. The relatively high reduction at Double Double is due to the relatively small size of this deposit and the presence of relatively few very high grade composites.

Table 23: Summary of Capping Levels and Outlier Limitations Applied

Domain	$\underset{(\mathrm{gpt})^{(1)}}{\operatorname{Maximum}}$	Top-cut Limit (gpt)	$\begin{array}{r} \text { Outlier } \\ \text { Limitation } \\ (\mathrm{gpt})^{(2)} \end{array}$	\% Metal Lost ${ }^{(3)}$
Supremo				
T2 - Zone1	19.800	n/a	10	
T2 - Zone2	7.150	n/a	3	-9.3\%
T2 - Zone3	22.000	n/a	10	
T3-Zone4	17.900	n/a	10	
T3-Zone5	82.400	60	40	-7.3\%
T3-Zone6	27.600	15	10	
T4 - Zone7	9.560	n/a	6	
T4-Zone8	17.250	n/a	10	-6.8\%
T4 - Zone9	21.800	n/a	12	
T5-Zone10	35.475	20	10	
T5-Zone11	50.300	30	20	-3.5\%
T5-Zone12	25.300	20	15	
T7-Zone13	3.140	n/a	n/a	
T7-Zone14	7.135	n/a	4	
T7-Zone15	8.780	n/a	n/a	-2.7\%
T7 - Zone16	5.410	n/a	4	
T7-Zone17	3.190	n/a	n/a	
All Supremo domains combined				-5.7\%
Latte				
Zone1	30.568	20	15	-4.9\%
Zone2	48.700	35	25	
Double Double				
Zone1	11.577	n/a	n/a	
Zone2	120.250	70	50	-16.7\%
Zone3	47.500	25	15	
Zone4	21.500	n/a	12	
Kona				
Zone1	36.500	15	10	-3.0\%
Zone2	9.849	n/a	n/a	

[^1]
Variography

The degree of spatial variability and continuity in a mineral deposit depend on both the distance and direction between points of comparison. Typically, the variability between samples is proportionate to the distance between samples. If the variability is related to the direction of comparison, then the deposit is said to exhibit anisotropic tendencies which can be summarized by an ellipse fitted to the ranges in the different directions. The semi-variogram is a common function used to measure the spatial variability within a deposit.

The components of the variogram include the nugget, the sill, and the range. Often samples compared over very short distances (including samples from the same location) show some degree of variability. As a result, the curve of the variogram often begins at a point on the y-axis above the origin; this point is called the nugget. The nugget is a measure of not only the natural variability of the data over very short distances, but also a measure of the variability which can be introduced due to errors during sample collection, preparation, and assaying.

Typically, the amount of variability between samples increases as the distance between the samples increase. Eventually, the degree of variability between samples reaches a constant or maximum value; this is called the sill, and the distance between samples at which this occurs is called the range.

The spatial evaluation of the data was conducted using a correlogram instead of the traditional variogram. The correlogram is normalized to the variance of the data and is less sensitive to outlier values; this generally gives cleaner results.

Correlograms were generated for the distribution of gold in the various areas using the commercial software package Sage 2001© developed by Isaacs \& Co. Due to a lack of available information in some areas, sample data from multiple structural zones was combined to generate correlograms. Multidirectional correlograms were generated from composited drill hole samples and the results are summarized in the Table 24.

Correlograms were generated using relative distances from the trend planes rather than the true sample elevations. This approach essentially flattens out each structural zone during interpolation relative to the defined trend plane. For Double Double and Supremo T3, correlograms were produced from composites that have been capped at 5 gpt gold to eliminate any effects the few very high-grade samples in these areas.

Table 24: Gold Variogram Parameters

Area/Domain	Nugget	S1	S2	1st Structure			2nd Structure		
				Range (m)	AZ	Dip	Range (m)	AZ	Dip
SupremoT2	0.250	0.400	0.350	50	180	-6	65	0	-10
	Spherical			20	0	-84	65	180	-80
				5	90	0	15	90	0
Supremo T3	0.300	0.550	0.150	25	0	0	75	0	0
	Spherical (capped to 5g)			25	0	-90	75	0	-90
				5	90	0	10	90	0
SupremoT4	0.250	0.600	0.150	25	180	-25	60	180	-25
	Spherical			25	0	-65	60	0	-65
				10	90	0	20	90	0
$\begin{aligned} & \text { Supremo } \\ & \text { T5 } \end{aligned}$	0.300	0.550	0.150	20	0	0	60	0	0
	Spherical			20	0	-90	60	0	-90
				5	90	0	10	90	0
SupremoT7	0.250	0.600	0.150	25	0	0	75	0	0
	Spherical			25	0	-90	75	0	-90
				5	90	0	10	90	0
Latte	0.410	0.551	0.040	35	270	-5	125	90	0
	Spherical			13	90	-85	15	0	-90
				8	0	0	8	0	0
Double Double	0.375	0.581	0.044	21	90	-82	250	90	-1
	Spherical (capped to 5 g)			10	270	-8	185	270	-89
				5	0	0	5	0	0
Kona	0.300	0.589	0.111	20	270	-4	4779	270	-2
	Spherical			9	90	-86	439	90	-88
				5	0	0	5	0	0

Note: Correlograms modelled using sample data composited to 1 metre intervals.

Model Setup and Limits

Four block models were initialized in MineSight ${ }^{\circledR}$ with the dimensions defined in Table 25. Two block sizes were selected considering the current drill hole spacing and the selective mining unit (SMU) size that is considered appropriate for deposits of this type and scale. In all cases, the short axis is oriented across the strike of the deposit. The models are not rotated.

Table 25: Block Model Limits

Direction	Minimum $($ metre $)$	Maximum $($ metre $)$	Block Size $($ metre $)$	Number of Blocks
Supremo				
East	583,750	585,160	3	470
North	$6,973,100$	$6,975,500$	10	240
Elevation	650	1320	5	134
Latte			584,300	10
East	582,400	$6,973,500$	3	190
North	1,160	5	200	
Elevation	$6,972,900$			112
Double Double	600	585,500	5	150
East	584,750	$6,973,500$	2	235
North	1,130	5	106	
Elevation	$6,973,030$			
Kona	600			580,050
East	579,450	$6,973,300$	2	120
North	1,320	5	225	
Elevation	$9,972,850$	950		2

${ }^{(1)}$ UTM coordinates (Nad83 datum, zone 7), elevation relative to mean sea level.
Using the domain wireframes, blocks in the model are assigned zone code values on a majority basis. Blocks with more than 50 percent of their volume inside a wireframe domain are assigned a zone code value of that domain.

The proportion of blocks within the structural zone domain is also calculated and stored within the model as a percentage. These values are used as a weighting factor to determine the volume and tonnage estimates.

Blocks are also assigned Oxide, Sulphide, Transition, or Overburden codes on a majority basis. The portion of each block located below the topographic surface is also stored as a percentage in each model block.

Interpolation Parameters

The block model grades for gold were estimated using ordinary kriging. Estimates were validated using the Hermitian Polynomial Change of Support model (Journel and Huijbregts, 1978), also known as the Discrete Gaussian Correction. The ordinary kriging models were generated with a relatively limited number of composites to match the change of support or Herco (Hermitian correction) grade distribution. This approach reduces the amount of smoothing (also known as averaging) in the model and, while there may be some uncertainty on a localized scale, this approach produces reliable estimates of the potentially recoverable grade and tonnage for the overall deposit. The interpolation parameters are summarized by domain in Table 26.

Table 26: Interpolation Parameters

Area/ Domain	Search Ellipse Range (metre) ${ }^{(1)}$	Number of Composites			Other
	$\begin{array}{lll}X & Y & Z\end{array}$	Minimum	Maximum	Maximum Per Hole	
Supremo T2	5200200	1	9	3	1 hole per quadrant
Supremo T3	4200200	1	9	3	1 hole per quadrant
Supremo T4	5200200	1	12	4	1 hole per quadrant
Supremo T5	5200200	1	12	4	1 hole per quadrant
Supremo T7	5200200	1	15	5	1 hole per quadrant
Latte	1504150	1	9	3	1 hole per quadrant
Double Double	1504150	1	6	2	1 hole per quadrant
Kona	$150 \quad 3150$	1	6	2	1 hole per quadrant

${ }^{(1)}$ The longer ranges are oriented parallel to the mineralization trend planes. The shortest range is perpendicular to the plane of mineralization.

During grade estimation, search orientations were designed to follow a mineralization trend surface interpreted to represent the general trend of the mineralization in each of the structural zone domains (as described in Section 13.2).

The distance from this trend plane is assigned to all composited drill hole samples and model blocks and is used to replicate the undulating and banded nature of the deposit.

Block Model Validation

The block models were validated through several methods: a thorough visual review of the model grades in relation to the underlying drill hole sample grades; comparisons with the change of support model; comparisons with other estimation methods; and, grade distribution comparisons using swath plots.

Visual Inspection

A detailed visual inspection of the block models was conducted in both section and plan to compare estimated grades with the underlying sample data. This included confirmation of the proper coding of blocks within the respective zone domains. The distribution of block grades was compared relative to the drill hole samples to ensure the proper representation in the model.

Model Checks for Change of Support

The relative degree of smoothing in the block estimates was evaluated using the Hermitian Polynomial Change of Support model, also known as the Discrete Gaussian Correction. With this method, the distribution of the hypothetical block grades can be directly compared to the estimated ordinary kriging model through the use of pseudo-grade/tonnage curves. Adjustments are made to the block model interpolation parameters until an acceptable match is made with the Herco distribution.

In general, the estimated model should be slightly higher in tonnage and slightly lower in grade when compared to the Herco distribution at the projected cut-off grade. These differences account for selectivity and other potential ore-handling issues which commonly occur during mining.

The Herco distribution is derived from the declustered composite grades which have been adjusted to account for the change in support moving from smaller drill hole composite samples to the larger blocks in the model. The transformation results in a less skewed distribution, but with the same mean as the original declustered samples. Examples of Herco plots from some of the models are shown in Figure 35.

Overall, correspondence between models is relatively good. The results indicate that the gold models are somewhat more conservative estimates.

It should be noted that the change of support model is a theoretical tool intended to direct model estimation. There is uncertainty associated with the change of support model, and its results should not be viewed as a final or correct value. In cases where the model grades are greater than the change of support grades, the model is relatively insensitive to any changes to the modelling parameters. Any extraordinary measures to make the grade curves change are not warranted.

Figure 35: Examples of Herco Plots

Comparison of Interpolation Methods

For comparison purposes, additional grade models were generated using the inverse distance weighted $\left(\mathrm{ID}^{2}\right)$ and nearest neighbour (NN) interpolation methods. The nearest neighbour model was created using data composited to lengths equal to the short block axis. The results of these models are compared to the ordinary kriging (OK) models at various cut-off grades in a series of grade/tonnage graphs shown in Figure 36.

There is good correlation between models at Supremo, Latte, and Kona.
At Double Double, the results indicate that the ordinary kriging model is more conservative and is smoother than the inverse distance model. The Double Double models were generated using the minimum amount of smoothing while ensuring that all of the available data was used in the estimate. This discrepancy is likely due to the relatively small size of the Double Double deposit and the skewed nature of the sample database.

Figure 36: Comparison of Ordinary Kriging (OK), Inverse Distance (ID²) and Nearest Neighbour (NN) Models

Swath Plots (Drift Analysis)

A swath plot is a graphical display of the grade distribution derived from a series of bands, or swaths, generated in several directions throughout the deposit. Using the swath plot, grade variations from the ordinary kriging model are compared to the distribution derived from the declustered nearest neighbour grade model.

On a local scale, the nearest neighbour model does not provide reliable estimations of grade, but, on a much larger scale, it represents an unbiased estimation of the grade distribution based on the underlying data. Therefore, if the ordinary kriging model is unbiased, the grade trends may show local fluctuations on a swath plot, but the overall trend should be similar to the nearest neighbour distribution of grade.

Swath plots were generated in three orthogonal directions that compare the ordinary kriging and nearest neighbour gold estimates. Some examples of swath plots at various orientations are shown in Figure 37.
There is good correspondence between the models. The degree of smoothing in the ordinary kriging model is evident in the peaks and valleys shown in the swath plots.

Figure 37: Examples of Swath Plots

Resource Classification

The mineral resources were classified in accordance with the CIM Definition Standards for Mineral Resources and Mineral Reserves (November 2010). The classification parameters are defined relative to the distance between sample data and are intended to encompass zones of reasonably continuous mineralization that exhibit the desired degree of confidence.

Almost all deposit areas have been tested with drill holes located at a maximum spacing of 100 metres, with many areas delineated with drilling spaced at 50 metres or less. Statistical and visual evaluation of the distribution of gold in the deposits suggests that relatively continuous zones of mineralization can be delineated with a reasonable degree of confidence when drill holes are spaced at up to 100 -metre intervals. Based on this observation, model blocks have been considered for inclusion in the Inferred category if they occur within a maximum distance of 50 metres from a drill hole. Some manual smoothing of this criteria was conducted that includes areas where the drill hole spacing locally exceeds a 100 metre pattern, but still retains continuity of mineralization or, conversely, excludes areas where the mineralization does not exhibit the required degree of confidence. This process resulted in a series of three-dimensional domains that were used to assign resource classification codes into model blocks. The strict definition of mineral resources in the inferred category is described as follows:

Inferred Mineral Resources - Resources are included in the Inferred category if they are located within a structural domain and within a maximum distance of 50 metres from a drill hole and exhibit a reasonable degree of geological continuity.

Although some areas of the deposits have been tested with drill holes spaced at 50 metres or less, none of these have been classified in the Indicated category for a variety of reasons: there are local gaps in the grid pattern of drill holes which reduces the overall level of confidence in the area; some
detailed areas have been tested with only reverse circulation drill holes, and several confirmatory diamond drill holes are required before a higher level of confidence is achieved; or, finally, the volume of the areas that currently exhibit a higher degree of confidence is relatively small and it is the opinion of the Qualified Persons that it is not worth segregating and upgrading these areas at this time. In most cases, only a few strategically placed drill holes are all that is required to increase the level of confidence to allow for the designation of some resources in the Indicated category.

Mineral Resources

CIM Definition Standards for Mineral Resources and Mineral Reserves (November 2010) define a mineral resource as:
" [A] concentration or occurrence of diamonds, natural solid inorganic material, or natural solid fossilized minerals in or on the Earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. The location, quantity, grade, geological characteristics and continuity of a mineral resource are known, estimated or interpreted from specific geological evidence and knowledge."

The "reasonable prospects for economic extraction" requirement generally implies that quantity and grade estimates meet certain economic thresholds and that mineral resources are reported at an appropriate cut-off grade taking into account extraction scenarios and processing recovery.

The Coffee gold deposits form relatively continuous, sub-vertical zones of gold mineralization extending from the surface to a depth of several hundred metres. The deposits are amenable to open pit or underground extraction (or a combination of both). The "reasonable prospects for economic extraction" were tested using floating cone pit shells based on reasonable technical and economic assumptions (for example, US $\$ 1,700$ per ounce, site operating costs of $\mathbf{C} \$ 20$ per tonne mined, a pit slope of 45 degrees and 100 percent mining and metallurgical recoveries). The pit optimization results are used solely for the purpose of testing the "reasonable prospects for economic extraction," and do not represent an attempt to estimate mineral reserves. There are no mineral reserves at the Coffee project. The optimization results are used to assist with the preparation of a Mineral Resource Statement and to select and appropriate reporting assumptions.

Analyses of results show that the majority of the Oxide and Transition gold mineralization could be mined using open pit extraction methods. Most of the sulphide mineralization occurs at depths below 200 metres and may not be amenable to open pit mining extraction for the assumptions considered. After review, SIM Geological concludes that all of the model gold mineralization above cut-off shows "reasonable prospects for economic extraction" and therefore can be reported as a mineral resource. The Mineral Resource Statement is reported at two cut-off grades. Oxide and Transition Mineral Resources are reported at a cut-off grade of 0.5 gpt gold while Sulphide Mineral Resources are reported at a cut-off grade of 1.0 gpt gold because they occur at generally greater depths resulting in higher extraction costs. The initial Mineral Resource Statement for the Coffee project is presented in
Table 27 and the distribution is shown in a series of isometric views in Figure 38.
There are no known factors related to environmental, permitting, legal, title, taxation, socioeconomic, marketing, or political issues which could materially affect the mineral resource.

Table 27: Estimated Inferred Mineral Resource Statement*

Area	Oxide			Transition			Oxide + Transition			Sulphide		
	Quantity	Grade	Metal									
	(Ktonnes)	$\begin{array}{r} \mathrm{Au} \\ \text { (gpt) } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{koz}) \\ \hline \end{array}$	(Ktonnes)	$\begin{array}{r} \mathrm{Au} \\ \text { (gpt) } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{koz}) \\ \hline \end{array}$	(Ktonnes)	$\begin{array}{r} \mathrm{Au} \\ \text { (gpt) } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{koz}) \end{array}$	(Ktonnes)	$\begin{array}{r} \mathrm{Au} \\ \text { (gpt) } \end{array}$	$\begin{array}{r} \mathrm{Au} \\ (\mathrm{koz}) \end{array}$
Supremo	19,860	1.61	1,027	16,545	1.32	704	36,404	1.48	1,731	828	2.18	58
Latte	6,054	1.48	288	11,328	1.48	537	17,382	1.48	825	3,771	2.09	254
Dbl. Dbl.	1,175	3.16	120	1,966	1.90	120	3,141	2.37	240	188	2.11	13
Kona	989	1.48	47	1,473	1.20	57	2,462	1.32	104	244	1.57	12
Combined	28,078	1.64	1,481	31,313	1.41	1,418	59,390	1.52	2,900	5,030	2.08	337

* Oxide and Transition mineral resources reported at a cut-off grade of 0.5 gpt gold. Sulphide mineral resources reported at a cut-off grade of 1.0 gpt gold. Cut-off grades based on a gold price of US $\$ 1,700$ per ounce, site operation costs of US $\$ 20.00$ per tonne mined and assumes 100 percent mining and metallurgical recovery. All figures are rounded to reflect the relative accuracy of the estimates. Mineral resources are not mineral reserves and do not have a demonstrated economic viability.

Figure 38: Isometric Views of the Distribution of Base Case Resources

Sensitivity Analysis of Mineral Resources

For comparison purposes, the resources are summarized at a series of cut-off grades in Table 28. Note that the base case cut-off threshold of 0.5 gpt gold for Oxide and Transition resources and 1.0 gpt gold for Sulphide resources is highlighted in Table 28. The reader is cautioned that the values presented in Table 28 should not be misconstrued with a Mineral Resource Statement. The values are only presented to show the sensitivity of the block model estimates to the selection of a cut-off grade.

Data Verification

In accordance with National Instrument 43-101 guidelines, SRK visited the Coffee project in September 2010 while active drilling was ongoing. The purpose of the site visit was to inspect the property and ascertain the geological setting of the Coffee deposit, witness the extent of exploration work and assess logistical aspects and other constraints relating to conducting exploration work in the area. SRK was given full access to project data.

SRK visually examined assay results for the internal quality control samples used by the assay laboratory and found no suspicious or anomalous results. After review, SRK is of the opinion that the analytical results delivered by ALS-Chemex are sufficiently reliable.

Discussion and Conclusions

A large, hydrothermal, structurally-controlled gold system occurs on the Coffee property and the 2010 drill program has detected a number of gold-rich zones that warrant further exploration. The host rocks include shallowly- to moderately-dipping metamorphic rocks in addition to younger equigranular intrusions. Fine grained to porphyritic dykes appear to be spatially related to the gold zones. The gold structures are steeply-dipping, post-date all rock units and are related to brecciation, silica and sericite alteration in addition to minor silica veinlets.

The highest gold values are associated with rocks that have undergone intensive and perhaps multiple phases of hydrothermal brecciation. This style of mineralization is dominant at Supremo although does occur at Double Double and rarely at Latte. The Latte zone is perhaps the most consistently mineralized having for the most part lower grades but over great intervals that are continuous for at least a kilometer along strike. Granite hosted mineralization is also structurally controlled and characterized by pervasive alteration and replacement of Fe - bearing silicates by pyrite.

Pyrite is the dominant sulphide bearing phase and to date the only known sulphide bearing phase to be associated with gold. All prospects on the property are "gold only". Pathfinder elements such as As, Ab, and less commonly Ag have proven valuable as a geochemical exploration tool on the property. Mineralization post dates any glacial event making systematic soil sampling an extremely effective tool for exploring in the region.

Table 28: Quantities and Grade Estimates at Various Cut-off Grades by Material Type

Cut-off grade Augpt	Oxide			Transition			Oxide + Transition			Sulphide		
	Quantity Ktonnes	Grade Augpt	Metal kozAu	Quantity Ktonnes	Grade Augpt	$\begin{aligned} & \text { Metal } \\ & \text { kozAu } \\ & \hline \end{aligned}$	Quantity Ktonnes	Grade Augpt	$\begin{aligned} & \text { Metal } \\ & \text { kozAu } \\ & \hline \end{aligned}$	Quantity Ktonnes	Grade Augpt	$\begin{aligned} & \text { Metal } \\ & \text { kozAu } \\ & \hline \end{aligned}$
Supremo												
0.4	22,884	1.46	1,071	19,644	1.19	749	42,528	1.331	1,819	1,948	1.28	80
0.5	19,860	1.61	1,027	16,545	1.32	704	36,404	1.479	1,731	1,660	1.43	76
0.6	17,309	1.77	982	13,884	1.47	657	31,193	1.635	1,639	1,381	1.61	71
0.7	15,199	1.92	938	11,903	1.61	616	27,101	1.784	1,554	1,155	1.80	67
0.8	13,432	2.07	896	10,241	1.75	576	23,673	1.934	1,472	1,007	1.95	63
0.9	11,957	2.23	855	8,873	1.89	539	20,829	2.082	1,394	894	2.09	60
1.0	10,648	2.38	816	7,774	2.02	505	18,422	2.23	1,321	828	2.18	58
1.5	6,426	3.15	650	4,111	2.74	362	10,537	2.987	1,012	515	2.76	46
Latte												
0.4	6,655	1.39	296	12,589	1.37	555	19,244	1.377	852	7,824	1.35	339
0.5	6,054	1.48	288	11,328	1.48	537	17,382	1.476	825	6,885	1.47	326
0.6	5,377	1.59	276	10,142	1.58	516	15,519	1.587	792	6,030	1.60	311
0.7	4,852	1.70	265	9,021	1.70	493	13,872	1.699	758	5,293	1.74	295
0.8	4,390	1.80	254	8,034	1.82	469	12,424	1.809	723	4,753	1.85	282
0.9	3,932	1.91	241	7,177	1.93	446	11,109	1.923	687	4,317	1.95	270
1.0	3,501	2.02	228	6,364	2.06	421	9,865	2.045	649	3,771	2.09	254
1.5	1,939	2.66	166	3,641	2.68	313	5,580	2.671	479	2,159	2.73	190
Double Double												
0.4	1,337	2.84	122	2,262	1.71	124	3,599	2.128	246	367	1.39	16
0.5	1,175	3.16	120	1,966	1.90	120	3,141	2.372	240	311	1.55	16
0.6	1,074	3.41	118	1,716	2.10	116	2,790	2.602	233	272	1.70	15
0.7	996	3.63	116	1,530	2.27	112	2,526	2.806	228	247	1.80	14
0.8	928	3.84	115	1,371	2.45	108	2,299	3.009	222	219	1.94	14
0.9	881	4.00	113	1,234	2.63	104	2,114	3.198	217	202	2.03	13
1.0	839	4.15	112	1,111	2.81	100	1,950	3.388	212	188	2.11	13
1.5	634	5.09	104	714	3.70	85	1,348	4.352	189	127	2.53	10
Kona												
0.4	1,119	1.36	49	1,688	1.11	60	2,807	1.209	109	747	0.94	23
0.5	989	1.48	47	1,473	1.20	57	2,462	1.316	104	605	1.06	21
0.6	877	1.60	45	1,255	1.32	53	2,131	1.435	98	501	1.17	19
0.7	778	1.72	43	1,076	1.43	49	1,854	1.552	93	435	1.25	17
0.8	689	1.85	41	930	1.54	46	1,619	1.669	87	354	1.36	15
0.9	627	1.95	39	793	1.65	42	1,420	1.784	81	290	1.47	14
1.0	565	2.06	37	687	1.76	39	1,252	1.896	76	244	1.57	12
1.5	344	2.61	29	375	2.22	27	720	2.407	56	88	2.23	6

					Depo	ts Com	ined					
0.4	31,994	1.50	1,538	36,183	1.28	1,489	68,177	1.381	3,026	10,886	1.31	458
0.5	28,078	1.64	1,481	31,313	1.41	1,418	59,390	1.519	2,900	9,461	1.44	438
0.6	24,637	1.79	1,421	26,997	1.55	1,342	51,634	1.664	2,763	8,183	1.58	416
0.7	21,824	1.94	1,362	23,529	1.68	1,270	45,354	1.805	2,632	7,130	1.72	394
0.8	19,439	2.09	1,305	20,576	1.81	1,199	40,015	1.946	2,504	6,332	1.84	374
0.9	17,396	2.23	1,249	18,077	1.95	1,131	35,473	2.087	2,380	5,704	1.95	357
1.0	15,553	2.39	1,193	15,936	2.08	1,065	31,489	2.23	2,258	5,030	2.08	337
1.5	9,343	3.16	949	8,842	2.77	787	18,185	2.968	1,735	2,889	2.71	252

* The reader is cautioned that the values presented in this table should not be misconstrued with a Mineral Resource Statement. The reported quantities and grades are only presented to show the sensitivity of the block model estimates to the selection of a cut-off grade.

Interpretations and Conclusions

The Qualified Persons reviewed and audited the exploration data available for the Coffee project. The exploration work carried out by Kaminak was conducted using procedures consistent with recognized industry best practices and the Qualified Persons are of the opinion that the exploration data are reliable.

Exploration work to date on the Coffee project has identified widespread gold mineralization associated with fractured and hydrothermally altered rocks. Structural corridors are characterized by deep surface weathering profiles such that the majority of the gold mineralization investigated by Kaminak to date is oxidized. The gold mineralization occurs in steeply dipping structural zones characterized by fragmental rock, silica and sericite alteration, minor veining and is associated with mafic and felsic dikes. The work completed in 2012 improved the understanding of the nature of the gold mineralization and its relationship with lithology, alteration, and structure.

Drilling of the Supremo Zone targeted significant high-grade gold mineralization in the northnortheast trending, steeply east-dipping subparallel T2, T3, T4, T5, and T7 structures, associated with breccias and dikes. This gold corridor has been tested over a strike length of approximately 2,100 metres (T3) and width between 5 and 30 metres, and remains open along strike and at depth.

The Latte zone follows an east-west trend of gold-in-soil anomalies that has been verified by drilling to consist of multiple strands of gold mineralization. The moderately to steeply southdipping east-west mineralized corridor, which is characterized by a variety of breccias of both hydrothermal and tectonic origin cross-cutting the foliation, strikes obliquely across the host rock packages for at least 1,550 metres. Again, many structures in the Latte area remain open along strike and at depth.

The Double Double Zone also follows east-west trending gold-in-soil anomalies. The 45 boreholes completed so far have identified the gold mineralized structure as dipping steeply to the north with a strike length of 600 metres and down to a depth of 400 metres below surface.

Limited drilling testing soil and trench anomalies at Sugar revealed a series of east-west oriented vertical to subvertical auriferous veins and vein sets comprised of sooty pyrite \pm arsenopyrite \pm pyrrhotite \pm stibnite quartz-carbonate veins hosted in intermediate intrusions over various affinities.

Follow-up cyanide leaching tests completed in 2012 confirmed 2011 results indicating that the oxide material is not refractory and is amenable to heap leaching (gold extraction of 90.4 percent after 80 days). Samples of oxide mineralization from Double Double (gold extraction 96.0 to 96.9 percent) and the deeper parts of Supremo (gold extraction 90.7 to 92.4 percent) confirmed earlier results with excellent gold recovery from conventional cyanidation. Samples of sulphide mineralization yielded poor cyanide extraction (gold extraction 2.0 to 5.3 percent). Further work is required to understand the poor response of the sulphide mineralization to leaching and to assess alternative options for metallurgical gold extraction.

Drilling information acquired by Kaminak from 2010 to 2012 was used to model the geology and the mineral resources for 4 gold areas (Kona, Double Double, Latte and Supremo). Using a geostatistical block modelling approach, the Qualified Persons estimate that the Coffee gold project contains 59.4 million tonnes at an average grade of 1.52 gpt gold (2.9 million ounces of gold) in the
oxide and transition zones and 5.0 million tonnes at an average grade of 2.08 gpt gold (0.3 million ounces) in the sulphide zones.

Recommendations

In the opinion of the Qualified Persons the results of the exploration work completed by Kaminak on the Coffee gold project from 2010-2012, and the initial Mineral Resource Statement presented herein, are of sufficient merit to recommend additional exploration expenditures designed to improve the delineation of and expand the mineral resources. The proposed work program also includes engineering, metallurgical, environmental and other studies to complete the characterization of the Coffee gold mineralization to support the evaluation at a conceptual level of the viability of a mining project targeting the Inferred mineral resources at Supremo, Latte, Double Double and Kona and the preparation of a Preliminary Economic Assessment.

Exploration Program

The proposed exploration work program recommended by the Qualified Persons includes additional core and reverse circulation drilling to investigate the gold mineralization intersected in 2010-2012 and test its lateral and depth continuity. The recommended exploration program includes approximately 70,000 metres of drilling targeting:

- Delineation drilling of the Supremo, Latte, Double Double, and Kona zones along regularly spaced sections to improve definition of the boundaries of the gold mineralization, increase understanding of geological and structural controls, and improve classification of mineral resources from Inferred to the Indicated and Measured category;
- Step-out drilling at the Supremo, Double Double, Kona, Connector, Latte, Americano, and Espresso areas to investigate and define geometry and distribution of the gold mineralization and test its lateral and depth continuity with the objective of extending current resources and supporting initial mineral resource evaluation on new zones; and
- Parametric drilling of other gold-in-soil anomalies, including additional drill targets at Sugar.

The exploration work to date has clearly demonstrated that soil sampling is an effective exploration targeting tool in the Coffee gold project area. Accordingly, the Qualified Persons recommend expanding the soil sampling grids over the anomalies detected by ridge-and-spur sampling. Detailed infill grids can be used in situations where more detail is required in order to identify trends. The Qualified Persons consider that this will require collecting approximately 10,000 soil samples.

The Qualified Persons also recommend that additional metallurgical testwork be undertaken to characterize further the metallurgical characteristics of the various gold mineralization zones identified on the Coffee gold project. The testing should include additional column leach tests to investigate the potential for heap leaching of the oxide, transitional and fresh (sulphide facies) gold mineralization.

The Qualified Persons recommend that additional mineralogical, petrographic, and geochemical studies be completed to study the gold deportment in each weathering zone and help understand its geological and structural setting. Geochronological studies would help to understand the timing of the gold mineralization with respect to the metamorphic and magmatic history of the Coffee gold project area.

The total cost for the proposed exploration program is estimated at $\mathbf{C} \$ 20,000,000$ (Table 29).

Table 29: Recommended Exploration Program for the Coffee Project 2013

Work Program	Amount	Units	Unit cost C\$	Subtotal C\$M
Planning and Supervision				2.20
Camp Operation				0.25
Equipment Rental (tent, truck, boats, etc.)				0.10
Fix Wing Charter Air Service				1.00
Helicopter Charter				1.00
Barging	15	trips		0.75
Mobilization / Demobilization				0.10
Geophysical Surveys				0.25
Core Drilling (all inclusive)	35,000	metres	\$250	8.75
Reverse Circulation Drilling (all inclusive)	35,000	metres	\$90	3.15
Soil Sampling (all inclusive)	10,000	samples	\$50	0.50
Mineral Resource Estimation				0.10
Preparation of Technical Report				0.05
Subtotal				18.20
Contingency (10\%)				1.80
Total				C\$20.00

Preliminary Economic Assessment

Engineering, metallurgical, environmental and other studies should be initiated to complete the characterization of the gold mineralization delineated at the Coffee gold project with the view of evaluating, at a conceptual level, the viability of a mining project targeting the Inferred mineral resources at Supremo, Latte, Double Double and Kona and preparing a Preliminary Economic Assessment. The studies should examine several mining and processing scenarios to determine the most attractive option for the potential development. The recommended work program includes mining optimization studies, additional metallurgical testwork, conceptual flowsheet design, and scheduling and economic modelling. The following components are recommended:

- Additional core drilling and bulk sampling to collect metallurgical samples to undertake a comprehensive metallurgical test program with the objective to study gold recovery from each zone at varying depths/degree of oxidation, gold grades, and by various possible ore process paths.
- Core drilling for geotechnical and hydrogeological studies; and
- Ongoing environmental baseline data collection, additional flora and fauna habitat studies, and geochemical characterization studies.

The total cost for the preparation of a Preliminary Economic Assessment of the Coffee gold project is estimated at $\mathrm{C} \$ 3,500,000$ (Table 10).

Table 10: Recommended Preliminary Economic Assessment for the Coffee Project 2013

Work Program	Amount	Units	Unit cost C\$	Subtotal C\$M
Planning, Consultancy and Supervision				0.50
Camp Operation				0.05
Equipment Rental (tent, truck, boats, etc)				0.05
Fix Wing Charter Air Service				0.05
Helicopter Charter				0.10
Barging	1	trip		0.05
Mobilization / Demobilization				0.05
Core Drilling (all inclusive)	2,000	metres	\$250	0.50
Environmental Baseline Studies				0.25
Metallurgical Testwork				1.00
Optimization, Design and Economic Analysis				0.50
Preparation of Technical Report				0.10
Subtotal				3.20
Contingency (10\%)				0.30
Total				C\$3.50

Statement of Expenditures

64110	Geologists - Staff	2,655,215.73
64120	Geologists - Contract	1,764.00
64120	Geologists - Contract	67.80
64130	Geologists - Consultants	139,409.69
64161	Camp Services	1,155.00
64170	Cook/Medic	206,169.70
64210	Expediting	5,787.82
64212	Whitehorse	51,365.57
64214	Dawson	35,300.00
64220	Database Management	4,132.00
64234	Geophysical Surveys - Airborne	6,300.00
64243	Airphoto/Geomorph	55,257.06
64260	Surveyors	13,411.00
64280	Geochem Contractors	101,477.00
64290	Earthmoving	1,200,224.68
64292	Dozer/Grazer - Schmidt	287,580.17
64312	Drilling	1,815,662.26
64314	Geochem	3,201.86
64316	Metallurgical	45,301.25
64318	Petrographic	1,550.00
64320	Aircraft Charters	5,193.00
64321	Mobilization	36,000.00
64322	Fixed Wing	904,061.90
64323	Helicopter	1,201,478.42
64330	Drilling	189,649.29
64331	DC Drilling - Mob/Demob	316,373.47
64332	DC Drilling - Metreage and Related	4,166,482.17
64333	DC Drilling - Consumables, Labour	612,170.87
64334	RC Drilling - Mob/Demob	25,000.00
64335	RC Drilling - Metreage and Related	2,511,648.11
64336	RC Drilling - Consumables, Labour	211,272.17
64340	Freight	10,419.02
64341	Road (Smalls, Kluane Transport)	44,030.77
64342	Barging (Stuart Schmidt)	777,500.00
64343	Other Transport	600.00
64350	Camp Running Costs - (Consumables)	58,965.11
64351	Food - Camp	308,734.27
64352	Diesel - Camp	48,777.90
64353	Diesel - Drill	633,920.11
64354	Fuel (Jet) - Fixed Wing	15,807.84
64355	Fuel (Jet) - Helicopter	73,421.95

64356	Fuel - Other (reg gas, propane)	49,702.90
64357	Fuel - Gas	11,850.00
64364	Airfares - Field Staff	85,128.78
64366	Alrfares - Other Staff (Mgrs/Board)	970.29
64410	Camp	6,949.91
64414	Gensets	17,971.82
64420	Communications Equipment	68,380.56
64422	Satellite Telephones	375.00
64424	Repeater	375.00
64450	Vehicles	346.02
64510	Camp Equipment	5,609.66
64512	Office Equipment \& Supplies	1,226.16
64522	Materials	0.00
64530	Field Equipment - Geo and Field Use	3,255.00
64532	Core Equipment	112,329.50
64534	Field Consumables	74,177.97
64536	Safety Equipment \& Consumables	-432.60
64540	Communications Equipment	5,231.20
64570	Vehicles \& Heavy Equipment	1,872.03
64640	Meetiings \& Conferences	626.29
64130	Geologists - Consultants	970.00
64180	Recruitment Costs	2,071.92
64212	Whitehorse	0.00
64232	Consultants/Contractors	63,738.03
64252	Management Consultancy	5,318.60
64312	Drilling	1,800.00
64322	Fixed Wing	23,367.10
64323	Helicopter	22,381.28
64331	DC Drilling - Mob/Demob	4,795.00
64340	Freight	5,710.21
64341	Road (Smalls, Kluane Transport)	24,094.92
64342	Barging (Stuart Schmidt)	14,000.00
64343	Other Transport	178.53
64350	Camp Running Costs - (Consumables)	415.07
64355	Fuel (Jet) - Helicopter	0.00
64358	Fuel tank	280,500.00
64360	Travel Costs	1,800.92
64361	Accom-Field Staff (travel layovers)	5,297.04
64363	Accom-Other (Mgrs/Board, etc)	129.00
64364	Airfares - Field Staff	823.83
64366	Alrfares - Other Staff (Mgrs/Board)	638.57
64410	Camp	-12,000.00
64414	Gensets	4,000.02
64510	Camp Equipment	41,045.01

64512	Office Equipment \& Supplies	$5,966.67$
64520	Camp Construction	$297,206.21$
64522	Materials	$57,009.91$
64536	Safety Equipment \& Consumables	$23,153.38$
64562	Hardware	384.87
64564	Software	$14,724.27$
64570	Vehicles \& Heavy Equipment	$42,648.40$
64590	Maintenance \& Repairs Equipment	$6,793.16$
64630	Maps, Publications, Photos	$2,000.00$
64640	Meetiings \& Conferences	875.00
64670	Security	451.25
64710	Licenses \& Fees	$45,740.00$
64722	Assessment Fees	$52,714.00$
64732	Property Payments and Related Costs	166.70
64772	Consultants	$10,548.73$
64790	Environment	$14,639.87$
64794	Environmental Surveys	$212,804.45$
64820	Heritage/Site Clearance Surveys \& R	$40,936.25$
Grand Total	$\mathbf{2 1 , 8 6 7 , 4 6 0 . 7 9}$	

References

Access Consulting Group, 2012. Coffee Project, Baseline Receiving Environment Water Quality. Internal Memorandum presented to Kaminak, November 30, 2012. Memorandum prepared by Scott Keesey.

Arribas, A. Jr., 1995. Characterization of high sulphidation epithermal deposits and their relation to magmatic fluid; in Short Course Hanbook 23, Mineralogical Association of Canada, p. 419454.

Arribas, A. Jr., Hedenquist, J.W., Itaya, T., Okada, T., Concepcion, R.A., and Garcia, J. S. Jr. 1995. Contemporaneous formation of adjacent porphyry and epithermal $\mathrm{Cu}-\mathrm{Au}$ deposits over 300 ka in northern Luzon, Philippines; Geology, v. 23 p 337-340.

Bennett, V., Schulze, C., Ouellette, D. and Pollries, B., 2010. Deconstructing complex Au-Ag-Cu mineralization, Sonora Gulch project, Dawson Range: A Late Cretaceous evolution to the epithermal environment. In: Yukon Exploration and Geology 2009, K.E. MacFarlane, L.H. Weston and L.R. Blackburn (eds.), Yukon Geological Survey, p. 23-45.

Berman, R.G., Ryan, J.J., Gordey, S.P., and Villeneuve, M., 2007. Permian to Cretaceous polymetamorphic evolution of the Stewart River region, Yukon-Tanana terrane, Yukon, Canada: P-T evolution linked with in situ SHRIMP monazite geochronology; Journal of Metamorphic Geology, Vol. 25, p. 803-827.

CIM Standing Committee on Reserve Definitions, 2010. CIM Definition Standards - For Mineral Resources and Mineral Reserves. Retrieved from http://web.cim.org/UserFiles/File/CIM_DEFINITON_STANDARDS_Nov_2010.pdf, 10p.

Colpron, M., Nelson, J.L. and Murphy, D.C., 2006. A tectonostratigraphic framework for the pericratonic terranes of the northern Cordillera. In: Paleozoic Evolution and Metallogeny of Pericratonic Terranes at the Ancient Pacific Margin of North America, M. Colpron and J.L. Nelson (eds.), Geological Association of Canada, Special Paper 45, p. 1-23.

Davis, B.M., 1997, Some methods of producing interval estimates for global and local resources; Society for Mining, Metallurgy, and Exploration Preprint 97-5, 5p.

Douglas, T.A., Layer, P.W., Newberry, R.J., and Keskinen, M.J., 2002. Geochronologic and termobarometric constraints on the metamorphic history of the Fairbanks Mining District, western Yukon-Tanana terrane, Alaska. Canadian Journal of Earth Sciences, Vol. 39, p. 1107-1126.

Emsbo, P., Groves, D.I., Hofstra, A.H., and Bierlein, F.P., 2006. The giant Carlin gold province: a protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary; Mineralium Deposita, vol. 41, pp. 517-525.

Gabrielse H. and Yorath, C.J., 1991. Tectonic synthesis, Chapter 18. In: Gabrielse H, Yorath CJ (eds.) Geology of the Cordilleran Orogen in Canada; Geology of Canada, v. 4, p. 677-705.

Gordey, S.P. and Makepeace,A.J., 1999. Yukon digital geology, 1:250 000, GSC Open File D3826 and GSD Yukon Open File 1999-1D, Geological Survey of Canada, Exploration and Geological Services Division, Yukon.

Hedenquist, J.W., Masuhisa, Y., Izawa, E., White, N. C., Giggenbach, W.F., and Aoki, M. 1994.
Geology, geochemistry and origin of high sulphidation $\mathrm{Cu}-\mathrm{Au}$ mineralization in theNanatsu District, Japan; Economic Geology, v. 89 p 1-30.

Hedenquist, J.W., Izawa, E., Arribas, A. Jr., and White, N.C. 1995. Epithermal gold deposits: styles characteristics and exploration; Society of Resource Geology, Special publication No. 1, 16 p .

Jaworski, B.J. and Meyer, B., 2000. Geological and geochemical report on the Coffee Creek Intrusion-related gold project; Yukon Assessment Report 094064, 44p.

Jaworski, B.J. and Vanwermeskerken, M., 2001. Geological and Geochemical report on the Coffee Creek Intrusion-related gold target; Yukon Assessment Report 094207, 53p.

Jilson, G., 2000. Geochemical and Geological Report on the Dan, Man and lndy Claims, Yukon Assessment Report 0954174, 173 p.

Journel, A., Huijbregts, C.J., 1978, Mining Geostatics. London: Academic Press. 600p.
Lang, J.R. and Baker, T., 2001. Intusion-related gold systems: the present level of understanding. Mineralium Deposita, vol. 36, pp. 477-489.

MacKenzie, D.J. and Craw, D., 2010. Structural controls on hydrothermal gold mineralization in the White River area, Yukon. In: Yukon Exploration and Geology 2009, K.E. MacFarlane, L.H. Weston and L.R. Blackburn (eds.), Yukon Geological Survey, p. 253-263.

MacKenzie, D.J. and Craw, D., 2012. Contrasting structural settings of mafic and ultramafic rocks in the Yukon-Tanana terrane. In: Yukon Exploration and Geology 2011, K.E. MacFarlane and P.J. Sack (eds.), Yukon Geological Survey, p. 115-127

MacKenzie, D.J., Craw, D. and Mortensen, J., 2008. Structural controls on orogenic gold mineralization in the Klondike goldfield, Canada. Mineralium Deposita, vol. 43, p. 435-448.

Matrix Research Ltd., 2012. Heritage Resources Impact Assessment of the Kaminak old Coffee Project Conducted Under Permit 11-03ASR. Prepared by Ty Heffner.

Mortensen J.K., 1992. Pre-mid-Mesozoic tectonic evolution of the Yukon-Tanana Terrane, Yukon and Alaska, Tectonics, vol. 11, p.836-853.

Mortensen, J.K., 1996. Geological compilation maps of the northern Stewart River map area, Klondike and Sixtymile Districts (115 N/15, 16; 1150/13, 14; and parts of 1150/15, 16); Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, Open File 1996-1 (G), 43p.

Piercy, S.J. and Colpron, M., 2009. Composition and provenance of the Snowcap assemblage, basement to the Yukon-Tanana terrane, northern Cordillera: Implications for Cordilleran crustal growth. Geosphere, Vol. 5, p. 439-464.

Ryan, S., 2007. Geochemical Report, YMIP 06-056, Bridget Area and Coffee Creek Area; 46 p.
Ryan, S., 2008. Geochemical Report, YMIP 07-048, Coffee Creek Area; 43 p.

Ryan, J.J. and Gordey, S.P., 2004. Geology, Stewart River Area (Parts of 115 N/1,2,7,8 and 115-O/2-12), YukonTerritory. Geological Survey of Canada, Open File 4641, 1:100 000 scale.

Selby, D., Creaser, R.A., Hart, C.J.R., Rombach, C.S., Thompson, J.F.H., Smith, M.T., Bakke, A.A., and Goldfarb, R.J., 2002. Absolute timing of sulfide and gold mineralization: A comparison of Re-Os molybdenite and Ar-Ar mic methods from the Tintina Gold Belt, Alaska. Geology, Vol. 30, p. 791-794.

Sillitoe, R.H., 1973. The tops and bottoms of porphyry copper deposits. Economic Geology, Vol. 68, p. 799-815.

Sillitoe, R. H., 1993. Epithermal models: genetic types, geometric controls and shallow features; in Mineral Deposit modeling, (ed) R.V. Kirkham, W.D. Sinclair, R.I. Thorpe and J.M. Duke; Geological Association of Canada, Special Paper 40, p. 403-417.

SRK Consulting (Canada) Inc., 2011. Technical Report Coffee Gold Project, Yukon Territory, Canada. National Instrument 43-101 Technical Report prepared for Kaminak Gold Corporation, March 12, 2011. Compiled by Jean-François Couture. Available for download on SEDAR.

SRK Consulting (Canada) Inc., 2012. Technical Report Coffee Gold Project, Yukon Territory, Canada. National Instrument 43-101 Technical Report prepared for Kaminak Gold Corporation, February 2, 2012. Compiled by Jean-François Couture. Available for download on SEDAR.

Templeman-Kluit, D.J., 1979. Transported cataclasite, ophiolite and granodiorite in the Yukon: Evidence of arc-continent collision. Geological Survey of Canda, Vol. 79-14, 27p.

Wainwright, A.J., Simmons, A.T., Finnigan, C.S., Smith, T.R., and Carpenter, R.L., 2011. Geology of new gold discoveries in the Coffee Creek area, White Gold District, west-central Yukon. In: Yukon Exploration and Geology 2010. K.E. MacFarlane, L.H. Weston and C. Relf (eds.), Yukon Geological Survey, p. 233-247.

White, N.C. and Hedenquist, J.W., 1995. Epithermal gold deposits: styles, characteristics, and exploration; SEG Newsletter, no. 23, pp 9-13.

APPENDIX A

Kaminak Claims on the Coffee Project

Mineral Tenure of the Coffee property. All claims registered to Kaminak and Active. List of Claims:

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	1	YC46734	4-Apr-2006	15-Dec-2028	Coffee	1521	YD42725	25-Feb-2010	15-Dec-2016
Coffee	2	YC46735	4-Apr-2006	15-Dec-2028	Coffee	1522	YD42726	25-Feb-2010	15-Dec-2016
Coffee	3	YC46736	4-Apr-2006	15-Dec-2028	Coffee	1523	YD42727	25-Feb-2010	15-Dec-2016
Coffee	4	YC46737	4-Apr-2006	15-Dec-2028	Coffee	1524	YD42728	25-Feb-2010	15-Dec-2016
Coffee	5	YC46738	4-Apr-2006	15-Dec-2028	Coffee	1525	YD42729	25-Feb-2010	15-Dec-2016
Coffee	6	YC46739	4-Apr-2006	15-Dec-2028	Coffee	1526	YD42730	25-Feb-2010	15-Dec-2016
Coffee	7	YC46740	4-Apr-2006	15-Dec-2024	Coffee	1527	YD42731	25-Feb-2010	15-Dec-2016
Coffee	8	YC46741	4-Apr-2006	15-Dec-2024	Coffee	1528	YD42732	25-Feb-2010	15-Dec-2016
Coffee	9	YC46742	4-Apr-2006	15-Dec-2024	Coffee	1529	YD42733	25-Feb-2010	15-Dec-2016
Coffee	10	YC46743	4-Apr-2006	15-Dec-2024	Coffee	1530	YD42734	25-Feb-2010	15-Dec-2016
Coffee	11	YC46744	4-Apr-2006	15-Dec-2024	Coffee	1531	YD42735	25-Feb-2010	15-Dec-2016
Coffee	12	YC46745	4-Apr-2006	15-Dec-2024	Coffee	1532	YD42736	25-Feb-2010	15-Dec-2016
Coffee	13	YC46746	4-Apr-2006	15-Dec-2024	Coffee	1533	YD42737	25-Feb-2010	15-Dec-2016
Coffee	14	YC46747	4-Apr-2006	15-Dec-2024	Coffee	1534	YD42738	25-Feb-2010	15-Dec-2016
Coffee	15	YC46748	4-Apr-2006	15-Dec-2024	Coffee	1535	YD42739	25-Feb-2010	15-Dec-2016
Coffee	16	YC46749	4-Apr-2006	15-Dec-2024	Coffee	1536	YD42740	25-Feb-2010	15-Dec-2016
Coffee	17	YC53949	21-Sep-2006	15-Dec-2020	Coffee	1537	YD42741	25-Feb-2010	15-Dec-2016
Coffee	18	YC53950	21-Sep-2006	15-Dec-2020	Coffee	1538	YD42742	25-Feb-2010	15-Dec-2016
Coffee	19	YC53951	21-Sep-2006	15-Dec-2024	Coffee	1539	YD42743	25-Feb-2010	15-Dec-2016
Coffee	20	YC53952	21-Sep-2006	15-Dec-2024	Coffee	1540	YD42744	25-Feb-2010	15-Dec-2016
Coffee	21	YC53953	21-Sep-2006	15-Dec-2024	Coffee	1541	YD42745	25-Feb-2010	15-Dec-2016
Coffee	22	YC53954	21-Sep-2006	15-Dec-2024	Coffee	1542	YD42746	25-Feb-2010	15-Dec-2016
Coffee	23	YC53955	21-Sep-2006	15-Dec-2024	Coffee	1543	YD42747	25-Feb-2010	15-Dec-2016
Coffee	24	YC53956	21-Sep-2006	15-Dec-2024	Coffee	1544	YD42748	25-Feb-2010	15-Dec-2016
Coffee	25	YC53957	21-Sep-2006	15-Dec-2020	Coffee	1545	YD42749	25-Feb-2010	15-Dec-2016
Coffee	26	YC53958	21-Sep-2006	15-Dec-2020	Coffee	1546	YD42750	25-Feb-2010	15-Dec-2016
Coffee	27	YC53959	21-Sep-2006	15-Dec-2020	Coffee	1547	YD42751	25-Feb-2010	15-Dec-2016
Coffee	28	YC53960	21-Sep-2006	15-Dec-2020	Coffee	1548	YD42752	25-Feb-2010	15-Dec-2016
Coffee	29	YC53961	21-Sep-2006	15-Dec-2020	Coffee	1549	YD42753	25-Feb-2010	15-Dec-2016
Coffee	30	YC53962	21-Sep-2006	15-Dec-2020	Coffee	1550	YD42754	25-Feb-2010	15-Dec-2016
Coffee	31	YC53963	21-Sep-2006	15-Dec-2020	Coffee	1551	YD42755	25-Feb-2010	15-Dec-2016
Coffee	32	YC53964	21-Sep-2006	15-Dec-2020	Coffee	1552	YD42756	25-Feb-2010	15-Dec-2016
Coffee	33	YC53965	21-Sep-2006	15-Dec-2020	Coffee	1553	YD42757	25-Feb-2010	15-Dec-2016
Coffee	34	YC53966	21-Sep-2006	15-Dec-2020	Coffee	1554	YD42758	25-Feb-2010	15-Dec-2016
Coffee	35	YC53967	21-Sep-2006	15-Dec-2020	Coffee	1555	YD42759	25-Feb-2010	15-Dec-2016
Coffee	36	YC53968	21-Sep-2006	15-Dec-2020	Coffee	1556	YD42760	25-Feb-2010	15-Dec-2016
Coffee	37	YC54445	27-Dec-2006	15-Dec-2020	Coffee	1557	YD42761	25-Feb-2010	15-Dec-2016
Coffee	38	YC54446	27-Dec-2006	15-Dec-2020	Coffee	1558	YD42762	25-Feb-2010	15-Dec-2016
Coffee	39	YC54447	27-Dec-2006	15-Dec-2020	Coffee	1559	YD42763	25-Feb-2010	15-Dec-2016
Coffee	40	YC54448	27-Dec-2006	15-Dec-2020	Coffee	1560	YD42764	25-Feb-2010	15-Dec-2016
Coffee	41	YC54449	27-Dec-2006	15-Dec-2020	Coffee	1561	YD42765	25-Feb-2010	15-Dec-2016
Coffee	42	YC54450	27-Dec-2006	15-Dec-2020	Coffee	1562	YD42766	25-Feb-2010	15-Dec-2016
Coffee	43	YC54451	27-Dec-2006	15-Dec-2020	Coffee	1563	YD42767	25-Feb-2010	15-Dec-2016
Coffee	44	YC54452	27-Dec-2006	15-Dec-2020	Coffee	1564	YD42768	25-Feb-2010	15-Dec-2016
Coffee	45	YC54453	27-Dec-2006	15-Dec-2020	Coffee	1565	YD42769	25-Feb-2010	15-Dec-2016
Coffee	46	YC54454	27-Dec-2006	15-Dec-2020	Coffee	1566	YD42770	25-Feb-2010	15-Dec-2016
Coffee	47	YC54455	27-Dec-2006	15-Dec-2020	Coffee	1567	YD42771	25-Feb-2010	15-Dec-2016
Coffee	48	YC54456	27-Dec-2006	15-Dec-2020	Coffee	1568	YD42772	25-Feb-2010	15-Dec-2016
Coffee	49	YC54457	27-Dec-2006	15-Dec-2020	Coffee	1569	YD42773	25-Feb-2010	15-Dec-2016
Coffee	50	YC54458	27-Dec-2006	15-Dec-2020	Coffee	1570	YD42774	25-Feb-2010	15-Dec-2016
Coffee	51	YC54459	27-Dec-2006	15-Dec-2020	Coffee	1571	YD42775	25-Feb-2010	15-Dec-2016
Coffee	52	YC54460	27-Dec-2006	15-Dec-2020	Coffee	1572	YD42776	25-Feb-2010	15-Dec-2016
Coffee	53	YC54461	27-Dec-2006	15-Dec-2020	Coffee	1573	YD42777	25-Feb-2010	15-Dec-2016
Coffee	54	YC54462	27-Dec-2006	15-Dec-2020	Coffee	1574	YD42778	25-Feb-2010	15-Dec-2016
Coffee	55	YC54463	27-Dec-2006	15-Dec-2019	Coffee	1575	YD42779	25-Feb-2010	15-Dec-2016
Coffee	56	YC54464	27-Dec-2006	15-Dec-2019	Coffee	1576	YD42780	25-Feb-2010	15-Dec-2016
Coffee	57	YC54465	27-Dec-2006	15-Dec-2019	Coffee	1577	YD42781	25-Feb-2010	15-Dec-2016
Coffee	58	YC54466	27-Dec-2006	15-Dec-2019	Coffee	1578	YD42782	25-Feb-2010	15-Dec-2016
Coffee	59	YC54467	27-Dec-2006	15-Dec-2019	Coffee	1579	YD42783	2-Aug-2010	15-Dec-2016
Coffee	60	YC54468	27-Dec-2006	15-Dec-2019	Coffee	1580	YD42784	2-Aug-2010	15-Dec-2016
Coffee	61	YC54469	27-Dec-2006	15-Dec-2019	Coffee	1581	YD42785	2-Aug-2010	15-Dec-2016
Coffee	62	YC54470	27-Dec-2006	15-Dec-2019	Coffee	1582	YD42786	2-Aug-2010	15-Dec-2016
Coffee	63	YC54471	27-Dec-2006	15-Dec-2020	Coffee	1583	YD42787	2-Aug-2010	15-Dec-2016
Coffee	64	YC54472	27-Dec-2006	15-Dec-2020	Coffee	1584	YD42788	2-Aug-2010	15-Dec-2016
Coffee	65	YC54473	27-Dec-2006	15-Dec-2020	Coffee	1585	YD42789	2-Aug-2010	15-Dec-2016

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	66	YC54474	27-Dec-2006	15-Dec-2020	Coffee	1586	YD42790	2-Aug-2010	15-Dec-2016
Coffee	67	YC54475	27-Dec-2006	15-Dec-2020	Coffee	1587	YD42791	2-Aug-2010	15-Dec-2016
Coffee	68	YC54476	27-Dec-2006	15-Dec-2020	Coffee	1588	YD42792	2-Aug-2010	15-Dec-2016
Coffee	69	YC54477	27-Dec-2006	15-Dec-2019	Coffee	1589	YD42793	2-Aug-2010	15-Dec-2016
Coffee	70	YC54478	27-Dec-2006	15-Dec-2019	Coffee	1590	YD42794	2-Aug-2010	15-Dec-2016
Coffee	71	YC54479	27-Dec-2006	15-Dec-2019	Coffee	1591	YD42795	2-Aug-2010	15-Dec-2016
Coffee	72	YC54480	27-Dec-2006	15-Dec-2019	Coffee	1592	YD42796	2-Aug-2010	15-Dec-2016
Coffee	73	YC54481	27-Dec-2006	15-Dec-2019	Coffee	1593	YD42797	25-Feb-2010	15-Dec-2016
Coffee	74	YC54482	27-Dec-2006	15-Dec-2019	Coffee	1594	YD42798	25-Feb-2010	15-Dec-2016
Coffee	75	YC54483	27-Dec-2006	15-Dec-2019	Coffee	1595	YD42799	25-Feb-2010	15-Dec-2016
Coffee	76	YC54484	27-Dec-2006	15-Dec-2019	Coffee	1596	YD42800	25-Feb-2010	15-Dec-2016
Coffee	77	YC54485	27-Dec-2006	15-Dec-2019	Coffee	1597	YD42801	25-Feb-2010	15-Dec-2016
Coffee	78	YC54486	27-Dec-2006	15-Dec-2019	Coffee	1598	YD42802	25-Feb-2010	15-Dec-2016
Coffee	79	YC54487	27-Dec-2006	15-Dec-2019	Coffee	1599	YD42803	25-Feb-2010	15-Dec-2016
Coffee	80	YC54488	27-Dec-2006	15-Dec-2019	Coffee	1600	YD42804	25-Feb-2010	15-Dec-2016
Coffee	81	YC54489	27-Dec-2006	15-Dec-2019	Coffee	1601	YD42805	25-Feb-2010	15-Dec-2016
Coffee	82	YC54490	27-Dec-2006	15-Dec-2019	Coffee	1602	YD42806	25-Feb-2010	15-Dec-2016
Coffee	83	YC54491	27-Dec-2006	15-Dec-2019	Coffee	1603	YD42807	25-Feb-2010	15-Dec-2016
Coffee	84	YC54492	27-Dec-2006	15-Dec-2019	Coffee	1604	YD42808	25-Feb-2010	15-Dec-2016
Coffee	85	YC54493	27-Dec-2006	15-Dec-2019	Coffee	1605	YD42809	25-Feb-2010	15-Dec-2016
Coffee	86	YC54494	27-Dec-2006	15-Dec-2019	Coffee	1606	YD42810	25-Feb-2010	15-Dec-2016
Coffee	87	YC54495	27-Dec-2006	15-Dec-2019	Coffee	1607	YD42811	25-Feb-2010	15-Dec-2016
Coffee	88	YC54496	27-Dec-2006	15-Dec-2019	Coffee	1608	YD42812	25-Feb-2010	15-Dec-2016
Coffee	89	YC54497	27-Dec-2006	15-Dec-2019	Coffee	1609	YD42813	25-Feb-2010	15-Dec-2016
Coffee	90	YC54498	27-Dec-2006	15-Dec-2019	Coffee	1610	YD42814	25-Feb-2010	15-Dec-2016
Coffee	91	YC54499	27-Dec-2006	15-Dec-2019	Coffee	1611	YD42815	25-Feb-2010	15-Dec-2016
Coffee	92	YC54500	27-Dec-2006	15-Dec-2019	Coffee	1612	YD42816	25-Feb-2010	15-Dec-2016
Coffee	93	YC60164	2-Apr-2007	15-Dec-2020	Coffee	1613	YD42817	25-Feb-2010	15-Dec-2016
Coffee	94	YC60165	2-Apr-2007	15-Dec-2020	Coffee	1614	YD42818	25-Feb-2010	15-Dec-2016
Coffee	95	YC60166	2-Apr-2007	15-Dec-2020	Coffee	1615	YD42819	25-Feb-2010	15-Dec-2016
Coffee	96	YC60167	2-Apr-2007	15-Dec-2020	Coffee	1616	YD42820	25-Feb-2010	15-Dec-2016
Coffee	97	YC60168	2-Apr-2007	15-Dec-2020	Coffee	1617	YD42821	25-Feb-2010	15-Dec-2016
Coffee	98	YC60169	2-Apr-2007	15-Dec-2020	Coffee	1618	YD42822	25-Feb-2010	15-Dec-2016
Coffee	99	YC60170	2-Apr-2007	15-Dec-2020	Coffee	1619	YD42823	25-Feb-2010	15-Dec-2016
Coffee	100	YC60171	2-Apr-2007	15-Dec-2020	Coffee	1620	YD42824	25-Feb-2010	15-Dec-2016
Coffee	101	YC60172	2-Apr-2007	15-Dec-2020	Coffee	1621	YD42825	25-Feb-2010	15-Dec-2016
Coffee	102	YC60173	2-Apr-2007	15-Dec-2020	Coffee	1622	YD42826	25-Feb-2010	15-Dec-2016
Coffee	103	YC60174	2-Apr-2007	15-Dec-2020	Coffee	1623	YD42827	25-Feb-2010	15-Dec-2016
Coffee	104	YC60175	2-Apr-2007	15-Dec-2020	Coffee	1624	YD42828	25-Feb-2010	15-Dec-2016
Coffee	105	YC60176	2-Apr-2007	15-Dec-2020	Coffee	1625	YD42829	25-Feb-2010	15-Dec-2016
Coffee	106	YC60177	2-Apr-2007	15-Dec-2020	Coffee	1626	YD42830	25-Feb-2010	15-Dec-2016
Coffee	107	YC60178	2-Apr-2007	15-Dec-2020	Coffee	1627	YD42831	25-Feb-2010	15-Dec-2016
Coffee	108	YC60179	2-Apr-2007	15-Dec-2020	Coffee	1628	YD42832	25-Feb-2010	15-Dec-2016
Coffee	109	YC60180	2-Apr-2007	15-Dec-2020	Coffee	1629	YD42833	25-Feb-2010	15-Dec-2016
Coffee	110	YC60181	2-Apr-2007	15-Dec-2020	Coffee	1630	YD42834	25-Feb-2010	15-Dec-2016
Coffee	111	YC60182	2-Apr-2007	15-Dec-2020	Coffee	1631	YD42835	25-Feb-2010	15-Dec-2016
Coffee	112	YC60183	2-Apr-2007	15-Dec-2020	Coffee	1632	YD42836	25-Feb-2010	15-Dec-2016
Coffee	113	YC83190	11-Sep-2008	15-Dec-2018	Coffee	1633	YD42837	25-Feb-2010	15-Dec-2016
Coffee	114	YC83191	11-Sep-2008	15-Dec-2018	Coffee	1634	YD42838	25-Feb-2010	15-Dec-2016
Coffee	115	YC83192	11-Sep-2008	15-Dec-2018	Coffee	1635	YD42839	25-Feb-2010	15-Dec-2016
Coffee	116	YC83193	11-Sep-2008	15-Dec-2018	Coffee	1636	YD42840	25-Feb-2010	15-Dec-2016
Coffee	117	YC83194	11-Sep-2008	15-Dec-2018	Coffee	1637	YD42841	25-Feb-2010	15-Dec-2016
Coffee	118	YC83195	11-Sep-2008	15-Dec-2018	Coffee	1638	YD42842	25-Feb-2010	15-Dec-2016
Coffee	119	YC83196	11-Sep-2008	15-Dec-2018	Coffee	1639	YD42843	25-Feb-2010	15-Dec-2016
Coffee	120	YC83197	11-Sep-2008	15-Dec-2018	Coffee	1640	YD42844	25-Feb-2010	15-Dec-2016
Coffee	121	YC83198	11-Sep-2008	15-Dec-2018	Coffee	1641	YD42845	25-Feb-2010	15-Dec-2016
Coffee	122	YC83199	11-Sep-2008	15-Dec-2018	Coffee	1642	YD42846	25-Feb-2010	15-Dec-2016
Coffee	123	YC83200	11-Sep-2008	15-Dec-2018	Coffee	1643	YD42847	25-Feb-2010	15-Dec-2016
Coffee	124	YC83201	11-Sep-2008	15-Dec-2018	Coffee	1644	YD42848	25-Feb-2010	15-Dec-2016
Coffee	125	YC83202	11-Sep-2008	15-Dec-2018	Coffee	1645	YD42849	25-Feb-2010	15-Dec-2016
Coffee	126	YC83203	11-Sep-2008	15-Dec-2018	Coffee	1646	YD42850	25-Feb-2010	15-Dec-2016
Coffee	127	YC83204	11-Sep-2008	15-Dec-2018	Coffee	1647	YD42851	25-Feb-2010	15-Dec-2016
Coffee	128	YC83205	11-Sep-2008	15-Dec-2018	Coffee	1648	YD42852	25-Feb-2010	15-Dec-2016
Coffee	129	YC83206	11-Sep-2008	15-Dec-2022	Coffee	1649	YD42853	25-Feb-2010	15-Dec-2016
Coffee	130	YC83207	11-Sep-2008	15-Dec-2022	Coffee	1650	YD42854	25-Feb-2010	15-Dec-2016
Coffee	131	YC83208	11-Sep-2008	15-Dec-2022	Coffee	1651	YD42855	25-Feb-2010	15-Dec-2016
Coffee	132	YC83209	11-Sep-2008	15-Dec-2022	Coffee	1652	YD42856	25-Feb-2010	15-Dec-2016
Coffee	133	YC83210	11-Sep-2008	15-Dec-2018	Coffee	1653	YD42857	25-Feb-2010	15-Dec-2016
Coffee	134	YC83211	11-Sep-2008	15-Dec-2018	Coffee	1654	YD42858	25-Feb-2010	15-Dec-2016

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	135	YC83212	11-Sep-2008	15-Dec-2018	Coffee	1655	YD42859	25-Feb-2010	15-Dec-2016
Coffee	136	YC83213	11-Sep-2008	15-Dec-2018	Coffee	1656	YD42860	25-Feb-2010	15-Dec-2016
Coffee	137	YC83214	11-Sep-2008	15-Dec-2022	Coffee	1657	YD42861	25-Feb-2010	15-Dec-2016
Coffee	138	YC83215	11-Sep-2008	15-Dec-2022	Coffee	1658	YD42862	25-Feb-2010	15-Dec-2016
Coffee	139	YC83216	11-Sep-2008	15-Dec-2022	Coffee	1659	YD42863	25-Feb-2010	15-Dec-2016
Coffee	140	YC83217	11-Sep-2008	15-Dec-2022	Coffee	1660	YD42864	25-Feb-2010	15-Dec-2016
Coffee	141	YC83218	11-Sep-2008	15-Dec-2018	Coffee	1661	YD42865	25-Feb-2010	15-Dec-2016
Coffee	142	YC83219	11-Sep-2008	15-Dec-2018	Coffee	1662	YD42866	25-Feb-2010	15-Dec-2016
Coffee	143	YC83220	11-Sep-2008	15-Dec-2018	Coffee	1663	YD42867	25-Feb-2010	15-Dec-2016
Coffee	144	YC83221	11-Sep-2008	15-Dec-2018	Coffee	1664	YD42868	25-Feb-2010	15-Dec-2016
Coffee	145	YC83222	11-Sep-2008	15-Dec-2022	Coffee	1665	YD42869	25-Feb-2010	15-Dec-2016
Coffee	146	YC83223	11-Sep-2008	15-Dec-2022	Coffee	1666	YD42870	25-Feb-2010	15-Dec-2016
Coffee	147	YC83224	11-Sep-2008	15-Dec-2022	Coffee	1667	YD42871	25-Feb-2010	15-Dec-2016
Coffee	148	YC83225	11-Sep-2008	15-Dec-2022	Coffee	1668	YD42872	25-Feb-2010	15-Dec-2016
Coffee	149	YC83226	11-Sep-2008	15-Dec-2018	Coffee	1669	YD42873	25-Feb-2010	15-Dec-2016
Coffee	150	YC83227	11-Sep-2008	15-Dec-2018	Coffee	1670	YD42874	25-Feb-2010	15-Dec-2016
Coffee	151	YC83228	11-Sep-2008	15-Dec-2018	Coffee	1671	YD42875	25-Feb-2010	15-Dec-2016
Coffee	152	YC83229	11-Sep-2008	15-Dec-2018	Coffee	1672	YD42876	25-Feb-2010	15-Dec-2016
Coffee	153	YC83230	11-Sep-2008	15-Dec-2022	Coffee	1673	YD42877	25-Feb-2010	15-Dec-2016
Coffee	154	YC83231	11-Sep-2008	15-Dec-2022	Coffee	1674	YD42878	25-Feb-2010	15-Dec-2016
Coffee	155	YC83232	11-Sep-2008	15-Dec-2022	Coffee	1675	YD42879	25-Feb-2010	15-Dec-2016
Coffee	156	YC83233	11-Sep-2008	15-Dec-2022	Coffee	1676	YD42880	25-Feb-2010	15-Dec-2016
Coffee	157	YC83234	11-Sep-2008	15-Dec-2022	Coffee	1677	YD42881	25-Feb-2010	15-Dec-2016
Coffee	158	YC83235	11-Sep-2008	15-Dec-2022	Coffee	1678	YD42882	25-Feb-2010	15-Dec-2016
Coffee	159	YC83236	11-Sep-2008	15-Dec-2022	Coffee	1679	YD42883	25-Feb-2010	15-Dec-2016
Coffee	160	YC83237	11-Sep-2008	15-Dec-2022	Coffee	1680	YD42884	25-Feb-2010	15-Dec-2016
Coffee	161	YC83238	11-Sep-2008	15-Dec-2022	Coffee	1681	YD42885	25-Feb-2010	15-Dec-2016
Coffee	162	YC83239	11-Sep-2008	15-Dec-2022	Coffee	1682	YD42886	25-Feb-2010	15-Dec-2016
Coffee	163	YC83240	11-Sep-2008	15-Dec-2022	Coffee	1683	YD42887	25-Feb-2010	15-Dec-2016
Coffee	164	YC83241	11-Sep-2008	15-Dec-2022	Coffee	1684	YD42888	25-Feb-2010	15-Dec-2016
Coffee	165	YC83242	11-Sep-2008	15-Dec-2022	Coffee	1685	YD42889	25-Feb-2010	15-Dec-2016
Coffee	166	YC83243	11-Sep-2008	15-Dec-2022	Coffee	1686	YD42890	25-Feb-2010	15-Dec-2016
Coffee	167	YC83244	11-Sep-2008	15-Dec-2022	Coffee	1687	YD42891	25-Feb-2010	15-Dec-2016
Coffee	168	YC83245	11-Sep-2008	15-Dec-2022	Coffee	1688	YD42892	25-Feb-2010	15-Dec-2016
Coffee	169	YC83246	11-Sep-2008	15-Dec-2022	Coffee	1689	YD42893	25-Feb-2010	15-Dec-2016
Coffee	170	YC83247	11-Sep-2008	15-Dec-2022	Coffee	1690	YD42894	25-Feb-2010	15-Dec-2016
Coffee	171	YC83248	11-Sep-2008	15-Dec-2022	Coffee	1691	YD42895	25-Feb-2010	15-Dec-2016
Coffee	172	YC83249	11-Sep-2008	15-Dec-2022	Coffee	1692	YD42896	25-Feb-2010	15-Dec-2016
Coffee	173	YC83250	11-Sep-2008	15-Dec-2018	Coffee	1693	YD42897	25-Feb-2010	15-Dec-2016
Coffee	174	YC83251	11-Sep-2008	15-Dec-2018	Coffee	1694	YD42898	25-Feb-2010	15-Dec-2016
Coffee	175	YC83252	11-Sep-2008	15-Dec-2018	Coffee	1695	YD42899	25-Feb-2010	15-Dec-2016
Coffee	176	YC83253	11-Sep-2008	15-Dec-2018	Coffee	1696	YD42900	25-Feb-2010	15-Dec-2016
Coffee	177	YC83254	11-Sep-2008	15-Dec-2018	Coffee	1697	YD42901	25-Feb-2010	15-Dec-2016
Coffee	178	YC83255	11-Sep-2008	15-Dec-2018	Coffee	1698	YD42902	25-Feb-2010	15-Dec-2016
Coffee	179	YC83256	11-Sep-2008	15-Dec-2018	Coffee	1699	YD42903	25-Feb-2010	15-Dec-2016
Coffee	180	YC83257	11-Sep-2008	15-Dec-2018	Coffee	1700	YD42904	25-Feb-2010	15-Dec-2016
Coffee	181	YC83258	11-Sep-2008	15-Dec-2018	Coffee	1701	YD42905	25-Feb-2010	15-Dec-2016
Coffee	182	YC83259	11-Sep-2008	15-Dec-2018	Coffee	1702	YD42906	25-Feb-2010	15-Dec-2016
Coffee	183	YC83260	11-Sep-2008	15-Dec-2018	Coffee	1703	YD42907	25-Feb-2010	15-Dec-2016
Coffee	184	YC83261	11-Sep-2008	15-Dec-2018	Coffee	1704	YD42908	25-Feb-2010	15-Dec-2016
Coffee	185	YC83262	11-Sep-2008	15-Dec-2018	Coffee	1705	YD42909	25-Feb-2010	15-Dec-2016
Coffee	186	YC83263	11-Sep-2008	15-Dec-2018	Coffee	1706	YD42910	25-Feb-2010	15-Dec-2016
Coffee	187	YC83264	11-Sep-2008	15-Dec-2018	Coffee	1707	YD42911	25-Feb-2010	15-Dec-2016
Coffee	188	YC83265	11-Sep-2008	15-Dec-2018	Coffee	1708	YD42912	25-Feb-2010	15-Dec-2016
Coffee	189	YC83266	11-Sep-2008	15-Dec-2018	Coffee	1709	YD42913	25-Feb-2010	15-Dec-2016
Coffee	190	YC83267	11-Sep-2008	15-Dec-2018	Coffee	1710	YD42914	25-Feb-2010	15-Dec-2016
Coffee	191	YC83268	11-Sep-2008	15-Dec-2018	Coffee	1711	YD42915	25-Feb-2010	15-Dec-2016
Coffee	192	YC83269	11-Sep-2008	15-Dec-2018	Coffee	1712	YD42916	25-Feb-2010	15-Dec-2016
Coffee	193	YC83270	11-Sep-2008	15-Dec-2018	Coffee	1713	YD42917	25-Feb-2010	15-Dec-2016
Coffee	194	YC83271	11-Sep-2008	15-Dec-2018	Coffee	1714	YD42918	25-Feb-2010	15-Dec-2016
Coffee	195	YC83272	11-Sep-2008	15-Dec-2018	Coffee	1715	YD43085	25-Feb-2010	15-Dec-2016
Coffee	196	YC83273	11-Sep-2008	15-Dec-2018	Coffee	1716	YD43086	25-Feb-2010	15-Dec-2016
Coffee	197	YC83274	11-Sep-2008	15-Dec-2018	Coffee	1717	YD43087	25-Feb-2010	15-Dec-2016
Coffee	198	YC83275	11-Sep-2008	15-Dec-2018	Coffee	1718	YD43088	25-Feb-2010	15-Dec-2016
Coffee	199	YC83276	11-Sep-2008	15-Dec-2018	Coffee	1719	YD43929	14-Apr-2010	15-Dec-2016
Coffee	200	YC83277	11-Sep-2008	15-Dec-2018	Coffee	1720	YD43930	14-Apr-2010	15-Dec-2016
Coffee	201	YC83278	11-Sep-2008	15-Dec-2018	Coffee	1721	YD43931	14-Apr-2010	15-Dec-2016
Coffee	202	YC83279	11-Sep-2008	15-Dec-2018	Coffee	1722	YD43932	14-Apr-2010	15-Dec-2016
Coffee	203	YC83280	11-Sep-2008	15-Dec-2018	Coffee	1723	YD43933	14-Apr-2010	15-Dec-2016

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	204	YC83281	11-Sep-2008	15-Dec-2018	Coffee	1724	YD43934	14-Apr-2010	15-Dec-2016
Coffee	205	YC83282	11-Sep-2008	15-Dec-2018	Coffee	1725	YD43935	14-Apr-2010	15-Dec-2016
Coffee	206	YC83283	11-Sep-2008	15-Dec-2018	Coffee	1726	YD43936	14-Apr-2010	15-Dec-2016
Coffee	207	YC83284	11-Sep-2008	15-Dec-2018	Coffee	1727	YD43937	14-Apr-2010	15-Dec-2016
Coffee	208	YC83285	11-Sep-2008	15-Dec-2018	Coffee	1728	YD43938	14-Apr-2010	15-Dec-2016
Coffee	209	YC83286	11-Sep-2008	15-Dec-2018	Coffee	1729	YD43939	14-Apr-2010	15-Dec-2016
Coffee	210	YC83287	11-Sep-2008	15-Dec-2018	Coffee	1730	YD43940	14-Apr-2010	15-Dec-2016
Coffee	211	YC83288	11-Sep-2008	15-Dec-2018	Coffee	1731	YD43941	14-Apr-2010	15-Dec-2016
Coffee	212	YC83289	11-Sep-2008	15-Dec-2018	Coffee	1732	YD43942	14-Apr-2010	15-Dec-2016
Coffee	213	YC83290	11-Sep-2008	15-Dec-2018	Coffee	1733	YD43943	14-Apr-2010	15-Dec-2016
Coffee	214	YC83291	11-Sep-2008	15-Dec-2018	Coffee	1734	YD43944	14-Apr-2010	15-Dec-2016
Coffee	215	YC83292	11-Sep-2008	15-Dec-2018	Coffee	1735	YD43945	14-Apr-2010	15-Dec-2016
Coffee	216	YC83293	11-Sep-2008	15-Dec-2018	Coffee	1736	YD43946	14-Apr-2010	15-Dec-2016
Coffee	217	YC83294	11-Sep-2008	15-Dec-2018	Coffee	1737	YD43947	14-Apr-2010	15-Dec-2016
Coffee	218	YC83295	11-Sep-2008	15-Dec-2018	Coffee	1738	YD43948	14-Apr-2010	15-Dec-2016
Coffee	219	YC83296	11-Sep-2008	15-Dec-2018	Coffee	1739	YD43949	14-Apr-2010	15-Dec-2016
Coffee	220	YC83297	11-Sep-2008	15-Dec-2018	Coffee	1740	YD43950	14-Apr-2010	15-Dec-2016
Coffee	221	YC83298	11-Sep-2008	15-Dec-2018	Coffee	1741	YD43951	14-Apr-2010	15-Dec-2016
Coffee	222	YC83299	11-Sep-2008	15-Dec-2018	Coffee	1742	YD43952	14-Apr-2010	15-Dec-2016
Coffee	223	YC83300	11-Sep-2008	15-Dec-2018	Coffee	1743	YD43953	14-Apr-2010	15-Dec-2016
Coffee	224	YC83301	11-Sep-2008	15-Dec-2018	Coffee	1744	YD43954	14-Apr-2010	15-Dec-2016
Coffee	225	YC83302	11-Sep-2008	15-Dec-2018	Coffee	1745	YD43955	14-Apr-2010	15-Dec-2016
Coffee	226	YC83303	11-Sep-2008	15-Dec-2018	Coffee	1746	YD43956	14-Apr-2010	15-Dec-2016
Coffee	227	YC83652	15-Oct-2008	15-Dec-2018	Coffee	1747	YD43957	14-Apr-2010	15-Dec-2016
Coffee	228	YC83653	15-Oct-2008	15-Dec-2018	Coffee	1748	YD43958	14-Apr-2010	15-Dec-2016
Coffee	229	YC83654	15-Oct-2008	15-Dec-2018	Coffee	1749	YD43959	14-Apr-2010	15-Dec-2016
Coffee	230	YC83655	15-Oct-2008	15-Dec-2018	Coffee	1750	YD43960	14-Apr-2010	15-Dec-2016
Coffee	231	YC83656	15-Oct-2008	15-Dec-2018	Coffee	1751	YD43961	14-Apr-2010	15-Dec-2016
Coffee	232	YC83657	15-Oct-2008	15-Dec-2018	Coffee	1752	YD43962	14-Apr-2010	15-Dec-2016
Coffee	233	YC83658	15-Oct-2008	15-Dec-2018	Coffee	1753	YD43963	14-Apr-2010	15-Dec-2016
Coffee	234	YC83659	15-Oct-2008	15-Dec-2018	Coffee	1754	YD43964	14-Apr-2010	15-Dec-2016
Coffee	235	YC83660	15-Oct-2008	15-Dec-2018	Coffee	1755	YD43965	14-Apr-2010	15-Dec-2016
Coffee	236	YC83661	15-Oct-2008	15-Dec-2018	Coffee	1756	YD43966	14-Apr-2010	15-Dec-2016
Coffee	237	YC83662	15-Oct-2008	15-Dec-2018	Coffee	1757	YD43967	14-Apr-2010	15-Dec-2016
Coffee	238	YC83663	15-Oct-2008	15-Dec-2018	Coffee	1758	YD43968	14-Apr-2010	15-Dec-2016
Coffee	239	YC83664	15-Oct-2008	15-Dec-2018	Coffee	1759	YD43969	14-Apr-2010	15-Dec-2016
Coffee	240	YC83665	15-Oct-2008	15-Dec-2018	Coffee	1760	YD43970	14-Apr-2010	15-Dec-2016
Coffee	241	YC83666	15-Oct-2008	15-Dec-2018	Coffee	1761	YD43971	14-Apr-2010	15-Dec-2016
Coffee	242	YC83667	15-Oct-2008	15-Dec-2018	Coffee	1762	YD43972	14-Apr-2010	15-Dec-2016
Coffee	243	YC83668	15-Oct-2008	15-Dec-2018	Coffee	1763	YD43973	14-Apr-2010	15-Dec-2016
Coffee	244	YC83669	15-Oct-2008	15-Dec-2018	Coffee	1764	YD43974	14-Apr-2010	15-Dec-2016
Coffee	245	YC83670	15-Oct-2008	15-Dec-2018	Coffee	1765	YD43975	14-Apr-2010	15-Dec-2016
Coffee	246	YC83671	15-Oct-2008	15-Dec-2018	Coffee	1766	YD43976	14-Apr-2010	15-Dec-2016
Coffee	247	YC83672	15-Oct-2008	15-Dec-2018	Coffee	1767	YD43977	14-Apr-2010	15-Dec-2016
Coffee	248	YC83673	15-Oct-2008	15-Dec-2018	Coffee	1768	YD43978	14-Apr-2010	15-Dec-2016
Coffee	249	YC83674	15-Oct-2008	15-Dec-2018	Coffee	1769	YD43979	14-Apr-2010	15-Dec-2016
Coffee	250	YC83675	15-Oct-2008	15-Dec-2018	Coffee	1770	YD43980	14-Apr-2010	15-Dec-2016
Coffee	251	YC83676	15-Oct-2008	15-Dec-2018	Coffee	1771	YD43981	14-Apr-2010	15-Dec-2016
Coffee	252	YC83677	15-Oct-2008	15-Dec-2018	Coffee	1772	YD43982	14-Apr-2010	15-Dec-2016
Coffee	253	YC83678	15-Oct-2008	15-Dec-2018	Coffee	1773	YD43983	14-Apr-2010	15-Dec-2016
Coffee	254	YC83679	15-Oct-2008	15-Dec-2018	Coffee	1774	YD43984	14-Apr-2010	15-Dec-2016
Coffee	255	YC83680	15-Oct-2008	15-Dec-2018	Coffee	1775	YD43985	14-Apr-2010	15-Dec-2016
Coffee	256	YC83681	15-Oct-2008	15-Dec-2018	Coffee	1776	YD43986	14-Apr-2010	15-Dec-2016
Coffee	257	YC83682	15-Oct-2008	15-Dec-2018	Coffee	1777	YD43987	14-Apr-2010	15-Dec-2016
Coffee	258	YC83683	15-Oct-2008	15-Dec-2018	Coffee	1778	YD43988	14-Apr-2010	15-Dec-2016
Coffee	259	YC83684	15-Oct-2008	15-Dec-2018	Coffee	1779	YD43989	14-Apr-2010	15-Dec-2016
Coffee	260	YC83685	15-Oct-2008	15-Dec-2018	Coffee	1780	YD43990	14-Apr-2010	15-Dec-2016
Coffee	261	YC83686	15-Oct-2008	15-Dec-2018	Coffee	1781	YD43991	14-Apr-2010	15-Dec-2016
Coffee	262	YC83687	15-Oct-2008	15-Dec-2018	Coffee	1782	YD43992	14-Apr-2010	15-Dec-2015
Coffee	263	YC83688	15-Oct-2008	15-Dec-2018	Coffee	1783	YD43993	14-Apr-2010	15-Dec-2015
Coffee	264	YC83689	15-Oct-2008	15-Dec-2018	Coffee	1784	YD43994	14-Apr-2010	15-Dec-2015
Coffee	265	YC83690	15-Oct-2008	15-Dec-2018	Coffee	1785	YD43995	14-Apr-2010	15-Dec-2015
Coffee	266	YC83691	15-Oct-2008	15-Dec-2018	Coffee	1786	YD43996	14-Apr-2010	15-Dec-2015
Coffee	267	YC83692	15-Oct-2008	15-Dec-2018	Coffee	1787	YD43997	14-Apr-2010	15-Dec-2015
Coffee	268	YC83693	15-Oct-2008	15-Dec-2018	Coffee	1788	YD43998	14-Apr-2010	15-Dec-2015
Coffee	269	YC83694	15-Oct-2008	15-Dec-2018	Coffee	1789	YD43999	14-Apr-2010	15-Dec-2015
Coffee	270	YC83695	15-Oct-2008	15-Dec-2018	Coffee	1790	YD44000	14-Apr-2010	15-Dec-2015
Coffee	271	YC83696	15-Oct-2008	15-Dec-2018	Coffee	1791	YD44001	14-Apr-2010	15-Dec-2015
Coffee	272	YC83697	15-Oct-2008	15-Dec-2018	Coffee	1792	YD44002	14-Apr-2010	15-Dec-2015

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	273	YC83698	15-Oct-2008	15-Dec-2018	Coffee	1793	YD44003	14-Apr-2010	15-Dec-2015
Coffee	274	YC83699	15-Oct-2008	15-Dec-2018	Coffee	1794	YD44004	14-Apr-2010	15-Dec-2015
Coffee	275	YC83700	15-Oct-2008	15-Dec-2018	Coffee	1795	YD44005	14-Apr-2010	15-Dec-2015
Coffee	276	YC83701	15-Oct-2008	15-Dec-2018	Coffee	1796	YD44006	14-Apr-2010	15-Dec-2015
Coffee	277	YC89405	24-Jun-2009	15-Dec-2018	Coffee	1797	YD44007	14-Apr-2010	15-Dec-2015
Coffee	278	YC89406	24-Jun-2009	15-Dec-2018	Coffee	1798	YD44008	14-Apr-2010	15-Dec-2015
Coffee	279	YC89407	24-Jun-2009	15-Dec-2018	Coffee	1799	YD44009	14-Apr-2010	15-Dec-2015
Coffee	280	YC89408	24-Jun-2009	15-Dec-2018	Coffee	1800	YD44010	14-Apr-2010	15-Dec-2015
Coffee	281	YC89409	24-Jun-2009	15-Dec-2018	Coffee	1801	YD44011	14-Apr-2010	15-Dec-2015
Coffee	282	YC89410	24-Jun-2009	15-Dec-2018	Coffee	1802	YD44012	14-Apr-2010	15-Dec-2015
Coffee	283	YC89411	24-Jun-2009	15-Dec-2018	Coffee	1803	YD44013	14-Apr-2010	15-Dec-2015
Coffee	284	YC89412	24-Jun-2009	15-Dec-2018	Coffee	1804	YD44014	14-Apr-2010	15-Dec-2015
Coffee	285	YC89413	24-Jun-2009	15-Dec-2018	Coffee	1805	YD44015	14-Apr-2010	15-Dec-2015
Coffee	286	YC89414	24-Jun-2009	15-Dec-2018	Coffee	1806	YD44016	14-Apr-2010	15-Dec-2015
Coffee	287	YC89415	24-Jun-2009	15-Dec-2018	Coffee	1807	YD44017	14-Apr-2010	15-Dec-2015
Coffee	288	YC89416	24-Jun-2009	15-Dec-2018	Coffee	1808	YD44018	14-Apr-2010	15-Dec-2015
Coffee	289	YC89417	24-Jun-2009	15-Dec-2022	Coffee	1809	YD44019	14-Apr-2010	15-Dec-2015
Coffee	290	YC89418	24-Jun-2009	15-Dec-2022	Coffee	1810	YD44020	14-Apr-2010	15-Dec-2015
Coffee	291	YC89419	24-Jun-2009	15-Dec-2022	Coffee	1811	YD44021	14-Apr-2010	15-Dec-2015
Coffee	292	YC89420	24-Jun-2009	15-Dec-2022	Coffee	1812	YD44022	14-Apr-2010	15-Dec-2015
Coffee	293	YC89421	24-Jun-2009	15-Dec-2018	Coffee	1813	YD44023	14-Apr-2010	15-Dec-2015
Coffee	294	YC89422	24-Jun-2009	15-Dec-2018	Coffee	1814	YD44024	14-Apr-2010	15-Dec-2015
Coffee	295	YC89423	24-Jun-2009	15-Dec-2018	Coffee	1815	YD44025	14-Apr-2010	15-Dec-2015
Coffee	296	YC89424	24-Jun-2009	15-Dec-2018	Coffee	1816	YD44026	14-Apr-2010	15-Dec-2015
Coffee	297	YC89425	24-Jun-2009	15-Dec-2018	Coffee	1817	YD44027	14-Apr-2010	15-Dec-2015
Coffee	298	YC89426	24-Jun-2009	15-Dec-2018	Coffee	1818	YD44028	14-Apr-2010	15-Dec-2015
Coffee	299	YC89427	24-Jun-2009	15-Dec-2018	Coffee	1819	YD44029	14-Apr-2010	15-Dec-2015
Coffee	300	YC89428	24-Jun-2009	15-Dec-2018	Coffee	1820	YD44030	14-Apr-2010	15-Dec-2015
Coffee	301	YC89429	24-Jun-2009	15-Dec-2018	Coffee	1821	YD44031	14-Apr-2010	15-Dec-2015
Coffee	302	YC89430	24-Jun-2009	15-Dec-2018	Coffee	1822	YD44032	14-Apr-2010	15-Dec-2015
Coffee	303	YC89431	24-Jun-2009	15-Dec-2018	Coffee	1823	YD44033	14-Apr-2010	15-Dec-2015
Coffee	304	YC89432	24-Jun-2009	15-Dec-2018	Coffee	1824	YD44034	14-Apr-2010	15-Dec-2015
Coffee	305	YC89433	24-Jun-2009	15-Dec-2022	Coffee	1825	YD44035	14-Apr-2010	15-Dec-2015
Coffee	306	YC89434	24-Jun-2009	15-Dec-2022	Coffee	1826	YD44036	14-Apr-2010	15-Dec-2015
Coffee	307	YC89435	24-Jun-2009	15-Dec-2022	Coffee	1827	YD44037	14-Apr-2010	15-Dec-2015
Coffee	308	YC89436	24-Jun-2009	15-Dec-2022	Coffee	1828	YD44038	14-Apr-2010	15-Dec-2015
Coffee	309	YC89437	24-Jun-2009	15-Dec-2018	Coffee	1829	YD44039	14-Apr-2010	15-Dec-2015
Coffee	310	YC89438	24-Jun-2009	15-Dec-2018	Coffee	1830	YD44040	14-Apr-2010	15-Dec-2015
Coffee	311	YC89439	24-Jun-2009	15-Dec-2018	Coffee	1831	YD44041	14-Apr-2010	15-Dec-2015
Coffee	312	YC89440	24-Jun-2009	15-Dec-2018	Coffee	1832	YD44042	14-Apr-2010	15-Dec-2015
Coffee	313	YC89441	24-Jun-2009	15-Dec-2018	Coffee	1833	YD44043	14-Apr-2010	15-Dec-2015
Coffee	314	YC89442	24-Jun-2009	15-Dec-2018	Coffee	1834	YD44044	14-Apr-2010	15-Dec-2015
Coffee	315	YC89443	24-Jun-2009	15-Dec-2018	Coffee	1835	YD44045	14-Apr-2010	15-Dec-2015
Coffee	316	YC89444	24-Jun-2009	15-Dec-2018	Coffee	1836	YD44046	14-Apr-2010	15-Dec-2015
Coffee	317	YC89445	24-Jun-2009	15-Dec-2018	Coffee	1837	YD44047	14-Apr-2010	15-Dec-2015
Coffee	318	YC89446	24-Jun-2009	15-Dec-2018	Coffee	1838	YD44048	14-Apr-2010	15-Dec-2015
Coffee	319	YC89447	24-Jun-2009	15-Dec-2018	Coffee	1839	YD44049	14-Apr-2010	15-Dec-2015
Coffee	320	YC89448	24-Jun-2009	15-Dec-2018	Coffee	1840	YD44050	14-Apr-2010	15-Dec-2015
Coffee	321	YC89449	24-Jun-2009	15-Dec-2018	Coffee	1841	YD44051	14-Apr-2010	15-Dec-2015
Coffee	322	YC89450	24-Jun-2009	15-Dec-2018	Coffee	1842	YD44052	14-Apr-2010	15-Dec-2015
Coffee	323	YC89451	24-Jun-2009	15-Dec-2018	Coffee	1843	YD44053	14-Apr-2010	15-Dec-2015
Coffee	324	YC89452	24-Jun-2009	15-Dec-2018	Coffee	1844	YD44054	14-Apr-2010	15-Dec-2015
Coffee	325	YC89453	24-Jun-2009	15-Dec-2018	Coffee	1845	YD44055	14-Apr-2010	15-Dec-2015
Coffee	326	YC89454	24-Jun-2009	15-Dec-2018	Coffee	1846	YD44056	14-Apr-2010	15-Dec-2015
Coffee	327	YC89455	24-Jun-2009	15-Dec-2018	Coffee	1847	YD44057	14-Apr-2010	15-Dec-2015
Coffee	328	YC89456	24-Jun-2009	15-Dec-2018	Coffee	1848	YD44058	14-Apr-2010	15-Dec-2015
Coffee	329	YC89457	24-Jun-2009	15-Dec-2018	Coffee	1849	YD44059	14-Apr-2010	15-Dec-2015
Coffee	330	YC89458	24-Jun-2009	15-Dec-2018	Coffee	1850	YD44060	14-Apr-2010	15-Dec-2015
Coffee	331	YC89459	24-Jun-2009	15-Dec-2018	Coffee	1851	YD44061	14-Apr-2010	15-Dec-2015
Coffee	332	YC89460	24-Jun-2009	15-Dec-2018	Coffee	1852	YD44062	14-Apr-2010	15-Dec-2015
Coffee	333	YC89461	24-Jun-2009	15-Dec-2018	Coffee	1853	YD44063	14-Apr-2010	15-Dec-2015
Coffee	334	YC89462	24-Jun-2009	15-Dec-2018	Coffee	1854	YD44064	14-Apr-2010	15-Dec-2015
Coffee	335	YC89463	24-Jun-2009	15-Dec-2018	Coffee	1855	YD44065	14-Apr-2010	15-Dec-2015
Coffee	336	YC89464	24-Jun-2009	15-Dec-2018	Coffee	1856	YD44066	14-Apr-2010	15-Dec-2015
Coffee	337	YC89465	24-Jun-2009	15-Dec-2018	Coffee	1857	YD44067	14-Apr-2010	15-Dec-2015
Coffee	338	YC89466	24-Jun-2009	15-Dec-2018	Coffee	1858	YD44068	14-Apr-2010	15-Dec-2015
Coffee	339	YC89467	24-Jun-2009	15-Dec-2018	Coffee	1859	YD44069	14-Apr-2010	15-Dec-2015
Coffee	340	YC89468	24-Jun-2009	15-Dec-2018	Coffee	1860	YD44070	14-Apr-2010	15-Dec-2015
Coffee	341	YC89469	24-Jun-2009	15-Dec-2018	Coffee	1861	YD44071	14-Apr-2010	15-Dec-2015

Prop	Claim \#	Grant\#	$\begin{gathered} \text { Recorded } \\ \text { Date } \end{gathered}$	Expiry Date	Prop	Claim \#	Grant\#	$\begin{gathered} \text { Recorded } \\ \text { Date } \end{gathered}$	Expiry Date
Coffee	342	YC89470	24-Jun-2009	15-Dec-2018	Coffee	1862	YD44072	14-Apr-2010	15-Dec-2015
Coffee	343	YC89471	24-Jun-2009	15-Dec-2018	Coffee	1863	YD44073	14-Apr-2010	15-Dec-2015
Coffee	344	YC89472	24-Jun-2009	15-Dec-2018	Coffee	1864	YD44074	14-Apr-2010	15-Dec-2015
Coffee	345	YC93441	23-Sep-2009	15-Dec-2015	Coffee	1865	YD44075	14-Apr-2010	15-Dec-2015
Coffee	346	YC93442	23-Sep-2009	15-Dec-2015	Coffee	1866	YD44076	14-Apr-2010	15-Dec-2015
Coffee	347	YC93443	23-Sep-2009	15-Dec-2015	Coffee	1867	YD44077	14-Apr-2010	15-Dec-2015
Coffee	348	YC93444	23-Sep-2009	15-Dec-2015	Coffee	1868	YD44078	14-Apr-2010	15-Dec-2015
Coffee	349	YC93445	23-Sep-2009	15-Dec-2015	Coffee	1869	YD44079	14-Apr-2010	15-Dec-2015
Coffee	350	YC93446	23-Sep-2009	15-Dec-2015	Coffee	1870	YD44080	14-Apr-2010	15-Dec-2015
Coffee	351	YC93447	23-Sep-2009	15-Dec-2015	Coffee	1871	YD44081	14-Apr-2010	15-Dec-2015
Coffee	352	YC93448	23-Sep-2009	15-Dec-2015	Coffee	1872	YD44082	14-Apr-2010	15-Dec-2015
Coffee	353	YC93449	23-Sep-2009	15-Dec-2015	Coffee	1873	YD44083	14-Apr-2010	15-Dec-2015
Coffee	354	YC93450	23-Sep-2009	15-Dec-2015	Coffee	1874	YD44084	14-Apr-2010	15-Dec-2015
Coffee	355	YC93451	23-Sep-2009	15-Dec-2015	Coffee	1875	YD44085	14-Apr-2010	15-Dec-2015
Coffee	356	YC93452	23-Sep-2009	15-Dec-2015	Coffee	1876	YD44086	14-Apr-2010	15-Dec-2015
Coffee	357	YC93453	23-Sep-2009	15-Dec-2015	Coffee	1877	YD44087	14-Apr-2010	15-Dec-2015
Coffee	358	YC93454	23-Sep-2009	15-Dec-2015	Coffee	1878	YD44088	14-Apr-2010	15-Dec-2015
Coffee	359	YC93455	23-Sep-2009	15-Dec-2015	Coffee	1879	YD44089	14-Apr-2010	15-Dec-2015
Coffee	360	YC93456	23-Sep-2009	15-Dec-2015	Coffee	1880	YD44090	14-Apr-2010	15-Dec-2015
Coffee	361	YC93457	23-Sep-2009	15-Dec-2015	Coffee	1881	YD44091	14-Apr-2010	15-Dec-2015
Coffee	362	YC93458	23-Sep-2009	15-Dec-2015	Coffee	1882	YD44092	14-Apr-2010	15-Dec-2015
Coffee	363	YC93459	23-Sep-2009	15-Dec-2015	Coffee	1883	YD44093	14-Apr-2010	15-Dec-2015
Coffee	364	YC93460	23-Sep-2009	15-Dec-2015	Coffee	1884	YD44094	14-Apr-2010	15-Dec-2015
Coffee	365	YC93461	23-Sep-2009	15-Dec-2015	Coffee	1885	YD44095	14-Apr-2010	15-Dec-2015
Coffee	366	YC93462	23-Sep-2009	15-Dec-2015	Coffee	1886	YD44096	14-Apr-2010	15-Dec-2015
Coffee	367	YC93463	23-Sep-2009	15-Dec-2015	Coffee	1887	YD44097	14-Apr-2010	15-Dec-2015
Coffee	368	YC93464	23-Sep-2009	15-Dec-2015	Coffee	1888	YD44098	14-Apr-2010	15-Dec-2015
Coffee	369	YC93465	23-Sep-2009	15-Dec-2015	Coffee	1889	YD44099	14-Apr-2010	15-Dec-2015
Coffee	370	YC93466	23-Sep-2009	15-Dec-2015	Coffee	1890	YD44100	14-Apr-2010	15-Dec-2015
Coffee	371	YC93467	23-Sep-2009	15-Dec-2015	Coffee	1891	YD44101	14-Apr-2010	15-Dec-2015
Coffee	372	YC93468	23-Sep-2009	15-Dec-2015	Coffee	1892	YD44102	14-Apr-2010	15-Dec-2015
Coffee	373	YC93469	23-Sep-2009	15-Dec-2015	Coffee	1893	YD44103	14-Apr-2010	15-Dec-2015
Coffee	374	YC93470	23-Sep-2009	15-Dec-2015	Coffee	1894	YD44104	14-Apr-2010	15-Dec-2015
Coffee	375	YC93471	23-Sep-2009	15-Dec-2015	Coffee	1895	YD44105	14-Apr-2010	15-Dec-2015
Coffee	376	YC93472	23-Sep-2009	15-Dec-2015	Coffee	1896	YD44106	14-Apr-2010	15-Dec-2015
Coffee	377	YC93473	23-Sep-2009	15-Dec-2015	Coffee	1897	YD44107	14-Apr-2010	15-Dec-2015
Coffee	378	YC93474	23-Sep-2009	15-Dec-2015	Coffee	1898	YD44108	14-Apr-2010	15-Dec-2015
Coffee	379	YC93475	23-Sep-2009	15-Dec-2015	Coffee	1899	YD44109	14-Apr-2010	15-Dec-2015
Coffee	380	YC93476	23-Sep-2009	15-Dec-2015	Coffee	1900	YD44110	14-Apr-2010	15-Dec-2015
Coffee	381	YC93477	23-Sep-2009	15-Dec-2015	Coffee	1901	YD44111	14-Apr-2010	15-Dec-2015
Coffee	382	YC93478	23-Sep-2009	15-Dec-2015	Coffee	1902	YD44112	14-Apr-2010	15-Dec-2015
Coffee	383	YC93479	23-Sep-2009	15-Dec-2015	Coffee	1903	YD44113	14-Apr-2010	15-Dec-2015
Coffee	384	YC93480	23-Sep-2009	15-Dec-2015	Coffee	1904	YD44114	14-Apr-2010	15-Dec-2015
Coffee	385	YC93481	23-Sep-2009	15-Dec-2015	Coffee	1905	YD44115	14-Apr-2010	15-Dec-2015
Coffee	386	YC93482	23-Sep-2009	15-Dec-2015	Coffee	1906	YD44116	14-Apr-2010	15-Dec-2015
Coffee	387	YC93483	23-Sep-2009	15-Dec-2015	Coffee	1907	YD44117	14-Apr-2010	15-Dec-2015
Coffee	388	YC93484	23-Sep-2009	15-Dec-2015	Coffee	1908	YD44118	14-Apr-2010	15-Dec-2015
Coffee	389	YC93485	23-Sep-2009	15-Dec-2015	Coffee	1909	YD44119	14-Apr-2010	15-Dec-2015
Coffee	390	YC93486	23-Sep-2009	15-Dec-2015	Coffee	1910	YD44120	14-Apr-2010	15-Dec-2015
Coffee	391	YC93487	23-Sep-2009	15-Dec-2015	Coffee	1911	YD44121	14-Apr-2010	15-Dec-2015
Coffee	392	YC93488	23-Sep-2009	15-Dec-2015	Coffee	1912	YD44122	14-Apr-2010	15-Dec-2015
Coffee	393	YC93489	23-Sep-2009	15-Dec-2015	Coffee	1913	YD44123	14-Apr-2010	15-Dec-2015
Coffee	394	YC93490	23-Sep-2009	15-Dec-2015	Coffee	1914	YD44124	14-Apr-2010	15-Dec-2015
Coffee	395	YC93491	23-Sep-2009	15-Dec-2015	Coffee	1915	YD44125	14-Apr-2010	15-Dec-2015
Coffee	396	YC93492	23-Sep-2009	15-Dec-2015	Coffee	1916	YD44126	14-Apr-2010	15-Dec-2015
Coffee	397	YC93493	23-Sep-2009	15-Dec-2015	Coffee	1917	YD44127	14-Apr-2010	15-Dec-2015
Coffee	398	YC93494	23-Sep-2009	15-Dec-2015	Coffee	1918	YD44128	14-Apr-2010	15-Dec-2015
Coffee	399	YC93495	23-Sep-2009	15-Dec-2015	Coffee	1919	YD44129	14-Apr-2010	15-Dec-2015
Coffee	400	YC93496	23-Sep-2009	15-Dec-2015	Coffee	1920	YD44130	14-Apr-2010	15-Dec-2015
Coffee	401	YC93497	23-Sep-2009	15-Dec-2015	Coffee	1921	YD44131	14-Apr-2010	15-Dec-2015
Coffee	402	YC93498	23-Sep-2009	15-Dec-2015	Coffee	1922	YD44132	14-Apr-2010	15-Dec-2015
Coffee	403	YC93499	23-Sep-2009	15-Dec-2015	Coffee	1923	YD44133	14-Apr-2010	15-Dec-2015
Coffee	404	YC93500	23-Sep-2009	15-Dec-2015	Coffee	1924	YD44134	14-Apr-2010	15-Dec-2015
Coffee	405	YC97368	23-Sep-2009	15-Dec-2015	Coffee	1925	YD44135	14-Apr-2010	15-Dec-2015
Coffee	406	YC97369	23-Sep-2009	15-Dec-2015	Coffee	1926	YD44136	14-Apr-2010	15-Dec-2015
Coffee	407	YC97370	23-Sep-2009	15-Dec-2015	Coffee	1927	YD44137	14-Apr-2010	15-Dec-2015
Coffee	408	YC97371	23-Sep-2009	15-Dec-2015	Coffee	1928	YD44138	14-Apr-2010	15-Dec-2015
Coffee	409	YC97372	23-Sep-2009	15-Dec-2015	Coffee	1929	YD44139	14-Apr-2010	15-Dec-2015
Coffee	410	YC97373	23-Sep-2009	15-Dec-2015	Coffee	1930	YD44140	14-Apr-2010	15-Dec-2015

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	411	YC92601	30-Sep-2009	15-Dec-2015	Coffee	1931	YD44141	14-Apr-2010	15-Dec-2015
Coffee	412	YC92602	30-Sep-2009	15-Dec-2015	Coffee	1932	YD44142	14-Apr-2010	15-Dec-2015
Coffee	413	YC92603	30-Sep-2009	15-Dec-2015	Coffee	1933	YD44143	14-Apr-2010	15-Dec-2015
Coffee	414	YC92604	30-Sep-2009	15-Dec-2015	Coffee	1934	YD44144	14-Apr-2010	15-Dec-2015
Coffee	415	YC92605	30-Sep-2009	15-Dec-2015	Coffee	1935	YD44145	14-Apr-2010	15-Dec-2015
Coffee	416	YC92606	30-Sep-2009	15-Dec-2015	Coffee	1936	YD44146	14-Apr-2010	15-Dec-2015
Coffee	417	YC92607	30-Sep-2009	15-Dec-2015	Coffee	1937	YD44147	14-Apr-2010	15-Dec-2015
Coffee	418	YC92608	30-Sep-2009	15-Dec-2015	Coffee	1938	YD44148	14-Apr-2010	15-Dec-2015
Coffee	419	YC92609	30-Sep-2009	15-Dec-2015	Coffee	1939	YD44149	14-Apr-2010	15-Dec-2015
Coffee	420	YC92610	30-Sep-2009	15-Dec-2015	Coffee	1940	YD44150	14-Apr-2010	15-Dec-2015
Coffee	421	YC92611	30-Sep-2009	15-Dec-2015	Coffee	1941	YD44151	14-Apr-2010	15-Dec-2015
Coffee	422	YC92612	30-Sep-2009	15-Dec-2015	Coffee	1942	YD44152	14-Apr-2010	15-Dec-2015
Coffee	423	YC92613	30-Sep-2009	15-Dec-2015	Coffee	1943	YD44153	14-Apr-2010	15-Dec-2015
Coffee	424	YC92614	30-Sep-2009	15-Dec-2015	Coffee	1944	YD44154	14-Apr-2010	15-Dec-2015
Coffee	425	YC92615	30-Sep-2009	15-Dec-2015	Coffee	1945	YD44155	14-Apr-2010	15-Dec-2015
Coffee	426	YC92616	30-Sep-2009	15-Dec-2015	Coffee	1946	YD44156	14-Apr-2010	15-Dec-2015
Coffee	427	YC92617	30-Sep-2009	15-Dec-2015	Coffee	1947	YD44157	14-Apr-2010	15-Dec-2015
Coffee	428	YC92618	30-Sep-2009	15-Dec-2015	Coffee	1948	YD44158	14-Apr-2010	15-Dec-2015
Coffee	429	YC92619	30-Sep-2009	15-Dec-2015	Coffee	1949	YD44159	14-Apr-2010	15-Dec-2015
Coffee	430	YC92620	30-Sep-2009	15-Dec-2015	Coffee	1950	YD44160	14-Apr-2010	15-Dec-2015
Coffee	431	YC92621	30-Sep-2009	15-Dec-2015	Coffee	1951	YD44161	14-Apr-2010	15-Dec-2015
Coffee	432	YC92622	30-Sep-2009	15-Dec-2015	Coffee	1952	YD44162	14-Apr-2010	15-Dec-2015
Coffee	433	YC92623	30-Sep-2009	15-Dec-2015	Coffee	1953	YD44163	14-Apr-2010	15-Dec-2015
Coffee	434	YC92624	30-Sep-2009	15-Dec-2015	Coffee	1954	YD44164	14-Apr-2010	15-Dec-2015
Coffee	435	YC92625	30-Sep-2009	15-Dec-2015	Coffee	1955	YD16283	19-Aug-2010	15-Dec-2020
Coffee	436	YC92626	30-Sep-2009	15-Dec-2015	Coffee	1956	YD16284	19-Aug-2010	15-Dec-2020
Coffee	437	YC92627	30-Sep-2009	15-Dec-2015	Coffee	1957	YD16285	19-Aug-2010	15-Dec-2020
Coffee	438	YC92628	30-Sep-2009	15-Dec-2015	Coffee	1958	YD16286	19-Aug-2010	15-Dec-2020
Coffee	439	YC92629	30-Sep-2009	15-Dec-2015	Coffee	1959	YD16287	19-Aug-2010	15-Dec-2020
Coffee	440	YC92630	30-Sep-2009	15-Dec-2015	Coffee	1960	YD16288	19-Aug-2010	15-Dec-2020
Coffee	441	YC92631	30-Sep-2009	15-Dec-2015	Coffee	1961	YD16289	19-Aug-2010	15-Dec-2020
Coffee	442	YC92632	30-Sep-2009	15-Dec-2015	Coffee	1962	YD16290	19-Aug-2010	15-Dec-2020
Coffee	443	YC92633	30-Sep-2009	15-Dec-2015	Coffee	1963	YD16291	19-Aug-2010	15-Dec-2020
Coffee	444	YC92634	30-Sep-2009	15-Dec-2015	Coffee	1964	YD16292	19-Aug-2010	15-Dec-2020
Coffee	445	YC92635	30-Sep-2009	15-Dec-2015	Coffee	1965	YD16293	19-Aug-2010	15-Dec-2020
Coffee	446	YC92636	30-Sep-2009	15-Dec-2015	Coffee	1966	YD16294	19-Aug-2010	15-Dec-2020
Coffee	447	YC92637	30-Sep-2009	15-Dec-2015	Coffee	1967	YD16295	19-Aug-2010	15-Dec-2020
Coffee	448	YC92638	30-Sep-2009	15-Dec-2015	Coffee	1968	YD16296	19-Aug-2010	15-Dec-2020
Coffee	449	YC92639	30-Sep-2009	15-Dec-2015	Coffee	1969	YD16297	19-Aug-2010	15-Dec-2020
Coffee	450	YC92640	30-Sep-2009	15-Dec-2015	Coffee	1970	YD16298	19-Aug-2010	15-Dec-2020
Coffee	451	YC92641	30-Sep-2009	15-Dec-2015	Coffee	1971	YD16299	19-Aug-2010	15-Dec-2020
Coffee	452	YC92642	30-Sep-2009	15-Dec-2015	Coffee	1972	YD16300	19-Aug-2010	15-Dec-2020
Coffee	453	YC92643	30-Sep-2009	15-Dec-2015	Coffee	1973	YD16301	19-Aug-2010	15-Dec-2020
Coffee	454	YC92644	30-Sep-2009	15-Dec-2015	Coffee	1974	YD16302	19-Aug-2010	15-Dec-2020
Coffee	455	YC92645	30-Sep-2009	15-Dec-2015	Coffee	1975	YD16303	19-Aug-2010	15-Dec-2020
Coffee	456	YC92646	30-Sep-2009	15-Dec-2015	Coffee	1976	YD16304	19-Aug-2010	15-Dec-2020
Coffee	457	YC92647	30-Sep-2009	15-Dec-2015	Coffee	1977	YD16305	19-Aug-2010	15-Dec-2020
Coffee	458	YC92648	30-Sep-2009	15-Dec-2015	Coffee	1978	YD16306	19-Aug-2010	15-Dec-2020
Coffee	459	YC92649	30-Sep-2009	15-Dec-2015	Coffee	1979	YD16307	19-Aug-2010	15-Dec-2020
Coffee	460	YC92650	30-Sep-2009	15-Dec-2015	Coffee	1980	YD16308	19-Aug-2010	15-Dec-2020
Coffee	461	YC92651	30-Sep-2009	15-Dec-2015	Coffee	1981	YD16309	19-Aug-2010	15-Dec-2020
Coffee	462	YC92652	30-Sep-2009	15-Dec-2015	Coffee	1982	YD16310	19-Aug-2010	15-Dec-2020
Coffee	463	YC92653	30-Sep-2009	15-Dec-2015	Coffee	1983	YD16311	19-Aug-2010	15-Dec-2020
Coffee	464	YC92654	30-Sep-2009	15-Dec-2015	Coffee	1984	YD16312	19-Aug-2010	15-Dec-2020
Coffee	465	YC92655	30-Sep-2009	15-Dec-2015	Coffee	1985	YD16313	19-Aug-2010	15-Dec-2020
Coffee	466	YC92656	30-Sep-2009	15-Dec-2015	Coffee	1986	YD16314	19-Aug-2010	15-Dec-2020
Coffee	467	YC92657	30-Sep-2009	15-Dec-2015	Coffee	1987	YD16315	19-Aug-2010	15-Dec-2016
Coffee	468	YC92658	30-Sep-2009	15-Dec-2015	Coffee	1988	YD16316	19-Aug-2010	15-Dec-2016
Coffee	469	YC92659	30-Sep-2009	15-Dec-2015	Coffee	1989	YD16317	19-Aug-2010	15-Dec-2016
Coffee	470	YC92660	30-Sep-2009	15-Dec-2015	Coffee	1990	YD16318	19-Aug-2010	15-Dec-2016
Coffee	471	YC92661	30-Sep-2009	15-Dec-2015	Coffee	1991	YD16319	19-Aug-2010	15-Dec-2016
Coffee	472	YC92662	30-Sep-2009	15-Dec-2015	Coffee	1992	YD16320	19-Aug-2010	15-Dec-2016
Coffee	473	YC92663	30-Sep-2009	15-Dec-2015	Coffee	1993	YD16321	19-Aug-2010	15-Dec-2020
Coffee	474	YC92664	30-Sep-2009	15-Dec-2015	Coffee	1994	YD16322	19-Aug-2010	15-Dec-2020
Coffee	475	YC92665	30-Sep-2009	15-Dec-2015	Coffee	1995	YD16323	19-Aug-2010	15-Dec-2020
Coffee	476	YC92666	30-Sep-2009	15-Dec-2015	Coffee	1996	YD16324	19-Aug-2010	15-Dec-2020
Coffee	477	YC92667	30-Sep-2009	15-Dec-2015	Coffee	1997	YD16325	19-Aug-2010	15-Dec-2016
Coffee	478	YC92668	30-Sep-2009	15-Dec-2015	Coffee	1998	YD16326	19-Aug-2010	15-Dec-2016
Coffee	479	YC92669	30-Sep-2009	15-Dec-2015	Coffee	1999	YD16327	19-Aug-2010	15-Dec-2016

Prop	Claim \#	Grant\#	$\begin{gathered} \text { Recorded } \\ \text { Date } \end{gathered}$	Expiry Date	Prop	Claim \#	Grant\#	$\begin{gathered} \text { Recorded } \\ \text { Date } \end{gathered}$	Expiry Date
Coffee	480	YC92670	30-Sep-2009	15-Dec-2015	Coffee	2000	YD16328	19-Aug-2010	15-Dec-2016
Coffee	481	YC92671	30-Sep-2009	15-Dec-2015	Coffee	2001	YD16329	19-Aug-2010	15-Dec-2016
Coffee	482	YC92672	30-Sep-2009	15-Dec-2015	Coffee	2002	YD16330	19-Aug-2010	15-Dec-2016
Coffee	483	YC92673	30-Sep-2009	15-Dec-2015	Coffee	2003	YD16331	19-Aug-2010	15-Dec-2016
Coffee	484	YC92674	30-Sep-2009	15-Dec-2015	Coffee	2004	YD16332	19-Aug-2010	15-Dec-2016
Coffee	485	YC92675	30-Sep-2009	15-Dec-2015	Coffee	2005	YD16333	19-Aug-2010	15-Dec-2016
Coffee	486	YC92676	30-Sep-2009	15-Dec-2015	Coffee	2006	YD16334	19-Aug-2010	15-Dec-2016
Coffee	487	YC92677	30-Sep-2009	15-Dec-2015	Coffee	2007	YD16335	19-Aug-2010	15-Dec-2016
Coffee	488	YC92678	30-Sep-2009	15-Dec-2015	Coffee	2008	YD16336	19-Aug-2010	15-Dec-2016
Coffee	489	YC92679	30-Sep-2009	15-Dec-2015	Coffee	2009	YD16337	19-Aug-2010	15-Dec-2016
Coffee	490	YC92680	30-Sep-2009	15-Dec-2015	Coffee	2010	YD16338	19-Aug-2010	15-Dec-2016
Coffee	491	YC92681	30-Sep-2009	15-Dec-2015	Coffee	2011	YD16339	19-Aug-2010	15-Dec-2016
Coffee	492	YC92682	30-Sep-2009	15-Dec-2015	Coffee	2012	YD16340	19-Aug-2010	15-Dec-2016
Coffee	493	YC92683	30-Sep-2009	15-Dec-2015	Coffee	2013	YD16341	19-Aug-2010	15-Dec-2020
Coffee	494	YC92684	30-Sep-2009	15-Dec-2015	Coffee	2014	YD16342	19-Aug-2010	15-Dec-2020
Coffee	495	YC92685	30-Sep-2009	15-Dec-2015	Coffee	2015	YD16343	19-Aug-2010	15-Dec-2020
Coffee	496	YC92686	30-Sep-2009	15-Dec-2015	Coffee	2016	YD16344	19-Aug-2010	15-Dec-2020
Coffee	497	YC92687	30-Sep-2009	15-Dec-2015	Coffee	2017	YD16345	19-Aug-2010	15-Dec-2016
Coffee	498	YC92688	30-Sep-2009	15-Dec-2015	Coffee	2018	YD16346	19-Aug-2010	15-Dec-2016
Coffee	499	YC92689	30-Sep-2009	15-Dec-2015	Coffee	2019	YD16347	19-Aug-2010	15-Dec-2016
Coffee	500	YC92690	30-Sep-2009	15-Dec-2015	Coffee	2020	YD16348	19-Aug-2010	15-Dec-2016
Coffee	501	YC92691	30-Sep-2009	15-Dec-2015	Coffee	2021	YD16349	19-Aug-2010	15-Dec-2016
Coffee	502	YC92692	30-Sep-2009	15-Dec-2015	Coffee	2022	YD16350	19-Aug-2010	15-Dec-2016
Coffee	503	YC92693	30-Sep-2009	15-Dec-2015	Coffee	2023	YD16351	19-Aug-2010	15-Dec-2016
Coffee	504	YC92694	30-Sep-2009	15-Dec-2015	Coffee	2024	YD16352	19-Aug-2010	15-Dec-2016
Coffee	505	YC92695	30-Sep-2009	15-Dec-2015	Coffee	2025	YD16353	19-Aug-2010	15-Dec-2016
Coffee	506	YC92696	30-Sep-2009	15-Dec-2015	Coffee	2026	YD16354	19-Aug-2010	15-Dec-2016
Coffee	507	YC92697	30-Sep-2009	15-Dec-2015	Coffee	2027	YD16355	19-Aug-2010	15-Dec-2016
Coffee	508	YC92698	30-Sep-2009	15-Dec-2015	Coffee	2028	YD16356	19-Aug-2010	15-Dec-2016
Coffee	509	YC92699	30-Sep-2009	15-Dec-2015	Coffee	2029	YD16357	19-Aug-2010	15-Dec-2020
Coffee	510	YC92700	30-Sep-2009	15-Dec-2015	Coffee	2030	YD16358	19-Aug-2010	15-Dec-2020
Coffee	511	YC92701	30-Sep-2009	15-Dec-2015	Coffee	2031	YD16359	19-Aug-2010	15-Dec-2020
Coffee	512	YC92702	30-Sep-2009	15-Dec-2015	Coffee	2032	YD16360	19-Aug-2010	15-Dec-2020
Coffee	513	YC92703	30-Sep-2009	15-Dec-2015	Coffee	2033	YD16361	19-Aug-2010	15-Dec-2016
Coffee	514	YC92704	30-Sep-2009	15-Dec-2015	Coffee	2034	YD16362	19-Aug-2010	15-Dec-2016
Coffee	515	YC92705	30-Sep-2009	15-Dec-2015	Coffee	2035	YD16363	19-Aug-2010	15-Dec-2016
Coffee	516	YC92706	30-Sep-2009	15-Dec-2015	Coffee	2036	YD16364	19-Aug-2010	15-Dec-2016
Coffee	517	YC92707	30-Sep-2009	15-Dec-2015	Coffee	2037	YD16365	19-Aug-2010	15-Dec-2016
Coffee	518	YC92708	30-Sep-2009	15-Dec-2015	Coffee	2038	YD16366	19-Aug-2010	15-Dec-2016
Coffee	519	YC92709	30-Sep-2009	15-Dec-2015	Coffee	2039	YD16367	19-Aug-2010	15-Dec-2016
Coffee	520	YC92710	30-Sep-2009	15-Dec-2015	Coffee	2040	YD16368	19-Aug-2010	15-Dec-2016
Coffee	521	YC92711	30-Sep-2009	15-Dec-2015	Coffee	2041	YD16369	19-Aug-2010	15-Dec-2016
Coffee	522	YC92712	30-Sep-2009	15-Dec-2015	Coffee	2042	YD16370	19-Aug-2010	15-Dec-2016
Coffee	523	YC92713	30-Sep-2009	15-Dec-2015	Coffee	2043	YD16371	19-Aug-2010	15-Dec-2016
Coffee	524	YC92714	30-Sep-2009	15-Dec-2015	Coffee	2044	YD16372	19-Aug-2010	15-Dec-2016
Coffee	525	YC92715	30-Sep-2009	15-Dec-2015	Coffee	2045	YD16373	19-Aug-2010	15-Dec-2020
Coffee	526	YC92716	30-Sep-2009	15-Dec-2015	Coffee	2046	YD16374	19-Aug-2010	15-Dec-2020
Coffee	527	YC92717	30-Sep-2009	15-Dec-2015	Coffee	2047	YD16375	19-Aug-2010	15-Dec-2020
Coffee	528	YC92718	30-Sep-2009	15-Dec-2015	Coffee	2048	YD16376	19-Aug-2010	15-Dec-2020
Coffee	529	YC92719	30-Sep-2009	15-Dec-2015	Coffee	2049	YD16377	19-Aug-2010	15-Dec-2016
Coffee	530	YC92720	30-Sep-2009	15-Dec-2015	Coffee	2050	YD16378	19-Aug-2010	15-Dec-2016
Coffee	531	YC92721	30-Sep-2009	15-Dec-2015	Coffee	2051	YD16379	19-Aug-2010	15-Dec-2016
Coffee	532	YC92722	30-Sep-2009	15-Dec-2015	Coffee	2052	YD16380	19-Aug-2010	15-Dec-2016
Coffee	533	YC92723	30-Sep-2009	15-Dec-2015	Coffee	2053	YD16381	19-Aug-2010	15-Dec-2016
Coffee	534	YC92724	30-Sep-2009	15-Dec-2015	Coffee	2054	YD16382	19-Aug-2010	15-Dec-2016
Coffee	535	YC92725	30-Sep-2009	15-Dec-2015	Coffee	2055	YD16383	19-Aug-2010	15-Dec-2016
Coffee	536	YC92726	30-Sep-2009	15-Dec-2015	Coffee	2056	YD16384	19-Aug-2010	15-Dec-2016
Coffee	537	YC92727	30-Sep-2009	15-Dec-2015	Coffee	2057	YD16385	19-Aug-2010	15-Dec-2016
Coffee	538	YC92728	30-Sep-2009	15-Dec-2015	Coffee	2058	YD16386	19-Aug-2010	15-Dec-2016
Coffee	539	YC92729	30-Sep-2009	15-Dec-2015	Coffee	2059	YD16387	19-Aug-2010	15-Dec-2016
Coffee	540	YC92730	30-Sep-2009	15-Dec-2015	Coffee	2060	YD16388	19-Aug-2010	15-Dec-2016
Coffee	541	YC92731	30-Sep-2009	15-Dec-2015	Coffee	2061	YD16389	19-Aug-2010	15-Dec-2020
Coffee	542	YC92732	30-Sep-2009	15-Dec-2015	Coffee	2062	YD16390	19-Aug-2010	15-Dec-2020
Coffee	543	YC92733	30-Sep-2009	15-Dec-2015	Coffee	2063	YD16391	19-Aug-2010	15-Dec-2020
Coffee	544	YC92734	30-Sep-2009	15-Dec-2015	Coffee	2064	YD16392	19-Aug-2010	15-Dec-2020
Coffee	545	YC92735	30-Sep-2009	15-Dec-2015	Coffee	2065	YD16393	19-Aug-2010	15-Dec-2016
Coffee	546	YC92736	30-Sep-2009	15-Dec-2015	Coffee	2066	YD16394	19-Aug-2010	15-Dec-2016
Coffee	547	YC92737	30-Sep-2009	15-Dec-2015	Coffee	2067	YD16395	19-Aug-2010	15-Dec-2016
Coffee	548	YC92738	30-Sep-2009	15-Dec-2015	Coffee	2068	YD16396	19-Aug-2010	15-Dec-2016

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	549	YC92739	30-Sep-2009	15-Dec-2015	Coffee	2069	YD16397	19-Aug-2010	15-Dec-2016
Coffee	550	YC92740	30-Sep-2009	15-Dec-2015	Coffee	2070	YD16398	19-Aug-2010	15-Dec-2016
Coffee	551	YC92741	30-Sep-2009	15-Dec-2015	Coffee	2071	YD16399	19-Aug-2010	15-Dec-2016
Coffee	552	YC92742	30-Sep-2009	15-Dec-2015	Coffee	2072	YD16400	19-Aug-2010	15-Dec-2016
Coffee	553	YC92743	30-Sep-2009	15-Dec-2015	Coffee	2073	YD16401	19-Aug-2010	15-Dec-2016
Coffee	554	YC92744	30-Sep-2009	15-Dec-2015	Coffee	2074	YD16402	19-Aug-2010	15-Dec-2016
Coffee	555	YC92745	30-Sep-2009	15-Dec-2015	Coffee	2075	YD16403	19-Aug-2010	15-Dec-2016
Coffee	556	YC92746	30-Sep-2009	15-Dec-2015	Coffee	2076	YD16404	19-Aug-2010	15-Dec-2016
Coffee	557	YC92747	30-Sep-2009	15-Dec-2015	Coffee	2077	YD16405	19-Aug-2010	15-Dec-2020
Coffee	558	YC92748	30-Sep-2009	15-Dec-2015	Coffee	2078	YD16406	19-Aug-2010	15-Dec-2020
Coffee	559	YC92749	30-Sep-2009	15-Dec-2015	Coffee	2079	YD16407	19-Aug-2010	15-Dec-2020
Coffee	560	YC92750	30-Sep-2009	15-Dec-2015	Coffee	2080	YD16408	19-Aug-2010	15-Dec-2020
Coffee	561	YC92751	30-Sep-2009	15-Dec-2015	Coffee	2081	YD16409	19-Aug-2010	15-Dec-2016
Coffee	562	YC92752	30-Sep-2009	15-Dec-2015	Coffee	2082	YD16410	19-Aug-2010	15-Dec-2016
Coffee	563	YC92753	30-Sep-2009	15-Dec-2015	Coffee	2083	YD16411	19-Aug-2010	15-Dec-2016
Coffee	564	YC92754	30-Sep-2009	15-Dec-2015	Coffee	2084	YD16412	19-Aug-2010	15-Dec-2016
Coffee	565	YC92755	9-Sep-2009	15-Dec-2015	Coffee	2085	YD16413	19-Aug-2010	15-Dec-2016
Coffee	566	YC92756	9-Sep-2009	15-Dec-2015	Coffee	2086	YD16414	19-Aug-2010	15-Dec-2016
Coffee	567	YC92757	9-Sep-2009	15-Dec-2015	Coffee	2087	YD16415	19-Aug-2010	15-Dec-2016
Coffee	568	YC92758	9-Sep-2009	15-Dec-2015	Coffee	2088	YD16416	19-Aug-2010	15-Dec-2016
Coffee	569	YC92759	9-Sep-2009	15-Dec-2015	Coffee	2089	YD16417	19-Aug-2010	15-Dec-2016
Coffee	570	YC92760	9-Sep-2009	15-Dec-2015	Coffee	2090	YD16418	19-Aug-2010	15-Dec-2016
Coffee	571	YC92761	9-Sep-2009	15-Dec-2015	Coffee	2091	YD16419	19-Aug-2010	15-Dec-2016
Coffee	572	YC92762	9-Sep-2009	15-Dec-2015	Coffee	2092	YD16420	19-Aug-2010	15-Dec-2016
Coffee	573	YC92763	9-Sep-2009	15-Dec-2015	Coffee	2093	YD16421	19-Aug-2010	15-Dec-2020
Coffee	574	YC92764	9-Sep-2009	15-Dec-2015	Coffee	2094	YD16422	19-Aug-2010	15-Dec-2020
Coffee	575	YC92765	9-Sep-2009	15-Dec-2015	Coffee	2095	YD16423	19-Aug-2010	15-Dec-2020
Coffee	576	YC92766	9-Sep-2009	15-Dec-2015	Coffee	2096	YD16424	19-Aug-2010	15-Dec-2020
Coffee	577	YC92767	9-Sep-2009	15-Dec-2015	Coffee	2097	YD16425	19-Aug-2010	15-Dec-2016
Coffee	578	YC92768	9-Sep-2009	15-Dec-2015	Coffee	2098	YD16426	19-Aug-2010	15-Dec-2016
Coffee	579	YC92769	30-Sep-2009	15-Dec-2015	Coffee	2099	YD16427	19-Aug-2010	15-Dec-2016
Coffee	580	YC92770	30-Sep-2009	15-Dec-2015	Coffee	2100	YD16428	19-Aug-2010	15-Dec-2016
Coffee	581	YC92771	30-Sep-2009	15-Dec-2015	Coffee	2101	YD16429	19-Aug-2010	15-Dec-2016
Coffee	582	YC92772	30-Sep-2009	15-Dec-2015	Coffee	2102	YD16430	19-Aug-2010	15-Dec-2016
Coffee	583	YC92773	30-Sep-2009	15-Dec-2015	Coffee	2103	YD16431	19-Aug-2010	15-Dec-2016
Coffee	584	YC92774	30-Sep-2009	15-Dec-2015	Coffee	2104	YD16432	19-Aug-2010	15-Dec-2016
Coffee	585	YC92775	30-Sep-2009	15-Dec-2015	Coffee	2105	YD16433	19-Aug-2010	15-Dec-2016
Coffee	586	YC92776	30-Sep-2009	15-Dec-2015	Coffee	2106	YD16434	19-Aug-2010	15-Dec-2016
Coffee	587	YC92777	30-Sep-2009	15-Dec-2015	Coffee	2107	YD16435	19-Aug-2010	15-Dec-2016
Coffee	588	YC92778	30-Sep-2009	15-Dec-2015	Coffee	2108	YD16436	19-Aug-2010	15-Dec-2016
Coffee	589	YC92779	30-Sep-2009	15-Dec-2015	Coffee	2109	YD16437	19-Aug-2010	15-Dec-2016
Coffee	590	YC92780	30-Sep-2009	15-Dec-2015	Coffee	2110	YD16438	19-Aug-2010	15-Dec-2016
Coffee	591	YC92781	30-Sep-2009	15-Dec-2015	Coffee	2111	YD16439	19-Aug-2010	15-Dec-2016
Coffee	592	YC92782	30-Sep-2009	15-Dec-2015	Coffee	2112	YD16440	19-Aug-2010	15-Dec-2016
Coffee	593	YC92783	30-Sep-2009	15-Dec-2015	Coffee	2113	YD16441	19-Aug-2010	15-Dec-2016
Coffee	594	YC92784	30-Sep-2009	15-Dec-2015	Coffee	2114	YD16442	19-Aug-2010	15-Dec-2016
Coffee	595	YC92785	30-Sep-2009	15-Dec-2015	Coffee	2115	YD16443	19-Aug-2010	15-Dec-2016
Coffee	596	YC92786	30-Sep-2009	15-Dec-2015	Coffee	2116	YD16444	19-Aug-2010	15-Dec-2016
Coffee	597	YC92787	30-Sep-2009	15-Dec-2015	Coffee	2117	YD16445	19-Aug-2010	15-Dec-2016
Coffee	598	YC92788	30-Sep-2009	15-Dec-2015	Coffee	2118	YD16446	19-Aug-2010	15-Dec-2016
Coffee	599	YC92789	30-Sep-2009	15-Dec-2015	Coffee	2119	YD16447	19-Aug-2010	15-Dec-2016
Coffee	600	YC92790	30-Sep-2009	15-Dec-2015	Coffee	2120	YD16448	19-Aug-2010	15-Dec-2016
Coffee	601	YC92791	30-Sep-2009	15-Dec-2015	Coffee	2121	YD16449	19-Aug-2010	15-Dec-2016
Coffee	602	YC92792	30-Sep-2009	15-Dec-2015	Coffee	2122	YD16450	19-Aug-2010	15-Dec-2016
Coffee	603	YC92793	30-Sep-2009	15-Dec-2015	Coffee	2123	YD16451	19-Aug-2010	15-Dec-2016
Coffee	604	YC92794	30-Sep-2009	15-Dec-2015	Coffee	2124	YD16452	19-Aug-2010	15-Dec-2016
Coffee	605	YC92795	30-Sep-2009	15-Dec-2015	Coffee	2125	YD89255	30-Aug-2010	15-Dec-2016
Coffee	606	YC92796	30-Sep-2009	15-Dec-2015	Coffee	2126	YD89256	30-Aug-2010	15-Dec-2016
Coffee	607	YC92797	30-Sep-2009	15-Dec-2015	Coffee	2127	YD89257	30-Aug-2010	15-Dec-2016
Coffee	608	YC92798	30-Sep-2009	15-Dec-2015	Coffee	2128	YD89258	30-Aug-2010	15-Dec-2016
Coffee	609	YC92799	30-Sep-2009	15-Dec-2015	Coffee	2129	YD89259	30-Aug-2010	15-Dec-2016
Coffee	610	YC92800	30-Sep-2009	15-Dec-2015	Coffee	2130	YD89260	30-Aug-2010	15-Dec-2016
Coffee	611	YC93351	30-Sep-2009	15-Dec-2015	Coffee	2131	YD89261	30-Aug-2010	15-Dec-2016
Coffee	612	YC93352	30-Sep-2009	15-Dec-2015	Coffee	2132	YD89262	30-Aug-2010	15-Dec-2016
Coffee	613	YC93353	30-Sep-2009	15-Dec-2015	Coffee	2133	YD89263	30-Aug-2010	15-Dec-2016
Coffee	614	YC93354	30-Sep-2009	15-Dec-2015	Coffee	2134	YD89264	30-Aug-2010	15-Dec-2016
Coffee	615	YC93355	30-Sep-2009	15-Dec-2015	Coffee	2135	YD89265	30-Aug-2010	15-Dec-2016
Coffee	616	YC93356	30-Sep-2009	15-Dec-2015	Coffee	2136	YD89266	30-Aug-2010	15-Dec-2016
Coffee	617	YC93357	30-Sep-2009	15-Dec-2015	Coffee	2137	YD89267	30-Aug-2010	15-Dec-2016

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	618	YC93358	30-Sep-2009	15-Dec-2015	Coffee	2138	YD89268	30-Aug-2010	15-Dec-2016
Coffee	619	YC93359	30-Sep-2009	15-Dec-2015	Coffee	2139	YD89269	30-Aug-2010	15-Dec-2016
Coffee	620	YC93360	30-Sep-2009	15-Dec-2015	Coffee	2140	YD89270	30-Aug-2010	15-Dec-2016
Coffee	621	YC93361	30-Sep-2009	15-Dec-2015	Coffee	2141	YD89271	30-Aug-2010	15-Dec-2016
Coffee	622	YC93362	30-Sep-2009	15-Dec-2015	Coffee	2142	YD89272	30-Aug-2010	15-Dec-2016
Coffee	623	YC93363	30-Sep-2009	15-Dec-2015	Coffee	2143	YD89273	30-Aug-2010	15-Dec-2016
Coffee	624	YC93364	30-Sep-2009	15-Dec-2015	Coffee	2144	YD89274	30-Aug-2010	15-Dec-2016
Coffee	625	YC93365	30-Sep-2009	15-Dec-2015	Coffee	2145	YD89275	30-Aug-2010	15-Dec-2016
Coffee	627	YC96801	3-Nov-2009	15-Dec-2015	Coffee	2146	YD89276	30-Aug-2010	15-Dec-2016
Coffee	628	YC96802	3-Nov-2009	15-Dec-2015	Coffee	2147	YD89277	30-Aug-2010	15-Dec-2016
Coffee	629	YC96803	3-Nov-2009	15-Dec-2015	Coffee	2148	YD89278	30-Aug-2010	15-Dec-2016
Coffee	630	YC96804	3-Nov-2009	15-Dec-2015	Coffee	2149	YD89279	30-Aug-2010	15-Dec-2016
Coffee	631	YC96805	3-Nov-2009	15-Dec-2015	Coffee	2150	YD89280	30-Aug-2010	15-Dec-2016
Coffee	632	YC96806	3-Nov-2009	15-Dec-2015	Coffee	2151	YD89281	30-Aug-2010	15-Dec-2016
Coffee	633	YC96807	3-Nov-2009	15-Dec-2015	Coffee	2152	YD89282	30-Aug-2010	15-Dec-2016
Coffee	634	YC96808	3-Nov-2009	15-Dec-2015	Coffee	2153	YD89283	30-Aug-2010	15-Dec-2016
Coffee	635	YC96809	3-Nov-2009	15-Dec-2015	Coffee	2154	YD89284	30-Aug-2010	15-Dec-2016
Coffee	636	YC96810	3-Nov-2009	15-Dec-2015	Coffee	2155	YD89285	30-Aug-2010	15-Dec-2016
Coffee	637	YC96811	3-Nov-2009	15-Dec-2015	Coffee	2156	YD89286	30-Aug-2010	15-Dec-2016
Coffee	638	YC96812	3-Nov-2009	15-Dec-2015	Coffee	2157	YD89287	30-Aug-2010	15-Dec-2016
Coffee	639	YC96813	3-Nov-2009	15-Dec-2015	Coffee	2158	YD89288	30-Aug-2010	15-Dec-2016
Coffee	640	YC96814	3-Nov-2009	15-Dec-2015	Coffee	2159	YD89289	30-Aug-2010	15-Dec-2016
Coffee	641	YC96815	3-Nov-2009	15-Dec-2015	Coffee	2160	YD89290	30-Aug-2010	15-Dec-2016
Coffee	642	YC96816	3-Nov-2009	15-Dec-2015	Coffee	2161	YD89291	30-Aug-2010	15-Dec-2016
Coffee	643	YC96817	3-Nov-2009	15-Dec-2015	Coffee	2162	YD89292	30-Aug-2010	15-Dec-2016
Coffee	644	YC96818	3-Nov-2009	15-Dec-2015	Coffee	2163	YD89293	30-Aug-2010	15-Dec-2016
Coffee	645	YC96819	3-Nov-2009	15-Dec-2015	Coffee	2164	YD89294	30-Aug-2010	15-Dec-2016
Coffee	646	YC96820	3-Nov-2009	15-Dec-2015	Coffee	2165	YD89295	30-Aug-2010	15-Dec-2016
Coffee	647	YC96821	3-Nov-2009	15-Dec-2015	Coffee	2166	YD89296	30-Aug-2010	15-Dec-2016
Coffee	648	YC96822	3-Nov-2009	15-Dec-2015	Coffee	2167	YD89297	30-Aug-2010	15-Dec-2016
Coffee	649	YC96823	3-Nov-2009	15-Dec-2015	Coffee	2168	YD89298	30-Aug-2010	15-Dec-2016
Coffee	650	YC96824	3-Nov-2009	15-Dec-2015	Coffee	2169	YD89299	30-Aug-2010	15-Dec-2016
Coffee	651	YC96825	3-Nov-2009	15-Dec-2015	Coffee	2170	YD89300	30-Aug-2010	15-Dec-2016
Coffee	652	YC96826	3-Nov-2009	15-Dec-2015	Coffee	2171	YD89301	30-Aug-2010	15-Dec-2016
Coffee	653	YC96827	3-Nov-2009	15-Dec-2015	Coffee	2172	YD89302	30-Aug-2010	15-Dec-2016
Coffee	654	YC96828	3-Nov-2009	15-Dec-2015	Coffee	2173	YD89303	30-Aug-2010	15-Dec-2016
Coffee	655	YC96829	3-Nov-2009	15-Dec-2015	Coffee	2174	YD89304	30-Aug-2010	15-Dec-2016
Coffee	656	YC96830	3-Nov-2009	15-Dec-2015	Coffee	2175	YD89305	30-Aug-2010	15-Dec-2016
Coffee	657	YC96831	3-Nov-2009	15-Dec-2015	Coffee	2176	YD89306	30-Aug-2010	15-Dec-2016
Coffee	658	YC96832	3-Nov-2009	15-Dec-2015	Coffee	2177	YD89307	30-Aug-2010	15-Dec-2016
Coffee	659	YC96833	3-Nov-2009	15-Dec-2015	Coffee	2178	YD89308	30-Aug-2010	15-Dec-2016
Coffee	660	YC96834	3-Nov-2009	15-Dec-2015	Coffee	2179	YD89309	30-Aug-2010	15-Dec-2016
Coffee	661	YC96835	3-Nov-2009	15-Dec-2015	Coffee	2180	YD89310	30-Aug-2010	15-Dec-2016
Coffee	662	YC96836	3-Nov-2009	15-Dec-2015	Coffee	2181	YD89311	30-Aug-2010	15-Dec-2016
Coffee	663	YC96837	3-Nov-2009	15-Dec-2015	Coffee	2182	YD89312	30-Aug-2010	15-Dec-2016
Coffee	664	YC96838	3-Nov-2009	15-Dec-2015	Coffee	2183	YD89313	30-Aug-2010	15-Dec-2016
Coffee	665	YC96839	3-Nov-2009	15-Dec-2015	Coffee	2184	YD89314	30-Aug-2010	15-Dec-2016
Coffee	666	YC96840	3-Nov-2009	15-Dec-2015	Coffee	2185	YD89315	30-Aug-2010	15-Dec-2016
Coffee	667	YC96841	3-Nov-2009	15-Dec-2015	Coffee	2186	YD89316	30-Aug-2010	15-Dec-2016
Coffee	668	YC96842	3-Nov-2009	15-Dec-2015	Coffee	2187	YD89317	30-Aug-2010	15-Dec-2016
Coffee	669	YC96843	3-Nov-2009	15-Dec-2015	Coffee	2188	YD89318	30-Aug-2010	15-Dec-2016
Coffee	670	YC96844	3-Nov-2009	15-Dec-2015	Coffee	2189	YD89319	30-Aug-2010	15-Dec-2016
Coffee	671	YC96845	3-Nov-2009	15-Dec-2015	Coffee	2190	YD89320	30-Aug-2010	15-Dec-2016
Coffee	672	YC96846	3-Nov-2009	15-Dec-2015	Coffee	2191	YD89321	30-Aug-2010	15-Dec-2016
Coffee	673	YC96847	3-Nov-2009	15-Dec-2015	Coffee	2192	YD89322	30-Aug-2010	15-Dec-2016
Coffee	674	YC96848	3-Nov-2009	15-Dec-2015	Coffee	2193	YD89323	30-Aug-2010	15-Dec-2016
Coffee	675	YC96849	3-Nov-2009	15-Dec-2015	Coffee	2194	YD89324	30-Aug-2010	15-Dec-2016
Coffee	676	YC96850	3-Nov-2009	15-Dec-2015	Coffee	2195	YD89325	30-Aug-2010	15-Dec-2016
Coffee	677	YC96851	3-Nov-2009	15-Dec-2015	Coffee	2196	YD89326	30-Aug-2010	15-Dec-2016
Coffee	678	YC96852	3-Nov-2009	15-Dec-2015	Coffee	2197	YD89327	30-Aug-2010	15-Dec-2016
Coffee	679	YC96853	3-Nov-2009	15-Dec-2015	Coffee	2198	YD89328	30-Aug-2010	15-Dec-2016
Coffee	680	YC96854	3-Nov-2009	15-Dec-2015	Coffee	2199	YD89329	30-Aug-2010	15-Dec-2016
Coffee	681	YC96855	3-Nov-2009	15-Dec-2015	Coffee	2200	YD89330	30-Aug-2010	15-Dec-2016
Coffee	682	YC96856	3-Nov-2009	15-Dec-2015	Coffee	2201	YD89331	30-Aug-2010	15-Dec-2016
Coffee	683	YC96857	3-Nov-2009	15-Dec-2015	Coffee	2202	YD89332	30-Aug-2010	15-Dec-2016
Coffee	684	YC96858	3-Nov-2009	15-Dec-2015	Coffee	2203	YD89333	30-Aug-2010	15-Dec-2016
Coffee	685	YC96859	3-Nov-2009	15-Dec-2015	Coffee	2204	YD89334	30-Aug-2010	15-Dec-2016
Coffee	686	YC96860	3-Nov-2009	15-Dec-2015	Coffee	2205	YD89335	30-Aug-2010	15-Dec-2016
Coffee	687	YC96861	3-Nov-2009	15-Dec-2015	Coffee	2206	YD89336	30-Aug-2010	15-Dec-2016

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	688	YC96862	3-Nov-2009	15-Dec-2015	Coffee	2207	YD89337	30-Aug-2010	15-Dec-2016
Coffee	689	YC96863	3-Nov-2009	15-Dec-2015	Coffee	2208	YD89338	30-Aug-2010	15-Dec-2016
Coffee	690	YC96864	3-Nov-2009	15-Dec-2015	Coffee	2209	YD89339	30-Aug-2010	15-Dec-2016
Coffee	691	YC96865	3-Nov-2009	15-Dec-2015	Coffee	2210	YD89340	30-Aug-2010	15-Dec-2016
Coffee	692	YC96866	3-Nov-2009	15-Dec-2015	Coffee	2211	YD89341	30-Aug-2010	15-Dec-2016
Coffee	693	YC96867	3-Nov-2009	15-Dec-2015	Coffee	2212	YD89342	30-Aug-2010	15-Dec-2016
Coffee	694	YC96868	3-Nov-2009	15-Dec-2015	Coffee	2213	YD89343	30-Aug-2010	15-Dec-2016
Coffee	695	YC96869	3-Nov-2009	15-Dec-2015	Coffee	2214	YD89344	30-Aug-2010	15-Dec-2016
Coffee	696	YC96870	3-Nov-2009	15-Dec-2015	Coffee	2215	YD89345	30-Aug-2010	15-Dec-2016
Coffee	697	YC96871	3-Nov-2009	15-Dec-2015	Coffee	2216	YD89346	30-Aug-2010	15-Dec-2016
Coffee	698	YC96872	3-Nov-2009	15-Dec-2015	Coffee	2217	YD89347	30-Aug-2010	15-Dec-2016
Coffee	699	YC96873	3-Nov-2009	15-Dec-2015	Coffee	2218	YD89348	30-Aug-2010	15-Dec-2016
Coffee	700	YC96874	3-Nov-2009	15-Dec-2015	Coffee	2219	YD89349	30-Aug-2010	15-Dec-2016
Coffee	701	YC96875	3-Nov-2009	15-Dec-2015	Coffee	2220	YD89350	30-Aug-2010	15-Dec-2016
Coffee	702	YC96876	3-Nov-2009	15-Dec-2015	Coffee	2221	YD89351	30-Aug-2010	15-Dec-2016
Coffee	703	YC96877	3-Nov-2009	15-Dec-2015	Coffee	2222	YD89352	30-Aug-2010	15-Dec-2016
Coffee	704	YC96878	3-Nov-2009	15-Dec-2015	Coffee	2223	YD89353	30-Aug-2010	15-Dec-2016
Coffee	705	YC96879	3-Nov-2009	15-Dec-2015	Coffee	2224	YD89354	30-Aug-2010	15-Dec-2016
Coffee	706	YC96880	3-Nov-2009	15-Dec-2015	Coffee	2225	YD89355	30-Aug-2010	15-Dec-2016
Coffee	707	YC96881	3-Nov-2009	15-Dec-2015	Coffee	2226	YD89356	30-Aug-2010	15-Dec-2016
Coffee	708	YC96882	3-Nov-2009	15-Dec-2015	Coffee	2227	YD89357	30-Aug-2010	15-Dec-2016
Coffee	709	YC96883	3-Nov-2009	15-Dec-2015	Coffee	2228	YD89358	30-Aug-2010	15-Dec-2016
Coffee	710	YC96884	3-Nov-2009	15-Dec-2015	Coffee	2229	YD89359	30-Aug-2010	15-Dec-2016
Coffee	711	YC96885	3-Nov-2009	15-Dec-2015	Coffee	2230	YD89360	30-Aug-2010	15-Dec-2016
Coffee	712	YC96886	3-Nov-2009	15-Dec-2015	Coffee	2231	YD89361	30-Aug-2010	15-Dec-2016
Coffee	713	YC96887	3-Nov-2009	15-Dec-2015	Coffee	2232	YD89362	30-Aug-2010	15-Dec-2016
Coffee	714	YC96888	3-Nov-2009	15-Dec-2015	Coffee	2233	YD89363	30-Aug-2010	15-Dec-2016
Coffee	715	YC96889	3-Nov-2009	15-Dec-2015	Coffee	2234	YD89364	30-Aug-2010	15-Dec-2016
Coffee	716	YC96890	3-Nov-2009	15-Dec-2015	Coffee	2235	YD89365	30-Aug-2010	15-Dec-2016
Coffee	717	YC96891	3-Nov-2009	15-Dec-2015	Coffee	2236	YD89366	30-Aug-2010	15-Dec-2016
Coffee	718	YC96892	3-Nov-2009	15-Dec-2015	Coffee	2237	YD89367	30-Aug-2010	15-Dec-2016
Coffee	719	YC96893	3-Nov-2009	15-Dec-2015	Coffee	2238	YD89368	30-Aug-2010	15-Dec-2016
Coffee	720	YC96894	3-Nov-2009	15-Dec-2015	Coffee	2239	YD89369	30-Aug-2010	15-Dec-2016
Coffee	721	YC96895	3-Nov-2009	15-Dec-2015	Coffee	2240	YD89370	30-Aug-2010	15-Dec-2016
Coffee	722	YC96896	3-Nov-2009	15-Dec-2015	Coffee	2241	YD89371	30-Aug-2010	15-Dec-2016
Coffee	723	YC96897	3-Nov-2009	15-Dec-2015	Coffee	2242	YD89372	30-Aug-2010	15-Dec-2016
Coffee	724	YC96898	3-Nov-2009	15-Dec-2015	Coffee	2243	YD89373	30-Aug-2010	15-Dec-2016
Coffee	725	YC96899	3-Nov-2009	15-Dec-2015	Coffee	2244	YD89374	30-Aug-2010	15-Dec-2016
Coffee	726	YC96900	3-Nov-2009	15-Dec-2015	Coffee	2245	YD89375	30-Aug-2010	15-Dec-2016
Coffee	727	YC92535	3-Nov-2009	15-Dec-2015	Coffee	2246	YD89376	30-Aug-2010	15-Dec-2016
Coffee	728	YC92536	3-Nov-2009	15-Dec-2015	Coffee	2247	YD89377	30-Aug-2010	15-Dec-2016
Coffee	729	YC92537	3-Nov-2009	15-Dec-2015	Coffee	2248	YD89378	30-Aug-2010	15-Dec-2016
Coffee	730	YC92538	3-Nov-2009	15-Dec-2015	Coffee	2249	YD89379	30-Aug-2010	15-Dec-2016
Coffee	731	YC92539	3-Nov-2009	15-Dec-2015	Coffee	2250	YD89380	30-Aug-2010	15-Dec-2016
Coffee	732	YC92540	3-Nov-2009	15-Dec-2015	Coffee	2251	YD89381	30-Aug-2010	15-Dec-2016
Coffee	733	YC92541	3-Nov-2009	15-Dec-2015	Coffee	2252	YD89382	30-Aug-2010	15-Dec-2016
Coffee	734	YC92542	3-Nov-2009	15-Dec-2015	Coffee	2253	YD89383	30-Aug-2010	15-Dec-2016
Coffee	735	YC92543	3-Nov-2009	15-Dec-2015	Coffee	2254	YD89384	30-Aug-2010	15-Dec-2016
Coffee	736	YC92544	3-Nov-2009	15-Dec-2015	Coffee	2255	YD89385	30-Aug-2010	15-Dec-2016
Coffee	737	YC92545	3-Nov-2009	15-Dec-2015	Coffee	2256	YD89386	30-Aug-2010	15-Dec-2016
Coffee	738	YC92546	3-Nov-2009	15-Dec-2015	Coffee	2257	YD89387	30-Aug-2010	15-Dec-2016
Coffee	739	YC92547	3-Nov-2009	15-Dec-2015	Coffee	2258	YD89388	30-Aug-2010	15-Dec-2016
Coffee	740	YC92548	3-Nov-2009	15-Dec-2015	Coffee	2259	YD89389	30-Aug-2010	15-Dec-2016
Coffee	741	YC92549	3-Nov-2009	15-Dec-2015	Coffee	2260	YD89390	30-Aug-2010	15-Dec-2016
Coffee	742	YC92550	3-Nov-2009	15-Dec-2015	Coffee	2261	YD89391	30-Aug-2010	15-Dec-2016
Coffee	743	YC92551	3-Nov-2009	15-Dec-2015	Coffee	2262	YD89392	30-Aug-2010	15-Dec-2016
Coffee	744	YC92552	3-Nov-2009	15-Dec-2015	Coffee	2263	YD89393	30-Aug-2010	15-Dec-2016
Coffee	745	YC92553	3-Nov-2009	15-Dec-2015	Coffee	2264	YD89394	30-Aug-2010	15-Dec-2016
Coffee	746	YC92554	3-Nov-2009	15-Dec-2015	Coffee	2265	YD89395	30-Aug-2010	15-Dec-2016
Coffee	747	YC92555	3-Nov-2009	15-Dec-2015	Coffee	2266	YD89396	30-Aug-2010	15-Dec-2016
Coffee	748	YC92556	3-Nov-2009	15-Dec-2015	Coffee	2267	YD89397	30-Aug-2010	15-Dec-2016
Coffee	749	YC92557	3-Nov-2009	15-Dec-2015	Coffee	2268	YD89398	30-Aug-2010	15-Dec-2016
Coffee	750	YC92558	3-Nov-2009	15-Dec-2015	Coffee	2269	YD89399	30-Aug-2010	15-Dec-2016
Coffee	751	YC92559	3-Nov-2009	15-Dec-2015	Coffee	2270	YD89400	30-Aug-2010	15-Dec-2016
Coffee	752	YC92560	3-Nov-2009	15-Dec-2015	Coffee	2271	YD89401	30-Aug-2010	15-Dec-2016
Coffee	753	YC92561	3-Nov-2009	15-Dec-2015	Coffee	2272	YD89402	30-Aug-2010	15-Dec-2016
Coffee	754	YC92562	3-Nov-2009	15-Dec-2015	Coffee	2273	YD89403	30-Aug-2010	15-Dec-2016
Coffee	755	YC92563	3-Nov-2009	15-Dec-2015	Coffee	2274	YD89404	30-Aug-2010	15-Dec-2016
Coffee	756	YC92564	3-Nov-2009	15-Dec-2015	Coffee	2275	YD89405	30-Aug-2010	15-Dec-2016

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	757	YC92565	3-Nov-2009	15-Dec-2015	Coffee	2276	YD89406	30-Aug-2010	15-Dec-2016
Coffee	758	YC92566	3-Nov-2009	15-Dec-2015	Coffee	2277	YD89407	30-Aug-2010	15-Dec-2016
Coffee	759	YC92567	3-Nov-2009	15-Dec-2015	Coffee	2278	YD89408	30-Aug-2010	15-Dec-2016
Coffee	760	YC92568	3-Nov-2009	15-Dec-2015	Coffee	2279	YD89409	30-Aug-2010	15-Dec-2016
Coffee	761	YC92569	3-Nov-2009	15-Dec-2015	Coffee	2280	YD89410	30-Aug-2010	15-Dec-2016
Coffee	762	YC92570	3-Nov-2009	15-Dec-2015	Coffee	2281	YD89411	30-Aug-2010	15-Dec-2016
Coffee	763	YC92571	3-Nov-2009	15-Dec-2015	Coffee	2282	YD89412	30-Aug-2010	15-Dec-2016
Coffee	764	YC92572	3-Nov-2009	15-Dec-2015	Coffee	2283	YD89413	30-Aug-2010	15-Dec-2016
Coffee	765	YC92573	3-Nov-2009	15-Dec-2015	Coffee	2284	YD89414	30-Aug-2010	15-Dec-2016
Coffee	766	YC92574	3-Nov-2009	15-Dec-2015	Coffee	2285	YD89415	30-Aug-2010	15-Dec-2016
Coffee	767	YC92575	3-Nov-2009	15-Dec-2015	Coffee	2286	YD89416	30-Aug-2010	15-Dec-2016
Coffee	768	YC92576	3-Nov-2009	15-Dec-2015	Coffee	2287	YD89417	30-Aug-2010	15-Dec-2016
Coffee	769	YC92577	3-Nov-2009	15-Dec-2015	Coffee	2288	YD89418	30-Aug-2010	15-Dec-2016
Coffee	770	YC92578	3-Nov-2009	15-Dec-2015	Coffee	2289	YD89419	30-Aug-2010	15-Dec-2016
Coffee	771	YC92579	3-Nov-2009	15-Dec-2015	Coffee	2290	YD89420	30-Aug-2010	15-Dec-2016
Coffee	772	YC92580	3-Nov-2009	15-Dec-2015	Coffee	2291	YD89421	30-Aug-2010	15-Dec-2016
Coffee	773	YC92581	3-Nov-2009	15-Dec-2015	Coffee	2292	YD89422	30-Aug-2010	15-Dec-2016
Coffee	774	YC92582	3-Nov-2009	15-Dec-2015	Coffee	2293	YD89423	30-Aug-2010	15-Dec-2016
Coffee	775	YC92583	3-Nov-2009	15-Dec-2015	Coffee	2294	YD89424	30-Aug-2010	15-Dec-2016
Coffee	776	YC92584	3-Nov-2009	15-Dec-2015	Coffee	2295	YD89425	30-Aug-2010	15-Dec-2016
Coffee	777	YC92585	3-Nov-2009	15-Dec-2015	Coffee	2296	YD89426	30-Aug-2010	15-Dec-2016
Coffee	778	YC92586	3-Nov-2009	15-Dec-2015	Coffee	2297	YD89427	30-Aug-2010	15-Dec-2016
Coffee	779	YC92587	3-Nov-2009	15-Dec-2015	Coffee	2298	YD89428	30-Aug-2010	15-Dec-2016
Coffee	780	YC92588	3-Nov-2009	15-Dec-2015	Coffee	2299	YD89429	30-Aug-2010	15-Dec-2016
Coffee	781	YC92589	3-Nov-2009	15-Dec-2015	Coffee	2300	YD89430	30-Aug-2010	15-Dec-2016
Coffee	782	YC92590	3-Nov-2009	15-Dec-2015	Coffee	2301	YD89431	30-Aug-2010	15-Dec-2016
Coffee	783	YC92591	3-Nov-2009	15-Dec-2015	Coffee	2302	YD89432	30-Aug-2010	15-Dec-2016
Coffee	784	YC92592	3-Nov-2009	15-Dec-2015	Coffee	2303	YD89433	30-Aug-2010	15-Dec-2016
Coffee	785	YC92593	3-Nov-2009	15-Dec-2015	Coffee	2304	YD89434	30-Aug-2010	15-Dec-2016
Coffee	786	YC92594	3-Nov-2009	15-Dec-2015	Coffee	2305	YD89435	30-Aug-2010	15-Dec-2016
Coffee	787	YC92595	3-Nov-2009	15-Dec-2015	Coffee	2306	YD89436	30-Aug-2010	15-Dec-2016
Coffee	788	YC92596	3-Nov-2009	15-Dec-2015	Coffee	2307	YD89437	30-Aug-2010	15-Dec-2016
Coffee	789	YC92597	3-Nov-2009	15-Dec-2015	Coffee	2308	YD89438	30-Aug-2010	15-Dec-2016
Coffee	790	YC92598	3-Nov-2009	15-Dec-2015	Coffee	2309	YD89439	30-Aug-2010	15-Dec-2016
Coffee	791	YC92599	3-Nov-2009	15-Dec-2015	Coffee	2310	YD89440	30-Aug-2010	15-Dec-2016
Coffee	792	YC92600	3-Nov-2009	15-Dec-2015	Coffee	2311	YD89441	30-Aug-2010	15-Dec-2016
Coffee	793	YC92818	3-Nov-2009	15-Dec-2015	Coffee	2312	YD89442	30-Aug-2010	15-Dec-2016
Coffee	794	YC92819	3-Nov-2009	15-Dec-2015	Coffee	2313	YD89443	30-Aug-2010	15-Dec-2016
Coffee	795	YC92820	3-Nov-2009	15-Dec-2015	Coffee	2314	YD89444	30-Aug-2010	15-Dec-2016
Coffee	796	YC92821	3-Nov-2009	15-Dec-2015	Coffee	2315	YD89445	30-Aug-2010	15-Dec-2016
Coffee	797	YC92822	3-Nov-2009	15-Dec-2015	Coffee	2316	YD89446	30-Aug-2010	15-Dec-2016
Coffee	798	YC92823	3-Nov-2009	15-Dec-2015	Coffee	2317	YD89447	30-Aug-2010	15-Dec-2016
Coffee	799	YC92824	3-Nov-2009	15-Dec-2015	Coffee	2318	YD89448	30-Aug-2010	15-Dec-2016
Coffee	800	YC92825	3-Nov-2009	15-Dec-2015	Coffee	2319	YD89449	30-Aug-2010	15-Dec-2016
Coffee	801	YC92826	3-Nov-2009	15-Dec-2015	Coffee	2320	YD89450	30-Aug-2010	15-Dec-2016
Coffee	802	YC92827	3-Nov-2009	15-Dec-2015	Coffee	2321	YD89451	30-Aug-2010	15-Dec-2016
Coffee	803	YC92828	3-Nov-2009	15-Dec-2015	Coffee	2322	YD89452	30-Aug-2010	15-Dec-2016
Coffee	804	YC92829	3-Nov-2009	15-Dec-2015	Coffee	2323	YD89453	30-Aug-2010	15-Dec-2016
Coffee	805	YC92830	3-Nov-2009	15-Dec-2015	Coffee	2324	YD89454	30-Aug-2010	15-Dec-2016
Coffee	806	YC92831	3-Nov-2009	15-Dec-2015	Coffee	2325	YD89455	30-Aug-2010	15-Dec-2016
Coffee	807	YC92832	3-Nov-2009	15-Dec-2015	Coffee	2326	YD89456	30-Aug-2010	15-Dec-2016
Coffee	808	YC92833	3-Nov-2009	15-Dec-2015	Coffee	2327	YD89457	30-Aug-2010	15-Dec-2016
Coffee	809	YC92834	3-Nov-2009	15-Dec-2015	Coffee	2328	YD89458	30-Aug-2010	15-Dec-2016
Coffee	810	YC92835	3-Nov-2009	15-Dec-2015	Coffee	2329	YD89459	30-Aug-2010	15-Dec-2016
Coffee	811	YC92836	3-Nov-2009	15-Dec-2015	Coffee	2330	YD89460	30-Aug-2010	15-Dec-2016
Coffee	812	YC92837	3-Nov-2009	15-Dec-2015	Coffee	2331	YD89461	30-Aug-2010	15-Dec-2016
Coffee	813	YC92838	3-Nov-2009	15-Dec-2015	Coffee	2332	YD89462	30-Aug-2010	15-Dec-2016
Coffee	814	YC92839	3-Nov-2009	15-Dec-2015	Coffee	2333	YD89463	30-Aug-2010	15-Dec-2016
Coffee	815	YC92840	3-Nov-2009	15-Dec-2015	Coffee	2334	YD89464	30-Aug-2010	15-Dec-2016
Coffee	816	YC92841	3-Nov-2009	15-Dec-2015	Coffee	2335	YD89465	30-Aug-2010	15-Dec-2016
Coffee	817	YC92842	3-Nov-2009	15-Dec-2015	Coffee	2336	YD89466	30-Aug-2010	15-Dec-2016
Coffee	818	YC92843	3-Nov-2009	15-Dec-2015	Coffee	2337	YD89467	30-Aug-2010	15-Dec-2016
Coffee	819	YC92844	3-Nov-2009	15-Dec-2015	Coffee	2338	YD89468	30-Aug-2010	15-Dec-2016
Coffee	820	YC92845	3-Nov-2009	15-Dec-2015	Coffee	2339	YD89469	30-Aug-2010	15-Dec-2016
Coffee	821	YC92846	3-Nov-2009	15-Dec-2015	Coffee	2340	YD89470	30-Aug-2010	15-Dec-2016
Coffee	822	YC92847	3-Nov-2009	15-Dec-2015	Coffee	2341	YD89471	30-Aug-2010	15-Dec-2016
Coffee	823	YC92848	3-Nov-2009	15-Dec-2015	Coffee	2342	YD89472	30-Aug-2010	15-Dec-2016
Coffee	824	YC92849	3-Nov-2009	15-Dec-2015	Coffee	2343	YD89473	30-Aug-2010	15-Dec-2016
Coffee	825	YC92850	3-Nov-2009	15-Dec-2015	Coffee	2344	YD89474	30-Aug-2010	15-Dec-2016

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	826	YC92851	3-Nov-2009	15-Dec-2015	Coffee	2345	YD89475	30-Aug-2010	15-Dec-2016
Coffee	827	YC92852	3-Nov-2009	15-Dec-2015	Coffee	2346	YD89476	30-Aug-2010	15-Dec-2016
Coffee	828	YC92853	3-Nov-2009	15-Dec-2015	Coffee	2347	YD91501	29-Sep-2010	29-Sep-2018
Coffee	829	YC92854	3-Nov-2009	15-Dec-2015	Coffee	2348	YD91502	29-Sep-2010	29-Sep-2018
Coffee	830	YC92855	3-Nov-2009	15-Dec-2015	Coffee	2349	YD91503	29-Sep-2010	29-Sep-2018
Coffee	831	YC92856	3-Nov-2009	15-Dec-2015	Coffee	2350	YD91504	29-Sep-2010	29-Sep-2018
Coffee	832	YC92857	3-Nov-2009	15-Dec-2015	Coffee	2351	YD91505	29-Sep-2010	29-Sep-2018
Coffee	833	YC92858	3-Nov-2009	15-Dec-2015	Coffee	2352	YD91506	29-Sep-2010	29-Sep-2018
Coffee	834	YC92859	3-Nov-2009	15-Dec-2015	Coffee	2353	YD91507	29-Sep-2010	29-Sep-2018
Coffee	835	YC92860	3-Nov-2009	15-Dec-2015	Coffee	2354	YD91508	29-Sep-2010	29-Sep-2018
Coffee	836	YC92861	3-Nov-2009	15-Dec-2015	Coffee	2355	YD91509	29-Sep-2010	29-Sep-2018
Coffee	837	YC92862	3-Nov-2009	15-Dec-2015	Coffee	2356	YD91510	29-Sep-2010	29-Sep-2018
Coffee	838	YC92863	3-Nov-2009	15-Dec-2015	Coffee	2357	YD91511	29-Sep-2010	29-Sep-2018
Coffee	839	YC92864	3-Nov-2009	15-Dec-2015	Coffee	2358	YD91512	29-Sep-2010	29-Sep-2018
Coffee	840	YC92865	3-Nov-2009	15-Dec-2015	Coffee	2359	YD91513	29-Sep-2010	29-Sep-2018
Coffee	841	YC92866	3-Nov-2009	15-Dec-2015	Coffee	2360	YD91514	29-Sep-2010	29-Sep-2018
Coffee	842	YC92867	3-Nov-2009	15-Dec-2015	Coffee	2361	YD91515	29-Sep-2010	29-Sep-2018
Coffee	843	YC92868	3-Nov-2009	15-Dec-2015	Coffee	2362	YD91516	29-Sep-2010	29-Sep-2018
Coffee	844	YC92869	3-Nov-2009	15-Dec-2015	Coffee	2363	YD91517	29-Sep-2010	29-Sep-2018
Coffee	845	YC92870	3-Nov-2009	15-Dec-2015	Coffee	2364	YD91518	29-Sep-2010	29-Sep-2018
Coffee	846	YC92871	3-Nov-2009	15-Dec-2015	Coffee	2365	YD91519	29-Sep-2010	29-Sep-2018
Coffee	847	YC92872	3-Nov-2009	15-Dec-2015	Coffee	2366	YD91520	29-Sep-2010	29-Sep-2018
Coffee	848	YC92873	3-Nov-2009	15-Dec-2015	Coffee	2367	YD91521	29-Sep-2010	29-Sep-2018
Coffee	849	YC92874	3-Nov-2009	15-Dec-2015	Coffee	2368	YD91522	29-Sep-2010	29-Sep-2018
Coffee	850	YC92875	3-Nov-2009	15-Dec-2015	Coffee	2369	YD91523	29-Sep-2010	29-Sep-2018
Coffee	851	YC92876	3-Nov-2009	15-Dec-2015	Coffee	2370	YD91524	29-Sep-2010	29-Sep-2018
Coffee	852	YC92877	3-Nov-2009	15-Dec-2015	Coffee	2371	YD91525	29-Sep-2010	29-Sep-2018
Coffee	853	YC92878	3-Nov-2009	15-Dec-2015	Coffee	2372	YD91526	29-Sep-2010	29-Sep-2018
Coffee	854	YC92879	3-Nov-2009	15-Dec-2015	Coffee	2373	YD91527	29-Sep-2010	29-Sep-2018
Coffee	855	YC92880	3-Nov-2009	15-Dec-2015	Coffee	2374	YD91528	29-Sep-2010	29-Sep-2018
Coffee	856	YC92881	3-Nov-2009	15-Dec-2015	Coffee	2375	YD91529	29-Sep-2010	29-Sep-2018
Coffee	857	YC92882	3-Nov-2009	15-Dec-2015	Coffee	2376	YD91530	29-Sep-2010	29-Sep-2018
Coffee	858	YC92883	3-Nov-2009	15-Dec-2015	Coffee	2377	YD91531	29-Sep-2010	29-Sep-2018
Coffee	859	YC92884	3-Nov-2009	15-Dec-2015	Coffee	2378	YD91532	29-Sep-2010	29-Sep-2018
Coffee	860	YC92885	3-Nov-2009	15-Dec-2015	Coffee	2379	YD91533	29-Sep-2010	29-Sep-2018
Coffee	861	YC92886	3-Nov-2009	15-Dec-2015	Coffee	2380	YD91534	29-Sep-2010	29-Sep-2018
Coffee	862	YC92887	3-Nov-2009	15-Dec-2015	Coffee	2381	YD91535	29-Sep-2010	29-Sep-2018
Coffee	863	YC92888	3-Nov-2009	15-Dec-2015	Coffee	2382	YD91536	29-Sep-2010	29-Sep-2018
Coffee	864	YC92889	3-Nov-2009	15-Dec-2015	Coffee	2383	YD91537	29-Sep-2010	29-Sep-2018
Coffee	865	YC92890	3-Nov-2009	15-Dec-2015	Coffee	2384	YD91538	29-Sep-2010	29-Sep-2018
Coffee	866	YC93271	3-Nov-2009	15-Dec-2015	Coffee	2385	YD91539	29-Sep-2010	29-Sep-2018
Coffee	867	YC93272	3-Nov-2009	15-Dec-2015	Coffee	2386	YD91540	29-Sep-2010	29-Sep-2018
Coffee	868	YC93273	3-Nov-2009	15-Dec-2015	Coffee	2387	YD91541	29-Sep-2010	29-Sep-2018
Coffee	869	YC93274	3-Nov-2009	15-Dec-2015	Coffee	2388	YD91542	29-Sep-2010	29-Sep-2018
Coffee	870	YC93275	3-Nov-2009	15-Dec-2015	Coffee	2389	YD91543	29-Sep-2010	29-Sep-2018
Coffee	871	YC93276	3-Nov-2009	15-Dec-2015	Coffee	2390	YD91544	29-Sep-2010	29-Sep-2018
Coffee	872	YC93277	3-Nov-2009	15-Dec-2015	Coffee	2391	YD91545	29-Sep-2010	29-Sep-2018
Coffee	873	YC93278	3-Nov-2009	15-Dec-2015	Coffee	2392	YD91546	29-Sep-2010	29-Sep-2018
Coffee	874	YC93279	3-Nov-2009	15-Dec-2015	Coffee	2393	YD91547	29-Sep-2010	29-Sep-2018
Coffee	875	YC93280	3-Nov-2009	15-Dec-2015	Coffee	2394	YD91548	29-Sep-2010	29-Sep-2018
Coffee	876	YC93281	3-Nov-2009	15-Dec-2015	Coffee	2395	YD91549	29-Sep-2010	29-Sep-2018
Coffee	877	YC93282	3-Nov-2009	15-Dec-2015	Coffee	2396	YD91550	29-Sep-2010	29-Sep-2018
Coffee	878	YC93283	3-Nov-2009	15-Dec-2015	Coffee	2397	YD91551	29-Sep-2010	29-Sep-2018
Coffee	879	YC93284	3-Nov-2009	15-Dec-2015	Coffee	2398	YD91552	29-Sep-2010	29-Sep-2018
Coffee	880	YC93285	3-Nov-2009	15-Dec-2015	Coffee	2399	YD91553	29-Sep-2010	29-Sep-2018
Coffee	881	YC93286	3-Nov-2009	15-Dec-2015	Coffee	2400	YD91554	29-Sep-2010	29-Sep-2018
Coffee	882	YC93287	3-Nov-2009	15-Dec-2015	Coffee	2401	YD91555	29-Sep-2010	29-Sep-2018
Coffee	883	YC93288	3-Nov-2009	15-Dec-2015	Coffee	2402	YD91556	29-Sep-2010	29-Sep-2018
Coffee	884	YC93289	3-Nov-2009	15-Dec-2015	Coffee	2403	YD91557	29-Sep-2010	29-Sep-2018
Coffee	885	YC93290	3-Nov-2009	15-Dec-2015	Coffee	2404	YD91558	29-Sep-2010	29-Sep-2018
Coffee	886	YC93291	3-Nov-2009	15-Dec-2015	Coffee	2405	YD91559	29-Sep-2010	29-Sep-2018
Coffee	887	YC93292	3-Nov-2009	15-Dec-2015	Coffee	2406	YD91560	29-Sep-2010	29-Sep-2018
Coffee	888	YC93293	3-Nov-2009	15-Dec-2015	Coffee	2407	YD91561	29-Sep-2010	29-Sep-2018
Coffee	889	YC93294	3-Nov-2009	15-Dec-2015	Coffee	2408	YD91562	29-Sep-2010	29-Sep-2018
Coffee	890	YC93295	3-Nov-2009	15-Dec-2015	Coffee	2409	YD91563	29-Sep-2010	29-Sep-2018
Coffee	891	YC93296	3-Nov-2009	15-Dec-2015	Coffee	2410	YD91564	29-Sep-2010	29-Sep-2018
Coffee	892	YC93297	3-Nov-2009	15-Dec-2015	Coffee	2411	YD91565	29-Sep-2010	29-Sep-2018
Coffee	893	YC93298	3-Nov-2009	15-Dec-2015	Coffee	2412	YD91566	29-Sep-2010	29-Sep-2018
Coffee	894	YC93299	3-Nov-2009	15-Dec-2015	Coffee	2413	YD91567	29-Sep-2010	29-Sep-2018

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	895	YC92801	3-Nov-2009	15-Dec-2015	Coffee	2414	YD91568	29-Sep-2010	29-Sep-2018
Coffee	896	YC92802	3-Nov-2009	15-Dec-2015	Coffee	2415	YD91569	29-Sep-2010	29-Sep-2018
Coffee	897	YC92803	3-Nov-2009	15-Dec-2015	Coffee	2416	YD91570	29-Sep-2010	29-Sep-2018
Coffee	898	YC92804	3-Nov-2009	15-Dec-2015	Coffee	2417	YD91571	29-Sep-2010	29-Sep-2018
Coffee	899	YC92805	3-Nov-2009	15-Dec-2015	Coffee	2418	YD91572	29-Sep-2010	29-Sep-2018
Coffee	900	YC92806	3-Nov-2009	15-Dec-2015	Coffee	2419	YD91573	29-Sep-2010	29-Sep-2018
Coffee	901	YC92807	3-Nov-2009	15-Dec-2015	Coffee	2420	YD91574	29-Sep-2010	29-Sep-2018
Coffee	902	YC92808	3-Nov-2009	15-Dec-2015	Coffee	2421	YD91575	29-Sep-2010	29-Sep-2018
Coffee	903	YC92809	3-Nov-2009	15-Dec-2015	Coffee	2422	YD91576	29-Sep-2010	29-Sep-2018
Coffee	904	YC92810	3-Nov-2009	15-Dec-2015	Coffee	2423	YD91577	29-Sep-2010	29-Sep-2018
Coffee	905	YC92811	3-Nov-2009	15-Dec-2015	Coffee	2424	YD91578	29-Sep-2010	29-Sep-2018
Coffee	906	YC92812	3-Nov-2009	15-Dec-2015	Coffee	2425	YD91579	29-Sep-2010	29-Sep-2018
Coffee	907	YC92813	3-Nov-2009	15-Dec-2015	Coffee	2426	YD91580	29-Sep-2010	29-Sep-2018
Coffee	908	YC92814	3-Nov-2009	15-Dec-2015	Coffee	2427	YD91581	29-Sep-2010	29-Sep-2018
Coffee	909	YC92815	3-Nov-2009	15-Dec-2015	Coffee	2428	YD91582	29-Sep-2010	29-Sep-2018
Coffee	910	YC92816	3-Nov-2009	15-Dec-2015	Coffee	2429	YD91583	29-Sep-2010	29-Sep-2018
Coffee	911	YD12701	17-Dec-2009	15-Dec-2016	Coffee	2430	YD91584	29-Sep-2010	29-Sep-2018
Coffee	912	YD12702	17-Dec-2009	15-Dec-2016	Coffee	2431	YD91585	29-Sep-2010	29-Sep-2018
Coffee	913	YD12703	17-Dec-2009	15-Dec-2016	Coffee	2432	YD91586	29-Sep-2010	29-Sep-2018
Coffee	914	YD12704	17-Dec-2009	15-Dec-2016	Coffee	2433	YD91587	29-Sep-2010	29-Sep-2018
Coffee	915	YD12705	17-Dec-2009	15-Dec-2016	Coffee	2434	YD91588	29-Sep-2010	29-Sep-2018
Coffee	916	YD12706	17-Dec-2009	15-Dec-2016	Coffee	2435	YD91589	29-Sep-2010	29-Sep-2018
Coffee	917	YD12707	17-Dec-2009	15-Dec-2016	Coffee	2436	YD91590	29-Sep-2010	29-Sep-2018
Coffee	918	YD12708	17-Dec-2009	15-Dec-2016	Coffee	2437	YD91591	29-Sep-2010	29-Sep-2018
Coffee	919	YD12709	17-Dec-2009	15-Dec-2016	Coffee	2438	YD91592	29-Sep-2010	29-Sep-2018
Coffee	920	YD12710	17-Dec-2009	15-Dec-2016	Coffee	2439	YD91593	29-Sep-2010	29-Sep-2018
Coffee	921	YD12711	17-Dec-2009	15-Dec-2016	Coffee	2440	YD91594	29-Sep-2010	29-Sep-2018
Coffee	922	YD12712	17-Dec-2009	15-Dec-2016	Coffee	2441	YD91595	29-Sep-2010	29-Sep-2018
Coffee	923	YD12713	17-Dec-2009	15-Dec-2016	Coffee	2442	YD91596	29-Sep-2010	29-Sep-2018
Coffee	924	YD12714	17-Dec-2009	15-Dec-2016	Coffee	2443	YD91597	29-Sep-2010	29-Sep-2018
Coffee	925	YD12715	17-Dec-2009	15-Dec-2016	Coffee	2444	YD91598	29-Sep-2010	29-Sep-2018
Coffee	926	YD12716	17-Dec-2009	15-Dec-2016	Coffee	2445	YD91599	29-Sep-2010	29-Sep-2018
Coffee	927	YD12717	17-Dec-2009	15-Dec-2016	Coffee	2446	YD91600	29-Sep-2010	29-Sep-2018
Coffee	928	YD12718	17-Dec-2009	15-Dec-2016	Coffee	2447	YD91601	29-Sep-2010	29-Sep-2018
Coffee	929	YD12719	17-Dec-2009	15-Dec-2016	Coffee	2448	YD91602	29-Sep-2010	29-Sep-2018
Coffee	930	YD12720	17-Dec-2009	15-Dec-2016	Coffee	2449	YD91603	29-Sep-2010	29-Sep-2018
Coffee	931	YD12721	17-Dec-2009	15-Dec-2016	Coffee	2450	YD91604	29-Sep-2010	29-Sep-2018
Coffee	932	YD12722	17-Dec-2009	15-Dec-2016	Coffee	2451	YD91605	29-Sep-2010	29-Sep-2018
Coffee	933	YD12723	17-Dec-2009	15-Dec-2016	Coffee	2452	YD91606	29-Sep-2010	29-Sep-2018
Coffee	934	YD12724	17-Dec-2009	15-Dec-2016	Coffee	2453	YD91607	29-Sep-2010	29-Sep-2018
Coffee	935	YD12725	17-Dec-2009	15-Dec-2016	Coffee	2454	YD91608	29-Sep-2010	29-Sep-2018
Coffee	936	YD12726	17-Dec-2009	15-Dec-2016	Coffee	2455	YD91609	29-Sep-2010	29-Sep-2018
Coffee	937	YD12727	17-Dec-2009	15-Dec-2016	Coffee	2456	YD91610	29-Sep-2010	29-Sep-2018
Coffee	938	YD12728	17-Dec-2009	15-Dec-2016	Coffee	2457	YD91611	29-Sep-2010	29-Sep-2018
Coffee	939	YD12729	17-Dec-2009	15-Dec-2016	Coffee	2458	YD91612	29-Sep-2010	29-Sep-2018
Coffee	940	YD12730	17-Dec-2009	15-Dec-2016	Coffee	2459	YD91613	29-Sep-2010	29-Sep-2018
Coffee	941	YD12731	17-Dec-2009	15-Dec-2016	Coffee	2460	YD91614	29-Sep-2010	29-Sep-2018
Coffee	942	YD12732	17-Dec-2009	15-Dec-2016	Coffee	2461	YD91615	29-Sep-2010	29-Sep-2018
Coffee	943	YD12733	17-Dec-2009	15-Dec-2016	Coffee	2462	YD91616	29-Sep-2010	29-Sep-2018
Coffee	944	YD12734	17-Dec-2009	15-Dec-2016	Coffee	2463	YD91617	29-Sep-2010	29-Sep-2018
Coffee	945	YD12735	17-Dec-2009	15-Dec-2016	Coffee	2464	YD91618	29-Sep-2010	29-Sep-2018
Coffee	946	YD12736	17-Dec-2009	15-Dec-2016	Coffee	2465	YD91619	29-Sep-2010	29-Sep-2018
Coffee	947	YD12737	17-Dec-2009	15-Dec-2016	Coffee	2466	YD91620	29-Sep-2010	29-Sep-2018
Coffee	948	YD12738	17-Dec-2009	15-Dec-2016	Coffee	2467	YD91621	29-Sep-2010	29-Sep-2018
Coffee	949	YD12739	17-Dec-2009	15-Dec-2016	Coffee	2468	YD91622	29-Sep-2010	29-Sep-2018
Coffee	950	YD12740	17-Dec-2009	15-Dec-2016	Coffee	2469	YD91623	29-Sep-2010	29-Sep-2018
Coffee	951	YD12741	17-Dec-2009	15-Dec-2016	Coffee	2470	YD91624	29-Sep-2010	29-Sep-2018
Coffee	952	YD12742	17-Dec-2009	15-Dec-2016	Coffee	2471	YD91625	29-Sep-2010	29-Sep-2018
Coffee	953	YD12743	17-Dec-2009	15-Dec-2016	Coffee	2472	YD91626	29-Sep-2010	29-Sep-2018
Coffee	954	YD12744	17-Dec-2009	15-Dec-2016	Coffee	2473	YD91627	29-Sep-2010	29-Sep-2018
Coffee	955	YD12745	17-Dec-2009	15-Dec-2016	Coffee	2474	YD91628	29-Sep-2010	29-Sep-2018
Coffee	956	YD12746	17-Dec-2009	15-Dec-2016	Coffee	2475	YD91629	29-Sep-2010	29-Sep-2018
Coffee	957	YD12747	17-Dec-2009	15-Dec-2016	Coffee	2476	YD91630	29-Sep-2010	29-Sep-2018
Coffee	958	YD12748	17-Dec-2009	15-Dec-2016	Coffee	2477	YD91631	29-Sep-2010	29-Sep-2018
Coffee	959	YD12749	17-Dec-2009	15-Dec-2016	Coffee	2478	YD91632	29-Sep-2010	29-Sep-2018
Coffee	960	YD12750	17-Dec-2009	15-Dec-2016	Coffee	2479	YD91633	29-Sep-2010	29-Sep-2018
Coffee	961	YD13231	25-Feb-2010	15-Dec-2016	Coffee	2480	YD91634	29-Sep-2010	29-Sep-2018
Coffee	962	YD13232	25-Feb-2010	15-Dec-2016	Coffee	2481	YD91635	29-Sep-2010	29-Sep-2018
Coffee	963	YD13233	25-Feb-2010	15-Dec-2016	Coffee	2482	YD91636	29-Sep-2010	29-Sep-2018

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	964	YD13234	25-Feb-2010	15-Dec-2016	Coffee	2483	YD91637	29-Sep-2010	29-Sep-2018
Coffee	965	YD13235	25-Feb-2010	15-Dec-2016	Coffee	2484	YD91638	29-Sep-2010	29-Sep-2018
Coffee	966	YD13236	25-Feb-2010	15-Dec-2016	Coffee	2485	YD91639	29-Sep-2010	29-Sep-2018
Coffee	967	YD13237	25-Feb-2010	15-Dec-2016	Coffee	2486	YD91640	29-Sep-2010	29-Sep-2018
Coffee	968	YD13238	25-Feb-2010	15-Dec-2016	Coffee	2487	YD91641	29-Sep-2010	29-Sep-2018
Coffee	969	YD13239	25-Feb-2010	15-Dec-2016	Coffee	2488	YD91642	29-Sep-2010	29-Sep-2018
Coffee	970	YD13241	25-Feb-2010	15-Dec-2016	Coffee	2489	YD91643	29-Sep-2010	29-Sep-2018
Coffee	971	YD13242	25-Feb-2010	15-Dec-2016	Coffee	2490	YD91644	29-Sep-2010	29-Sep-2018
Coffee	972	YD13243	25-Feb-2010	15-Dec-2016	Coffee	2491	YD91645	29-Sep-2010	29-Sep-2018
Coffee	973	YD13244	25-Feb-2010	15-Dec-2016	Coffee	2492	YD91646	29-Sep-2010	29-Sep-2018
Coffee	974	YD13245	25-Feb-2010	15-Dec-2016	Coffee	2493	YD91647	29-Sep-2010	29-Sep-2018
Coffee	975	YD13246	25-Feb-2010	15-Dec-2016	Coffee	2494	YD91648	29-Sep-2010	29-Sep-2018
Coffee	976	YD13247	25-Feb-2010	15-Dec-2016	Coffee	2495	YD91649	29-Sep-2010	29-Sep-2018
Coffee	977	YD13248	25-Feb-2010	15-Dec-2016	Coffee	2496	YD91650	29-Sep-2010	29-Sep-2018
Coffee	978	YD13249	25-Feb-2010	15-Dec-2016	Coffee	2497	YD91651	29-Sep-2010	29-Sep-2018
Coffee	979	YD13250	25-Feb-2010	15-Dec-2016	Coffee	2498	YD91652	29-Sep-2010	29-Sep-2018
Coffee	980	YD13251	25-Feb-2010	15-Dec-2016	Coffee	2499	YD91653	29-Sep-2010	29-Sep-2018
Coffee	981	YD13252	25-Feb-2010	15-Dec-2016	Coffee	2500	YD91654	29-Sep-2010	29-Sep-2018
Coffee	982	YD13253	25-Feb-2010	15-Dec-2016	Coffee	2501	YD91655	29-Sep-2010	29-Sep-2018
Coffee	983	YD13254	25-Feb-2010	15-Dec-2016	Coffee	2502	YD91656	29-Sep-2010	29-Sep-2018
Coffee	984	YD13255	25-Feb-2010	15-Dec-2016	Coffee	2503	YD91657	29-Sep-2010	29-Sep-2018
Coffee	985	YD13256	25-Feb-2010	15-Dec-2016	Coffee	2504	YD91658	29-Sep-2010	29-Sep-2018
Coffee	986	YD13257	25-Feb-2010	15-Dec-2016	Coffee	2505	YD91659	29-Sep-2010	29-Sep-2018
Coffee	987	YD13258	25-Feb-2010	15-Dec-2016	Coffee	2506	YD91660	29-Sep-2010	29-Sep-2018
Coffee	988	YD13259	25-Feb-2010	15-Dec-2016	Coffee	2507	YD91661	29-Sep-2010	29-Sep-2018
Coffee	989	YD13260	25-Feb-2010	15-Dec-2016	Coffee	2508	YD91662	29-Sep-2010	29-Sep-2018
Coffee	990	YD13261	25-Feb-2010	15-Dec-2016	Coffee	2509	YD91663	29-Sep-2010	29-Sep-2018
Coffee	991	YD13262	25-Feb-2010	15-Dec-2016	Coffee	2510	YD91664	29-Sep-2010	29-Sep-2018
Coffee	992	YD13263	25-Feb-2010	15-Dec-2016	Coffee	2511	YD91665	29-Sep-2010	29-Sep-2018
Coffee	993	YD13264	25-Feb-2010	15-Dec-2016	Coffee	2512	YD91666	29-Sep-2010	29-Sep-2018
Coffee	994	YD13265	25-Feb-2010	15-Dec-2016	Coffee	2513	YD91667	29-Sep-2010	29-Sep-2018
Coffee	995	YD13266	25-Feb-2010	15-Dec-2016	Coffee	2514	YD91668	29-Sep-2010	29-Sep-2018
Coffee	996	YD13267	25-Feb-2010	15-Dec-2016	Coffee	2515	YD91669	29-Sep-2010	29-Sep-2018
Coffee	997	YD13268	25-Feb-2010	15-Dec-2016	Coffee	2516	YD91670	29-Sep-2010	29-Sep-2018
Coffee	998	YD13269	25-Feb-2010	15-Dec-2016	Coffee	2517	YD91671	29-Sep-2010	29-Sep-2018
Coffee	999	YD13270	25-Feb-2010	15-Dec-2016	Coffee	2518	YD91672	29-Sep-2010	29-Sep-2018
Coffee	1000	YD13271	25-Feb-2010	15-Dec-2016	Coffee	2519	YD91673	29-Sep-2010	29-Sep-2018
Coffee	1001	YD13272	25-Feb-2010	15-Dec-2016	Coffee	2520	YD91674	29-Sep-2010	29-Sep-2018
Coffee	1002	YD13273	25-Feb-2010	15-Dec-2016	Coffee	2521	YD91675	29-Sep-2010	29-Sep-2018
Coffee	1003	YD13274	25-Feb-2010	15-Dec-2016	Coffee	2522	YD91676	29-Sep-2010	29-Sep-2018
Coffee	1004	YD13275	25-Feb-2010	15-Dec-2016	Coffee	2523	YD91677	29-Sep-2010	29-Sep-2018
Coffee	1005	YD13276	25-Feb-2010	15-Dec-2016	Coffee	2524	YD91678	29-Sep-2010	29-Sep-2018
Coffee	1006	YD13277	25-Feb-2010	15-Dec-2016	Coffee	2525	YD91679	29-Sep-2010	29-Sep-2018
Coffee	1007	YD13278	25-Feb-2010	15-Dec-2016	Coffee	2526	YD91680	29-Sep-2010	29-Sep-2018
Coffee	1008	YD13279	25-Feb-2010	15-Dec-2016	Coffee	2527	YD91681	29-Sep-2010	29-Sep-2018
Coffee	1009	YD13280	25-Feb-2010	15-Dec-2016	Coffee	2528	YD91682	29-Sep-2010	29-Sep-2018
Coffee	1010	YD13281	25-Feb-2010	15-Dec-2016	Coffee	2529	YD91683	29-Sep-2010	29-Sep-2018
Coffee	1011	YD13282	25-Feb-2010	15-Dec-2016	Coffee	2530	YD91684	29-Sep-2010	29-Sep-2018
Coffee	1012	YD13283	25-Feb-2010	15-Dec-2016	Coffee	2531	YD91685	29-Sep-2010	29-Sep-2018
Coffee	1013	YD13284	25-Feb-2010	15-Dec-2016	Coffee	2532	YD91686	29-Sep-2010	29-Sep-2018
Coffee	1014	YD13285	25-Feb-2010	15-Dec-2016	Coffee	2533	YD91687	29-Sep-2010	29-Sep-2018
Coffee	1015	YD13286	25-Feb-2010	15-Dec-2016	Coffee	2534	YD91688	29-Sep-2010	29-Sep-2018
Coffee	1016	YD13287	25-Feb-2010	15-Dec-2016	Coffee	2535	YD91689	29-Sep-2010	29-Sep-2018
Coffee	1017	YD13288	25-Feb-2010	15-Dec-2016	Coffee	2536	YD91690	29-Sep-2010	29-Sep-2018
Coffee	1018	YD13289	25-Feb-2010	15-Dec-2016	Coffee	2537	YD91691	29-Sep-2010	29-Sep-2018
Coffee	1019	YD13290	25-Feb-2010	15-Dec-2016	Coffee	2538	YD91692	29-Sep-2010	29-Sep-2018
Coffee	1020	YD13291	25-Feb-2010	15-Dec-2016	Coffee	2539	YD91693	29-Sep-2010	29-Sep-2018
Coffee	1021	YD13292	25-Feb-2010	15-Dec-2016	Coffee	2540	YD91694	29-Sep-2010	29-Sep-2018
Coffee	1022	YD13293	25-Feb-2010	15-Dec-2016	Coffee	2541	YD91695	29-Sep-2010	29-Sep-2018
Coffee	1023	YD13294	25-Feb-2010	15-Dec-2016	Coffee	2542	YD91696	29-Sep-2010	29-Sep-2018
Coffee	1024	YD13295	25-Feb-2010	15-Dec-2016	Coffee	2543	YD91697	29-Sep-2010	29-Sep-2018
Coffee	1025	YD13296	25-Feb-2010	15-Dec-2016	Coffee	2544	YD91698	29-Sep-2010	29-Sep-2018
Coffee	1026	YD13297	25-Feb-2010	15-Dec-2016	Coffee	2545	YD91699	29-Sep-2010	29-Sep-2018
Coffee	1027	YD13298	25-Feb-2010	15-Dec-2016	Coffee	2546	YD91700	29-Sep-2010	29-Sep-2018
Coffee	1028	YD13299	25-Feb-2010	15-Dec-2016	Coffee	2547	YD91701	29-Sep-2010	29-Sep-2018
Coffee	1029	YD13300	25-Feb-2010	15-Dec-2016	Coffee	2548	YD91702	29-Sep-2010	29-Sep-2018
Coffee	1030	YD13301	25-Feb-2010	15-Dec-2016	Coffee	2549	YD91703	29-Sep-2010	29-Sep-2018
Coffee	1031	YD13302	25-Feb-2010	15-Dec-2016	Coffee	2550	YD91704	29-Sep-2010	29-Sep-2018
Coffee	1032	YD13303	25-Feb-2010	15-Dec-2016	Coffee	2551	YD91705	29-Sep-2010	29-Sep-2018

Prop	Claim \#	Grant\#	$\begin{gathered} \text { Recorded } \\ \text { Date } \end{gathered}$	Expiry Date	Prop	Claim \#	Grant\#	$\begin{gathered} \text { Recorded } \\ \text { Date } \end{gathered}$	Expiry Date
Coffee	1033	YD13304	25-Feb-2010	15-Dec-2016	Coffee	2552	YD91706	29-Sep-2010	29-Sep-2018
Coffee	1034	YD13305	25-Feb-2010	15-Dec-2016	Coffee	2553	YD91707	29-Sep-2010	29-Sep-2018
Coffee	1035	YD13306	25-Feb-2010	15-Dec-2016	Coffee	2554	YD91708	29-Sep-2010	29-Sep-2018
Coffee	1036	YD13307	25-Feb-2010	15-Dec-2016	Coffee	2555	YD91709	29-Sep-2010	29-Sep-2018
Coffee	1037	YD13308	25-Feb-2010	15-Dec-2016	Coffee	2556	YD91710	29-Sep-2010	29-Sep-2018
Coffee	1038	YD13309	25-Feb-2010	15-Dec-2016	Coffee	2557	YD91711	29-Sep-2010	29-Sep-2018
Coffee	1039	YD13310	25-Feb-2010	15-Dec-2016	Coffee	2558	YD91712	29-Sep-2010	29-Sep-2018
Coffee	1040	YD13311	25-Feb-2010	15-Dec-2016	Coffee	2559	YD91713	29-Sep-2010	29-Sep-2018
Coffee	1041	YD13312	25-Feb-2010	15-Dec-2016	Coffee	2560	YD91714	29-Sep-2010	29-Sep-2018
Coffee	1042	YD13313	25-Feb-2010	15-Dec-2016	Coffee	2561	YD91715	29-Sep-2010	29-Sep-2018
Coffee	1043	YD13314	25-Feb-2010	15-Dec-2016	Coffee	2562	YD91716	29-Sep-2010	29-Sep-2018
Coffee	1044	YD13315	25-Feb-2010	15-Dec-2016	Coffee	2563	YD91717	29-Sep-2010	29-Sep-2018
Coffee	1045	YD13316	25-Feb-2010	15-Dec-2016	Coffee	2564	YD91718	29-Sep-2010	29-Sep-2018
Coffee	1046	YD13317	25-Feb-2010	15-Dec-2016	Coffee	2565	YD91719	29-Sep-2010	29-Sep-2018
Coffee	1047	YD13318	25-Feb-2010	15-Dec-2016	Coffee	2566	YD91720	29-Sep-2010	29-Sep-2018
Coffee	1048	YD13319	25-Feb-2010	15-Dec-2016	Coffee	2567	YD91721	29-Sep-2010	29-Sep-2018
Coffee	1049	YD13320	25-Feb-2010	15-Dec-2016	Coffee	2568	YD91722	29-Sep-2010	29-Sep-2018
Coffee	1050	YD13321	25-Feb-2010	15-Dec-2016	Coffee	2569	YD91723	29-Sep-2010	29-Sep-2018
Coffee	1051	YD13322	25-Feb-2010	15-Dec-2016	Coffee	2570	YD91724	29-Sep-2010	29-Sep-2018
Coffee	1052	YD13323	25-Feb-2010	15-Dec-2016	Coffee	2571	YD91725	29-Sep-2010	29-Sep-2018
Coffee	1053	YD13324	25-Feb-2010	15-Dec-2016	Coffee	2572	YD91726	29-Sep-2010	29-Sep-2018
Coffee	1054	YD13325	25-Feb-2010	15-Dec-2016	Coffee	2573	YD91727	29-Sep-2010	29-Sep-2018
Coffee	1055	YD13326	25-Feb-2010	15-Dec-2016	Coffee	2574	YD91728	29-Sep-2010	29-Sep-2018
Coffee	1056	YD13327	25-Feb-2010	15-Dec-2016	Coffee	2575	YD91729	29-Sep-2010	29-Sep-2018
Coffee	1057	YD13328	25-Feb-2010	15-Dec-2016	Coffee	2576	YD91730	29-Sep-2010	29-Sep-2018
Coffee	1058	YD13329	25-Feb-2010	15-Dec-2016	Coffee	2577	YD91731	29-Sep-2010	29-Sep-2018
Coffee	1059	YD13330	25-Feb-2010	15-Dec-2016	Coffee	2578	YD91732	29-Sep-2010	29-Sep-2018
Coffee	1060	YD13331	25-Feb-2010	15-Dec-2016	Coffee	2579	YD91733	29-Sep-2010	29-Sep-2018
Coffee	1061	YD13332	25-Feb-2010	15-Dec-2016	Coffee	2580	YD91734	29-Sep-2010	29-Sep-2018
Co	1062	YD13333	25-Feb-2010	15-Dec-2016	Coffee	2581	YD91735	29-Sep-2010	29-Sep-2018
Coffee	1063	YD13334	25-Feb-2010	15-Dec-2016	Coffe	2582	YD91736	29-Sep-2010	29-Sep-2018
Coffee	1064	YD13335	25-Feb-2010	15-Dec-2016	Coffee	2583	YD91737	29-Sep-2010	29-Sep-2018
Coffee	1065	YD13336	25-Feb-2010	15-Dec-2016	Coffee	2584	YD91738	29-Sep-2010	29-Sep-2018
Coffee	1066	YD13337	25-Feb-2010	15-Dec-2016	Coffee	2585	YD91739	29-Sep-2010	29-Sep-2018
Coffee	1067	YD13338	25-Feb-2010	15-Dec-2016	Coffee	2586	YD91740	29-Sep-2010	29-Sep-2018
Coffee	1068	YD13339	25-Feb-2010	15-Dec-2016	Coffee	2587	YD91741	29-Sep-2010	29-Sep-2018
Coffee	1069	YD13340	25-Feb-2010	15-Dec-2016	Coffee	2588	YD91742	29-Sep-2010	29-Sep-2018
Coffee	1070	YD13341	25-Feb-2010	15-Dec-2016	Coffee	2589	YD91743	29-Sep-2010	29-Sep-2018
Coffee	1071	YD13342	25-Feb-2010	15-Dec-2016	Coffee	2590	YD91744	29-Sep-2010	29-Sep-2018
Coffee	1072	YD13343	25-Feb-2010	15-Dec-2016	Coffee	2591	YD91745	29-Sep-2010	29-Sep-2018
Coffee	1073	YD13344	25-Feb-2010	15-Dec-2016	Coffee	2592	YD91746	29-Sep-2010	29-Sep-2018
Coffee	1074	YD13345	25-Feb-2010	15-Dec-2016	Coffee	2593	YD91747	29-Sep-2010	29-Sep-2018
Coffee	1075	YD13346	25-Feb-2010	15-Dec-2016	Coffee	2594	YD91748	29-Sep-2010	29-Sep-2018
Coffee	1076	YD13347	25-Feb-2010	15-Dec-2016	Coffee	2595	YD91749	29-Sep-2010	29-Sep-2018
Coffee	1077	YD13348	25-Feb-2010	15-Dec-2016	Coffee	2596	YD91750	29-Sep-2010	29-Sep-2018
Coffee	1078	YD13349	25-Feb-2010	15-Dec-2016	Coffee	2597	YD91751	29-Sep-2010	29-Sep-2017
Coffee	1079	YD13350	25-Feb-2010	15-Dec-2016	Coffee	2598	YD91752	29-Sep-2010	29-Sep-2017
Coffee	1080	YD13351	25-Feb-2010	15-Dec-2016	Coffee	2599	YD91753	29-Sep-2010	29-Sep-2017
Coffee	1081	YD13352	25-Feb-2010	15-Dec-2016	Coffee	2600	YD91754	29-Sep-2010	29-Sep-2017
Coffee	1082	YD13353	25-Feb-2010	15-Dec-2016	Coffee	2601	YD91755	29-Sep-2010	29-Sep-2017
Coffee	1083	YD13354	25-Feb-2010	15-Dec-2016	Coffee	2602	YD91756	29-Sep-2010	29-Sep-2017
Coffee	1084	YD13355	25-Feb-2010	15-Dec-2016	Coffee	2603	YD91757	29-Sep-2010	29-Sep-2017
Coffee	1085	YD13356	25-Feb-2010	15-Dec-2016	Coffee	2604	YD91758	29-Sep-2010	29-Sep-2017
Coffee	1086	YD13357	25-Feb-2010	15-Dec-2016	Coffee	2605	YD91759	29-Sep-2010	29-Sep-2017
Coffee	1087	YD13358	25-Feb-2010	15-Dec-2016	Coffee	2606	YD91760	29-Sep-2010	29-Sep-2017
Coffee	1088	YD13359	25-Feb-2010	15-Dec-2016	Coffee	2607	YD91761	29-Sep-2010	29-Sep-2017
Coffee	1089	YD13360	25-Feb-2010	15-Dec-2016	Coffee	2608	YD91762	29-Sep-2010	29-Sep-2017
Coffee	1090	YD13361	25-Feb-2010	15-Dec-2016	Coffee	2609	YD91763	29-Sep-2010	29-Sep-2017
Coffee	1091	YD13362	25-Feb-2010	15-Dec-2016	Coffee	2610	YD91764	29-Sep-2010	29-Sep-2017
Coffee	1092	YD13363	25-Feb-2010	15-Dec-2016	Coffee	2611	YD91765	29-Sep-2010	29-Sep-2017
Coffee	1093	YD13364	25-Feb-2010	15-Dec-2016	Coffee	2612	YD91766	29-Sep-2010	29-Sep-2017
Coffee	1094	YD13365	25-Feb-2010	15-Dec-2016	Coffee	2613	YD91767	29-Sep-2010	29-Sep-2017
Coffee	1095	YD13366	25-Feb-2010	15-Dec-2016	Coffee	2614	YD91768	29-Sep-2010	29-Sep-2017
Coffee	1096	YD13367	25-Feb-2010	15-Dec-2016	Coffee	2615	YD91769	29-Sep-2010	29-Sep-2017
Coffee	1097	YD13368	25-Feb-2010	15-Dec-2016	Coffee	2616	YD91770	29-Sep-2010	29-Sep-2017
Coffee	1098	YD13369	25-Feb-2010	15-Dec-2016	Coffee	2617	YD91771	29-Sep-2010	29-Sep-2017
Coffee	1099	YD13370	25-Feb-2010	15-Dec-2016	Coffee	2618	YD91772	29-Sep-2010	29-Sep-2017
Coffee	1100	YD13371	25-Feb-2010	15-Dec-2016	Coffee	2619	YD91773	29-Sep-2010	29-Sep-2017
Coffee	1101	YD13372	25-Feb-2010	15-Dec-2016	Coffee	2620	YD91774	29-Sep-2010	29-Sep-2017

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	1102	YD13373	25-Feb-2010	15-Dec-2016	Coffee	2621	YD91775	29-Sep-2010	29-Sep-2017
Coffee	1103	YD13374	25-Feb-2010	15-Dec-2016	Coffee	2622	YD91776	29-Sep-2010	29-Sep-2017
Coffee	1104	YD13375	25-Feb-2010	15-Dec-2016	Coffee	2623	YD91777	29-Sep-2010	29-Sep-2017
Coffee	1105	YD13376	25-Feb-2010	15-Dec-2016	Coffee	2624	YD91778	29-Sep-2010	29-Sep-2017
Coffee	1106	YD13377	25-Feb-2010	15-Dec-2016	Coffee	2625	YD91779	29-Sep-2010	29-Sep-2017
Coffee	1107	YD13378	25-Feb-2010	15-Dec-2016	Coffee	2626	YD91780	29-Sep-2010	29-Sep-2017
Coffee	1108	YD13379	25-Feb-2010	15-Dec-2016	Coffee	2627	YD91781	29-Sep-2010	29-Sep-2017
Coffee	1109	YD13380	25-Feb-2010	15-Dec-2016	Coffee	2628	YD91782	29-Sep-2010	29-Sep-2017
Coffee	1110	YD13381	25-Feb-2010	15-Dec-2016	Coffee	2629	YD91783	29-Sep-2010	29-Sep-2017
Coffee	1111	YD13382	25-Feb-2010	15-Dec-2016	Coffee	2630	YD91784	29-Sep-2010	29-Sep-2017
Coffee	1112	YD13383	25-Feb-2010	15-Dec-2016	Coffee	2631	YD91785	29-Sep-2010	29-Sep-2017
Coffee	1113	YD13384	25-Feb-2010	15-Dec-2016	Coffee	2632	YD91786	29-Sep-2010	29-Sep-2017
Coffee	1114	YD13385	25-Feb-2010	15-Dec-2016	Coffee	2633	YD91787	29-Sep-2010	29-Sep-2017
Coffee	1115	YD13386	25-Feb-2010	15-Dec-2016	Coffee	2634	YD91788	29-Sep-2010	29-Sep-2017
Coffee	1116	YD13387	25-Feb-2010	15-Dec-2016	Coffee	2635	YD91789	29-Sep-2010	29-Sep-2017
Coffee	1117	YD13388	25-Feb-2010	15-Dec-2016	Coffee	2636	YD91790	29-Sep-2010	29-Sep-2017
Coffee	1118	YD13389	25-Feb-2010	15-Dec-2016	Coffee	2637	YD91791	29-Sep-2010	29-Sep-2017
Coffee	1119	YD13390	25-Feb-2010	15-Dec-2016	Coffee	2638	YD91792	29-Sep-2010	29-Sep-2017
Coffee	1120	YD13391	25-Feb-2010	15-Dec-2016	Coffee	2639	YD91793	29-Sep-2010	29-Sep-2017
Coffee	1121	YD13392	25-Feb-2010	15-Dec-2016	Coffee	2640	YD91794	29-Sep-2010	29-Sep-2017
Coffee	1122	YD13393	25-Feb-2010	15-Dec-2016	Coffee	2641	YD91795	29-Sep-2010	29-Sep-2017
Coffee	1123	YD13394	25-Feb-2010	15-Dec-2016	Coffee	2642	YD91796	29-Sep-2010	29-Sep-2017
Coffee	1124	YD13395	25-Feb-2010	15-Dec-2016	Coffee	2643	YD91797	29-Sep-2010	29-Sep-2017
Coffee	1125	YD13396	25-Feb-2010	15-Dec-2016	Coffee	2644	YD91798	29-Sep-2010	29-Sep-2017
Coffee	1126	YD13397	25-Feb-2010	15-Dec-2016	Coffee	2645	YD91799	29-Sep-2010	29-Sep-2017
Coffee	1127	YD13398	25-Feb-2010	15-Dec-2016	Coffee	2646	YD91800	29-Sep-2010	29-Sep-2017
Coffee	1128	YD13399	25-Feb-2010	15-Dec-2016	Coffee	2647	YD91801	29-Sep-2010	29-Sep-2017
Coffee	1129	YD13400	25-Feb-2010	15-Dec-2016	Coffee	2648	YD91802	29-Sep-2010	29-Sep-2017
Coffee	1130	YD13401	25-Feb-2010	15-Dec-2016	Coffee	2649	YD91803	29-Sep-2010	29-Sep-2017
Coffee	1131	YD13402	25-Feb-2010	15-Dec-2016	Coffee	2650	YD91804	29-Sep-2010	29-Sep-2017
Coffee	1132	YD13403	25-Feb-2010	15-Dec-2016	Coffee	2651	YD91805	29-Sep-2010	29-Sep-2017
Coffee	1133	YD13404	25-Feb-2010	15-Dec-2016	Coffee	2652	YD91806	29-Sep-2010	29-Sep-2017
Coffee	1134	YD13405	25-Feb-2010	15-Dec-2016	Coffee	2653	YD91807	29-Sep-2010	29-Sep-2017
Coffee	1135	YD13406	25-Feb-2010	15-Dec-2016	Coffee	2654	YD91808	29-Sep-2010	29-Sep-2017
Coffee	1136	YD13407	25-Feb-2010	15-Dec-2016	Coffee	2655	YD91809	29-Sep-2010	29-Sep-2017
Coffee	1137	YD13408	25-Feb-2010	15-Dec-2016	Coffee	2656	YD91810	29-Sep-2010	29-Sep-2017
Coffee	1138	YD13409	25-Feb-2010	15-Dec-2016	Coffee	2657	YD91811	29-Sep-2010	29-Sep-2017
Coffee	1139	YD13410	25-Feb-2010	15-Dec-2016	Coffee	2658	YD91812	29-Sep-2010	29-Sep-2017
Coffee	1140	YD13411	25-Feb-2010	15-Dec-2016	Coffee	2659	YD91813	29-Sep-2010	29-Sep-2017
Coffee	1141	YD13412	25-Feb-2010	15-Dec-2016	Coffee	2660	YD91814	29-Sep-2010	29-Sep-2017
Coffee	1142	YD13413	25-Feb-2010	15-Dec-2016	Coffee	2661	YD91815	29-Sep-2010	29-Sep-2017
Coffee	1143	YD13414	25-Feb-2010	15-Dec-2016	Coffee	2662	YD91816	29-Sep-2010	29-Sep-2017
Coffee	1144	YD13415	25-Feb-2010	15-Dec-2016	Coffee	2663	YD91817	29-Sep-2010	29-Sep-2017
Coffee	1145	YD13416	25-Feb-2010	15-Dec-2016	Coffee	2664	YD91818	29-Sep-2010	29-Sep-2017
Coffee	1146	YD13417	25-Feb-2010	15-Dec-2016	Coffee	2665	YD91819	29-Sep-2010	29-Sep-2017
Coffee	1147	YD13418	25-Feb-2010	15-Dec-2016	Coffee	2666	YD91820	29-Sep-2010	29-Sep-2017
Coffee	1148	YD13419	25-Feb-2010	15-Dec-2016	Coffee	2667	YD91821	29-Sep-2010	29-Sep-2017
Coffee	1149	YD13420	25-Feb-2010	15-Dec-2016	Coffee	2668	YD91822	29-Sep-2010	29-Sep-2017
Coffee	1150	YD13421	25-Feb-2010	15-Dec-2016	Coffee	2669	YD91823	29-Sep-2010	29-Sep-2017
Coffee	1151	YD13422	25-Feb-2010	15-Dec-2016	Coffee	2670	YD91824	29-Sep-2010	29-Sep-2017
Coffee	1152	YD13423	25-Feb-2010	15-Dec-2016	Coffee	2671	YD91825	29-Sep-2010	29-Sep-2017
Coffee	1153	YD13424	25-Feb-2010	15-Dec-2016	Coffee	2672	YD91826	29-Sep-2010	29-Sep-2017
Coffee	1154	YD13425	25-Feb-2010	15-Dec-2016	Coffee	2673	YD91827	29-Sep-2010	29-Sep-2017
Coffee	1155	YD13426	25-Feb-2010	15-Dec-2016	Coffee	2674	YD91828	29-Sep-2010	29-Sep-2017
Coffee	1156	YD13427	25-Feb-2010	15-Dec-2016	Coffee	2675	YD91829	29-Sep-2010	29-Sep-2017
Coffee	1157	YD13428	25-Feb-2010	15-Dec-2016	Coffee	2676	YD91830	29-Sep-2010	29-Sep-2017
Coffee	1158	YD13429	25-Feb-2010	15-Dec-2016	Coffee	2677	YD91831	29-Sep-2010	29-Sep-2017
Coffee	1159	YD13430	25-Feb-2010	15-Dec-2016	Coffee	2678	YD91832	29-Sep-2010	29-Sep-2017
Coffee	1160	YD13431	25-Feb-2010	15-Dec-2016	Coffee	2679	YD91833	29-Sep-2010	29-Sep-2017
Coffee	1161	YD13432	25-Feb-2010	15-Dec-2016	Coffee	2680	YD91834	29-Sep-2010	29-Sep-2017
Coffee	1162	YD13433	25-Feb-2010	15-Dec-2016	Coffee	2681	YD91835	29-Sep-2010	29-Sep-2017
Coffee	1163	YD13434	25-Feb-2010	15-Dec-2016	Coffee	2682	YD91836	29-Sep-2010	29-Sep-2017
Coffee	1164	YD13435	25-Feb-2010	15-Dec-2016	Coffee	2683	YD91837	29-Sep-2010	29-Sep-2017
Coffee	1165	YD13436	25-Feb-2010	15-Dec-2016	Coffee	2684	YD91838	29-Sep-2010	29-Sep-2017
Coffee	1166	YD13437	25-Feb-2010	15-Dec-2016	Coffee	2685	YD91839	29-Sep-2010	29-Sep-2017
Coffee	1167	YD13438	25-Feb-2010	15-Dec-2016	Coffee	2686	YD91840	29-Sep-2010	29-Sep-2017
Coffee	1168	YD13439	25-Feb-2010	15-Dec-2016	Coffee	2687	YD91841	29-Sep-2010	29-Sep-2017
Coffee	1169	YD13440	25-Feb-2010	15-Dec-2016	Coffee	2688	YD91842	29-Sep-2010	29-Sep-2017
Coffee	1170	YD13441	25-Feb-2010	15-Dec-2016	Coffee	2689	YD91843	29-Sep-2010	29-Sep-2017

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	1171	YD13442	25-Feb-2010	15-Dec-2016	Coffee	2690	YD91844	29-Sep-2010	29-Sep-2017
Coffee	1172	YD13443	25-Feb-2010	15-Dec-2016	Coffee	2691	YD91845	29-Sep-2010	29-Sep-2017
Coffee	1173	YD13444	25-Feb-2010	15-Dec-2020	Coffee	2692	YD91846	29-Sep-2010	29-Sep-2017
Coffee	1174	YD13445	25-Feb-2010	15-Dec-2020	Coffee	2693	YD91847	29-Sep-2010	29-Sep-2017
Coffee	1175	YD13446	25-Feb-2010	15-Dec-2020	Coffee	2694	YD91848	29-Sep-2010	29-Sep-2017
Coffee	1176	YD13447	25-Feb-2010	15-Dec-2020	Coffee	2695	YD91849	29-Sep-2010	29-Sep-2017
Coffee	1177	YD13448	25-Feb-2010	15-Dec-2020	Coffee	2696	YD91850	29-Sep-2010	29-Sep-2017
Coffee	1178	YD13449	25-Feb-2010	15-Dec-2020	Coffee	2697	YD91851	29-Sep-2010	29-Sep-2017
Coffee	1179	YD13450	25-Feb-2010	15-Dec-2020	Coffee	2698	YD91852	29-Sep-2010	29-Sep-2017
Coffee	1180	YD13451	25-Feb-2010	15-Dec-2020	Coffee	2699	YD91853	29-Sep-2010	29-Sep-2017
Coffee	1181	YD13452	25-Feb-2010	15-Dec-2016	Coffee	2700	YD91854	29-Sep-2010	29-Sep-2017
Coffee	1182	YD13453	25-Feb-2010	15-Dec-2016	Coffee	2701	YD91855	29-Sep-2010	29-Sep-2017
Coffee	1183	YD13454	25-Feb-2010	15-Dec-2016	Coffee	2702	YD91856	29-Sep-2010	29-Sep-2017
Coffee	1184	YD13455	25-Feb-2010	15-Dec-2016	Coffee	2703	YD91857	29-Sep-2010	29-Sep-2017
Coffee	1185	YD13456	25-Feb-2010	15-Dec-2020	Coffee	2704	YD91858	29-Sep-2010	29-Sep-2017
Coffee	1186	YD13457	25-Feb-2010	15-Dec-2020	Coffee	2705	YD91859	29-Sep-2010	29-Sep-2017
Coffee	1187	YD13458	25-Feb-2010	15-Dec-2020	Coffee	2706	YD91860	29-Sep-2010	29-Sep-2017
Coffee	1188	YD13459	25-Feb-2010	15-Dec-2020	Coffee	2707	YD91861	29-Sep-2010	29-Sep-2017
Coffee	1189	YD13460	25-Feb-2010	15-Dec-2020	Coffee	2708	YD91862	29-Sep-2010	29-Sep-2017
Coffee	1190	YD13461	25-Feb-2010	15-Dec-2020	Coffee	2709	YD91863	29-Sep-2010	29-Sep-2017
Coffee	1191	YD13462	25-Feb-2010	15-Dec-2020	Coffee	2710	YD91864	29-Sep-2010	29-Sep-2017
Coffee	1192	YD13463	25-Feb-2010	15-Dec-2020	Coffee	2711	YD91865	29-Sep-2010	29-Sep-2017
Coffee	1193	YD13464	25-Feb-2010	15-Dec-2016	Coffee	2712	YD91866	29-Sep-2010	29-Sep-2017
Coffee	1194	YD13465	25-Feb-2010	15-Dec-2016	Coffee	2713	YD91867	29-Sep-2010	29-Sep-2017
Coffee	1195	YD13466	25-Feb-2010	15-Dec-2016	Coffee	2714	YD91868	29-Sep-2010	29-Sep-2017
Coffee	1196	YD13467	25-Feb-2010	15-Dec-2016	Coffee	2715	YD91869	29-Sep-2010	29-Sep-2017
Coffee	1197	YD13468	25-Feb-2010	15-Dec-2020	Coffee	2716	YD91870	29-Sep-2010	29-Sep-2017
Coffee	1198	YD13469	25-Feb-2010	15-Dec-2020	Coffee	2717	YD91871	29-Sep-2010	29-Sep-2017
Coffee	1199	YD13470	25-Feb-2010	15-Dec-2020	Coffee	2718	YD91872	29-Sep-2010	29-Sep-2017
Coffee	1200	YD13471	25-Feb-2010	15-Dec-2020	Coffee	2719	YD91873	29-Sep-2010	29-Sep-2017
Coffee	1201	YD13472	25-Feb-2010	15-Dec-2020	Coffee	2720	YD91874	29-Sep-2010	29-Sep-2017
Coffee	1202	YD13473	25-Feb-2010	15-Dec-2020	Coffee	2721	YD91875	29-Sep-2010	29-Sep-2017
Coffee	1203	YD13474	25-Feb-2010	15-Dec-2020	Coffee	2722	YD91876	29-Sep-2010	29-Sep-2017
Coffee	1204	YD13475	25-Feb-2010	15-Dec-2020	Coffee	2723	YD91877	29-Sep-2010	29-Sep-2017
Coffee	1205	YD13476	25-Feb-2010	15-Dec-2016	Coffee	2724	YD91878	29-Sep-2010	29-Sep-2017
Coffee	1206	YD13477	25-Feb-2010	15-Dec-2016	Coffee	2725	YD91879	29-Sep-2010	29-Sep-2018
Coffee	1207	YD13478	25-Feb-2010	15-Dec-2016	Coffee	2726	YD91880	29-Sep-2010	29-Sep-2018
Coffee	1208	YD13479	25-Feb-2010	15-Dec-2016	Coffee	2727	YD91881	29-Sep-2010	29-Sep-2018
Coffee	1209	YD13480	25-Feb-2010	15-Dec-2020	Coffee	2728	YD91882	29-Sep-2010	29-Sep-2018
Coffee	1210	YD13481	25-Feb-2010	15-Dec-2020	Coffee	2729	YD91883	29-Sep-2010	29-Sep-2018
Coffee	1211	YD13482	25-Feb-2010	15-Dec-2020	Coffee	2730	YD91884	29-Sep-2010	29-Sep-2018
Coffee	1212	YD13483	25-Feb-2010	15-Dec-2020	Coffee	2731	YD91885	29-Sep-2010	29-Sep-2018
Coffee	1213	YD13484	25-Feb-2010	15-Dec-2020	Coffee	2732	YD91886	29-Sep-2010	29-Sep-2018
Coffee	1214	YD13485	25-Feb-2010	15-Dec-2020	Coffee	2733	YD91887	29-Sep-2010	29-Sep-2018
Coffee	1215	YD13486	25-Feb-2010	15-Dec-2020	Coffee	2734	YD91888	29-Sep-2010	29-Sep-2018
Coffee	1216	YD13487	25-Feb-2010	15-Dec-2020	Coffee	2735	YD91889	29-Sep-2010	29-Sep-2018
Coffee	1217	YD13488	25-Feb-2010	15-Dec-2016	Coffee	2736	YD91890	29-Sep-2010	29-Sep-2018
Coffee	1218	YD13489	25-Feb-2010	15-Dec-2016	Coffee	2737	YD91891	29-Sep-2010	29-Sep-2018
Coffee	1219	YD13490	25-Feb-2010	15-Dec-2016	Coffee	2738	YD91892	29-Sep-2010	29-Sep-2018
Coffee	1220	YD13491	25-Feb-2010	15-Dec-2016	Coffee	2739	YD91893	29-Sep-2010	29-Sep-2018
Coffee	1221	YD13492	25-Feb-2010	15-Dec-2016	Coffee	2740	YD91894	29-Sep-2010	29-Sep-2018
Coffee	1222	YD13493	25-Feb-2010	15-Dec-2016	Coffee	2741	YD91895	29-Sep-2010	29-Sep-2017
Coffee	1223	YD13494	25-Feb-2010	15-Dec-2016	Coffee	2742	YD91896	29-Sep-2010	29-Sep-2017
Coffee	1224	YD13495	25-Feb-2010	15-Dec-2016	Coffee	2743	YD91897	29-Sep-2010	29-Sep-2017
Coffee	1225	YD13496	25-Feb-2010	15-Dec-2016	Coffee	2744	YD91898	29-Sep-2010	29-Sep-2017
Coffee	1226	YD13497	25-Feb-2010	15-Dec-2016	Coffee	2745	YD91899	29-Sep-2010	29-Sep-2017
Coffee	1227	YD13498	25-Feb-2010	15-Dec-2016	Coffee	2746	YD91900	29-Sep-2010	29-Sep-2017
Coffee	1228	YD13499	25-Feb-2010	15-Dec-2016	Coffee	2747	YD91901	29-Sep-2010	29-Sep-2017
Coffee	1229	YD13500	25-Feb-2010	15-Dec-2016	Coffee	2748	YD91902	29-Sep-2010	29-Sep-2017
Coffee	1230	YD13501	25-Feb-2010	15-Dec-2016	Coffee	2749	YD91903	29-Sep-2010	29-Sep-2017
Coffee	1231	YD13502	25-Feb-2010	15-Dec-2016	Coffee	2750	YD91904	29-Sep-2010	29-Sep-2017
Coffee	1232	YD13503	25-Feb-2010	15-Dec-2016	Coffee	2751	YD91905	29-Sep-2010	29-Sep-2017
Coffee	1233	YD13504	25-Feb-2010	15-Dec-2016	Coffee	2752	YD91906	29-Sep-2010	29-Sep-2017
Coffee	1234	YD13505	25-Feb-2010	15-Dec-2016	Coffee	2753	YD91907	29-Sep-2010	29-Sep-2017
Coffee	1235	YD13506	25-Feb-2010	15-Dec-2016	Coffee	2754	YD91908	29-Sep-2010	29-Sep-2017
Coffee	1236	YD13507	25-Feb-2010	15-Dec-2016	Coffee	2755	YD91909	29-Sep-2010	29-Sep-2017
Coffee	1237	YD13508	25-Feb-2010	15-Dec-2016	Coffee	2756	YD91910	29-Sep-2010	29-Sep-2017
Coffee	1238	YD13509	25-Feb-2010	15-Dec-2016	Coffee	2757	YD91911	29-Sep-2010	29-Sep-2017
Coffee	1239	YD13510	25-Feb-2010	15-Dec-2016	Coffee	2758	YD91912	29-Sep-2010	29-Sep-2017

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	1240	YD13511	25-Feb-2010	15-Dec-2016	Coffee	2759	YD91913	29-Sep-2010	29-Sep-2017
Coffee	1241	YD13512	25-Feb-2010	15-Dec-2016	Coffee	2760	YD91914	29-Sep-2010	29-Sep-2017
Coffee	1242	YD13513	25-Feb-2010	15-Dec-2016	Coffee	2761	YD91915	29-Sep-2010	29-Sep-2017
Coffee	1243	YD13514	25-Feb-2010	15-Dec-2016	Coffee	2762	YD91916	29-Sep-2010	29-Sep-2017
Coffee	1244	YD13515	25-Feb-2010	15-Dec-2016	Coffee	2763	YD91917	29-Sep-2010	29-Sep-2017
Coffee	1245	YD13516	25-Feb-2010	15-Dec-2016	Coffee	2764	YD91918	29-Sep-2010	29-Sep-2017
Coffee	1246	YD13517	25-Feb-2010	15-Dec-2016	Coffee	2765	YD91919	29-Sep-2010	29-Sep-2017
Coffee	1247	YD13518	25-Feb-2010	15-Dec-2016	Coffee	2766	YD91920	29-Sep-2010	29-Sep-2017
Coffee	1248	YD13519	25-Feb-2010	15-Dec-2016	Coffee	2767	YD91921	29-Sep-2010	29-Sep-2017
Coffee	1249	YD13520	25-Feb-2010	15-Dec-2016	Coffee	2768	YD91922	29-Sep-2010	29-Sep-2017
Coffee	1250	YD13521	25-Feb-2010	15-Dec-2016	Coffee	2769	YD91923	29-Sep-2010	29-Sep-2017
Coffee	1251	YD13522	25-Feb-2010	15-Dec-2016	Coffee	2770	YD91924	29-Sep-2010	29-Sep-2017
Coffee	1252	YD13523	25-Feb-2010	15-Dec-2016	Coffee	2771	YD91925	29-Sep-2010	29-Sep-2017
Coffee	1253	YD13524	25-Feb-2010	15-Dec-2016	Coffee	2772	YD91926	29-Sep-2010	29-Sep-2017
Coffee	1254	YD13525	25-Feb-2010	15-Dec-2016	Coffee	2773	YD91927	29-Sep-2010	29-Sep-2017
Coffee	1255	YD13526	25-Feb-2010	15-Dec-2016	Coffee	2774	YD91928	29-Sep-2010	29-Sep-2017
Coffee	1256	YD13527	25-Feb-2010	15-Dec-2016	Coffee	2775	YD91929	29-Sep-2010	29-Sep-2017
Coffee	1257	YD13528	25-Feb-2010	15-Dec-2016	Coffee	2776	YD91930	29-Sep-2010	29-Sep-2017
Coffee	1258	YD13529	25-Feb-2010	15-Dec-2016	Coffee	2777	YD91931	29-Sep-2010	29-Sep-2017
Coffee	1259	YD13530	25-Feb-2010	15-Dec-2016	Coffee	2778	YD91932	29-Sep-2010	29-Sep-2017
Coffee	1260	YD13531	25-Feb-2010	15-Dec-2016	Coffee	2779	YD91933	29-Sep-2010	29-Sep-2017
Coffee	1261	YD13532	25-Feb-2010	15-Dec-2016	Coffee	2780	YD91934	29-Sep-2010	29-Sep-2017
Coffee	1262	YD13533	25-Feb-2010	15-Dec-2016	Coffee	2781	YD91935	29-Sep-2010	29-Sep-2017
Coffee	1263	YD13534	25-Feb-2010	15-Dec-2016	Coffee	2782	YD91936	29-Sep-2010	29-Sep-2017
Coffee	1264	YD13535	25-Feb-2010	15-Dec-2016	Coffee	2783	YD91937	29-Sep-2010	29-Sep-2017
Coffee	1265	YD13536	25-Feb-2010	15-Dec-2016	Coffee	2784	YD91938	29-Sep-2010	29-Sep-2017
Coffee	1266	YD13537	25-Feb-2010	15-Dec-2016	Coffee	2785	YD91939	29-Sep-2010	29-Sep-2017
Coffee	1267	YD13538	25-Feb-2010	15-Dec-2016	Coffee	2786	YD91940	29-Sep-2010	29-Sep-2017
Coffee	1268	YD13539	25-Feb-2010	15-Dec-2016	Coffee	2787	YD91941	29-Sep-2010	29-Sep-2017
Coffee	1269	YD13540	25-Feb-2010	15-Dec-2016	Coffee	2788	YD91942	29-Sep-2010	29-Sep-2017
Coffee	1270	YD13541	25-Feb-2010	15-Dec-2016	Coffee	2789	YD91943	29-Sep-2010	29-Sep-2017
Coffee	1271	YD13542	25-Feb-2010	15-Dec-2016	Coffee	2790	YD91944	29-Sep-2010	29-Sep-2017
Coffee	1272	YD13543	25-Feb-2010	15-Dec-2016	Coffee	2791	YD91945	29-Sep-2010	29-Sep-2017
Coffee	1273	YD13544	25-Feb-2010	15-Dec-2016	Coffee	2792	YD91946	29-Sep-2010	29-Sep-2017
Coffee	1274	YD13545	25-Feb-2010	15-Dec-2016	Coffee	2793	YD91947	29-Sep-2010	29-Sep-2017
Coffee	1275	YD13546	25-Feb-2010	15-Dec-2016	Coffee	2794	YD91948	29-Sep-2010	29-Sep-2017
Coffee	1276	YD13547	25-Feb-2010	15-Dec-2016	Coffee	2795	YD91949	29-Sep-2010	29-Sep-2017
Coffee	1277	YD13548	25-Feb-2010	15-Dec-2016	Coffee	2796	YD91950	29-Sep-2010	29-Sep-2017
Coffee	1278	YD13549	25-Feb-2010	15-Dec-2016	Coffee	2797	YD91951	29-Sep-2010	29-Sep-2017
Coffee	1279	YD13550	25-Feb-2010	15-Dec-2016	Coffee	2798	YD91952	29-Sep-2010	29-Sep-2017
Coffee	1280	YD13551	25-Feb-2010	15-Dec-2016	Coffee	2799	YD91953	29-Sep-2010	29-Sep-2017
Coffee	1281	YD13552	25-Feb-2010	15-Dec-2016	Coffee	2800	YD91954	29-Sep-2010	29-Sep-2017
Coffee	1282	YD13553	25-Feb-2010	15-Dec-2016	Coffee	2801	YD91955	29-Sep-2010	29-Sep-2017
Coffee	1283	YD13554	25-Feb-2010	15-Dec-2016	Coffee	2802	YD91956	29-Sep-2010	29-Sep-2017
Coffee	1284	YD13555	25-Feb-2010	15-Dec-2016	Coffee	2803	YD91957	29-Sep-2010	29-Sep-2017
Coffee	1285	YD13556	25-Feb-2010	15-Dec-2016	Coffee	2804	YD91958	29-Sep-2010	29-Sep-2017
Coffee	1286	YD13557	25-Feb-2010	15-Dec-2016	Coffee	2805	YD91959	29-Sep-2010	29-Sep-2017
Coffee	1287	YD13558	25-Feb-2010	15-Dec-2016	Coffee	2806	YD91960	29-Sep-2010	29-Sep-2017
Coffee	1288	YD13559	25-Feb-2010	15-Dec-2016	Coffee	2807	YD91961	29-Sep-2010	29-Sep-2017
Coffee	1289	YD13560	25-Feb-2010	15-Dec-2016	Coffee	2808	YD91962	29-Sep-2010	29-Sep-2017
Coffee	1290	YD13561	25-Feb-2010	15-Dec-2016	Coffee	2809	YD91963	29-Sep-2010	29-Sep-2017
Coffee	1291	YD13562	25-Feb-2010	15-Dec-2016	Coffee	2810	YD91964	29-Sep-2010	29-Sep-2017
Coffee	1292	YD13563	25-Feb-2010	15-Dec-2016	Coffee	2811	YD91965	29-Sep-2010	29-Sep-2017
Coffee	1293	YD13564	25-Feb-2010	15-Dec-2016	Coffee	2812	YD91966	29-Sep-2010	29-Sep-2017
Coffee	1294	YD13565	25-Feb-2010	15-Dec-2016	Coffee	2813	YD91967	29-Sep-2010	29-Sep-2018
Coffee	1295	YD13566	25-Feb-2010	15-Dec-2016	Coffee	2814	YD91968	29-Sep-2010	29-Sep-2018
Coffee	1296	YD13567	25-Feb-2010	15-Dec-2016	Coffee	2815	YD91969	29-Sep-2010	29-Sep-2018
Coffee	1297	YD13568	25-Feb-2010	15-Dec-2016	Coffee	2816	YD91970	29-Sep-2010	29-Sep-2018
Coffee	1298	YD13569	25-Feb-2010	15-Dec-2016	Coffee	2817	YD91971	29-Sep-2010	29-Sep-2018
Coffee	1299	YD13570	25-Feb-2010	15-Dec-2016	Coffee	2818	YD91972	29-Sep-2010	29-Sep-2018
Coffee	1300	YD13571	25-Feb-2010	15-Dec-2016	Coffee	2819	YD91973	29-Sep-2010	29-Sep-2018
Coffee	1301	YD13572	25-Feb-2010	15-Dec-2016	Coffee	2820	YD91974	29-Sep-2010	29-Sep-2018
Coffee	1302	YD13573	25-Feb-2010	15-Dec-2016	Coffee	2821	YD91975	29-Sep-2010	29-Sep-2018
Coffee	1303	YD13574	25-Feb-2010	15-Dec-2016	Coffee	2822	YD91976	29-Sep-2010	29-Sep-2018
Coffee	1304	YD13575	25-Feb-2010	15-Dec-2016	Coffee	2823	YD91977	29-Sep-2010	29-Sep-2018
Coffee	1305	YD13576	25-Feb-2010	15-Dec-2016	Coffee	2824	YD91978	29-Sep-2010	29-Sep-2018
Coffee	1306	YD13577	25-Feb-2010	15-Dec-2016	Coffee	2825	YD91979	29-Sep-2010	29-Sep-2018
Coffee	1307	YD13578	25-Feb-2010	15-Dec-2016	Coffee	2826	YD91980	29-Sep-2010	29-Sep-2018
Coffee	1308	YD13579	25-Feb-2010	15-Dec-2016	Coffee	2827	YD91981	29-Sep-2010	29-Sep-2018

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	1309	YD13580	25-Feb-2010	15-Dec-2016	Coffee	2828	YD91982	29-Sep-2010	29-Sep-2018
Coffee	1310	YD13581	25-Feb-2010	15-Dec-2016	Coffee	2829	YD91983	29-Sep-2010	29-Sep-2018
Coffee	1311	YD13582	25-Feb-2010	15-Dec-2016	Coffee	2830	YD91984	29-Sep-2010	29-Sep-2018
Coffee	1312	YD13583	25-Feb-2010	15-Dec-2016	Coffee	2831	YD91985	29-Sep-2010	29-Sep-2018
Coffee	1313	YD13584	25-Feb-2010	15-Dec-2016	Coffee	2832	YD91986	29-Sep-2010	29-Sep-2018
Coffee	1314	YD13585	25-Feb-2010	15-Dec-2016	Coffee	2833	YD91987	29-Sep-2010	29-Sep-2018
Coffee	1315	YD13586	25-Feb-2010	15-Dec-2016	Coffee	2834	YD91988	29-Sep-2010	29-Sep-2018
Coffee	1316	YD13587	25-Feb-2010	15-Dec-2016	Coffee	2835	YD91989	29-Sep-2010	29-Sep-2018
Coffee	1317	YD13588	25-Feb-2010	15-Dec-2016	Coffee	2836	YD91990	29-Sep-2010	29-Sep-2018
Coffee	1318	YD13589	25-Feb-2010	15-Dec-2016	Coffee	2837	YD91991	29-Sep-2010	29-Sep-2018
Coffee	1319	YD13590	25-Feb-2010	15-Dec-2016	Coffee	2838	YD91992	29-Sep-2010	29-Sep-2018
Coffee	1320	YD13591	25-Feb-2010	15-Dec-2016	Coffee	2839	YD91993	29-Sep-2010	29-Sep-2018
Coffee	1321	YD13592	25-Feb-2010	15-Dec-2016	Coffee	2840	YD91994	29-Sep-2010	29-Sep-2018
Coffee	1322	YD13593	25-Feb-2010	15-Dec-2016	Coffee	2841	YD91995	29-Sep-2010	29-Sep-2018
Coffee	1323	YD13594	25-Feb-2010	15-Dec-2016	Coffee	2842	YD91996	29-Sep-2010	29-Sep-2018
Coffee	1324	YD13595	25-Feb-2010	15-Dec-2016	Coffee	2843	YD91997	29-Sep-2010	29-Sep-2018
Coffee	1325	YD13596	25-Feb-2010	15-Dec-2016	Coffee	2844	YD91998	29-Sep-2010	29-Sep-2018
Coffee	1326	YD13597	25-Feb-2010	15-Dec-2016	Coffee	2845	YD91999	29-Sep-2010	29-Sep-2018
Coffee	1327	YD13598	25-Feb-2010	15-Dec-2016	Coffee	2846	YD92000	29-Sep-2010	29-Sep-2018
Coffee	1328	YD13599	25-Feb-2010	15-Dec-2016	Coffee	2847	YD90101	29-Sep-2010	29-Sep-2018
Coffee	1329	YD13600	25-Feb-2010	15-Dec-2016	Coffee	2848	YD90102	29-Sep-2010	29-Sep-2018
Coffee	1330	YD13601	25-Feb-2010	15-Dec-2016	Coffee	2849	YD90103	29-Sep-2010	29-Sep-2018
Coffee	1331	YD13602	25-Feb-2010	15-Dec-2016	Coffee	2850	YD90104	29-Sep-2010	29-Sep-2018
Coffee	1332	YD13603	25-Feb-2010	15-Dec-2016	Coffee	2851	YD90105	29-Sep-2010	29-Sep-2018
Coffee	1333	YD13604	25-Feb-2010	15-Dec-2016	Coffee	2852	YD90106	29-Sep-2010	29-Sep-2018
Coffee	1334	YD13605	25-Feb-2010	15-Dec-2016	Coffee	2853	YD90107	29-Sep-2010	29-Sep-2018
Coffee	1335	YD13606	25-Feb-2010	15-Dec-2016	Coffee	2854	YD90108	29-Sep-2010	29-Sep-2018
Coffee	1336	YD13607	25-Feb-2010	15-Dec-2016	Coffee	2855	YD90109	29-Sep-2010	29-Sep-2018
Coffee	1337	YD13608	25-Feb-2010	15-Dec-2016	Coffee	2856	YD90110	29-Sep-2010	29-Sep-2018
Coffee	1338	YD13609	25-Feb-2010	15-Dec-2016	Coffee	2857	YD90111	29-Sep-2010	29-Sep-2018
Coffee	1339	YD13610	25-Feb-2010	15-Dec-2016	Coffee	2858	YD90112	29-Sep-2010	29-Sep-2018
Coffee	1340	YD13611	25-Feb-2010	15-Dec-2016	Coffee	2859	YD90113	29-Sep-2010	29-Sep-2018
Coffee	1341	YD13612	25-Feb-2010	15-Dec-2016	Coffee	2860	YD90114	29-Sep-2010	29-Sep-2018
Coffee	1342	YD13613	25-Feb-2010	15-Dec-2016	Coffee	2861	YD90115	29-Sep-2010	29-Sep-2018
Coffee	1343	YD13614	25-Feb-2010	15-Dec-2016	Coffee	2862	YD90116	29-Sep-2010	29-Sep-2018
Coffee	1344	YD13615	25-Feb-2010	15-Dec-2016	Coffee	2863	YD90117	29-Sep-2010	29-Sep-2018
Coffee	1345	YD13616	25-Feb-2010	15-Dec-2016	Coffee	2864	YD90118	29-Sep-2010	29-Sep-2018
Coffee	1346	YD13617	25-Feb-2010	15-Dec-2016	Coffee	2865	YD90119	29-Sep-2010	29-Sep-2018
Coffee	1347	YD13618	25-Feb-2010	15-Dec-2016	Coffee	2866	YD90120	29-Sep-2010	29-Sep-2018
Coffee	1348	YD13619	25-Feb-2010	15-Dec-2016	Coffee	2867	YD90121	29-Sep-2010	29-Sep-2018
Coffee	1349	YD13620	25-Feb-2010	15-Dec-2016	Coffee	2868	YD90122	29-Sep-2010	29-Sep-2018
Coffee	1350	YD13621	25-Feb-2010	15-Dec-2016	Coffee	2869	YD90123	29-Sep-2010	29-Sep-2018
Coffee	1351	YD13622	25-Feb-2010	15-Dec-2016	Coffee	2870	YD90124	29-Sep-2010	29-Sep-2018
Coffee	1352	YD13623	25-Feb-2010	15-Dec-2016	Coffee	2871	YD90125	29-Sep-2010	29-Sep-2018
Coffee	1353	YD13624	25-Feb-2010	15-Dec-2016	Coffee	2872	YD90126	29-Sep-2010	29-Sep-2018
Coffee	1354	YD13625	25-Feb-2010	15-Dec-2016	Coffee	2873	YD90127	29-Sep-2010	29-Sep-2018
Coffee	1355	YD13626	25-Feb-2010	15-Dec-2016	Coffee	2874	YD90128	29-Sep-2010	29-Sep-2018
Coffee	1356	YD13627	25-Feb-2010	15-Dec-2016	Coffee	2875	YD90129	29-Sep-2010	29-Sep-2018
Coffee	1357	YD13628	25-Feb-2010	15-Dec-2016	Coffee	2876	YD90130	29-Sep-2010	29-Sep-2018
Coffee	1358	YD13629	25-Feb-2010	15-Dec-2016	Coffee	2877	YD90131	29-Sep-2010	29-Sep-2018
Coffee	1359	YD13630	25-Feb-2010	15-Dec-2016	Coffee	2878	YD90132	29-Sep-2010	29-Sep-2018
Coffee	1360	YD13631	25-Feb-2010	15-Dec-2016	Coffee	2879	YD90133	29-Sep-2010	29-Sep-2018
Coffee	1361	YD13632	25-Feb-2010	15-Dec-2016	Coffee	2880	YD90134	29-Sep-2010	29-Sep-2018
Coffee	1362	YD13633	25-Feb-2010	15-Dec-2016	Coffee	2881	YD90135	29-Sep-2010	29-Sep-2018
Coffee	1363	YD13634	25-Feb-2010	15-Dec-2016	Coffee	2882	YD90136	29-Sep-2010	29-Sep-2018
Coffee	1364	YD13635	25-Feb-2010	15-Dec-2016	Coffee	2883	YD90137	29-Sep-2010	29-Sep-2018
Coffee	1365	YD13636	25-Feb-2010	15-Dec-2016	Coffee	2884	YD90138	29-Sep-2010	29-Sep-2018
Coffee	1366	YD13637	25-Feb-2010	15-Dec-2016	Coffee	2885	YD90139	29-Sep-2010	29-Sep-2018
Coffee	1367	YD13638	25-Feb-2010	15-Dec-2016	Coffee	2886	YD90140	29-Sep-2010	29-Sep-2018
Coffee	1368	YD13639	25-Feb-2010	15-Dec-2016	Coffee	2887	YD90141	29-Sep-2010	29-Sep-2018
Coffee	1369	YD13640	25-Feb-2010	15-Dec-2016	Coffee	2888	YD90142	29-Sep-2010	29-Sep-2018
Coffee	1370	YD13641	25-Feb-2010	15-Dec-2016	Coffee	2889	YD90143	29-Sep-2010	29-Sep-2018
Coffee	1371	YD13642	25-Feb-2010	15-Dec-2016	Coffee	2890	YD90144	29-Sep-2010	29-Sep-2018
Coffee	1372	YD13643	25-Feb-2010	15-Dec-2016	Coffee	2891	YD90145	29-Sep-2010	29-Sep-2018
Coffee	1373	YD13644	25-Feb-2010	15-Dec-2016	Coffee	2892	YD90146	29-Sep-2010	29-Sep-2018
Coffee	1374	YD13645	25-Feb-2010	15-Dec-2016	Coffee	2893	YD90147	29-Sep-2010	29-Sep-2018
Coffee	1375	YD13646	25-Feb-2010	15-Dec-2016	Coffee	2894	YD90148	29-Sep-2010	29-Sep-2018
Coffee	1376	YD13647	25-Feb-2010	15-Dec-2016	Coffee	2895	YD90149	29-Sep-2010	29-Sep-2018
Coffee	1377	YD13648	25-Feb-2010	15-Dec-2016	Coffee	2896	YD90150	29-Sep-2010	29-Sep-2018

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	1378	YD13649	25-Feb-2010	15-Dec-2016	Coffee	2897	YD90151	29-Sep-2010	29-Sep-2018
Coffee	1379	YD13650	25-Feb-2010	15-Dec-2016	Coffee	2898	YD90152	29-Sep-2010	29-Sep-2018
Coffee	1380	YD13651	25-Feb-2010	15-Dec-2016	Coffee	2899	YD90153	29-Sep-2010	29-Sep-2018
Coffee	1381	YD13652	25-Feb-2010	15-Dec-2016	Coffee	2900	YD90154	29-Sep-2010	29-Sep-2018
Coffee	1382	YD13653	25-Feb-2010	15-Dec-2016	Coffee	2901	YD90155	29-Sep-2010	29-Sep-2018
Coffee	1383	YD13654	25-Feb-2010	15-Dec-2016	Coffee	2902	YD90156	29-Sep-2010	29-Sep-2018
Coffee	1384	YD13655	25-Feb-2010	15-Dec-2016	Coffee	2903	YD90157	29-Sep-2010	29-Sep-2018
Coffee	1385	YD13656	25-Feb-2010	15-Dec-2016	Coffee	2904	YD90158	29-Sep-2010	29-Sep-2018
Coffee	1386	YD13657	25-Feb-2010	15-Dec-2016	Coffee	2905	YD90159	29-Sep-2010	29-Sep-2018
Coffee	1387	YD13658	25-Feb-2010	15-Dec-2016	Coffee	2906	YD90160	29-Sep-2010	29-Sep-2018
Coffee	1388	YD13659	25-Feb-2010	15-Dec-2016	Coffee	2907	YD90161	29-Sep-2010	29-Sep-2018
Coffee	1389	YD13660	25-Feb-2010	15-Dec-2016	Coffee	2908	YD90162	29-Sep-2010	29-Sep-2018
Coffee	1390	YD13661	25-Feb-2010	15-Dec-2016	Coffee	2909	YD90163	29-Sep-2010	29-Sep-2018
Coffee	1391	YD13662	25-Feb-2010	15-Dec-2016	Coffee	2910	YD90164	29-Sep-2010	29-Sep-2018
Coffee	1392	YD13663	25-Feb-2010	15-Dec-2016	Coffee	2911	YD90165	29-Sep-2010	29-Sep-2018
Coffee	1393	YD13664	25-Feb-2010	15-Dec-2016	Coffee	2912	YD90166	29-Sep-2010	29-Sep-2018
Coffee	1394	YD13665	25-Feb-2010	15-Dec-2016	Coffee	2913	YD90167	29-Sep-2010	29-Sep-2018
Coffee	1395	YD13666	25-Feb-2010	15-Dec-2016	Coffee	2914	YD90168	29-Sep-2010	29-Sep-2018
Coffee	1396	YD13667	25-Feb-2010	15-Dec-2016	Coffee	2915	YD90169	29-Sep-2010	29-Sep-2018
Coffee	1397	YD13668	25-Feb-2010	15-Dec-2016	Coffee	2916	YD90170	29-Sep-2010	29-Sep-2018
Coffee	1398	YD13669	25-Feb-2010	15-Dec-2016	Coffee	2917	YD90171	29-Sep-2010	29-Sep-2018
Coffee	1399	YD13670	25-Feb-2010	15-Dec-2016	Coffee	2918	YD90172	29-Sep-2010	29-Sep-2018
Coffee	1400	YD13671	25-Feb-2010	15-Dec-2016	Coffee	2919	YD90173	29-Sep-2010	29-Sep-2018
Coffee	1401	YD13672	25-Feb-2010	15-Dec-2016	Coffee	2920	YD90174	29-Sep-2010	29-Sep-2018
Coffee	1402	YD13673	25-Feb-2010	15-Dec-2016	Coffee	2921	YD90175	29-Sep-2010	29-Sep-2018
Coffee	1403	YD13674	25-Feb-2010	15-Dec-2016	Coffee	2922	YD90176	29-Sep-2010	29-Sep-2018
Coffee	1404	YD13675	25-Feb-2010	15-Dec-2016	Coffee	2923	YD90177	29-Sep-2010	29-Sep-2018
Coffee	1405	YD13676	25-Feb-2010	15-Dec-2016	Coffee	2924	YD90178	29-Sep-2010	29-Sep-2018
Coffee	1406	YD13677	25-Feb-2010	15-Dec-2016	Coffee	2925	YD90179	29-Sep-2010	29-Sep-2018
Coffee	1407	YD13678	25-Feb-2010	15-Dec-2016	Coffee	2926	YD90180	29-Sep-2010	29-Sep-2018
Coffee	1408	YD13679	25-Feb-2010	15-Dec-2016	Coffee	2927	YD90181	29-Sep-2010	29-Sep-2018
Coffee	1409	YD13680	25-Feb-2010	15-Dec-2016	Coffee	2928	YD90182	29-Sep-2010	29-Sep-2018
Coffee	1410	YD13681	25-Feb-2010	15-Dec-2016	Coffee	2929	YD90183	29-Sep-2010	29-Sep-2018
Coffee	1411	YD13682	25-Feb-2010	15-Dec-2016	Coffee	2930	YD90184	29-Sep-2010	29-Sep-2018
Coffee	1412	YD13683	25-Feb-2010	15-Dec-2016	Coffee	2931	YD90185	29-Sep-2010	29-Sep-2018
Coffee	1413	YD13684	25-Feb-2010	15-Dec-2016	Coffee	2932	YD90186	29-Sep-2010	29-Sep-2018
Coffee	1414	YD13685	25-Feb-2010	15-Dec-2016	Coffee	2933	YD90187	29-Sep-2010	29-Sep-2018
Coffee	1415	YD13686	25-Feb-2010	15-Dec-2016	Coffee	2934	YD90188	29-Sep-2010	29-Sep-2018
Coffee	1416	YD13687	25-Feb-2010	15-Dec-2016	Coffee	2935	YD90189	29-Sep-2010	29-Sep-2018
Coffee	1421	YD13692	25-Feb-2010	15-Dec-2016	Coffee	2936	YD90190	29-Sep-2010	29-Sep-2018
Coffee	1422	YD13693	25-Feb-2010	15-Dec-2016	Cream	1	YC60088	2-Apr-2007	15-Dec-2016
Coffee	1423	YD13694	25-Feb-2010	15-Dec-2016	Cream	2	YC60089	2-Apr-2007	15-Dec-2016
Coffee	1424	YD13695	25-Feb-2010	15-Dec-2016	Cream	3	YC60090	2-Apr-2007	15-Dec-2016
Coffee	1425	YD13696	25-Feb-2010	15-Dec-2016	Cream	4	YC60091	2-Apr-2007	15-Dec-2016
Coffee	1426	YD13697	25-Feb-2010	15-Dec-2016	Cream	5	YC60092	2-Apr-2007	15-Dec-2016
Coffee	1427	YD13698	25-Feb-2010	15-Dec-2016	Cream	6	YC60093	2-Apr-2007	15-Dec-2016
Coffee	1428	YD13699	25-Feb-2010	15-Dec-2016	Cream	7	YC60094	2-Apr-2007	15-Dec-2016
Coffee	1429	YD13700	25-Feb-2010	15-Dec-2016	Cream	8	YC60095	2-Apr-2007	15-Dec-2016
Coffee	1430	YD42501	25-Feb-2010	15-Dec-2016	Cream	9	YC60096	2-Apr-2007	15-Dec-2016
Coffee	1435	YD42506	25-Feb-2010	15-Dec-2016	Cream	10	YC60097	2-Apr-2007	15-Dec-2016
Coffee	1436	YD42507	25-Feb-2010	15-Dec-2016	Cream	11	YC60098	2-Apr-2007	15-Dec-2016
Coffee	1437	YD42508	25-Feb-2010	15-Dec-2016	Cream	12	YC60099	2-Apr-2007	15-Dec-2016
Coffee	1438	YD42509	25-Feb-2010	15-Dec-2016	Cream	13	YC60100	2-Apr-2007	15-Dec-2016
Coffee	1439	YD42510	25-Feb-2010	15-Dec-2016	Cream	14	YC60101	2-Apr-2007	15-Dec-2016
Coffee	1440	YD42511	25-Feb-2010	15-Dec-2016	Cream	15	YC60102	2-Apr-2007	15-Dec-2016
Coffee	1441	YD42512	25-Feb-2010	15-Dec-2016	Cream	16	YC60103	2-Apr-2007	15-Dec-2016
Coffee	1442	YD42513	25-Feb-2010	15-Dec-2016	Cream	17	YC60104	2-Apr-2007	15-Dec-2016
Coffee	1443	YD42514	25-Feb-2010	15-Dec-2016	Cream	18	YC60105	2-Apr-2007	15-Dec-2016
Coffee	1444	YD42515	25-Feb-2010	15-Dec-2016	Cream	19	YC60106	2-Apr-2007	15-Dec-2016
Coffee	1445	YD42516	25-Feb-2010	15-Dec-2016	Cream	20	YC60107	2-Apr-2007	15-Dec-2016
Coffee	1446	YD42517	25-Feb-2010	15-Dec-2016	Cream	21	YC60108	2-Apr-2007	15-Dec-2016
Coffee	1447	YD42518	25-Feb-2010	15-Dec-2016	Cream	22	YC60109	2-Apr-2007	15-Dec-2016
Coffee	1448	YD42519	25-Feb-2010	15-Dec-2016	Cream	23	YC83144	11-Sep-2008	15-Dec-2015
Coffee	1449	YD42520	25-Feb-2010	15-Dec-2016	Cream	24	YC83145	11-Sep-2008	15-Dec-2015
Coffee	1450	YD42521	25-Feb-2010	15-Dec-2016	Cream	25	YC83146	11-Sep-2008	15-Dec-2015
Coffee	1451	YD42522	25-Feb-2010	15-Dec-2016	Cream	26	YC83147	11-Sep-2008	15-Dec-2015
Coffee	1452	YD42523	25-Feb-2010	15-Dec-2016	Cream	27	YC83148	11-Sep-2008	15-Dec-2015
Coffee	1453	YD42524	25-Feb-2010	15-Dec-2016	Cream	28	YC83149	11-Sep-2008	15-Dec-2015
Coffee	1454	YD42525	25-Feb-2010	15-Dec-2016	Cream	29	YC83150	11-Sep-2008	15-Dec-2015

Prop	Claim \#	Grant\#	Recorded Date	Expiry Date	Prop	Claim \#	Grant\#	Recorded Date	Expiry Date
Coffee	1455	YD42526	25-Feb-2010	15-Dec-2016	Cream	30	YC83151	11-Sep-2008	15-Dec-2015
Coffee	1456	YD42527	25-Feb-2010	15-Dec-2016	Cream	31	YC83152	11-Sep-2008	15-Dec-2015
Coffee	1457	YD42528	25-Feb-2010	15-Dec-2016	Cream	32	YC83153	11-Sep-2008	15-Dec-2015
Coffee	1458	YD42529	25-Feb-2010	15-Dec-2016	Cream	33	YC83154	11-Sep-2008	15-Dec-2015
Coffee	1459	YD42530	25-Feb-2010	15-Dec-2016	Cream	34	YC83155	11-Sep-2008	15-Dec-2015
Coffee	1460	YD42531	25-Feb-2010	15-Dec-2016	Cream	35	YC83156	11-Sep-2008	15-Dec-2015
Coffee	1461	YD42532	25-Feb-2010	15-Dec-2016	Cream	36	YC83157	11-Sep-2008	15-Dec-2015
Coffee	1462	YD42533	25-Feb-2010	15-Dec-2016	Cream	37	YC83158	11-Sep-2008	15-Dec-2015
Coffee	1463	YD42534	25-Feb-2010	15-Dec-2016	Cream	38	YC83159	11-Sep-2008	15-Dec-2015
Coffee	1464	YD42535	25-Feb-2010	15-Dec-2016	Cream	39	YC83160	11-Sep-2008	15-Dec-2015
Coffee	1465	YD42536	25-Feb-2010	15-Dec-2016	Cream	40	YC83161	11-Sep-2008	15-Dec-2015
Coffee	1466	YD42537	25-Feb-2010	15-Dec-2016	Cream	41	YC83162	11-Sep-2008	15-Dec-2015
Coffee	1467	YD42538	25-Feb-2010	15-Dec-2016	Cream	42	YC83163	11-Sep-2008	15-Dec-2015
Coffee	1468	YD42539	25-Feb-2010	15-Dec-2016	Cream	43	YC83164	11-Sep-2008	15-Dec-2015
Coffee	1469	YD42540	25-Feb-2010	15-Dec-2016	Cream	44	YC83165	11-Sep-2008	15-Dec-2015
Coffee	1470	YD42541	25-Feb-2010	15-Dec-2016	Cream	45	YC83166	11-Sep-2008	15-Dec-2015
Coffee	1471	YD42542	25-Feb-2010	15-Dec-2016	Cream	46	YC83167	11-Sep-2008	15-Dec-2015
Coffee	1472	YD42543	25-Feb-2010	15-Dec-2016	Cream	47	YC83168	11-Sep-2008	15-Dec-2015
Coffee	1473	YD42544	25-Feb-2010	15-Dec-2016	Cream	48	YC83169	11-Sep-2008	15-Dec-2015
Coffee	1474	YD42545	25-Feb-2010	15-Dec-2016	Cream	49	YC83170	11-Sep-2008	15-Dec-2015
Coffee	1475	YD42546	25-Feb-2010	15-Dec-2016	Cream	50	YC83171	11-Sep-2008	15-Dec-2015
Coffee	1476	YD42547	25-Feb-2010	15-Dec-2016	Cream	51	YC83172	11-Sep-2008	15-Dec-2015
Coffee	1477	YD42548	25-Feb-2010	15-Dec-2016	Cream	52	YC83173	11-Sep-2008	15-Dec-2015
Coffee	1478	YD42549	25-Feb-2010	15-Dec-2016	Cream	53	YC83174	11-Sep-2008	15-Dec-2015
Coffee	1479	YD42550	25-Feb-2010	15-Dec-2016	Cream	54	YC83175	11-Sep-2008	15-Dec-2015
Coffee	1480	YD42551	25-Feb-2010	15-Dec-2016	Cream	55	YC83176	11-Sep-2008	15-Dec-2015
Coffee	1481	YD42552	25-Feb-2010	15-Dec-2016	Cream	56	YC83177	11-Sep-2008	15-Dec-2015
Coffee	1482	YD42553	25-Feb-2010	15-Dec-2016	Cream	57	YC83178	11-Sep-2008	15-Dec-2015
Coffee	1483	YD42554	25-Feb-2010	15-Dec-2016	Cream	58	YC83179	11-Sep-2008	15-Dec-2015
Coffee	1484	YD42555	25-Feb-2010	15-Dec-2016	Cream	59	YC83180	11-Sep-2008	15-Dec-2015
Coffee	1485	YD42556	25-Feb-2010	15-Dec-2016	Cream	60	YC83181	11-Sep-2008	15-Dec-2015
Coffee	1486	YD42557	25-Feb-2010	15-Dec-2016	Cream	61	YC83182	11-Sep-2008	15-Dec-2015
Coffee	1487	YD42558	25-Feb-2010	15-Dec-2016	Cream	62	YC83183	11-Sep-2008	15-Dec-2015
Coffee	1488	YD42559	25-Feb-2010	15-Dec-2016	Cream	63	YC83184	11-Sep-2008	15-Dec-2015
Coffee	1489	YD42560	25-Feb-2010	15-Dec-2016	Cream	64	YC83185	11-Sep-2008	15-Dec-2015
Coffee	1490	YD42561	25-Feb-2010	15-Dec-2016	Cream	65	YC83186	11-Sep-2008	15-Dec-2015
Coffee	1491	YD42562	25-Feb-2010	15-Dec-2016	Cream	66	YC83187	11-Sep-2008	15-Dec-2015
Coffee	1492	YD42563	25-Feb-2010	15-Dec-2016	Cream	67	YC83188	11-Sep-2008	15-Dec-2015
Coffee	1493	YD42564	25-Feb-2010	15-Dec-2016	Cream	68	YC83189	11-Sep-2008	15-Dec-2015
Coffee	1494	YD42565	25-Feb-2010	15-Dec-2016	Lion	1	YC83761	13-Feb-2009	15-Dec-2016
Coffee	1495	YD42566	25-Feb-2010	15-Dec-2016	Lion	2	YC83762	13-Feb-2009	15-Dec-2016
Coffee	1496	YD42567	25-Feb-2010	15-Dec-2016	Lion	3	YC83763	13-Feb-2009	15-Dec-2016
Coffee	1497	YD42701	25-Feb-2010	15-Dec-2016	Lion	4	YC83764	13-Feb-2009	15-Dec-2016
Coffee	1498	YD42702	25-Feb-2010	15-Dec-2016	Lion	5	YC83765	13-Feb-2009	15-Dec-2016
Coffee	1499	YD42703	25-Feb-2010	15-Dec-2016	Lion	6	YC83766	13-Feb-2009	15-Dec-2016
Coffee	1500	YD42704	25-Feb-2010	15-Dec-2016	Lion	7	YC83767	13-Feb-2009	15-Dec-2016
Coffee	1501	YD42705	25-Feb-2010	15-Dec-2016	Lion	8	YC83768	13-Feb-2009	15-Dec-2016
Coffee	1502	YD42706	25-Feb-2010	15-Dec-2016	Lion	9	YC83769	13-Feb-2009	15-Dec-2016
Coffee	1503	YD42707	25-Feb-2010	15-Dec-2016	Lion	10	YC83770	13-Feb-2009	15-Dec-2016
Coffee	1504	YD42708	25-Feb-2010	15-Dec-2016	Lion	11	YC83771	13-Feb-2009	15-Dec-2016
Coffee	1505	YD42709	25-Feb-2010	15-Dec-2016	Lion	12	YC83772	13-Feb-2009	15-Dec-2016
Coffee	1506	YD42710	25-Feb-2010	15-Dec-2016	Lion	13	YC83773	13-Feb-2009	15-Dec-2016
Coffee	1507	YD42711	25-Feb-2010	15-Dec-2016	Lion	14	YC83774	13-Feb-2009	15-Dec-2016
Coffee	1508	YD42712	25-Feb-2010	15-Dec-2016	Lion	15	YC83775	13-Feb-2009	15-Dec-2016
Coffee	1509	YD42713	25-Feb-2010	15-Dec-2016	Lion	16	YC83776	13-Feb-2009	15-Dec-2016
Coffee	1510	YD42714	25-Feb-2010	15-Dec-2016	Sugar	1	YC95568	24-Jun-2009	15-Dec-2017
Coffee	1511	YD42715	25-Feb-2010	15-Dec-2016	Sugar	2	YC95569	24-Jun-2009	15-Dec-2017
Coffee	1512	YD42716	25-Feb-2010	15-Dec-2016	Sugar	3	YC95570	24-Jun-2009	15-Dec-2017
Coffee	1513	YD42717	25-Feb-2010	15-Dec-2016	Sugar	4	YC95571	24-Jun-2009	15-Dec-2017
Coffee	1514	YD42718	25-Feb-2010	15-Dec-2016	Sugar	5	YC95572	24-Jun-2009	15-Dec-2017
Coffee	1515	YD42719	25-Feb-2010	15-Dec-2016	Sugar	6	YC95573	24-Jun-2009	15-Dec-2017
Coffee	1516	YD42720	25-Feb-2010	15-Dec-2016	Sugar	7	YC95574	24-Jun-2009	15-Dec-2017
Coffee	1517	YD42721	25-Feb-2010	15-Dec-2016	Sugar	8	YC95575	24-Jun-2009	15-Dec-2017
Coffee	1518	YD42722	25-Feb-2010	15-Dec-2016	Sugar	9	YC95576	24-Jun-2009	15-Dec-2017
Coffee	1519	YD42723	25-Feb-2010	15-Dec-2016	Sugar	10	YC95577	24-Jun-2009	15-Dec-2017
Coffee	1520	YD42724	25-Feb-2010	15-Dec-2016					

APPENDIX B

Key Vertical Cross-sections
Displaying Geological Model and Block Model

Plan Map Showing Location of Cross-sections

Latte Sections

Double Double Sections

Supremo Sections

Appendix C

Statement of Qualifications

Statement of Qualifications

I, Craig S. Finnigan, hereby certify that:

1. I am a mineral exploration geologist with offices at 1020-800 West Pender St, Vancouver BC, V6C 2 V 6.
2. I am a professional geologist licensed in Ontario.
3. I completed a Ph.D. on mineral deposits at the University of Toronto.
4. I am familiar with mineral deposit models and evaluating mineral claims.
5. I visited the Coffe Claims in 2012.

Respectfully submitted,

Craig S. Finnigan, Ph.D., P.Geo.
Chief Geologist
Kaminak Gold Corp.

[^0]: * There is insufficient information to determine if the reported core length intervals represent true widths.

[^1]: (1) 1 metre composites.
 ${ }^{(2)}$ Influence of composites above threshold limited to maximum 30 metres during grade interpolation in all zones except Latte Zone1 and Supremo Zone 9 where a 50 metre influence was applied.
 ${ }^{(3)}$ Loss in metal in resource model limited to blocks within a maximum distance of 50 metres from drilling.

