095946

Airborne Geophysical Survey Performed from October 6 to 9, 2010

On the Wounded Moose Property AM 1 to 100 YD28701 to YD28800 AM 101 to 280 YD28901 to YD29080

Dawson Mining District, Yukon NTS Sheet 115O10 63°33' N. Lat., 138°39' W. Long.

Operated by and Recorded to

By Jenny Poon, B.Sc., GIT November 2010

.

Airborne Geophysical Survey Report

Precision GeoSurveys Inc.

Wounded Moose Property

PUBB

Prepared for: Taku Gold Corp.

November, 2010 Jenny Poon, B.Sc., GIT

www.precisiongeosurveys.com • 520–355 Burrard Street • Vancouver, B.C. • Canada V6C 2G8 • T: 604.484.9402

Table of Contents

1.0	Introduction	1
2.0	Geophysical Data 2.1 Magnetic Data	
	2.2 Radiometric Data	
3.0	Survey Operations	3
4.0	Equipment 4.1 AGIS 4.2 Spectrometer 4.3 Magnetometer	4
	4.4 Base Station	6
5.0	 Data Processing. 5.1 Magnetic Processing. 5.2 Radiometric Processing. 5.3 Final Data Format. 	7 8
App	pendix A: Maps	9

1.0 Introduction:

This report outlines the survey operations and data processing actions taken during the airborne geophysical survey flown at the Wounded Moose Block. The airborne geophysical survey was flown by Precision GeoSurveys Inc. for Taku Gold Corp. The geophysical survey, carried out from October 6, 2010 to October 9, 2010, saw the acquisition of gamma ray spectrometer data and magnetic data.

Figure 1: Wounded Moose Block area location relative to Dawson, YT.

The Wounded Moose Block is located south-east of Dawson, YT and the Indian River (Figure 1). It is located approximately 64.3 km south-east of Dawson, YT (Figure 2). The survey area itself is approximately 16 km by 4 km. A total of 673.3 line kilometers of radiometric and magnetic data were flown for this survey; this total includes tie lines and survey lines. The survey lines were flown at 100 meter spacings at a $050^{\circ}/230^{\circ}$ heading; the tie lines were flown at 1 km spacings at a heading of $140^{\circ}/320^{\circ}$.

Figure 2: Survey and tie lines outlined in yellow and the boundary in red.

2.0 Geophysical Data:

Geophysical data are collected in a variety of ways and are used to aid in the exploration and determination of geology, mineral deposits, oil and gas deposits, contaminated land sites and UXO detection.

For the purposes of this survey, airborne gamma ray spectrometer and magnetic data were collected to serve in the exploration of the Wounded Moose Block which contains rocks that are prospective for gold mineralization.

2.1 <u>Magnetic Data:</u>

Magnetic surveying is probably the most common airborne survey type to be conducted for both mineral and hydrocarbon exploration. The type of survey specifications, instrumentation, and interpretation procedures, depend on the objectives of the survey. Typically magnetic surveys are performed for:

- 1. Geological Mapping to aid in mapping lithology, structure and alteration in both hard rock environments and for mapping basement lithology, structure and alteration in sedimentary basins or for regional tectonic studies.
- 2. Depth to Basement mapping for exploration in sedimentary basins or mineralization associated with the basement surface.

2.2 Radiometric Data:

Radiometric surveys detect and map natural radioactive emanations, called gamma rays, from rocks and soils. All detectable gamma radiation from earth materials come from the natural decay products of three primary elements: uranium, thorium, and potassium. The purpose of radiometric surveys is to determine either the absolute or relative amounts of U, Th, and K in surface rocks and soils.

3.0 <u>Survey Operations:</u>

Precision GeoSurveys flew the Wounded Moose Block using a Bell 206 BIII Jet Ranger (Figure 3). The survey lines were flown at a nominal line spacing of one hundred (100) meters and the tie lines were flown at 1 km spacing for both the spectrometer and magnetometer as they were acquired simultaneously. The average survey elevation was 31 meters vertically above ground. The experience of the pilots helped to ensure that the data quality objectives were met and that the safety of the flight crew was never compromised given the potential risks involved in airborne surveying.

Figure 3: Bell 206 Jet Ranger equipped with mag stinger for magnetic data acquisition.

The base of operations for this survey was the Gimlex camp located approximately 36 km south-east of Dawson, YT. The Precision crew consisted of a total of four members:

Harmen Keyser and Ola Vaage – Pilots Peter Barker – Operator Jenny Poon – Operator/ On-site Geophysicist

The survey was started on October 6, 2010 to October 9, 2010 with variable snow covered conditions. The survey was complete with some delays due to fog and low cloud ceilings.

4.0 Equipment:

For this survey a magnetometer, spectrometer, base station, laser altimeter, and a data acquisition system were required to carry out the survey and collect quality, high resolution data.

4.1 <u>AGIS:</u>

The Airborne Geophysical Information System, AGIS, (Figure 4), is the main computer used in data recording, data synchronizing, displaying real-time QC data for the geophysical operator, and generation of navigation information for the pilot display system.

Figure 4: AGIS installed in the Bell 206.

The AGIS was manufactured by Pico Envirotec; therefore the system uses standardized Pico software and external sources are connected to the system via RS-232 serial communication cables. The AGIS data format is easily converted into Geosoft or ASCII file formats by a supplied conversion program called PEIView. Additional Pico software allows for post survey quality control procedures.

4.2 <u>Spectrometer:</u>

The IRIS, or Integrated Radiometric Information System is a fully integrated, gamma radiation detection system containing two downward facing NaI detecting crystals for a total volume of 8.4 litres (Figure 5). Real time data acquisition, navigation and communication tasks are integrated into a single unit that is installed in the rear of the aircraft as indicated below. Information such as total count, counts of various elements (K, U, Th, etc.), temperature, barometric pressure, atmospheric humidity and survey altitude can all be monitored on the AGIS screen for immediate QC. All the radiometric data are recorded at 1 Hz.

Figure 5: IRIS strapped into the cargo box of the helicopter.

4.3 Magnetometer:

The magnetometer used by Precision GeoSurveys is a Scintrex cesium vapor CS-3 magnetometer. The system was housed in a front mounted "stinger" (Figure 6). The CS-3 is a high sensitivity/low noise magnetometer with automatic hemisphere switching and a wide voltage range, the static noise rating for the unit is +/- 0.01 nT. On the AGIS screen the operator can view the raw magnetic response, the magnetic fourth difference and the survey altitude for immediate QC of the magnetic data. The magnetic data are recorded at 10 Hz. A magnetic compensator is also used to remove noise created by the movement of the helicopter as it pitches, rolls and yaws within the Earth's geomagnetic field.

Figure 6: View of the mag stinger.

4.4 Base Station:

For monitoring and recording of the Earth's diurnal magnetic field variation, Precision GeoSurveys uses a Scintrex proton precession Envi Pro magnetometer as its base station (Figure 7). This is mounted as close to the survey block as possible to give high, accurate magnetic field data. The Envi Pro base station, uses the well proven precession technology to sample at a rate of 0.5 Hz. A GPS is integrated with the system to record real GPS time that is used to correlate with the GPS time collected by the airborne CS-3 magnetometer.

Figure 7: Scintrex Envi Pro proton precession magnetometer.

4.5 Laser Altimeter:

The pilot is provided with terrain guidance and clearance with an Acuity AccuRange Ar3000 laser altimeter (Figure 8). This is attached at the aft end of the magnetometer

boom. The AR3000 sensor is a time-of-flight sensor that measures distance by a rapidlymodulated and collimated laser beam that creates a dot on the target surface. The maximum range of the laser altimeter is 300 m off of natural surfaces with 90% reflectance and 3 km off special reflectors. Within the sensor unit, reflected signal light is collected by the lens and focused onto a photodiode. Through serial communications and analog outputs, the distance data are transmitted and collected by the AGIS at 10 Hz.

Figure 8: Acuity AccuRange AR3000 laser altimeter.

5.0 Data Processing:

After all the data are collected after a survey flight several procedures are undertaken to ensure that the data meet a high standard of quality. All data were processed using Pico Envirotec software and Geosoft Oasis Montaj geophysical processing software.

5.1 Magnetic Processing:

During aeromagnetic surveying noise is introduced to the magnetic data by the aircraft itself, movement in the aircraft (roll, pitch and yaw) and the permanent magnetization of the aircraft parts (engine and other ferric objects) are large contributing factors to this noise. To remove this noise a process called magnetic compensation is implemented. The magnetic compensation process starts with a test flight at the beginning of the survey where the aircraft flies in the four orthogonal headings required for the survey ($041^{\circ}/220^{\circ}$ and $124^{\circ}/309^{\circ}$ in the case of this survey) at an elevation where there is no ground effect in the magnetic data. In each heading roll, pitch and yaw maneuvers are performed by the pilot, these maneuvers provide the data that is required to calculate the necessary parameters for compensating the magnetic data. A computer program called PEIComp is used to create a model for each survey to remove the noise induced by aircraft movement; this model is applied to each survey flight so the data can be further processed.

A magnetic base station is set up before every flight to ensure that diurnal activity is recorded during the survey flights. Precision GeoSurveys uses a Geometrics 858 base station and sampled at 0.1Hz. Base station readings were reviewed at regular intervals to

insure that no data were collected during periods with high diurnal activity (greater than 5 nT per minute). The base station was installed at a magnetically noise-free area, away from metallic items such as steel objects, vehicles, or power lines. The magnetic variations recorded from the stationary base station are removed from the magnetic data recorded in flight to ensure that the anomalies seen are real and not due to solar activity.

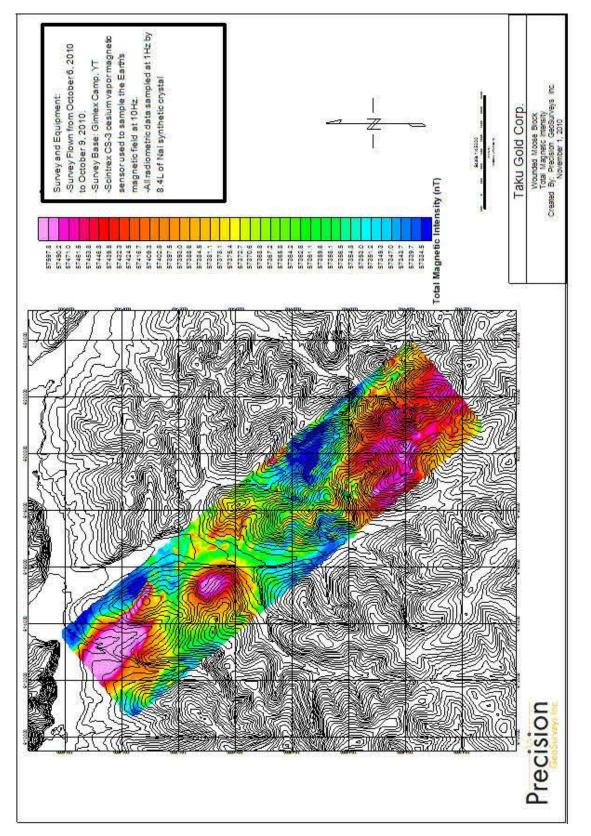
A lag correction was applied to the total magnetic field data to compensate for the lag in the recording system as the magnetometer sensor flies 6.45 m ahead of the GPS antenna. Following a lag correction of 1.7 seconds, a low-pass filter equivalent to 1 second was then applied to the lag corrected data.

5.2 Radiometric Processing:

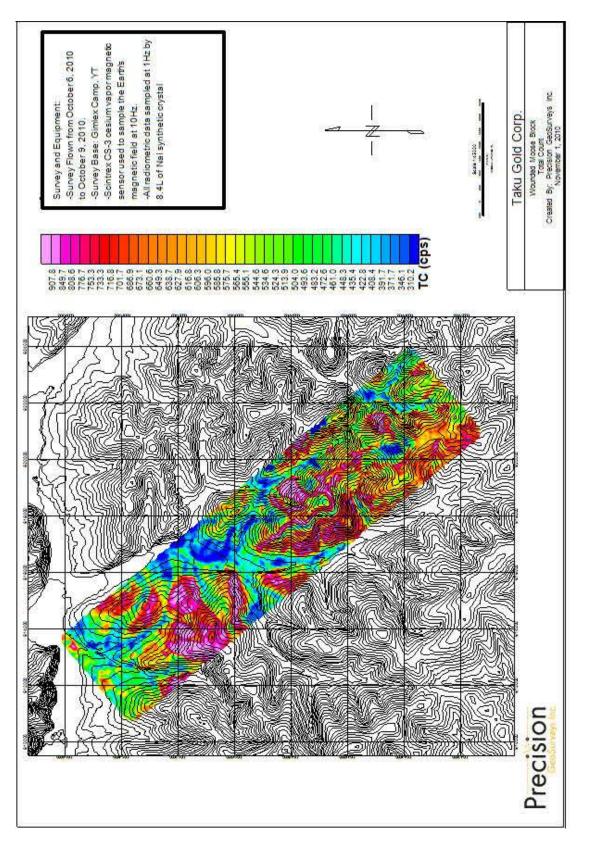
Radiometric data are processed by windowing the full spectrum to create channels for U, K, Th and total count. A lag correction was also applied to the radiometric data as Pico compensator introduces a lag of 1.4 secs into the positional coordinates for the radiometric data. The data are then lightly filtered and corrected for survey altitude at standard temperature and pressure. Background radioactive contributions from the aircraft, cosmic radiation and atmospheric radon must also be removed. Finally the data are corrected by removing spectral overlap; this is done using the stripping ratios that have been calculated for the spectrometer by prior calibration, this breaks the corrected elemental values down into the apparent radioelement concentrations.

5.3 Final Data Format

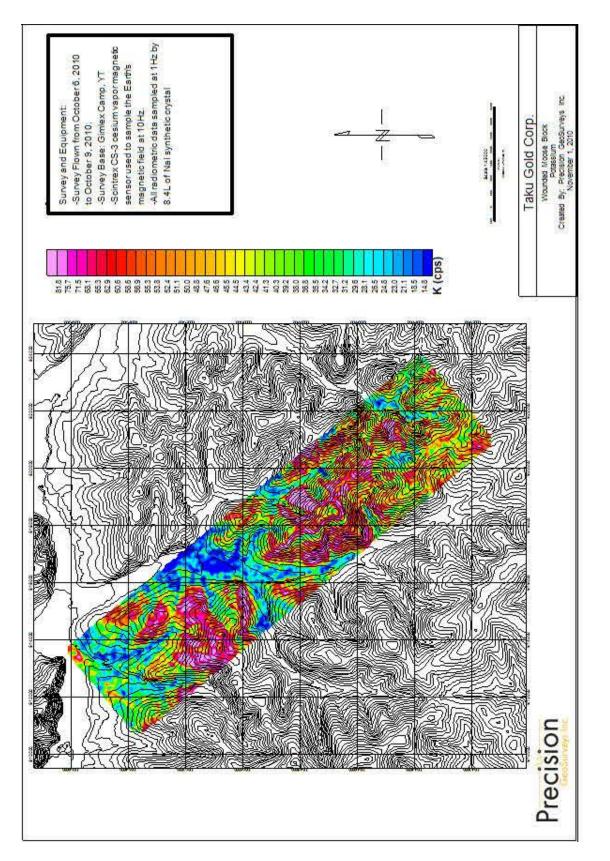
Abbreviations used in the GDB files are as follows:

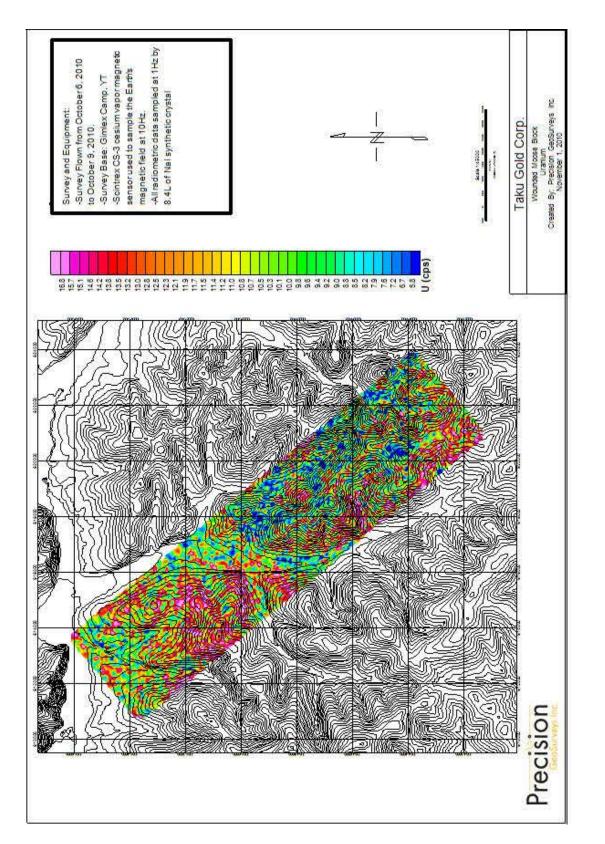

X – Easting in WGS84, UTM zone 7N Y – Northing in WGS84, UTM zone 7N GPStime – GPStime basemag – diurnal data mag – total magnetic field galt – gps altimeter readings lalt – laser altimeter readings dtm – digital terrain model TC_cor – corrected total count K_cor – corrected potassium U_cor – corrected uranium Th_cor – corrected thorium

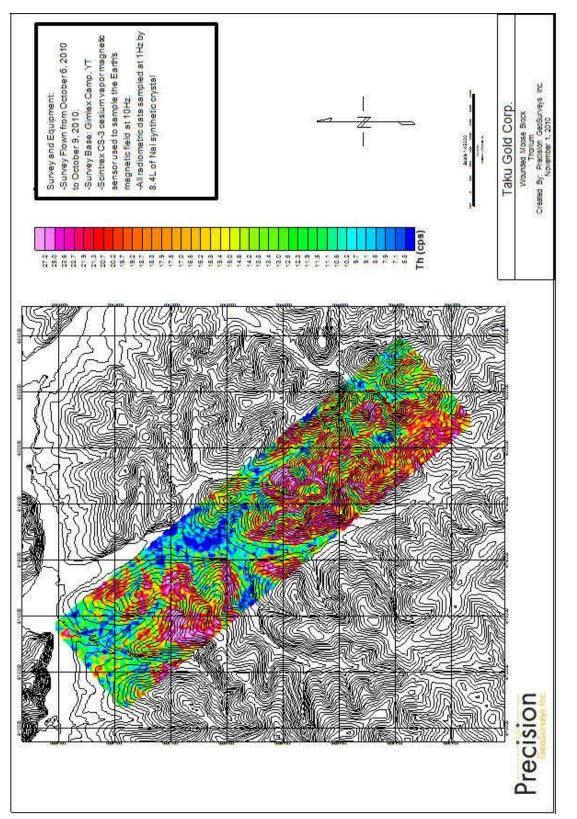
The file format will be provided in two (2) formats, the first will be a .GDB file for use in Geosoft Oasis Montaj, the second format will be a .XYZ file, this is text file. Two separate files are provided for each format, one for the magnetics and one for the radiometrics.

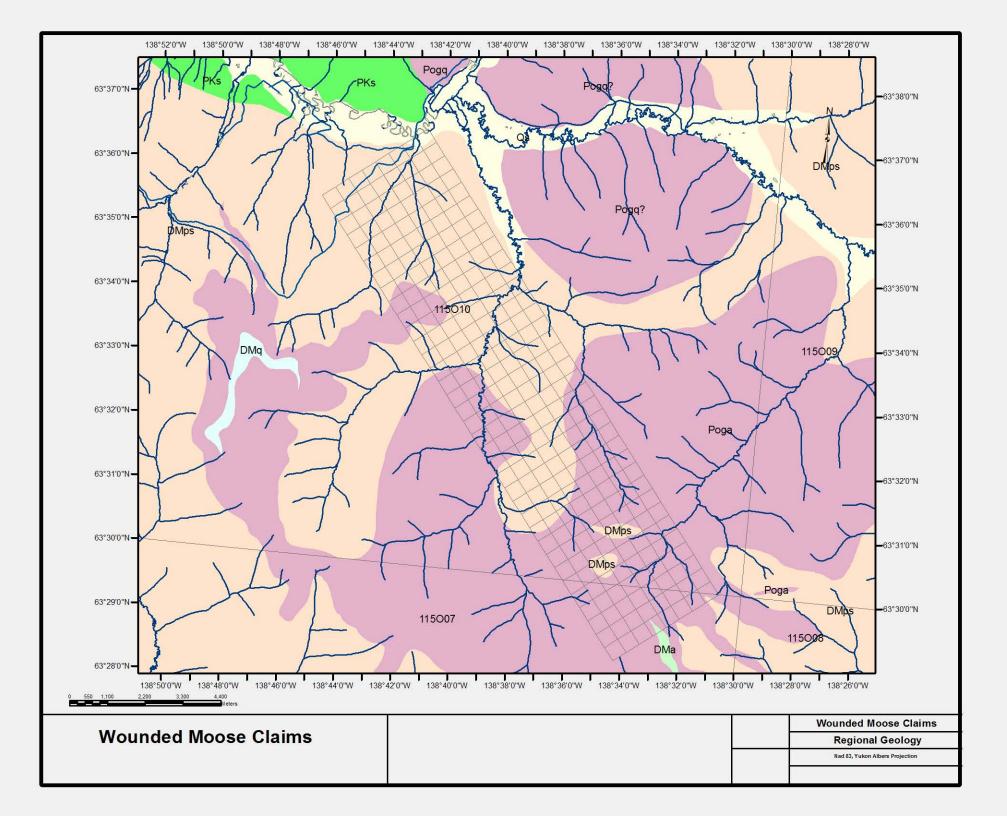


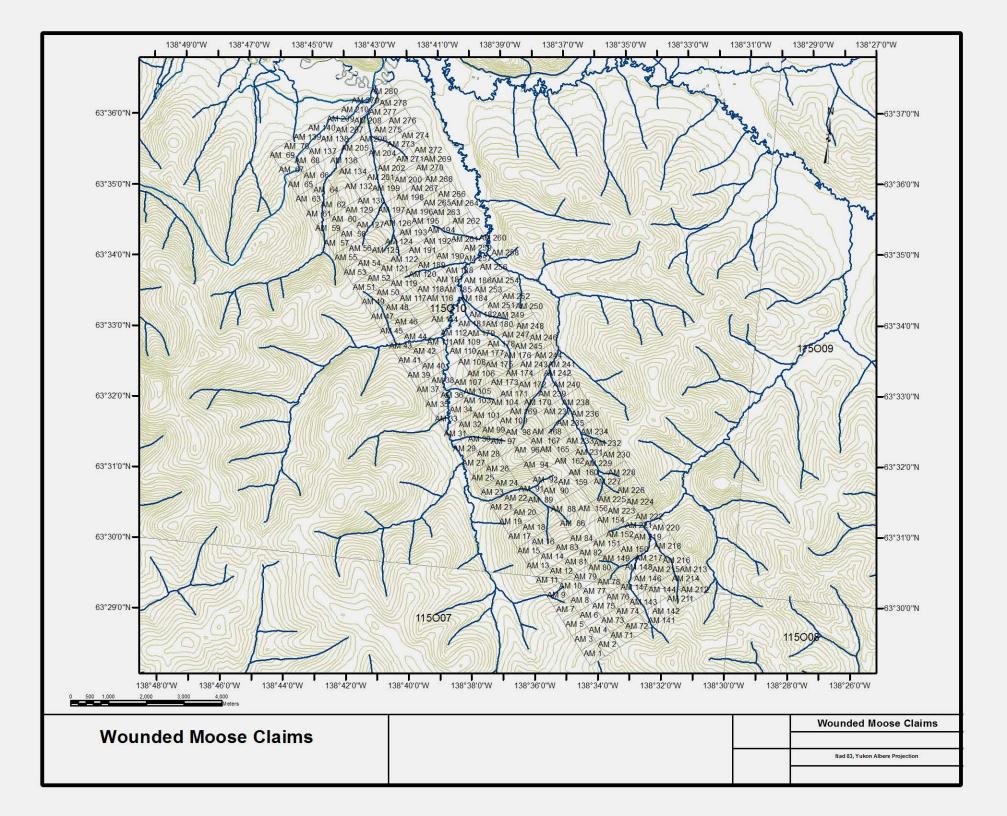
Appendix A Maps











UNIT	AGE	DESCRIPTION							
Qs	Quaternary	Fluvial silt, sand and gravel							
		ORTHOGNEISS (YOUNGER, 264-259 Ma): Pog, undivided orthogneiss; Pogg, pink to orange K-							
		feldspar rich, granitic orthogneiss, commonly includes or associated with Poga; Poga, mainly K-							
Pogq	Permian	feldspar augen orthogneiss, exhibits various states of strain							
		ORTHOGNEISS (YOUNGER, 264-259 Ma): Pog, undivided orthogneiss; Pogg, pink to orange K-							
		feldspar rich, granitic orthogneiss, commonly includes or associated with Poga; Poga, mainly K-							
Poga	Permian	feldspar augen orthogneiss, exhibits various states of strain							
		KLONDIKE SCHIST: muscovite-chlorite-quartz-feldspar schist, chlorite schist, chlorite phyllonite;							
PKs	Permian	local cleaved lapilli tuff with preserved primary texture, probably derived from Pv							
		QUARTZ-MICA SCHIST: undivided metasedimentary rocks dominated by metapsammite,							
		semipelite and metapelite; commonly quartz-garnet-biotite-muscovite schist possibly derived							
DMps	Devonian to Mississippian?	from siliceous siltstone; commonly finely interlayered with garnet metapelite;							
		AMPHIBOLITE: amphibolite schist and gneiss; metabasite; probably derived from mafic to							
		intermediate volcanic or volcaniclastic rocks; locally associated with psammite or interlayered							
DMa	Devonian to Mississippian?	with orthogneiss							
		QUARTZITE: banded to massive, grey to white quartzite; apparantly clastic in origin, or in part,							
DMq	Devonian to Mississippian?	possibly derived from metachert							

Regional Geology Legend (from S.P. Gordey and J.J. Ryan, GSC Open File 4970)

Grant #	Claim		Grant #	Claim		Grant #	Claim		Grant #	Claim	Grant #	Claim
YD28701	AM 1		YD28747	AM 47		YD28907	AM 107		YD28953	AM 153	YD28999	AM 199
YD28702	AM 2		YD28748	AM 48		YD28908	AM 108		YD28954	AM 154	YD29000	AM 200
YD28703	AM 3		YD28749	AM 49		YD28909	AM 109		YD28955	AM 155	YD29001	AM 201
YD28704	AM 4		YD28750	AM 50		YD28910	AM 110		YD28956	AM 156	YD29002	AM 202
YD28705	AM 5		YD28751	AM 51		YD28911	AM 111		YD28957	AM 157	YD29003	AM 203
YD28706	AM 6		YD28752	AM 52		YD28912	AM 112		YD28958	AM 158	YD29004	AM 204
YD28707	AM 7		YD28753	AM 53		YD28913	AM 113		YD28959	AM 159	YD29005	AM 205
YD28708	AM 8		YD28754	AM 54		YD28914	AM 114		YD28960	AM 160	YD29006	AM 206
YD28709	AM 9		YD28755	AM 55		YD28915	AM 115		YD28961	AM 161	YD29007	AM 207
YD28710	AM 10		YD28756	AM 56		YD28916	AM 116		YD28962	AM 162	YD29008	AM 208
YD28711	AM 11		YD28757	AM 57		YD28917	AM 117		YD28963	AM 163	YD29009	AM 209
YD28712	AM 12		YD28758	AM 58		YD28918	AM 118		YD28964	AM 164	YD29010	AM 210
YD28713	AM 13		YD28759	AM 59		YD28919	AM 119		YD28965	AM 165	YD29011	AM 211
YD28714	AM 14		YD28760	AM 60		YD28920	AM 120		YD28966	AM 166	YD29012	AM 212
YD28715	AM 15		YD28761	AM 61	-	YD28921	AM 121		YD28967	AM 167	YD29013	AM 213
YD28716	AM 16		YD28762	AM 62		YD28922	AM 122		YD28968	AM 168	YD29014	AM 214
YD28717	AM 17		YD28763	AM 63		YD28923	AM 123		YD28969	AM 169	YD29015	AM 215
YD28718	AM 18		YD28764	AM 64		YD28924	AM 124		YD28970	AM 170	YD29016	AM 216
YD28719	AM 19		YD28765	AM 65		YD28925	AM 125		YD28971	AM 171	YD29017	AM 217
YD28720	AM 20		YD28766	AM 66	_	YD28926	AM 126		YD28972	AM 172	YD29018	AM 218
YD28721	AM 21		YD28767	AM 67		YD28927	AM 127		YD28973	AM 173	YD29019	AM 219
YD28722	AM 22		YD28768	AM 68		YD28928	AM 128		YD28974	AM 174	YD29020	AM 220
YD28723	AM 23		YD28769	AM 69		YD28929	AM 129		YD28975	AM 175	YD29021	AM 221
YD28724	AM 24		YD28770	AM 70		YD28930	AM 130		YD28976	AM 176	YD29022	AM 222
YD28725	AM 25		YD28785	AM 85		YD28931	AM 131		YD28977	AM 177	YD29023	AM 223
YD28726	AM 26		YD28786	AM 86		YD28932	AM 132		YD28978	AM 178	YD29024	AM 224
YD28727	AM 27		YD28787	AM 87		YD28933	AM 133		YD28979	AM 179	YD29025	AM 225
YD28728	AM 28		YD28788	AM 88		YD28934	AM 134		YD28980	AM 180	YD29026	AM 226
YD28729	AM 29		YD28789	AM 89	_	YD28935	AM 135		YD28981	AM 181	YD29027	AM 227
YD28730	AM 30		YD28790	AM 90	_	YD28936	AM 136		YD28982	AM 182	YD29028	AM 228
YD28731	AM 31		YD28791	AM 91		YD28937	AM 137		YD28983	AM 183	YD29029	AM 229
YD28732	AM 32		YD28792	AM 92		YD28938	AM 138		YD28984	AM 184	YD29030	AM 230
YD28733	AM 33		YD28793	AM 93		YD28939	AM 139		YD28985	AM 185	YD29031	AM 231
YD28734	AM 34		YD28794	AM 94		YD28940	AM 140		YD28986	AM 186	YD29032	AM 232
YD28735	AM 35		YD28795	AM 95		YD28941	AM 141		YD28987	AM 187	YD29033	AM 233
YD28736	AM 36		YD28796	AM 96	-	YD28942	AM 142		YD28988	AM 188	YD29034	AM 234
YD28737	AM 37		YD28797	AM 97	-	YD28943	AM 143		YD28989	AM 189	YD29035	AM 235
YD28738	AM 38		YD28798	AM 98	-	YD28944	AM 144		YD28990	AM 190	YD29036	AM 236
YD28739	AM 39		YD28799	AM 99	-	YD28945	AM 145		YD28991	AM 191	YD29037	AM 237
YD28740	AM 40		YD28800	AM 100	_	YD28946	AM 146	-	YD28992	AM 192	YD29038	AM 238
YD28741	AM 41	_	YD28901	AM 101	-	YD28947	AM 147	⊢	YD28993	AM 193	 YD29039	AM 239
YD28742	AM 42	_	YD28902	AM 102		YD28948	AM 148	⊢	YD28994	AM 194	 YD29040	AM 240
YD28743 YD28744	AM 43		YD28903 YD28904	AM 103		YD28949	AM 149	-	YD28995	AM 195	 YD29041 YD29042	AM 241
	AM 44	_		AM 104	_	YD28950	AM 150	-	YD28996	AM 196		AM 242
YD28745 YD28746	AM 45 AM 46	_	YD28905 YD28906	AM 105 AM 106	_	YD28951 YD28952	AM 151 AM 152	-	YD28997 YD28998	AM 197 AM 198	 YD29043 YD29044	AM 243 AM 244
1020/40			1020300			1020322	AIVI 152		1020990	MINI 190	1029044	

Grant #	Claim	Π
YD29045	AM 245	
YD29046	AM 246	
YD29047	AM 247	
YD29048	AM 248	
YD29049	AM 249	
YD29050	AM 250	
YD29051	AM 251	
YD29052	AM 252	
YD29053	AM 253	
YD29054	AM 254	
YD29055	AM 255	
YD29056	AM 256	
YD29057	AM 257	
YD29058	AM 258	
YD29059	AM 259	
YD29060	AM 260	
YD29061	AM 261	
YD29062	AM 262	
YD29063	AM 263	
YD29064	AM 264	
YD29065	AM 265	
YD29066	AM 266	
YD29067	AM 267	
YD29068	AM 268	
YD29069	AM 269	
YD29070	AM 270	
YD29071	AM 271	
YD29072	AM 272	
YD29073	AM 273	
	AM 274	
YD29075	AM 275	
YD29076	AM 276	
YD29077	AM 277	
YD29078	AM 278	
YD29079	AM 279	
YD29080	AM 280	l