2011 Assessment Report Geological and Geochemical Surveying on the Riddell Property

Riddell 1-80 Claims: YD153511-YD153590 NAD 83 UTM coordinates: 352800E, 6958900N NTS sheet 105J12 Whitehorse Mining District East-Central Yukon

Held by Overland Resources Yukon Ltd.

Work performed from June 5 – September 23, 2011

Sheena Ewanchuk, P. Geo Project Geologist Overland Resources Yukon Ltd. #1158-409 Granville St Vancouver, B.C. V6C1T2 Tel: 604-632-9915

July 24, 2012

Table of Contents

1. Introduction
2. Location and Claims
3. Access
4. Climate5
5. Local Resources
6. Infrastructure
7. Physiography6
8. History
9. Regional Geology
10. Property Geology
11. Soil Sampling
12. Rock Sampling
13. Conclusions/Recommendations11
14. References
Fig 1: Riddell Claim Names and Grant Numbers5
Fig 2: Riddell Property Geology
Fig 3: 2011 Riddell Soil Sample Locations9
Fig 4: 2011 Riddell Rock Sample Locations11
Table 1: Riddell Claim Name and Grant Number table
Appendix A: Statement of Qualifications
Appendix B: Soil Geochemical Assays
Appendix C: Rock Chip Geochemical Assays
Appendix D: Financial Statement

1. Introduction

During the 2011 field season, Overland Resources Yukon Ltd. conducted an exploration program involving geological mapping at 1:10,000 scale, systematic geochemical soil sampling over a targeted area within the claim boundaries and sporadic geochemical rock chip sampling. The aim of this program was to identify and delineate zones with the potential to host economic mineralization. A total of 52 man days were spent conducting the work program on the claims.

2. Location and Claims

The Riddell claims consist of 80 quartz claims, Riddell 1-80, totalling approximately 1672 hectares (Table 1 and Fig 1). These claims are 100% owned by Overland Resources Yukon Limited. The claims are located within the bounds of NTS map sheet 105J12 centered at approximately 352800E, 6958900N in UTM NAD 83 Zone 9.

GRANT NUMBER	CLAIM NAME	MAP SHEET	Claim Owner/Operator					
YD153511	RIDDELL 1	105J12	Overland Resources Ltd.					
YD153512	RIDDELL 2	105J12	Overland Resources Ltd.					
YD153513	RIDDELL 3	105J12	Overland Resources Ltd.					
YD153514	RIDDELL 4	105J12	Overland Resources Ltd.					
YD153515	RIDDELL 5	105J12	Overland Resources Ltd.					
YD153516	RIDDELL 6	105J12	Overland Resources Ltd.					
YD153517	RIDDELL 7	105J12	Overland Resources Ltd.					
YD153518	RIDDELL 8	105J12	Overland Resources Ltd.					
YD153519	RIDDELL 9	105J12	Overland Resources Ltd.					
YD153520	RIDDELL 10	105J12	Overland Resources Ltd.					
YD153521	RIDDELL 11	105J12	Overland Resources Ltd.					
YD153522	RIDDELL 12	105J12	Overland Resources Ltd.					
YD153523	RIDDELL 13	105J12	Overland Resources Ltd.					
YD153524	RIDDELL 14	105J12	Overland Resources Ltd.					
YD153525	RIDDELL 15	105J12	Overland Resources Ltd.					
YD153526	RIDDELL 16	105J12	Overland Resources Ltd.					
YD153527	RIDDELL 17	105J12	Overland Resources Ltd.					
YD153528	RIDDELL 18	105J12	Overland Resources Ltd.					
YD153529	RIDDELL 19	105J12	Overland Resources Ltd.					
YD153530	RIDDELL 20	105J12	Overland Resources Ltd.					
YD153531	RIDDELL 21	105J12	Overland Resources Ltd.					
YD153532	RIDDELL 22	105J12	Overland Resources Ltd.					
YD153533	RIDDELL 23	105J12	Overland Resources Ltd.					
YD153534	RIDDELL 24	105J12	Overland Resources Ltd.					
YD153535	RIDDELL 25	105J12	Overland Resources Ltd.					
YD153536	RIDDELL 26	105J12	Overland Resources Ltd.					
YD153537	RIDDELL 27	105J12	Overland Resources Ltd.					
YD153538	RIDDELL 28	105J12	Overland Resources Ltd.					
YD153539	RIDDELL 29	105J12	Overland Resources Ltd.					
YD153540	RIDDELL 30	105J12	Overland Resources Ltd.					
YD153541	RIDDELL 31	105J12	Overland Resources Ltd.					
YD153542	RIDDELL 32	105J12	Overland Resources Ltd.					
YD153543	RIDDELL 33	105J12	Overland Resources Ltd.					
YD153544	RIDDELL 34	105J12	Overland Resources Ltd.					
YD153545	RIDDELL 35	105J12	Overland Resources Ltd.					
YD153546	RIDDELL 36	105J12	Overland Resources Ltd.					
YD153547	RIDDELL 37	105J12	Overland Resources Ltd.					
YD153548	RIDDELL 38	105J12	Overland Resources Ltd.					
YD153549	RIDDELL 39	105J12	Overland Resources Ltd.					

Table 1: Riddell Claim Name and Grant Number table

GRANT NUMBER	CLAIM NAME	MAP SHEET	Claim Owner/Operator					
YD153550	RIDDELL 40	105J12	Overland Resources Ltd.					
YD153551	RIDDELL 41	105J12	Overland Resources Ltd.					
YD153552	RIDDELL 42	105J12	Overland Resources Ltd.					
YD153553	RIDDELL 43	105J12	Overland Resources Ltd.					
YD153554	RIDDELL 44	105J12	Overland Resources Ltd.					
YD153555	RIDDELL 45	105J12	Overland Resources Ltd.					
YD153556	RIDDELL 46	105J12	Overland Resources Ltd.					
YD153557	RIDDELL 47	105J12	Overland Resources Ltd.					
YD153558	RIDDELL 48	105J12	Overland Resources Ltd.					
YD153559	RIDDELL 49	105J12	Overland Resources Ltd.					
YD153560	RIDDELL 50	105J12	Overland Resources Ltd.					
YD153561	RIDDELL 51	105J12	Overland Resources Ltd.					
YD153562	RIDDELL 52	105J12	Overland Resources Ltd.					
YD153563	RIDDELL 53	105J12	Overland Resources Ltd.					
YD153564	RIDDELL 54	105J12	Overland Resources Ltd.					
YD153565	RIDDELL 55	105J12	Overland Resources Ltd.					
YD153566	RIDDELL 56	105J12	Overland Resources Ltd.					
YD153567	RIDDELL 57	105J12	Overland Resources Ltd.					
YD153568	RIDDELL 58	105J12	Overland Resources Ltd.					
YD153569	RIDDELL 59	105J12	Overland Resources Ltd.					
YD153570	RIDDELL 60	105J12	Overland Resources Ltd.					
YD153571	RIDDELL 61	105J12	Overland Resources Ltd.					
YD153572	RIDDELL 62	105J12	Overland Resources Ltd.					
YD153573	RIDDELL 63	105J12	Overland Resources Ltd.					
YD153574	RIDDELL 64	105J12	Overland Resources Ltd.					
YD153575	RIDDELL 65	105J12	Overland Resources Ltd.					
YD153576	RIDDELL 66	105J12	Overland Resources Ltd.					
YD153577	RIDDELL 67	105J12	Overland Resources Ltd.					
YD153578	RIDDELL 68	105J12	Overland Resources Ltd.					
YD153579	RIDDELL 69	105J12	Overland Resources Ltd.					
YD153580	RIDDELL 70	105J12	Overland Resources Ltd.					
YD153581	RIDDELL 71	105J12	Overland Resources Ltd.					
YD153582	RIDDELL 72	105J12	Overland Resources Ltd.					
YD153583	RIDDELL 73	105J12	Overland Resources Ltd.					
YD153584	RIDDELL 74	105J12	Overland Resources Ltd.					
YD153585	RIDDELL 75	105J12	Overland Resources Ltd.					
YD153586	RIDDELL 76	105J12	Overland Resources Ltd.					
YD153587	RIDDELL 77	105J12	Overland Resources Ltd.					
YD153588	RIDDELL 78	105J12	Overland Resources Ltd.					
YD153589	RIDDELL 79	105J12	Overland Resources Ltd.					
YD153590	RIDDELL 80	105J12	Overland Resources Ltd.					

Fig 1: Riddell Claim Names and Grant Numbers

3. Access

The Riddell claims are accessible only by helicopter.

4. Climate

Temperatures at the Riddell claims typically range from 8°C to 26°C in the summer and from -30°C to +6°C in the winter. Annual precipitation ranges from 120mm to 200mm, including 0.8m to 1.5m of snow accumulation in the winter months.

5. Local Resources

No local communities or towns are within 50km of the Riddell claims and as such all resources and personnel must be transported to the project area. Personnel for construction, mining, exploration, labour and support are available in the communities of Faro, Ross River and Watson Lake as well as the Territorial capital of Whitehorse. The townships of Faro and Ross River are approximately 100km southwest and 125km south-southwest of the property, respectively.

6. Infrastructure

Infrastructure near the Riddell claims includes the Canol Road and Robert Campbell Highway. The Canol Road extends for 458km from the Yukon-Northwest Territories border to Johnson's Crossing on the Alaska Highway south of Whitehorse. Northeast of the Pelly River at Dragon Lake, the Canol road comes

to within 30km of the Riddell claims. A winter access trail from the North Canol Road extends to within 5km of the property.

Faro is serviced by electrical transmission lines sourced from the Aishihik hydroelectric facility to the west.

7. Physiography

The Riddell claims are located within the South Fork Range of the Yukon Plateau, east of the Tintina Trench and west of the MacKenzie Mountains. Elevations on the property range from 800m in the swampy areas to 1,600m at the top of the mountain in the center of the property, Klingit Peak. Several northwest-southeast flowing creek valleys cut moderate slopes and create large, swampy areas throughout the Riddell claims.

The vegetation in the area is alpine to sub-alpine with lower elevations being dominated by black and white spruce stands, typical of the Northern Boreal Forest.

8. History

Atlas EL discovered the first showings in the area in 1968 for the Hess Project (a joint venture with Quebec Cartier Mg CL and Phillips Bros. Can L) and the claims were staked in June, 1969. These same claims were staked as the Wing claims in July 1970, and optioned in September of the same year to Phelps Dodge. Phelps Dodge staked the PDR claims to the northeast in October 1970 and carried out mapping and grid geochemical sampling on both properties in 1971. In the 1971 report, Phelps Dodge mentioned drilling 5 holes, totalling 613.9 m from 1971-72, although a report detailing these results cannot be found.

The claims were restaked as the TUT claims in August, 1977 by R.G. Hilker, who completed hand trenching in 1978. The property was transferred to June Res Inc. who performed more trenching in 1979 and line cutting in 1980.

M. Barker staked the Riddell claims 1-4 3 km to the south in August of 1997. No known work has been completed from 1997 to 2011.

9. Regional Geology

The following summary of the geological setting at the Riddell property is quoted from Gordey and Makepeace's 1:250 000 compilation map (2001):

The property is located within the Selwyn Basin of the Northern Cordillera; a continental margin rift-fill and cover sedimentary sequence off the coast of ancestral North America. Stratigraphic units of Yukon Geologic Survey regional mapping have the property lying within the Yusezyu and Narchilla Formations of the NeoProterozoic to Lower Cambrian Hyland Group. These comprise an upper thrust sheet overlying Paleozoic sequences of the Road River and Earn group sediments. Regionally the area has been intruded by Cretaceous felsic plutonism.

Their map indicates the majority of the bedrock at the Riddell property consists of Upper Proterozoic to Lower Cambrian Yusezyu Formation sandstone/phyllite/shale/grit/conglomerate/ limestone. It also indicates that the southwestern area of the property is covered by Upper Proterozoic Yusezyu limestone and Ordovician to Silurian shales/cherts/siltstone/limestones/conglomerates of the Road River Group. There is a large scale syncline within the Road River and Yusezyu formations to the northeast of the Riddell, trending northwest-southeast, and parallel with the regional trend in this area.

10. Property Geology

Outcrop exposure

Mudstones light grey to red brown in colour and aphanitic are constrained mainly to the western and southwestern portion of the property. These mudstones have the appearance of chert but do not employ the high level of hardness of a chert. Quartz veins 1-2cm wide, with blebs of arsenopyrite are a rare occurrence within this rock type, as is trace disseminated pyrite within several mudstone outcrops. Weak to moderate laminations give a general strike to the northwest and dip moderately to the northeast.

Interfingering with mudstone along the western side of the property is dark brown, red-brown to medium grey, fine grained, weakly fissile argillite. Bedding for this unit strikes approximately southeast and dips moderately-steeply to the southwest.

Quartzite light grey in colour, medium to coarse grained and massive with a sugary texture, is prevalent over the entire Riddell property with the exception of the far west/southwest. At times the quartzite is oxidized to a reddish-brown colour on the surface, possibly ankerite. In isolated areas, a dark brown to red-brown colour is pervasive through the outcrop, likely a hydrothermal alteration. This alteration occurs with semi-massive sulphides, including up to 30% pyrrhotite, up to 20% pyrite and up to 1% arsenopyrite. Bedding is infrequent and when found, tentatively striking N-NW to S-SE, with moderate dips.

Sandstone outcrops are scattered throughout the deposit, in close relation to quartzite. This unit is light grey, fine grained, well sorted and massive, with little to no apparent bedding. Rare mm to cm quartz veins are found randomly oriented throughout the sandstone outcrops.

Chert outcrops are concentrated to the southwest of the property and in the north-central section of the property, surrounded by quartzite. This chert can be described as light grey to light purple, cryptocrystalline and silica-rich. In the north-central area, it is found amongst quartzite, has a calcareous nature and is heavily oxidized with semi-massive sulphides, up to 30% pyrrhotite, 20% pyrite and 1% arsenopyrite.

A tonalite intrusion on the east of the Riddell property covers an area 200x600m and occurs in outcrops up to 100x100m wide. This unit consists of 60-65% quartz, 10% euhedral to subhedral plagioclase feldspar, 10% euhedral, 2-3mm, black hornblende and 10%, 1-4mm, slender, black biotite crystals and 1-5% subhedral to euhedral alkali feldspar. These intrusions were found with weak bedding striking ESE and dipping very shallowly to the SW.

Structure within the property consists of southeast trending, meter to km scale, near vertical folds. These are parallel with the northwest-southeast trending regional structure, related to early Cretaceous northeast directed contraction.

Mineralisation occurs within highly oxidized quartzite and chert outcrops, constrained to the northcentral portion of the map area. Little alteration is associated, limited to what appears to be siderite and/or ankerite and at times mm quartz veining. Bronze to dark brown pyrrhotite and brass-yellow pyrite can be found as veins, lenses, semi-massive banding and as disseminations within the quartzite

and chert. These lenses range from 1-10cm in thickness and are found in proportions of up to 30% for

Fig 2: Riddell Property Geology

pyrrhotite and 10% for pyrite within hand samples and averaging 1-5% within outcrops in the northcentral area of the map. Within this same area, trace arsenopyrite is associated with pyrrhotite and pyrite mineralisation as disseminations and veinlets. Trace, disseminated, fine grained pyrite is found in very few of the mudstone outcrops on the western side of the property. Alteration within the pyrrhotite-pyrite-arsenopyrite outcrops is limited to siderite within the cherts and quartzites.

11. Soil Sampling

Exploration work on the Riddell property in 2011 included the collection of 157 soil samples. These samples were spaced 100m apart, along 7 lines running northeast-southwest, with a line spacing of 100-200m. The sample lines were focused on the area surrounding historic drill holes and quartzite outcrops with semi-massive pyrrhotite and pyrite mineralisation. The lines ran perpendicular to the strike of bedding in the area and parallel to the azimuth of historic drill holes in the area.

Hand-held augers were used to ensure penetration below the vegetative mat and the White River ash layer to the *B horizon* where samples were consistently collected from. One sample was collected from each sample point. The sample was placed in a kraft sample bag, labeled with a unique sample number on the bag, sealed and transported back to camp. Sample locations were determined using a hand-held

GPS. Pink or orange flagging tape was left at the sample site with the unique sample number recorded on the flagging tape.

Soil samples were sent to the ALS Chemex Whitehorse laboratory where they entered the ALS Chemex tracking system. Samples were dried, sieved to minus 180 micron and forwarded to the ALS Chemex Vancouver laboratory for analysis.

Analysis consisted of dissolving a portion of the sample in Aqua Regia and analysing the liquor using the ALS Inductively Coupled Plasma-Atomic Emission Spectroscopy Multi-element geochemistry package for 51 elements. If Zn or Pb was found to be higher than 7500ppm, then ALS Pb-Vol 70 or ALS Zn-Vol50 analysis was performed using acid dissolution and titration to determine a percentage.

See Appendix B for geochemical soil results and Fig 3 for a location of the sample sites. Locally anomalous soils results are evident in two sample points taken along the southwest trending sample line adjacent to the historic drill holes and mineralized outcrops. These sample points cover a distance of approximately 220m and contain locally elevated levels of Ag, As, Au, Cu and Zn. The results of these samples returned values of 0.0322ppm Au, 0.522ppm Ag, 4280ppm, 508ppm Cu and 271ppm Zn for sample G0676462 and 0.0144ppm Au, 0.506ppm Ag, 2600ppm As, 503ppm Cu and 483ppm Zn for sample G0676467.

Fig 3: 2011 Riddell Soil Sample Locations

12. Rock Sampling

This work resulted in the submission of 20 rock chip samples for analysis that cover the span of the property. No mapping or rock sample work was completed on the southeast portion of the property as this area consists of low lying swamp land with extremely limited outcrop, most of which is likely float.

These rock chips samples were sealed in poly ore bags with the appropriate sample tag and the unique sample number written on the bag. Sample bags were then sealed with plastic zip-ties and batched in woven nylon "rice" bags.

Samples were shipped to ALS Chemex in Whitehorse, where they were dried, crushed to better than 70% minus 2mm then ground into pulps, before a 250g split was taken and pulverised to better than 85% minus 75 microns. The pulps were packaged and dispatched to ALS Chemex in Vancouver for analysis.

All samples were dissolved in Aqua Regia and tested using ALS Inductively Coupled Plasma-Atomic Emission Spectroscopy Multi-element geochemistry package for 35 elements. If Zn or Pb was elevated higher than 7,500ppm, then ALS Pb-Vol 70 or ALS Zn-Vol50 were performed using acid dissolution and titration to determine a percentage.

Refer to Fig 4 for location of rock chip samples and Appendix C for geochemical rock results. Rock chip samples showed locally elevated values of Ag, As and Cu in mineralized outcrops near the historic drill holes. Samples G0678502 returned values of 10.4ppm Ag, 3410ppm As and 8190ppm Cu, sample G0678503 had 6900ppm As and sample G0678504 had 10000ppm As. The highest Pb value in the area is from sample G0678523 with 1545ppm Pb, found southeast of Klingit Peak.

Samples with very high levels of arsenic and copper found within quartzites in the north-central area of the property were reanalyzed for gold by ALS. The majority of the samples returned results lower than the detectable levels, with sample G0668801 resulting in 0.2ppm Au.

Fig 4: 2011 Riddell Rock Sample Locations

13. Conclusions/Recommendations

In the past, the possibility of Cu-Pb-Zn skarn-type mineralisation has been suggested with relation to the tonalite intrusion near the mineralized outcrops; however, limestones and dolostones, which characterize skarn deposits, are absent from the property. In addition the author observed no evidence of characteristic principal ore minerals such as sphalerite and galena or exoskarn gangue minerals such as diopside, wollastonite, andradite garnet and actinolite.

The proximity of the tonalite intrusion 1km to the southeast of mineralization potentially provides both a source of heat and metals that could result in hydrothermal related mineralisation on the claims. Veintype deposits typically have a strong narrow array of anomalous elements within the wall rocks close to mineralization. This could explain the proximity of the strongly altered and mineralized quartzite outcrops within 50m of each other, with no further extent of mineralization beyond this radius. Based on the small mineralized outcrop and associated minor soil and rock geochemical halo, this area could represent a small sweat vein of insignificant tonnage potential or a remobilized vein.

The soils and rock chips taken in 2011 resulted in locally anomalous assays; however, the number of elevated samples is sparse and these results do not indicate significant mineralization or the potential for a sizable deposit at depth. No further work is recommended on the property.

14. References

- Adamson, T. J., 1968, Assessment Report on the Geological work done on the Lad 3-12, 19-34, 45-62 Claims, Yukon: Atlas Exploration Ltd. Assessment Report 019016, p. 15.
- Adamson, T. J., 1969, Assessment Report of Geological work done on the Lad 65-102 Claims, Yukon in 1968: Atlas Exploration Ltd. Assessment Report 019009, p. 19.
- Baker, D and Black R., 2008 Geological, Geochemical and Diamond Drilling report on the Yukon Base Metal Project
- Beaudoin, G., and Sangster, D. F., 1992, A descriptive model for silver-lead-zinc veins in clastic metasedimentary terranes: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 87, p. 1005-1021.
- Berdahl, R. S., 1997, Assessment Report on Prospecting and Geochemical Results obtained on the Andrew 1-10 Claims, Yukon in 1996: self-employed prospector Assessment Report 093881, p. 23.
- Berdahl, R. S., 2002, Assessment Report of Prospecting and Geophysical work done on Scott 3-34 Claims, Yukon in 2000: self-employed prospector Assessment Report 094378, p. 100.
- Criss, R. E., and Eaton, G. F., 1998, Evidence for Proterozoic and Late Cretaceous-Early Tertiary oreforming events in the Coeur d'Alene district, Idaho and Montana - A Discussion: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 93, p. 1103-1105.
- Gabrielse, H., 1991, Chapter 17, Structural styles *in* Gabrielse, H., and Yorath, C. J., eds., Geology of the Cordilleran Orogen in Canada, 4, Geological Survey of Canada, p. 571-675.
- Gabrielse, H., Murphy, D. C., and Mortensen, J. K., 2006, Cretaceous and Cenozoic dextral orogenparallel displacements, magmatism and paleogeography, north-central Canadian Cordillera, *in* Haggart, J. W., Enkin, R. J., and Monger, J. W. H., eds., Paleogeography of the North American Cordillera: Evidence For and Against Large-Scale Displacements, Special Paper 46, Geological Association of Canada, p. 255-276.
- Gordey, S. P., 2008, Geology, Selwyn Basin (105J and 105K), Yukon, Geological Survey of Canada.
- Gordey, S. P., and Anderson, R. G., 1993, Evolution of the Northern Cordilleran Miogeocline, Nahanni Map Area (105I), Yukon and Northwest Territories, *in* Canada, G. S. o., ed., Memoir 428: Vancouver, BC, Geological Survey of Canada, p. 214.
- Gordey, S. P., and Makepeace, A. J., 2001, Bedrock Geology, Yukon Territory, Geological Survey of Canada.
- Huard, A., and Savell, M., 2002, Assessment Report of Exploration conducted on the Andrew Property, Yukon in 2001: Noranda Inc. Assessment Report 094274, p. 453.
- Huard, A., and Savell, M., 2003, Assessment Report of Geochemistry and Diamond Drilling conducted on the Andrew Property, Yukon in 2002 Noranda Inc. Assessment Report 094363,p.218.
- Keller, D. G., Couture, J.-F., and Weiershauser, L., 2008, Mineral Resource Estimation Bellekeno Project, Yukon Territory, Canada: Alexco Resources Corporation, p. 112.
- Leach, D. L., Hofstra, A. H., Church, S. E., Snee, L. W., Vaughn, R. B., and Zartman, R. E., 1998, Evidence for Proterozoic and Late Cretaceous-Early Tertiary ore-forming events in the Coeur d'Alene district, Idaho and Montana - A Reply: Economic Geology and the Bulletin of the Society of Economic Geologists, v. 93, p. 1106-1109.
- Mauk, J. L., 2002, Stratigraphy of the Proterozoic Revett Formation, Coeur d'Alene District, Idaho, *in* Interior, U. S. D. o. t., and Survey, U. S. G., eds., p. 36.

- Roots, C. F., 2003, Bedrock Geology of the Lansing Range map area (NTS 105N), central Yukon (1:250,000 scale), Yukon Geological Survey, Energy Mines and Resources Geoscience Map 2003-1; and Geological Survey of Canada, Open File 1616.
- Smith, C. L., 1967, Assessment Report on the Hess River Project, Yukon: Atlas Exploration Ltd. Assessment Report 019032, p. 54.
- Soloviev, S. G., C.M.Schulze, and O.E.Baklyukov, 2003, Structural settings and geochemistry of the Myschka gold prospect, Tintina Gold Belt, Mt. Selous area (105K/16, 105N/1), Yukon, *in* L.L.Lewis, D. S. E. a., ed., Yukon Exploration and Geology 2002, Exploration and Geological Services Division, Yukon Region, Indian and Northern Affairs Canada, p. 295-306.
- Woodsworth, G. J., Anderson, R. G., and Armstrong, R. L., 1991, Chapter 15, Plutonic regimes *in* Gabrielse, H., and Yorath, C. J., eds., Geology of the Cordilleran Orogen in Canada, 4, Geological Survey of Canada, p. 491-531.

Appendix A: Statement of Qualifications

I, Sheena Ewanchuk, P. Geo., hereby certify that:

 I am employed on a full-time basis as Project Geologist with: Overland Resources #1158-409 Granville St Vancouver, BC, Canada V6C 1T2

2) I graduated with a Bachelor of Science with Honors Degree in geology from the University of Alberta, Edmonton, Alberta in 2006.

3) I am a member in good standing of the Associated of Professional Engineers and Geoscientists of Alberta (APEGA).

4) I have worked as a geologist for a total of 6 years since my graduation from the University of Alberta.

Dated at Vancouver, Canada, this OFESSIO Aheena Ewa

Appendix B:

See Data Folder for secured assay certificates

Appendix C: Rock Chip Geochemical Assays

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OVERLAND RESOURCES LTD. 1158-409 GRANVILLE ST VANCOUVER BC V6C 1T2

CERTIFICATE WH11109465

Project: Riddell Project

P.O. No.:

This report is for 6 Rock samples submitted to our lab in Whitehorse, YT, Canada on 16-JUN-2011.

The following have access to data associated with this certificate:

HUGH BRESSER	SHEENA EWANCHUK	COLWIN LLOYD
SHEILA ULANSKY		-

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-21	Sample logging – ClientBarCode							
CRU-QC	Crushing QC Test							
CRU-31	Fine crushing – 70% <2mm							
SPL-21	Split sample – riffle splitter							
PUL-31	Pulverize split to 85% <75 um							

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: OVERLAND RESOURCES LTD. ATTN: HUGH BRESSER 2ND FLOOR 675 MURRAY ST WEST PERTH WA 6005 AUSTRALIA

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OVERLAND RESOURCES LTD. 1158-409 GRANVILLE ST VANCOUVER BC V6C 1T2

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 7-JUL-2011 Account: OVERRE

						Proje	Project: Riddell Project									
muleia	12								CERTIFICATE OF ANALYSIS WH11109465							
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME~ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
G0678501 G0678502 G0678503 G0678504 G0668801		0.95 1.13 1.61 2.08 0.28	<0.2 10.4 0.4 1.7 7.5	0.50 2.06 1.19 0.12 0.83	579 3410 6900 >10000 3920	<10 10 <10 <10 10	50 10 10 20 80	<0.5 0.5 <0.5 <0.5 0.8	<2 33 7 123 186	0.04 1.27 1.04 0.48 1.66	<0.5 1.1 <0.5 <0.5 3.4	3 <1 11 43 25	28 19 14 2 15	10 8190 421 918 6830	1.49 3.86 4.33 3.74 2.36	<10 10 <10 <10 <10
G0668802		0.30	0.3	2.10	722	<10	90	0.7	6	2.25	<0.5	3	19	61	1.41	<10

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: OVERLAND RESOURCES LTD. 1158-409 GRANVILLE ST VANCOUVER BC V6C 1T2

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 7-JUL-2011 Account: OVERRE

Isglobal.com
Project: Riddell Project
CERTIFICATE OF ANALYSIS WH11109465

																~~~~~
Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm S	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
G0678501 G0678502 G0678503 G0678504 G0668801		<1 1 <1 <1 <1	0.20 0.03 0.02 0.03 0.45	10 10 20 <10 10	0.17 0.36 0.15 0.44 0.66	138 173 331 89 203	<1 <1 <1 <1 <1 <1	0.03 0.26 0.21 0.01 0.04	10 3 16 19 49	70 520 790 160 270	6 10 10 8 37	0.03 1.42 1.63 1.24 1.24	<2 2 8 12 11	2 2 1 <1 3	4 65 62 2 64	<20 <20 <20 <20 <20 <20
G0668802		~1	0.15	10	0.69	377	1	0.09	10	230	9	0.30	4	3	131	<20



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### To: OVERLAND RESOURCES LTD. 1158-409 GRANVILLE ST VANCOUVER BC V6C 1T2

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 7-JUL-2011 Account: OVERRE

Project: Riddell Project

	13							CERTIFICATE OF ANALYSIS WH11109465
Sample Description	Method Analyte Units LOR	ME-łCP41 Ti % 0.01	ME-ICP41 Tl ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
G0678501 G0678502 G0678503 G0678504 G0668801		0.02 0.08 0.08 0.01 0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	12 12 16 7 12	<10 <10 <10 <10 <10 <10	25 84 13 18 262	
G0668802		0.06	<10	<10	22	<10	39	



Project: Riddell P.O. No.:

on 1-JUL-2011.

HUGH BRESSER

SHEILA ULANSKY

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

COLWIN LLOYD

CERTIFICATE WH11123021

This report is for 18 Rock samples submitted to our lab in Whitehorse, YT, Canada

SHEENA EWANCHUK

The following have access to data associated with this certificate:

#### To: OVERLAND RESOURCES LTD. 1158-409 GRANVILLE ST VANCOUVER BC V6C 1T2

PUL-31

		SAMPLE PREPARATION	
A	LS CODE	DESCRIPTION	
W	EI-21	Received Sample Weight	
LC	)G-21	Sample logging - ClientBarCode	
CF	₹U-QC	Crushing QC Test	
PL	JL-QC	Pulverizing QC Test	
CF	₹U-31	Fine crushing – 70% <2mm	
SP	21-21	Split sample – riffle splitter	

Pulverize split to 85% <75 um

## ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES



To: OVERLAND RESOURCES LTD. ATTN: HUGH BRESSER 2ND FLOOR 675 MURRAY ST WEST PERTH WA 6005 AUSTRALIA

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

The year Signature:

Colin Ramshaw, Vancouver Laboratory Manager



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### To: OVERLAND RESOURCES LTD. 1158-409 GRANVILLE ST VANCOUVER BC V6C 1T2

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 26-JUL-2011 Account: OVERRE

ww.alsglobal.com Project: Riddell

									CE	ERTIFIC	ATE O	FANAL	YSIS	WH111	23021	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 8 ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.S	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
C0678515 C0678516 C0678517 C0678518 C0678519		0.60 0.62 0.79 0.66 0.88	<0.2 <0.2 <0.2 0.4 1.0	2.77 0.89 0.31 2.69 2.31	8 20 88 47 10	<10 <10 <10 <10 <10 <10	220 90 40 100 110	1.5 <0.5 <0.5 0.7 0.7	<2 <2 <2 <2 <2 <2 <2	0.12 0.06 0.65 0.37 0.68	<0.5 <0.5 0.5 <0.5 2.4	17 8 5 37 6	54 14 24 38 68	23 4 11 141 133	4.15 1.48 0.69 6.08 2.92	10 <10 <10 10 10
C0678520 C0678521 C0678522 C0678523 C0678523 C0678524		0.55 0.61 0.56 0.38 1.33	0.4 <0.2 <0.2 3.3 <0.2	3.59 2.69 3.95 0.29 0.42	70 6 44 855 162	<10 <10 <10 <10 90	360 80 230 20 70	0.5 0.6 1.3 <0.5 <0.5	<2 <2 <2 14 <2	1.97 1.72 1.87 0.05 0.05	<0.5 <0.5 0.5 1.2 <0.5	7 4 10 1 2	13 9 74 2 21	110 4 67 52 3	2.84 1.71 2.78 3.32 0.35	10 10 10 <10 <10
C0678525 C0678526 C0678527 G0678528 G0678529		0.65 0.53 0.86 0.73 0.47	0.3 <0.2 0.2 0.2 0.2 0.8	3.06 4.55 4.62 3.50 1.75	110 19 11 19 44	<10 10 10 10 <10	70 80 270 110 260	1.0 0.8 1.8 1.7 0.7	2 <2 <2 <2 <2 <2 <2	1.56 2.04 2.20 1.32 0.44	0.5 <0.5 <0.5 <0.5 <0.5 4.0	14 7 10 14 10	37 14 54 62 52	23 37 76 61 124	2.03 3.57 3.57 3.32 3.03	10 10 10 10 10
G0678530 G0678531 G0678532		0.53 0.53 0.66	<0.2 <0.2 0.2	3.88 0.30 5.86	12 2 9	10 <10 10	480 10 90	0.9 <0.5 2.1	<2 <2 <2	0.52 0.06 3.16	<0.5 <0.5 <0.5	10 <1 7	79 8 73	82 3 40	4.92 0.38 2.43	10 <10 20



2)

ΔΙ

Π

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### To: OVERLAND RESOURCES LTD. 1158-409 GRANVILLE ST VANCOUVER BC V6C 1T2

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 26-JUL-2011 Account: OVERRE

Minerals									Project: Riddell							
	13								CE	ERTIFIC	ATE O	F ANAL	YSIS	WH111	23021	
Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm S	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME~ICP41 Ni ppm 1	ME-ICP41 Ρ ρρm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
G0678515 G0678516 G0678517 G0678518 G0678519		<1 <1 <1 <1 <1	0.95 0.23 0.04 0.86 0.47	40 20 10 10 10	1.15 0.27 0.14 1.58 1.10	288 322 232 474 208	<1 <1 2 4 10	0.02 0.03 0.04 0.03 0.10	37 8 11 55 34	480 150 390 1800 230	9 3 11 11 5	0.19 <0.01 0.01 2.73 1.11	<2 <2 <2 4 4	5 1 <1 9 7	15 6 27 12 76	<20 <20 <20 <20 <20 <20
G0678520 G0678521 G0678522 G0678523 G0678523 G0678524		<1 <1 1 <1 1	0.62 0.15 0.91 0.03 0.22	30 20 40 <10 40	0.81 0.48 0.84 <0.01 0.02	309 250 230 127 35	<1 <1 <1 <1 <1 <1	0.35 0.35 0.48 0.21 0.02	5 3 31 1 4	580 610 290 40 230	18 25 23 1545 5	0.02 <0.01 <0.01 0.17 <0.01	<2 <2 <2 144 3	6 6 10 <1 1	119 102 213 21 6	<20 <20 20 <20 <20
G0678525 G0678526 G0678527 G0678528 G0678529		<1 <1 <1 <1 <1	0.40 0.36 1.06 1.06 0.49	10 10 10 10 10	0.45 1.00 1.61 1.30 0.79	192 304 471 293 262	<1 1 3 4 20	0.43 0.49 0.48 0.34 0.03	29 3 28 37 40	250 510 1960 1450 2180	42 10 3 7 25	0.25 0.65 1.00 1.36 0.77	4 <2 2 <2 18	5 8 7 6	110 209 190 136 33	<20 <20 <20 <20 <20 <20
G0678530 G0678531 G0678532		<1 <1 1	2.00 0.11 0.15	20 10 10	1.76 0.01 1.43	683 46 343	2 <1 2	0.12 <0.01 0.70	22 1 28	1750 280 1370	4 4 8	0.39 <0.01 0.72	2 <2 <2	13 <1 6	94 2 441	<20 <20 <20



ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### To: OVERLAND RESOURCES LTD. 1158-409 GRANVILLE ST VANCOUVER BC V6C 1T2

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 26-JUL-2011 Account: OVERRE

### Project: Riddell

## CERTIFICATE OF ANALYSIS WH11123021

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	МЕ-ІСР41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
C0678515 C0678516 C0678517 C0678518 C0678519		0.14 <0.01 0.04 0.08 0.05	<10 <10 <10 <10 <10	<10 <10 <10 <10	58 9 9 118 339	<10 <10 <10 <10 <10	92 19 55 91 262	
G0678520 G0678521 G0678522 G0678523 G0678524		0.24 0.16 0.31 <0.01 <0.01	<10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	64 46 65 2 6	<10 <10 <10 <10 <10 <10 <10	55 43 46 257 5	
G0678525 G0678526 G0678527 G0678528 G0678529		0.13 0.13 0.26 0.12 0.03	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10 <10	38 55 114 107 288	<10 <10 <10 <10 <10 <10	106 41 49 57 273	
G0678530 G0678531 G0678532		0.30 <0.01 0.19	<10 <10 <10	<10 <10 <10	138 1 123	<10 <10 <10	70 3 43	

Appendix D: Financial Statement

## **Overland Resources Yukon Limited**

Riddell (80 claims)

Units Cost/unit Costs **Planning Sessions** Sheila Ulansky 3 424.62 1.273.86 Sheena Ewanchuk 3 355.38 1,066.14 Mapping Sheila Ulansky 2 424.62 849.24 Sheena Ewanchuk 6 355.38 2,132.28 Sarah Newman 2 375.00 750.00 Rebecca Smart 1 340.00 340.00 Jason Stone-Smith 4 225.00 900.00 Hannah Crampton 2 200.00 400.00 2 250.00 500.00 Jack Logan Total Man Days in field 25 8,211.52 Payroll taxes (10%) 821.15 Helicopter (hrs) 5.50 1,200.00 6,600.00 Fuel (liters) - Long Ranger 676.50 3.34 2,256.88 Assays sample prep/analysis (unit) 20 37.00 740.00 Courier costs 250.00 Camp costs (man day) 25 50.00 1,250.00 **Other Costs** Communication (per day cost) 7 20.00 140.00 6 **XRF** Rental 216.66 1,299.96 **General Transportation** 39,600.00 61,169.51 **Planning Sessions** 424.62 424.62 Sheila Ulansky 1 3 355.38 1,066.14 Sheena Ewanchuk Soils Sheena Ewanchuk 1 355.38 355.38 Dylan Loblaw 3 200.00 600.00

## **Overland Resources Yukon Limited**

Riddell (80 claims)

	Units	Cost/unit	Costs
Doug Jack	1	275.00	275.00
Jason Stone-Smith	7	225.00	1,575.00
Ken Nukon	1	250.00	250.00
Norman Scott	8	275.00	2,200.00
Jack Logan	2	250.00	500.00
Total Man Days in field	27		7,246.14
Payroll taxes (10%)			724.61
Helicopter (hrs)	6.30	1.200.00	7.560.00
Fuel (liters) - Long Ranger	774.90	3.34	2.588.17
. ,			
Assays			
sample prep/analysis (unit)	157	37.00	5,809.00
Courier costs			1,000.00
Camp costs (man day)	27	50.00	1,350.00
Other Costs			
Communication (per day cost)	10	20.00	200.00
XRF Rental	1	216.66	216.66
General Transport/Aircraft			39 600 00
			33,000.00
			66,294.58
			127,464.09

Required for 5 yrs

42,000.00