

GEOLOGICAL, GEOCHEMICAL AND DRILLING ASSESSMENT REPORT FOR QUARTZ MINING CLAIMS GROUPING HM02805

MAYO MINING DISTRICT

YUKON TERRITORY

Owned by Overland Resources Yukon Limited (90%) and 18526 Yukon Inc (10%)

For work undertaken May 23rd – September 30th, 2010

NTS 105K/16

62° 55′ 33″ N 132° 13′ 7″ W

NAD 83, UTM Zone 8, 641070 mE and 6980155 mN

Prepared By:

Alex Tolson, Geologist Rebecca Smart, Geologist Sheena Ewanchuk, Project Geologist Sheila Ulansky, Senior Geologist, P.Geo.

Supervisor: Hugh Alan Bresser, Managing Director, MAusIMM, MCIM

Date: July, 2011

TABLE OF CONTENTS

1. INTRODUCTION
2. PROPERTY DESCRIPTION AND LOCATION
2.1 Claim Status4
3. ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY
3.1 Access
3.2 Climate7
3.3 Local Resources7
3.4 Infrastructure7
3.5 Physiography8
4. PROPERTY HISTORY
5. REGIONAL GEOLOGY
5.1 Prospect Geology9
6. WORK CONDUCTED IN 2010
6.1 Sampling Methodology12
6.2 Assay Methodology13
7. CURRENT WORK FOR ASSESSMENT
7.1 Camp Setup13
7.2 Prospecting, Mapping and Rock Sampling14
7.3 Geotechnical Test Pits24
7.4 Metallurgical and Environmental Drill Core Sampling25
7.5 Exploration Geochemistry26
7.6 Diamond drilling28
8. CONCLUSIONS AND RECOMMENDATIONS
9. STATEMENT OF QUALIFICATION

APPENDICES

APPENDIX 1: ROCK CHIP ASSAY RESULTS	45
APPENDIX 2: 2010 SOIL SAMPLES	49
APPENDIX 3: DIAMOND DRILLING SIGNIFICANT ASSAY RESULTS	60
APPENDIX 4: COST STATEMENT	70
APPENDIX 5: ASSAY CERTIFICATES	73

TABLES AND FIGURES

Table 1. Quartz Mining Claims subject of application for certificate of work owned by 90% Overland
Resources Yukon Limited and 10% 18526 Yukon Inc3
Table 2. 2010 Test Pit Summary25
Table 3. 2010 Diamond Drilling Summary
Figure 1. Location Map of the Yukon Base Metal Project in Central-Eastern Yukon, Canada5
Figure 2. Quartz Mineral Claims covering approximately 9,403 hectares within the Mayo Mining District,
Yukon
Figure 3. Regional Geology of the Yukon Base Metal Project in the Selwyn, including the Andrew, Darcy
and Darin Zinc Deposits
Figure 4. Darcy Zinc Deposit – 2010 Mapping15
Figure 5. Hugo Creek 2010 Rock Chip Samples18
Figure 6. 2010 Pinnacle Geological Mapping and Rock Chip Sampling20
Figure 7. Red Precipitate Creek 2010 Rock Chip Samples23
Figure 8. 2010 Soil Samples on the Andrew Zinc Deposit27
Figure 9. 2010 Diamond Drilling on the Andrew Deposit
Figure 10. 2010 Diamond Drilling on the Darcy Zinc Deposit
Figure 11. 2010 Diamond Drilling on the Darin Prospect

1. INTRODUCTION

This report has been prepared in accordance with the guidelines outlined by Yukon *Energy Mines Resources* (EMR) to detail the representation work undertaken and submitted for assessment for the Quartz Mining Claims under the authority of Grouping Certificate No. HM02805 by Overland Resources Limited (Overland) in 2010.

Claim Name		Grant No.				
А	1-8	YC 67724 – YC 67731				
А	57 - 104	YC 67746 – YC 67767				
AMB	1-68	YC 02355 – YC 02421				
Amb	69	YC 02680				
AMB	70	YC02422				
Amb	71	YC 02681				
AMB	72 - 104	YC 02424 – YC 02456				
Amb	105 - 112	YC02776 – YC 02783				
AMB	115 – 116	YC09953 – YC 09954				
AMB	123 - 146	YC 09961 – YC 09984				
AMB	147 – 150	YC 10006 – YC 10009				
AMB Fr	117	YC 09955				
AMB Fr	118 - 122	YC 10001 – YC 10005				
AMB Fr	151 - 162	YC 10010 – YC 10021				
Andrew	1 - 10	YB 65796 – YB 65805				
Bridge	1-8	YC 56739 – YC 56746				
Bridge	11 - 16	YC 56747 – YC 56752				
Bridge	19 - 32	YC 56753 – YC 56766				
Ozzie	1 -16	YC 56665 – YC 56680				
Ozzie	17 - 32	YC 56703 – YC 56718				
Scott	3 - 34	YC02457 – YC 02488				

Table 1. Quartz Mining Claims subject of application for certificate of work owned by 90% Overland Resources Yukon Limited and 10% 18526 Yukon Inc. Work submitted for assessment on the purposes to EMR for the Yukon Base Metals Project Claims was conducted from May 23rd to September 30th, 2010 by Overland on quartz mining claims throughout the project area listed above.

2. PROPERTY DESCRIPTION AND LOCATION

The Yukon Base Metal Project is situated 110 km north of the town of Faro, Yukon (Figure 1) and consists of 517 full and fractional Quartz Mineral Claims covering approximately 9,403 hectares within the Mayo Mining District (Figure 2). The Project is located within NTS map sheets 105K/16 and 105N/01. The coordinates of the approximate center of the property are 62° 55′ 33″ N latitude and 132° 13′ 7″ W longitude (NAD 83, UTM Zone 8, 641070mE and 6980155mN).

2.1 Claim Status

The Quartz Mineral Claims that comprise the Yukon Base Metal Project are owned 90% by Overland Resources Yukon Limited and 10% by 18526 Yukon Inc. Overland Resources Yukon Limited has the responsibility of permitting, claim maintenance, assessment filing and reporting and associated fees.

The claims lie on crown land, and surface rights belong to the crown. They do not lie within or near any park, special management zones, first nation settlement lands or land selections. However, they are situated within lands considered as traditional hunting and trapping areas by several first nation bands.

All claims are currently in good standing.

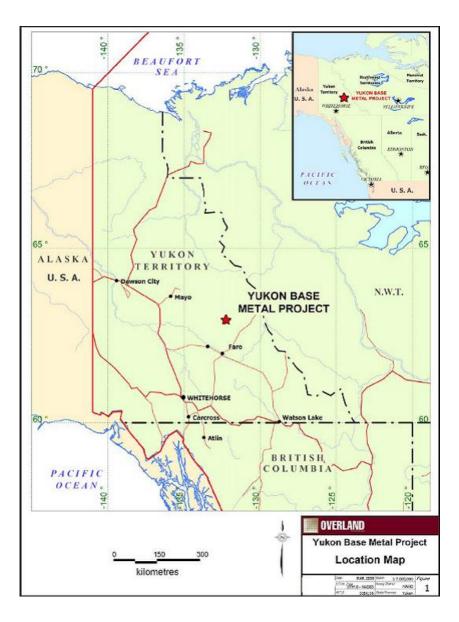


Figure 1. Location Map of the Yukon Base Metal Project in Central-Eastern Yukon, Canada.

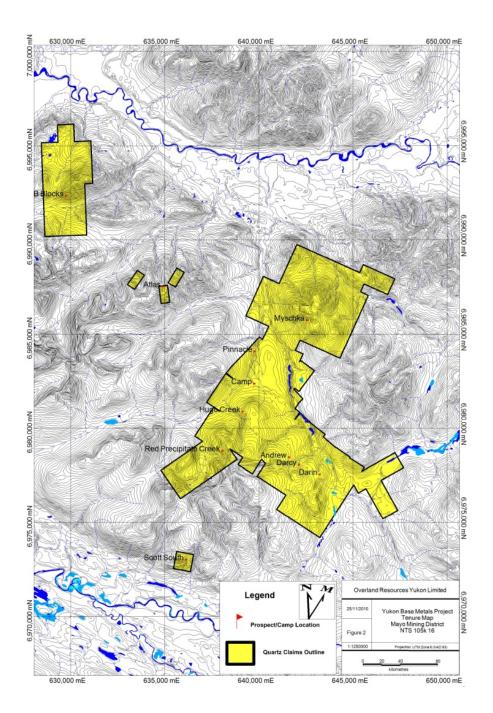


Figure 2. Quartz Mineral Claims covering approximately 9,403 hectares within the Mayo Mining District, Yukon.

3. ACCESS, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE, PHYSIOGRAPHY

3.1 Access

The Yukon Base Metal Project is accessible by helicopter and short take-off and landing-capable fixedwing aircraft via a 400m unsealed airstrip located at 132°14′20″ W and 62°56′20″ N (UTM NAD83; 640090mE and 6982690mN). Heavy equipment and bulk supplies can be delivered to the property via an 85km winter trail which was re-established in winter 2008 from the North Canol Road at Dragon Lake.

3.2 Climate

Temperatures at the Yukon Base Metal Project typically range from 8° C to 26° C in the summer and from -30° C to $+6^{\circ}$ C in the winter. Annual precipitation ranges from 120mm to 200mm, including 0.8m to 1.5m of snow accumulation in the winter months.

3.3 Local Resources

No local communities or towns are within 50km of the Yukon Base Metal Project and as such all resources must be brought into the project area. Personnel for construction, mining, exploration, labour and support are available in the communities of Faro, Ross River and Watson Lake as well as the Territorial capital of Whitehorse. Faro and Ross River are 100km southwest and 115km south of the property, respectively.

3.4 Infrastructure

Infrastructure near the Yukon Base Metal Project includes the Canol Road and Robert Campbell Highway. The Canol Road extends for 458km from the Yukon-Northwest Territories border to Johnson's Crossing on the Alaska Highway south of Whitehorse. Northeast of the Pelly River at Dragon Lake, the Canol road comes to within 60km of the Yukon Base Metal Project where the winter access trail into the property begins.

Both Ross River and Faro are serviced by electrical transmission lines sourced from the Aishihik hydroelectric facility to the west.

3.5 Physiography

The Yukon Base Metal Project is located within the South Fork Range of the Yukon Plateau, east of the Tintina Trench and west of the MacKenzie Mountains. The property occupies the west side of a wide valley, where elevations range from 1,000m to 1,800m above sea level. Several east flowing creek valleys cut moderate slopes across the Yukon Base Metal Project.

The vegetation at the Yukon Base Metal Project is alpine to sub-alpine with lower elevations being dominated by black and white spruce stands, typical of the Northern Boreal Forest.

4. PROPERTY HISTORY

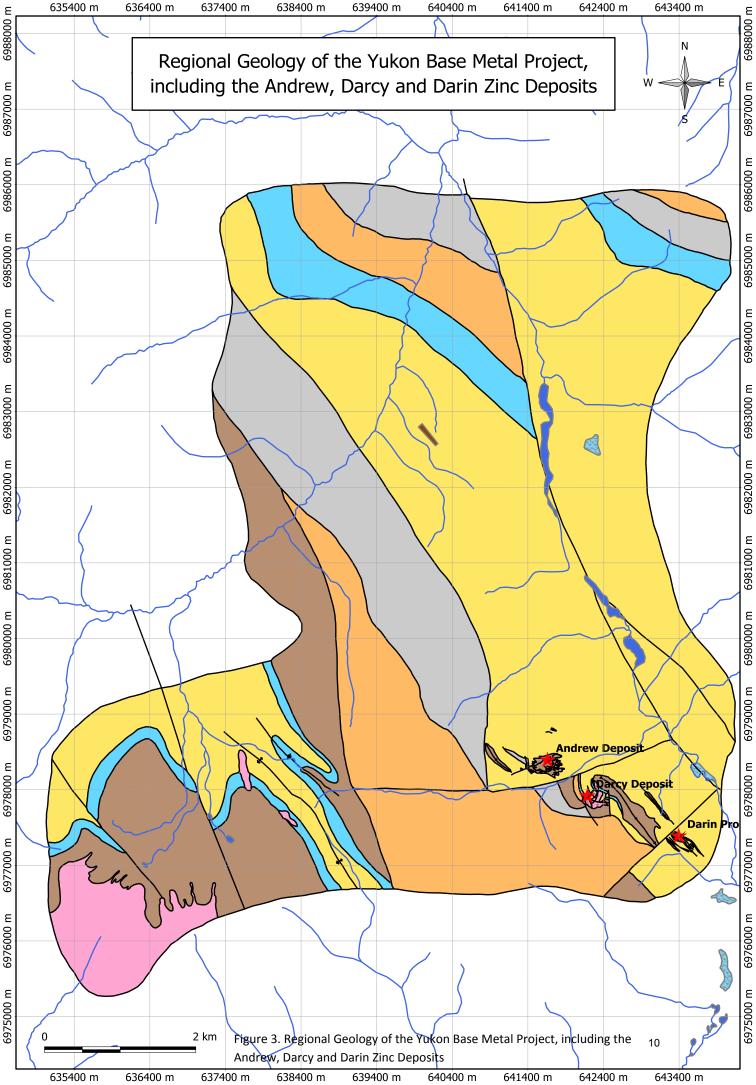
The area was originally staked in 1967 by the Hess Syndicate (Atlas Explorations Ltd, Quebec Cartier Mining Company and Phillips Brothers (Canada) Ltd), which carried out geochemical sampling that year. The syndicate in 1968 and carried out geological mapping, geochemical sampling, geophysical surveying and hand trenching. In 1969, the syndicate carried out road construction, bulldozer trenching, geological mapping, geochemical sampling and geophysical (airborne and ground) surveying. The Atlas interest was transferred in 1974 to Cima Resources Ltd, which drilled two holes (14.8 m) in 1977.

R. Berdahl staked Andrew in July 1996. Berdahl carried out prospecting and geochemical (rock, silt and soil) sampling. In 1999, Berdahl carried out hand and blast trenching and geochemical sampling in the vicinity and silt sampling. In September of 2000, Berdahl carried out geochemical rock and soil sampling of newly staked claims.

Noranda Incorporated optioned the Andrew claims in August of 2000. During the winter of 2000/01, Noranda carried out airborne magnetic and EM geophysical surveying over the area.

In July of 2001 Noranda carried out geological mapping, prospecting, ground magnetic and gravity geophysical surveying, rock and soil geochemical sampling and drilled 15 holes (2 717.7 m) from July to October 2001. During August and September of 2002 the company carried out additional soil geochemical sampling and drilled 8 holes (1 838.3 m).From May to November of 2007 Overland Resources carried out geologic mapping, geochemical sampling and 2,867m of diamond drilling in 10 holes. From February to September of 2008 Equity Engineering, for Overland Resources, conducted mapping, prospecting, and geochemical sampling and 23.427.7m of diamond drilling in 135 holes.

5. REGIONAL GEOLOGY


The property is located within the Selwyn Basin of the Northern Cordillera; a continental margin rift-fill and cover sedimentary sequence off the coast of ancestral North America. Stratigraphic units of Yukon Geologic Survey regional mapping have the property lying within the Yusezyu and Narchilla Formations of the NeoProterozoic to Lower Cambrian Hyland Group. These comprise an upper thrust sheet with a roughly northeast throw overlying Paleozoic sequences of the Road River and Earn group sediments. Regionally the area has been intruded by Cretaceous felsic plutonism. The area has been subjected to far field stresses related to significant dextral faulting along the northwest trending Tintina trench (Figure 3).

5.1 Prospect Geology

The main focus of work for the 2010 season was in the vicinity of the Andrew and Darcy Zinc Deposits and the Darin Zinc Deposit Prospect.

5.1.1 Andrew

The Andrew Zinc Deposit is a polymetallic vein system consisting of discrete structurally controlled zones of brecciation and veining. Quartz-carbonate veining and associated mineralization cross-cut all stratigraphic units. The Andrew Zinc Deposit has been delineated over a 600 by 250 m area and has a roughly planar geometry. It strikes to the west and dips 50-70° to the north from surface at 1300 m above sea level. It changes dip markedly from -70° near surface to -55° at depth at about 1050 m elevation. Internally, the zone is characterized by several generations of non-systematic veining and brecciation. The zone has also been cut by post-mineralization faults. Mineralization is dominantly hosted in massive bedded quartz arenite sandstones which deform in a more brittle style than interbedded mudstone and lesser Narchilla Formation red-green mudstone and limestone units. Sphalerite and galena are typically coarse-grained, and occur as disseminated blebs, veins, and massive aggregates. Galena and sphalerite commonly occur together, however, the galena appears to overprint sphalerite. Early barren quartz-calcite veins are cut by sphalerite-quartz veins. Crystalline to resinous reddish-brown often sphalerite occurs as cores or rinds of quartz and quartz-

calcite veining. A calcite dominated vein system cuts all earlier veining and hosts trace galena. These veins are up to several metres thick and are comprised of coarse-grained calcite. Trace chalcopyrite occurs throughout the deposit but never in appreciable quantity.

The resource at the time of this reports estimates the Andrew Deposit contains 7.2 million tonnes in all categories at average grades of 6.2% Zn and 1.5% Pb.

5.1.2 Darcy

The Darcy Zinc Deposit is located approximately 600 m southeast of the Andrew Deposit. The Darcy is characterized by a resistivity low, anomalous zinc in soils and outcrop of mineralized quartz stockwork in host sediments. The deposit has been defined by drilling for ~400m along strike and 100m at depth and remains open in all directions. There appear to be several sub-parallel tabular zones striking roughly west by northwest with right stepping jog and pinch and swell geometry. A main zone hosts the bulk of mineralization with several smaller and discontinuous hanging wall and footwall zones and splay structures potentially associated with the steps and flexures in the main zone. Like the Andrew Deposit, Darcy is roughly tabular with internally irregular veining and brecciation cutting all host rocks. It dips steeply north by northeast and becomes shallower dipping at depth. The geology consists of Neoproterozoic to Paleozoic sediments. These are dominantly massive to poorly bedded quartz-rich sandstones interbedded with vari-textured maroon/green and black mudstone, limestone, chert and breccia. There is evidence of deformation through folding, brittle faulting and semi-ductile shearing. The stratigraphic package has regionally undergone sub-greenschist metamorphism. Bedding strikes roughly to the northwest with variably steep dips. The hanging wall to the north of the main zone consists of variably graphitic thin-bedded mudstones interbedded with abundant chert likely of the Road River Formation. It hosts several small mineralised veins and breccias packages. The footwall to the south of the main zone is dominated by Yusezyu Formation sandstones interbedded with subordinate mudstones and mudstone-sandstone breccias. These also host several small footwall mineralised zones. The sequence to the southwest is underlain by the Narchilla Formation with a sequence of grey mudstones interbedded with distinctive red-green mudstones and limestone units that correlate well on section between drill holes. Mineralization in the Darcy Zinc Deposit is comparable to mineralization of the nearby Andrew Zinc Deposit. It consists of blebby to massive sphalerite and galena associated with brecciation and quartz and carbonate veining and breccia infill.

Currently, estimates for the Darcy Zinc Deposits are 3.48 million tonnes of indicated and inferred resources at an average grade of 5.3% Zn.

<u>5.1.3 Darin</u>

The Darin Zinc Deposit lies on claims AMB 125-128 and is defined by a 400 m x 150 m Zn in soil geochemical anomaly. The anomalous soils occur on a northwest trending ridge and the southern slopes of the same ridge. Stratigraphy consists of sediments of the Yusezyu Formation sandstones interbedded with mudstones and sheared breccias with subordinate limestone and red-green mudstone of the Narchilla Formation. Bedding trends throughout the property were striking to the northwest and dipping moderately to the northeast. Stratigraphy dips moderately to the northeast in the northwest of the prospect and gradually steepens as you go to the southeast of the Darin Zinc Deposit with limestone beds and the red-green Narchilla Formation acting as marker beds. The mineralization on Darin is similar in style to the Andrew Zinc Deposit but of lower grade and contained in wispy discontinuous lenses consisting of small discrete sulphide veins mainly concentrated in two roughly east-west trending zones with several subparallel structures over a 500 x 200m area. Sphalerite veining intervals typically overlie intervals galena rich veining at depth.

The currently resource estimate on the Darin Zinc Deposit is 360,000 tonnes at 4.0% Zn and 0.2% Pb.

6. WORK CONDUCTED IN 2010

Work conducted in 2010 included, camp mobilisation and construction, mapping, prospecting, geochemical rock and soil sampling, geotechnical studies, metallurgical and environmental sample collection, and 3712.1m of diamond drilling.

6.1 Sampling Methodology

Rock Samples

All rock samples were collected in the following manner

- 1. Location recorded by handheld GPS in NAD83 Zone 8
- 2. Representative sample exceeding 400g of bedrock collected using a standard geological rock pick style hammer.

- 3. Samples sealed in clear plastic sample bags with a distinct sample ID
- 4. Samples dispatched to analytical laboratory.

<u>Soil Samples</u>

All soil samples were collected in the following manner

- 1. Location recorded by handheld GPS in NAD83 Zone 8
- 2. Use auger to sample the 'B' 'C' horizon of in situ soil
- 3. Collect a representative sample exceeding 400g
- 4. Samples sealed in brown paper sample bags with a distinct sample ID
- 5. Samples dispatched to analytical laboratory.

6.2 Assay Methodology

Rock samples were sent to ALS Labs in Whitehorse where all samples were weighed, dried and crushed to better than 70% -2mm then split to 250g and pulverized to better than 85% passing 75 microns. Samples were processed by aqua regia digestion and analyzed for a full element suite using ICP-MS and ICP-AES.

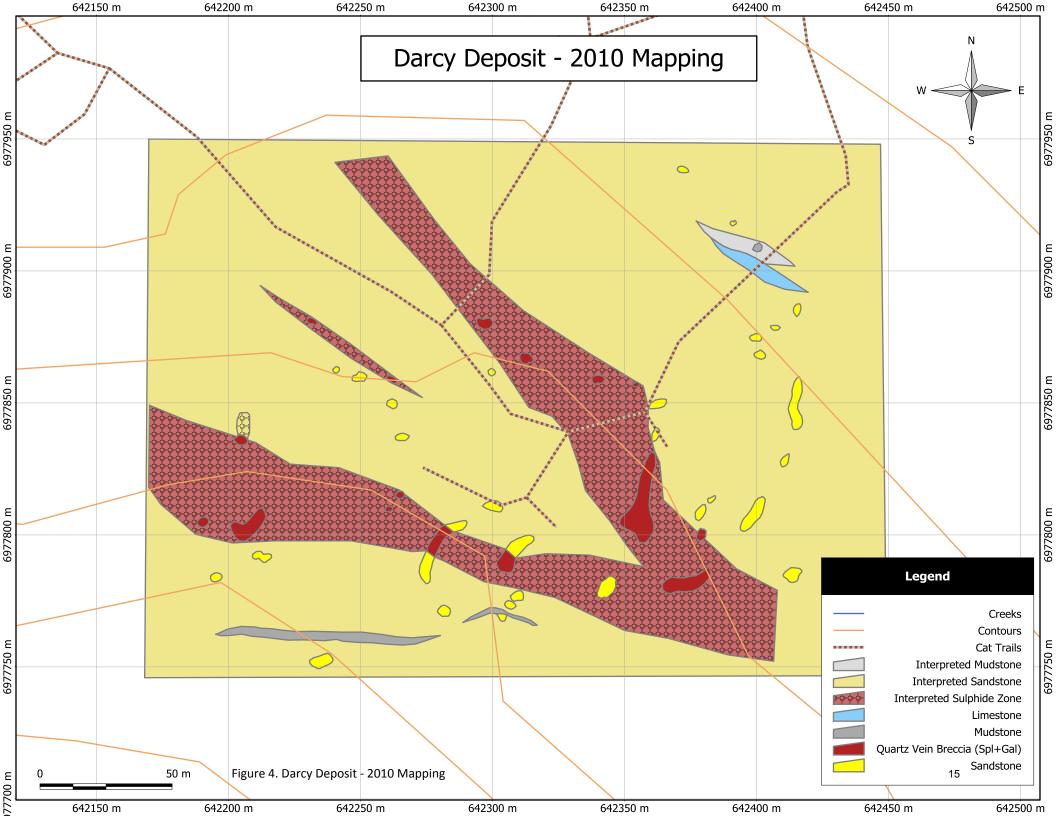
Soil samples were sent to ALS Labs in Whitehorse where they were weighed, dried and sieved to -180 micron (80 mesh). Samples were processed by aqua regia digestion and analyzed for a full element suite using ICP-MS and ICP-AES.

7. CURRENT WORK FOR ASSESSMENT

7.1 Camp Setup

Starting on May 23rd 2010 a total of 121 man days were spent preparing the Andrew Camp for the upcoming field season. A new dry, mess hall, geology office and core logging and sampling facilities were constructed and tent skins and diesel stoves installed in existing tent frames.

7.2 Prospecting, Mapping and Rock Sampling


Overland spent a total of 33 man days mapping, prospecting and rock chip sampling in the areas referred to as the "Pinnacle showing", "Hugo Creek", "Red Precipitate Creek", "LAD" and the Darcy Zinc Deposit. A total of 83 rock chip samples were collected for geochemical analysis. Sample descriptions and analytical results are available in Appendix 1.

Darcy Zinc Deposit Mapping

On June 10th and 11th, 2010 Overland geologists reviewed surface geology mapping, select drill holes and cross-sections of Overland Resources' Darcy Zinc Deposit. The property was previously mapped and drilled by Equity Engineering (for Overland, 2008) and by Noranda Exploration (2002) (Figure 4).

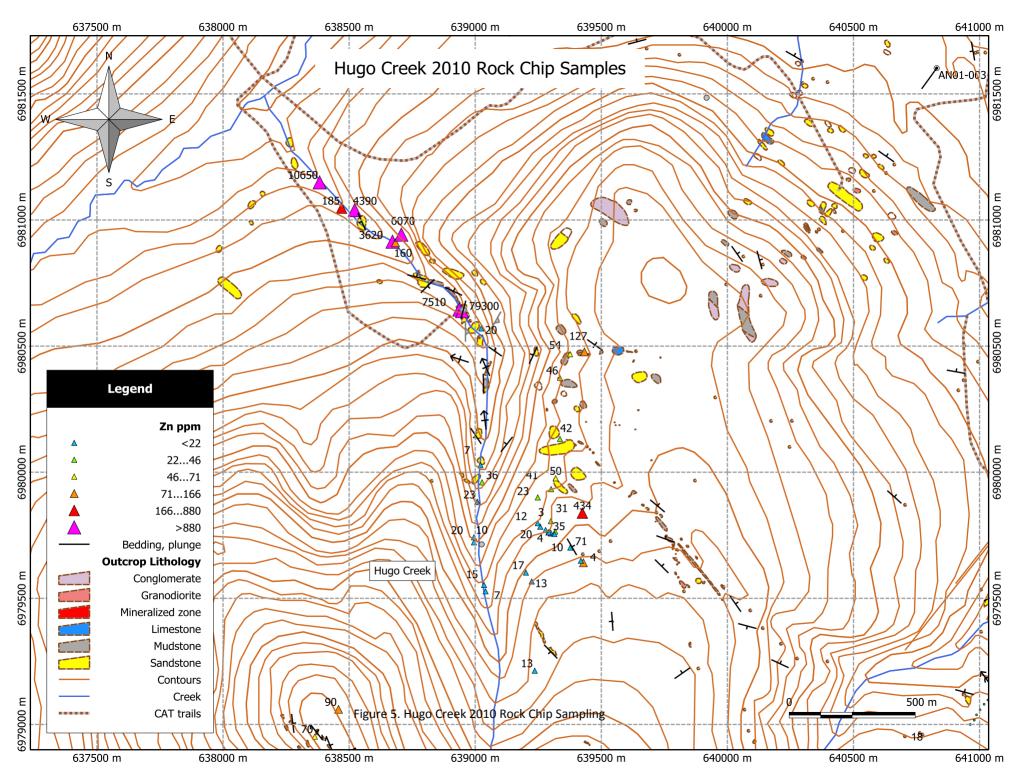
A review of surface mapping indicated that the lithological units and outcrop locations identified in previous mapping were correct with the exception of a single small outcrop of felsic intrusive that could not be confirmed. Drill holes AN-02-021, DY-08-002, 004, 008 012 and 014 were pulled and inspected to gain a better understanding of the geology of the Darcy Zinc Deposit.

The geology consists of Neoproterozoic to Paleozoic sediments, dominantly massive to poorly bedded quartz-rich sandstones interbedded with vari-textured maroon/green and black mudstones, limestone and breccias. There is evidence of folding, brittle faulting and semi-ductile shearing. Mineralization consists of blebby to massive sphalerite and galena associated with brecciation and quartz and carbonate veining and infill.

Sections were cut at a north-south orientation facing east with a 20 m spacing between, and a 10 m window. There were drawn at 1:500 scale from 642140E to 642240E with several holes to the collared to the northeast drilled off section but viewed on broader scale interpreted sections.

In plan-view there appear to be several sub-parallel tabular zones striking roughly east-west with possibly right stepping jog and pinch and swell geometry. There appears to be one main zone with several smaller or discontinuous hangingwall and footwall zones potentially associated with the steps and flexures in the main zone.

Soil sampling anomalies ranging 3770-11900 ppm Zn to the west and 467-933 ppm Zn to the east of existing drilling appear directly above projected mineralization on section along strike.

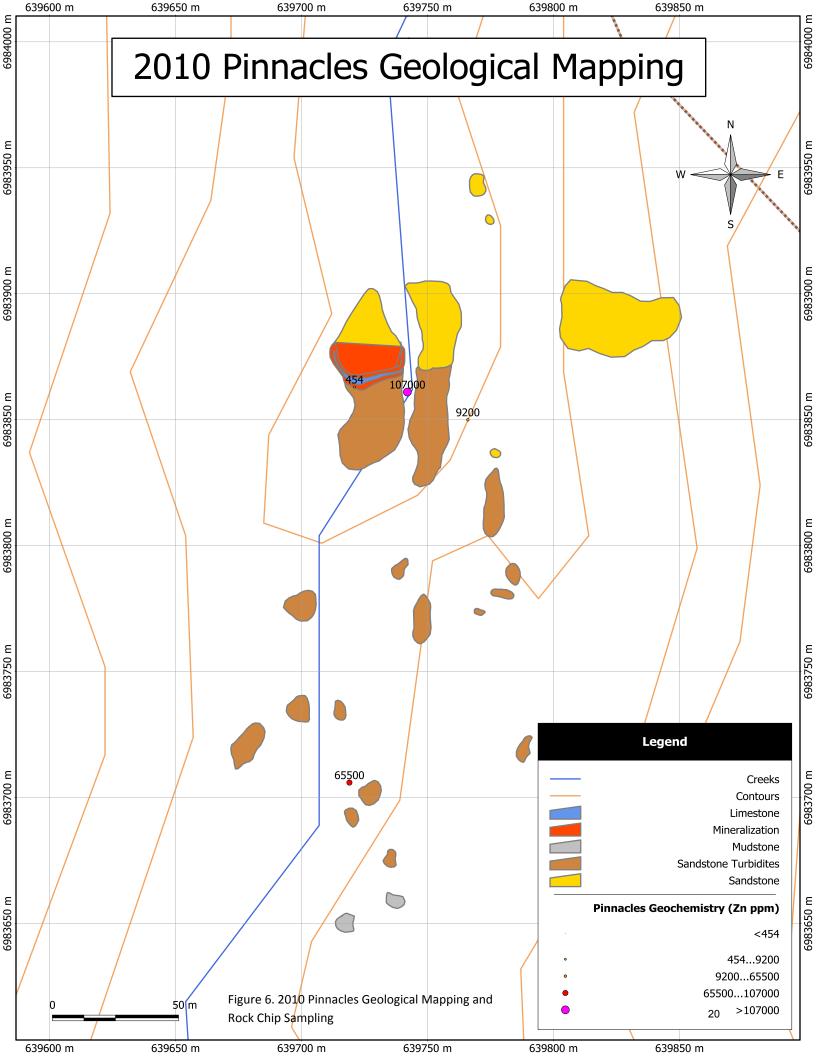

Hugo Creek Prospect Mapping

Previous work includes prospecting and trench sampling by Atlas Exploration in 1967-1969 and prospecting and soil sampling in 2007 by Overland resources and 2 days of follow up prospecting by Overland Resources in 2008. A total of 52 rock chip samples were collected during field work in 2010 (Figure 5). All locations were measured by handheld GPS in NAD83 Zone 8. All Structures were measured assuming 27° E declination and following the right hand rule (strike counter-clockwise to dip direction on map).

The licences are approximately less than 1 km south of the Andrew Camp with access by helicopter or foot. Topography at Hugo consists of moss and tree covered hills within the northwest trending Hugo Creek river valley with rock exposure along cut banks, tributary drainages and steeper slopes. Relief is ~700m starting from ~1100 m at the junction with Clearwater Creek to ~1800 m above sea level at the highest peak.

The property is underlain by deformed but sub-greenschist metamorphosed sediments. The majority of outcrop consists of sandstone/quartzite best described as grey coloured, brown weathering, quartz grain-rich and fine- to coarse-grained. These are interbedded with minor black graphitic mudstone beds and lesser chert. The quartzite and chert is exposed along resistant ridges up to several meters thick, grey to black and is brecciated. The area is cut by abundant quartz veining typically massive milky quartz with rare vuggy to crustiform textures. The quartzites contain wide-spread trace to several percent disseminated pyrite and iron oxides throughout.

The sediments generally strike northwest and dip variably steep to the northeast and are openly folded plunging shallowly southwest. Tight to isoclinally folds are observed with steeply inclined fold axes and hinges shallowly plunging southeast. The ridge between camp and Hugo Creek consists primarily of interbedded quartzite and schist. The prevailing strike of beds/schistosity is to the northwest and steeply dipping to the northeast. In the south of the mapping area were two large quartz veins ~2m wide and 20m in length striking northwest. Trace pyrite, galena, bornite and malachite were found in the host-rock schist selvages to these veins. North of the area is immature sandstone, grey/black chert and chert conglomerates of the Earn Group.


Mineralization is exposed along the banks of the Hugo Creek. These consist of fault controlled massive to semi-massive sulphide pods associated with silicification and quartz veining consisting of pyrite and galena with minor chalcopyrite and pyrrhotite. These appear to be up to 50cm thick with steep dips. Massive galena boulders have been found in creek beds with limestone cobbles on the main north eastern hill slope. Surface geology indicates the area is prospective for Keno Hill style Ag-Base Metal Vein mineralization. Soil samples previously taken in the area indicate mineralization extends past outcrop exposure with high potential for blind deposits.

Pinnacle Prospect Mapping

The Pinnacle Showing is found in claim AMB100 (YC02452) in the Mayo Mining District of Yukon Territory, Canada. During the summer field season of 2010 Overland Resources conducted exploration on and around the showing with a focus on base metals mineralization.

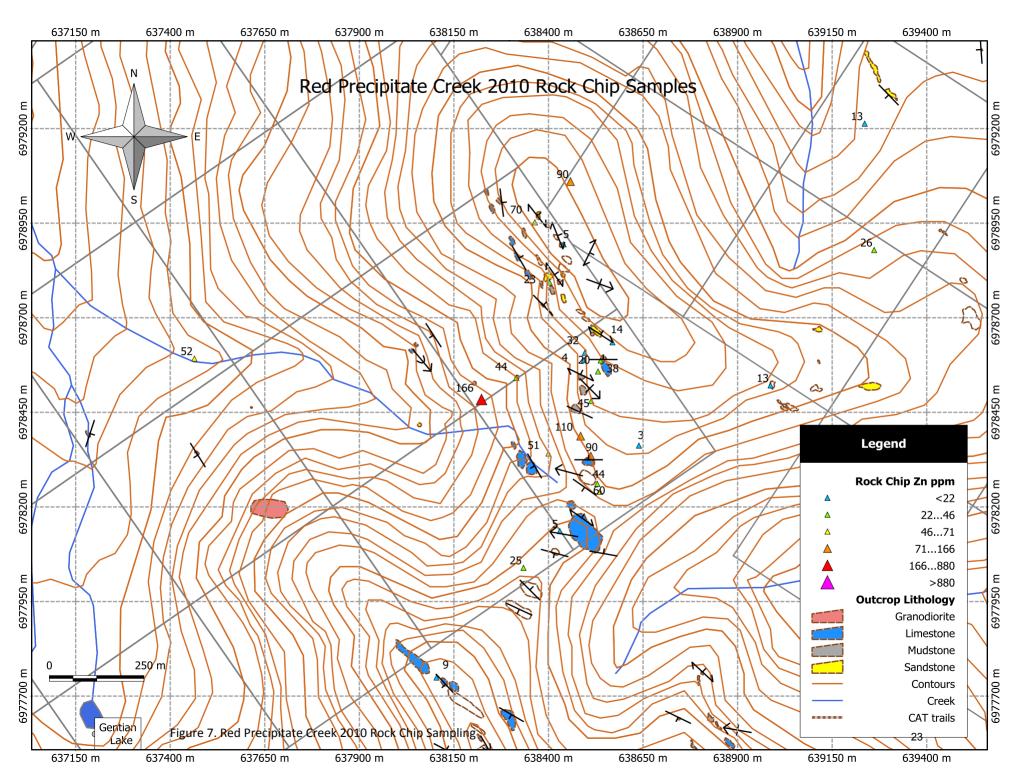
Overland Resources geologists spent 2 days (June 8 and 9, 2010) mapping at 1:1000 and 1:500 scale in an area surrounding the Pinnacle showing. A total of 4 rock chip samples were collected during mapping (H031552-H031555). All locations were measured by handheld GPS in NAD83 Zone 8. All Structures were measured assuming 27° E declination and following the right hand rule (strike counter-clockwise to dip direction on map) (Figure 6).

The licences are approximately less than 1 km northwest of the Andrew Camp with access by helicopter or on foot. Topography at Pinnacle consists of moss and tree covered ridges within the Clearwater Creek river valley with rock exposure along cut banks and steeper slopes. Relief is ~25m above the river from ~1000 m to ~1025 m above sea level.

The property is underlain by deformed but sub-greenschist metamorphosed sediments of the Earn Group. The majority of the local outcrop consists of sandstone/quartzite best described as grey coloured, brown weathering, quartz-rich, fine- to coarse-grained, massive to crudely bedded with trace disseminated pyrite and iron oxides throughout. Towards the south of the area, mudstone content increases being interbedded cm to dm scale grey, finely laminated and fissile mudstone beds. These often take on a steep NW trending cleavage. Inter-bedded sandstone-mudstone pairs (turbidites) with basal scours and dm to m scale tabular rhythmically cyclical bedding indicate a marine slope depositional environment. Bedding is typically striking west to northwest and dipping steeply northeast. Rare trough cross-bedding indicate stratigraphy is younging north. The sub-parallel cleavage indicates the area is on the northern upright limb of a large scale steeply inclined anticline. A single outcrop over 100 m south of the pinnacle showing along Clearwater Creek has stratigraphy overturned and clearly younging to the south supporting this interpretation.

An approximately 4 m thick unit of limestone is grey and cm scale inter-bedded with thin brown mudstone containing finely disseminated sphalerite in places and flame structures also possible plant fossils observed in float boulders. It is finely crystalline and highly reactive with acid. The northern contact with sandstone contains limestone rip-up fragments further indicating a north younging direction. The mineralization occurs on the margins of this limestone unit. Typically 1 m thick and concordantly stratiform in character, mineralization consists of finely disseminated to vein controlled to semi-massive aggregates of galena, sphalerite, pyrite, chalcopyrite, bornite and pyrrhotite within tabular replacement zones. Supergene malachite and azurite (Cu Carbonates) as well as calcite encrustations coat fractures within and surrounding the original mineralization along paths of late surface water permeability. Alteration consists of pervasive silicification and light to dark green chlorite replacement of sandstone with weak disseminated mineralization up to 1m beyond the main replacement zones. The arcuate inward dipping/younging map pattern of the limestone unit and associated mineralization would indicate a steeply north plunging upright tight to isoclinals syncline is either controlling or deforming mineralization with mineralization trending along the limbs north to increasing depth.

The mineralization is found at both the upper and lower contacts of a limestone unit and grading out into its surrounding sandstone stratigraphy with internal lamination and veining. The geologic features observed at Pinnacle somewhat fit the description of carbonate replacement deposits (CRD). These targets can be attractive sources of high grade base/precious metals mineralization and may be adjacent, distal or even unrelated to igneous emplacements. They can be irregular shaped but also


21

stratiform and stratigraphically controlled. Vein mineralization and structurally controlled breccias on the East bank of Clearwater Creek are visible from the pinnacle and mapping revealed significant concentrations (massive) of sulphides but limited thickness and extent of surface mineralization puts this area as a lower priority to the "pinnacle" itself. See Appendix 1 for Surface geology Map and Rock Chip Sample Assay Table

The surface geology contains a package of stratiform polymetallic mineralization with good but variable percentage sulphides content. The mineralized package is ~6m thick and mapped on repeating limbs ~30m across with 25m of down plunge extent exposed. There is reasonable potential to extend the mineralization down dip below surface. Soil samples previously taken in the area contained poor results, however; as mineralization likely dips and plunges below surface between soil lines the lack of anomalism in the area does not infer a lack of mineralization at shallow depth.

Red Precipitate Creek Prospect

Previous work includes prospecting and soil sampling in 2007 by Overland Resources. A total of 23 rock chip samples were collected during field work (G0669614-G0669636) in 2010 (Figure 7). All locations were measured by handheld GPS in NAD83 Zone 8. All Structures were measured assuming 27° E declination and following the right hand rule (strike counter-clockwise to dip direction on map).

The licences are approximately 1 km south of the Andrew Camp with access by helicopter or foot. Topography in the area consists of gentle rolling hills, moss and tree covered with about 10% rock exposure. Relief is ~500m starting from ~1300 m at the junction with Clearwater Creek to ~1800 m above sea level at the highest peak.

The property is underlain by deformed, sub-greenschist metamorphosed sediments. The majority of outcrop consists of sandstone/quartzite best described as grey coloured, brown weathering, quartz grain-rich and fine- to coarse-grained. These are interbedded with grey fissile sometimes graphitic and pyritic and gossanous mudstones and cm scale bedded limestone units that are exposed for >20m stratigraphic thickness. The south-eastern hill slope is limestone and mudstone dominated near the creek headwater and progressively quartzite then phyllite dominated towards the north at higher elevations.

Regional cleavage was northwest trending and moderately dipping throughout. Bedding was mostly continuous and roughly parallel to cleavage with several isoclinals fold closures encountered with shallow to moderately east plunging hinges and fold axes consistent with regional cleavage. Minor bedding sub-parallel and occasional sigmoid gash veins were quartz filled with rare fresh pyrite. No significant mineralization or alteration was encountered on surface. See Appendix 1 for Rock Chip Sample Assay Table

7.3 Geotechnical Test Pits

To establish soil mechanics and permafrost conditions for the feasibility study on the Andrew Zinc Deposit an overburden test pit survey was conducted for Overland by Golder & Associates. From June 29th to August 3rd twenty two test pits were excavated using a D6 caterpillar bulldozer to clear access and an excavator back hoe to strip soil to bedrock (Table 2). A total of 10 man days and 15 cat hours and 47 hoe hours were spent on the study in addition to consulting fees from Golder & Associates.

Test Pit	Northing (m)	Easting (m)	Elevation (m)	Depth (m)	Completion Date
TP-01	6979998	641784	1149	1.9	29-Jun-10
TP-02	6979962	641738	1156	3.1	29-Jun-10
TP-03	6979875	641725	1191	4.2	29-Jun-10

TP-04	6979775	641682	1200 3.0		29-Jun-10
TP-05	6979719	641618	1213	1.9	29-Jun-10
TP-06	6979676	641518	1208	1.6	29-Jun-10
TP-07	6978477	642572	1092	6.2	30-Jun-10
TP-08	6978497	642446	1110	1.2	30-Jun-10
TP-09	6978489	642342	1117	4.0	1-Jul-10
TP-10	6978450	642255	1124	5.5	1-Jul-10
TP-11	6978425	642157	1161	3.8	1-Jul-10
TP-12	6979446	641511	1254	3.2	2-Jul-10
TP-13	6979330	641485	1258	4.2	2-Jul-10
TP-14	6979108	641523	1275	2.3	2-Jul-10
TP-15	6979187	641510	1271	2.0	3-Jul-10
TP-16	6979253	641508	1265	2.5	3-Jul-10
TP-17	6979107	641688	1255	3.0	3-Jul-10
TP-18	6979155	641651	1268	3.2	3-Jul-10
TP-19	6979200	641603	1264	4.6	3-Jul-10
TP-20	6979291	641575	1261	2.5	3-Jul-10
TP-21	6979253	641443	1270	3.0	3-Jul-10
TP-22	6979311	641319	1271	2.5	3-Jul-10

Table 2. 2010 Test Pit Summary

1. Coordinates determined using a hand held GPS unit with an error of up to 15 m.

2. Coordinates in NAD83, Zone 8.

7.4 Metallurgical and Environmental Drill Core Sampling

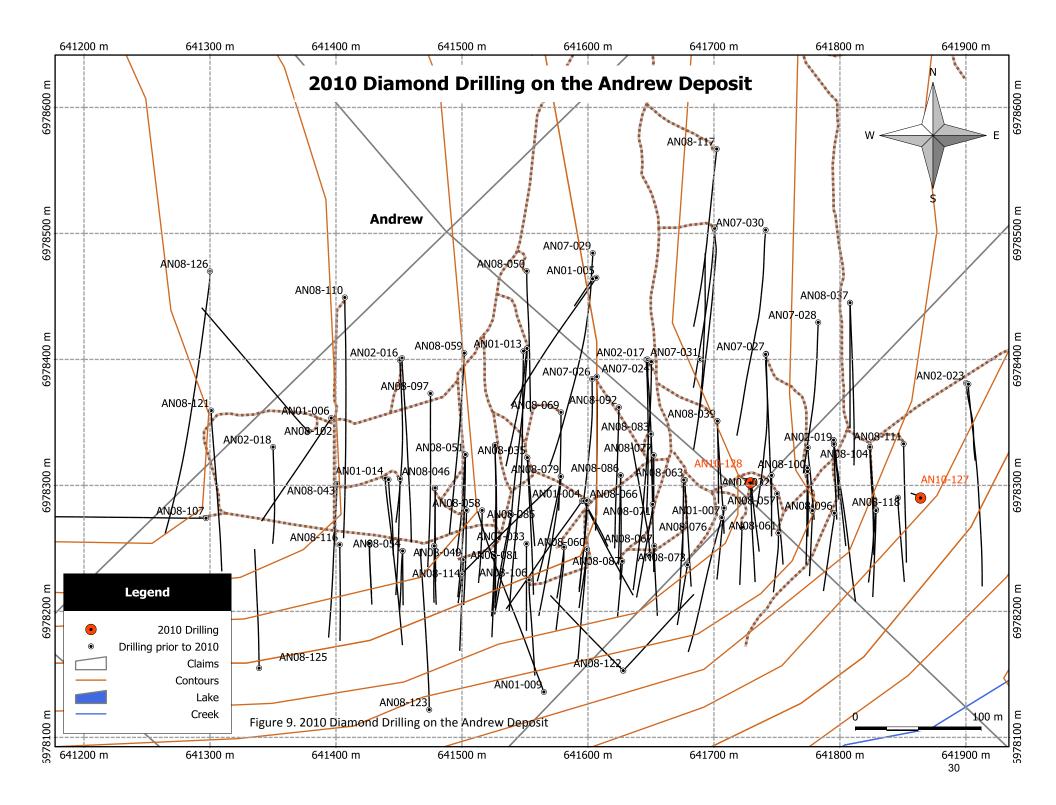
To incorporate the Darcy Zinc Deposit into the feasibility study, samples were collected from drill core on Darcy Zinc Deposit at predefined intervals based on assay grades and lithology. A total of 5 man days were spent selecting, re-splitting and collecting the material for the tests. Samples were compiled in 5 gallon plastic buckets and shipped to SGS Lakefield Laboratories for metallurgical testing and EBA Engineering Consultants for an acid-base accounting study.

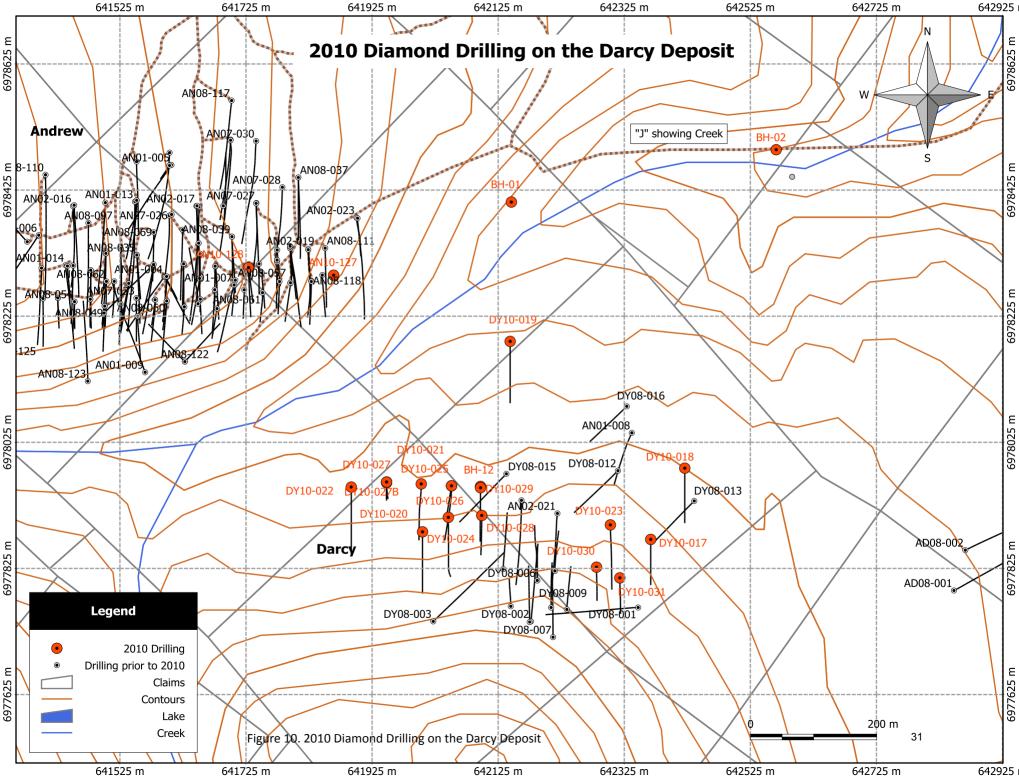
7.5 Exploration Geochemistry

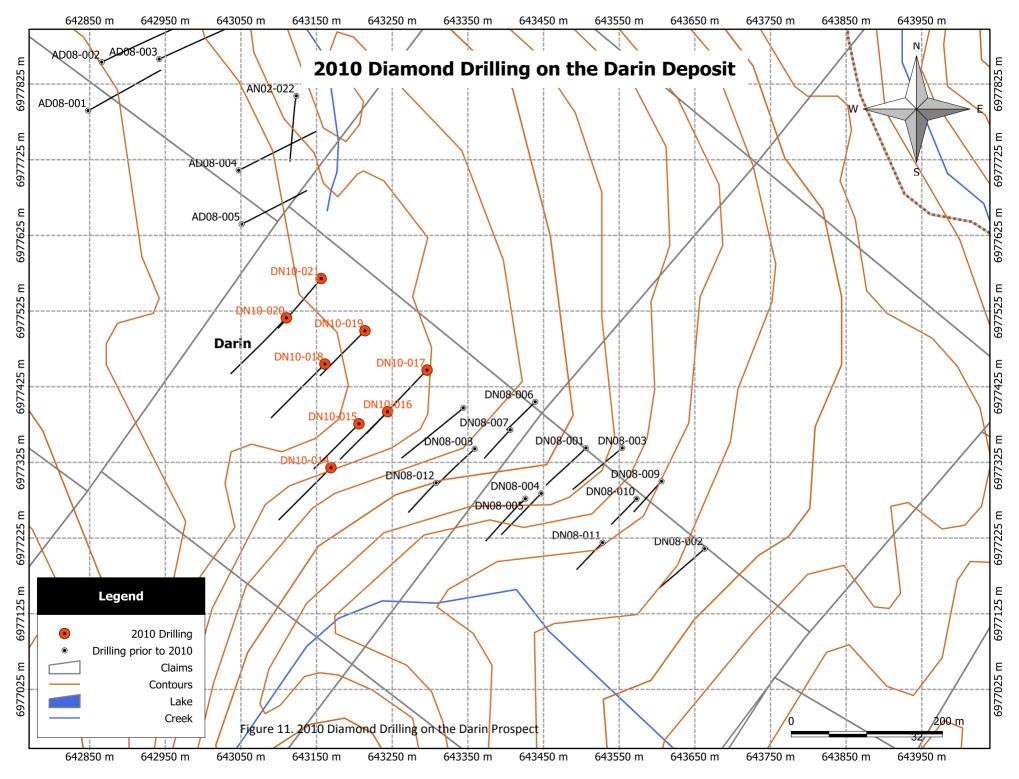
From June 29th to August 1st 2010 Overland Resources spent 11 days collecting 213 soil samples from an area ~500m to the northeast of the Andrew Zinc Deposit. Samples were taken by teams of two technicians on 25 or 50m grid spacing on 9 north-south oriented lines 100m apart. The purpose of the soil sampling program was to infill existing soil lines and expand upon geochemical sample coverage (Figure 8).

All samples were taken using by soil auger and located by handheld GPS. Samples were taken from below the White River Ash layer which is consistently found across the claims from 10-50 beneath the vegetation; technicians made field descriptions of each sample type and marked sample location using flagging tape with the sample number written on it. Samples were sealed in Kraft bags with a sample ticket using zip-ties, sample bags were labelled with the same sample number.

A table of the soil sample assays can be found in Appendix 2 along with assay certificates in Appendix 4.


7.6 Diamond drilling


From July to September 2010 Overland Resources Yukon Ltd. conducted a 3712.1m diamond drilling program consisting of 36 holes. The purpose of which was to expand upon and define potential mineralization on the Darcy Zinc Deposit and Darin Zinc Deposit prospect as well as provide hydro-geological and geotechnical data for planned infrastructure for a feasibility study on the Andrew Zinc Deposit. Eleven holes were drilled on and around the Andrew Deposit; two of which were extended to test Andrew mineralization at depth. Eight holes were drilled to expand drill coverage of the Darin Zinc Deposit to the northwest of previous drilling. Seventeen holes (including 3 abandoned attempts on one setup) were drilled to expand on mineralization at Darcy. All drill sites were located using a handheld GPS in UTM Zone 8 NAD 83. Collars were oriented with a compass and clinometer assuming a 27°E magnetic declination. Surveys were taken by Ranger tool then later a Reflex tool at ~30m depth intervals. Several of the holes were given Ezymark orientation alignment to get a better understanding of structural orientations within the deposit (Figures 8, 9, 10).


Kluane Drilling was contracted for the drilling. All drill moves were helicopter supported by a Bell 206 Jet Ranger. Drill pads were prepared by 2 labourers with chainsaws and hand tools to clear the site of vegetation and soil and 8x8 and 6x6 beams and planks to construct the pads. A few sites were cleared by a D6 Caterpillar bulldozer on site. It took an average of 2-3 days to prepare each site. All diamond drill core from 2010 is NTW size. Drill core is stored on site at the Andrew Camp. All geotechnical/hydrological drilling was vertical except BH11 which used DY10-031 drilled with an Azimuth of 180° and dip of -50°. Appendix 3 summarized the significant assay results and Appendix 4 contains all of the 2010 assay certificates.

PROSPECT	HOLE ID	EASTING	NORTHING	AZIMUTH	DIP	TOTAL DEPTH
ANDREW	AN10-127	641846	6978290	0	-90	182.9
	AN10-128	641729	6978302	0	-90	182.9
	BH01	642146	6978406	0	-90	17.8
	BH02	642566	6978489	0	-90	14.9
	BH03	643031	6978867	0	-90	15.5
	BH04	641517	6979672	0	-90	18.3
	BH05	641780	6979986	0	-90	15.2
	BH06	642285	6979913	0	-90	16.8
	BH07	640643	6977976	0	-90	15.2
	BH08	641664	6979158	0	-90	30.8
	DN10-014	643169	6977318	225	-50	152.4
	DN10-015	643206	6977376	225	-50	132.6
	DN10-016	643244	6977392	225	-50	138.7
DADIN	DN10-017	643296	6977447	225	-50	180
DARIN	DN10-018	643161	6977455	225	-50	156.9
	DN10-019	643214	6977499	225	-50	131.1
	DN10-020	643110	6977516	225	-50	158.5
	DN10-021	643156	6977568	225	-50	131.1
	DY10-017	642367	6977871	180	-50	112.8
	DY10-018	642421	6977984	180	-50	135.7
	DY10-019	642144	6978185	180	-50	152.4
	DY10-020	642005	6977883	180	-50	152.4
	DY10-021	642003	6977959	180	-50	138.7
	DY10-022	641892	6977954	180	-50	164.6
	DY10-023	642303	6977894	180	-50	160
	DY10-024	642046	6977906	180	-50	145.1
DADCV	DY10-025	642051	6977956	180	-50	132.6
DARCY	DY10-026	642051	6977956	180	-70	152.4
	DY10-027	641948	6977962	180	-50	41
	DY10-027A	641948	6977961	180	-50	44.2
	DY10-027B	641948	6977962	180	-50	42
	DY10-028	642099	6977909	180	-50	97.5
	BH12	642097	6977955	360	-90	42.7
	DY10-029	642097	6977953	180	-50	134.1
	DY10-030	642281	6977827	180	-50	83.8
	DY10-031	642318	6977810	180	-50	88.5
				Total D	rilled	3712.1

Table 3. 2010 Diamond Drilling Summary

7.6.1 GEOTECHNICAL DRILL HOLES

BH01; Azimuth 0°, Dip -90° EOH 17.8m

<u>Intention</u>; A standpipe piezometer was installed to test groundwater levels in a proposed waste rock dump location.

BH02; Azimuth 0°, Dip -90° EOH 14.9m

<u>Intention</u>; was drilled to 14.9m A standpipe piezometer was installed to test groundwater levels in a proposed waste rock dump location.

BH03; Azimuth 0°, Dip -90° EOH 15.5m

<u>Intention</u>; A monitoring well was installed to test groundwater levels in a proposed waste rock dump location.

BH04; Azimuth 0°, Dip -90° EOH 18.3m

<u>Intention</u>; A standpipe piezometer was installed to test groundwater levels in a proposed tailings disposal location.

BH05; Azimuth 0°, Dip -90° EOH 15.2m

<u>Intention</u>; A standpipe piezometer was installed to test groundwater levels in a proposed tailings disposal location.

BH06; Azimuth 0°, Dip -90° EOH 16.8m

<u>Intention</u>; A standpipe piezometer was installed to test groundwater levels in a proposed tailings disposal location.

BH07; Azimuth 0°, Dip -90° EOH 15.2m

<u>Intention</u>; A standpipe piezometer installed to monitor groundwater levels in a proposed water dam and storage area.

BH08; Azimuth 0°, Dip -90° EOH 30.8

<u>Intention</u>; was drilled to 30.8m to test geotechnical conditions over a proposed mill-site. A standpipe piezometer was installed in the hole to monitor groundwater levels.

BH12; Azimuth 0°, Dip -90° EOH 42.7

<u>Intention</u>; A standpipe piezometer installed to monitor groundwater levels in the proposed open pit at the Darcy Zinc Deposit area.

Holes BH09, BH10 and BH11 of the geotechnical drilling program were duplicated with exploration holes AN10-127, AN10-128 and DY10-031 respectively.

7.6.2. ANDREW ZINC DEPOSIT

A total of 2 holes were drilled on the Andrew Deposit in 2010. They were designed primarily as geotechnical holes to test the pit wall strength. AN10-127 and AN10-128 were continued beyond the geotechnical target zone to intercept mineralization at depth.

AN10-127 (BH-09); Azimuth 0° Dip -90° EOH 182.9m

Intention: Extend hole down dip of zone beneath planned pit dimension

AN10-127 was drilled to 182.9m. It was collared on section 641860E as a down dip extension to known mineralization and for hydro-geologic purposes. The hole intersected interbedded sandstone and mudstone with two discrete intervals of brecciation and veining and associated base metal mineralization. Three mineralized zones were intersected in AN110-127; 7.3% Zn from 108-117m, 2.8% Zn from 131-138m and 13.7% Zn from 151-163m. The mineralization occurs as calcite/sphalerite vein breccia/stockwork. Mineralization is hosted in Proterozoic Hyland Group rocks, namely the quartz rich Yusezyu sandstone and red and green aphanitic Narchilla mudstone. A monitoring well was installed to measure groundwater levels in the proposed open pit at the Andrew Zinc Deposit.

AN10-128 (BH-10); Azimuth 0° Dip -90° EOH 182.9m

Intention: Extend the drill hole beyond the packer test depth intervals

AN10-128 was drilled to 182.9m. It was drilled on section 641730E as a down dip extension to know mineralization and for hydro-geological and geotechnical purposes. AN10-128 encountered a sedimentary package of Proterozic and Cambrian, variable quartz rich sandstone of the Yusezyu Formation and layered red and green mudstone of the Narchilla Formation, respectively. Cross cutting and brecciating the lithology is a large 43m mineralized zone of quartz/calcite/sphalerite/galena stockwork between 115-158m grading 6.6% Zn and 4.8% Pb. A monitoring well was installed to monitor groundwater levels in the proposed open pit at the Andrew Zinc Deposit. A packer test was performed down the hole to determine geotechnical conditions.

7.6.3 DARCY ZINC DEPOSIT

All drilling on Darcy was oriented at 180° azimuth and -50° dip to best intercept the interpreted geometry of previously drilled mineralization. Drilling to the west of Darcy was done on fences at 50m spacing. Drilling on the east extension of Darcy was done in two 40m step outs with 3 holes targeting extensions to the intercept in DY08-012. Seventeen exploration holes were drilled into the mineralized zone at the Darcy Zinc Deposit during the 2010 Summer Program.

DY10-017; Azimuth 180° Dip -50° EOH 112.8m

Intention; Test extension of DY08-014 mineralization 100m to the east

DY10-017 was drilled to 112.8m. This hole was drilled to test for an eastern extension of the Darcy Zinc Deposit. It intersected interbedded sandstone and sheared mudstone with a red mudstone unit at depth. A weak to moderate quartz/carbonate stockwork hosted in moderate to strongly sheared/faulted intercalations of sandstone and mudstone was encountered. It did not intersect significant mineralization but the drill hole was stopped short of projected intercept depth due to mechanical difficulties during drilling.

DY10-018; Azimuth 180° Dip -50° EOH 135.7m

Intention; 100m step out from DY08-012, testing eastern extension of mineralization.

DY10-018 was drilled to 135.7m to test a possible eastern extension to the intercept of DY08-012 with a coincident soil anomaly. This hole intercepted heavily sheared/faulted quartz rich sandstone and limestone of the Yusezyu formation and red/green Narchilla Fm mudstone. Several barren quartz/carbonate vein systems crosscut and brecciate these lithologies. It did not intersect any significant mineralization.

DY10-019; Azimuth 180° Dip -50° EOH 152.4m

Intention; testing soil anomaly to the north and down slope of the known Darcy Zinc Deposit

DY10-019 was drilled to 152.4m. This hole was drilled to test a broad Zn in soil anomaly in the valley to the east of Andrew and south of Darcy. The sedimentary package encountered in DY10-019 is dominated by Earn Group chert and graphitic mudstones which have been moderately sheared/faulted. There was no mineralization and the hole was not sampled. The soils anomaly is most likely due to downhill dispersion from the nearby deposits.

DY10-020 Azimuth 180° Dip -50° EOH 152.4m

Intention; 100m step out to the west from DY08-008, testing extension of mineralization.

DY10-020 was drilled to 152.4m on section 642000E about 100m west of the previously defined Darcy Zinc Deposit. It collared into mineralization with 6.6m of 2.3% Zn at 2.5m and passed through interbedded sandstone and mudstone ending in red mudstone.

DY10-021 Azimuth 180° Dip -50° EOH 138.7m

Intention; 75m step to the north of DY10-020

DY10-021 was drilled to 138.7m approximately 75m north of DY10-020. It hit 3 zones of mineralization: (1) 6.5% Zn over 7.0m at 27.0m, (2) 3.6% Zn over 3.5m at 37.0m, and (3) 6.7% Zn for 14.0m at 62.0m. The top two zones are likely discontinuous hangingwall zones hosted in interbedded chert and mudstone. The lower zone likely correlates with the intercept in DY10-020 and represents a major structural control of mineralization. It also terminates in a red mudstone package.

DY10-022 Azimuth 180° Dip -50° EOH 164.6m

Intention; 100m step to the west of DY10-020 and DY10-021 fence.

DY10-022 was drilled to 164.6m and was a 100m step out to the west of DY10-021. The drill hole encountered a sedimentary package of variably sheared and faulted intercalated sandstone, mudstone and limestone, with the more ductile mudstone being most strongly deformed. A thin galena vein was found at 80.5m with Pb content of 1.59% over 1m, and was the only mineralization in DY10-022. Further drilling on this section is recommended following completion of a 50m step out on or around site DY10-027.

DY10-023 Azimuth 180° Dip -50° EOH 160m

Intention; 50m step to the east, and 150m to the north (down dip) of DY08-011 and DY08-014.

DY10-023 was drilled to 160.0m. DY10-023 drilled through lithology typical of Hyland Group Sediments, including Yusezyu sandstone and Narchilla mudstone. These rocks host 3 distinct mineralised zones. The first and third zones are quartz/carbonate/sphalerite stockwork overprinting fine grained dark grey sandstone from 10.7m to 34m, and a coarse grained lithic arenite from 67m to 76m with 2.04% Zn and 2.46% Zn, respectively. The second zone is a quartz/carbonate/galena stockwork system with 2.78% Pb over 3m in moderately sheared greenish grey mudstone. All mineralised zones have elevated levels of Barium. The hole passed under the main zone of mineralization at the Darcy Zinc Deposit intersecting a limestone unit in a mudstone package correlative with that in DY10-031. This mineralization is interpreted to be a northwest trending splay zone which correlates with the intercept in DY08-012 and represents a new target for future follow up.

DY10-024 Azimuth 180° Dip -50° EOH 145.1m

Intention; First hole of an infill fence between DY08-015 and DY10-021

DY10-024 was drilled to 145.1m on section 642050E, an infill fence 50m east of DY10-020 and DY10-021. It intersected significant ore grade mineralization including 24.8m of 2.2% Zn at 5.2m, 19.0m of 8.4% Zn from 33.0m, and 8.0m at 3.8% Zn at 87.0m. The hole collared into low grade mineralization hosted by brecciated mudstones and cherts followed by high grade brecciation and intense veining and silicification. A second zone of mineralization occurs at the contact of a major sandstone unit with Narchilla Formation red mudstones interbedded with regular mudstones and a limestone unit.

DY10-025 Azimuth 180° Dip -50° EOH 132.6m

Intention; Second hole of an infill fence between DY08-015 and DY10-021

DY10-025 was drilled to 132.6m about 50m north of DY10-024. It intersected a sequence similar to DY10-024, with hanging wall chert and mudstone followed by a more discrete higher grade mineralised zone. Between 80m to 89m the drill core contained 17.36% Zn with trace amounts of lead, copper and barium; from 105m to 110m was 2.1% Zn. Smaller zones of mineralization from 25m to 26m, 45.5m to 46.5m, 55m to 56m and 118m to 120m contained 11.57% Pb, 2.90% Zn, 3.94% Zn and 4.66% Zn, respectively.

DY10-026 Azimuth 180° Dip -70° EOH 152.4m

Intention; Third hole of an infill fence between DY08-015 and DY10-021

DY10-026 was drilled to 152.4m on the same setup as DY10-025 but at a dip of -70°. It intersected a distinctly correlative stratigraphy with DY10-024 and DY10-025 and hit 7.7m of 1.5% Zn at 53.3m, 23.0m of 4.7% Zn at 90.0m, and 2.0m of 3.0% Zn at 122.0m. This confirmed a steep north to northwest dip of mineralization that may decrease at depth and continuity to >100m depth of the Darcy Zinc Deposit.

DY10-027 Azimuth 180° Dip -50° EOH 41m

Intention; 50m step out west of DY10-021

DY10-027 was drilled to 41.0m. This hole was a 50m step out to the west of DY10-021. It intersected black mudstone interbedded with chert and hit 5.0m of 2.7% Zn at 31.0m, interpreted to be a narrow subparallel hangingwall zone of mineralization. Unfortunately difficult drill conditions at a fault caused the hole to be abandoned before target depth. The Darcy Zinc Deposit remains open to the west along strike.

DY10-027A Azimuth 180° Dip -50° EOH 44.2m

Intention: 2nd attempt on the 50m step out from DY10-021

DY10-027A was drilled to 44.2m. From the same pad, DY10-027A was the second attempt at drilling through the fault zone encountered in DY10-027. It was not successful and terminated at 44.2m. Due to its proximity to DY10-027, the lithology closely mirrored that of its sister drill hole, DY10-027. The ore zone was smaller, from 34m to 36m with 4.55% Zn.

DY10-027B Azimuth 180° Dip -50° EOH 42m

Intention; 3rd attempt at the 50m step out from DY10-021.

DY10-027B was drilled to 42.0m. It also failed to reach its target. The fault at ~40m depth is very clayrich and grips the rods preventing rotation. It is recommended the next attempt be stepped back slightly and drilled with HQ if reducing may be required to pass this depth. It also intersected black mudstone interbedded with chert and hit 4.5m of 4.4% Zn at 31.0m. This demonstrates consistency of mineralization but strong variance in grades between 3 identical holes.

DY10-028 Azimuth 180° Dip -50° EOH 97.5m

Intention; Infill between DY10-024 and DY08-008

DY10-028 was drilled to 97.5m on section 642100E between DY10-024, DY10-025 and DY10-026 with previously drilled mineralization on Darcy from 2008. Little of the original protolith of DY10-028 remains intact due to heavy faulting and brecciation. The upper portion consists of interbedded grey chert and graphitic black mudstone, beneath it limestone, then grey mudstone. The mudstone hosts a small zone of blebby galena/sphalerite mineralization from 40m to 43m with 4.33% and 1.16% Zn, respectively. From 47m to 72m is a heavily brecciated and dominated sphalerite bearing quartz/carbonate stockwork, with incorporated angular clasts of mudstone, limestone and chert hosting 2.98% Zn. It is zoned into three distinct sections from 49m to 53m at 4.1% Zn, 56m to 67m at 3.91% Zn, and 72m to 76m with 5.17% Zn.

DY10-029 (BH12) Azimuth 180° Dip -50° EOH 134.1m

<u>Intention</u>; Planned as a hydro-geology hole; utilized as an exploration hole, 50m step north (down dip) from DY10-028.

DY10-029 was drilled to 134.1m about 50m north of DY10-028. It passed through the same sequence as DY10-028 ending in red mudstone. DY10-029 drilled through intercalated sandstone and chert/graphitic black mudstone of the typifying Earn Group sediments, underlain by limestone, mudstone and sandstone of the Hyland group. Variable faulting and breccciation was found throughout the hole. Two mineralised zones are hosted in the Hyland Group sequence: the first 0.75% Zn and 1.18% Pb within

brecciated limestone from 79m to 85m, the second in sandstone between 98m to 119m grading 2.78% Zn.

DY10-030 Azimuth 180° Dip -50° EOH 83.8m

Intention; 40m step to the east from DY10-014

DY10-030 was drilled to 83.8m, 40m to the east of DY08-014. It intersected mostly mudstones with minor interbedded sandstone cut by 3 discrete high grade zones of brecciation and veining which returned 18.0m of 6.8% Zn from 15.0m, 16.0m of 4.1% Zn from 42.0m, and 2.0m of 11.5% Zn from 67.5m.

DY10-031 (BH11) Azimuth 180° Dip -50° EOH 88.5m

Intention; 40m step to the east of DY10-030

DY10-031 was drilled to 88.5m, a further 40m to the east of DY10-030. It intersected mostly mudstone with minor interbedded sandstone and a limestone unit at depth. There were two discrete zones of mineralization including 2.0m of 1.5% Zn at 25.0m, and 6.0m of 7.4% Zn at 30.0m within broader zones of intense brecciation and silicification. This may represent a pinch of the mineralization but regardless extends the deposit 80m to the east along strike and confirms continuity of a major controlling structure. A standpipe piezometer was later installed on this site to monitor groundwater levels in the proposed Darcy Pit area.

7.6.4 DARIN ZINC DEPOSIT

All holes on the Darin Zinc Deposit were drilled at 225° azimuth and -50° dip to best intercept stratigraphy and steeply sub-parallel mineralization. Three fences ~100m apart were drilled to fully cover the length of anomalous soil geochemistry and surface mineralization encountered during mapping to the northwest of previous year's drilling. Eight exploration holes were drilled into the Darin Zinc Deposit during the 2010 Summer Program.

DN10-014 Azimuth° 225 Dip-50° EOH 152.4m

Intention; The first hole in a fence 100m to the northwest of previous drilling along a soil anomaly

DN10-014 was drilled to 152.4m. It was drilled to test a soil anomaly approximately 100m to the west of mineralization from previous drilling. DN10-014 encountered a package of interbedded quartz-rich sandstones, layered red and green mudstone and calcareous sandstone characteristic of Hyland group sediments. These units had undergone moderate deformation, with metre scale fault zones and barren

quartz/carbonate veining, hosted typically in the more competent sandstone units. Mineralization was restricted to galena bearing carbonate veinlets with 1.07% Pb from 53m to 54m.

DN10-015 Azimuth° 225 Dip-50° EOH 138.6m

<u>Intention</u>; The second hole in a fence 100m to the northwest of previous drilling along a soil anomaly, 75m step back from DY10-014

DN10-015 drilled through a comparable sequence of interbedded Hyland group rocks, as found in DN10-014, with the addition of grey limestone. Sedimentary structures indicate these rocks have been overturned. Weak quartz/carbonate stockwork with trace sphalerite and galena is characteristically hosted in the sandstone; only minor mineralization was encountered with 1.59%Zn from 43.5m-44.5m and 0.96%Pb from 68m-69m.

DN10-016 Azimuth° 225 Dip-50° EOH 138.7m

<u>Intention</u>; The third hole in a fence 100m to the northwest of previous drilling along a soil anomaly, 75m step back from DY10-015

Overturned sandstone and limestone from the Yusezyu Formation, along with mudstone from the Narchilla Formation dominated DN10-016. Rhythmically layered mudstone/siltstone intercalations within the sandstone beds are possible distal turbidite sequences. Mineralization is hosted in quartz/carbonate vein stockwork, and found in two main zones from 66m to 73m with 4.25% Zn and 112m to 115m with 2.2% Zn, 1.3% Pb and elevated copper. Small accessory galena veins between 88m to 90m and 96m to 97m were found to contain 2.8% Pb with elevated copper levels and 5.21% Pb, respectively.

DN10-017 Azimuth° 225 Dip-50° EOH 1180

<u>Intention</u>; The fourth hole in a fence 100m to the northwest of previous drilling along a soil anomaly, 75m step back from DN10-016.

Replicating previous holes, DN10-017 is an overturned sequence of sedimentary rocks from the Cambrian-Ordovician Hyland Group. They have undergone moderate to strong deformation and host quartz/carbonate stockwork. Mineralization occurs as several small accessory veins, at depths greater than 100m, with trace sphalerite and galena. Zinc and lead values range from 0.95% to 2.4% over metre interval, with one larger galena/sphalerite vein from 147m to 149m returning values of 6.16% Pb and 0.9% Zn.

DN10-018 Azimuth° 225 Dip-50° EOH 156.9

Intention; 100m step to the northwest along DN10-016 mineralization projection.

DN10-018 was drilled to 156.9m and was collared on a fence ~100m northwest of DY10-015 DY10-016. The lithology of DN10-018 closely mirrors that of the previous drill holes with a sequence of overturned Hyland Group sediments, quartz rich sandstones, layered mudstone and crystalline to sandy limestone. Moderate deformation with irregular quartz/carbonate stockwork is host to several thin mineralised zones, 23m to 28m contains 1.68% Zn plus elevated copper, 76m to 80m grading 1.24% Zn, and 1.94% Pb between 103m and 105m. Accessory sphalerite veins between 89m and 90m contained 3.58% Zn with elevated copper.

DN10-019 Azimuth° 225 Dip-50° EOH 131.1

Intention; 75m step northeast from DY10-018 and pointed at surface mineralization.

DN10-019 was drilled to 131.1m about 75 northeast of DY10-018 and was the best mineralised hole on Darin in 2010. DY10-019 intersected a sedimentary package dominated by sandstone from the Yusezyu Formation interfingered with red and green mudstone of the Narchilla Formation and Hyland Group Limestone. A zone of significant mineralization was encountered from 19.5m to 40m, consisting of quartz/carbonate/sphalerite stockwork with 3.54% Zn in massive sandstone beds. Several smaller veins of galena and sphalerite were also encountered at greater depths; 53m to 54m had 1.22% Pb, 63m to 64.5m grades 4.4% Zn and 122m to 124m grades 1.04% Zn.

DN10-020 Azimuth° 225 Dip-50° EOH 158.5

Intention; 100m to the northwest off DN10-018 fence

DN10-020 was drilled to 158.5 m on a fence ~100m northwest of holes DY10-018 and DY10-019. The package of interbedded sandstone, mudstone and limestone encountered in DY10-020 hosts weak to moderate pervasive quartz/carbonate stockwork across all lithologies. Mineralization occurs mainly in small isolated veins of sphalerite with less than 1% Zn over a metre. The exceptions were in the following intervals; quartz/galena veining from 52 to 53m with 7.87% Pb, 68m to 71m quartz/carbonate/sphalerite stockwork containing 4.58% Zn, and between 94m and 95m 4.58% Zn in quartz/carbonate/sphalerite stockwork veins.

DN10-021 Azimuth° 225 Dip-50° EOH 131.1

Intention; 75m step to the northeast from DN10-020, 100m northwest of the DY10-018 fence

DN10-021 was drilled to 131.1m about 75m back from DY10-020. DY10-021 is dominated by intercalated sandstone, mudstone and limestone of the Cambrian-Ordovician Hyland Group, correlative with the stratigraphy in DY10-020. Weak to moderate pervasive quartz/carbonate vein stockwork was encountered throughout with trace amounts of sphalerite. Mineralization was restricted to several small isolated veins of galena; 3.22% Pb from 89.5m to 90m and 1.7% Pb from 98m to 99m.

8. CONCLUSIONS AND RECOMMENDATIONS

The Yukon Base Metals Project hosts the Andrew, Darcy and Darin Zinc Deposits, and numerous other base-precious metal targets not limited to lead-zinc vein mineralization. Work conducted in 2010 aimed to extend the known deposits in 36 drillholes over 3,713.1m. Metallurgical and environmental sampling continued for the advancement of the project to future mine development stage. Twenty-two geotechnical test pits and 12 boreholes were completed for these purposes. Eighty –three rock chip samples and 213 soil samples were collected on regional mineral targets that demonstrate base-precious metal potential.

Soil Geochemistry Survey

Anomalous values in the southeast of the area sampled in 2010 can be attributed to downhill dispersion from the topographically higher Andrew and Darcy Zinc Deposits. A roughly east-west trending 300 by 100 m zinc in soil anomaly with peak values of 5970 ppm Zn was highlighted in the northwest corner of the sampling area. Two spot Pb anomalies of 2190 and 8170 ppm Pb occur in the area in association with anomalous Zn results. This anomaly should be followed up with trenching or drilling as similar anomalies are found in association with both Andrew and Darcy Zinc Deposits.

Hugo Creek

Significant disseminated sulphides (ex. pyrite, pyrrhotite) in tabular bodies occur at Hugo Creek. An IP survey is recommended over the area. This survey may provide a response that would be useful for drill targeting of blind mineralization. Trenching over and across high soil values is recommended with further detailed prospecting/mapping.

Pinnacle Prospect

Noranda previously drilled a single hole (AN0110) at 639768, 6983952 at 140 azimuth and -60 dip which encountered no mineralization. This hole is interpreted as being too far a step back and possibly oriented too steeply. With a reasonable understanding of the mineralization and geology at surface, 4

diamond drill holes for a total of ~400 m of drilling is recommended. Two holes on two setups would be recommended at approximately perpendicular orientations to test both the down dip and plunge extensions of mineralization at approximately 50 and 100 m below surface.

Red Precipitate Creek Prospect

The Red Precipitate Creek Prospect may host mineralization however to date the source for these anomalies in outcrop is yet to be identified. Similar anomalies in the region have been attributed to subeconomic isolated stringer systems. The area is likely of low priority for follow-up.

Darcy Zinc Deposit

The Darcy Zinc deposit is comparable and likely related to the Andrew polymetallic brecciation and veining system to the northwest. Extensive core lengths of high-grade mineralization remain open in both strike directions and at depth making Darcy a very high priority target for potential resource expansion in the Andrew Quartz Claims area.

It is recommended that Darcy Zinc Deposit be drill tested both along strike at near surface (~100 m depth) and within existing sections so information (intercepts) from multiple holes on each section may allow for a better interpretation of ore geometry and controls and a higher degree of confidence in resource estimation.

It is recommended that to intercept a potentially steeply north dipping orebody relatively shallowly dipping holes should be drilled towards the south with follow-up holes stepped back down dip to confirm vertical extent and apparent dip on section. With multiple sub-parallel zones a fence of drill holes may be required on section.

Yukon Base Metal Project

The Andrew and Darcy deposits remain open in all directions and future exploration on these deposits has the potential to expand Overland's mineral inventory significantly. The Darin Zinc Deposit has yet to be fully defined, but remains a prospective target that warrants future exploration. Overland's numerous grass-roots regional targets occur in the prospective Selwyn Basin and features of each are progressively being understood.

9. STATEMENT OF QUALIFICATION

Sheila Ulansky Suite 1158-200 Granville Street, Vancouver, British Columbia, V6C 1T2 Tel: (604) 632-9915 Fax: (604) 632-9925 sulansky@overlandresources.com

I, Sheila Ulansky, P.Geo., am a Professional Geoscientist and have been employed as Senior Geologist with Overland Resources at 200 Granville Street, Vancouver, BC from 21st February, 2011.

This certificate applies to the assessment report entitled Geological, Geochemical and Drilling Assessment Report for Quartz Mining Claims Grouping HM02805 dated July 2011.

I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC). I graduated from the University of Victoria with a Bachelor of Science Degree in 2007.

I have practiced my profession continuously since 2007 and have been involved in base and precious metals in projects and operations in North America.

As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument 43–101 Standards of Disclosure for Mineral Projects (NI 43–101).

I have visited the Yukon Base Metal Project numerous times in 2011.

I am responsible for the overall assembly of the assessment report and the preparation of figures and maps.

As of the date of this certificate, to the best of my knowledge, information and belief, the assessment report contains all scientific and technical information that is required to be disclosed to make the assessment report not misleading.

Sheila Ulansky, P.Geo.

Dated:

26 July 2011

APPENDIX 1: ROCK CHIP ASSAY RESULTS

HUGO CREEK

EASTING (UTM)	NORTHING (UTM)	COMMENTS	SAMPLE	Ag ppm	Au ppm	Ba ppm	Pb%	Zn %
637848	6979692	mudstone hosted quartz veining, mudstone grey with mm scale laminations with trace Fe oxide staining	H031561	0.08	<0.2	30	0.014	0.001
638458	6979060	folded mudstone/phyllite brown with weak cleavage openly folded mm scale laminations	H031562	0.04	<0.2	40	0.003	0.009
638987	6978521	black to grey chert massive 5m thick ridge weak fragmental texture	H031563	0.09	<0.2	360	0.007	0.001
639261	6978879	chert with rounded siliceous qtz grains with siliceous matrix and trace 1mm euhedral disseminated pyrite	H031564	0.06	<0.2	40	0.006	0.003
639236	6979213	white to grey ridge of massive quartzite very fine to fine grained with trace disseminated pyrite and Fe oxides	H031565	0.04	<0.2	40	0.003	0.001
639224	6979567	gossanous, grey massive sandstone with fresh 2-3% crystalline euhedral pyrite	H031566	0.23	<0.2	40	0.003	0.001
639201	6979602	grey fine grained massive sandstone with trace fresh pyrite	H031567	0.06	<0.2	40	0.002	0.002
639041	6979528	qtz vein in quartzite 10-30cm thick parallel to bedding milky massive barren	H031568	0.04	<0.2	50	0.002	0.001
639035	6979553	1m wide quartz vein 280 trend steep dip cuts sandstone massive milky quartz	H031569	0.12	<0.2	30	0.002	0.002
638995	6979722	sst hosted qtz vein vuggy to colloform texture up to 25cm thick with 320/90 trend alternating grey and milky quartz overgrows Fe oxides	H031570	1.25	0.2	20	0.003	0.002
638995	6979742	grey siliceous massive with 5% disseminated euhedral py	H031571	0.53	<0.2	40	0.005	0.001
638937	6980645	massive sulphide pod in quartz vein sst hosted with 40-55% py (po) with minor cpy and galena 50cm thick	H031572	71.3	<0.2	50	0.207	0.751
638383	6981149	gossanous pyritic grey mudstone shallow dip interbedded with sandstone	H031573	81.9	<0.2	50	0.296	1.065
638541	6980992	conglomeratic sandstone boulder in creek bed with 2% irregular coarse blebby pyrite concretions cm scale bleached with chert and sandy clasts in a fine sandy matrix	H031574	1.79	<0.2	60	0.052	0.033
638672	6980914	sandy chert is grey brown to gossanous weathered very fine py/po chert is massive	H031575	17	<0.2	70	0.063	0.362
638684	6980910	massive textured, chert or silicified very fine sandstone gossanous with trace py/po	H031576	5.48	<0.2	20	0.015	0.016

639008	6979882	pyrite in both veining and sandstone	H031629	0.01	<0.2	40	0	0.002
639008	6979882	breccia texture, up to 5%, aggregates, nice pyrite crystal, less than 10cm wide, NS	H031630	13.5	<0.2	50	0.293	0.001
639027	6979960	grey, 80 degrees	H031631	0.35	<0.2	70	0.002	0.004
639021	6980028	145 degrees	H031632	0.63	<0.2	20	0.002	0.001
639024	6980570	pyrite 65% (like pyrite vein), 190 deg	H031633	6.36	0.3	30	0.008	0.002
638948	6980639	semi massive sulfide pod within qtz vein at least 1m thick, previous sample 668603	H031634	456	2.6	10	2.5	7.93
638470	6981047	pyrite in qtz vein,fresh,50cm thick,1 meter long, flat line	H031635	0.7	<0.2	10	0.005	0.019
638522	6981039	sulfides within fractures	H031636	12	<0.2	40	0.496	0.439
638707	6980942	rusty weathering, systematic, NS, steep fracture set	H031637	47.5	<0.2	20	0.568	0.607
639429	6979641	blue/grey/orange weathering	H031720	0.05	<0.2	70	0.001	0.007
639419	6979649	quartzite with disseminated py and galena	H031721	0.5	0.5	40	0.004	0
639377	6979701	qtz vein	H031722	0.02	<0.2	20	0	0.001
639300	6979757	2 meter wide, 10 meter long qtz vein.	H031723	0.04	<0.2	<10	0	0
639300	6979806	grey schist, disseminated py	H031724	0.11	<0.2	60	0.001	0.003
639425	6979838	schist, with disseminated py and galena	H031725	28.1	<0.2	20	0.912	0.043
639317	6979765	15m away from large quartz vein	H031726	0.4	<0.2	60	0.008	0.004
639314	6979755	Could be a quartz sandstone	H031727	0.21	<0.2	40	0.004	0.002
639299	6979761	m's away from large Quartz vein	H031728	0.08	<0.2	40	0.001	0.002
639290	6979761	1m away from large quartz vein	H031729	0.68	<0.2	30	0.001	0.001
639292	6979762		H031730	0.05	<0.2	40	0.001	0.002
639279	6979771	5m away from large quartz vein	H031731	0.03	<0.2	30	0	0.001
639258	6979784	Quartz vein	H031732	0.02	<0.2	20	0	0
639248	6979798	Quartz vein	H031733	0.03	<0.2	20	0.002	0.002
639248	6979900	Quartz, Quartzite	H031734	0.17	<0.2	30	0.003	0.002
639301	6979933	Schist, Quartzite	H031735	0.05	<0.2	60	0.001	0.004
639319	6979976	Schist	H031736	0.11	<0.2	130	0.001	0.005
639336	6980132	possible chlorite	H031737	0.07	<0.2	70	0	0.004
639336	6989374	creek bed	H031738	0.03	<0.2	50	0	0.005
639376	6980468	Chert(grey)	H031739	0.1	<0.2	330	0.012	0.005
639433	6980477	Clast supported	H031740	0.27	<0.2	160	0.001	0.013
639498	6980479	found in creek bed	H031741	0.01	<0.2	100	0.001	0.005

639498	6980479	found in creek bed	H031742	8.43	<0.2	150	0.044	0.01
639573	6980486	found in creek bed	H031743	107	<0.2	20	>20	0.693
639612	6980468	found in creek bed	H031744	220	<0.2	60	>20	0.156
638107	6979813	quartz vein in phyllite, white milky massive with trace fresh euhedral pyrite	H031799	0.38	<0.2	60	0.006	0.003
637894	6979755	qtz vein milky massive with trace pyrite phyllite hosted	H031800	0.04	<0.2	10	0.001	0.001

<u>LAD</u>

EASTING	NORTHING	DESCRIPTION	Sample	Ag ppm	Au ppm	Ba ppm	Cu ppm	Pb ppm	Zn ppm
639559	6982380	massive disseminated po/py/cpy in fg quartzite, heavy oxidation	G0669637	0.28	-0.2	450	53.3	5.4	54

<u>PINNACLE</u>

EASTING	NORTHING	COMMENTS	SAMPLE	Ag	Au	Ве	Cu	Pb %	Zn%
(UTM)	(UTM)			ppm	ppm	ppm	ppm	10/0	211/0
639719	6983706	sulfides disseminated throughout sandstone	H031552	121	<0.2	0.26	27400	0.054	6.55
639721	6983863	qtz vein with vuggy galena and cubic py along planes	H031553	94.3	<0.2	<0.05	245	1.175	0.045
639766	6983850	no orientation for vein, vein in interbedded sand and mudstones	H031554	318	0.2	<0.05	1550	6.56	0.92
639742	6983861	massive sulfides that had fallen from the face of the pinnacle outcrop.	H031555	248	<0.2	0.26	11450	10.8	10.7

RED PRECIPITATE CREEK

EASTING	NORTHING	DESCRIPTION	SAMPLE	Ag ppm	Au ppm	Ba ppm	Cu ppm	Ge ppm	Pb ppm	Zn ppm
638639	6978362	quartz vein 1m thick for 15m, sst hosted massive milky qtz	G0669614	0.07	-0.2	140	32.9	- 0.05	0.9	3
638513	6978480	grey mudstone with trace disseminated Fe oxides trace qtz veinlets, weakly graphitic,	G0669615	0.3	-0.2	380	98.8	0.05	41.2	45
638531	6978558	limestone and calcareous shale	G0669616	0.03	-0.2	120	9.8	0.05	8.3	38
638538	6978587	chert with laminated Fe oxides, with trace fresh pyrite	G0669617	0.18	-0.2	160	27.7	0.05	35.7	32
638569	6978635	mm laminated white/grey quartzite sandstone granular to coarse grained.	G0669618	0.02	-0.2	70	3	- 0.05	2.7	14
638440	6978894	massive milky quartz vein	G0669619	0.01	-0.2	10	4	-	1.4	5

								0.05		
638364	6978952	phyllite interbedded with minor coarse sandstone grey with weak cleavage	G0669620	0.19	-0.2	80	13.5	0.08	31.7	70
638403	6978793	sandstone and interbedded mudstone grey with qtz vein massive with 1% py po	G0669621	0.07	-0.2	30	26	0.05	5.1	23
638496	6978607	grab sample 10-30cm thick massive milky quartz vein with 1% py	G0669622	0.14	-0.2	40	51.1	- 0.05	16.1	4
638494	6978588	gossanous graphitic pyritic black mudstone minor qtz veins	G0669623	0.47	-0.2	90	10.3	0.05	37.5	20
638485	6978387	gossanous grey graphitic mudstone.	G0669624	0.34	-0.2	260	90.5	0.1	10.5	110
638104	6977749	qtz veins in grey phyllite	G0669625	0.06	-0.2	10	9.4	- 0.05	3	9
638251	6977438	dk blue grey fissile mudstone with Oheavy hematite/limonite staining	G0669626	0.42	-0.2	100	58.4	0.07	13.5	68
638264	6977384	qtz veins in light grey mg quartzite with moderate Fe staining	G0669627	0.02	-0.2	10	2.9	- 0.05	1.7	7
638334	6978039	blue schist with qtz/cb veins containing po/py and py in schist as well	G0669628	0.02	-0.2	5630	5.4	- 0.05	2	25
638430	6978136	qtz veins in brown/grey phyllite	G0669629	0.02	-0.2	30	2.3	- 0.05	1.1	5
638315	6978541	grey/blue schist with qtz veins and strong Fe weathering	G0669630	0.44	-0.2	120	22.4	0.05	51.3	44
638223	6978484	white precipitate covering rocks in red creek	G0669631	0.36	-0.2	170	64	0.05	44.7	166
638512	6978334	blue/grey phyllite/schist with mild Fe weathering	G0669632	0.23	-0.2	130	27.7	0.05	30.3	90
638529	6978261	dark grey blue schist moderate/strong limonite/hematite weathering	G0669633	0.12	-0.2	30	8.5	- 0.05	40.8	44
638536	6978240	schist with strong Fe weathering and milky qtz veins	G0669634	0.21	-0.2	210	43.3	0.09	34.3	60
638400	6978341	massive cg light grey quartzite with minor disseminated py(asp?)	G0669635	0.19	-0.2	170	37.8	0.08	29	51
637464	6978592	dark grey/blue phyllite/schist with minor fe weathering	G0669636	0.16	-0.2	10	16.2	0.05	47.7	52

APPENDIX 2: 2010 SOIL SAMPLES

Prospect	Lease	Easting	Northing	Sample Number	Ba ppm	Cu ppm	Ge ppm	Pb ppm	Zn ppm
Andrew	ANDREW8	642002	6978622	G0669714	100	17.9	0.05	32.9	110
Andrew	ANDREW8	642002	6978642	G0669715	290	47.9	0.07	368	372
Andrew	AMB19	641999	6978673	G0669716	150	19.2	0.05	121.5	246
Andrew	AMB19	641996	6978699	G0669717	160	23.6	-0.05	35.9	87
Andrew	AMB19	642008	6978716	G0669718	150	26.3	0.09	40	293
Andrew	AMB19	642008	6978716	G0669719	150	25.2	0.07	38.8	304
Andrew	AMB19	642009	6978749	G0669720	160	32.3	0.07	145.5	1820
Andrew	AMB19	642008	6978774	G0669721	140	21.8	0.07	198	1480
Andrew	AMB19	642009	6978796	G0669722	180	36.2	0.14	46.8	355
Andrew	AMB19	642001	6978822	G0669723	210	23.2	0.09	323	325
Andrew	AMB19	642006	6978854	G0669724	110	22.6	0.12	2190	868
Andrew	AMB19	642003	6978880	G0669725	120	71	0.19	1795	1360
Andrew	AMB19	642002	6978901	G0669726	100	24.1	0.1	179.5	394
Andrew	AMB19	642006	6978931	G0669727	160	28.8	0.13	334	432
Andrew	AMB19	642008	6978951	G0669728	130	12.7	0.05	101	101
Andrew	AMB19	642002	6978972	G0669729	170	20.9	0.1	106.5	443
Andrew	AMB19	641997	6978999	G0669730	100	30.8	0.1	89.9	1740
Andrew	AMB19	641997	6979023	G0669731	110	24.5	0.06	33.5	3510

Andrew	AMB19	642001	6979044	G0669732	200	60.6	0.05	24.3	5970
Andrew	AMB19	642000	6979066	G0669733	130	17.5	0.06	21.2	273
Andrew	AMB20	641995	6979090	G0669734	220	38.8	0.08	38.9	729
Andrew	AMB19	642100	6978637	G0669735	210	68.4	0.06	53	448
Andrew	AMB19	642100	6978665	G0669736	140	18.1	0.06	26.9	81
Andrew	AMB19	642105	6978690	G0669737	170	16.3	0.09	34.2	117
Andrew	AMB19	642103	6978714	G0669738	160	19.2	0.07	45	187
Andrew	AMB19	642098	6978741	G0669739	130	28.1	0.06	47.5	1210
Andrew	AMB19	642099	6978765	G0669740	120	23.6	0.07	47	1220
Andrew	AMB19	642103	6978791	G0669741	230	43	0.08	63	434
Andrew	AMB19	642111	6978817	G0669742	250	50.1	0.07	62.2	489
Andrew	AMB19	642116	6978845	G0669743	210	42.1	0.08	66.3	670
Andrew	AMB19	642110	6978866	G0669744	200	35.7	0.07	137	392
Andrew	AMB19	642107	6978894	G0669745	170	17.5	0.06	79.3	143
Andrew	AMB19	642107	6978917	G0669746	200	23.6	0.06	155.5	153
Andrew	AMB19	642104	6978945	G0669747	80	28.6	0.07	52.7	137
Andrew	AMB19	642104	6978970	G0669748	90	26.3	-0.05	40.4	237
Andrew	AMB19	642103	6978992	G0669749	130	31.7	0.13	507	3530
Andrew	AMB20	642099	6979019	G0669750	190	22.8	0.08	54.6	3760
Andrew	AMB17	642301	6978622	G0669751	210	15.1	0.07	13	160
Andrew	AMB17	642300	6978652	G0669752	30	5	-0.05	2.6	17

Andrew	AMB17	642297	6978681	G0669753	90	12.1	0.06	16.9	42
Andrew	AMB17	642301	6978711	G0669754	180	19.1	0.1	125	265
Andrew	AMB17	642301	6978743	G0669755	60	13.4	0.11	75	192
Andrew	AMB19	642298	6978769	G0669756	100	13.6	0.09	20	74
Andrew	AMB19	642298	6978798	G0669757	110	8.4	0.06	20	50
Andrew	AMB19	642294	6978826	G0669758	110	31.7	0.1	37.6	140
Andrew	AMB19	642299	6978850	G0669759	130	20.8	0.1	47.4	149
Andrew	AMB20	642295	6978873	G0669760	140	21.7	0.08	28.4	125
Andrew	AMB20	642295	6978898	G0669761	150	25.6	0.07	37.6	252
Andrew	AMB20	642296	6978930	G0669762	160	41.9	0.1	74	688
Andrew	AMB20	642299	6978953	G0669763	190	52.4	0.14	33.6	251
Andrew	AMB20	642310	6978979	G0669764	110	27.8	0.09	50	328
Andrew	AMB20	642322	6979007	G0669765	110	17.8	0.1	42	193
Andrew	AMB20	642320	6979037	G0669766	280	46.2	0.1	47.3	311
Andrew	AMB20	642324	6979059	G0669767	230	26.7	0.1	47.7	332
Andrew	AMB20	642306	6979007	G0669768	200	38	0.13	28.2	78
Andrew	AMB20	642322	6979112	G0669769	350	33.3	0.1	53.3	306
Andrew	AMB20	642401	6979100	G0669770	120	11	0.07	27.8	142
Andrew	AMB20	642401	6979100	G0669771	120	15.8	0.09	26.4	159
Andrew	AMB20	642386	6979066	G0669772	170	9.7	0.1	25.9	52
Andrew	AMB20	642366	6979044	G0669773	380	83.6	0.15	56.7	159

Andrew	AMB17	642402	6978648	G0669774	150	11.9	0.1	33.2	75
Andrew	AMB17	642422	6978677	G0669775	180	34.6	0.16	50.2	89
Andrew	AMB17	642424	6978703	G0669776	170	27.3	0.14	44.1	149
Andrew	AMB17	642426	6978731	G0669777	210	26.9	0.12	57.5	194
Andrew	AMB17	642425	6978754	G0669778	120	42.2	0.16	34.1	95
Andrew	AMB18	642416	6978776	G0669779	120	45.1	0.14	73.2	217
Andrew	AMB18	642416	6978800	G0669780	160	32.3	0.11	19.1	87
Andrew	AMB18	642419	6978829	G0669781	250	32.5	0.16	13.7	51
Andrew	AMB18	642417	6978856	G0669782	240	37.5	0.13	23.9	124
Andrew	AMB18	642419	6978897	G0669783	250	48.2	0.12	26.4	127
Andrew	AMB18	642414	6978908	G0669784	110	14.6	0.11	30.1	190
Andrew	AMB20	642409	6978928	G0669785	170	32	0.12	49.8	215
Andrew	AMB20	642406	6978952	G0669786	150	30.9	0.11	70.8	249
Andrew	AMB20	642403	6978979	G0669787	350	97.3	0.07	71.5	248
Andrew	AMB20	642385	6979002	G0669788	510	61.6	0.06	43.6	158
Andrew	AMB20	642381	6979031	G0669789	240	32.8	0.05	11.3	43
Andrew	AMB20	642505	6979097	G0669790	160	21.9	0.09	32	151
Andrew	AMB20	642505	6979097	G0669791	190	31	0.13	40.9	161
Andrew	AMB18	642558	6979068	G0669792	40	4	-0.05	3.6	19
Andrew	AMB18	642601	6979036	G0669793	90	13.2	0.05	23.6	28
Andrew	AMB18	642609	6979008	G0669794	230	34.6	0.07	24.2	100

Andrew	AMB18	642586	6978984	G0669795	190	35.3	0.09	60.6	263
Andrew	AMB18	642582	6978961	G0669796	180	28.9	0.06	28.9	142
Andrew	AMB18	642588	6978940	G0669797	180	31.7	0.08	54.6	116
Andrew	AMB18	642591	6978883	G0669798	50	11.6	-0.05	4.8	22
Andrew	AMB18	642588	6978858	G0669799	60	21.8	0.08	15	58
Andrew	AMB18	642574	6978835	G0669800	180	17.9	0.08	17.5	40
Andrew	AMB18	642572	6978809	G0669801	20	3.7	-0.05	1.4	6
Andrew	AMB18	642566	6978785	G0669802	50	6.5	-0.05	3.2	9
Andrew	AMB18	642558	6978764	G0669803	200	19.1	0.07	12.4	37
Andrew	AMB18	642543	6978736	G0669804	80	13.2	0.09	21.8	42
Andrew	AMB18	642535	6978715	G0669805	100	5.5	-0.05	10.2	33
Andrew	AMB17	642522	6978696	G0669806	100	7.1	-0.05	10.1	51
Andrew	AMB17	642517	6978670	G0669807	50	5.9	-0.05	14.5	25
Andrew	AMB17	642505	6978642	G0669808	110	9.6	0.05	17.5	75
Andrew	AMB17	642496	6978623	G0669809	200	14.3	0.09	24.1	82
Andrew	AMB17	642596	6978627	G0669810	160	28.3	0.12	55.4	77
Andrew	AMB17	642596	6978627	G0669811	150	27.3	0.12	51.6	81
Andrew	AMB18	642577	6978681	G0669812	150	19.3	0.07	79	291
Andrew	AMB18	642586	6978726	G0669813	190	36.6	0.1	44.5	100
Andrew	AMB18	642596	6978779	G0669814	150	28	0.1	40.8	93
Andrew	AMB18	642600	6978827	G0669815	120	31.3	0.1	30.1	96

Andrew	AMB18	642600	6978870	G0669816	80	13	0.07	25.9	58
Andrew	AMB18	642600	6978923	G0669817	360	42.1	0.09	79.8	145
Andrew	AMB18	642600	6979073	G0669818	130	23	0.14	33.8	102
Andrew	AMB18	642600	6979130	G0669819	100	11.7	0.09	17.6	56
Andrew	AMB20	642502	6979074	G0669820	190	10.1	0.08	14.4	93
Andrew	AMB18	642499	6979048	G0669821	170	22.7	0.1	57.5	220
Andrew	AMB18	642506	6979018	G0669822	180	31.5	0.09	38.1	160
Andrew	AMB18	642499	6978999	G0669823	190	33.3	0.1	43.4	162
Andrew	AMB18	642500	6978975	G0669824	260	16.9	0.07	17.6	62
Andrew	AMB18	642504	6978949	G0669825	220	17.8	0.07	39	123
Andrew	AMB18	642504	6978921	G0669826	190	24.8	0.07	38.3	154
Andrew	AMB18	642502	6978899	G0669827	210	42.5	0.11	27.6	122
Andrew	AMB18	642499	6978872	G0669828	70	13.2	0.07	18.2	76
Andrew	AMB18	642499	6978853	G0669829	200	34.4	0.1	36.3	143
Andrew	AMB18	642498	6978823	G0669830	110	27.8	0.09	32.8	103
Andrew	AMB18	642498	6978823	G0669831	100	23.5	0.09	30.9	93
Andrew	AMB18	642500	6978795	G0669832	220	31.4	0.12	33.3	116
Andrew	AMB18	642502	6978775	G0669833	260	34.3	0.12	67.9	213
Andrew	AMB18	642501	6978748	G0669834	140	40.2	0.13	51.5	114
Andrew	AMB9	642700	6978125	G0669835	70	47.4	0.11	33.3	304
Andrew	AMB9	642700	6978151	G0669836	130	15.4	-0.05	26.8	710

Andrew	AMB9	642704	6978178	G0669837	120	32.3	0.1	83.5	379
Andrew	AMB9	642698	6978206	G0669838	60	22.3	0.07	83.2	374
Andrew	AMB9	642703	6978228	G0669839	60	28.5	0.09	48.1	227
Andrew	AMB9	642700	6978255	G0669840	220	41.7	0.09	30.2	161
Andrew	AMB9	642701	6978275	G0669841	250	40.8	0.1	24.9	145
Andrew	AMB9	642696	6978302	G0669842	130	13.2	-0.05	9.4	53
Andrew	AMB9	642702	6978327	G0669843	130	59.1	0.25	139.5	871
Andrew	AMB9	642702	6978349	G0669844	110	44.2	0.1	133.5	515
Andrew	AMB9	642701	6978376	G0669845	120	38.9	0.1	225	1080
Andrew	AMB9	642700	6978400	G0669846	190	45.9	0.08	107	636
Andrew	AMB9	642697	6978427	G0669847	220	52.3	0.1	116	483
Andrew	AMB9	642703	6978452	G0669848	210	45.2	0.07	126.5	463
Andrew	AMB9	642695	6978480	G0669849	200	43.5	0.09	75.7	1410
Andrew	AMB11	642697	6978497	G0669850	170	30.8	0.05	58.2	212
Andrew	AMB11	642697	6978497	G0669851	200	31.7	0.07	60	202
Andrew	AMB11	642701	6978530	G0669852	100	13.1	0.06	35.1	88
Andrew	AMB11	642702	6978551	G0669853	270	13.3	0.06	30.2	105
Andrew	AMB11	642702	6978578	G0669854	170	35.2	0.06	11.2	35
Andrew	AMB11	642691	6978611	G0669855	120	17.2	-0.05	4.3	21
Andrew	AMB11	642702	6978622	G0669856	280	37.3	0.07	29.4	169
Andrew	AMB18	642698	6978654	G0669857	140	30.9	0.09	53.5	111

Andrew	AMB18	642701	6978672	G0669858	140	30.2	0.07	52.8	203
Andrew	AMB18	642702	6978704	G0669859	180	25.5	0.11	14.8	64
Andrew	AMB18	642701	6978724	G0669860	120	20.5	0.07	10.6	66
Andrew	AMB18	642703	6978749	G0669861	170	14.2	0.1	16.4	58
Andrew	AMB18	642699	6978777	G0669862	150	29.8	0.07	49.3	127
Andrew	AMB18	642699	6978798	G0669863	210	35.4	0.09	23.2	67
Andrew	AMB18	642699	6978827	G0669864	140	13.1	-0.05	19.4	58
Andrew	AMB18	642696	6978851	G0669865	90	16.8	0.06	25	69
Andrew	AMB18	642695	6978883	G0669866	140	39.9	0.08	92.3	158
Andrew	AMB18	642696	6978915	G0669867	270	37.2	0.05	37.8	117
Andrew	AMB18	642693	6978950	G0669868	230	32.7	0.07	63	184
Andrew	AMB18	642695	6978976	G0669869	160	30.2	0.09	65.4	100
Andrew	AMB18	642704	6979000	G0669870	150	27.5	0.1	26	61
Andrew	AMB18	642720	6979031	G0669871	120	21.4	0.08	30.1	57
Andrew	AMB18	642726	6979056	G0669872	200	11.7	0.05	17.9	57
Andrew	AMB18	642718	6979091	G0669873	110	12.2	0.07	24.8	80
Andrew	AMB18	642701	6979099	G0669874	170	13.8	0.11	19	67
Andrew	AMB20	642094	6979047	G0675851	150	71.3	0.09	85.5	1400
Andrew	AMB20	642095	6979071	G0675852	160	29.5	0.06	267	520
Andrew	AMB20	642099	6979092	G0675853	100	14.1	0.1	8170	3430
Andrew	AMB17	642195	6978605	G0675854	80	9.1	0.12	15.5	87

Andrew	AMB17	642187	6978634	G0675855	250	17.6	0.08	19.8	118
Andrew	AMB19	642172	6978659	G0675856	150	23.2	0.09	41.5	107
Andrew	AMB19	642164	6978692	G0675857	320	137	0.12	232	556
Andrew	AMB19	642176	6978715	G0675858	210	78	0.1	111.5	478
Andrew	AMB19	642198	6978734	G0675859	140	41.3	0.12	45.3	172
Andrew	AMB19	642206	6978758	G0675860	110	28.4	0.11	29.6	73
Andrew	AMB19	642204	6978786	G0675861	80	15.8	0.08	5.2	59
Andrew	AMB19	642205	6978813	G0675862	290	48.6	0.08	40.3	343
Andrew	AMB19	642207	6978834	G0675863	170	21	0.17	35.6	257
Andrew	AMB19	642213	6978864	G0675864	120	25	0.1	43.2	175
Andrew	AMB19	642210	6978888	G0675865	350	86.3	0.12	38.1	238
Andrew	AMB19	642210	6978918	G0675866	330	53.9	0.12	31.4	312
Andrew	AMB20	642203	6978955	G0675867	220	72.6	0.13	58	2290
Andrew	AMB20	642197	6978981	G0675868	160	24.2	0.12	19.8	496
Andrew	AMB20	642205	6979000	G0675869	270	94.8	0.1	60	3040
Andrew	AMB20	642200	6979029	G0675870	260	85.9	0.14	57.2	351
Andrew	AMB20	642205	6979052	G0675871	230	140.5	0.14	43.3	240
Andrew	AMB20	642200	6979078	G0675872	240	44	0.13	77.3	283
Andrew	AMB20	642204	6979106	G0675873	210	26.3	0.12	72.9	150
Andrew	AMB9	642801	6978124	G0675874	120	12.3	0.09	41.1	112
Andrew	AMB9	642801	6978137	G0675875	240	30.2	0.05	15.2	77

Andrew	AMB9	642774	6978162	G0675876	80	21.5	0.15	32.6	117
Andrew	AMB9	642765	6978188	G0675877	140	9.7	0.09	11.1	44
Andrew	AMB9	642780	6978208	G0675878	290	18	0.08	25.3	168
Andrew	AMB9	642785	6978228	G0675879	160	34.7	0.13	22.1	102
Andrew	AMB9	642786	6978254	G0675880	110	29	0.1	89.3	328
Andrew	AMB9	642790	6978280	G0675881	250	30	0.08	57.9	187
Andrew	AMB9	642788	6978304	G0675882	160	37.5	0.09	28	126
Andrew	AMB9	642788	6978333	G0675883	180	38.1	0.08	22.4	97
Andrew	AMB9	642796	6978358	G0675884	200	65.2	0.12	30.6	114
Andrew	AMB9	642800	6978385	G0675885	270	59.7	0.09	35.9	181
Andrew	AMB11	642800	6978411	G0675886	270	43.4	0.1	27	117
Andrew	AMB11	642805	6978436	G0675887	180	50	0.12	53.3	154
Andrew	AMB11	642807	6978459	G0675888	260	35.1	0.11	42.4	183
Andrew	AMB11	642808	6978485	G0675889	180	44.2	0.11	28.2	115
Andrew	AMB11	642804	6978509	G0675890	220	41.9	0.11	22.6	96
Andrew	AMB11	642797	6978565	G0675891	410	38.9	0.07	29.2	117
Andrew	AMB11	642790	6978618	G0675892	180	22.9	0.07	36.6	125
Andrew	AMB11	642795	6978668	G0675893	200	22.8	0.08	61.3	82
Andrew	AMB11	642799	6978721	G0675894	180	25.5	0.07	51.6	315
Andrew	AMB18	642794	6978769	G0675895	200	32.7	0.11	29.7	337
Andrew	AMB18	642797	6978822	G0675896	190	34.1	0.1	28.3	330

Andrew	AMB18	642797	6978822	G0675897	100	67.2	0.12	32	200
Andrew	AMB18	642802	6978871	G0675898	140	38.7	0.11	64.7	159
Andrew	AMB18	642799	6978918	G0675899	110	29.6	0.08	15	56
Andrew	AMB18	642801	6978968	G0675900	150	356	0.16	24.7	90
Andrew	AMB18	642800	6979018	G0675901	230	77.8	0.1	51	1320
Andrew	AMB18	642799	6979073	G0675902	230	33.7	0.07	67.3	217

Hole ID	Sample ID	Depth From (m)	Depth To (m)	Zn %	Pb %	Cu g/t	Ge g/t
AN10-127	G0681733	108	109	5.96			
AN10-127	G0681734	109	110	7.65			
AN10-127	G0681735	110	111	7.29		2760	
AN10-127	G0681736	111	112	5.53			
AN10-127	G0681737	112	113	14.1			
AN10-127	G0681738	113	114	7.59			
AN10-127	G0681739	114	115	5.63			
AN10-127	G0681741	115	116	9.7		423	
AN10-127	G0681742	116	117	2.9			
AN10-127	G0681751	124.5	125.5	5.41			
AN10-127	G0681757	131	132	4.02			
AN10-127	G0681758	132	133	3.41			
AN10-127	G0681759	133	134	0.902			
AN10-127	G0681761	134	135	2.46			
AN10-127	G0681762	135	136	5.35			
AN10-127	G0681763	136	137	2.04			
AN10-127	G0681764	137	138	1.8			
AN10-127	G0681768	140	141	2.28			
AN10-127	G0681775	149	150		1.415		
AN10-127	G0681777	151	152	12.7			
AN10-127	G0681778	152	153	8.63			
AN10-127	G0681779	153	154	18.35			
AN10-127	G0681781	154	155	25.5		317	3.07
AN10-127	G0681782	155	156	26			1.12
AN10-127	G0681783	156	157	18.65			
AN10-127	G0681784	157	158	14.25			
AN10-127	G0681786	158	159	6.98			
AN10-127	G0681787	159	160	5.43			
AN10-127	G0681788	160	161	12			
AN10-127	G0681789	161	162	11.8			
AN10-127	G0681791	162	163	4.01			
AN10-128	G0681794	112.4	113.4		3.49		

AN10-128	G0681795	113.4	115.2		1.33		
AN10-128	G0681796	115.2	115.7	22.1	1.615		
AN10-128	G0681797	115.7	116.9	1.085			
AN10-128	G0681798	116.9	117.7	0.944			
AN10-128	G0681801	119	120	2.71	17.35		
AN10-128	G0681802	120	121		14.85		
AN10-128	G0681803	121	122	1.245			
AN10-128	G0681806	123	124	1.345			
AN10-128	G0681807	124	125	4.21			
AN10-128	G0681808	125	126	1.27			
AN10-128	G0681809	126	127	1.635			
AN10-128	G0681812	128	129	5.59			
AN10-128	G0681813	129	130	2.14			
AN10-128	G0681815	131	132	5.43			
AN10-128	G0681816	132	133	5.92			
AN10-128	G0681817	133	134	2.89			
AN10-128	G0681818	134	135	4.36			
AN10-128	G0681821	136	137	1.63			
AN10-128	G0681822	137	138	1.23			
AN10-128	G0681823	138	139	7.38			
AN10-128	G0681835	139	140	2.53			
AN10-128	G0681824	140	141	2.21			
AN10-128	G0681831	144.95	145.95	30		311	6.84
AN10-128	G0681832	145.95	146.95	23.6			2.99
AN10-128	G0681833	146.95	147.95	30		405	30.1
AN10-128	G0681834	147.95	148.5	30			5.65
AN10-128	G0681836	148.5	150	2.31			
AN10-128	G0681837	150	151	11.4			
AN10-128	G0681838	151	152	17.55			
AN10-128	G0681839	152	153	19.35			1.08
AN10-128	G0681841	153	154	13.2			
AN10-128	G0681842	154	155	9.08			
AN10-128	G0681843	155	156	4.55			
AN10-128	G0681846	157	158	2.42			
DN10-014	G0681854	53	54		1.065		
DN10-015	G0681857	43.5	44.5	1.585			
DN10-016	G0681895	51	52	1.305			
DN10-016	G0681886	66	67	1.315			

DN10-016	G0681887	67	68	1.815			
DN10-016	G0681891	70	71	1.12			
DN10-016	G0681892	71	72	1.27			
DN10-016	G0681893A	72	73	23.7			
DN10-016	G0681899	88	89		1.22	1185	
DN10-016	G0681901	89	90		4.39		
DN10-016	G0681909	96	97		5.21		
DN10-016	G0681915	112	113	4.69		3810	
DN10-016	G0681916	113	114		2.62		
DN10-016	G0681917	114	115	1.78			
DN10-017	G0682519	113	114	2.39			
DN10-017	G0682528	139	140	1.795			
DN10-017	G0682537	147	148	1.73	11.2		
DN10-017	G0682538	148	149		1.115		
DN10-017	G0682549	157	158	1.02			
DN10-017	G0682552	159	160.5	1.06			
DN10-017	G0682556	163.5	165		1.71		
DN10-017	G0682559	168	169.5		1.05		
DN10-017	G0682563	172.5	174		1.415		
DN10-018	G0682568	24	25	1.75			
DN10-018	G0682571	26	27	5.19			
DN10-018	G0682573	28	29	1.355		319	
DN10-018	G0682574	76	77	2.36			
DN10-018	G0682577	79	80	2.51			
DN10-018	G0682582	89	90	3.58		969	
DN10-018	G0682591	103	104		2.2		
DN10-018	G0682592	104	105		1.675		
DN10-019	G0682608	19.5	20.5	15.85			
DN10-019	G0682609	20.5	22	4.25			
DN10-019	G0682612	23	24	2.48			
DN10-019	G0682614	25	26	1.07			
DN10-019	G0682616	27	28	3.9			
DN10-019	G0682618	29	30	6.57			
DN10-019	G0682622	32	33	2.88			
DN10-019	G0682623	33	34	1.59			
DN10-019	G0682624	34	35	7.21			
DN10-019	G0682626	35	36	15.05			
DN10-019	G0682627	36	37	1.77			

DN10-019	G0682629	38	39	3.82			
DN10-019	G0682631	39	40	3.85			
DN10-019	G0682649	53	54		1.22		
DN10-019	G0682641	63	64.5	4.4			
DN10-019	G0682652	123	124	1.11			
DN10-020	G0682656	9.8	10.8	1.135			
DN10-020	G0682661	13.8	14.8	1.77			
DN10-020	G0682675	52	53		7.87		
DN10-020	G0682686	68	69	1.15			
DN10-020	G0682688	70	71	3.81			
DN10-020	G0682694	94	95	4.58			
DN10-021	G0682711	89.9	90.4		3.22		
DN10-021	G0682713	98	99	1.695	5.19		
DY10-020	G0681919	2.5	4	4.23			
DY10-020	G0681921	4	5	3.5			
DY10-020	G0681922	5	6	1.295			
DY10-020	G0681923	6	7	1.24			
DY10-020	G0681926	8	9.1	1.97			
DY10-021	G0681927	27	28	4.25			
DY10-021	G0681928	28	29	2.94			
DY10-021	G0681929	29	30	28.4		412	2.95
DY10-021	G0681931	30	31	1.28			
DY10-021	G0681932	31	32	5.64			
DY10-021	G0681933	32	33	2.06			
DY10-021	G0681934	33	34	1.04			
DY10-021	G0681938	37	38	9.69			
DY10-021	G0681941	39	40.5	1.545			
DY10-021	G0681954	55.5	57	3.9			
DY10-021	G0681956	57	58	1.265			
DY10-021	G0681961	61	62	0.962			
DY10-021	G0681962	62	63	1.65			
DY10-021	G0681963	63	64	2.95			
DY10-021	G0681964	64	65	0.992			
DY10-021	G0681966	65	66	1.56			
DY10-021	G0681967	66	67	1.57			
DY10-021	G0681968	67	68	22			
DY10-021	G0681969	68	69	9.16			
DY10-021	G0681970	69	70	9.01			

DY10-021	G0681972	70	71	30			1.06
DY10-021	G0681973	71	72	2.16			
DY10-021	G0681974	72	73	6.37			
DY10-021	G0681975	73	74	2.29			
DY10-021	G0681976	74	75	2.6			
DY10-021	G0681977	75	76	1.57			
DY10-022	G0682653	79.5	80.5		1.59		
DY10-023	G0682726	10.7	11.7	1.295			
DY10-023	G0682727	11.7	13	1.78			
DY10-023	G0682728	13	14	1.355			
DY10-023	G0682729	14	15	4.16			
DY10-023	G0682731	15	16	3.07			
DY10-023	G0682732	16	17	2.05			
DY10-023	G0682733	17	18	1.215			
DY10-023	G0682736	20	21	1.45			
DY10-023	G0682737	21	22	3.08			
DY10-023	G0682739	23	24	0.964			
DY10-023	G0682741	24	25	3.95			
DY10-023	G0682742	25	26	2.56			
DY10-023	G0682746	28	29	2.35			
DY10-023	G0682747	29	30	0.975			
DY10-023	G0682748	30	31	6.85			
DY10-023	G0682749	31	32	2.49			
DY10-023	G0682751	32	33	2.54			
DY10-023	G0682752	33	34	2.04			
DY10-023	G0682766	53	54		2.88		
DY10-023	G0682767	54	55		3.13	461	
DY10-023	G0682768	55	56		2.34		
DY10-023	G0682776	67	68	1.6			
DY10-023	G0682778	69	70	1.165			
DY10-023	G0682779	70	71	15.35			
DY10-023	G0682781	71	72	1.945			
DY10-023	G0682786	75	76	1.925			
DY10-024	G0682791	5.2	7.2	1.605			
DY10-024	G0682792	7.2	9.1	0.903			
DY10-024	G0682793	9.1	10.7	2.01			
DY10-024	G0682795	11.9	13.7	3.37			
DY10-024	G0682796	13.7	15.2	2.61			

DY10-024	G0682797	15.2	16.8	2.9		
DY10-024	G0682798	16.8	18	2.28		
DY10-024	G0682799	18	19.2	1.775		
DY10-024	G0682801	19.2	20	4.11		
DY10-024	G0682802	20	21	2.83		
DY10-024	G0682806	23	24	2.65		
DY10-024	G0682807	24	25	6.67		
DY10-024	G0682808	25	26	3.68		
DY10-024	G0682809	26	27	1.305		
DY10-024	G0682812	28	29	2.04		
DY10-024	G0682813	29	30	2.46		
DY10-024	G0682817	33	34	1.57		
DY10-024	G0682818	34	35	4.25		
DY10-024	G0682819	35	36	5.08		
DY10-024	G0682821	36	37	1.31		
DY10-024	G0682822	37	38	3.83		
DY10-024	G0682823	38	39	3.97		
DY10-024	G0682824	39	40	3.05		
DY10-024	G0682826	40	41	12.5		
DY10-024	G0682827	41	42	7.28		
DY10-024	G0682828	42	43	14.95		
DY10-024	G0682829	43	44	16.2		
DY10-024	G0682831	44	45	5.11		
DY10-024	G0682832	45	46	7.71		
DY10-024	G0682833	46	47	26		1.66
DY10-024	G0682834	47	48	14.95		
DY10-024	G0682835	48	49	17.25		
DY10-024	G0682836	49	50	12.3		
DY10-024	G0682837	50	51	0.962		
DY10-024	G0682838	51	52	2.03		
DY10-024	G0682843	55	56	1.535		
DY10-024	G0682844	87	88	1.025		
DY10-024	G0682846	88	89	2.2		
DY10-024	G0682847	89	90	9.57		
DY10-024	G0682849	91	92	5.33		
DY10-024	G0682851	92	93	2.2		
DY10-025	G0682883	25	26		11.75	
DY10-025	G0682854	45.6	46.6	2.89		

DY10-025	G0682855	55	56	3.94			
DY10-025	G0682858	80	81	24.9	0.934	307	
DY10-025	G0682859	81	82	3.2			
DY10-025	G0682861	82	83	25.1		304	
DY10-025	G0682862	83	84	17.7			
DY10-025	G0682863	84	85	17.3			
DY10-025	G0682864	85	86	29.1			
DY10-025	G0682866	86	87	25.1			
DY10-025	G0682867	87	88	12.9			
DY10-025	G0682884	88	89	0.976			
DY10-025	G0682868	105	106	8.93			
DY10-025	G0682873	109	110	1.095			
DY10-025	G0682879	118	119	5.12			
DY10-025	G0682881	119	120	4.23			
DY10-026	G0682888	53.3	56.4	2.05			
DY10-026	G0682890	58.8	61	1.525			
DY10-026	G0682893	90	91	13.45			
DY10-026	G0682894	91	92	12.75			
DY10-026	G0682895	92	93	12.3			
DY10-026	G0682896	93	94	5.38			
DY10-026	G0682897	94	95	4.01			
DY10-026	G0682898	95	96	1.09			
DY10-026	G0682899	96	97	4.25			
DY10-026	G0682901	97	98	0.918			
DY10-026	G0682902	98	99	6.83			
DY10-026	G0682903	99	100	2.8			
DY10-026	G0682906	101	102	3.64			
DY10-026	G0682907	102	103	7.18			
DY10-026	G0682908	103	104	8.25			
DY10-026	G0682909	104	105	1.575			
DY10-026	G0682911	105	106	2.5			
DY10-026	G0682912	106	107	2.07			
DY10-026	G0682913	107	108	5.56			
DY10-026	G0682914	108	109	1.28			
DY10-026	G0682915	109	110	3.06			
DY10-026	G0682916	110	111	6.94			
DY10-026	G0682918	112	113	1.395			
DY10-026	G0682926	118	119	3.18			

DY10-026	G0682931	122	123	3.74			
DY10-026	G0682932	123	124	2.26			
DY10-026	G0682938	129	130	0.952			
DY10-027	G0682946	31	32	1.285			
DY10-027	G0682948	33	34	1.855			
DY10-027	G0682949	34	35	4.98	0.9		
DY10-027	G0682951	35	36	5.07	13.55		
DY10-027A	G0682962	34	35	5.94			
DY10-027A	G0682963	35	36	3.15			
DY10-027B	G0683127	31	32	1.395			
DY10-027B	G0683129	33	34.5	9.01			
DY10-027B	G0683131	34.5	35.5	4.66			
DY10-028	G0682968	40	41	1.945	10.8		
DY10-028	G0682971	42	43	1.01	2.11		
DY10-028	G0682974	48.8	51	1.585			
DY10-028	G0682975	51	52	9.82			
DY10-028	G0682976	52	53	0.908			
DY10-028	G0682981	56	57	0.963			
DY10-028	G0682983	58	59	5.62			
DY10-028	G0682984	59	60	6.25			
DY10-028	G0682986	60	61	15.2			
DY10-028	G0682987	61	62	6.54			
DY10-028	G0682988	62	63	2.35			
DY10-028	G0682989	63	64	2.11			
DY10-028	G0682991	64	65	0.978			
DY10-028	G0682992	65	66	1.06			
DY10-028	G0682993	66	67	1.43			
DY10-028	G0682999	72	73	1.66			
DY10-028	G0683001	73	74	3.98			
DY10-028	G0683002	74	75	10.2			
DY10-028	G0683003	75	76	4.82			
DY10-029	G0683009	57	58	3.9			
DY10-029	G0683013	79	80	2.03	5.42		
DY10-029	G0683015	81	82.3	2.89			
DY10-029	G0683017	84	85		2.52		
DY10-029	G0683021	98	99	3.87			
DY10-029	G0683024	101	102	8.95			
DY10-029	G0683026	102	103	2.07			

DY10-029	G0683027	103	104	0.906		1
DY10-029	G0683028	104	105.5	16		
DY10-029	G0683029	105.5	107	1.56		
DY10-029	G0683031	107	108.5	2.73		
DY10-029	G0683035	113	114	5.31		
DY10-029	G0683039	118	119	9.74		
DY10-029	G0683044	124	125	1.375		
DY10-030	G0683059	15	16	2.17		
DY10-030	G0683061	16	17	1.605		
DY10-030	G0683063	18	19	2.57		
DY10-030	G0683064	19	20	1.365		
DY10-030	G0683066	20	21	2.21		
DY10-030	G0683067	21	22	7.34		
DY10-030	G0683068	22	23.5	13.75		
DY10-030	G0683069	23.5	25	12.8		
DY10-030	G0683072	26	27.5	1.85		
DY10-030	G0683073	27.5	29	11.15		
DY10-030	G0683074	29	30	3.08		
DY10-030	G0683075	30	31	28		1.18
DY10-030	G0683076	31	32	5.26		
DY10-030	G0683077	32	33	7.82		
DY10-030	G0683089	42	43	12.3		
DY10-030	G0683091	43	44	7.66		
DY10-030	G0683092	44	45	3.76		
DY10-030	G0683093	45	46	0.996		
DY10-030	G0683094	46	47	1.76		
DY10-030	G0683095	47	48	2.03		
DY10-030	G0683096	48	49	2.17		
DY10-030	G0683097	49	50	1.18		
DY10-030	G0683098	50	51	2.85		
DY10-030	G0683101	51	52	1.95		
DY10-030	G0683102	52	53	7.47		
DY10-030	G0683103	53	54	1.39		
DY10-030	G0683104	54	55	8.31		
DY10-030	G0683106	55	56	2.05		
DY10-030	G0683107	56	57	3.1		
DY10-030	G0683108	57	58	5.85		
DY10-030	G0683099	67.5	68.5	7.7		

DY10-030	G0683111	68.5	69.5	15.25		
DY10-031	G0683114	25	26	2.06		
DY10-031	G0683115	26	27	1.07		
DY10-031	G0683118	29	30	0.939		
DY10-031	G0683119	30	31	4.35		
DY10-031	G0683121	31	32	5.68		
DY10-031	G0683122	32	33	9.22		
DY10-031	G0683123	33	34	8.04		
DY10-031	G0683124	34	35	15.3		
DY10-031	G0683126	35	36	2.18		

APPENDIX 4: COST STATEMENT

Overland Resources Yukon Limited

Camp Costs	
Food Items	49,710.73
ASS3 / S	
Camp Wages	10.050.50
Eileen O'Hara 2	
Ashley Lebel2	5,998.42
Tammy Bell2	3,475.72
Louise Levesqu	le2 6,837.75
	18.073.39
	64,564.47
	04,304.47
Comp Costs/Su	pplies 20,488.21
Camp Costs/Su	
Camp Costs/Se	t-up18,495.54
	153,258.95
Drilling Costs	457.264.20
Footage	457,364.30
Equipment Rental	46,127.86
Field Support	2,010.00
Supplies & Materials	1,884.30
	507,386.46
Geological	
Consultants	
Alex Tolson	53,609.18
Rebecca Smart	42,515.24
Ken Major	1,155.00
Milada Pardovid	cova 38,918.28
Marc Cormier	12,077.32
Cory Redmond	17,136.22
Bill Koe' Carsor	24,872.60
Anna Crawford	24,109.14
Chris Bruce	9,917.48
Kelvin Sturko	15,915.86
Johnny Grace	6,159.46
Henry Nukon	10,742.41
Joseph Sterriah	1,925.48
Terrance Mario	
Doug Jack	15,332.54
Tyler Quock	6,776.85

Chris Harry		4,414.65
Ron Berdahl		5,500.00
		309,201.91
Assays		56,000.28
Equipment Rental		12,381.62
Fuel		62,823.74
Helicopter (Charters)		330,752.23
Aircraft (Charters)		233,452.75
Permits		936.50
Supplies & Materials	1	29,341.66
Travel		16,073.39
Courier/expediting		7,126.38
Insurance		1,367.66
Miscellaneous		6,300.00

756,556.21

1,065,758.12

1,726,403.53

APPENDIX 5: ASSAY CERTIFICATES

ALS ASSAY CERTIFICATES 2010						
Certificate Number	Sample I	Numbers	Drespect	SOIL/ROCK		
Certificate Number	From	То	Prospect	CHIP/STREAM		
WH10083977	G0669501	G0669505	ATLAS	ROCK CHIP		
WH10074440	H031551	-	DARIN	ROCK CHIP		
WH10083977	H031552	H031555	PINNACLE	ROCK CHIP		
WH10083978	H031556	H031558	ATLAS	ROCK CHIP		
WH10083978	H031559	H031560	SE Ext	ROCK CHIP		
WH10083978	H031561	H031576	HUGO CREEK	ROCK CHIP		
WH10093300	H031577	H031587	ROBIN	ROCK CHIP		
WH10100591	H031588	H031589	MOOSE	ROCK CHIP		
WH10100591	H031591	H031597	MOOSE	ROCK CHIP		
WH10074440	H031601	H031609	DARIN	ROCK CHIP		
WH10074440	H031610	H031621	SCOTT STH	ROCK CHIP		
WH10083978	H031622	H031628	B BLOCKS	ROCK CHIP		
WH10083978	H031629	H031637	HUGO CREEK	ROCK CHIP		
WH10089476	H031638	H031642	B BLOCKS	ROCK CHIP		
WH10074440	H031651	H031663	SCOTT STH	ROCK CHIP		
WH10074440	H031664	-	DARIN	ROCK CHIP		
WH10083977	H031665	-	ATLAS	ROCK CHIP		
WH10074440	H031701	H031708	SCOTT STH	ROCK CHIP		
WH10083977	H031709	-	ANDREW	ROCK CHIP		
WH10083978	H031710	-	DARCY	ROCK CHIP		
WH10083978	H031711	H031719	B BLOCKS	ROCK CHIP		
WH10083978	H031720	H031744	HUGO CREEK	ROCK CHIP		
WH10074440	H031751	H031759	DARIN	ROCK CHIP		
WH10074440	H031760	H031767	SCOTT STH	ROCK CHIP		
WH10083978	H031768	H031772	B BLOCKS	ROCK CHIP		
WH10083978	H031773	H031780	ATLAS	ROCK CHIP		
WH10083978	H031781	H031798	SE Ext	ROCK CHIP		
WH10083978	H031799	H031800	HUGO CREEK	ROCK CHIP		
WH10083979	G0669651	G0669658	B BLOCKS	STREAM		
WH10089475	G0669701	G0669713	B BLOCKS	SOIL		
WH10034441	G0668551	G0668565	SCOTT STH	SOIL		
WH10074441 WH10081794	G0668566	G0668576	SCOTT STH	SOIL		
WH10081734 WH10089475	G0668577	G0668600	B BLOCKS	SOIL		

WH10074441	G0668901	G0668950	SCOTT STH	SOIL
WH10074442	G0669301	G0669320	SCOTT STH	SOIL
WH10081794	G0669321	G0669350	SCOTT STH	SOIL
WH10074443	G0669401	G0669431	DARIN	SOIL
WH10074444	G0669432	G0669437	SCOTT STH	SOIL
WH10081794	G0669438	G0669450	SCOTT STH	SOIL
WH10081794	G0669451	G0669500	SCOTT STH	SOIL
WH10081794	G0669551	G0669556	SCOTT STH	SOIL
WH10084680	G0669557	G0669589	B BLOCKS	SOIL
WH10089475	G0669590	G0669600	B BLOCKS	SOIL
WH10084680	G0669601	G0669612	B BLOCKS	SOIL
WH10089475	G0669714	G0669750	ANDREW	SOIL
WH10094430	G0669751	G0669789	ANDREW	SOIL
WH10097240	G0669790	G0669855	ANDREW	SOIL
WH10105241	G0669856	G0669874	ANDREW	SOIL
WH10089475	G0675851	G0675853	ANDREW	SOIL
WH10092639	G0675854	G0675873	ANDREW	SOIL
WH10105241	G0675874	G0675890	ANDREW	SOIL
WH10108411	G0675891	G0675902	ANDREW	SOIL
WH10098000	G0681651	G0681692	???	DDH
WH10094733	G0681693	G0681721	AN10-127	DDH
WH10094437	G0681722	G0681793	AN10-127	DDH
WH10105242	G0681794	G0681851	AN10-128	DDH
WH10112784	G0681852	G0681856	DN10-014	DDH
WH10112784	G0681857	G0681882	DN10-015	DDH
WH10112784	G0681883	G0681918	DN10-016	DDH
WH10116812	G0681919	G0681926	DY10-020	DDH
WH10116812	G0681927	??	DY10-021	DDH
WH10121224	G0681984	G0682000	DN10-017	DDH
WH10121224	G0682501	G0682566	DN10-017	DDH
WH10121224	G0682567	G0682598	DN10-018	DDH
WH10121224	G0682599	G0682652	DN10-019	DDH
WH10121224	G0682653	-	DY10-022	DDH
WH10121122	G0682654	G0682702	DN10-020	DDH
WH10121122	G0682703	G0682721	DN10-021	DDH
WH10125260	G0682722	G0682787	DY10-023	DDH
WH10128055	G0682788	G0682853	DY10-024	DDH
WH10128055	G0682853	G0682872	DY10-025	DDH
WH10127716	G0682873	G0682884	DY10-025	DDH

WH10127716	G0682942	G0682952	DY10-027	DDH
WH10127716	G0682953	G0682965	DY10-027A	DDH
WH10137467	G0682966	G0683008	DY10-028	DDH
WH10137467	G0683009	G0683028	DY10-029	DDH
WH10140656	G0683029	G0683046	DY10-029	DDH
WH10140656	G0683047	G0683112	DY10-030	DDH
WH10140656	G0683113	G0683126	DY10-031	DDH
WH10140656	G0683127	G0683131	DY10-027B	DDH
WH10140656	G0683132	-	DY10-031	DDH
WH10140656	G0683133	-	DY10-027B	DDH