KLUANE DRILLING LTD. 14 MacDonald Road Whitehorse, Yukon Y1A 1L2

# ASSESSMENT REPORT ON THE 2011 DIAMOND DRILLING PROGRAM

ON

Bob 5 76096

#### Claim

North Star Pendant Whitehorse Copper Belt

April 14 – April 30, 2011

60° 38' 00" N and 135° 00' 00" E

NTS 105 D/11

In the

Whitehorse Mining District Yukon Territory

> Prepared by R. Stroshein, P.Eng.

January 30, 2012

# TABLE OF CONTENTS

| 1.0  | SUMMARY                                   | 1  |
|------|-------------------------------------------|----|
| 2.0  | INTRODUCTION                              | 4  |
| 3.0  | PROPERTY DESCRIPTION AND LOCATION         | 4  |
| 4.0  | HISTORY                                   | 5  |
| 5.0  | REGIONAL GEOLOGY                          | 5  |
| 6.0  | METALLOGENY OF THE WHITEHORSE COPPER BELT | 6  |
| 7.0  | MINERALIZATION OF THE NORTH STAR PENDANT  | 6  |
| 8.0  | DIAMOND DRILLHOLES NS-11-0107             | 7  |
| 9.0  | SAMPLING METHODS AND PROCEDURES           | 7  |
| 10.0 | INTERPRETATION AND CONCLUSIONS            | 9  |
| 11.0 | RECOMMENDATIONS                           | 10 |
| 12.0 | REFERENCES                                | 10 |

#### **FIGURES**

| <u>Fig.</u><br>No. | Description                        | <u>Page No.</u> |
|--------------------|------------------------------------|-----------------|
| 1                  | PROPERTY LOCATION AND GEOLOGY      | 2               |
| 2                  | NORTH STAR PENDANT DRILL PLAN 2011 | 8               |

#### LIST OF APPENDICES

| APPENDIX A | STATEMENT OF QUALIFICATIONS                          |
|------------|------------------------------------------------------|
| APPENDIX B | SUMMARY OF EXPENDITURES                              |
| APPENDIX C | LIST OF CLAIMS                                       |
| APPENDIX D | <b>NS - GEOLOGICAL DRILL LOGS and CROSS SECTIONS</b> |
| APPENDIX E | NS DRILL HOLES - ASSAY SHEETS                        |
| APPENDIX F | ALS MINERALS ASSAY CERTIFICATE                       |

#### 1.0 SUMMARY

On the Whitehorse Copper Belt iron-rich magnetite skarns contain abundant serpentine, talc and chlorite. Calc-silicate skarn deposits contain only minor magnetite and serpentine but are rich in garnet, tremolite, wollastonite, actinolite and diopside. The Little Chief and Arctic Chief deposits were composed of the Iron-rich skarns with chalcopyrite, bornite and covellite mineralization.

Seven diamond drill holes were completed in 2011 on the North Star copper-gold skarn target. The North Star skarn zone is hosted by Lewes River Formation limestone. The mineralization is contained within a pendant of sedimentary rocks bounded on three sides by diorite of the Whitehorse Batholith. The pendant is located in the Whitehorse Copper Belt within the Whitehorse City limits in the Whitehorse Mining District on NTS Map Sheet 105 D 11 (Figure 1. Location Map). Three drill holes are located on the Bob 5 (76096) quartz claim and four drill holes are located on the Bob 5 (76097) quartz claim. The assessment application in 2011 was filed for expenditures on the Bob 5 claim.

The North Star pendant is located 1.5 kilometres south of the Little Chief Mine that produced 8.5 million tonnes of ore grading 1.5 % copper, 0.75 g/t gold and 9.1 g/t silver between 1967 and 1982. The North Star pendant was explored with diamond drilling in the late 1970's. Significant copper-rich skarn mineralization is located near the base of a buried limestone reef at approximately the 300 metre above sea level (asl) elevation. Reported grades are similar to the Little Chief and Middle Chief deposits.

The mineralization at the North Star is erratic, being partly controlled by proximity to the intrusive contact that is irregular and variably gradational. Twenty-nine drill holes with an aggregate of 12,300 metres have been drilled on the pendant. Whitehorse Copper Mines considered the project an exploration target with an indicated resource of 800,000 tonnes grading 1.5 % copper in the footwall zone. A high-grade zone (14.5 metres grading 5.0 % copper) was intersected in a hanging-wall zone at approximately the 440 metre (asl) elevation.

The 2010 diamond drill hole NS-10-25 intersected multiple bands of skarn mineralization and ended in diorite. The magnetite skarn zone intersected between 211.0 - 217.0 metres yielded values of 2.17 % copper, 18.8 ppm molybdenum, 0.37 g/t gold and 24.9 g/t silver. The epidote-garnet skarn intersected between 379.0 - 384.0 metres yielded values of 0.99 % copper, 132.6 ppm molybdenum, 0.24 g/t gold and 9.2 g/t silver.

Seven diamond drill holes completed in 2011 were drilled to test the northwestern potential extension of the upper zone intersected in 2010. The drill holes NS-11-05 and NS-11-07 on the same section intersected similar grades to the 2010 drill hole while the remainder of drill holes to the northwest and southeast of the section intersected skarn mineralization the assay results indicated only trace amounts of copper and gold. The skarn zones intersected in the two drill holes (NS-11-05 and -07) yielded copper and gold values that included 1.1% copper and 0.8 ppm gold (NS-11-05) over 5.6 metres and 0.2% copper and trace gold (NS-11-07) over 2.1 metres indicating a potentially shallow southwest dip to the upper horizon in drill hole NS-10-25. A corresponding lower horizon was also intersected in NS-11-05 grading 0.5% copper and 0.2 ppm gold over 6.1 metres. Correlation between sections has proven to be difficult.

Further diamond drilling is recommended to test the continuity and continuation of the North Star Skarn mineralization to depth and to trace the lateral extension of the geology to the northeast.



#### LITHOLOGICAL LEGEND TO ACCOMPANY FIGURE 1

#### **MIOCENE TO PLIOCENE**



#### MPMC: MILES CANYON

dark red to brown weathering, columnar jointed olivine basalt flows, commonly amygdaloidal and vesicular; ultramafic xenoliths (Miles Canyon Basalt)

#### MID-CRETACEOUS



#### mKW: WHITEHORSE SUITE

grey, medium to coarse grained, generally equigranular granitic rocks of felsic (q), intermediate (g), locally mafic (d) and rarely syenitic (y) composition

- d. hornblende diorite, biotite-hornblende quartz diorite and mesocratic, often strongly magnetic, hypersthene-hornblende diorite, quartz diorite and gabbro (Whitehorse Suite, Coast Intrusions)
- g. biotite-hornblende granodiorite, hornblende quartz diorite and hornblende diorite; leucocratic, biotite hornblende granodiorite locally with sparse grey and pink potassium feldspar phenocrysts (Whitehorse Suite, Casino granodiorite, McClintock granodiodrite, Nisling Range granodiorite)
- g. biotite quartz-monzonite, biotite granite and leucogranite, pink granophyric quartz monzonite, porphyritic biotite leucogranite, locally porphyritic (K-feldspar) hornblende monzonite to syenite, and locally porphyritic leucocratic quartz monzonite (Mt. McIntyre Suite, Whitehorse Suite, Casino Intrusions, Mt. Ward Granite, Coffee Creek Granite)
- y. hornblende syenite, grading to granite or granodiorite (Whitehorse Suite)

#### **UPPER TRIASSIC, CARNIAN TO NORIAN**



#### uTrAK: AKSALA

mixed clastic-carbonate assemblage divisible into three dominant facies including calcareous greywacke (1), locally thick carbonate (2) and red-coloured clastics (3) **(Aksala)** 

- 1. brown shale, black and minor red siltstone, greenish, calcareous greywacke and interbedded bioclastic, argillaceous limestone; igneous- or limestone-clast pebble and cobble conglomerate; lahaaric debris flows; rare feldspar-augite porphyry flows (Casca mb. of Aksala)
- massive to thick bedded limestone; minor thin bedded argillaceous to sooty limestone; coarsely crystalline, massive dolostone; minor laminated chert; massive to poorly bedded, limestone conglomerate debris flows and fanglomerate (Hancock mb. of Aksala)
- 3. red weathering, medium bedded, green and red greywacke and pebble conglomerate; red shale partings and minor interbedded, red, bioturbated siltstone; crystal-rich greywacke and shale; coarse-grained, tan to brown, massive, lithic arenite (Mandanna mb. of Aksala)

#### 2.0 INTRODUCTION

At the North Star Target a buried limestone reef lower contact is shallow dipping to flat lying at approximately 300 metre elevation asl. The hanging wall high grade zone occurs near an apparent apophysis of diorite located west of the footwall zone. Whitehorse Copper Geologist recommended additional drilling on the footwall and hanging wall zones in 1981. The footwall zone is open to the southeast at depths of approximately 550 meters while the high-grade zone is a more economically appealing zone and is open to the north and west.

A diamond drill hole in 2010 was drilled vertical to a depth of 589.8 metres. The drill hole intersected a 290 metre thick interval of skarn mineralization and limestone underlying the Aksala Formation above the foot wall contact with the Whitehorse Batholith. The skarn occurs in thick bands of calc-silicate minerals and magnetite skarn. Copper mineralization consists of chalcopyrite and bornite. At 211 meters a 6.0 meter skarn interval averaged 2.17 % copper, 0.37 ppm gold, 24.9 ppm silver and 18.76 ppm molybdenum. At a depth of At 379 meters a skarn interval of 5.0 meters averaged 0.99 % copper, 0.24 ppm gold, 9.2 ppm silver and 132.6 ppm molybdenum.

The diamond drill holes in 2011 were planned to test the shallow intersections along strike to the north and south.

The drill holes were drilled between April 4 and April 30, 2011 by Kluane Drilling Ltd. Core was logged by R. Stroshein. The core was sampled by cutting the core in half with a diamond saw at the Hugh Bostock Core Library by employees of Kluane Drilling Ltd. The Author supervised the drilling program and prepared this report.

#### 3.0 PROPERTY DESCRIPTION AND LOCATION AND ACCESS

The northern portion of the Whitehorse Copper Belt is owned or controlled by H. Coyne and Sons and Kluane Drilling Ltd. H. Coyne and Sons own Kluane Drilling Ltd.

The Property consists of 376 claims and 9 mineral leases and 13 crown grants. The complete listing of the claims is included in Appendix C. The claim maps showing the claim distribution can be viewed on line at web site:

#### Http://www.yukonminingrecorder.ca/PDFs/105/105D11.pdf

The Property is located within the City Limits of Whitehorse on NTS Map Sheets 105 D 10/11. The Property is in the Whitehorse Mining District approximately centered at UTM 672500 N and 0494200 E Nad 83 Zone 6. The geology and pendant locations are displayed on Figure 1. The geology is from Gordey and Makepeace (1999).

The claims are traversed by the old Whitehorse Copper Haul Road that carried ore from the War Eagle deposit near the northern end of the belt to the Mill located at the Little Chief mine near the center of the belt. A net work of roads still exists that provides access to all of the known occurrences and targets in the area. The North Star Pendant is located immediately east of and along what is now called the Mount Sima Road that is connected to the Alaska Highway west of McRae sub division of Whitehorse. The pendant occurs in an area that has not been zoned and is across the Mount Sima Road from the industrial zoned area that includes the former site of the Whitehorse Copper Mine mill site and tailings pond.

#### 4.0 HISTORY

Copper mineralization was first discovered in 1897 on the Whitehorse Copper Belt as it became to be known. Exploration and mining development have been carried out intermittently since that time with the main production era lasting between 1967 and 1982 where production totaled 267,500,000 pounds copper, 225,000 ounces of gold and 2,838,000 ounces of silver from 11.1 million tons of mineralized skarn ore milled.

The list of references that is included with this report provides a more complete history of the property.

Kluane Drilling Ltd. first acquired claims from Hudson Bay Exploration and Development Company Limited in 1998 and added claims since that time to include the current land position. Kluane Drilling Ltd. has carried out exploration programs on various targets since the acquisition that included; IP surveys, bulldozer trenching and diamond drilling.

Kluane Drilling Ltd. Drilled two (2) deep holes in the Arctic Chief Pendant in 2008 that were located 300 metres north of the open pits and the 2010 diamond drill hole. Significant unmineralized skarn zones were intersected at depths of 400 and 700 metres in these holes. The drill holes have confirmed that the extent of the favorable stratigraphy indicates the potential for a large deposit within the pendant between the two sections. The two drill holes intersected 12.7 metres of garnet skarn at 360 metres asl and 16.2 metres of garnet skarn at 60 metres asl.

Kluane Drilling Ltd. Drilled a single shallow hole at the south side of the North Star Pendant in 2008 the hole did not intersect any skarn mineralization.

In 2010 Kluane Drilling completed a single deep hole on each of the North Star and Arctic Chief pendants. The drill hole on the North Star Pendant intersected two significantly mineralized intersections. The drill hole on the Arctic Chief intersected the host horizon but the skarn zone was not mineralized.

#### 5.0 REGIONAL GEOLOGY

The Whitehorse Copper Belt is located within the Whitehorse Trough, a structural/geological subdivision of the Intermontane Belt. The trough trends northwesterly through south central Yukon and is comprised of rocks that formed an Island Arch Complex that ranges from upper Paleozoic through Jurassic time period.

Within the Whitehorse Copper Belt, clastic and carbonate rocks of the Upper Triassic Lewes River Group(uTrAK2) and clastic rocks of the Lower Jurassic Laberge Group (JL) predominate. The copper bearing skarns occur over a length of 32 kilometers along the western flank of the Whitehorse Batholith, a Cretaceous diorite to granodiorite body of the Coast Plutonic Complex. The geology is displayed in Figure 1 and described on the accompanying Geological Legend.

#### 6.0 METALLOGENY OF THE WHITEHORSE COPPER BELT SKARN DEPOSITS

Ore bodies of the Whitehorse Copper Belt occur mainly within limestone of the Lewes River Group adjacent to or in proximity to the Whitehorse Batholith contact. Skarn deposits commonly form within irregularities or pendants of the batholith. The most extensive ore zones are developed in coarsely crystalline limestones of the Lewes River Group near the contact with quartzite footwall rocks of the Laberge Group where the contact sub-parallels the diorite batholith contact.

The two main types of skarn present are 1) iron-rich that contain magnetite, serpentine, specular hematite, talc, chlorite and local pyrrohtite and pyrite and 2) iron-poor (calc-silicate) that consist of garnet, diopside, wolastonite, tremolite, epidote, chlorite, calcite and quartz. The Little Chief and Arctic Chief deposits were composed of the Iron-rich skarns with chalcopyrite, bornite and covellite mineralization. The copper minerals occur as grains, blebs, pods and stringers that appear to postdate the skarn minerals. Bornite is predominant in the iron-rich skarns and is slightly more abundant than chalcopyrite in the silicate skarns. Silver content is proportional to the copper grade but gold is more erratically distributed, being more abundant in the iron-rich skarn deposits. The mineralization at the North Star occurrence is typical of the iron-rich type skarn.

#### 7.0 MINERALIZATION OF THE NORTH STAR PENDANT

The 2010 hole was designed to test the potential for an up-dip extension of the Foot Wall North Star mineralized skarn Zone. The North Star Foot Wall Zone is estimated to contain 750,000 tons grading 1.5 % copper. The zone is open in all directions with additional skarn zones in the hanging wall of the deposit. Of particular interest is a high-grade zone intersected in several drill holes that is located approximately 100 metres above the Foot Wall Zone. The Foot Wall Zone is at the contact of the overlying limestone and underlying meta-greywacke units. The mineralized zones are hosted by the Lewes River Group limestone that is overlain by meta-sedimentary rocks of the Aksala Formation uTrAK3.

The drill holes were positioned to test the shallow horizons intersected in NS-10-25 along trend and between drill holes NS-14 (60 metres North) and NS-15 (50 metres South). Intersections in these holes are summarized here:

- NS-14 Upper Zone averaged 0.65% Cu, 0.008 opt Au, 0.15 opt Ag 8.3 metres Gar skarn High-grade Zzone averaged 3.39% Cu, 0.72 opt Ag – 3.2 metres – Mag skarn Foot Wall Zone averaged 1.52% Cu, 0.31 opt Ag w/trace Mo – 10.1 metres – Gar skarn
- NS-15 High-grade zone averaged 5.05% Cu, 0.02 opt Au, 0.82 opt Ag 14.6 metres Gar skarn and Mag skarn

Foot Wall Zone averaged 0.98% Cu, 0.14 opt Ag – 3.1 metres – Mag skarn NS-15-W2

Upper Zone averaged 1.05% Cu, 0.29 opt Ag w/trace Mo – 5.1 metres – Gar skarn High-grade Zone averaged 1.71% Cu, 0.66 opt Ag, w/trace Mo – 3.2 metres – Mag skarn High-grade Zone averaged 1.53% Cu, 0.45 opt Ag, w/trace Mo – 14.3 metres – Mag Skarn

Foot Wall Zone averaged 0.88% Cu, 0.31 opt Ag, w/trace Mo – 2.7 metres – Mag skarn

The North Star mineralization is composed of bornite, chalcopyrite, and minor magnetite. The calc-silicate minerals are serpentine, phologopite, red garnet and tremolite.

#### 8.0 DIAMOND DRILL HOLES NS-11-01 - -07

The drilling was carried out by Kluane Drilling Ltd., 14 MacDonald Road, Whitehorse, Yukon, Y1A 1L2

The drilling was started April 4, 2011 and completed May 22, 2011. The drill holes were drilled at angles from -60° to -75° respectively oriented grid west 225° azimuth. The drill core size was NTW.

The preceding information is noted on the first sheet of the Geologic log of the drill holes included in Appendix D that also contains cross sections of the drill holes. The drill core is in storage at the Industrial yard of Kluane Drilling Ltd. at 25 MacDonald Road in Whitehorse, Yukon.

The sample intervals and metal assays for gold and copper are reported in Appendix E.

| Hole ID  | UTM<br>East | UTM<br>North | Elev. (m) | Dip (°) | Azimuth<br>(°) | Depth<br>(ft) | Depth<br>(m) |
|----------|-------------|--------------|-----------|---------|----------------|---------------|--------------|
| NS-11-01 | 497528      | 6720690      | 835       | -70     | 225            | 1335          | 406.9        |
| NS-11-02 | 497528      | 6720690      | 835       | -75     | 225            | 1510          | 460.2        |
| NS-11-03 | 497647      | 6720630      | 836       | -60     | 225            | 1145          | 349.0        |
| NS-11-04 | 497647      | 6720630      | 836       | -67     | 225            | 1010          | 307.8        |
| NS-11-05 | 497610      | 6720650      | 836       | -75     | 225            | 1280          | 390.1        |
| NS-11-06 | 497516      | 6720729      | 842       | -70     | 225            | 1230          | 374.9        |
| NS-11-07 | 497584      | 6720622      | 844       | -70     | 225            | 1162          | 354.2        |
| Total    |             |              |           |         |                | 8672          | 2643.2       |

#### Table: List of Diamond Drill Holes 2011

The relative locations of the drill holes are plotted on Figure 2 Drill Plan Map North Star Pendant.

#### 9.0 SAMPLING METHODS AND PROCEDURES

Drill core samples were collected using the following procedures:

- 1. Core was lightly washed and measured.
- 2. 2. Core was geologically logged and sample intervals were designated. Sample intervals were set at one to three metre core length or sharp changes in sulphide content.
- 3. Sample intervals were based on skarn and sulphide content or randomly selected.
- 4. Core was sawn in half with diamond saw at the Hugh Bostock Core Library. One-half was sent for analyses and one-half returned to the core box.
- 5. Samples were double bagged in 6 millimetre plastic bags, a sample tag was placed in each sample bag, then two or three samples were placed in a fiber glass bag sealed with a metal clasp and sample numbers were written on the outside of that bag with permanent felt pen.

The core samples were delivered by company employees to the ALS Canada Ltd. preparation lab in Whitehorse, Yukon where they were dried and crushed to 70% minus 2 mm, before a 1.5 kg split was taken and pulverized to better than 85% minus 75 microns. Splits of the pulverized fraction were shipped by the ALS Minerals laboratory in North Vancouver and analyzed for gold and copper using an aqua regia digestion and inductively coupled plasma-atomic emission spectroscopy analysis (ME-MS41). All analyses are reported in ppm. The analytical certificate is included in this report in Appendix F.



Analyses were done using industry-standard ICP techniques. The ALS Laboratory in Vancouver carries ISO 9001:2000 registration and is accredited to ISO 17025 by Standards Council of Canada for a number of specific test procedures including fire assay Au by AA, ICP and gravimetric finish, and multi-element ICP and AA assays for Ag, Cu, Pb and Zn.

Core recovery was excellent averaging 98%. The mineralization is readily recognizable and sulphide content is reflected in assay grades. Care is taken to ensure that the sample split is not biased to sulphide content. The result is that the drill core sampling is reliable and is representative of the mineralization.

#### **10.0 INTERPRETATIONS AND CONCLUSIONS**

The drill hole, NS-10-25 intersected multiple skarn zones over a 290 metre thick sequence of limestone and skarn. Two zones included significant copper-gold-silver and molybdenum mineralization. The drill hole intersected the footwall diorite more shallow than expected and the intervals were narrower than in the historic drill holes but may correlate to the Upper, High-grade and Foot Wall Zones.

Drill holes NS-11-05 and NS-11-07 were drilled on the same section as NS-10-25. Low grade copper and gold values 1.1% copper and 0.8 ppm gold (NS-11-05) over 5.6 metres and 0.2% copper and trace gold (NS-11-07) over 2.1 metres indicating a potentially shallow southwest dip to the upper horizon in drill hole NS-10-25. A corresponding lower horizon was also intersected in NS-11-05 grading 0.5% copper and 0.2 ppm gold over 6.1 metres.

Holes along the trend to the northwest (NS-11-01,-02 and -06) and southeast east (NS11-03 and -04) intersected unexpected dyke complexes with local skarn mineralization present but only trace amount of copper.

The gold-silver values correlate to copper grades and are a significant economic factor to the assessment of the deposits. The historic drill programs did not include the full suite of economic minerals. The results of the 2010 drill hole indicate that a complete suite of metal analyses is important.

The drill hole indicates a complicated distribution of mineralization typical of skarn deposits. Further drilling is required to interpret the dispersion of mineralization.

#### 11.0 RECOMMENDATIONS

Further diamond drilling is recommended at the North Star Pendant. A fence of drill holes located northeast of the 2011 drill holes also drilling at a 225° Azimuth. Sites accessible from existing roads and trails should be selected. Multiple drill holes at various angles can be drilled from the same pad. Six drill holes are recommended including a deep hole of greater than 600 metres to test possible extension of the high-grade upper and the thick portion of the foot wall zones. The recommended program will consist of approximately 2 500 metres of drill and is estimated to cost \$300 000.

A GPS survey of trails, historic drill sites and outcrops is also recommended. This will enable a compilation of all historic information into a single database to aid in an economic interpretation of the mineralization.

#### 12.0 LIST OF REFERENCES

Dobrowolsky, H., Ingram, R., 1993, A History of the Whitehorse Copper Belt. Department of Indian and Northern Affairs Canada, Open File 1993-1, 31p.

Gordey, S.P., Makepeace, A.J., 1999, Yukon Digital Geology. Geological Survey of Canada, Open File D3826; Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File #1999-1(D).

MacKay, G., et.al., 1993, Whitehorse Copper Belt – A simplified Technical History. Department of Indian and Northern Affairs Canada, Open File 1993-2 (1), 48p.

Morrison, G.W., 1981, Setting and Origin of Skarn Deposits in the Whitehorse Copper Belt, Yukon; Unpublished Ph.D. Thesis, University of Western Ontario.

Tenney, D., 1981, The Whitehorse Copper Belt: Mining Exploration and Geology (1967-1980). Department of Indian and Northern Affairs, Geology Section, Yukon Region, Bulletin 1, 29p.

Stroshein, R.W., 2011, Diamond Drilling Assessment Report on the North Star and Arctic Chief Pendants, Whitehorse Copper Belt 2010.

Watson, P.H., 1984, The Whitehorse Copper Belt – A Compilation. Exploration and Geological Services Division – Yukon, Indian and Northern Affairs Canada, Open File #1984-1, 1:25,000 scale map with marginal notes.

#### **APPENDIX A**

#### STATEMENT OF QUALIFICATIONS

#### **ROBERT W. STROSHEIN, P.ENG.**

I, Robert W. Stroshein, P.Eng. do hereby certify that:

- I am a self-employed Geological Engineer, with an office at 106 – #3 Glacier Lane
  P.O. Box 10559 Station Main Whitehorse, Yukon, Canada
  Y1A 7A1
- 2) I graduated with a BSc. Degree in Geological Engineering from the University of Saskatchewan at Saskatoon, SK in 1973.
- 3) I am a member of the Association of Professional Engineers of Yukon Territory (Registered Professional Engineer, No. 1165).
- 4) I have worked as an Exploration Geologist for a total of thirty-eight years since graduation from university.
- 5) I have examined the mineralization and host lithologies on the Whitehorse Copper Belt and have been an active participant in exploration programs on the property since 1974. Most recently I have planned and executed drilling programs on various targets annually between 2002 and 2011.
- 6) I planned and supervised the 2011 exploration program and completed the Assessment Report on the 2011 Diamond Drilling Program.

Dated at Whitehorse, Yukon Territory this 30<sup>th</sup> day of January, 2012

Robert W. Stroshein, P.Eng.

Kluane Drilling Ltd.

# APPENDIX B Whitehorse Copper Belt Summary of Drilling Expenditures April 4 to May 22, 2011

| Claim No. | Claim Name | Drill Hole No.     | Meters | Cost      | Date start/end       |
|-----------|------------|--------------------|--------|-----------|----------------------|
| 76096     | Bob 5      | NS-11-01           | 406.9  | \$49,548  | April 4 - 13, 2011   |
|           |            | NS-11-02           | 460.3  | \$51,714  | April 14 - 21, 2011  |
|           |            | NS-11-06           | 376.4  | \$41,323  | May 9 - 15, 2011     |
|           |            | Total Cost - Bob 5 | 1243.6 | \$142,585 |                      |
| 76097     | Bob 6      | NS-11-03           | 349.0  | \$37,891  | April 21-27, 2011    |
|           |            | NS-11-04           | 307.8  | \$35,401  | April 27-May 2, 2011 |
|           |            | NS-11-05           | 390.1  | \$41,577  | May 2 - 9, 2011      |
|           |            | NS-11-07           | 354.2  | \$38,274  | May 15 - 22          |
|           |            | Total Cost - Bob 6 | 1401.2 | \$153,142 |                      |

January 30, 2012

North Star Project

# APPENDIX C

LIST OF CLAIMS

# WHITEHORSE COPPERBELT

# KLUANE DRILLING LTD.

| Claim Nam | Claim No.     | Grant Pre | Grant No. | Expiry Date | Lease No. | Map Sheet | Ownership/Title |
|-----------|---------------|-----------|-----------|-------------|-----------|-----------|-----------------|
| Zircon    | 2             |           | 64183     | 11-Nov-18   |           | 105D14    | H. Coyne & Sons |
| Bonzo     |               |           | 72699     | 1-Jan-21    |           | 105D11    | H. Coyne & Sons |
| Bornite   | 1             |           | 73783     | 1-Jan-17    |           | 105D14    | H. Coyne & Sons |
| Bornite   | 2             |           | 73784     | 1-Jan-17    |           | 105D14    | H. Coyne & Sons |
| Oro       | 1             |           | 73893     | 3-Mar-13    | 3528      | 105D11    | H. Coyne & Sons |
| Oro       | 2             |           | 73894     | 3-Mar-13    | 3529      | 105D11    | H. Coyne & Sons |
| Oro       | 3             |           | 73895     | 3-Mar-13    | 3530      | 105D11    | H. Coyne & Sons |
| Oro       | 4             |           | 73896     | 3-Mar-13    | 3531      | 105D11    | H. Coyne & Sons |
| Oro       | 5             |           | 73897     | 3-Mar-13    | 3532      | 105D11    | H. Coyne & Sons |
| Zircon    | 4             |           | 74157     | 1-Jan-17    |           | 105D14    | H. Coyne & Sons |
| Emily     | 1             |           | 75709     | 1-Jan-17    |           | 105D11    | H. Coyne & Sons |
| Emily     | 2             |           | 75710     | 1-Jan-17    |           | 105D11    | H. Coyne & Sons |
| Gladys    | 3             |           | 75711     | 1-Jan-17    |           | 105D11    | H. Coyne & Sons |
| Gladys    | 4             |           | 75712     | 1-Jan-17    |           | 105D11    | H. Coyne & Sons |
| Cameron   | 1             |           | 75982     | 1-Jan-17    |           | 105D11    | H. Covne & Sons |
| Bob       | 3             |           | 76094     | 1-Jan-17    |           | 105D11    | H. Covne & Sons |
| Bob       | 5             |           | 76096     | 1-Jan-17    |           | 105D11    | H. Covne & Sons |
| Bob       | 6             |           | 76097     | 1-Jan-17    |           | 105D11    | H. Coyne & Sons |
| Margaret  | 1             |           | 76178     | 1-Jan-17    |           | 105D11    | H. Covne & Sons |
| Dorothy   | 2             |           | 76179     | 1-Jan-17    |           | 105D11    | H. Covne & Sons |
| Betty     | 3             |           | 76180     | 1-Jan-17    |           | 105D11    | H. Covne & Sons |
| Tess      | 1             |           | 76395     | 1-Jan-20    |           | 105D11    | H. Covne & Sons |
| Tess      | 2             |           | 76396     | 1-Jan-20    |           | 105D11    | H. Covne & Sons |
| Tess      | 3             |           | 76397     | 1-Jan-19    |           | 105D11    | H. Covne & Sons |
| Tess      | 4             |           | 76398     | 1-Jan-19    |           | 105D11    | H. Covne & Sons |
| Ken       | 1             |           | 76403     | 1-Jan-20    |           | 105D11    | H. Covne & Sons |
| Heather   | 1             |           | 76497     | 1-Jan-21    |           | 105D11    | H. Covne & Sons |
| Heather   | 2             |           | 76498     | 1-Jan-21    |           | 105D11    | H. Covne & Sons |
| Heather   | 3             |           | 76499     | 1-Jan-21    |           | 105D11    | H. Covne & Sons |
| Heather   | 4             |           | 76500     | 1-Jan-21    |           | 105D11    | H. Covne & Sons |
| Bill      | 1             |           | 76770     | 1-Jan-20    |           | 105D11    | H. Covne & Sons |
| Bill      | 2             |           | 76771     | 1-Jan-20    |           | 105D11    | H. Covne & Sons |
| Bill      | 3             |           | 76772     | 1-Jan-20    |           | 105D11    | H. Covne & Sons |
| Bill      | 4             |           | 76773     | 1-Jan-20    |           | 105D11    | H. Covne & Sons |
| Bill      | 5             |           | 76774     | 1-Jan-19    |           | 105D11    | H. Covne & Sons |
| Bill      | 6             |           | 76775     | 1-Jan-19    |           | 105D11    | H. Covne & Sons |
| Bill      | 7             |           | 76776     | 1-Jan-19    |           | 105D11    | H. Covne & Sons |
| Bill      | 8             |           | 76777     | 1-Jan-19    |           | 105D11    | H. Covne & Sons |
| Peter     | 1             |           | 76778     | 3-Mar-17    | 3533      | 105D11    | H Covne & Sons  |
| Peter     | 2             |           | 76779     | 3-Mar-17    | 3534      | 105D11    | H Covne & Sons  |
| Parke     | 1             |           | 77664     | 1-Jan-16    | 0001      | 105D11    | H Covne & Sons  |
| Parke     | 2             |           | 77665     | 1-Jan-20    |           | 105D11    | H Covne & Sons  |
| Parke     | 3             |           | 77666     | 1-Jan-16    |           | 105D11    | H Covne & Sons  |
| Lev       | 1             |           | 82027     | 1-Jan-20    |           | 105D11    | H Covne & Sons  |
| Lev       | 2             |           | 82028     | 1-Jan-20    |           | 105D11    | H Covne & Sons  |
| Lev       | 3             |           | 82029     | 1-Jan-20    |           | 105D11    | H Covne & Sons  |
|           | 4             |           | 82030     | 1 Jan-20    |           | 105D11    | H Covne & Sons  |
| Pitt      |               |           | 85088     | 1-lan-16    |           | 105D11    | H Covne & Sons  |
| Jan       | 1             |           | 85566     | 1-Jan-19    |           | 105D11    | H Covne & Sons  |
| Dotor     | 1             |           | 85743     | 3-Mar-13    | 3535      | 105D11    | H Covne & Sons  |
| Peter     | <u>ו</u><br>כ |           | 85744     | 3-Mar-13    | 3535      | 105D11    | H Covne & Sons  |
| Emidel    | 12            |           | Q1827     | 1_lan_17    | 0000      | 105D11    | H Covne & Sons  |
| Emidel    | 12            |           | 01027     | 1-Jan-17    |           | 105011    | H Covne & Sone  |
| Emidel    | 1/            |           | 01820     | 1_ lan_17   |           | 105D11    | H Covne & Sone  |
| Parko     | /4            | Y         | 12210     | 1_lan_16    |           | 105D11    | H Covne & Sone  |
|           | 4             | 1         | 12210     | 1-Jan-10    |           | 100011    |                 |

| Di++        | E  | V        | 20224 | 1 lon 16   | 105011 | H Course & Sono      |
|-------------|----|----------|-------|------------|--------|----------------------|
| Tocc        | 3  | T<br>V   | 20334 | 1 Jon 16   | 105D11 | H. Covine & Sons     |
|             | 7  | r<br>V   | 29077 | 1-Jan-10   | 105D11 | H. Coyne & Sons      |
| Tess        | 8  | ř<br>V   | 29078 | 1-Jan-16   | 105D11 | H. Coyne & Sons      |
| BIII        | 9  | ř<br>V   | 52111 | 1-Jan-10   | 105D11 | H. Coyne & Sons      |
| BIII        | 10 | Y        | 52112 | 1-Jan-16   | 105D11 | H. Coyne & Sons      |
| BIII        | 11 | Y        | 52113 | 1-Jan-19   | 105D11 | H. Coyne & Sons      |
| Parke       | 5  | Y        | 52114 | 1-Jan-16   | 105D11 | H. Coyne & Sons      |
| Emily       | 3  | Y        | 52115 | 1-Jan-16   | 105D11 | H. Coyne & Sons      |
| Emily       | 4  | Y        | 52116 | 1-Jan-16   | 105D11 | H. Coyne & Sons      |
| Hat         | 1  | YB       | 57537 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 2  | YB       | 57538 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 3  | YB       | 57539 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 4  | YB       | 57540 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 5  | YB       | 57541 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 6  | YB       | 57542 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 7  | YB       | 57543 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 8  | YB       | 57544 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 9  | YB       | 57545 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 10 | YB       | 57546 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 11 | YB       | 57547 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 12 | YB       | 57548 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 13 | YB       | 57549 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 14 | YB       | 57550 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 15 | YB       | 57551 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 16 | YB       | 57552 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 17 | YB       | 57553 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 17 | VB       | 57554 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 10 | VB       | 57555 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 20 | VB       | 57556 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 20 |          | 58021 | 11-Nov-70  | 105D14 | Kluano Drilling Ltd. |
| Hat         | 21 | VB       | 58022 | 11-Nov-20  | 105D14 | Kluano Drilling Ltd. |
| Lat         | 22 |          | 59022 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 23 |          | 58023 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| ⊓al<br>Hot  | 24 |          | 50024 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| ⊓al<br>Llot | 20 |          | 58025 | 11-IN0V-20 | 105D14 | Kluane Drilling Ltd. |
| ⊓al         | 20 | тв<br>VD | 58026 | 11-INOV-20 | 105D14 | Kluane Drilling Ltd. |
| Hat         | 27 | YB       | 58049 | 11-INOV-20 | 105D14 | Kluane Drilling Ltd. |
| Hat         | 28 | YB       | 58050 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 29 | YB       | 58051 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 30 | YB       | 58052 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 31 | YB       | 58053 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 32 | YB       | 58054 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 33 | YB       | 58055 | 11-Nov-20  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 34 | YB       | 58056 | 11-Nov-20  | 105D11 | Kluane Drilling Ltd. |
| Hat         | 35 | YB       | 58139 | 11-Nov-19  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 36 | YB       | 58140 | 11-Nov-19  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 37 | YB       | 66395 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 38 | YB       | 66396 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 39 | YB       | 66397 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Hat         | 40 | YB       | 66398 | 11-Nov-18  | 105D14 | Kluane Drilling Ltd. |
| Gin         | 21 | YC       | 8842  | 2-Dec-20   | 105D11 | Josh Bailey          |
| Gin         | 22 | YC       | 8843  | 2-Dec-20   | 105D11 | Josh Bailey          |
| Gin         | 23 | YC       | 8844  | 2-Dec-20   | 105D11 | Josh Bailey          |
| Gin         | 24 | YC       | 8845  | 2-Dec-20   | 105D11 | Josh Bailey          |
| Gin         | 25 | YC       | 8846  | 2-Dec-20   | 105D11 | Josh Bailey          |
| Gin         | 26 | YC       | 8847  | 2-Dec-20   | 105D11 | Josh Bailev          |
| Gin         | 27 | YC       | 8848  | 2-Dec-20   | 105D11 | Josh Bailey          |

| Gin    | 28       | YC       | 8849  | 2-Dec-16  | 105D11 | Josh Bailey          |
|--------|----------|----------|-------|-----------|--------|----------------------|
| Gin    | 1        | YC       | 8850  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 2        | YC       | 8851  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 3        | YC       | 8852  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 4        | YC       | 8853  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 5        | YC       | 8854  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 6        | YC       | 8855  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 7        | YC       | 8856  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 8        | YC       | 8857  | 3-Jan-16  | 105D11 | Brian R Sauer        |
| Gin    | 9        | YC       | 8858  | 3lan-16   | 105D11 | Brian R. Sauer       |
| Gin    | 10       | YC       | 8859  | 3- Jan-16 | 105D11 | Brian R. Sauer       |
| Gin    | 10       | YC       | 8860  | 3- Jan-16 | 105D11 | Brian R. Sauer       |
| Gin    | 12       | VC       | 8861  | 3- Jan-16 | 105D11 | Brian R. Sauer       |
| Gin    | 12       | VC       | 8862  | 3- Jan-16 | 105D11 | Brian R. Sauer       |
| Gin    | 13       | YC       | 0002  | 2 Jon 16  | 105D11 | Brian P. Souer       |
| Gin    | 14       | YC       | 0003  | 3-Jan-10  | 105D11 | Brian R. Sauer       |
| Gin    | 15       | YC       | 0004  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 10       | YC       | C000  | 3-Jan-16  | 105D11 | Drian R. Sauer       |
| Gin    | 17       | YC       | 8866  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Gin    | 18       | YC       | 8867  | 3-Jan-16  | 105D11 | Brian R. Sauer       |
| Hat    | 41       | YC       | 18449 | 11-Nov-18 | 105D14 | Kluane Drilling Ltd. |
| Hat    | 42       | YC       | 18450 | 11-Nov-18 | 105D14 | Kluane Drilling Ltd. |
| Hat    | 43       | YC       | 18451 | 11-Nov-18 | 105D14 | Kluane Drilling Ltd. |
| Hat    | 44       | YC       | 18452 | 11-Nov-18 | 105D14 | Kluane Drilling Ltd. |
| Hat    | 47       | YC       | 18853 | 11-Nov-16 | 105D14 | Kluane Drilling Ltd. |
| Hat    | 48       | YC       | 18854 | 11-Nov-16 | 105D11 | Kluane Drilling Ltd. |
| Hat    | 45       | YC       | 18695 | 11-Nov-18 | 105D14 | Kluane Drilling Ltd. |
| Hat    | 46       | YC       | 18696 | 11-Nov-18 | 105D14 | Kluane Drilling Ltd. |
| Gin    | 37       | YC       | 19484 | 1-Jan-21  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 38       | YC       | 19485 | 1-Jan-22  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 39       | YC       | 19486 | 1-Jan-18  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 40       | YC       | 19487 | 1-Jan-18  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 41       | YC       | 19488 | 1-Jan-18  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 42       | YC       | 19489 | 1-Jan-18  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 43       | YC       | 19490 | 1-Jan-18  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 44       | YC       | 19491 | 1-Jan-18  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 45       | YC       | 19492 | 1-Jan-21  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 46       | YC       | 19493 | 1-Jan-21  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 47       | YC       | 19494 | 1-Jan-21  | 105D11 | Kluane Drilling Ltd. |
| Gin    | 48       | YC       | 19495 | 1-Jan-21  | 105D11 | Kluane Drilling Ltd. |
| Howard | 1        | YC       | 37796 | 29-Dec-16 | 105D11 | Ron Stack            |
| Howard | 2        | YC       | 37797 | 29-Dec-16 | 105D11 | Ron Stack            |
| Alex   | 1        | YC       | 37798 | 29-Dec-17 | 105D11 | Ron Stack            |
| Alex   | 2        | YC       | 37799 | 29-Dec-17 | 105D11 | Ron Stack            |
| Alex   | 3        | YC       | 37800 | 29-Dec-17 | 105D11 | Ron Stack            |
| Alex   | 4        | YC       | 37801 | 29-Dec-17 | 105D11 | Ron Stack            |
|        | 5        | YC       | 37802 | 20 Dec 17 | 105D11 | Ron Stack            |
|        | 6        | VC       | 37802 | 20-Dec-17 | 105D11 | Ron Stack            |
| Alox   | 7        | YC       | 37804 | 20-Dcc-17 | 105D11 | Ron Stack            |
|        | 0        | VC       | 37205 | 29-Dec-17 | 105011 | Ron Stack            |
| Topio  | 0        | YC       | 20077 | 29-Det-17 | 105D11 | H Course & Sons      |
| Tonic  | <u> </u> | NC       | 39077 | 22-160-17 |        |                      |
| Tonic  | 2        |          | 39078 | 22-FeD-17 | 105011 |                      |
| Tonic  | 3        |          | 39079 | 22-Feb-17 | 105D11 |                      |
|        | 4        | rC<br>VO | 39080 | 22-Feb-17 | 105D11 | n. Coyne & Sons      |
|        | 5        | YC       | 39081 | 22-Feb-17 | 105D11 | H. Coyne & Sons      |
| Tonic  | 6        | YC       | 39082 | 22-Feb-17 | 105D11 | H. Coyne & Sons      |
| Fonic  | 7        | YC       | 39083 | 22-Feb-17 | 105D11 | H. Coyne & Sons      |

|       |               |    |       |             |        | 1                    |
|-------|---------------|----|-------|-------------|--------|----------------------|
| Tonic | 8             | YC | 39084 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 9             | YC | 39085 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 10            | YC | 39086 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 11            | YC | 39087 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 12            | YC | 39088 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 13            | YC | 39089 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 14            | YC | 39090 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 15            | YC | 39091 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 16            | YC | 39092 | 22-Feb-17   | 105D11 | H. Coyne & Sons      |
| Tonic | 17            | YC | 39093 | 22-Feb-17   | 105D11 | H. Covne & Sons      |
| Tonic | 18            | YC | 39094 | 22-Feb-17   | 105D11 | H. Covne & Sons      |
| Tonic | 19            | YC | 39095 | 22-Feb-17   | 105D11 | H. Covne & Sons      |
| Tonic | 20            | YC | 39096 | 22-Feb-17   | 105D11 | H. Covne & Sons      |
| Tonic | 21            | YC | 39097 | 22-Feb-17   | 105D11 | H Covne & Sons       |
| Tonic | 22            | YC | 39098 | 22-Feb-17   | 105D11 | H Covne & Sons       |
| Tonic | 22            | YC | 39099 | 22-Feb-17   | 105D11 | H Covne & Sons       |
| Tonic | 20            | VC | 39100 | 22-Feb-17   | 105D11 | H Covne & Sons       |
|       | 70            | YC | 40108 | 1-100-16    | 105D11 |                      |
| Ala   | 19            | YC | 40190 | 16 Mar 16   | 105D11 | Kluopo Drilling Ltd  |
| Juice | <u>ו</u><br>ס | YC | 40330 | 16 Mar 16   | 105D11 | Kluono Drilling Ltd. |
| Juice | 2             | YC | 40557 | 10-Mar 10   | 105D11 | Kluane Drilling Ltd. |
| Juice | 3             | YC | 46558 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 4             | YC | 46559 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 5             | YC | 46560 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 6             | YC | 46561 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 7             | YC | 46562 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 8             | YC | 46563 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 9             | YC | 46564 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 10            | YC | 46565 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 11            | YC | 46566 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 12            | YC | 46567 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 13            | YC | 46568 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 14            | YC | 46569 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 15            | YC | 46570 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 16            | YC | 46571 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 17            | YC | 46572 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 18            | YC | 46573 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 19            | YC | 46574 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 20            | YC | 46575 | 16-Mar-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 21            | YC | 46576 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 22            | YC | 46577 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 23            | YC | 46578 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 24            | YC | 46579 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 25            | YC | 46580 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 26            | YC | 46581 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 27            | YC | 46582 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 28            | YC | 46583 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 29            | YC | 46584 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 30            | YC | 46585 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd  |
| Juice | 31            | YC | 46586 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 32            | YC | 46587 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
|       | 33            | YC | 46588 | 16-Mar-20   | 105D11 | Kluane Drilling Ltd. |
|       | 21            | VC | 40500 | 16_Mar_20   | 105011 | Kluane Drilling Ltd. |
|       | 27            | VC | 40509 | 16-Mar-20   | 105011 | Kluane Drilling Ltd. |
|       | 20            | VC | 40532 | 16-Mar 20   | 105011 | Kluane Drilling Ltd  |
| Juice | <u></u>       | VC | 40093 | 16 Mar 20   | 103011 | Kluppo Drilling Ltd. |
|       | 39            | VC | 40094 | 16 Mar 20   |        |                      |
| Juice | 40            | 1C | 46595 | 16-iviar-20 | 105D11 | Kluane Drilling Ltd. |

| Jack  | 1          | YC       | 54444 | 5-Dec-20   | 105D11 | H. Coyne & Sons      |
|-------|------------|----------|-------|------------|--------|----------------------|
| Juice | 41         | YC       | 66222 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 42         | YC       | 66223 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 43         | YC       | 66224 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 44         | YC       | 66225 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 45         | YC       | 66226 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 46         | YC       | 66227 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 47         | YC       | 66228 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 48         | YC       | 66229 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 49         | YC       | 66230 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 50         | YC       | 66231 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 51         | YC       | 66232 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 52         | YC       | 66233 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 53         | YC       | 66234 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 54         | YC       | 66235 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 55         | YC       | 66236 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 56         | YC       | 66237 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd. |
| Juice | 57         | YC       | 66238 | 1-Jan-21   | 105D11 | Kluane Drilling Ltd  |
| Juice | 58         | YC       | 66239 | 1lan-21    | 105D11 | Kluane Drilling Ltd. |
| Juice | 59         | YC       | 66240 | 1-Jan-19   | 105D11 | Kluane Drilling Ltd. |
|       | 00         | YC       | 66241 | 1 Jan-19   | 105D11 | Kluane Drilling Ltd. |
|       | 61         | YC       | 66242 | 10- Jan-20 | 105D11 | Kluane Drilling Ltd. |
|       | 62         | YC       | 662/3 | 10-Jan-20  | 105D11 | Kluane Drilling Ltd. |
| Juice | 62         | YC       | 66244 | 10-Jan-20  | 105D11 | Kluane Drilling Ltd. |
| Juice | 64         | YC       | 66245 | 10-Jan-20  | 105D11 | Kluono Drilling Ltd. |
| Juice | 04         | TC<br>VC | 00243 | 10-Jan-20  | 105D11 | Kluane Drilling Ltd. |
| Juice | 60         | YC       | 66246 | 10-0ct-16  | 105D11 | Kluane Drilling Ltd. |
| Juice | 66         | YC       | 66247 | 10-Oct-16  | 105D11 | Kluane Drilling Ltd. |
| Juice | 67         | YC       | 66248 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 68         | YC       | 66249 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 69         | YC       | 66250 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 70         | YC       | 66251 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 71         | YC       | 66252 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 72         | YC       | 66253 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 73         | YC       | 66254 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 74         | YC       | 66255 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 75         | YC       | 66256 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 76         | YC       | 66257 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 77         | YC       | 66258 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 78         | YC       | 66259 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 79         | YC       | 66260 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 80         | YC       | 66261 | 1-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 81         | YC       | 66262 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 82         | YC       | 66263 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 83         | YC       | 66264 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 84         | YC       | 66265 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 85         | YC       | 66266 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 86         | YC       | 66267 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 87         | YC       | 66268 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 88         | YC       | 66269 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 89         | YC       | 66270 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 90         | YC       | 66271 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd  |
| Juice | <u>91</u>  | YC       | 66272 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd  |
| Juice | 92         | YC       | 66273 | 10-Jan-19  | 105D11 | Kluane Drilling Ltd. |
| Juice | 93         | YC       | 66274 | 10lan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 9 <u>0</u> | YC       | 66275 | 10lan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 95         | YC       | 66276 | 10lan-19   | 105D11 | Kluane Drilling Ltd. |
| 0.000 | 00         | . 🗸      | 55210 | 10 5411 10 | 100011 |                      |

| Juice | 96  | YC       | 66277 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
|-------|-----|----------|-------|-------------|--------|----------------------|
| Juice | 97  | YC       | 66278 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 98  | YC       | 66279 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 99  | YC       | 66280 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 100 | YC       | 66281 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 101 | YC       | 66282 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 102 | YC       | 66283 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 103 | YC       | 66284 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 104 | YC       | 66285 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 105 | YC       | 66286 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 106 | YC       | 66287 | 10-Jan-19   | 105D11 | Kluane Drilling Ltd. |
| Juice | 107 | YC       | 66288 | 10-Oct-15   | 105D11 | Kluane Drilling Ltd  |
| Juice | 108 | YC       | 66289 | 10-Oct-15   | 105D11 | Kluane Drilling Ltd. |
| Juice | 109 | YC       | 66290 | 10-Jan-20   | 105D11 | Kluane Drilling Ltd. |
|       | 110 | YC       | 66201 | 10- Jan-20  | 105D11 | Kluane Drilling Ltd. |
|       | 110 | VC       | 66202 | 10-0an-20   | 105D11 | Kluane Drilling Ltd. |
|       | 112 | YC       | 66293 | 10-0ct-11   | 105D11 | Kluane Drilling Ltd. |
| Juice | 112 | YC       | 66204 | 10-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 113 | YC       | 66205 | 10-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 114 | YC       | 66295 | 10-Jan-20   | 105D11 | Kluane Drilling Ltd. |
| Juice | 115 | YO       | 00290 | 10-Jan-20   | 105011 | Kluane Drilling Ltd. |
| Juice | 116 | YC       | 66297 | 10-Oct-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 117 | YC       | 66298 | 10-Oct-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 118 | YC       | 66299 | 10-Oct-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 119 | YC       | 66300 | 10-Oct-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 120 | YC       | 66301 | 10-Oct-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 121 | YC       | 66302 | 10-Oct-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 122 | YC       | 66303 | 10-Oct-15   | 105D11 | Kluane Drilling Ltd. |
| Juice | 123 | YC       | 66304 | 10-Oct-15   | 105D11 | Kluane Drilling Ltd. |
| Juice | 124 | YC       | 66305 | 10-Oct-16   | 105D11 | Kluane Drilling Ltd. |
| Juice | 125 | YC       | 66306 | 10-Oct-16   | 105D11 | Kluane Drilling Ltd. |
| FOB   | 1   | YD       | 29626 | 2-Nov-16    | 105D11 | Chris Davis          |
| FOB   | 2   | YD       | 29627 | 2-Nov-16    | 105D11 | Chris Davis          |
| FOB   | 3   | YD       | 29628 | 2-Nov-16    | 105D11 | Chris Davis          |
| FOB   | 4   | YD       | 29629 | 2-Nov-16    | 105D11 | Chris Davis          |
| FOB   | 5   | YD       | 29630 | 2-Nov-16    | 105D11 | Chris Davis          |
| ТОМ   | 1   | YD       | 59228 | 11-May-16   | 105D10 | Chris Davis          |
| ТОМ   | 2   | YD       | 59229 | 11-May-16   | 105D10 | Chris Davis          |
| ТОМ   | 3   | YD       | 59230 | 11-May-16   | 105D10 | Chris Davis          |
| ТОМ   | 4   | YD       | 59231 | 11-May-16   | 105D10 | Chris Davis          |
| ТОМ   | 5   | YD       | 59232 | 11-May-16   | 105D10 | Chris Davis          |
| ТОМ   | 6   | YD       | 59233 | 11-May-16   | 105D10 | Chris Davis          |
| ТОМ   | 7   | YD       | 59234 | 11-May-16   | 105D10 | Chris Davis          |
| TOM   | 8   | YD       | 59235 | 11-May-16   | 105D10 | Chris Davis          |
| том   | 9   | YD       | 59236 | 11-May-16   | 105D10 | Chris Davis          |
| TOM   | 10  | YD       | 59237 | 11-May-16   | 105D10 | Chris Davis          |
| том   | 10  |          | 50238 | 11-May 10   | 105D10 | Chris Davis          |
| TOM   | 12  |          | 50230 | 11-May-10   | 105D10 | Chris Davis          |
| TOM   | 12  |          | 50210 | 11_Mov_16   | 105010 | Chrie Davie          |
| TOM   | 1.1 |          | 50240 | 11 May 16   | 105D10 | Chris Davis          |
| TOM   | 14  |          | 50241 | 11-Mov 16   | 105010 | Chris Davis          |
|       | 15  |          | 59242 | 11-Way-16   | 105010 | Chris Davis          |
|       | 16  |          | 59243 | 11-IVIAY-16 | 105D10 | Chris Davis          |
|       | 1/  | τυ<br>VD | 59244 | 11-May-16   | 105D10 | Chris Davis          |
|       | 18  | ۲D<br>VD | 59245 | 11-May-16   | 105D10 |                      |
|       | 19  | YD       | 59246 | 11-May-16   | 105D10 | Chris Davis          |
| IOM   | 20  | YD       | 59247 | 11-May-16   | 105D10 | Chris Davis          |
| ГОМ   | 21  | YD       | 59248 | 11-May-16   | 105D10 | Chris Davis          |

|      |           |           |       | 1          | 1                | -            |
|------|-----------|-----------|-------|------------|------------------|--------------|
| ТОМ  | 22        | YD        | 59249 | 11-May-16  | 105D10           | Chris Davis  |
| ТОМ  | 23        | YD        | 59250 | 11-May-16  | 105D10           | Chris Davis  |
| ТОМ  | 24        | YD        | 59251 | 11-May-16  | 105D10           | Chris Davis  |
| ТОМ  | 25        | YD        | 59252 | 11-May-16  | 105D10           | Chris Davis  |
| ТОМ  | 26        | YD        | 59253 | 11-May-16  | 105D10           | Chris Davis  |
| ТОМ  | 27        | YD        | 59254 | 11-May-16  | 105D10           | Chris Davis  |
| ТОМ  | 28        | YD        | 59255 | 11-May-16  | 105D10           | Chris Davis  |
| ТОМ  | 29        | YD        | 59256 | 11-May-16  | 105D11           | Chris Davis  |
| GIN  | 19        | YD        | 59258 | 11-May-16  | 105D11           | Chris Davis  |
| GIN  | 20        | YD        | 59259 | 11-May-16  | 105D11           | Chris Davis  |
| EVA  | 1         | YD        | 59260 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 2         | YD        | 59261 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 3         | YD        | 59262 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 4         | YD        | 59263 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 5         | YD        | 59264 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 6         | YD        | 59265 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 7         | YD        | 59266 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 8         | YD        | 59267 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 9         | YD        | 59268 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 10        | YD        | 59269 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 11        | YD        | 59270 | 24-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 12        | YD        | 59271 | 11-Jun-16  | 105D11           | Chris Davis  |
| EVA  | 13        | YD        | 59272 | 11-Jun-16  | 105D11           | Chris Davis  |
| EV/A | 10        | YD        | 59272 | 24- Jun-16 | 105D11           | Chris Davis  |
| EV/A | 15        | YD        | 59274 | 14-Jun-16  | 105D11           | Chris Davis  |
|      | 20        |           | 59279 | 14-lun-16  | 105D11           | Chris Davis  |
|      | 20        |           | 59280 | 14-Jun-16  | 105D11<br>105D11 | Chris Davis  |
| EV/A | 22        | YD        | 59281 | 14-Jun-16  | 105D11           | Chris Davis  |
| EV/A | 23        | YD        | 59282 | 14- Jun-16 | 105D11           | Chris Davis  |
|      | 1         | YD        | 59283 | 24- Jun-16 | 105D11           | Chris Davis  |
|      | 2         |           | 59284 | 24 Jun-16  | 105D11           | Chris Davis  |
|      | 2         |           | 50204 | 24 Jun-16  | 105D11           | Chris Davis  |
|      | <u> </u>  |           | 59200 | 24-Jun-16  | 105D11           | Chris Davis  |
|      |           |           | 50287 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 5         |           | 50207 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 24        |           | 50200 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 24        |           | 50209 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 20        |           | 59290 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 20        |           | 59291 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 21        |           | 59292 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 28        | YD        | 59293 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 29        | YD        | 59294 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 30        |           | 59295 | 24-Jun-16  | 105D11           | Chills Davis |
|      | <u>31</u> |           | 59296 | 24-JUN-16  | 105011           | Chris Davis  |
| EVA  | 32        | YD        | 59297 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 33        | ז ט<br>אס | 59298 | 24-JUN-16  | 105D11           | Chris Davis  |
|      | 1         | זט<br>אס  | 59299 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 2         | זט<br>אס  | 59300 | 24-Jun-16  | 105D11           | Chris Davis  |
|      | 3         | YD        | 59301 | 24-Jun-16  | 105D11           | Chris Davis  |
| TRAD | 4         | YD        | 59302 | 24-Jun-16  | 105D11           | Chris Davis  |
| IRAD | 5         | YD        | 59303 | 24-Jun-16  | 105D11           | Chris Davis  |



0 0.5 1 2 3 4 Kilometers

# Kluane Drilling Claims & Leases

Claim-Lease map

NTS 105D-11 and 14 Nad 83, Zone 8, Yukon Albers Projection

#### APPENDIX D

DIAMOND DRILLING 2011

NORTH STAR PROJECT

KLUANE DRILLING LTD.

DIAMOND DRILL LOGS

And

#### **DIAMOND DRILL SECTIONS**

| East UTM | North UTM | Drill NS-11-01                                                                 | Angle (° )   |
|----------|-----------|--------------------------------------------------------------------------------|--------------|
| 497528   | 6720684   | Nad 83 Zone 6 Elevation 835 m Depth 413.0 m                                    | -70          |
| From (m) | To (m)    | Description                                                                    | Core Angle ° |
| 0.0      | 5.0       | Overburden                                                                     |              |
| 5.0      | 10.0      | Weathered diorite                                                              |              |
| 10.0     | 14.7      | Diorite - equigranular, medium grained, light tan green                        |              |
| 14.7     | 17.1      | Skarn - serp-mag- wol - pale grey green                                        |              |
| 17.1     | 19.4      | Mafic dyke - dark green, fine grained                                          |              |
| 19.4     | 22.8      | Diorite - equigranular, medium grained, light tan green w/ diss py             | 18 cn        |
| 22.8     | 26.0      | Endo-skarn - diopside-mag-gar-wol                                              | 70 cn        |
| 26.0     | 27.2      | Diorite - equigranular, medium grained, light tan green                        | 80 cn        |
| 27.2     | 31.5      | Endo-skarn - diopside-mag-gar-serp                                             | 70 - 80 cn   |
| 31.5     | 36.6      | Diorite - equigranular, medium grained, light tan green                        |              |
| 36.6     | 39.1      | Porphyritic dyke - feld phenos in med. grey green matrix                       |              |
| 39.1     | 40.0      | Diorite dark grey green w/diss and strgr py                                    |              |
| 40.0     | 49.3      | Mafic dyke - dark green, fine grained                                          |              |
| 49.3     | 92.0      | Diorite w/mafic dykes and occ. Endo skarn                                      |              |
| 92.0     | 129.2     | Meta-seds fine grained grey green locally dioritized                           |              |
| 129.2    | 135.8     | pale skarnified carbonate rich meta-seds w/calcite                             |              |
| 135.8    | 143.0     | Dioritized meta-seds                                                           |              |
| 143.0    | 157.0     | Skarnoid carbonate rich w/white calcite                                        |              |
| 157.0    | 165.1     | Diorite                                                                        |              |
| 165.1    | 170.7     | Skarn - serp-mag pale grey green slickensides w/trace diss py and cpy          |              |
| 170.7    | 190.5     | Diorite/dioritized meta-seds locally carbonate rich                            |              |
| 190.5    | 214.5     | Skarnoid carbonate rich w/white calcite, gar and serp bns                      |              |
| 214.5    | 237.0     | Light grey crystalline limestone 218.5 - 219.0 m fossiliferous                 |              |
| 237.0    | 244.0     | Marble white crystalline                                                       |              |
| 244.0    | 301.1     | Limestone and marble with 0.5 - 2.0 m light grey green fine grained dykes      |              |
| 301.1    | 301.6     | Skarn - hem-py-cpy-mag-born dark green                                         |              |
| 301.6    | 302.7     | Marble white crystalline                                                       |              |
| 302.7    | 303.4     | Skarn - high-grade bornite-chalcopyrite-pyrite                                 |              |
| 303.4    | 304.8     | Mafic dyke - dark green, fine grained skarnified w/pyrite                      | 45 cn        |
| 304.8    | 400.2     | Limestone light grey, fine grained, crystalline                                |              |
|          |           | locally fossiliferous w/marble                                                 |              |
|          |           | 343.8 - 344.3 m fault zone in limestone                                        | 45 cn        |
|          |           | 357.2 - 359.4 m fine grained, dark green mafic dyke w/patchy epidote endoskarn | 40           |
|          |           | 360.3 limestone marble graphitic                                               | 85 bn        |
| 400.2    | 401.4     | Mafic dyke pophyritic pale felspar phenos in dark green matrix                 | 20 cn        |
| 401.4    | 402.9     | Limestone w/epidote skarn. Hem bands and strgrs. Seams clotty and diss py      | 30 cn        |
|          |           | Hem strgs at low core angles to sub-parallel                                   |              |
| 402.9    | 413.0     | Porphyritic dyke - feld phenos in light grey green matrix                      |              |
|          | 413.0     | End of Hole                                                                    |              |



Logged by R. Stroshein

| East UTM | North UTM | Drill NS-11-02                                                                            | Angle (° )   |
|----------|-----------|-------------------------------------------------------------------------------------------|--------------|
| 497527   | 6720684   | Nad 83 Zone 6 Elevation 835 meters asl (GPS) Depth: 460.2 meters                          | -75          |
| From (m) | To (m)    | Description                                                                               | Core Angle ° |
| 0.0      | 4.0       | Overburden                                                                                |              |
| 4.0      | 19.8      | Diorite - equigranular, medium grained, light tan green w/ patchy serp and black sk       | 35 cn        |
| 19.8     | 22.6      | Mafic Dyke dark green, fine grained.                                                      | 35 cn        |
| 22.6     | 28.3      | Diorite med grained, dark green w/serp endoskarn                                          |              |
| 28.3     | 33.5      | Calcite-serp-amphibole skarn upper (irregular) and lower contacts                         | 50/38 cns    |
| 33.5     | 44.3      | Diorite - equigranular, medium grained, dark green w/ serp                                | 45 cn        |
| 44.3     | 49.5      | Porphyritic mafic dyke white feld phenos in green fine grained matrix                     |              |
| 49.5     | 64.0      | Meta-seds fine grained grey green locally dioritized                                      | 80 cn        |
| 64.0     | 83.4      | Diorite - medium grained, equigranular, dark green w/serp                                 | 80 cn        |
| 83.4     | 173.7     | Diorite - equigranular, medium grained, light tan green                                   |              |
| 173.7    | 194.2     | Skarn - serp-mag-hem +/- garnet mixed trace pyrite diss                                   | 70 cn        |
| 194.2    | 199.5     | Diorite grey green, medium grained, equigranular                                          |              |
| 199.5    | 208.5     | Skarn - serp-mag-hem +/- garnet mixed trace pyrite diss                                   |              |
| 208.5    | 263.8     | Limestone light grey, fine grained, crystalline w/marble sections                         |              |
| 263.8    | 264.4     | Skarn - cpy-py-hem dark grey to red                                                       | 20 cn        |
| 264.4    | 273.4     | Porphyritic Dyke - feld phenos in fine grained creamy green matrix w/serp replace phenos  |              |
| 273.4    | 326.4     | Light grey crystalline limestone and white crystalline marble                             |              |
| 326.4    | 335.6     | Porphyritic Dyke Mafic feld phenos in grey green fine grained matrix                      |              |
| 335.6    | 429.2     | Light grey carbonaceous crystalline limestone and white crystalline marble                |              |
|          |           | Mafic dykes of 0.5 - 1.5 meters in marble sections                                        | 10 - 20 cn   |
|          |           | 343.5 - 358.4 meters fault zone fractured clay rich with marble clasts                    | 20 - 25 cn   |
|          |           | Skarnoid dark grey to banded grey brown w/serp trace very fine grained py w/yl-lime green |              |
| 429.2    | 433.3     | epidote altn calcite bands acute core angles                                              | 45 and 30 cn |
| 433.3    | 438.3     | Clastic meta-siltstone                                                                    |              |
| 438.3    | 445.0     | Limestone marble w/weak skarnoid                                                          |              |
| 445.0    | 447.5     | Meta-siltstone skarnoid w/pyrite clots-diss-seams - 447.0 m 8 cm clay-rich band           |              |
| 447.5    | 451.1     | Graphic mafic porphyry dyke w/white feld phenos in dark black green fine grained matrix   |              |
| 451.1    | 458.7     | Hornfels meta-sediments clastic                                                           |              |
| 458.7    | 459.2     | Diorite sill/dyke                                                                         | 80 cn        |
| 459.2    | 460.2     | Hornfels meta-sediments clastic                                                           | 45 cn        |
|          | 460.2     | End of Hole                                                                               |              |

Logged by R. Stroshein

| East UTM | North UTM | Drill NS-11-03                                                                                   | Angle (° )     |
|----------|-----------|--------------------------------------------------------------------------------------------------|----------------|
| 497647   | 6720630   | Nad 83 Zone 6 Elevation 836 meters asl (GPS) Depth: 349.0 meters                                 | -60            |
| From (m) | To (m)    | Description                                                                                      | Core Angle °   |
| 0.0      | 3.0       | Overburden                                                                                       |                |
| 3.0      | 13.0      | Meta-siltstone skarnoid grey green                                                               | 72 fol         |
|          |           | Feldspar porphyry dyke "graphic" texture. Coarse light creamy green feldspar phenos in fine      | 38 cn up 35 cn |
| 13.0     | 42.4      | grained medium to dark grey green matrix.                                                        | low            |
| 42.4     | 50.1      | Garnet Skarn w/marble                                                                            |                |
|          |           | 42.4 - 45.3 m tr-1% pyrite in strgr stkwk                                                        |                |
|          |           | 45.3 - 47.5 m garn-diop skarn w/diss py                                                          |                |
|          |           | 47.5 - 48.0 m fine grained dark green dyke                                                       |                |
|          |           | 48.0 - 50.1 m white to light grey marble                                                         | 27 cn          |
| 50.1     | 55.5      | Porphyritic dyke crowded fine - medium phenos in light grey green matrix                         |                |
|          |           | 53.0 - 55.5 m strongly fractured core                                                            |                |
| 55.5     | 65.1      | Marble and limestone white and light grey                                                        |                |
|          |           | 62.0 - 62.9 m sheared with clay-rich bands                                                       | 63 bn          |
| 65.1     | 209.2     | Mafic dyke complex variably fine to coarse graphic grained dark grey geen                        |                |
|          |           | 112.5 - 115.6 m sub-parallel shearing w/calcite veining                                          |                |
|          |           | 127.0 - 127.6 m sub-parallel shearing w/calcite veining at contact graphic dyke and fine grained |                |
|          |           | dyke                                                                                             |                |
|          |           | 130.5 - 133.7 m garnet endo skarn                                                                | 30 cn          |
|          |           | 202.3 - 203.0 m gar-epi endo skarn                                                               |                |
|          |           | 205.1 - 206.5 m epi-garn endo skarn                                                              | 35 cn          |
|          |           | 207.3 - 217.0 m epi-garn skarn / altered meta-seds                                               |                |
|          |           | 217.0 - 229.7 m epidote skarnified dyke                                                          |                |
|          |           | 229.7 - 241.6 m Dyke comples w/weak epidote alteration in seams and phenos                       |                |
|          |           | 241.6 - 272.8 m Diorite/granodiorite med grained white/grey green w/weak epi altn                |                |
|          |           | 272.8 - 306.7 m Dyke complex fine grained to medium porphyritic                                  | 20 cn          |
|          |           | Skarnoid contact zone. Hematite porous and vuggy qz-calcite strngrs grey green to dark           |                |
| 306.7    | 309.1     | grey/black skarn                                                                                 | 45 - 60 strgr  |
|          |           | 20 cm fault zone clay-rich and fractured in fine grained medium grey green mafic dyke fractured  |                |
| 309.1    | 310.6     | and broken core                                                                                  | 45 shr         |
| 310.6    | 349.0     | Diorite massive medium grained, grey to grey green w/broken contact zone                         |                |
|          | 349.0     | End of Hole                                                                                      |                |

NAD 83 ZONE 6 utm 497646,6720.630 NS-11-03 -60° Treu Dioritized SEDS Dykes felsic 0.9% cm. O.4g/t Ak. DYKE COMPLEX w/ mafic Diorite LST/META SEDS ENDOSKARN hen. NS-11-04 307.9 NS-11-03 3+9.0m NORTH STAR Som scale 1:2500 DRILL SECTION NS-11-03 NS-11-04 KLUANE DRILLING LTD. Looking NorthWEST 315° AZ. January, 2012 RWS

| East UTM | North UTM | Drill NS-11-04                                                                         | Angle (° )   |
|----------|-----------|----------------------------------------------------------------------------------------|--------------|
| 497646   | 6720630   | Nad 83 Zone 6 Elevation 836 m Depth 307.9                                              | -67          |
| From (m) | To (m)    | Description                                                                            | Core Angle ° |
| 0.0      | 4.8       | Overburden                                                                             | -            |
|          |           | Skarnified meta-seiments. Dark grey green, fine to medium grained. Pale green          |              |
|          |           | alteration along cross cutting fractures. Qz-gar strgrs interlayere fine and medium    |              |
| 4.8      | 14.3      | grained beds                                                                           | 70 bn        |
|          |           | Feldspathic dyke. White to cream feldspar laths and coarse phenos (laths greater       |              |
|          |           | than 1 cm long) in fine grained dark grev green matrix (graphic texture). Rare gz-     |              |
| 14.3     | 43.5      | calcite stringer cross cutting and small light green altered xenoliths.                | 38 cn        |
|          |           | Dioritized meta-seds. Light grey green to buff colored w/strgrs of light limey green   |              |
|          |           | epidote. Fine to meium grained bands. Pyrite coars to fine grained strors.             |              |
| 43.5     | 51.5      | disseminated and coarse grained clots (2 - 5 %).                                       |              |
|          |           | Mafic dyke. Dark green, meduium grained /light fine feldspar phenos and dark hbld      |              |
| 51.5     | 70.2      | arains                                                                                 |              |
|          |           | 61.0 - 62.5 m sheared fracture clay-rich fault zone w/frags skarnoid limestone         |              |
|          |           | 67.5 - 69.6 m clay-rich shear zone w/calcite seams sub-parallel to core terminates w/  |              |
|          |           | core angle                                                                             | 60 flt       |
|          |           | Limestone and marble w/pale-vellow-lime-green epidote alteration. Shearing from        | 55 sh and 55 |
| 70.2     | 73.9      | upper contact to 71.5 m.                                                               | cn           |
|          | . 0.0     | Mafic dyke, light green, meduium grained /light feldspar phenos and dark hold grains.  |              |
| 73.9     | 79.0      | Epidote alteration.                                                                    |              |
| 10.0     | 10.0      |                                                                                        |              |
|          |           | 77.0 - 78.0 m epidote altered marble sheared and fractured sub parrallel to core axis  |              |
|          |           | Marble White to buff light green w/skarified vI-lime-green epidote and brown garnet    |              |
| 79.0     | 90.3      | Coarse grains of bornite w/pyrite and chalopyrite.                                     | 70 cn        |
| 10.0     | 00.0      | 85.2 - 88.7 m 1-2% sulphides                                                           | 10 011       |
|          |           | 85.6 - 86 m fractured w/clav-rich fault zone and hornfels frags.                       |              |
| 90.3     | 94.5      | Hornfels Meta-sediments trace pyrite and rare chalcopyrite grains                      | 74 bn        |
|          |           |                                                                                        |              |
| 94.5     | 96.7      | Dioritized meta-seds. Calcite strgrs and clay seams in fractures at lower contact zone |              |
|          |           | Mafic Dyke. Medium dark green, fine to medium grained w/white feldspar and black       |              |
|          |           | hrblend phenos. Abundant white calcite strgrs and veinlets cross-cutting to sub        |              |
| 96.7     | 130.0     | parallel. Local patchy light green alteration.                                         |              |
| 130.0    | 139.0     | Mafic 'graphic' dyke. Feldspar laths.                                                  | 30 cn        |
|          |           | Mafic Dyke. Medium dark green, fine to medium grained w/white feldspar and black       |              |
|          |           | hrblend phenos. Abundant white calcite strgrs and veinlets cross-cutting to sub        |              |
| 139.0    | 146.8     | parallel. Local patchy light green alteration.                                         |              |
| 146.8    | 153.9     | Mafic 'graphic' dyke. Feldspar laths.                                                  | 40 cn        |
|          |           |                                                                                        |              |
|          |           | Mafic dyke complex continued inter layered fine grained dark gree, 'graphic dyke',     |              |
| 153.9    | 221.5     | medium grained light grey, and medium grained w/ epidote alter feldspar phenos         |              |
|          |           | 197.0 - 197.5 m tq4n35 diopside skarn                                                  |              |
|          |           | 200.5 - 201.6 m garnet skarn                                                           |              |
|          |           | 202.6 - 203.5 m garnet-diopside skarn                                                  | 30 cn        |
| 221.5    | 237.9     | Skarn. Light pinkishbbrown to buff garnet-epidote-diopside.                            | 45 cn        |
| 237.9    | 257.6     | Diorite. Equigranular, medium grained, light grey green.                               |              |
| 257.6    | 274.6     | Graphic Dyke. Skarnoid zone between diorite and dyke 0.5 m.                            | 45 cn        |
| 274.6    | 298.5     | Mafic Dyke. Fine grained, dark green                                                   |              |
| 298.5    | 307.9     | Diorite. Equigranular, medium grained, light grey green.                               |              |
|          | 307.9     | End of Hole Page 1 of 1                                                                |              |

| East UTM | North UTM | Drill NS-11-05                                                                          | Angle (° )   |
|----------|-----------|-----------------------------------------------------------------------------------------|--------------|
| 497610   | 6720650   | Nad 83 Zone 6 Elevation 836 m Depth 390.1                                               | -75          |
| From (m) | To (m)    | Description                                                                             | Core Angle ° |
| 0.0      | 3.0       | Overburden                                                                              |              |
| 3.0      | 6.7       | Weathered diorite. 'rotten' granite                                                     |              |
| 6.7      | 11.9      | Diorite. Equigranular, medium grained light grey geeen.                                 |              |
| 11.9     | 38.1      | Mafic dykes and dioite sills                                                            |              |
|          |           | 24.4 - 25.3 m qz vnlets sub-parallel to core axis                                       |              |
|          |           | 27.4 - 30.2 m vuggy qz strgrs/veinlets in dyke sub-parallel to core axis 3 - 5% py and  |              |
|          |           | po.                                                                                     |              |
| 38.1     | 39.5      | Hornfels and gar-epidote skarn                                                          |              |
| 39.5     | 73.2      | Grey Limestone and white marble irregular contact                                       | 45 cn        |
| 73.2     | 82.3      | Weak epidote-garnet skarn w/diorite sills                                               |              |
| 82.3     | 92.4      | Mafic dyke. Fine grained to finely porphyritic                                          |              |
|          |           | Meta-seds. Siltstone and dioritized seds patch weak skarnification epi-gar w/trace diss |              |
| 92.4     | 182.9     | py.                                                                                     | 62 cn        |
|          |           | 171.9 - 176.8 m qz strgr stkwk zone irregular sb-parallel core angles                   |              |
|          |           | Limestone. Skarnoid ar-epi-serp, green - pin - brown. Fine grained altered dyke         |              |
| 182.9    | 208.8     | w/endo skarnification.                                                                  |              |
|          |           | 205.6 - 208.8 m dis cpy-bornite w/epidote skarn                                         |              |
| 208.8    | 211.8     | Limestone and Marble.                                                                   |              |
| 211.8    | 217.3     | Serp-magnetite skarn. Black. Tr bornite and cpy.                                        | 60 bns       |
|          |           | Interlayed grey limestone and white marble. Green - black or pink. Minor serp w/black   |              |
| 217.3    | 228.9     | skarn bands                                                                             |              |
| 228.9    | 232.0     | Garnet skarn. Coarse grained, pinkish brown.                                            |              |
| 232.0    | 233.2     | Mafic dyke. Fine grained, dark green                                                    |              |
| 233.2    | 236.2     | Porphyritic dyke mafic, with garnet endo-skarn                                          |              |
|          |           | Diorite. Equigranular, medium grained light grey geeen. s/fine grained dark green       |              |
| 236.2    | 263.0     | mafic dykes                                                                             |              |
| 263.0    | 310.3     | Epidote-garnet skarn. Meta-seds                                                         |              |
|          |           | 300.0 - 306.3 m epi-mag skarn w/bornite, cpy and py, 1 - 2 % diss.                      |              |
| 310.3    | 317.3     | Limestone. Light grey, medium grained, crystalline.                                     |              |
|          |           | 315.2 - 315.8 m clay-rich fault zone                                                    |              |
|          |           | 317.0 - 317.3 m weak gar-epi skarn w/2 - 4% diss py.                                    |              |
| 317.3    | 347.8     | Porphyritic dyke mafic. Light grey green.                                               | 34 cn        |
| 347.8    | 356.9     | Epidote skarn. W/magnetite-chalcopyrite-bornite and pyrite                              |              |
| 356.9    | 390.1     | Limestone and Marble. White w/magnetite skarn black.                                    |              |
|          |           | 359.5 - 361.2 m Black magnetite skarn w/diss cpy.                                       |              |
|          |           | 363.0 - 363.2 m Black magnetite skarn w/bornite and chalcopyrite up to 5%.              |              |
|          |           | 367.3 m 15 cm fine grained black dyke.                                                  | 75 cn        |
|          |           | 374.6 - 377.2 m Porphyritic dyke. Light grey green.                                     |              |
|          | 390.1     | End of Hole                                                                             |              |

NAD 83 ZONEG UTM 497584 6720 622 497610,6720650 NS-11-05 NS-11-07 -300 -750 LST SKARN DIORITE DYKE COMPLEX META-SEDS W/LST/DYKE/SKARA LST/SKARA W/OYKES 0.5% Cu 0.99 1: 44 0.99 1: 44 0.99 1: 44 0.99 1: 44 1 2.2% Cu SKARN/ Tren 0.2% cm DYKES LST / MARBLE Tra META-SEDS LST/MARBLE SKARN 0.5% GA LST/SKARN/MABLE LST/ MARBLE NS-11-07 0.9 %Gu 0.99% Ce M 354.2m 0.890Cu 0.39/eA NS-11-05 390.1m 150m 1 scale 1: 2500 NORTH STAR DIDRITE DRILL SECTION KLUANE DRILLING GO NS-11-05 January 2012 NS-11-07 RWS NS-10-25 LOOKING NORTHWEST 315° AZ. NS-10-25

Logged by R. Stroshein

| East UTM | North UTM | Drill NS-11-05                                                                    | Angle (° )   |
|----------|-----------|-----------------------------------------------------------------------------------|--------------|
| 497516   | 6720729   | Nad 83 Zone 6 Elevation 842 m Depth 374.9                                         | -70          |
| From (m) | To (m)    | Description                                                                       | Core Angle ° |
| 0.0      | 9.6       | Overburden                                                                        |              |
| 9.6      | 70.1      | Diorite skarnified. Equigranular, medium grained, light grey green                |              |
| 70.1     | 110.6     | Mafic dyke. Fine grained, dark green.                                             |              |
| 110.6    | 134.1     | Diorite skarnified. Equigranular, medium grained, light grey green                |              |
|          |           | Mafic dyke. Fine grained, dark green w/sills of diorite. Lower one meter contact  |              |
| 134.1    | 144.5     | skarnified.                                                                       |              |
| 144.5    | 153.9     | Epidote-garnet skarn. Pale grey green and light tan brown                         |              |
| 153.9    | 162.9     | Epidote skarn. Green and black.                                                   |              |
| 162.9    | 176.3     | Diorite skarnified. Equigranular, medium grained, light grey green                |              |
| 176.3    | 182.6     | Serpentine-magnetite skarn. Green and black.                                      |              |
| 182.6    | 193.7     | Limestone. Grey, crystalline. Weak light yellow-lime green.                       |              |
| 193.7    | 198.1     | Diorite skarnified. Equigranular, medium grained, light grey green                |              |
| 198.1    | 209.4     | Epidote skarn w/minor garnet. Pale yellow-lime-green with brown garnet grains.    |              |
| 209.4    | 239.4     | White marble and grey crystalline limestone.                                      | 90 bn        |
|          |           | Mafic dykes at 222.9 - 2225.5 m and `231.6 - 231.9 m.                             |              |
| 239.4    | 282.5     | Grey, crystalline Limestone w/marble bands                                        | 66 bn        |
|          |           | Light grey porphyritic dyke. Feldspar phenos weakly altered to light grey in fine |              |
| 282.5    | 293.8     | grained grey groundmass.                                                          |              |
|          |           |                                                                                   | upper 20 cn  |
| 293.8    | 295.0     | Epidote skarn. Pale green                                                         | lower 60 cn  |
| 295.0    | 374.9     | Limestone. Grey, crystalline. w/white marble bns                                  | 45 bn        |
|          |           | Dark green fine grained mafic dykes at 296.1 - 296.3 m                            | 34 cn        |
|          |           | and 299.6 - 301.1 m                                                               | 50           |
|          |           | Fossiliferous 346.9 - 347.4 m                                                     |              |
|          | 374.9     | End of Hole                                                                       |              |



| East UTM | North UTM | Drill NS-11-07                                                                          | Angle (° )        |
|----------|-----------|-----------------------------------------------------------------------------------------|-------------------|
| 497584   | 6720622   | Nad 83 Zone 6 Elevation 844 m asl Depth 354.2                                           | -70               |
| From (m) | To (m)    | Description                                                                             | Core Angle °      |
| 0.0      | 3.0       | Casing - Overburden                                                                     |                   |
| 2.0      | 7.0       | Grey green porphyritic dyke.White feldspar phenos >1 cm common in fine grained          | 45 on             |
| 3.0      | 1.3       | ground mass.                                                                            | 45 CH             |
|          |           | creamy light nale green enidote skarn, light brown garnet skarn, grey crystalline       |                   |
| 73       | 36.6      | limestone and light creamy white marble                                                 |                   |
| 7.5      | 50.0      | 13.9 - 14.9 m medium grained grey green diorite sill (2) w/ calcite stringers up to 2   | 20 strar          |
|          |           | cm                                                                                      | 20 Stigi<br>85 cn |
|          |           |                                                                                         | 70 upper cp       |
|          |           | 15.7 - 16.3 m fine grained grey green porphyry dyke                                     | 45 lower cn       |
|          |           |                                                                                         |                   |
|          |           | Multi-phase intrusive-dyke complex that includes: fine grained, light grey green mafic, |                   |
|          |           | medium grained grey green diorite, light grey green (spotted) porhyritc mafic dyke      |                   |
|          |           | w/rounded feldspar phenos, coarse angular feldspar phenos in fine grained mafic         |                   |
| 36.6     | 249.6     | groundmass and medium to dark grey green fine porphyritic mafic material.               |                   |
|          |           | 229.4.240.2 m Skorpoid and limestope vensite/2) green enidete er grev limestope         | 4E lower op       |
| 240.6    | 251.0     | 228.1 240.2 m Skamold and imestorie xenditin(?) green epidote or grey imestorie         | 45 lower ch       |
| 249.0    | 251.0     | White crystalling marble w/anidate skarn band (20 cm) at lower contact                  | 45 lower cp       |
| 231.0    | 200.1     | Porphyritic dyke. Coarse white feldspar phones in grow groop, fine grained mafic        |                   |
| 253.1    | 255.7     | aroundmass                                                                              | 30 lower cn       |
| 255.7    | 260.0     | Enidote-garnet skarp. Green and brown medium grained                                    |                   |
| 200.1    | 200.0     | Dyke Fine grained grey green w/altered feldspar phenos in very fine grained matic       |                   |
| 260.0    | 263 7     | matrix                                                                                  |                   |
| 200.0    | 200.7     | Epidote skarn Green medium grained w/bands of white marble and brown garnet             | 40 uppper cn      |
| 263 7    | 271.6     | skarn.                                                                                  | 10 lower cn       |
|          |           |                                                                                         | 279m 60 bn        |
| 271.6    | 354.2     | Limestone and marble. Grey crystalline limestone and light creamy white marble.         | 335 m 90 bn       |
|          |           |                                                                                         | 45 upper cn       |
|          |           | 278.0 - 278.1 m fine grained green dyke                                                 | 60 lower cn       |
|          |           |                                                                                         | 45 upper cn       |
|          |           | 320.5 - 321.7 m Porphyritc Dyke. 2 cm epidote skarn bands on contacts.                  | 60 lower cn       |
|          | 354.2     | End of Hole.                                                                            |                   |

APPENDIX E

DIAMOND DRILLING 2011

NORTH STAR PROJECT

KLUANE DRILLING LTD.

ASSAY SUMMARY SHEETS

# 2011 Diamond Drilling Program

# Kluane Drilling Ltd. Whitehorse Copper Belt North Star Project Assay Sheet

|          |        |           |           | Au   | Cu    |
|----------|--------|-----------|-----------|------|-------|
| From (m) | To (m) | Width (m) | Sample ID | ppm  | ppm   |
| 164.7    | 167.6  | 2.9       | K931557   | <0.2 | 38.8  |
| 167.6    | 170.8  | 3.2       | K931558   | <0.2 | 197.5 |
|          |        |           |           |      |       |
| 208.7    | 211.8  | 3.1       | K931559   | <0.2 | 31.5  |
| 211.8    | 213.9  | 2.1       | K931560   | <0.2 | 397   |
|          |        |           |           |      |       |
| 300.8    | 302.1  | 1.3       | K931561   | <0.2 | 1150  |
| 302.7    | 303.4  | 0.7       | K931562   | <0.2 | 1020  |
| 303.6    | 304.6  | 1.0       | K931563   | <0.2 | 103.5 |
|          |        |           |           |      |       |
| 401.6    | 403.2  | 1.6       | K931564   | <0.2 | 2.7   |

#### DDH NS11-01

# 2011 Diamond Drilling Program

# Kluane Drilling Ltd. Whitehorse Copper Belt North Star Project Assay Sheet

|          |        |           |           | Au   | Cu   |
|----------|--------|-----------|-----------|------|------|
| From (m) | To (m) | Width (m) | Sample ID | ppm  | ppm  |
| 28.2     | 30.5   | 2.3       | K931509   | <0.2 | 7.7  |
| 30.5     | 33.3   | 2.8       | K931510   | <0.2 | 10.2 |
|          |        |           |           |      |      |
| 173.7    | 175.1  | 1.4       | K931511   | <0.2 | 13.8 |
| 177.5    | 178.7  | 1.2       | K931512   | <0.2 | 9.4  |
| 178.7    | 181.5  | 2.8       | K931513   | <0.2 | 6.8  |
| 181.5    | 183.4  | 1.9       | K931514   | <0.2 | 93.3 |
| 183.4    | 185.5  | 2.1       | K931515   | <0.2 | 39.7 |
| 185.5    | 186.6  | 1.1       | K931516   | <0.2 | 823  |
| 186.6    | 189.0  | 2.4       | K931517   | <0.2 | 614  |
| 189.0    | 191.7  | 2.7       | K931518   | <0.2 | 1190 |
| 191.7    | 194.2  | 2.5       | K931519   | <0.2 | 514  |

#### DDH NS11-02

#### **DDH NS11-03**

# Kluane Drilling Ltd. Whitehorse Copper Belt North Star Project Assay Sheet

# 2011 Diamond Drilling Program

|          |        |       |           | Au   | Cu   |
|----------|--------|-------|-----------|------|------|
| From (m) | To (m) | Width | Sample ID | ppm  | ppm  |
| 42.4     | 44.2   |       | K931549   | <0.2 | 718  |
| 44.2     | 46.1   |       | K931550   | <0.2 | 96.9 |
| 46.1     | 47.8   |       | K931551   | <0.2 | 237  |
|          |        |       |           |      |      |
| 209.2    | 211.2  |       | K931552   | <0.2 | 635  |
| 211.2    | 213.5  |       | K931553   | <0.2 | 330  |
| 213.5    | 215.1  |       | K931554   | <0.2 | 32   |
| 215.1    | 216.8  |       | K931555   | <0.2 | 11.7 |
|          |        |       |           |      |      |
| 305.9    | 308.8  |       | K931556   | <0.2 | 200  |

#### **DDH NS11-04**

# Kluane Drilling Ltd. Whitehorse Copper Belt North Star Project Assay Sheet

# 2011 Diamond Drilling Program

|          |        |           |           | Au   | Cu   |
|----------|--------|-----------|-----------|------|------|
| From (m) | To (m) | Width (m) | Sample ID | ppm  | ppm  |
| 43.5     | 45.5   | 2.0       | K931501   | <0.2 | 663  |
| 45.5     | 47.5   | 2.0       | K931502   | <0.2 | 163  |
| 47.5     | 49.5   | 2.0       | K931503   | <0.2 | 86   |
| 49.5     | 51.5   | 2.0       | K931504   | <0.2 | 90.9 |
| 85.4     | 88.3   | 2.9       | K931505   | 0.4  | 8770 |
| 222.5    | 225.5  | 3.0       | K931506   | <0.2 | 69.4 |
| 225.5    | 228.6  | 3.1       | K931507   | <0.2 | 78.6 |
| 228.6    | 231.6  | 3.0       | K931508   | <0.2 | 26.4 |

# Kluane Drilling Ltd. Whitehorse Copper Belt North Star Project Assay Sheet

| From (m) | To (m) | Width (m) | Sample ID | Au ppm | Cu ppm | Cu %  |
|----------|--------|-----------|-----------|--------|--------|-------|
| 205.6    | 208.8  | 3.2       | K931534   | <0.2   | 5780   |       |
|          |        |           |           |        |        |       |
| 211.8    | 214.9  | 3.1       | K931535   | 1      | >10000 | 1.245 |
| 214.9    | 217.4  | 2.5       | K931536   | 0.5    | >10000 | 1.01  |
|          |        |           |           |        |        |       |
| 220.6    | 222.8  | 2.2       | K931537   | <0.2   | 423    |       |
| 222.8    | 223.9  | 1.1       | K931538   | <0.2   | 149.5  |       |
| 223.9    | 226.0  | 2.1       | K931539   | 0.2    | 4000   |       |
| 226.0    | 227.7  | 1.7       | K931540   | <0.2   | 331    |       |
| 227.7    | 228.5  | 0.8       | K931541   | <0.2   | 1335   |       |
|          |        |           |           |        |        |       |
| 299.9    | 302.0  | 2.1       | K931542   | 0.2    | 5830   |       |
| 302.0    | 304.0  | 2.0       | K931543   | <0.2   | 2920   |       |
| 304.0    | 306.0  | 2.0       | K931544   | 0.3    | 4670   |       |
|          |        |           |           |        |        |       |
| 353.4    | 355.1  | 1.7       | K931545   | <0.2   | 2600   |       |
| 355.1    | 356.5  | 1.4       | K931546   | <0.2   | 9630   |       |
|          |        |           |           |        |        |       |
| 359.5    | 361.2  | 1.7       | K931547   | 0.3    | 8390   |       |
| 363.0    | 363.2  | 0.2       | K931548   | 0.8    | 9710   |       |

#### **DDH NS11-06**

# Kluane Drilling Ltd. Whitehorse Copper Belt North Star Project Assay Sheet

# 2011 Diamond Drilling Program

|          |        |           |           | Au   | Cu    |
|----------|--------|-----------|-----------|------|-------|
| From (m) | To (m) | Width (m) | Sample ID | ppm  | ppm   |
| 140.7    | 143.7  | 3.0       | K931520   | <0.2 | 42.1  |
| 143.7    | 146.3  | 2.6       | K931521   | <0.2 | 568   |
| 146.3    | 149.4  | 3.1       | K931522   | <0.2 | 3.6   |
| 149.4    | 152.4  | 3.0       | K931523   | <0.2 | 7.5   |
| 152.4    | 155.5  | 3.1       | K931524   | <0.2 | 410   |
| 155.5    | 158.5  | 3.0       | K931525   | <0.2 | 205   |
| 158.5    | 161.5  | 3.0       | K931526   | <0.2 | 90.8  |
| 161.5    | 162.9  | 1.4       | K931527   | <0.2 | 47    |
|          |        |           |           |      |       |
| 176.3    | 177.9  | 1.7       | K931528   | <0.2 | 25.8  |
| 177.9    | 181.0  | 3.1       | K931529   | <0.2 | 27.7  |
| 181.0    | 182.5  | 1.5       | K931530   | <0.2 | 17.6  |
|          |        |           |           |      |       |
| 198.1    | 201.1  | 3.0       | K931531   | <0.2 | 265   |
| 201.1    | 204.2  | 3.1       | K931532   | <0.2 | 608   |
| 204.2    | 207.4  | 3.2       | K931533   | <0.2 | 119.5 |

#### **DDH NS11-07**

# Kluane Drilling Ltd. Whitehorse Copper Belt North Star Project Assay Sheet

|          |        |           |           | Au   | Cu   |
|----------|--------|-----------|-----------|------|------|
| From (m) | To (m) | Width (m) | Sample ID | ppm  | ppm  |
| 7.3      | 9.1    | 1.8       | K931565   | <0.2 | 33.3 |
| 9.1      | 10.7   | 1.5       | K931566   | <0.2 | 23.8 |
| 10.7     | 12.2   | 1.5       | K931567   | <0.2 | 13   |
|          |        |           |           |      |      |
| 16.3     | 17.8   | 1.5       | K931568   | <0.2 | 372  |
| 17.8     | 19.8   | 2.0       | K931569   | <0.2 | 36.1 |
| 19.8     | 22.9   | 3.0       | K931570   | <0.2 | 38.9 |
| 22.9     | 25.0   | 2.1       | K931571   | <0.2 | 32.7 |
|          |        |           |           |      |      |
| 27.7     | 29.6   | 1.8       | K931572   | <0.2 | 29.2 |
| 29.6     | 32.0   | 2.4       | K931573   | <0.2 | 58.5 |
| 32.0     | 33.5   | 1.5       | K931574   | <0.2 | 64.7 |
|          |        |           |           |      |      |
| 249.6    | 251.8  | 2.1       | K931575   | <0.2 | 657  |
|          |        |           |           |      |      |
| 255.7    | 257.6  | 1.8       | K931576   | <0.2 | 271  |
| 257.6    | 259.7  | 2.1       | K931577   | <0.2 | 2190 |
|          |        |           |           |      |      |
| 264.6    | 266.9  | 2.3       | K931578   | <0.2 | 285  |
| 266.9    | 269.3  | 2.4       | K931579   | <0.2 | 271  |
| 269.3    | 271.6  | 2.3       | K931580   | <0.2 | 149  |