2009 Assessment Report for the Casino Property

Whitehorse Mining District Yukon Territory NTS 115J/10 Latitude: 62° 44' N Longitude: 138° 50'

Quartz Claims:

Qualiz C
Grant #
4252
56979
56980
56981
56983
56984
56985
56987
56988
56990
56991
56992
56993
92201 - 92222
92764 - 92766
92765 - 92766
92776 - 92783
95724 - 95747
Y 10693 - Y 10708
Y 35192 - Y 35207
Y 35483 - Y 35484
Y 35491 - Y 35492
Y 35517 - Y 35522

<u>ms:</u>	
Claim Name	Grant #
MOUSE 161 - 163	Y 35582 - Y 35584
LOST FR. 1 - 3	Y 35585 - Y 35587
CAT 22	Y 36686
CAT 47 - 48	Y 36687 - Y36688
CAT 57	Y 36689
CAT 62	Y 36690
CAT 3 - 4	Y 39601 - Y39602
CAT 23	Y 39603
CAT 1 - 2	Y 51846 - Y 51847
CAT 26	Y 51849
JOE 91 - 96	Y 51850 - Y 51855
CAS 31 - 36	YB3661 - YB366238
F 27 - F 29	YB37278 - YB37280
F 31	YB37282
F 33	YB37284
E 23 - E 25	YB37242 - YB37244
E 27 - E 32	YB37246 - YB37251
1 - 4	YB37640 - YB37643
19 - 20	YB37658 - YB37659
VIK 1 - 188	YC64893 - YC65080
BRIT 1 - 63	YC81316 - YC 81378
CC 1 - 94	YC81379 - YC81472
AXS 1 - 136	YD17599 - YD17694

By:

Jesse Halle, B.Sc. Emily Halle, B.Sc. Scott Casselman, B.Sc., P. Geo. Casselman Geological Services Ltd. Whitehorse, Yukon, Y1A 4R5

For:

Western Copper Corporation 2050 - 1111 West Georgia Street Vancouver, BC, V6E 4M3

September 23, 2010

SUMMARY

In the summer of 2009, Western Copper Corporation commissioned a Titan-24 resistivity and induced polarization survey of the Casino gold-copper-molybdenum porphyry deposit. Quantec Geoscience Ltd of Toronto, Ontario conducted the survey over a twoweek period in July. Casselman Geological Services Ltd of Whitehorse, Yukon managed the program and performed line cutting in preparation for the survey.

The geophysical survey grid consisted of 9 lines, each 2.4 km long at 300 m spacing, comprising a total of 22.4 line-kilometres. The grid was centred over the Casino Deposit and was surveyed for direct current resistivity and induced polarization (DC/IP) as well as magneto-telluric resistivity (MT).

The surveys confirmed the main mineralized body and fault structures of the Casino deposit. No less than three (3) geologic fault zones and/or contacts were highlighted by resistivity contrasts, as well as the identification of at least nine (9) priority targets based on various combinations of overall size, conductivity, and chargeability. In general, target T5 outlined the main Casino deposit, targets T2 and T3 outlined shallow extensions, while T6 and T8 expressed the hypogene root zone of the deposit extending to 700 m. The untested targets T6, T7, and T9 arose from areas of high chargability and low resisitivity, while target T1, a resistive low in the southwest area of the survey grid, may be an alteration zone.

Quantec Geoscience Ltd recommended a follow up program consisting of:

- 1) Reviewing all geological and geochemical data proximal to the targets identified as priority prior to diamond drilling in order to enhance and further the interpretation and targeting accuracy.
- 2) Drilling 13 holes to test various targets identified by the survey.
- 3) Drill testing the top and centre portions of the targets identified as high-priority, proceeding deeper and exploring the vicinity, where warranted.
- 4) Following-up any drilling with down-hole geophysics to delineate the extent of primary or secondary sources of the anomalies.

The geophysical survey is summarized in a report prepared by Quantec Geoscience Ltd and included in Appendix III of this report, entitled: "Geophysical Survey Interpretation Report Regarding the Titan-24 Magnetotelluric Direct Current Resistivity and IP Survey over the CASINO PROJECT near Whitehorse, Yukon Territory for WESTERN COPPER CORPORATION Vancouver, BC, Canada".

TABLE OF CONTENTS

Summary

1.0	Introduc	tion	1
2.0	Location	and Access	1
3.0	Claim In	formation	3
4.0	Physiog	raphy and Climate	4
5.0		/ History	
6.0	Geology		
	6.1	Regional Geology	7
	6.2	Property Geology	9
	6.3	Alteration	14
	6.4	Mineralization	15
	6.5	Structure	17
7.0	2009 Lir	ne Cutting and Geophysical Program	19
8.0			
9.0	Conclus	ions and Recommendations	23
10.0	Stateme	ent of Expenditures	25
11.0	Referen	ces	26

FIGURES

Figure 1	Property Location	2
Figure 2	Claim MapMap Po	
Figure 3	Regional Geology	8
Figure 4	Property GeologyMap Po	
Figure 5	Regional Structures Overlain on Aeromagnetic Survey Data	17
Figure 6	Grid Map	20
Figure 7	Quantec IP and MT Anomalies and Proposed Drill Holes	22

TABLES

Table 1	Stratigraphic Column	9
Table 2	Recommended Drilling to test Titan Target Zones	24

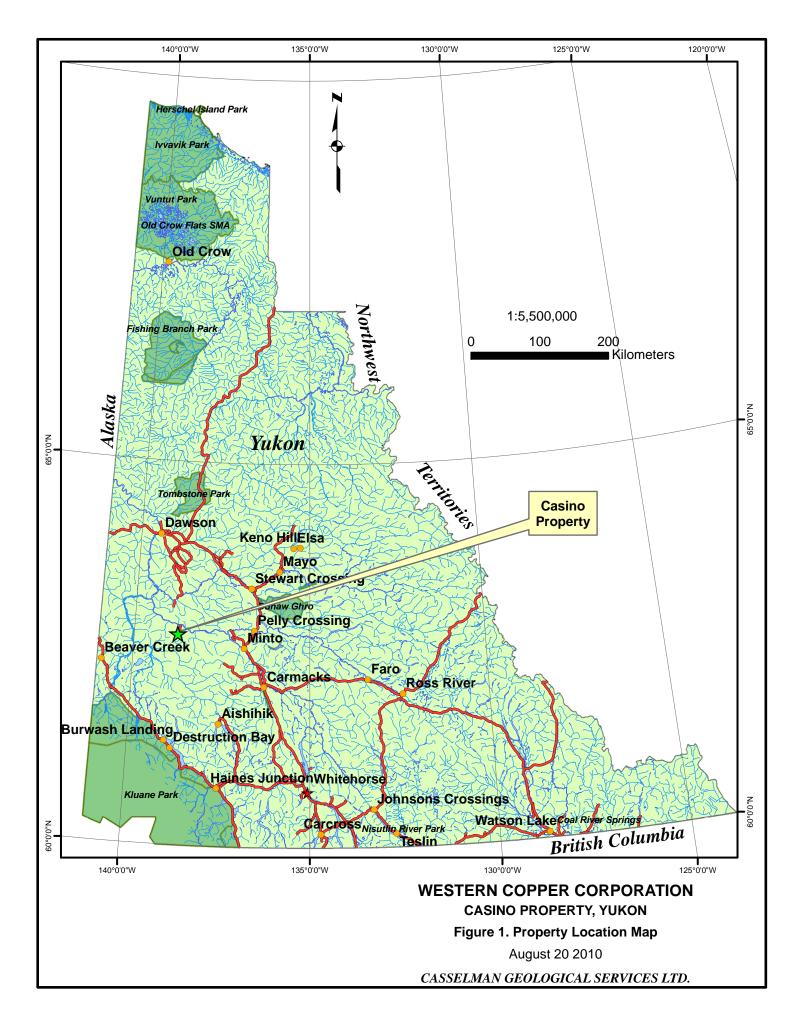
APPENDICES

Appendix I	Statement of Qualifications
------------	-----------------------------

Claim Information

Appendix II Appendix III Geophysical Survey Interpretation Report, by Quantec Geoscience Ltd

1.0 INTRODUCTION


This report describes line cutting and a Titan-24 geophysical survey completed on the Casino Property, Whitehorse Mining District, Yukon Territory. Direct current resistivity and induced polarization (DC/IP) as well as magneto-telluric resistivity (MT) surveys were completed on 9 lines, each 2.4 km in length. Lines were spaced roughly 300 m apart and were centred over the main copper-gold-molybdenum porphyry of the deposit. The survey aimed to uncover DC/IP and MT anomalies related to porphyry-style mineralization as well as to map resistivity and chargeability to assist in geologic structure and interpretation to depths of over 750 m.

The line-cutting was undertaken by Casselman Geological Services of Whitehorse, Yukon. The crew consisted of Scott Casselman (Geologist and Project Manager), Larry Brault, Derek Torgerson, Darren Blackjack and Richard Johnsen (cutters) and Patricia McIntosh (cook). The grid totaled 47.4 linear kilometres, including a 2.7 km baseline and 200 m cross-lines every 200 m along each line, as required in the geophysical survey parameters. The line cutting commenced on June 13 and was completed on July 15; the geophysical survey was performed from July 16 to 29, 2009.

2.0 LOCATION AND ACCESS

The Casino Property is located in the Dawson Range Mountains, 300 km northwest of Whitehorse (Figure 1). The property is centred at latitude 62° 44' 16" N and longitude 138° 49' 41" W on NTS map sheets 115J/09, 10 and 15.

Principle access to the property is by air to a 900 m landing strip at the exploration camp. Alternatively, a rough road from the camp accesses a barge landing on the Yukon River. Historically, overland access to the property has been by winter road routes to the east and west. The shorter winter road route extends 194 km northwest from Carmacks: 82 km along the Freegold Road, 40 km along the Casino Trail and 72 km along a bulldozer trail. The other route is a bulldozer trail that extends 224 km northeast from Burwash Landing on the Alaska Highway. The latter route offers better grades than the former.

3.0 CLAIM INFORMATION

The Casino Property lies within the Whitehorse Mining District and consists of 672 full and partial Quartz Claims acquired in accordance with the Yukon Quartz Mining Act. The claims are registered in the name of, and are 100%-owned by CRS Copper Resources Corp., a wholly-owned subsidiary of Western Copper Corporation. A claim location map is given in Figure 2 and a list of claims is provided in Appendix II.

The historical claims held by prior owners of the project and transferred as part of Western Coppers' plan of arrangement to acquire CRS Copper in 2006, consist of 83 Casino "A" claims covering an area of 1,143 ha, 55 Casino "B" claims covering an area of 924 ha, and 23 claims in the "JOE" block covering an area of 322 ha.

The 188 VIK mineral claims, covering an area of 3,416 ha, were staked in June 2007 by CRS Copper. In June 2008, an additional 94 "CC" claims, covering an area of 1,933 ha, and 63 "BRIT" claims covering an area of 1,223 ha were staked by CRS Copper. In October, 2009, CRS Copper staked an additional 136 AXS mineral claims, covering an area of 2,845 ha.

On the basis of prior agreements of CRS Copper, certain portions of the Casino property remain subject to royalty agreements with Archer, Cathro and Associates (1981) Ltd., and an option agreement with Wildrose Resources Ltd.

The royalties and agreements are:

- A 5% Net Profits Royalty to Archer Cathro and Associates (1981 Ltd.) on the Casino "A", "B" and the "JOE" block of claims.
- The Casino "B" Claims are subject to an agreement between CRS Copper Resources Corp. and Wildrose Resources Ltd. (through the Option Agreement between CRS Copper and Great Basin Gold, Ltd. exercised on August 9, 2007) whereby Wildrose agrees to maintain the Casino "A" and "B" claims in good standing. In exchange, Wildrose has the right to acquire the Casino "B" claims for \$1 each until May 2, 2020 upon a \$200,000 payment to CRS, and subject to CRS Copper reserving a 10% Net Profits Interest in the Casino "B" Claims.

The project is located on Crown land administered by the Yukon Government and is within the Selkirk First Nation traditional territory. Tr'ondek Hwechin First Nation traditional territory lies to the north.

4.0 PHYSIOGRAPHY AND CLIMATE

The Dawson Range forms a series of well-rounded ridges and hills that reach a maximum elevation of 1,675 m above mean sea level (ASL). The ridges rise above the Yukon Plateau, a peneplain at approximately 1200 m ASL, which is deeply incised by the mature drainage of the Yukon River watershed. Major drainage channels extend below 1,000 m ASL. Most of the project lies between the 650 m elevation at Dip Creek and an elevation of 1,400 m at Patton Hill. The most notable local physical feature is the Yukon River, which flows west about 16 km north of the project site.

Most of the Dawson Range escaped Pleistocene continental glaciation, although minor alpine glaciation produced small cirques and terminal moraines locally.

The climate in the Dawson Range is subarctic. Permafrost is widespread on northfacing slopes, and discontinuous on south-facing slopes. Outcrop is rare, except on hilltops and rugged ridge crests. The residual nature of much of the rubble on upper slopes allows for generalized geological mapping and good geochemical and geophysical interpretation. Most broad valleys are filled with thick alpine glacial debris and alluvium, which mask bedrock geology and associated geochemical and geophysical signatures.

The mean annual temperature for the area is approximately -5.5°C with a summer mean of 10.5°C and a winter mean of -23°C. Temperatures range between -40° C in the winter to 30° C in the summer. Mean annual precipitation is low, ranging between 300-450 mm, with most precipitation occurring in July and early August. Most of the terrain supports forests of black and white spruce, lodgepole pine, balsam poplar, white birch, and speckled alder. At higher elevations and in the alpine terrain, only dwarf birch, scrub willows, and alpine mosses, grasses, and sedges are found.

Snow survey data for the years 1977 to 1994 (based on information from Hallam, Knight Piesold, Casino Project, Data Report 1993-1995, March 1997) showed the maximum snow depth was 97 cm containing the equivalent of 225 mm of water in April 1991. Average depths (equivalent H_2O) by month were: February 1: 52 cm (73 mm), March 1: 62 cm (107 mm), April 1: 65 cm (126 mm), May 1: 55 cm (128 mm), and May 15: 27 cm (74 mm). Snow begins accumulating in mid to late September and is mostly melted by mid to late May.

5.0 **PROPERTY HISTORY**

The Casino Property has had a long and varied exploration history. The first documented claims in the immediate area were recorded in April 1911, following a placer gold discovery on Canadian Creek by J. Britton and C. Brown. The total placer gold production from Canadian Creek is unknown; the most recent work (1980-85) yielded about 50 kg (1,615 tr. oz) of gold. During the Second World War, a small amount of tungsten was also recovered from the placer workings. D.D. Cairnes, of the Geological Survey of Canada, suggested that the gold and tungsten mineralization was derived from an intrusive complex on Patton Hill after recognizing huebnerite (MnWO₄) in the heavy-mineral concentrates of the placer workings (Cairnes, 1917).

In 1941, Jack Meloy discovered Pb-Ag mineralization approximately 3 km south of the Canadian Creek placer workings (Payne, 1987). Over the next several years J. Meloy and A. Brown explored both Bomber and Helicopter vein systems on the property by hand trenches and pits, staking the Helicopter claim in 1943 and the Bomber and Airport groups in 1947.

From 1948 to 1963 the focus of exploration on the property was for lead-silver mineralization at the Helicopter and Bomber veins. The property was optioned to Noranda in 1948 and then to Rio Tinto in 1963. During this time trenching, mapping and sampling were conducted.

In 1964, the claims were sold to L.I. Proctor, who added the Cat group in July 1965 and formed Casino Silver Mines Company. In 1965, the 720 m Casino airstrip was constructed and the Bomber vein system was hand-cobbed to deliver 48.8 tons of ore to be smelted in Trail, BC. The ore averaged 161.1 oz/t Ag and 68% Pb, with individual sample bags ranging from 129.1 to 380 oz/t Ag and 63.8 to 72.2% Pb.

From 1965 to 1966, the property was explored by aeromagnetic survey, ground geophysical and geochemical surveys, diamond drilling and 365 m of underground workings on the Bomber veins. In 1967, 17 AX drill holes were drilled for a total of 1440 m (4727 ft). Between 1978 and 1980, underground development at Bomber, included 48 m of lateral drifting and 55 m of raise drifting. From this development, 328 tons of hand-cobbed ore was shipped to smelters.

The geochemical survey in 1966 indicated a strong copper anomaly in the silts of the Casino Creek headwaters (referred to as the C Anomaly). The discovery led to the acquisition of Casino Silver Mines Limited by the Brynelsen Group, and from 1968 to 1973 exploration was directed jointly by Brameda, Quintana, and Teck Corporation towards a porphyry target (Archer and Main, 1971). During this period, 5,328 m of reverse circulation drilling in 35 holes and 12,574 m of diamond drilling in 56 holes was completed.

In 1991, Archer Cathro & Associates (1981), Ltd. optioned the property and assigned the option to Big Creek Resources Ltd. A drill program in 1992 consisting of 21 holes systematically assessed the gold potential in the core of the deposit.

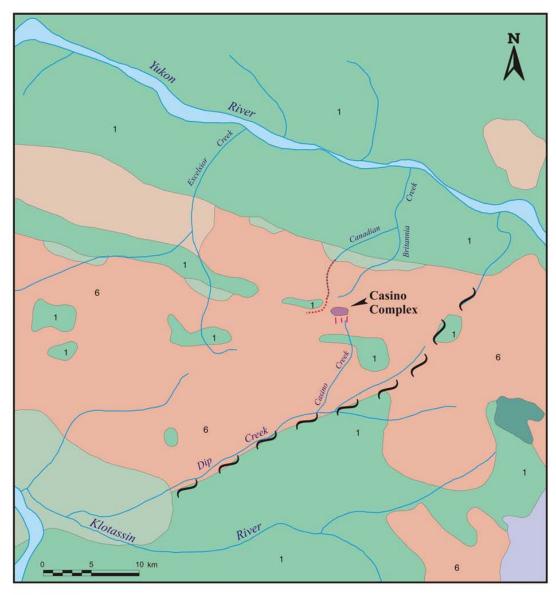
In 1992, Pacific Sentinel Gold Corp. (PSG) acquired 100% interest in the property from Archer, Cathro and commenced a major exploration program. The 1993 program included surface mapping and 50,316 m of drilling in 127 holes. All but one of the 1992 drill holes were deepened in 1993.

In 1994, PSG drilled an additional 108 drill holes totaling 18,085 m. This program completed the delineation drilling set out in 1993 and investigated various geological, geotechnical, structural, and environmental aspects of the project. The scoping study envisioned a large-scale open pit mine, conventional flotation concentrator that would produce a copper-gold concentrate for sale to Pacific Rim smelters

Western Copper Corporation acquired the Casino Property in 2006 from Lumina Resources Ltd. and in 2007 conducted an evaluation of the Bomber Vein System by VLF-EM and Horizontal Loop EM surveying and soil geochemistry. In 2008, after a positive Pre-feasibility Study, Western Copper reclaimed old workings, re-established the exploration camp, and drilled 3 diamond drill holes which confirmed historic copper, gold and molybdenum grades in the eastern part of the proposed open pit.

6.0 GEOLOGY

6.1 REGIONAL GEOLOGY


Western Copper Corporation's Casino Cu-Mo-Au porphyry deposit and associated Ag-Pb-Zn mineralization lies in the central Dawson Range, within the large and vastlycomplex Yukon-Tanana Terrane: an accretionary and pericratonic, metamorphic fragment of the Omineca Belt (Monger & Price, 2002). Local to the Casino Property, the Yukon-Tanana is subdivided into the Yukon Catalastic Terrane to the northeast and the Yukon Crystalline Terrane to the southwest, separated by a northwest-trending suture. Sporadic bands of Permian to Triassic ultramafic rocks exist along this contact zone (Tempelman-Kluit, 1974).

The Dawson Range Yukon Crystalline Terrane is represented by the Devono-Mississippian Wolverine Creek Metamorphic Suite (Johnston, 1995) and is made up of sedimentary and igneous protoliths (Tempelman-Kluit, 1974; Payne et al., 1987). The meta-sedimentary unit consists mainly of quartz-feldspar-mica schist and gneiss, quartzite, and micaceous quartzite, while the meta-igneous unit includes biotitehornblende-feldspar gneiss and other orthogneiss, as well as hornblende amphibolite (Selby & Nesbit, 1998).

During the mid-Cretaceous, the Wolverine Creek Metamorphic Suite was intruded by the Dawson Range Batholith and subsequent Casino Intrusions (Selby et al., 1999). The Dawson Range Batholith is the main country rock of the Casino Property with the dominant lithology being a relatively homogeneous, medium- to coarse-grained, hornblende-bearing, potassic quartz diorite to granodiorite; and lesser fine- to medium-grained diorite and quartz monzonite veins, dykes, and plugs (Tempelman-Kluit, 1974).

The Casino Intrusions (the Casino Plutonic Suite) were said to be composed of quartz monzonite stocks up to 18 kilometres across (Hart and Selby, 1998) and trend westnorthwest, parallel to the Big Creek Lineament and its northwestern extension (Lesnikov, 2008). Mapping by Tempelman-Kluit (1974), and successively by Payne et al. (1987), associates the Casino Plutonic Suite with the mid-Cretaceous Dawson Range Batholith. Later, Johnston (1995) grouped the Intrusions with the late-Cretaceous Prospector Mountain Plutonic Suite, based largely on field relationships that show stocks of the Casino Plutonic Suite cutting the Dawson Range Batholith. Later age determination by Mortensen and Hart (1998), as well as geochemistry provided by Selby et al. (1999), placed the Casino Intrusions back into the mid-Cretaceous as fractionated magmas of the Dawson Range Batholith. Recent field interpretation, however, have shown that the quartz monzonite of the Casino Intrusions are actually intensely altered and recrystallized diorite of the Dawson Range Batholith.

In the late Cretaceous, stocks of the Prospector Mountain Plutonic Suite intruded the mid-Cretaceous Dawson Range Batholith (Johnston, 1995; Selby et al, 1999). The Prospector Mountain Plutonic Suite is represented in the Casino area by Patton Porphyry: small, biotite-bearing, feldspar-porphyritic, hypabyssal rhyodacite to dacite

LEGEND

- Carmacks Group Mt. Cockfield Volcanic Rocks Casino Intrusive Complex Coffee Creek Granodiorite Dawson Range Batholith
- Ultramafic Rocks
- Yukon Group Metamorphics
- Gold Placer

1

- 111 Silver-Lead-Zinc Veins
 - Dip Creek Fault

WESTERN COPPER CORPORATION CASINO PROPERTY Figure 3. Regional Geology

CASSELMAN GEOLOGICAL SERVICES Ltd.

intrusions near the centre of the deposit and discontinuous centimeter- to metre-wide dikes northwest of the property (Lesnikov, 2008). In the Casino deposit, early phases the Patton Porphyry grade into a mineralized intrusive breccia. Later, unaltered dykes of similar rock can cut surrounding hydrothermally altered and mineralized rocks (Payne et al., 1987) suggesting there are multiple phases of this unit (Bower, 1995; Selby and Creaser, 2001). Hydrothermal alteration and mineralization occur in and adjacent to these late Cretaceous intrusions.

6.2 **PROPERTY GEOLOGY**

Over time, local and recorded terminology of Casino property geology has been inconsistent and variable. Updated terminology and property geology is shown in Figure 4 and an updated Stratigraphic Column in Table 1. Comprehensive investigations have shown that the Casino Property is predominantly underlain by massive hornblende quartz diorite to granodiorite of the mid-Cretaceous Dawson Range Batholith (Templeman-Kluit, 1974). The late-Cretaceous Prospector Mountain intrusions and breccias are located in the central part of the property, underlying Patton Hill and straddling Patton Gulch to the northwest.

Table 1. Stratigraphic Column (*Modified from Bower et al., 1995, stratigraphic ages from Selby et. al., 2001*)

	Map Unit	Geological Unit	Isotopic Age
sno	7	Explosive (milled) breccia	
cec		Heterolithic; fine-grained matrix; angular clastic	
eta	6	Heterolithic intrusive breccia	
ate Cretaceous		Heterolithic; patton porphyry/potassic matrix; autobrecciated fragments	
Lat	5	Patton Porphyry	72.4 +/-0.5 Ma
		Plag-Bi Porphyry; Kf +/- Qz megacrystic porphyry	
sno		DAWSON RANGE BATHOLITH:	
Mid-Cretaceous	4	Granodiorite	104.0 +/-0.5 Ma
Cre		bi-hbld granodiorite	
Mid-0	3	Diorite	104.0 +/-0.5 Ma
		Hbld-Bi-Qtz diorite; hbld-bi diorite;	
an		WOLVERINE CREEK METAMORPHIC SUITE:	1
-or idd	2	Meta-sedimentary	
Devono- ssissippi	1	Micaceous Quartzite	
Devono- Mississippia	1	Meta-igneous <i>Qtz-Bi-Plag-Microcline Gneiss; KF-Qtz-Bi Gneiss;</i> <i>Amphibolite</i>	

Casino property geology has been described in detail by Godwin (1975) and Payne et al. (1987), and was later summarized by Bower et al. (1995). Although groupings may have changed, the majority of rock descriptions have not; the following sections borrow significantly from all three reports.

Wolverine Creek Metamorphic Suite

The Wolverine Creek Metamorphic Suite includes meta-sedimentary and meta-igneous rocks (Tempelman-Kluit, 1974; Payne et al. 1987; Johnston, 1995) of Devono-Mississippian age (Johnston, 1995). They occur mainly in the northern and northeastern parts of the Casino deposit, as fragments in intrusion breccias and local roof pendants/screens throughout the Dawson Range Batholith (Bower et al., 1995). More common rock types in the deposit area are biotite-hornblende-feldspar diorite schist and gneiss (Johnston, 1995). Less abundant types include meta-diorite/ amphibolite, quartz-rich and intermediate gneiss, quartzite, and micaceous quartzite (Bower et al., 1995).

Dawson Range Batholith

The mid-Cretaceous Dawson Range Batholith is the main country rock of the deposit area and is characterized by hornblende-biotite-quartz diorite, hornblende-biotite diorite, and biotite-hornblende granodiorite (Payne et al. 1987). Hornblende-biotite bearing phases are common throughout the deposit, and lesser biotite-hornblende bearing phases are generally north of Patton Hill (Godwin, 1975). Diorite is concentrated north and northeast of the deposit, and is considered to be the earliest phase of the batholith.

The diorite is typically dark gray to brown, inequigranular, and texturally similar to the meta-diorite of the Wolverine Metamorphic Suite. Average grain size is less than 1 millimetre, dominated by locally aligned and/or zoned plagioclase; hornblende; and interstitial, anhedral quartz. In places, primary biotite is more abundant than hornblende. Accessory minerals include up to 1 percent apatite and trace sphene. Some intrusions show foliation and increased mafic content near their margins, particularly north of the deposit and in the block east of the Casino Fault (Bower et al., 1995). Locally, mafic diorites are cut by later, more felsic phases of the Dawson Range Batholith (Johnston, 1995).

Granodiorite units are generally pale gray, medium to coarse grained and equigranular to porphyritic. They can be distinguished by scattered, subhedral hornblende phenocrysts averaging 0.5 to 1.2 centimetres long; poikilitic K-feldspar; zoned plagioclase; and 10 to 20 percent mafic minerals, which may be layered. Plagioclase shows minor myrmekitic rims when in contact with K-feldspar. Anhedral quartz and K-feldspar are interstitial to earlier subhedral plagioclase, hornblende and biotite. Locally, quartz forms interlocking aggregates of slightly, to moderately strained grains. Accessory minerals include honey-coloured sphene and apatite to 1 percent each.

Rocks of the Dawson Range commonly display in-situ/crackle to intensely deformed cataclastic brecciation where in contact with the Patton porphyry intrusive plug. Elsewhere, this unit may be truncated by the late Cretaceous dykes and explosive breccias (modified from Bower, 1995).

In the past there was believed to be a separate mid-Cretaceous Casino Plutonic Suite including fine- to medium- to coarse-grained, locally porphyritic, leucocratic granite, quartz monzonite, and alaskite with associated aplite phases (Payne, 1987; Johnston, 1995; Hart and Selby, 1998). The unit was prominent to the north and west of Patton Hill, just west of the Casino Fault, and was considered to be the host rock to the majority of the Mo +/- Cu mineralization. Recent field relationships have shown that this unit is actually intense potassic alteration, with or without overprinting retrograde phyllic alteration, of the diorite of the Dawson Range Batholith. This alteration often bleaches the rock to a light pink colour, and recrystallizes the matrix to a relatively equal mix of secondary quartz and K-feldspar.

Fine- to very fine-grained, recrystallized diorite is pale pink in colour, and commonly contains equal portions of quartz, plagioclase, and K-feldspar; up to 10 percent biotite; and trace apatite and sphene. Strongly zoned plagioclase and locally kinked biotite form subhedral lathes, surrounded by K-feldspar, locally strained quartz, and biotite.

Porphyritic recrystallized diorite is medium gray to pink with 70 percent medium- to coarse-grained phenocrysts of subhedral plagioclase, hornblende and biotite in a fine-grained, K-feldspar, quartz, and minor biotite matrix. Plagioclase lathes are generally zoned, and may display corroded, albitized borders; biotite lathes may cluster together with hornblende and other opaques.

Aplitic zones grading from pink to white in colour have been noted in drill core, and mapped on surface in the surrounding area by Payne et al. (1987). They are also considered to be metasomatised diorite, and may include minor zones of pseudo-pegmatite.

Prospector Mountain Plutonic Suite

Late-Cretaceous igneous activity of the Prospector Mountain Plutonic suite is locally represented by the Patton Porphyry intrusive and associated breccias. The main body of the Patton Porphyry is an irregular body, that is surrounded by a potassically-altered intrusive auto-breccia in contact with rocks of the Dawson Range. The Patton Porphyry intruded from narrow dykes on the east side of Patton Hill and blossomed upwards and westwards into a sill-like body that measures 600 m by 800 m in plan and is up to 300 m thick. Elsewhere, the Patton Porphyry forms discontinuous dikes and explosive breccia pipes, ranging from less than one to tens of metres wide, cutting both the Patton Porphyry Plug and the Dawson Range Batholith (after Bower et al., 1995). Contacts between the Patton Porphyry and the breccias are variable and range from sharply intrusive (as in the case of the later explosive breccia) to gradational and brecciated (as in the case of the intrusional contact breccia). It has therefore been suggested by

Bower et al. (1995) as well as Selby and Creaser (2001) that this suite consists of two or more episodes of high-level intrusions.

Godwin (1975) determined that the Patton Porphyry has an overall composition of rhyodacite, with phenocrysts falling into a dacite composition and the matrix being of quartz latite composition. It is more commonly made up of distinct phenocrysts of abundant plagioclase and lesser biotite, hornblende, quartz and opaques (Godwin, 1975). Phenocrysts average 4 millimetres in size, and can comprise up to 50 percent of the rock. Lathes of plagioclase are euhedral and zoned, and range in size from 2 to 7 millimetres, with some up to 2.5 centimetres in length (Bower et al., 1995). Biotite lathes range from 2-3 millimetres across, and make up 1-5 percent of the rock. They are kink-banded, subhedral, and locally chloritized. Hornblended phenocrysts are difficult to recognize due to their alteration, but have generally been replaced by chlorite and other opaques, and can be recognized by their diamond crossection. Quartz phenocrysts are not always present but can be anhedral, embayed, and 3-5 millimetres in size. K-feldspar phenocrysts are rare but the mineral is abundant in the commonly medium to dark green, microcystalline martrix.

Smaller, possibly more evolved, discontinuious plugs of Patton Porphyry exist where K-feldspar and/or quartz megacrysts can range from 3-20mm in size, displaying ragged boundaries and intergrowths with surrounding grains (Godwin, 1975). Relationships between the main Patton Porphyry intrusion and smaller plugs are lacking, but structurally, these units parallel and are peripheral to the main stock often within the contact breccia.

The intrusional contact breccia surrounding the main Patton Porphyry body consists of granodiorite, diorite, and metamorphic fragments and blocks in a finer grained Patton Porphyry matrix. It may have formed along the margins, in part, by the stoping of blocks of wall rocks (Bower et al., 1995). The unit is rhyodacitic in composition and is inherently related to the Patton Porphyry intrusives (Godwin, 1975 and Payne et al., 1987). Local quartz grains are generally 1 to 2 millimetre unstrained crystals and crystal fragments and are texturally similar to quartz phenocrysts of the Patton Porphyry (Bower, 1995). Eroded fragments, ranging in size from less than one centimeter to greater than a few metres, are found proximal to their associated wall rocks, and therefore indicate limited transport and/or mixing (after Bower et al., 1995). For example, Inclusions of the Dawson Range increase along the southern contact of the breccia; Wolverine Creek Metamorphics increase to the north; and bleached diorite increases in the east. Strong potassic alteration locally destroys primary textures (Bower, 1995).

This breccia was previously regarded by Godwin (1975) as a Casino Volcanic Cobble breccia, and was described to contain rounded to subangular fragments of (Casino) quartz monzonite and (Wolverine Creek) Metamorphic Schist, as well as early Patton Porphyry rocks in a very fine-grained, feldspar and quartz rich groundmass.

Subsequent crystallization and exsolution of hydrothermal fluids from Patton porphyry magmas produced porphyry style Cu-Au-Mo mineralization (Selby and Nesbitt, 1997). Therefore, the Patton Prophyry, and associated intrusion breccia, is genetically related to the Cu-Mo-Au mineralization of the deposit (Godwin, 1975; Selby & Creaser, 2001).

Dikes of Patton Porphyry material in the south-central part of the deposit somewhat resemble the main Patton Porphyry body and contain 2 to 5 percent quartz phenocrysts and up to 35 percent plagioclase phenocrysts in an aphanitic latite groundmass (Bower et al., 1995). These sills intruded after the main hydrothermal event and contain only minor base- and precious-metal mineralization, as well as locally abundant disseminated pyrite (Godwin, 1975).

Abundant fragments of the Patton Porphyry and its intrusive breccia are present in the adjacent late Cretaceous explosive breccia pipe (Halle after Bower, 1995). Late, explosive breccia plugs are very steep-sided, heterolithic, cobble-breccias occurring on the property as two main pipe-like intrusions, but locally are seen as very fine-grained 'dikes'. The largest plug, on the west side of the property, truncates most of the western margin of the main Patton Porphyry intrusion.

Godwin (1975) concluded that this pipe most likely represents a sub volcanic neck, brecciated from explosions caused by the rapid expansion of hot water (hydrothermal solutions) by vesiculation of rhyolitic magmas, and that any extrusive volcanics related to this event may have since been weathered away. This unit indicates multiple episodes of brecciation (Bower, 1995) as it contains 5-50 percent ragged fragments of altered intrusive breccia and host rock; with lesser fragments of late, often quartz-phyric, Patton Porphyry. Locally the groundmass has a very fine-grained, interlocking igneous texture; elsewhere it resembles milled rock flour (Bower, 1995) with up to 10 percent plagioclase and lesser quartz phenocrysts. Godwin also noted large, angular cavities being a distinctive quality of this unit, measuring up to 10 centimetres in size. The explosive breccia has been known to grade into a later, porphyritic dyke showing strong sheeting parallel to its contacts (Bower et al., 1995). This dyke is generally white to cream to gray, and can be vesiculated with quartz filled amygdules on the east side of the Casino Fault. Amygdules are also stretched parallel to steep contacts.

Late Cretaceous to early Tertiary dyke swarms and sills intrude rocks of the earlier Prospector Mountain Plutonic Suite as well as rocks of the mid-Cretaceous intrusions (Payne et al, 1987). In 1975, Godwin grouped these dykes with the Patton Porphyry, as undivided volcanics. These late Patton dykes are of latitic to dacitic composition and are generally steeply dipping, striking between 130 and 160 degrees (Bower et al., 1995). On the Casino property, these dykes are generally pale to light green with abundant plagioclase and lesser hornblende phenocrysts in a very fine- to extremely fine-grained matrix of plagioclase and K-feldspar (Payne et al., 1987). Wider versions of the dyke is coarser grained, and may contain scattered quartz and/or biotite phenocrysts to 3 millimetres, along with plagioclase and hornblende. Narrow versions with or without chilled dyke margins can be dark green with a glassy groundmass, and may show flow banding and/or lenticular structures near contacts (Bower et al., 1995). The finer grained dykes are generally medium green. Out-crop of this unit can be mapped on surface trending North West along Proctor Gulch.

6.3 ALTERATION

Hydrothermal alteration at the Casino property is typical of a porphyry copper mineralizing system. It consists of a potassic core centered on and around the main Patton Porphyry body; bordered by contemporaneous, strongly developed and fracture controlled phyllic zone; a weakly developed, broader, propylitic zone; and a secondary, discontinuous argillic overprint (Godwin, 1975; Selby and Nesbitt, 1997). Mineralized stock-work veins and breccias in the deposit are closely associated with the hydrothermal alteration (Selby and Nesbitt, 1997)

Potassic alteration minerals include texturally destructive K-feldspar, biotite, magnetite and quartz (Selby and Nesbitt, 1997) with lesser hematite, purple anhydrite and gypsum (Godwin, 1975). Biotite is generally felted and pseudomorphic after hornblende. Locally, magnetite may form braided veinlets.

The texturally destructive phyllic zone is found peripheral to the deposit, and locally overprints the potassic zone of alteration. It has a distinctive 'bleached' appearance and can be structurally controlled. Phyllic alteration minerals include quartz, pyrite, sericite, muscovite (after biotite), and abundant tourmaline (Selby & Nesbitt, 1997); as well as minor hematite and or magnetite towards the potassic zone (Godwin, 1975). Quartz and sericite are generally alteration minerals after potassic and plagioclase feldspars (Godwin, 1975). Biotite alters to muscovite or sphene; hornblende to chlorite, calcite, quartz and biotite (Bower et al, 1995). Tourmaline forms radiating disseminations and veinlets. Sulphide content is typically high, with pyrite ranging from 5-10% throughout.

Propylitic alteration is rare on surface, but forms a wide halo around the deposit in gradational contact with the inner potassic alteration. Alteration minerals include epidote, chlorite and calcite (Selby and Nesbitt, 1997), with lesser carbonate, clay, sericite, pyrite and albite (Godwin, 1975). Hornblende and biotite are completely chloritized (Godwin, 1975).

Secondary argillic alteration occurs in the shallower levels and is closely associated with the leached cap and upper supergene zone. It may also occur locally as patches or pockets within potassic and phyllic alteration. It is poorly developed, is bleached or pale green, and contains abundant clays (kaolinite, montmorillionite), and possible chlorite and/or carbonate. In drill core, this unit may be recognized by distinctive "pock-marks" along the surface of the core (Godwin, 1975).

6.4 **MINERALIZATION**

Hydrothermal mineralization of the Casino Cu-Au-Mo deposit occurs mainly in the steeply plunging, in-situ contact breccia surrounding the Patton Porphyry intrusion by crystallization and exsolution of hydrothermal fluids from late Cretaceous magmas of the Prospector Mountain Plutonic Suite (Selby and Nesbitt, 1997). Mineralization was superimposed onto the Patton Porphyry, as well as in surrounding mid-Cretaceous intrusions of the Dawson Range Batholith. The breccia forms a band around the periphery of the main porphyry body with thicknesses of up to 250 metres, and has an interior zone of potassic alteration surrounded by discontinuous phyllic alteration, typical of porphyry deposits.

The Casino deposit is unique among Canadian porphyry deposits as it has a substantially preserved, outcropping oxide gold leach cap; an upper, copper enriched copper oxide supergene mineralization zone; a lower, well developed and extensive copper sulphide supergene mineralized zone; as well as the underlying hypogene zone.

Hypogene mineralization occurs throughout the various alteration zones of the Casino Porphyry deposit, as mineralized stock-work veins and breccias (Selby et al., 2000). Field relationships show that the potassic alteration came first as mineralized quartz veins of the phyllically altered zones, cut those of the potassically altered zones; Re-Os age dating by Selby et al. (2000) showed that the dates of the potassic and phyllic alteration are contemporaneous at around 74.4 +/- 0.28 Ma. Significant Cu-Mo mineralization is related to the potassically altered breccia surrounding the Patton Porphyry intrusion, as well as in the adjacent phyllically altered host rocks of the Dawson Range Batholith.

Mineralization in the potassic zone is mainly finely disseminated pyrite, chalcopyrite, molybdenite as well as trace sphalerite and bornite (Godwin, 1975). The Phyllic zones have increased gold, copper, molybdenite, and tungsten values concentrated in disseminations and veins of pyrite, chalcopyrite, and molybdenite along the inner side of the pyrite halo (Payne, 1987). The pyrite halo follows the potassic-phyllic contact, within the phyllic zone, and discontinuously surrounds the main breccia body. It is host to the highest Cu values on the property (Godwin, 1975).

Chalcopyrite commonly occurs as veins, disseminations and irregular patches. In breccia and granodiorite west of the Casino Fault, disseminated chalcopyrite is more abundant than chalcopyrite in veins and veinlets, whereas to the east of the fault, chalcopyrite is controlled by brittle deformation and found in fractures and open space fillings (Bower et al, 1995). Pyrite to Chalcopyrite ratios range from less than 2:1 in the core of the deposit, to greater than 20:1 in the outer phyllic zone (Bower et al, 1995). Locally, bornite and tetrahedrite can be coarsely intergrown with chalcopyrite (Bower et al., 1995).

Molybdenite is not generally intergrown with other sulfides and occurs as selvages in early, high temperature, potassic quartz veins; discrete flakes and disseminations.

Native gold is very rarely seen with the naked eye. It occurs as free grains in quartz (50 to 70 microns) and as inclusions in pyrite and/or chalcopyrite grains (1 to 15 microns) (Bower et al., 1995).

Late-stage, commonly vuggy, polymetallic veins (like those of the bomber adit) follow roughly parallel, steeply dipping fractures trending 150 to 170 degrees (Bower et al., 1995). Metallic mineralogy includes abundant sphalerite and galena, with less abundant tetrahedrite, chalcopyrite (commonly intergrown with tetrahedrite), and bismuth bearing minerals, and are geochemically anamolous in any or all of Ag, As, Bi, Cu, Cd, Mn, Pb, Sb, Zn, and locally W (Bower, 1995).

Supergene mineralization occurs in an up to 300 metre-deep weathered zone above the hypogene zone (Bower et al, 1995). It contains a classic and well defined, porphyrystyle leached cap with an underlying supergene blanket (Payne et al, 1987). Supergene alteration and mineralization (below the leached cap) is broken into a minor Supergene Oxide Zone and a thicker Supergene Sulphide Zone. Supergene alteration and mineralization is thickest within the phyllic, and locally within the potassic zone of the brecciated units, due to the permeability of the breccia (Godwin, 1975).

The Leached Cap (oxide gold zone) is gold enriched and copper depleted due to supergene alteration processes as well as the lower specific gravity of this zone relative to the other supergene zones (Bower, 1995). It averages 70 metres thick and is characterized by boxwork textures filled with limonite, goethite, and hematite (Bower et al., 1995).

The poorly defined Supergene Oxide Zone is copper enriched, with trace Molybdenite. It exists as a few perched bodies within the leached cap (Bower et al., 1995) likely due to a recent drop in the water table (Godwin, 1975) and as a layer with highly variable thickness above the Supergene Sulphide Zone. This zone is thought to be related to present day topography, and is best developed where oxidation of earlier secondary copper sulphides occur above the water table, on well drained slopes (Bower et al., 1995). Where present, the Supergene Oxide Zone averages 10 metres thick, and can contain chalcanthite, malachite and brocanthite, with minor azurite, tenorite, cuprite and neotocite (Bower et al., 1995). The supergene copper oxide zone grades into the better-defined supergene copper sulphide zone.

The Supergene Sulphide Zone has an average thickness of 60 metres (Bower, 1995) and is correlated with high hypogene mineralization, favorable permeability (breccia units) and to the phyllic and/or outer potassic zone (Godwin, 1975). Grades of the Supergene sulfide zone vary widely, but are highest in fractured and highly pyrtic zones, due to their ability to promote leaching and chalcocite precipitation (Godwin, 1975). Thus, secondary enrichment zones are thickest along contacts of the potassic and phyllic alteration; accordingly the copper grades in the Supergene Sulphide zone are almost double the copper grades in the Hypogene (0.43% Cu versus 0.23% Cu). Grain borders and fractures in chalcopyrite, bornite and tetrahedrite may be altered to

chalcocite, diginite and/or covellite (Bower, 1995). Chalcocite also locally coats pyrite grains and clusters, and may extend along fractures into the hypogene zone. Molybdenite is largely unaffected by supergene processes, other than local alteration to ferrimolybdite (Bower, 1995).

6.5 STRUCTURAL GEOLOGY

Regional Structure

Regionally, the Casino Property is sandwiched between parallel west-northwesttrending faults which form contacts between rocks of the Wolverine Creek Metamorphic Suite (WCMS) and the Dawson Range Batholith (DRB). The fault furthest to the northeast is an extension of the Big Creek Fault, thought to be dextrally offset by 20 to 45 km. The other, 8 km away, forms a southwest boundary of a sliver of WCMS rocks and contains outcroppings of ultramafic rocks in a similar fashion to those seen along the Big Creek Fault.

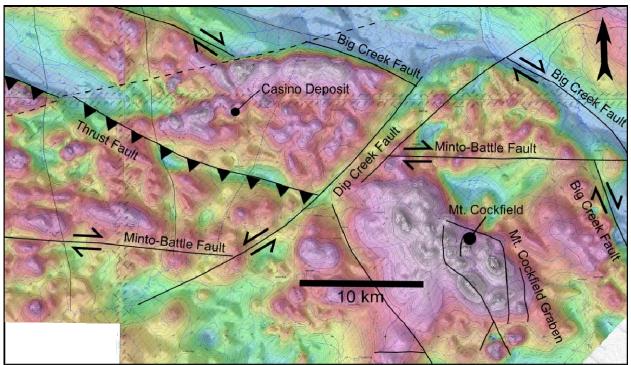


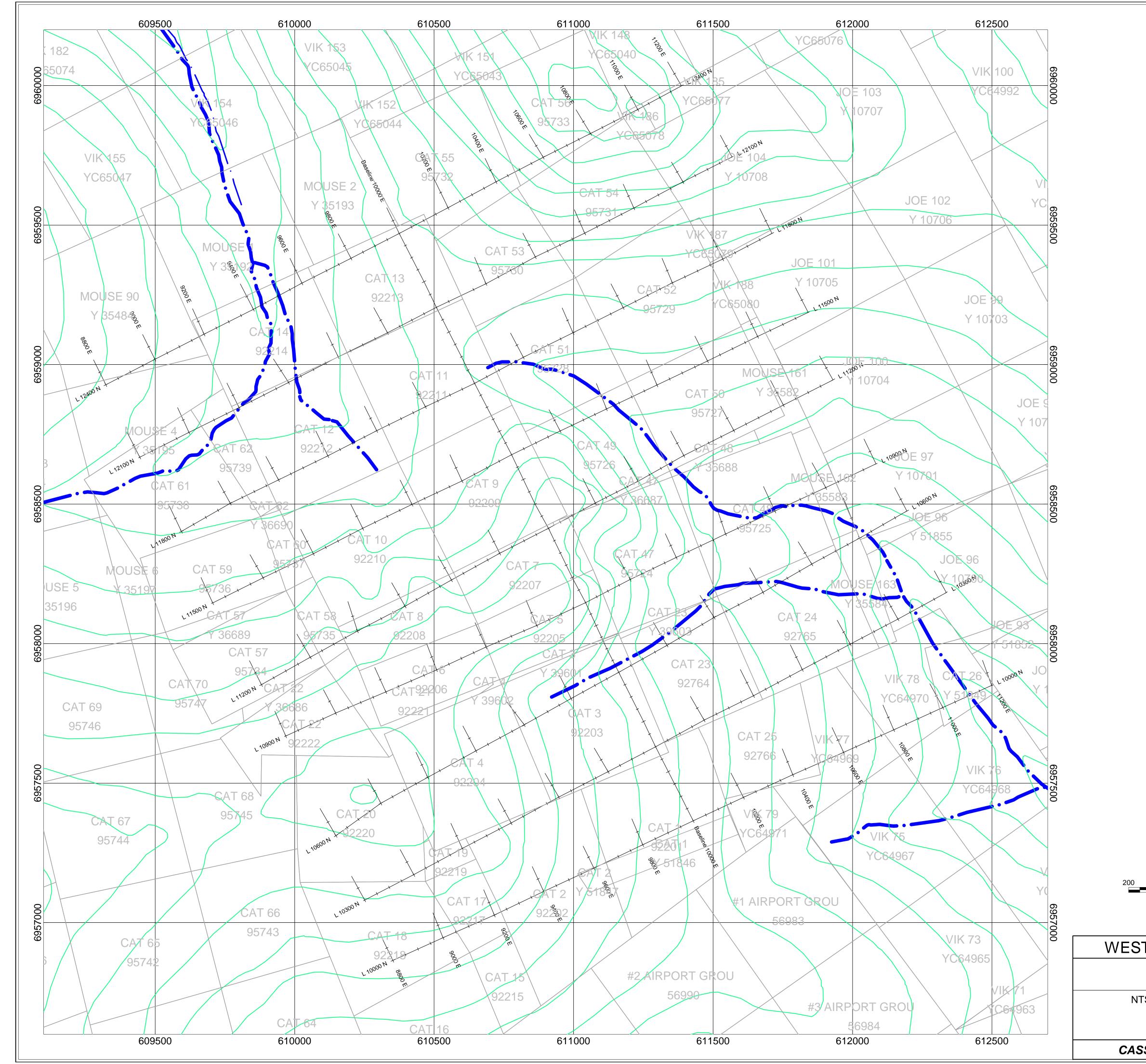
Figure 5: Regional structures overlain on aeromagnetic survey data

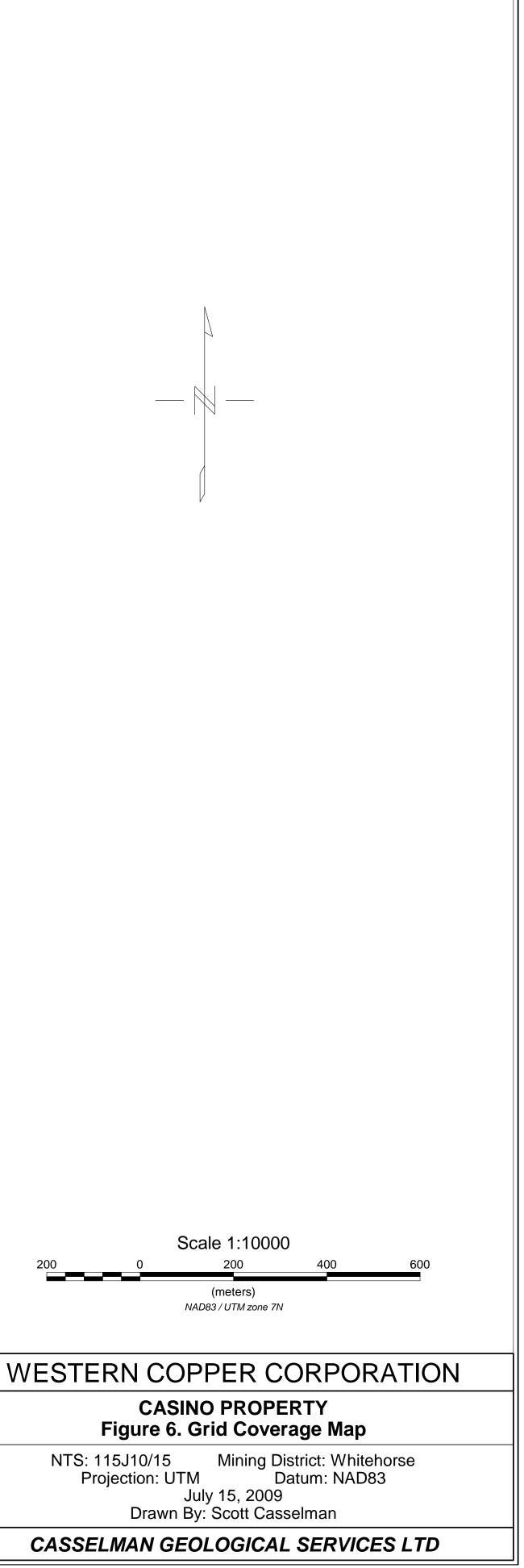
The Casino Property is bounded to the southeast by a northeast-trending regional structure known as the Dip Creek Fault. The left-lateral displacement of the Yukon River well east of the Casino Property is a reflection of sinistral movement along this fault. The east-trending Minto-Battle Fault is also sinistrally translated by the Dip Creek Fault (Johnston, 1999). This dextrally offset fault lies east of the Casino Property on the opposite side of Dip Creek with its extension lying south and southwest of the Casino Property.

Property-Scale Structure

At the eastern part of the Casino deposit is the Casino Fault: a narrow zone of steeplydipping, south-directed faults and conductors interpreted from ground geophysics. This orientation may have weak repetitions throughout the deposit and is considered to be a mineralized, early structure predating the Casino Creek Fault system. Similarly-directed faults are repeated throughout the Casino Property including one heading south from Canadian Creek, travelling through Patton Gulch, and forming a col in Patton Hill. This fault is aptly named the Patton Fault. The fault nearly bisects the known Casino Deposit but little movement has been noted or described. The West Fault, on the west side of the property is thought to be similarly-oriented. Most of these shear zones are denoted by brittle to gougy drillcore intercepts and may show increased amounts of hydrothermal veining including tourmaline, pyrite, magnetite, and gangue infilling fractures.

West-directed fault systems have been noted in some early workings of the Casino C anomaly (southeast along the Casino Creek Fault), have been suggested by airborne magnetics south of the deposit, and have been interpreted in airphotos west of the deposit. In addition, this orientation proved to be prominent in veins in a Pacific Sentinel study of oriented core in 1994. A suture between Dawson Range diorite and granodiorite along this orientation has locally incorporated older metamorphic rocks. This orientation is parallel to the Minto-Battle Fault and may have had a hand in dictating the overall shape of the main Patton stock and resultant mineralization.


7.0 2009 LINE CUTTING and GEOPHYSICAL PROGRAM


Between June 10 and July 15 of 2009, a four-person crew cut a grid on claims covering the deposit. The grid consisted of nine (9) lines, spaced 300 m apart, each 2.4 km long and at an azimuth of approximately 64 degrees. A 2.4 km long baseline was also cut. Pickets were placed at 50 m intervals to mark each station and all stations were corrected for elevation and recorded using a GPS. In addition, at 200 m intervals on each line, a 200 m 'cross line' oriented orthogonal to the line was prepared (Figure 5). The length of grid prepared totaled 47.4 km.

Between July 16 and 29, 2009, Quantec Geoscience Limited of Toronto, Ontario performed Titan-24 Galvanic Direct Current Resistivity and Induced Polarization (DC/IP) surveys as well as a Magnetotelluric Tensor Resistivity (MT) survey over the entire grid. Magnetotelluric Resistivity results in high resolution and deep penetration (to 1 km) and The Titan DC Resistivity & Induced polarization provides reasonable depth coverage to 750 m.

The Quantec crew consisted of 15-persons. They performed 22.5 km of DC/IP surveying (100 m was added to each line) as well as 21.6 km of MT surveying in 14 days. For the DC/IP surveys, a dipole-pole-dipole configuration was used with current injections every 50 m, located midway between the potential dipoles. The inline measuring dipoles were placed at 100 m and at the 200 m cross-lines, the electrodes were separated by 100 m.

For the MT survey, contiguous 100 m dipoles were used to measure the in-line field and 100 m dipoles were used to measure all cross-line fields. The orthogonal magnetometers and dipoles used in the survey were compared to a remote base station for noise reduction and monitoring. A comprehensive description of the surveying methods employed during this survey is given in Chapter 1 of Quantec's interpretation report, provided in Appendix III. A discussion of the geophysical theory employed during MT and DC/IP surveying is also given in Appendix C and D of the report.

8.0 RESULTS

The geophysicists at Quantec Geoscience reviewed the results of both the raw data and the inversion models of the Titan-24 survey on the Casino Property. In general, the data quality for both DC and IP surveys is good to excellent. Any data considered of low or poor quality data was removed prior to processing for 2D and 3D representation. The magneto-telluric apparent resistivity data was also good due in part to the remoteness of the survey area, away from cultural or telluric noise.

The appended report discusses and summarizes the methods of the 2D and 3D inversion modelling of both DC/IP and MT survey data results obtained on the Casino Property grid. The interpretation of the final inversion models outlined no less than nine (9) unexplained DC/IP and MT anomalies, labeled T1 to T9. Four anomalies (T4, T5, T6, and T8) were classified as high priority targets based on anomaly amplitude, extent, and multi-parameter association. For example, targets having relatively large areas of strong IP coupled with either low resistivity zones or areas of high resistivity gradient are consistent with massive to semi-massive and disseminated porphyry copper-gold mineralization. Similarly, areas of moderately-low resistivity coupled with moderately-low chargeability are consistent with mineralization around alteration zones and were also given high-priority status. A plan of the locations of all the target areas having good potential for hosting copper+/-molybdenum+/-silver sulphides and gold mineralization to depths of 700 m are shown in Figure 7.

The MT inversion models revealed four significant targets, MT-1 to MT-4, at depths ranging from 700 to 2000 m from the surface. These deep anomalies are tentatively classified as secondary exploration priorities may be moved to higher priority if they occur immediately below significant results from the testing of shallower targets.

Figure 7. Quantec IP and MT anomalies and proposed drill holes

9.0 DISCUSSION AND RECOMENDATIONS

The results of the Titan-24 distributed acquisition technology and multi-parameter interpretation of the Casino Property are encouraging. A cursory investigation of the anomalies would conclude:

- a) the titan DC/IP and MT anomalies correlate with the known mineral zones of the Casino copper-gold deposit (Figure xx). The central part of the survey area, immediately over the main known copper-gold mineralization, supports the most intense chargeability anomalies coupled with low resistivity. The anomaly over this area (T5) suggests mineralization may continue to a depth of 700 m, and exist to the south and north of the deposit in anomalies T1 to T3.
- b) good resolution of known geological structures, contacts, and lineaments was also exhibited in plan and section. For example, the well-known northwesttrending Casino fault was expressed by a sub-vertical, low-resistivity lineation in the location the fault was known to exist through core examination and surface morphology. At least three geological lineaments were also highlighted by subvertical, gradient zones interpreted from inversion models. Two of these structures trace sub-parallel splays of the Casino Fault and the Patton Fault systems. The third structure has never before been recognized and has not yet been interpreted.

The Titan targets nearest to the main copper-gold deposit (anomaly T2 and T3) are subhorizontal, limited to a depth of 300 m, and occupy a large area. These anomalies are likely related to the leached, but gold-rich, cap zone of the deposit. The two others below the main deposit (T4 and T8) extend to 700 m and locate the hypogene, rootzone of the copper system.

Anomaly T7 in the northwest part of the grid had a strong to moderate chargability coupled with resistivity moderate to low response. The anomaly was positioned at the survey boundaries which limited its full expression. Like signatures define anomalies T9 and T6, consistent with copper-gold-molybdenum mineralization.

Anomaly T1 is a resistive low in the southwest area of the grid indicating an extension of a mineralized or metasomatically-altered zone.

Thirteen diamond drill holes were recommended by Quantec Geoscience to systematically test the anomalies. The recommended drillhole specifics are given in Table XX, below.

Hole ID	Priority	Grid E	Grid N	Target	Azimuth	Depth (m)	Dip
DDH-1	2	1000	10000	T4, T5	244	600	-70
DDH-2	2	9334	10300	T2, T4?	244	700	-70
DDH-3	1	9680	10600	T4	244	800	-70
DDH-4	1	10910	10900	Т8	0	450	-90
DDH-5	1	10314	11800	T5	244	800	-70
DDH-6	2	10700	11800	T7, T8	244	800	-70
DDH-7	1	10800	12100	Т9	64	300	-60
DDH-8	1	9000	12400	T1	244	250	-70
DDH-9	1	9264	12400	T2, T3	0	600	-90
DDH-10	2	10300	12400	T7, T8	64	800	-70
DDH-11	1	10760	12400	Т9	64	500	-70
DDH-12	2	10650	10600	T5	244	800	-70
DDH-13	1	9700	10900	T2 <i>,</i> T4	244	800	-70

Table 2: Recommended Drilling to test Titan Target Zones

Further recommendations from Quantec Geoscience include:

- 1) reviewing all geological and geochemical data proximal to the targets identified as priority prior to diamond drilling in order to enhance and further the interpretation and targeting accuracy.
- 2) drill testing the top and centre portions of the targets identified as high-priority, proceeding deeper and exploring the vicinity, where warranted.
- 3) following-up any drilling with downhole geophysics to delineate the extent of primary or secondary sources of the anomalies.

10.0 STATEMENT OF EXPENDITURES 2009

Quantec Geosciences Ltd. – Titan IP/MT Survey Total charges – 21.6 line km of surveying (July 16-29)	198,000.00
Casselman Geological Services Ltd. – Project Management/Line Cutting S. Casselman – project geologist (27 days @ \$750.00) Derek Torgerson – line cutter (27 days @ \$446.25) Larry Brault – line cutter (33 days @ \$446.25) Richard Johnsen – field assistant (33 days @ \$330.75) Darren Blackjack – field assistant (27 days @ \$330.75) Pat McIntosh – Cook (47 days @ \$525.00) Tools and Equipment rental	20,250.00 12,048.75 14,726.25 10,914.75 8,930.25 24,675.00 7,796.25
Expediting Supplies (survey pickets, flagging, paint, metal tags, etc) Fuel (diesel for generator, gasoline for line cutting and IP, propane) Groceries Fixed Wing Charter Communications – Satellite phone rental, radio repeater rental Report Writing and reproduction costs	2,767.60 1,546.03 2,500.00 15,930.73 22,127.58 4,115.63 <u>6,500.00</u>

Total

<u>\$ 352,828.82</u>

11.0 **REFERENCES**

- ARCHER, A.R. and MAIN, C.A., 1971. Casino, Yukon A geochemical discovery of an unglaciated Arizona-type porphyry; CIM Spec. Vol. 11, proc. 3rd Int. Geochem, Explor. Symp., p. 67-77.
- Bower, B., Case, T., DeLong, C., and Rebagliati, C.M., 1995. Casino Project, 1994 Exploration and Geotechnical Drilling Program on the Casino Porphyry Copper-Gold- Molybdenum Deposit. Unpublished Company Report, Pacific Sentinel Gold Corp.
- Bower, B., DeLong, C., Payne, J., and Rebagliati, C.M., , 1995. The Oxide-Gold, Supergene and Hypogene Zones at the Casino Gold-Copper-Molybdenum Deposit West Central Yukon. CIM Special Vol. 46.
- CAIRNES, D.D., 1917. Investigations and Mapping Yukon Territory; Geol. Survey of Canada, Sum Rept., 1916, p. 12-23.
- Cathro, R. J., 1969. Casino Property, Geology and Geochemical Survey. Assessment Report # 060740.
- Cathro, R. J. Casino Silver Mines Ltd, Casino Property Geology and Geochemical Survey. Yukon Territorial Government Assessment Report #019100.
- Godwin, C.I., 1975. Geology of the Casino porphyry copper-molybdenum deposit, Dawson Range, Yukon Territory. Unpub. PhD Thesis, University of British Columbia.
- Gordey, S.P., and Makepeace, A.J., 1999. Yukon digital geology. Geological Survey of Canada, Open File D3826, and Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File 1999-1 (D)
- Gordey, S.P. and Makepeace, A.J. 2003: Yukon Digital Geology, version 2.0. Geological Survey of Canada, Open file 1749 and Yukon Geological Survey, Open file 2003-9 (D).
- Hart, C.J.R., and Selby, D. 1998. The Pattison Creek Pluton a Mineralized Casino exploration and Geological Services Division, yukon Indian and Northern Affairs Canada, pp. 89-96.
- Johnston, S.T., 1995. Geological compilation with interpretation from geophysical surveys of the northern Dawson Range, central Yukon (115J/9 & 10; 115I/12) (1:100 000 scale map). Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File 1995-2 (G).

- Lesnikov, K., 2008. 2007 Assessment Report for the Casino Property. Yukon Territorial Government Assessment Report.
- M3 Engineering & Technology Corp., 2008. Casino Project Pre-Feasibility Study, Yukon, Canada. Private Company Report.
- Martinez, E., Killin, K., and Eadie, T., 2009. Geophysical Survey Interpretation Report Regarding the Titan-24 Magnetotelluric Direct Current Resistivity and IP Survey over the CASINO PROJECT near Whitehorse, Yukon Territory for WESTERN COPPER CORPORATION Vancouver, BC, Canada. Unpublished Report.
- Monger, J. and Price, R. 2002 The Canadian Cordillera: Geology and Tectonic Evolution. Canadian Society of Geophysicists Recorder. (27)2: 17-36
- Payne, J.G., Gonzalez, R. A., Akhurst, K. and Sisson, W.G., 1987. Geology of the Colorado Creek (115-J/10), Selwyn River (115-J/9), and Prospector Mountain (115-I/5) Map areas, Western Dawson Range, west-central Yukon. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, Open File 1987-3.
- Selby, David and Nesbitt, Bruce E., 1998. Biotite Chemistry of the Casino Porphyry Cu-Mo-Au Occurrence, Dawson Range, Yukon. In: Yukon Exploration and Geology 1997; Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, p. 83-88.
- Selby, D., Creaser, R.A. and Nesbett, B.E., 1999. Major and trace element composition and Sr-Nd-Pb systematics of crystalline rocks from the Dawson Range, Yukon, Canada. Canadian Journal of Earth Sciences, Vol. 36, pg 1463-1481.
- Szetu, S.S., 1966. Lead-Silver Property, Casino Silver Mines, Casino Creek Area, Yukon Territory. Unpub. Report for Casino Silver Mines.
- Szetu, S. S., 1965. Casino Silver Mines Ltd, Casino Property, Geophysical Report. Yukon Territorial Government Assessment Report #019098.
- Szetu, S. S., 1965. Casino Silver Mines Ltd, Casino Property, Report on Geophysical Survey on Central Part of Property. Yukon Territorial Government Assessment Report #019099.
- Szetu, S. S., 1966. Casino Silver Mines Ltd, Casino Property, Report on Lead-Silver Property. Yukon Territorial Government Assessment Report #019137.
- Szetu, S. S., 1966. Report on Program of Geophysical Survey Data on Property of Casino Silver Mines Ltd (N.P.L.), Canadian Creek Part of Property. Yukon Territorial Government Assessment Report #019138.

- Szetu, S. S., 1966 Geophysical Survey Data on Property of Casino Silver Mines Ltd (N.P.L.), "B" Anomaly Area. Yukon Territorial Government Assessment Report #019139.
- Szetu, S. S., 1966 Report on Geophysical Survey, Casino Silver Mines Ltd (N.P.L.), Anomaly "C" Area. Yukon Territorial Government Assessment Report #019140.
- Szetu, S. S., 1966 Report on the Casino Lead-Silver Property. Yukon Territorial Government Assessment Report #019141.
- Taylor, C.D., 1964. Casino Creek Silver-Lead Prospect, Yukon. Unpub. Report for Casino Silver Mines.
- Taylor, C.D., 1967a. Casino Silver Mines, Interim Report, July to October, 1967. Unpub. Report for Casino Silver Mines.
- Taylor, C.D., 1967b. Casino Silver Mines, Engineering Report for Year Ending November, 1966. Unpub. Report for Casino Silver Mines.
- Taylor, C. D. N., 1967. Report on the Casino Silver Property. Yukon Territorial Government Assessment Report #019601.
- Taylor, C. D. N., 1967. Casino Property, Engineering Report for the Year 1967. Yukon Territorial Government Assessment Report #060784.
- Tempelman-Kluit, D. J. 1974 Reconnaissance geology of Aishihik Lake, snag and part of Stewart River map-areas, West Central Yukon (115A, 115F, 115G and 115K) / D.J. Tempelman Kluit Dept. of Energy, Mines and Resources, Ottawa
- Tempelman-Kluit, D. J., 1974. Reconnaissance geology of Aishihik Lake, Snag and part of the Stewart River map areas, west-central Yukon Territory. Geological Survey of Canada, Paper 73-14, 93p.

CASSELMAN GEOLOGICAL SERVICES LTD.

APPENDIX I

STATEMENT OF QUALIFICATIONS

Statement of Qualifications

I, Scott Casselman, of 33 Firth Road, Whitehorse, Yukon Territory, certify that

- 1) I am a geologist employed by Casselman Geological Services Ltd. of Whitehorse, Yukon Territory.
- I graduated from Carleton University in Ottawa, Ontario with a Bachelor of Science Degree in Geology in 1985 and have worked as a geologist since that time.
- 3) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia, Registration No. 20032.
- 4) I supervised the mineral exploration program on the Casino Property for Western Copper Corporation in 2009.
- 5) I am responsible for preparation of this report and based on information provided by Quantec Geophysics Ltd.

Respectfully Submitted:

Dated 23rd of September, 2010.

Scott Casselman, P.Geo.

Statement of Qualifications

- I, Jesse R. Halle, hereby certify that:
- 1. I am the part owner and operator of Halle Geological Services Ltd. located at Unit 3E 508 Hanson Street, Whitehorse, YT, Y1A 1Z1.
- 2. I am a graduate of the University of Toronto with an Honors B.Sc. (Env. Sci.) and of Lakehead University with an Honors B.Sc. (Geology).
- 3. I have been employed as a geological assistant intermittently between 1996 2000 with the Ontario Geological Survey, and as a geologist with numerous junior, intermediate, and major mining companies from 2001 through 2010.
- 4. I have worked in my chosen field in 6 provinces or territories in Canada and in the United States of America. The majority of my mineral exploration career has been carried out in the province of British Columbia.
- 5. I am a Phase 1 applicant to the Association of Professional Engineers and Geoscientists of BC ("APEGBC"), and am currently under consideration for membership.
- 6. I have no direct or indirect interest in the Western Copper Corporation or any of its affiliates.
- 7. I am not aware of any material fact or material change, the omission of which would make the technical report misleading.

Respectfully submitted:

Dated this 23rd day of September, 2010.

Jesse R. Halle

Statement of Qualifications

I, Emily M. Halle, hereby certify that:

- 1. I am the part owner and operator of Halle Geological Services Ltd. located at Unit 3E 508 Hanson Street, Whitehorse, YT, Y1A 1Z1.
- 2. I am a graduate of Saint Mary's University with a B.Comm. and a B.Sc. (Honours Geology).
- 3. I have been employed as a geologist since 2004 with numerous junior, intermediate, and major mining companies and Universities.
- 4. I have worked in my chosen field throughout 4 provinces or territories in Canada, as well as in the United States of America and Southern Africa.
- 5. I have no direct or indirect interest in Western Copper Corporation or any of its affiliates.
- 6. I am not aware of any material fact or material change, the omission of which would make the technical report misleading.

Respectfully submitted:

Dated this 23rd day of September, 2010.

Emily M. Halle

APPENDIX II

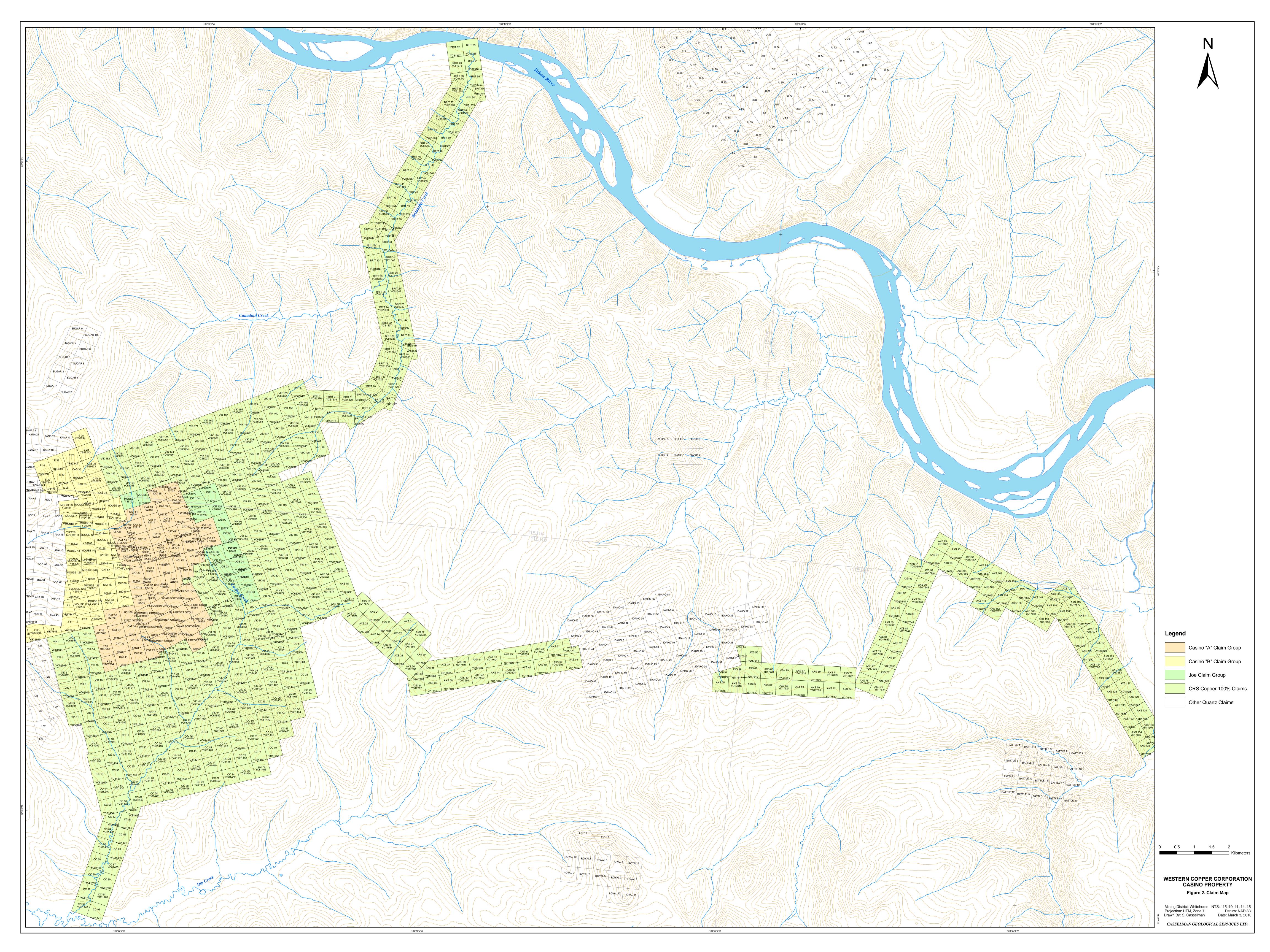
CLAIM INFORMATION

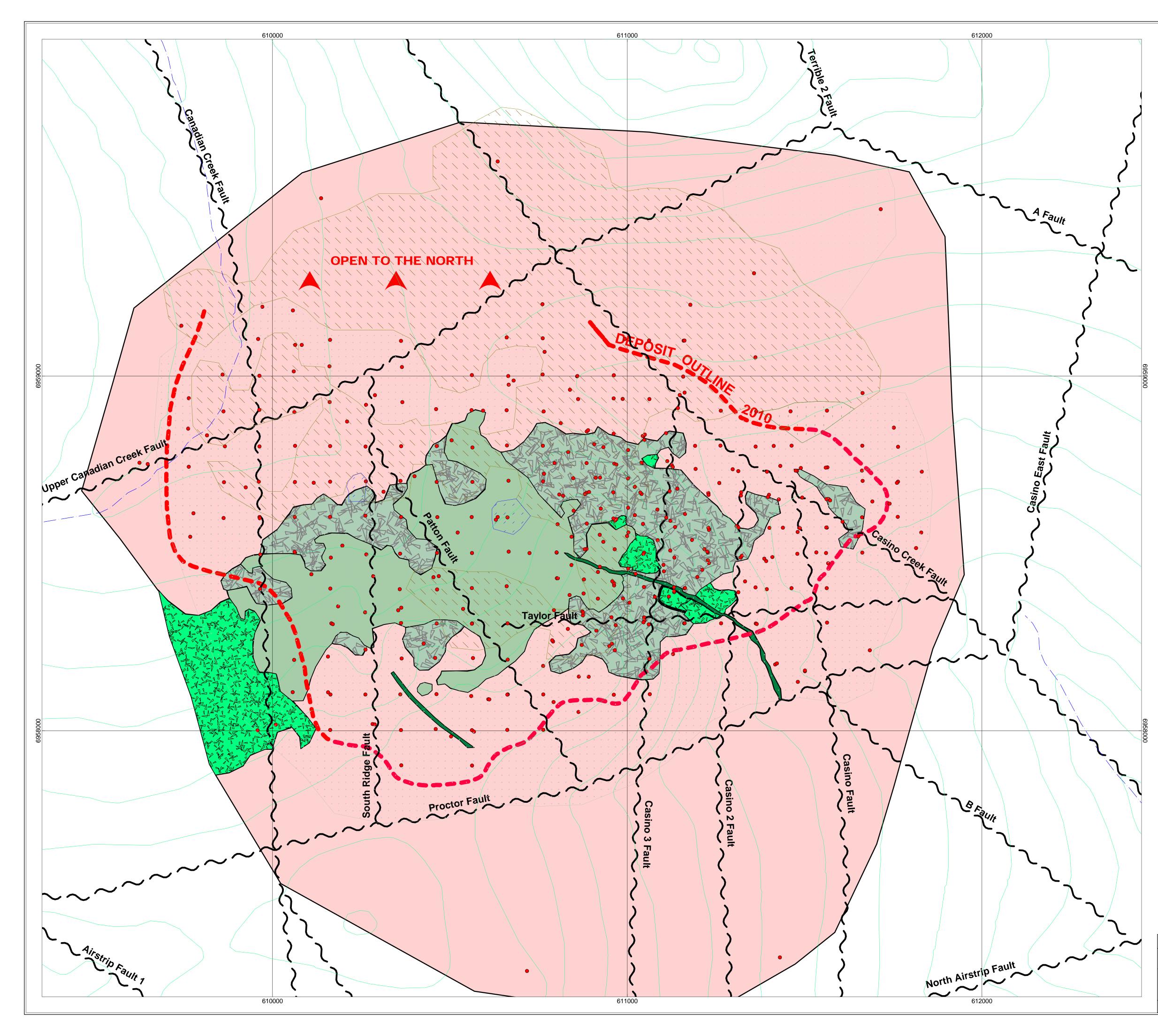
Grant #	Claim Name	Expiry Date	Мар	Grant #	Claim Name	Expiry Date	Мар
4252	HELICOPTER	25/03/2020	115J10	95730	CAT 53	25/03/2020	115J10
56979	#1 BOMBER GROUP	25/03/2020	115J10	95731	CAT 54	25/03/2020	115J10
56980	#3 BOMBER GROUP	25/03/2020	115J10	95732	CAS 55	25/03/2020	115J15
56981	#5 BOMBER GROUP	25/03/2020	115J10	95733	CAS 56	25/03/2020	115J15
56983	#1 AIRPORT GROUP	25/03/2020	115J10	95734	CAT 57	25/03/2020	115J10
56984	#3 AIRPORT GROUP	25/03/2020	115J10	95735	CAT 58	25/03/2020	115J10
56985	#5 AIRPORT GROUP	25/03/2020	115J10	95736	CAT 59	25/03/2020	115J10
56987	#2 BOMBER GROUP	25/03/2020	115J10	95737	CAT 60	25/03/2020	115J10
56988	#6 BOMBER GROUP	25/03/2020	115J10	95738	CAT 61	25/03/2020	115J10
56990	#2 AIRPORT GROUP	25/03/2020	115J10	95739	CAT 62	25/03/2020	115J10
56991	#4 AIRPORT GROUP	25/03/2020	115J10	Y 10693	JOE 89	05/03/2020	115J10
56992	#6 AIRPORT GROUP	25/03/2020	115J10	Y 10694	JOE 90	05/03/2020	115J10
56993	#8 AIRPORT GROUP	25/03/2020	115J10	Y 10695	JOE 91	05/03/2020	115J10
92201	CAT 1	25/03/2020	115J10	Y 10696	JOE 92	05/03/2020	115J10
92202	CAT 2	25/03/2020	115J10	Y 10697	JOE 93	05/03/2020	115J10
92203	CAT 3	25/03/2020	115J10	Y 10698	JOE 94	05/03/2020	115J10
92204	CAT 4	25/03/2020	115J10	Y 10699	JOE 95	05/03/2020	115J10
92205	CAT 5	25/03/2020	115J10	Y 10700	JOE 96	05/03/2020	115J10
92206	CAT 6	25/03/2020	115J10	Y 10701	JOE 97	25/03/2020	115J10
92207	CAT 7	25/03/2020	115J10	Y 10702	JOE 98	05/03/2020	115J10
92208	CAT 8	25/03/2020	115J10	Y 10702	JOE 99	05/03/2020	115J10
92209	CAT 9	25/03/2020	115J10	Y 10704	JOE 100	25/03/2020	115J10
92210	CAT 10	25/03/2020	115J10	Y 10705	JOE 100	05/03/2020	115J10
92211	CAT 10	25/03/2020	115J10	Y 10706	JOE 101	05/03/2020	115J10
92211	CAT 11	25/03/2020	115J10	Y 10707	JOE 102	05/03/2020	115J15
92212	CAT 12	25/03/2020	115J10	Y 10708	JOE 103	05/03/2020	115J15
92213	CAT 13	25/03/2020	115J10	Y 35192	MOUSE 1	05/03/2020	115J10
92215	CAT 15	25/03/2020	115J10	Y 35193	MOUSE 2	05/03/2020	115J10
92216	CAT 15	25/03/2020	115J10	Y 35582	MOUSE 161	25/03/2020	115J10
92210	CAT 10	25/03/2020	115J10	Y 35583	MOUSE 161	25/03/2020	115J10
92218	CAT 17	25/03/2020	115J10	Y 35584	MOUSE 162	25/03/2020	115J10
92219	CAT 10	25/03/2020	115J10	Y 35585	LOST FR. 1	25/03/2020	115J10
92220	CAT 19 CAT 20	25/03/2020	115J10	Y 35586	LOST FR. 2	25/03/2020	115J10
92220	CAT 20 CAT 21	25/03/2020	115J10	Y 35587	LOST FR. 3	25/03/2020	115J10
92222	CAT 21	25/03/2020	115J10	Y 36686	CAT 22	25/03/2020	115J10
92764	CAT 22	25/03/2020	115J10	Y 36687	CAT 22 CAT 47		115J10
92765	CAT 23 CAT 24	25/03/2020	115J10	Y 36688	CAT 47 CAT 48	25/03/2020	115J10
92766	CAT 24 CAT 25	25/03/2020	115J10	Y 36689	CAT 40 CAT 57	05/06/2020	115J10
92776	CAT 25	25/03/2020	115J10	Y 36690	CAT 62	25/03/2020	115J10
92777	CAT 35	25/03/2020	115J10	Y 39601	CAT 02 CAT 3	25/03/2020	115J10
92778	CAT 30	25/03/2020	115J10	Y 39602	CAT 4	25/03/2020	115J10
92779	CAT 37	25/03/2020	115J10	Y 39603	CAT 23		115J10
92779	CAT 38	25/03/2020	115J10	Y 51846	CAT 23 CAT 1	25/03/2020	115J10
92780	CAT 39 CAT 40	25/03/2020	115J10 115J10	Y 51847	CAT 1 CAT 2	25/03/2020	115J10 115J10
92781	CAT 40 CAT 41	25/03/2020	115J10 115J10	Y 51849	CAT 2 CAT 26		115J10 115J10
92782	CAT 41 CAT 42	25/03/2020	115J10	Y 51850	JOE 91	05/03/2020	115J10
92783	CAT 42 CAT 47		115J10 115J10	Y 51850	JOE 91 JOE 92		
		25/03/2020 25/03/2020			JOE 92 JOE 93	05/03/2020	115J10
95725	CAT 48		115J10	Y 51852			115J10
95726	CAT 49	25/03/2020	115J10	Y 51853	JOE 94	05/03/2020	115J10
95727	CAT 50	25/03/2020	115J10	Y 51854	JOE 95	05/03/2020	115J10
95728	CAT 51	25/03/2020	115J10	Y 51855 YB37280	JOE 96 F 29	05/03/2020	115J10
95729	CAT 52	25/03/2020	115J10	103/200	г 29	25/03/2020	115J10

Grant #	Claim Name	Expiry Date	Мар	Grant #	Claim Name	Expiry Date	Мар
YB37282	F 31	25/03/2020	115J10	YC64942	VIK 50	05/03/2020	115J10
YB37284	F 33	25/03/2020	115J10	YC64943	VIK 51	05/03/2020	115J10
YC64893	VIK 1	05/03/2020	115J10	YC64944	VIK 52	05/03/2020	115J10
YC64894	VIK 2	05/03/2020	115J10	YC64945	VIK 53	05/03/2020	115J10
YC64895	VIK 3	05/03/2020	115J10	YC64946	VIK 54	05/03/2020	115J10
YC64896	VIK 4	05/03/2020	115J10	YC64947	VIK 55	05/03/2020	115J10
YC64897	VIK 5	05/03/2020	115J10	YC64948	VIK 56	05/03/2020	115J10
YC64898	VIK 6	05/03/2020	115J10	YC64949	VIK 57	05/03/2020	115J10
YC64899	VIK 7	05/03/2020	115J10	YC64950	VIK 58	05/03/2020	115J10
YC64900	VIK 8	05/03/2020	115J10	YC64951	VIK 59	05/03/2020	115J10
YC64901	VIK 9	05/03/2020	115J10	YC64952	VIK 60	05/03/2020	115J10
YC64902	VIK 10	05/03/2020	115J10	YC64953	VIK 61	05/03/2020	115J10
YC64903	VIK 11	05/03/2020	115J10	YC64954	VIK 62	05/03/2020	115J10
YC64904	VIK 12	05/03/2020	115J10	YC64955	VIK 63	05/03/2020	115J10
YC64905	VIK 13	05/03/2020	115J10	YC64956	VIK 64	05/03/2020	115J10
YC64906	VIK 14	05/03/2020	115J10	YC64957	VIK 65	05/03/2020	115J10
YC64907	VIK 15	05/03/2020	115J10	YC64958	VIK 66	05/03/2020	115J10
YC64908	VIK 16	05/03/2020	115J10	YC64959	VIK 67	05/03/2020	115J10
YC64909	VIK 17	05/03/2020	115J10	YC64960	VIK 68	05/03/2020	115J10
YC64910	VIK 18	05/03/2020	115J10	YC64961	VIK 69	05/03/2020	115J10
YC64911	VIK 19	05/03/2020	115J10	YC64962	VIK 70	05/03/2020	115J10
YC64912	VIK 20	05/03/2020	115J10	YC64963	VIK 71	05/03/2020	115J10
YC64913	VIK 21	05/03/2020	115J10	YC64964	VIK 72	05/03/2020	115J10
YC64914	VIK 22	05/03/2020	115J10	YC64965	VIK 73	05/03/2020	115J10
YC64915	VIK 23	05/03/2020	115J10	YC64966	VIK 74	05/03/2020	115J10
YC64916	VIK 24	05/03/2020	115J10	YC64967	VIK 75	05/03/2020	115J10
YC64917	VIK 25	05/03/2020	115J10	YC64968	VIK 76	05/03/2020	115J10
YC64918	VIK 26	05/03/2020	115J10	YC64969	VIK 77	05/03/2020	115J10
YC64919	VIK 27	05/03/2020	115J10	YC64970	VIK 78	05/03/2020	115J10
YC64920	VIK 28	05/03/2020	115J10	YC64971	VIK 79	05/03/2020	115J10
YC64921	VIK 29	05/03/2020	115J10	YC64972	VIK 80	05/03/2020	115J10
YC64922	VIK 30	05/03/2020	115J10	YC64973	VIK 81	05/03/2020	115J10
YC64923	VIK 31	05/03/2020	115J10	YC64974	VIK 82	05/03/2020	115J10
YC64924	VIK 32	05/03/2020	115J10	YC64975	VIK 83	05/03/2020	115J10
YC64925	VIK 33	05/03/2020	115J10	YC64976	VIK 84		115J10
YC64926	VIK 34	05/03/2020		YC64977	VIK 85	05/03/2020	115J10
YC64927	VIK 35	05/03/2020	115J10	YC64978	VIK 86	05/03/2020	115J10
YC64928	VIK 36	05/03/2020	115J10	YC64979	VIK 87	05/03/2020	115J10
YC64929	VIK 37	05/03/2020	115J10	YC64980	VIK 88	05/03/2020	115J10
YC64930	VIK 38	05/03/2020	115J10	YC64981	VIK 89	05/03/2020	115J10
YC64931	VIK 39	05/03/2020	115J10	YC64982	VIK 90	05/03/2020	115J10
YC64932	VIK 40	05/03/2020	115J10	YC64983	VIK 91	05/03/2020	115J10
YC64933	VIK 41	05/03/2020	115J10	YC64984	VIK 92	05/03/2020	115J10
YC64934	VIK 42	05/03/2020	115J10	YC64985	VIK 93	05/03/2020	115J10
YC64935	VIK 42	05/03/2020	115J10	YC64986	VIK 94	05/03/2020	115J10
YC64936	VIK 44	05/03/2020	115J10	YC64987	VIK 95	05/03/2020	115J10
YC64937	VIK 45	05/03/2020	115J10	YC64988	VIK 96	05/03/2020	115J10
YC64938	VIK 46	05/03/2020	115J10	YC64989	VIK 97	05/03/2020	115J10
YC64939	VIK 40 VIK 47	05/03/2020	115J10	YC64990	VIK 98	05/03/2020	115J10
YC64940	VIK 47	05/03/2020	115J10	YC64991	VIK 98	05/03/2020	115J10
YC64941	VIK 48 VIK 49	05/03/2020	115J10	YC64992	VIK 99	05/03/2020	115J10
1004341	VIIX 43	00/00/2020	110010	1004332	VIIX 100	00/00/2020	110010

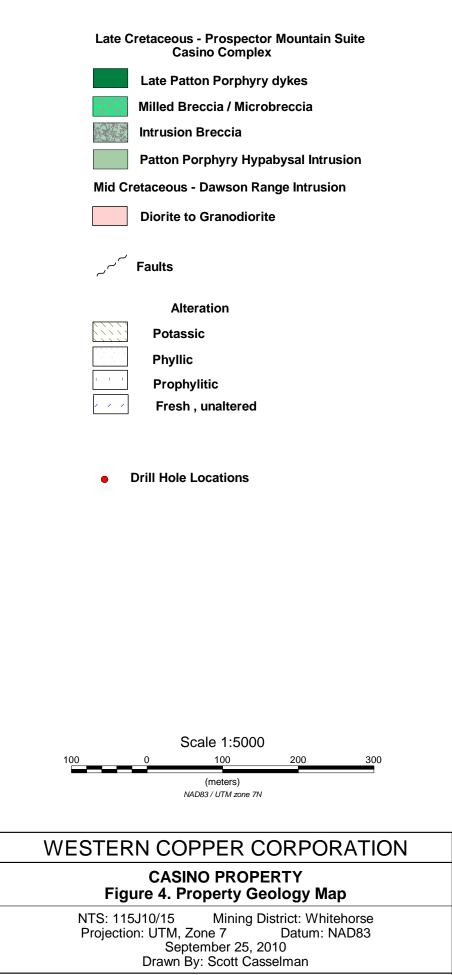
Grant #	Claim Name	Expiry Date	Мар	Grant #	Claim Name	Expiry Date	Мар
YC64993	VIK 101	05/03/2020	115J10	YC65044	VIK 152	05/03/2020	115J15
YC64994	VIK 102	05/03/2020	115J10	YC65045	VIK 153	05/03/2020	115J15
YC64995	VIK 103	05/03/2020	115J10	YC65046	VIK 154	05/03/2020	115J15
YC64996	VIK 104	05/03/2020	115J10	YC65047	VIK 155	05/03/2020	115J15
YC64997	VIK 105	05/03/2020	115J10	YC65048	VIK 156	05/03/2020	115J15
YC64998	VIK 106	05/03/2020	115J10	YC65049	VIK 157	05/03/2020	115J15
YC64999	VIK 107	05/03/2020	115J10	YC65050	VIK 158	05/03/2020	115J15
YC65000	VIK 108	05/03/2020	115J10	YC65051	VIK 159	05/03/2020	115J15
YC65001	VIK 109	05/03/2020	115J10	YC65052	VIK 160	05/03/2020	115J15
YC65002	VIK 110	05/03/2020	115J10	YC65053	VIK 161	05/03/2020	115J15
YC65003	VIK 111	05/03/2020	115J10	YC65054	VIK 162	05/03/2020	115J15
YC65004	VIK 112	05/03/2020	115J10	YC65055	VIK 163	05/03/2020	115J15
YC65005	VIK 113	05/03/2020	115J10	YC65056	VIK 164	05/03/2020	115J15
YC65006	VIK 114	05/03/2020	115J10	YC65057	VIK 165	05/03/2020	115J15
YC65007	VIK 115	05/03/2020	115J10	YC65058	VIK 166	05/03/2020	115J15
YC65008	VIK 116	05/03/2020	115J10	YC65059	VIK 167	05/03/2020	115J15
YC65009	VIK 117	05/03/2020	115J10	YC65060	VIK 168	05/03/2020	115J15
YC65010	VIK 118	05/03/2020	115J15	YC65061	VIK 169	05/03/2020	115J15
YC65011	VIK 119	05/03/2020	115J15	YC65062	VIK 170	05/03/2020	115J15
YC65012	VIK 120	05/03/2020	115J15	YC65063	VIK 171	05/03/2020	115J15
YC65013	VIK 121	05/03/2020	115J15	YC65064	VIK 172	05/03/2020	115J15
YC65014	VIK 122	05/03/2020	115J15	YC65065	VIK 173	05/03/2020	115J15
YC65015	VIK 123	05/03/2020	115J15	YC65066	VIK 174	05/03/2020	115J15
YC65016	VIK 124	05/03/2020	115J15	YC65067	VIK 175	05/03/2020	115J15
YC65017	VIK 125	05/03/2020	115J15	YC65068	VIK 176	05/03/2020	115J15
YC65018	VIK 126	05/03/2020	115J15	YC65069	VIK 177	05/03/2020	115J15
YC65019	VIK 127	05/03/2020	115J15	YC65070	VIK 178	05/03/2020	115J15
YC65020	VIK 128	05/03/2020	115J15	YC65071	VIK 179	05/03/2020	115J15
YC65021	VIK 129	05/03/2020	115J15	YC65072	VIK 180	05/03/2020	115J15
YC65022	VIK 130	05/03/2020	115J15	YC65073	VIK 181	05/03/2020	115J15
YC65023	VIK 131	05/03/2020	115J15	YC65074	VIK 182	05/03/2020	115J15
YC65024	VIK 132	05/03/2020	115J15	YC65075	VIK 183	05/03/2020	115J15
YC65025	VIK 133	05/03/2020	115J15	YC65076	VIK 184	05/03/2020	115J15
YC65026	VIK 134	05/03/2020	115J15	YC65077	VIK 185	05/03/2020	115J15
YC65027	VIK 135	05/03/2020	115J15	YC65078	VIK 186		115J15
YC65028	VIK 136	05/03/2020	115J15	YC65079	VIK 187	05/03/2020	115J15
YC65029	VIK 137	05/03/2020	115J15	YC65080	VIK 188	05/03/2020	115J15
YC65030	VIK 138	05/03/2020	115J15	YC81316	BRIT 1	05/03/2018	115J15
YC65031	VIK 139	05/03/2020	115J15	YC81317	BRIT 2	05/03/2018	115J15
YC65032	VIK 140	05/03/2020	115J15	YC81318	BRIT 3	05/03/2018	115J15
YC65033	VIK 141	05/03/2020	115J15	YC81319	BRIT 4	05/03/2018	115J15
YC65034 YC65035	VIK 142 VIK 143	05/03/2020 05/03/2020	115J15	YC81320 YC81321	BRIT 5 BRIT 6	05/03/2018	115J15 115J15
			115J15			05/03/2018	
YC65036 YC65037	VIK 144 VIK 145	05/03/2020 05/03/2020	115J15 115J15	YC81322	BRIT 7 BRIT 8	05/03/2018 05/03/2018	115J15 115J15
YC65037	VIK 145 VIK 146	05/03/2020	115J15 115J15	YC81323 YC81324	BRIT 9	05/03/2018	115J15 115J15
YC65038	VIK 146 VIK 147	05/03/2020	115J15 115J15	YC81325	BRIT 10	05/03/2018	115J15 115J15
YC65039	VIK 147 VIK 148	05/03/2020	115J15 115J15	YC81325	BRIT 10 BRIT 11	05/03/2018	115J15 115J15
YC65040	VIK 148 VIK 149	05/03/2020	115J15 115J15	YC81327	BRIT 12	05/03/2018	115J15 115J15
YC65041	VIK 149 VIK 150	05/03/2020	115J15 115J15	YC81328	BRIT 12 BRIT 13	05/03/2018	115J15 115J15
YC65042	VIK 150 VIK 151	05/03/2020	115J15 115J15	YC81329	BRIT 13 BRIT 14	05/03/2018	115J15 115J15
1000040	VIX 101	00/00/2020	110010	1001323	01/11/14	03/03/2010	110010

Grant #	Claim Name	Expiry Date	Мар	Grant #	Claim Name	Expiry Date	Мар
YC81330	BRIT 15	05/03/2018	115J15	YC81381	CC 3	05/03/2018	115J10
YC81331	BRIT 16	05/03/2018	115J15	YC81382	CC 4	05/03/2018	115J10
YC81332	BRIT 17	05/03/2018	115J15	YC81383	CC 5	05/03/2018	115J10
YC81333	BRIT 18	05/03/2018	115J15	YC81384	CC 6	05/03/2018	115J10
YC81334	BRIT 19	05/03/2018	115J15	YC81385	CC 7	05/03/2018	115J10
YC81335	BRIT 20	05/03/2018	115J15	YC81386	CC 8	05/03/2018	115J10
YC81336	BRIT 21	05/03/2018	115J15	YC81387	CC 9	05/03/2018	115J10
YC81337	BRIT 22	05/03/2018	115J15	YC81388	CC 10	05/03/2018	115J10
YC81338	BRIT 23	05/03/2018	115J15	YC81389	CC 11	05/03/2018	115J10
YC81339	BRIT 24	05/03/2018	115J15	YC81390	CC 12	05/03/2018	115J10
YC81340	BRIT 25	05/03/2018	115J15	YC81391	CC 13	05/03/2018	115J10
YC81341	BRIT 26	05/03/2018	115J15	YC81392	CC 14	05/03/2018	115J10
YC81342	BRIT 27	05/03/2018	115J15	YC81393	CC 15	05/03/2018	115J10
YC81343	BRIT 28	05/03/2018	115J15	YC81394	CC 16	05/03/2018	115J10
YC81344	BRIT 29	05/03/2018	115J15	YC81395	CC 17	05/03/2018	115J10
YC81345	BRIT 30	05/03/2018	115J15	YC81396	CC 18	05/03/2018	115J10
YC81346	BRIT 31	05/03/2018	115J15	YC81397	CC 19	05/03/2018	115J10
YC81347	BRIT 32	05/03/2018	115J15	YC81398	CC 20	05/03/2018	115J10
YC81348	BRIT 33	05/03/2018	115J15	YC81399	CC 21	05/03/2018	115J10
YC81349	BRIT 34	05/03/2018	115J15	YC81400	CC 22	05/03/2018	115J10
YC81350	BRIT 35	05/03/2018	115J15	YC81401	CC 23	05/03/2018	115J10
YC81351	BRIT 36	05/03/2018	115J15	YC81402	CC 24	05/03/2018	115J10
YC81352	BRIT 37	05/03/2018	115J15	YC81403	CC 25	05/03/2018	115J10
YC81353	BRIT 38	05/03/2018	115J15	YC81404	CC 26	05/03/2018	115J10
YC81354	BRIT 39	05/03/2018	115J15	YC81405	CC 27	05/03/2018	115J10
YC81355	BRIT 40	05/03/2018	115J15	YC81406	CC 28	05/03/2018	115J10
YC81356	BRIT 41	05/03/2018	115J15	YC81407	CC 29	05/03/2018	115J10
YC81357	BRIT 42	05/03/2018	115J15	YC81408	CC 30	05/03/2018	115J10
YC81358	BRIT 43	05/03/2018	115J15	YC81409	CC 31	05/03/2018	115J10
YC81359	BRIT 44	05/03/2018	115J15	YC81410	CC 32	05/03/2018	115J10
YC81360	BRIT 45	05/03/2018	115J15	YC81411	CC 33	05/03/2018	115J10
YC81361	BRIT 46	05/03/2018	115J15	YC81412	CC 34	05/03/2018	115J10
YC81362	BRIT 47	05/03/2018	115J15	YC81413	CC 35	05/03/2018	115J10
YC81363	BRIT 48	05/03/2018	115J15	YC81414	CC 36	05/03/2018	115J10
YC81364	BRIT 49			YC81415	CC 37		115J10
YC81365	BRIT 50	05/03/2018		YC81416	CC 38	05/03/2018	115J10
YC81366	BRIT 51	05/03/2018	115J15	YC81417	CC 39	05/03/2018	115J10
YC81367	BRIT 52	05/03/2018	115J15	YC81418	CC 40	05/03/2018	115J10
YC81368	BRIT 53	05/03/2018	115J15	YC81419	CC 41	05/03/2018	115J10
YC81369	BRIT 54	05/03/2018	115J15	YC81420	CC 42	05/03/2018	115J10
YC81370	BRIT 55	05/03/2018	115J15	YC81421	CC 43	05/03/2018	115J10
YC81371	BRIT 56	05/03/2018	115J15	YC81422	CC 44	05/03/2018	115J10
YC81372	BRIT 57	05/03/2018 05/03/2018	115J15	YC81423	CC 45 CC 46	05/03/2018	115J10
YC81373 YC81374	BRIT 58 BRIT 59	05/03/2018	115J15	YC81424	CC 46 CC 47	05/03/2018 05/03/2018	115J10 115J10
YC81374	BRIT 60	05/03/2018	115J15 115J15	YC81425 YC81426	CC 47 CC 48	05/03/2018	115J10 115J10
YC81375 YC81376	BRIT 60 BRIT 61	05/03/2018		YC81426 YC81427	CC 48 CC 49	05/03/2018	115J10 115J10
YC81376 YC81377	BRIT 61 BRIT 62	05/03/2018	115J15 115J15	YC81427 YC81428	CC 49 CC 50	05/03/2018	115J10 115J10
YC81377 YC81378	BRIT 62 BRIT 63	05/03/2018			CC 50 CC 51		
YC81378 YC81379			115J15	YC81429	CC 51 CC 52	05/03/2018	115J10
YC81379 YC81380	CC 1 CC 2	05/03/2018 05/03/2018	115J10 115J10	YC81430 YC81431	CC 52 CC 53	05/03/2018 05/03/2018	115J10 115J10
1001300	00.2	03/03/2018	110010	1001431	00 00	03/03/2016	110010


Grant #	Claim Name	Expiry Date	Мар
YC81432	CC 54	05/03/2018	115J10
YC81433	CC 55	05/03/2018	115J10
YC81434	CC 56	05/03/2018	115J10
YC81435	CC 57	05/03/2018	115J10
YC81436	CC 58	05/03/2018	115J10
YC81437	CC 59	05/03/2018	115J10
YC81438	CC 60	05/03/2018	115J10
YC81439	CC 61	05/03/2018	115J10
YC81440	CC 62	05/03/2018	115J10
YC81441	CC 63	05/03/2018	115J10
YC81442	CC 64	05/03/2018	115J10
YC81443	CC 65	05/03/2018	115J10
YC81444	CC 66	05/03/2018	115J10
YC81445	CC 67	05/03/2018	115J10
YC81446	CC 68	05/03/2018	115J10
YC81447	CC 69	05/03/2018	115J10
YC81448	CC 70	05/03/2018	115J10
YC81449	CC 71	05/03/2018	115J10
YC81450	CC 72	05/03/2018	115J10
YC81451	CC 73	05/03/2018	115J10
YC81452	CC 74	05/03/2018	115J10


Grant #	Claim Name	Expiry Date	Мар
YC81453	CC 75	05/03/2018	115J10
YC81454	CC 76	05/03/2018	115J10
YC81455	CC 77	05/03/2018	115J10
YC81456	CC 78	05/03/2018	115J10
YC81457	CC 79	05/03/2018	115J10
YC81458	CC 80	05/03/2018	115J10
YC81459	CC 81	05/03/2018	115J10
YC81460	CC 82	05/03/2018	115J10
YC81461	CC 83	05/03/2018	115J10
YC81462	CC 84	05/03/2018	115J10
YC81463	CC 85	05/03/2018	115J10
YC81464	CC 86	05/03/2018	115J10
YC81465	CC 87	05/03/2018	115J10
YC81466	CC 88	05/03/2018	115J10
YC81467	CC 89	05/03/2018	115J10
YC81468	CC 90	05/03/2018	115J10
YC81469	CC 91	05/03/2018	115J10
YC81470	CC 92	05/03/2018	115J10
YC81471	CC 93	05/03/2018	115J10
YC81472	CC 94	05/03/2018	115J10

APPENDIX III


Geophysical Survey Interpretation Report, Regarding the TITAN-24 Magentotelluric Direct Current Resistivity and IP Survey over the Casino Project, Near Whitehorse, Yukon Territory, for Western Copper Corporation

> By: Quantec Geoscience Ltd

LEGEND

CASSELMAN GEOLOGICAL SERVICES LTD