1356139 ALBERTA INC. REPORT ON THE DIAMOND DRILLING AT THE MARSH LAKE PROPERTY, WHITEHORSE MINING DISTRICT SOUTHERN YUKON TERRITORY

By Derek Torgerson, B.Sc.

Aurora Geosciences Ltd 34A Laberge Rd Whitehorse, Yukon, Y1A 5Y9

Assessment Work Performed: January 5th to April 28th, 2008 On Quartz Claims:

CLAIM NAME	GRANT NUMBER
LOG 3 – 32	YB66465 – YB66494
LOG 39	YB66501
LOG 41	YB66503
LOG 43	YB66505
LOG 45	YB66507
LOG 47	YB66509
LOG 49	YB66511
LOG 51	YB66513
LOG 53	YB66515
LOG 55	YB66517
LOG 57	YB66519
TOM 1 – 60	YC66381 – YC66440
TOM 61 – 105	YC66719 – YC66763

Location: 60°22'N, 134°12'W NTS: 105D/8 Mining District: Whitehorse, YT Date: December 18, 2008 Prepared For:

1356139 Alberta Inc. 291 Sunvale Dr. SE Calgary, AB. T2X 3B8

SUMMARY

Aurora Geosciences Ltd of Whitehorse, YT provided supervision and geological management services for a diamond drill program on the Marsh Lake Property on behalf of 1356139 Alberta Inc. The Marsh Lake Property, comprised of the TOM and LOG claim groups, is located about 70 km southeast of Whitehorse, Yukon Territory. The property is centered at approximate geographic coordinates of 60° 22' N latitude, 134° 12' W longitude in south central Yukon Territory. The purpose of the program was to follow up on an anomalous zone with a high magnetic profile outlined by a total field ground magnetics survey completed by Aurora in November, 2007. The objectives of the program were twofold:

- 1. Drill test an isolated zone of high ground magnetics located within a more regional linear magnetic high with a minimum strike of 1.0 km, and
- 2. Drill test for gold mineralization at depth beneath an historic trench excavated on a 750 ppb gold-in-soil anomaly that returned a best chip-channel sample of 1790 ppb (1.79 g/t) Au over 50 cm.

Five diamond drill holes were completed in two phases between January 8th and April 25th, 2008. Holes DDH-LOG-01-2008 to DDH-LOG-04-2008 were completed between January 8th and January 26th. Following completion of the first four holes, the program was suspended to wait for assay results. DDH-LOG-05-2008 was completed between April 19th and April 28th.

The first three holes, drilled from a common pad on the LOG 6 claim, were designed to test a strong magnetic high "bulls eye" located within a more regionally extensive linear magnetic high. DDH-LOG-04-2008, drilled on the LOG 7 claim, was designed to test for gold mineralization beneath an historic trench (87-1) that returned surface chip-channel assays of up to 1790 ppb Au over 50 cm. DDH-LOG-05-2008 (LOG 6 claim) was designed to test, at greater vertical depth, a zone of highly anomalous gold mineralization defined by assay results from holes DDH-LOG-01-2008 and DDH-LOG-02-2008.

The drilling program returned some encouraging results from the LOG 6 claim. The best drill core samples were encountered in holes DDH-LOG-01-2008 and DDH-LOG-02-2008. DDH-LOG-01-2008 returned an average of 1215 ppb (1.215 g/ton) gold over 6.0 m (core length) from 89.0 m to 95.0 m. DDH-LOG-02-2008 returned an average of 998 ppb (0.998 g/ton) gold over a width of 12.0 m (core length) between 90.0 and 102.0 m. DDH-LOG-04-2008 did not return any economic gold values.

Due to environmental and permit considerations, DDH-LOG-05-2008 was stopped prior to reaching the intended target depth — spring ground thaw conditions created an environment for potential disturbance to the vegetative mat from repeated vehicle and equipment movement over the thawing bog. Prior to stopping the hole, a decision was made to leave the casing in this hole upon drill rig demobilization with the intention being to re-enter and complete the hole to target depth during a future drilling program.

A total of 662.93 m of NQ diameter core were completed in five holes during the program. E. Caron Diamond Drilling Ltd of Whitehorse, YT, conducted all diamond drilling operations. Loring Laboratories of Calgary, AB. performed all assays on the drill core splits.

Subsequent to completion of the diamond drilling program on the property, Aurora Geosciences conducted substantial follow up work that included expansion of the 2007 grid, ground magnetics and IP surveys, soil sampling, prospecting and mapping. None of this work is documented or discussed in this assessment report.

Recommendations for future work on the property are:

- 1. Compile the historical and current work done on the property in an effort to establish new exploration drill targets.
- 2. Conduct additional prospecting and geological mapping, with the purpose of increasing the understanding of the geology and mineralization on the TOM LOG property.
- 3. Analyze rock and drill core samples at Aurora Geosciences' rock physics lab to better understand geophysical responses and the relationship between known geology and the geophysics of the Marsh Lake property.
- 4. Continue with a 1000 m drilling program on the LOG TOM claims in an effort to extend the zone of gold mineralization encountered in holes DDH-LOG-01-2008 and DDH-LOG-02-2008 and complete DDH-LOG-05 to a minimum depth of 160 m. This drilling would also test recently identified IP chargeability anomalies, magnetic low linear features and coincident soil geochemistry anomalies in an attempt to locate additional gold mineralization.

A proposed budget to follow up on the recommendations follows:

 2000 m diamond drilling @ \$355.00 / m (all up cost) Drill supervision and core logging Drill core assays (\$30.00 x 325samples) 10 days data compilation @ \$700.00 / day 10 days geological mapping/prospecting @ \$1300.00 / day Rock geochemistry 24 Samples for rock physics @ \$55.00 / sample 		\$355,000.00 \$88,750.00 \$9,750.00 \$7,000.00 \$13,000.00 \$2,250.00 \$1,320.00
	Sub Total	\$477,070.00
Contingency and miscellaneous expense	es (10%)	\$ 47,707.00
	Total	\$524,777.00

Table of Contents

SUMMARY

1.0	INTRODUCTION	. 1
2.0	LOCATION AND ACCESS	. 3
3.0	CLAIM STATUS	. 5
4.0	HISTORY	
5.0	REGIONAL GEOLOGY	13
6.0	PROPERTY GEOLOGY	15
6.1	MINERALIZATION	
7.0	2008 EXPLORATION PROGRAM	17
8.0	GEOCHEMICAL ANALYTICAL PROCEDURE	17
9.0	RESULTS	
9.1	DIAMOND DRILLING RESULTS	21
10.0	CONCLUSIONS AND RECOMMENDATIONS	
11.0	STATEMENT OF EXPENDITURES	37
12.0	REFERENCES	38

LIST OF TABLES

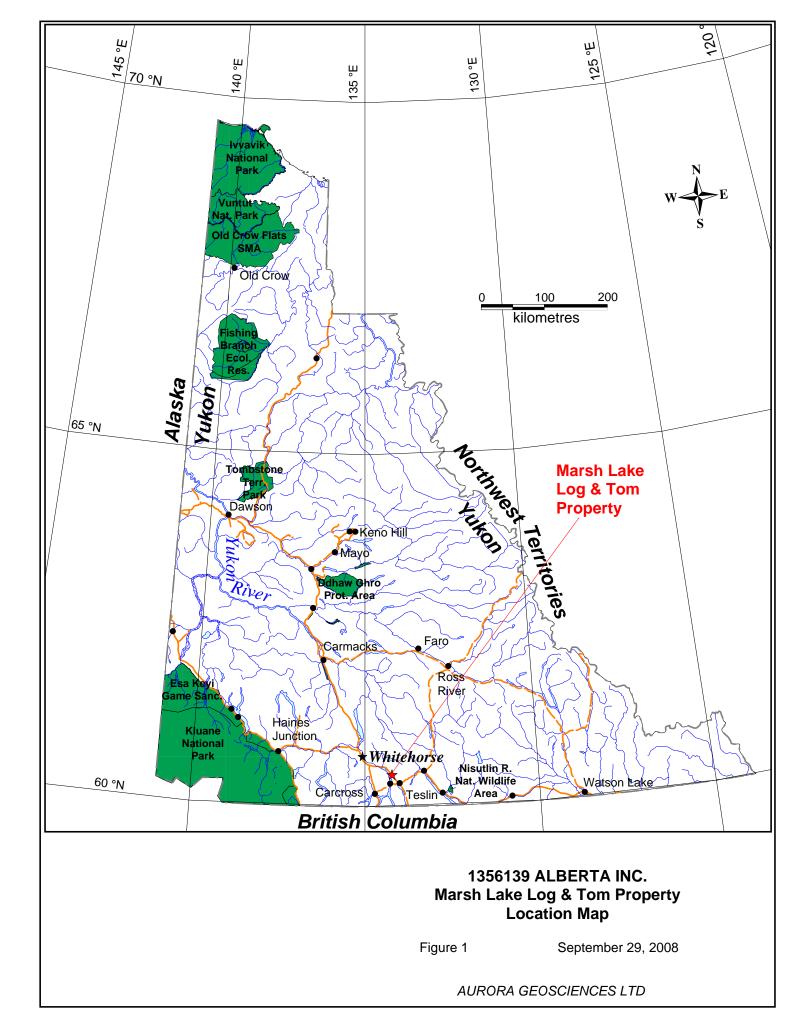
Table 1	Claim Information	. 5
Table 2	TOM - LOG Area Regional Stratigraphy	13
Table 3	Assay Detection Limits	.19
Table 4	Diamond Drilling Summary	.21

LIST OF FIGURES

Figure 1	Property Location	2
Figure 2	Claim Map	
Figure 3	Regional Geology	
Figure 4	Drill Plan – Claims Location Map	
Figure 4A	Drill Plan Location Map	22
Figure 4B	N-S DDH-LOG-01 to 03, 05-2008 Drill Section	. 27
Figure 4C	E-W DDH-LOG-01 to 03, 05-2008 Drill Section	28
Figure 4D	E-W DDH-LOG-04-2008 Drill Section	29
Figure 5A	DDH-LOG-01-2008 Strip Log	30
Figure 5B	DDH-LOG-02-2008 Strip Log.	. 31
Figure 5C	DDH-LOG-02-2008 Strip Log	
Figure 5D	DDH-LOG-02-2008 Strip Log.	33
Figure 5E	DDH-LOG-03-2008 Strip Log.	. 34
Figure 6	TOM - LOG DDH & Colour Contoured Ground Magnetics In Poc	

APPENDICES

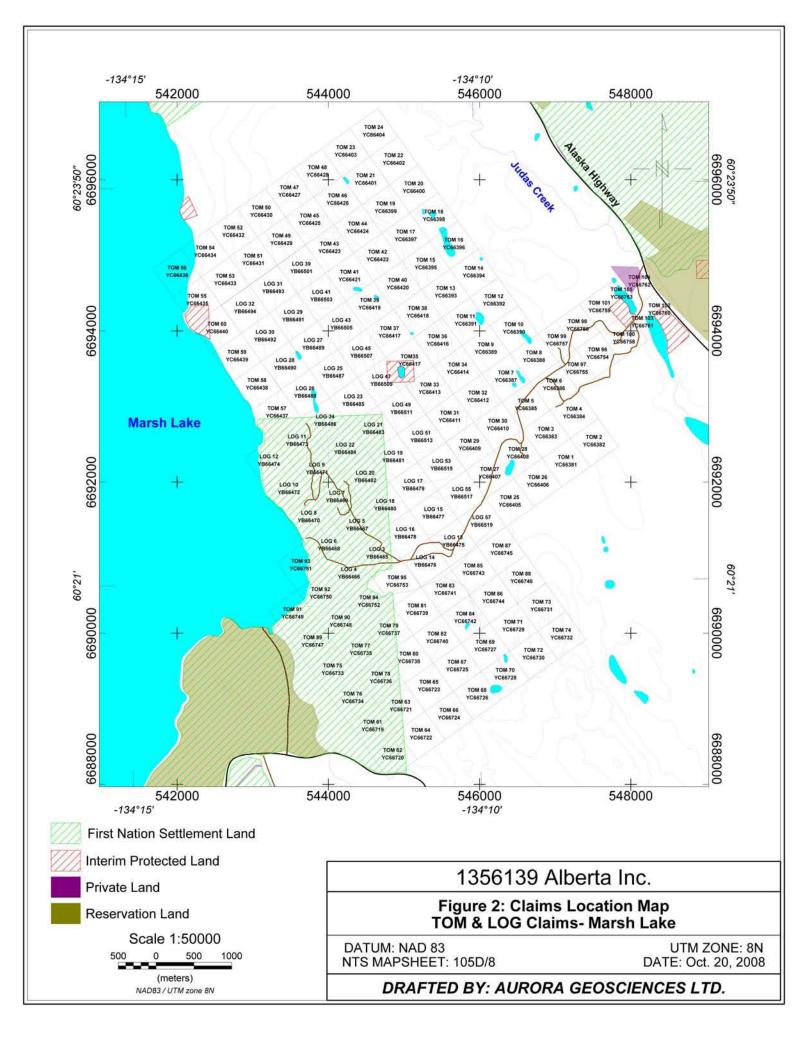
APPENDIX A	CERTIFICATE OF QUALIFICATIONS
APPENDIX B	SAMPLE DESCRIPTIONS
APPENDIX C	GEOCHEMICAL ANALYTICAL CERTIFICATES
APPENDIX D	DRILL LOGS


1.0 INTRODUCTION

Aurora Geosciences Ltd. was retained by 1356139 Alberta Inc. to manage, supervise and provide geological support services for a drilling program on the Marsh Lake Property. The property is located approximately 70 km south of Whitehorse in the southern Yukon Territory (Figure 1) and is held and being explored solely by 1356139 Alberta Inc, a private numbered corporation registered in the province of Alberta, Canada.

The 2008 work program was conducted to evaluate, by diamond drilling, a "bulls eye" ground magnetics anomaly located within a regional trend of high magnetic response. The drilling program consisted of five NQ size holes totaling 662.93 m. Drilling was conducted between January 5th and April 25th, 2008. This report discusses the diamond drilling results and contains an interpretation of the data.

View South South West Toward Marsh Lake Showing Historical Trench In Foreground.


2.0 LOCATION , ACCESS, PHYSIOGRAPHY AND CLIMATE.

The Marsh Lake Property, consisting of the TOM and LOG claims, is located approximately 70 km southeast of Whitehorse, Yukon Territory (Figure 2). The property is centered at approximate geographic coordinates of 60° 22' N Latitude and 134° 12' W Longitude in south central Yukon Territory.

The property is accessible by traveling about 70 km southeast on the Alaska Highway from Whitehorse to the point where Judas Creek intersects the Alaska Highway. About 100 m south of Judas Creek, a single lane, two-wheel drive road turns directly off the Alaska Highway to the west. This un-maintained all season road, located at Km 1350 of the Alaska Highway, continues west for approximately 7 km and provides direct access to the southeastern side of Marsh Lake. Further vehicle access to the TOM and LOG claims is via an established series of roads and cat trails that are suitable for winter drilling and exploration programs.

The TOM and LOG claims are situated within the north-south trending Whitehorse Trough on NTS map sheet 105D/8. The property lies on the glacial till-covered floor of the Whitehorse Trough with average elevations of 750 m and local relief of up to 275 m. The prominent features of the property are Judas Mountain (Elev. 1025 m), and Marsh Lake to the west.

Vegetation in the area consists primarily of moderately dense pine and spruce forest with alder and poplar thickets, alpine moss on exposed rocky areas and marsh grasses in the swampier portions of the property. Temperatures can be extreme in the area and may range from highs in the low 30's C in summer to lows in the –50's C in winter.

3.0 CLAIM STATUS

The Marsh Lake Property consists of 145 Quartz Claims staked in accordance with the Yukon Quartz Mining Act. All the claims are located within the Whitehorse Mining District¹ (Figure 2). The claims have not been surveyed and current expiry dates are as listed in the table below:

Table 1. Claim Information

Claim Name	Grant Number	Expiry Date
LOG 3	YB66465	12/12/2011
LOG 4	YB66466	12/12/2008
LOG 5	YB66467	12/12/2011
LOG 6	YB66468	12/12/2008
LOG 7	YB66469	12/12/2011
LOG 8 - 15	YB66470 – YB66477	12/12/2008
LOG 16	YB66478	12/12/2011
LOG 17	YB66479	12/12/2008
LOG 18	YB66480	12/12/2011
LOG 19	YB66481	12/12/2008
LOG 20 - 21	YB66482 - YB66483	12/12/2011
LOG 22 - 32	YB66484 - YB66494	12/12/2008
LOG 39	YB66501	12/12/2008
LOG 41	YB66503	12/12/2008
LOG 43	YB66505	12/12/2008
LOG 45	YB66507	12/12/2008
LOG 47	YB66509	12/12/2008
LOG 49	YB66511	12/12/2008
LOG 51	YB66513	12/12/2008
LOG 53	YB66515	12/12/2008
LOG 55	YB66517	12/12/2008
LOG 57	YB66519	12/12/2008
TOM 1 – 24	YC66381 – YC66404	29/10/2008
TOM 25 - 28	YC66405 - YC66408	23/10/2008
TOM 29 – 56	YC66409 – YC66436	29/10/2008
TOM 57 - 60	YC66437 - YC66440	23/10/2008
TOM 61 - 105	YC66719 - YC66763	11/01/2009

1356139 Alberta Inc holds an undivided interest in the TOM and LOG claims. The claims currently expire on various dates (Table 1), however, claims have been grouped for the 2008 assessment work done and described in this report and these claim groupings will

1

Claim information from Yukon Mining Recorder on Oct 10 2008.

be applied to bring all the claims to a common anniversary date of January 11th, 2013, 2014 or 2015.

A significant portion of the southwest quadrant of the property falls within a block of unsurveyed category B First Nation Settlement Land. These claims are available for exploration work and subsurface mineral rights are extended to the claim holder. Other small portions of the TOM and LOG claims abut Unsurveyed First Nation Interim Protected lands that have been withdrawn from the staking of mineral claims.

4.0 HISTORY

This property, now known as the Marsh Lake Property, has had an extensive history of exploration work dating back to the turn of the previous century. Historical operators had identified this as an area considered to be very prospective to host economic quantities of gold mineralization.

Prospectors en route to Dawson at the time of the Klondike Gold Rush first examined ultramafic rocks and listwaenite alteration zones around Marsh Lake in the late 1890's. Several gold prospects were investigated at the northeast and southeast ends of the lake by by adits, shafts, and trenches, but no records of production exist (Davidson, G.S., 1990). The earliest account of exploration in the area reportedly dates back to May of 1898 when J.A. Collins probably staked the Copper Bell (258) claim (Webster, M.P., 1986). Other references found by the author's suggest this might have been the Cooper Bell claim.

The earliest documented work in the immediate area dates back to September 1964 when P. Gosselin staked the GNM 1-4 claims (90774-90777). The DYMAX 1 claim (Y4958) was staked by P. Poggenburg in April 1966 and transferred to Dymax Explorations Ltd in June.

The MINERAL CLAIM 1-8 claims (Y9854-Y9861) were staked in July 1966 and granted to Josey Rushton in August. If any physical work was done on these claims, it was never filed, as there are no subsequent entries in the claim records of the mining recorder.

Between 1964 and 1971, a limited amount of exploration was done, primarily on the GNM claims, to investigate a quartz-iron carbonate-chrome mica (listwaenite) alteration zone on the property. This work included hand trenching, a 1.53 m adit, and a 4.57 m packsack drill hole (Webster, M.P., 1986).

In 1967, Dymax Explorations Ltd. conducted some minor trenching on the DYMAX 1 claim. A Certificate of Work filed with the mining recorder renewed the claim to April 25, 1968. A report on the trenching results was not available. There are no additional entries in the record beyond June 30,1967 and the DYMAX 1 claim probably lapsed after April 1968.

In 1972, a small diamond drill program was completed on the GNM claims. Two holes

AURORA GEOSCIENCES LTD. were completed for a cumulative total of 208.8 metres (685 feet) (Webster, 1986; Taylor et al, 1990). The authors were unable to locate the drill logs or drill core from this program. Furthermore, there is no mention in the public records to suggest the drilling results or assays were significant.

In 1978, the GNM claims were transferred to M. Larocque and the claims were allowed to lapse in 1981.

In November 1981, prospector Gordon McLeod restaked the property as the FM 1–3 (YA74218 – YA74220) and MF 1–4 (YA74221 – YA74224) claims. This staking was apparently prompted in response to some reanalysis of core from the 1972 drill program (Macdonald, 1982; Webster, 1986; Taylor et al, 1990). These reports offer compelling evidence that the 1972 drill core had been preserved. Details are sketchy but it is reported that fire assays returned values of 1.6 g/t and 2.0 g/t gold in fractured volcanic rock (Webster, 1986). As noted above, drill logs were not obtained and the storage location or status of the 1972 drill core could not be confirmed. Webster (1986) reported the core was stored at the D.I.A.N.D. (Department of Indian Affairs and Northern Development) core library in Whitehorse.

Between 1982 and 1989 the claims were explored by a succession of small exploration programs that focussed on the strongly listwaenite-altered ultramafic rock.

In 1982, Shakwak Exploration Co. Ltd. optioned the FM and MF claims from McLeod and conducted limited geological mapping. Shakwak also completed a small "orientation"-style ground magnetometer survey in an effort to determine if there was a magnetic signature associated with the gold occurrence at the MF-FM prospect. The magnetics survey suggested there was a strong decrease in the magnetic profile that correlated with the interval from the 1972 drill core that assayed an average of 0.05 oz/ton gold (1.71 g/t). The width of the mineralization was not reported. Figures 2 and 3 in the Shakwak assessment report (Macdonald, 1982) indicate that at least one hole was located on the MF 1 claim and this was drilled at an inclination of –80° grid west. Shakwak also staked the BON claim (YA78229) to the northwest in August 1983. Recommendations included expanding the grid to encompass the whole prospect, followed by detailed ground magnetic and electromagnetic (CEM) surveying, geological mapping, soil and rock geochemical surveys, and bulldozer trenching to evaluate zones of interest prior to diamond drilling.

In December 1983, the FM and MF claims were re-staked by B. Harris as the BOG claim (YA81122). No assessment work was reported and the claim simply expired.

In June 1985, G. McLeod re-staked some of the expired FM and MF claims as the Bug 1-4 claims.

Between 1986 and 1989, a significant amount of exploration work was completed on the property.

In June 1986, Noranda Exploration Company Ltd. briefly examined the Bug 1-4 claims

and obtained 108 soil samples and 16 rock samples from a 4.45-km survey grid. They also completed a brief mapping program. Highlights of this work included an isolated, single point soil anomaly that returned 750 ppb Au with 540 ppm As. Recommendations included a re-examination of the 1972 drill core, detailed follow up soil sampling and detailed geological mapping.

On June 10, 1986, G. McLeod added the BUG 5-12 claims (YA94879 – YA94886) and the BUG 13-16 claims (YA95186 – YA95189) were staked on July 7, 1986.

In March 1987, G. McLeod transferred the BUG 1-16 claims to Dunvegan VG Syndicate and recorded the BUG 17-20 claims (YA97369-YA97372) on May 25th. These were subsequently transferred to Dunvegan in January, 1988.

In July 1987, G. McLeod recorded the BUG 21-24 claims (YA98074 – YA98077).

In 1987, the Dunvegan V.G. Syndicate conducted an exploration program consisting of existing road upgrading and development of four kilometres of new road to access the trenching targets. Bulldozer trenching was followed up by mapping and sampling of the four trenches. The primary objectives were to evaluate the gold-in-soil anomaly discovered by Noranda and to better expose several quartz veins on the Bug 1-20 claims.

The most significant results were reported from Trench 87-1 where gold mineralization occurred in felsic volcanic rocks and the pebble unit. (Davidson, G.S., 1987). This trench was excavated on the 750 ppb gold-in-soil anomaly located by Noranda. The trench exposed " a pyrite rich (up to 5%) pebble unit with flow features that probably formed as a turbidite or tuffaceous flow. This unit lies in contact with Laberge Group sediments, mainly slates on the east side of the trench. A felsic dyke intrudes the sediments along the contact. The west side of the trench exposes serpentinite and talc schist (T. Bremner). Brecciated quartz veins cut the pebble unit, trending in a northerly direction." The best chip sample result was returned from a rusty clay zone with 5% pyrite. This sample assayed 1,790 ppb Au over a width of 50 cm. A total of eight chip-channel samples were taken and the Au values ranged from 112 ppb Au to the high described above. The samples appear to have been taken at an obligue angle to the strike orientation and are therefore not representative of true thickness. Recommendations included excavation of a series of trenches along the contact to evaluate the mineralized felsic dyke and pebble unit. Another significant result was 500 ppb gold over 4.0m, from brecciated and altered sedimentary rocks containing pyrite (Taylor et al, 1990).

Also in 1987, representatives of Newmont Exploration of Canada Ltd. collected samples from trench 1 and trench 2. The samples were analysed by the neutron activation technique and values of up to 992 ppb Au were obtained. In a Newmont letter to the property owners dated November 26, 1987, it was stated "the sampling on the BUG claims did show elevated values in gold and the property has merit" (Taylor et al, 1990). An option agreement was never concluded.

In February 1988, G McLeod staked and recorded the BUG 25-50 claims (YB12869 – YB12894) on behalf of Dunvegan Exploration Ltd.

In October 1988, D. Shaw of Resource Research Group conducted a brief review of the available data and suggested further work was warranted to extend the known anomalies and to test for new ones (Taylor et al, 1990).

During the period of June to August 1989, W. Taylor supervised an exploration program on the BUG claims that included the establishment of two grids, rock and soil sampling, geological mapping and geophysical surveying. The orientation grid (Main grid), established with a baseline azimuth of 162°, extended from 6+00S to 18+00N and overlapped the 1986 Noranda grid. Wing lines (cross lines) trending 072° were established at 100 metre spacing between 1+00S and 5+00N. Stations were flagged at 25 metre intervals. To the north and south, the wing lines were at intervals of 200 and 300 metres. In total, of 13.5 line-kilometres of gridding was completed.

A smaller grid, referred to as the Showing grid, was established over Trench 87-1. The baseline, running north-south for 100 metres, was flagged at 10 metre intervals along 6 east-west wing lines, each 100 metres in length.

Mapping was conducted at 1:2500 scale with mineralized and/or alteration zones prospected and selectively sampled. Trench 87-1 was re-mapped at a scale of 1:100. A total of 53 rock samples, including selective grabs, grabs, and blasted float were analyzed. The well-mineralized specimens were assayed by Au metallics (+/- 150 mesh). The sparsely mineralized samples were checked by regular Fire Assay (20 gm). Most were also analyzed by 25 element ICP methods. A total of 162 soil samples, mainly from the C-horizon, were collected. Soils were analyzed for gold by the Fire Assay – AA Finish method in addition to 25 element ICP method.

Rock geochemistry (ICP analyses) suggested higher gold values were generally associated with elevated levels of silver, arsenic, and to some extent zinc. The highest gold value obtained in place from Trench 87-1 was described as a 20 cm chip sample that assayed 860 ppb Au. The highest value was obtained as a 75 cm chip sample from what was described as blasted float and assayed 0.02 oz/ton Au. Rock sampling also identified a zone of anomalous gold mineralization about 50 metres to the south and west of Trench 87-1. This zone (Zone B) returned a best value of 810 ppb Au from a selective grab of subcrop described as pyritic, quartz flooded, listhwaenite-altered ultramafic.

Soil sample results were inconclusive. This was attributed to a variety of conditions, including poor soil development and quality, presence of a blanket of glacial till, permafrost, and swampy ground.

Ground magnetometer and VLF-EM surveys were conducted over both grids by consultant J.P. Steele and are summarized in a separate report. Both surveys were intended as orientation surveys to test the effectiveness of the selected methods. The magnetic survey identified two principle domains: one of high magnetic values (59,000 – 61,000 nT) that is correlative with serpentinized ultramafic rocks and one of lower values (57,000 – 58,000 nT) that was correlative to volcanic and sedimentary rocks. In general, it was not possible to differentiate between the volcanic and sedimentary rocks based on

the magnetic signature (Steele, J.P., 1989).

The VLF-EM surveys outlined a number of conductive horizons that were thought to represent traces of faults or shear zones. The high magnetic domain was bounded on its east and west margins by such conductors but they were not limited to this setting. VLF-EM conductors were located that crossed the volcanic rocks and within the sediments in the Trench 87-1 area.

Based on the 1989 exploration program, Dunvegan concluded that: two zones of anomalous gold mineralization occur on the property (Trench 87-1 and Zone B), gold mineralization is associated with shear zones or faults, quartz-carbonate alteration of the ultramafic rocks is extensive, and that the magnetic and VLF-EM geophysical surveys indicate that areas of low magnetic response that coincide with VLF-EM conductor axes within the main shear zone represent prospective exploration targets on a property-wide scale, and that the geological environment is very similar to that described in the Atlin Gold camp in northern B.C. near the B.C. – Yukon border.

Between August, 1991 and May 25, 1992, the BUG 1-50 claims were allowed to lapse. The original BUG 1-20 claims were restaked and recorded May 28 1992, on behalf of Dunvegan Exploration Ltd., as the BUG 1-20 (YB36850 – YB36869) claims.

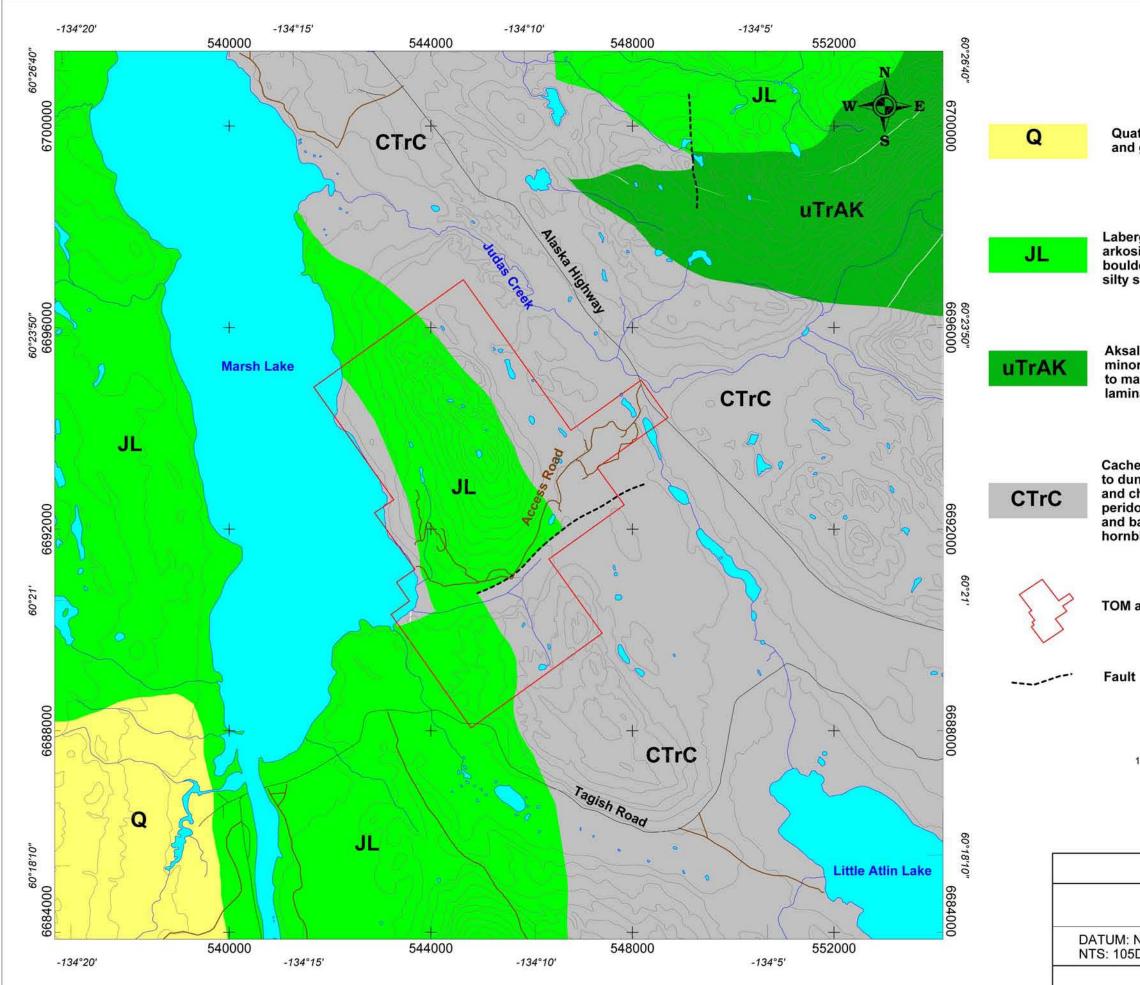
In March 1994, a government sponsored DIGHEM V airborne EM and Magnetics geophysical survey was flown over the Jakes Corner area in southern Yukon. This survey covered portions of three 1:50,000 scale NTS map sheets — 105C/05, 105D/08, and 105D/09. The claims and area around Marsh Lake were covered by this survey.

Dunvegan Exploration allowed the BUG 1-20 claims expire on November 28, 1995. A. Macdonald restaked the property the following day as the LOG 1-82 claims (YB66463 – YB66544) and transferred the claims to Cra-Mar Mining Inc. in January 1997.

In November 1996, Cra-Mar Mining completed a 34-hole augur drill program on the LOG claims. Drill logs indicate the holes went to the bedrock interface or stopped in overburden. All sample cuttings from each hole were recovered and bagged with the hole number and depth recorded. Subsequently, a portion of each sample was taken and washed. There were "no visible signs of either Gold or Silver." As a result, no samples were sent for assay. Drill logs indicate that four holes that reached bedrock on the LOG 13 claim encountered serpentinite.

In December 2001, all but the following LOG claims expired:

LOG 3-32 LOG 39 LOG41 LOG 43 LOG 45 LOG 45 LOG 47 LOG 49 LOG 51 LOG 53 LOG 55 LOG 57


These remaining LOG claims were acquired by 1356139 Alberta Inc.

In October 2007, the TOM 1-60 claims (YC66381 – YC66440) were staked and recorded on behalf of 1356139 Alberta Inc.

In November 2007, Aurora Geosciences Ltd conducted a ground-based magnetometer survey over portions of the LOG 5-10 claims. This survey area included the mineralization of the Trench 87-1 and Zone B showings. The survey outlined a linear trend of highly magnetic rocks that correlate with the ultramafic rocks identified in previous mapping.

In January 2008, the TOM 61-105 claims (YC66719 – YC66763) were staked and recorded on behalf of 1356139 Alberta Inc.

Between January and April 2008, a five-hole drill program was completed by 1356139 Alberta Inc. All drilling was conducted by E. Caron Diamond Drilling of Whitehorse, YT. The results of the drilling are summarized in this report.

LEGEND Gordey and Makepiece (1999)
aternary : (Quaternary) : Unconsolidated glacial silt, sand I gravel.
rge Group : (Lower to Middle Jurassic) : Poorly sorted sic sandstone and shale with heterolithic pebble and der conglomerate; thinly bedded dark brown to green shale.
ala Group : (Upper Triassic) : Brown shale, black and or red siltstone, calcareous greywacke, argillaceous assive limestone, massive dolostone and minor nated chert.
e Creek Group : (Carboniferous to Jurassic) : Rusty n brown weathering, strongly magnetic, serpentinized chloritized ultramafic rocks including gabbro, lotite, dunite, serpentinite and pyroxenite; andesitic pasaltic greenstone, massive metabasite and blende diorite.
and LOG Claims. Property Boundary
t
Scale 1:75000 1000 0 1000 2000 3000 4000 (meters) NADB3 / UTM zone 8N
1356139 ALBERTA INC.
Figure 3: Regional Geology Map TOM & LOG Claims - Marsh Lake
NAD 83 UTM Zone 8N 5D/8 DATE: Oct. 21, 2008
Aurora Geosciences Ltd.

5.0 REGIONAL GEOLOGY

The regional geology of the TOM - LOG Property area is taken from Gordey and Makepiece (2003), Hunt et al. (1995), Bultman (1979), Cairnes (1912), Cockfield and Bell (1944), and Wheeler (1961). The geology of the area is summarized in Table 2 (TOM - LOG Area Regional Stratigraphy)

Terrane	Period Formation		Description		
	Quaternary	Quaternary	Unconsolidated glacial silt, sand and gravel.		
	Tertiary Skukum Group		Andesite, basalt, rhyolite, trachyte breccia, tuffs, flows. Granitic breccia, minor greywacke, sandstone and siltstone		
	Cretaceous	Coast Intrusions	Hornblende-biotite-oligoclase granodiorite diorite, granite, pegmatitic syenite		
Ð	Lower to Middle Jurassic	Laberge Group	Poorly sorted arkosic sandstone and shale with heterolithic pebble and boulder conglomerate; thinly bedded dark brown to green silty shale.		
Stikinia Terrane	Upper Triassic	Aksala Group**	Brown shale, black and minor red siltstone, calcareous greywacke, argillaceous to massive limestone, massive dolostone and minor laminated chert.		
		Lewes River Group	Volcanic greywacke, siltstone, argillite, limestone breccia, conglomerate; volcanic breccia, agglomerate, tuff; andesite porphyritic andesite & basalt.		
Cache Creek Terrane	Carboniferous to Jurassic	Cache Creek Group	Rusty to dun brown weathering, strongly magnetic, serpentinized and chloritized ultramafic rocks including gabbro, peridotite, dunite, serpentinite and pyroxenite; andesitic and basaltic greenstone, massive metabasite and hornblende diorite.		
Cache	Pennsylvanian and Permian	Taku Group	Limestone, breccia, chert; greenstone and pyroclastic rocks.		

Table 2.	TOM - LOG	Area Regional	Stratigraphy
----------	-----------	---------------	--------------

** The Askala Group was not noted on the property

The Marsh Lake region is comprised of two primary terranes (Stikinia and Cache Creek) that were amalgamated some 180 million years ago forming the Intermontane Superterrane. Although Stikinia is restricted to the Intermontane Belt, it is the largest terrrane in the Cordillera and is composed of a linear belt of primarily volcanic rocks. The overlying Cache Creek terrane represents a Mississippian to Jurassic tectonically dismembered ophiolitic assemblage dominated by sedimentary, volcanic and ultramafic rocks (Hunt et al., 1995) that includes the Taku and Cache Creek Groups discussed further in the Property Geology section of this report. The Cache Creek terrane was previously interpreted as an ocean floor that existed between the Stikinia and Yukon Tanana terranes, however, it is currently thought to represent one of the two most exotic terranes in the Cordillera due to the presence of fossils that are found in Asia. Current research suggests that the Cache Creek terrane began subducting underneath the Yukon Tanana Terrane but eventually buckled and thrust atop the younger Stikinia, creating a structurally complex zone that is continuously being re-interpreted (personal communication with D. Murphy, 2008). The older Stikinia terrane represents Late Triassic to Middle Jurassic arc-derived sedimentary rocks with lesser volcanic component including the Lewes River and Laberge Groups and lesser Askala Group. Furthermore the Cache Creek terrane is considered to represent a large thrust sheet that overlies the Stikinia terrane (Gordey and Stevens, 1994). The thrust sheet and the footwall are locally cut by steep northeast and northwest-trending normal faults along which are faulted horsts of Stikinia strata (Hunt et al., 1995) - this movement is thought to be associated with movement in the Whitehorse Trough. Younger, Late Cretaceous to Eocene granitic rocks of the Coast Plutonic complex intrude the older sequences (Erdmer and Mortenson, 1993).

The formations of the Whitehorse map area range in age from Paleozoic to Quaternary and recent. The oldest unit of the map sheet, the late Paleozoic Yukon Group metasediments, most commonly occurs within Cretaceous Coast Plutonic Complex granitic rocks, the east margin of which is coincident with the west boundary of the Mesozoic Whitehorse trough that extends southeast from south central Yukon into northern British Columbia (Webster, 1986). The Whitehorse trough is a synclinorium with Lower to Middle Jurassic clastic strata of the Laberge Group at its centre flanked by basal Upper Triassic Lewes River Group and Taku Group. The tectonic history of the trough includes numerous Triassic volcanic events which initiated deposition within the trough, a period of deformation with uplift in the late Jurassic, compressive deformation in the early Cretaceous and events of intrusion and volcanism in late Cretaceous and early Tertiary times (Bultman, 1979). The Mid-Cretaceous Hutshi Group, comprised of flat lying volcanic and sedimentary rocks, and the younger Skukum Group volcanics unconformably overlie the older Mesozoic rocks (Webster, 1986). The lower Tertiary Skukum Group complex is deposited on the Cretaceous granitic rocks of the Coast Plutonic Complex and is comprised of intermediate to felsic volcanic rocks that occur at Tertiary volcanic centres on the west flank of the Whitehorse Trough. Several preserved centres of continental volcanism are present in the southern Yukon (Smith, 1982); including the Skukum Volcanic Complex and the Bennet Lake Cauldron Complex (BLCC). A similar volcanic sequence of slightly older, Late Cretaceous Mt. Nansen Group rocks occurring at a third centre on Montana Mountain was mapped by Roots (1982) as a deeply eroded stratavolcano that formed when the ancient Kula Plate was

subducting under the southwestern Yukon (Mihalynuk, et. al, 1999).

The youngest rocks in the area include: small rhyolite stocks, dykes and quartz veins associated with Tertiary volcanic centres, Pleistocene columnar basalts intercalated with Yukon River sediments that occur at Miles Canyon , and the Coast Plutonic rocks which underlie most of the west part of the map-sheet and cut folded Mesozoic and Hutshi Group rocks.

6.0 **PROPERTY GEOLOGY**

The Marsh Lake area is a structurally complex zone where Stikinia and Cache Creek terranes are juxtaposed against one another. The Cache Creek terrane represents a Mississippian to Jurassic tectonically dismembered ophiolitic assemblage dominated by sedimentary, volcanic and ultramafic rocks (Hunt et al., 1995). The Cache Creek terrane includes the Taku and Cache Creek Groups discussed in the Regional Geology section of this report. The juxtaposed Stikinia Terrane represents Late Triassic to Middle Jurassic, arc-derived, sedimentary rocks with lesser volcanic component. Furthermore the Cache Creek terrane is considered to represent a large thrust sheet that overlies the Stikinia terrane (Gordey and Stevens, 1994). The thrust sheet and the footwall are locally cut by steep northeast and northwest-trending normal faults along which are faulted horsts of Stikinia strata (Hunt et al., 1995).

The TOM – LOG claims are underlain by Pennsylvanian to Permian metamorphosed seafloor and volcanic rocks presumed to belong to the Taku Group of the Cache Creek terrane. In general, the unit is medium- to dark-green coloured with a brecciated and sheared groundmass containing angular chert fragments, pyroxene, minor pyrite and magnetite. Concordant to the greenstone schistosity, a unit of serpentinized peridotite occurs as repetitive sills or an elongated ovate body adjacent to the Taku Group volcanics. The peridotite is structurally contorted with highly variable schistosity azimuth, intense folding and locally abundant slickensides. Narrow (<1 cm wide) seams of brittle cross-fibre asbestos occur north of the TOM - LOG claims and locally in small outcropping blocks of serpentinite; talc, magnetite and chromite are minor accessory minerals in this unit. Small isolated blocks of outcropping serpentinite flank mélange rocks of sea-floor origin on the WNW side of the property. In particular, outcrop 018 contains veins of fibrous asbestos that cut the rock transverse to well-developed foliation. Hunt et al. (1995) argue that the ultramafic rocks in the survey area have the mineralogical and structural hallmarks of mantle tectonites, similar to those described in the Atlin area by Ash (1994).

A northwest trending depression present on the NW edge of the claims obscures the east margin of a mélange of altered ophiolitic rocks. This depression may be interpreted as a NW-trending steeply dipping fault, or a more recessive rock type, such as limestone (which was recovered in the 2008 drill core) may occur in the valley. The east side of the valley is marked by a prominent ridge of resistant, intensely silicified and carbonatized, mariposite-rich, sulphide-poor ophiolitic rocks. The ridge extends north and contains several quartz carbonate stockwork zones up to 30 metres wide. These zones are made

up of a network of narrow, usually <2 cm wide, white, agate-like quartz carbonate stringers which appear to have intruded the host with little evidence of structural control. Sulphides are rare in these zones and locally the stringers may occupy up to 80% of the rock. This resistant mariposite rich ridge is offset, by up to tens of metres, by several steep-angle, north trending faults.

The volcanic package is overlain west of the ridge by Laberge Group sediments comprised largely of medium- to dark-grey greywacke, quartzite and chert which dip gently to the west. Local structural deformation and alteration is noted at the contact of the mariposite-rich ophiolitic rocks, however east of the contact, the Laberge Group clastic rocks appear unaltered. Minor pyrite may be found in these younger (Lower to Middle Jurassic) sedimentary rocks.

6.1 MINERALIZATION

Several potential deposit types exist on the Marsh Lake property these would include ultramafic hosted chromium, listwaenite associated lode gold veins, and epithermal vein gold. These deposit types have been summarized by the work of Hunt et. al (1995).

Several small chromite occurrences have been reported within the Cache Creek Group. These showings typically occur in tectonized and serpentinized peridotite and olivine cumulates near their contacts with gabbro. Their lenticular shape may be a primary depositional feature or result from tectonic dismemberment (Hunt et. al., 1995). Typically, there is very little or no sulphide mineralization associated with the chromite mineralization in these metamorphosed ultramafic units. Within the Cache Creek Terrane the TOG occurrence (Minfile 105C 028) has been reported as a 1.3 x 1.7 m pod of coarsely crystalline, massive chromite. Samples from this showing returned values ranging from 26 - 43% Cr₂O₃ (taken from Hunt et. al, 1995).

Listwaenite is a rock type formed by the intense carbonate and silica alteration and replacement of ultramafic rocks (Hunt et. al, 1995). In Atlin, south of Whitehorse, the Cache Creek terrane exhibits listwaenite-altered rocks that contain gold veins hosted in fault zones which acted as conduits for the hot, CO₂-rich fluids that altered the ophiolitic host rock. The Atlin Au-deposit is high-grade, low-tonnage and its alteration is characterized by massive ankerite and dolomite with quartz flooding. The intense hyrdrothermal alteration associated with listwaenite formation destroys magnetite in the serpentinized ultramafic wall rocks creating a narrow low-magnetic zone that contrasts with the highly magnetic country rocks, however, if graphite is formed along the host fault zone, then the zone will have a coincident zone of high conductivity (Hunt et al., 1995).

Gold values in occurrences in the Atlin, B.C. area have a strong positive correlation with arsenic. Mineralization is associated with a second phase of quartz which is clear, grey and vuggy and cuts the massive white quartz, or as ribbon-banded quartz along the vein's margins. Gold tends to be coarse, native and, in most cases, appears to be confined to the veins and is not present in the altered wall-rock.

The TOM – LOG claims area could provide a favorable environment for epithermal vein formation. The occurence of felsic plutonic and volcanic rocks (which are generally associated with epithermal precious metal vein deposits), large faults and many late, steep faults provide a favorable environment for the emplacement of epithermal veins. Epithermal veins can be sulphide-poor, thus contributing little electrical conductivity, but have intense, and locally extensive propylitic wall rock alteration which destroys mafic minerals and magnetite. Regions considered likely to host epithermal deposits are proximal to the Marsh Lake and Crag Lake faults, as well as an intensely faulted region north of Jakes Corner, and zones peripheral to the plutons near Marsh Lake.

7.0 2008 EXPLORATION PROGRAM AND EQUIPMENT

The Marsh Lake property diamond drilling exploration program was based from Whitehorse, YT. Drilling and geological crews commuted from Whitehorse to the property daily. Core was trucked to the Aurora Geosciences office in Whitehorse for logging and sampling.

Drilling on the property was conducted during 2 phases. The first phase occurred from January 5, 2008 to January 26, 2008. The second phase of drilling was completed from April 19, 2008 to April 28, 2008. The first round of drilling consisted of 4 holes totaling 530.95 m. The second phase of drilling was a single hole for 131.98 m.

Initial mobilization to the property was on January 8 2008, at which time access roads were cleared to the proposed drill collar locations in preparation for the drill mobilization.

Drill equipment was staged at the "trail head", an open cleared area located at kilometre 1350 of the Alaska Highway. The drill gear was unloaded at this clearing and dragged by Cat D6 into the drill collar sites. A total of 662.93 m of diamond drilling was completed on the LOG 6 (556.86 m) and LOG 7 (106.07 m) claims by E. Caron Diamong Drilling Ltd of Whitehorse.

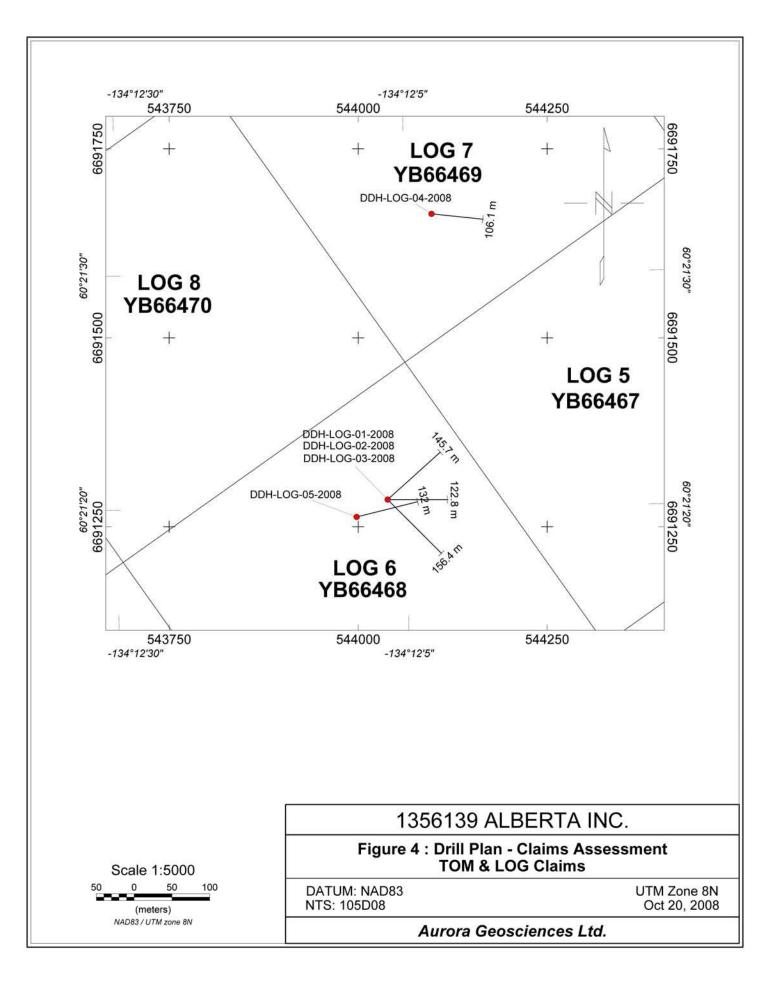
DDH-LOG-05-2008 was stopped prior to reaching the intended target due to environmental and permit concerns. Ground thaw created an environment for potential disturbance of the vegetative mat from vehicle and equipment movement. The casing was left in the hole when the drill rig demobilized with the intention being to re-enter and complete the hole during a future drill program.

8.0 GEOCHEMICAL ANALYTICAL PROCEDURE

Core samples collected during the program were sent to Loring Laboratories Ltd. in Calgary, Alberta for processing. A total of 169 drill core samples were cut and bagged. All samples were handled in a secure manner. Each sample was placed in sealed poly bag with a sample tag, which was then placed in sealed batches of rice bags for shipment to the laboratory in Calgary. Each rice bag was sealed with a firmly attached security tag. Loring Labs was provided with a list of the contents for each bag shipped. Core samples

were analyzed using a multi element ICP analysis, and a fire assay gold technique. Geochemical Analytical Certificates are included in Appendix C and sample descriptions are included in Appendix B.

Industry standard assay techniques were employed and are described below.


The Entire sample was crushed to 2 mm using primary jaw and secondary cone crushing. Sample was then completely homogenized and a split of 250 to 350 grams was obtained by passing sample through a Jones riffle. The sub sample was pulverized using a TM ring and puck pulverizer to 95% -150 mesh. Pulp was then rolled 100 times to ensure complete homogenization, placed in sample bag and ready for analysis.

The 30-element ICP analysis procedure requires that a 0.5 gram sample is weighed into a test tube. 5 ml of 1-3-1 HNO₃-HCI-Water mixture is added to the test tube. Samples are heated at 100 °C for 1 hour in aluminium digestion blocks. Samples are cooled and 5 ml of distilled water is added to adjust volumes to 10ml. Samples are mixed on a vortex mixer and allowed to settle. The ICP is turned on and allowed to warm up for 15 minutes before samples are transferred to auto sampler tubes and placed in racks. Samples, checks, and standard reference samples are analyzed by ICP for a 30 element package. Final analysis is checked to ensure all QA/QC controls are met, and a report is generated for the client. Results were emailed and/or mailed to the client.

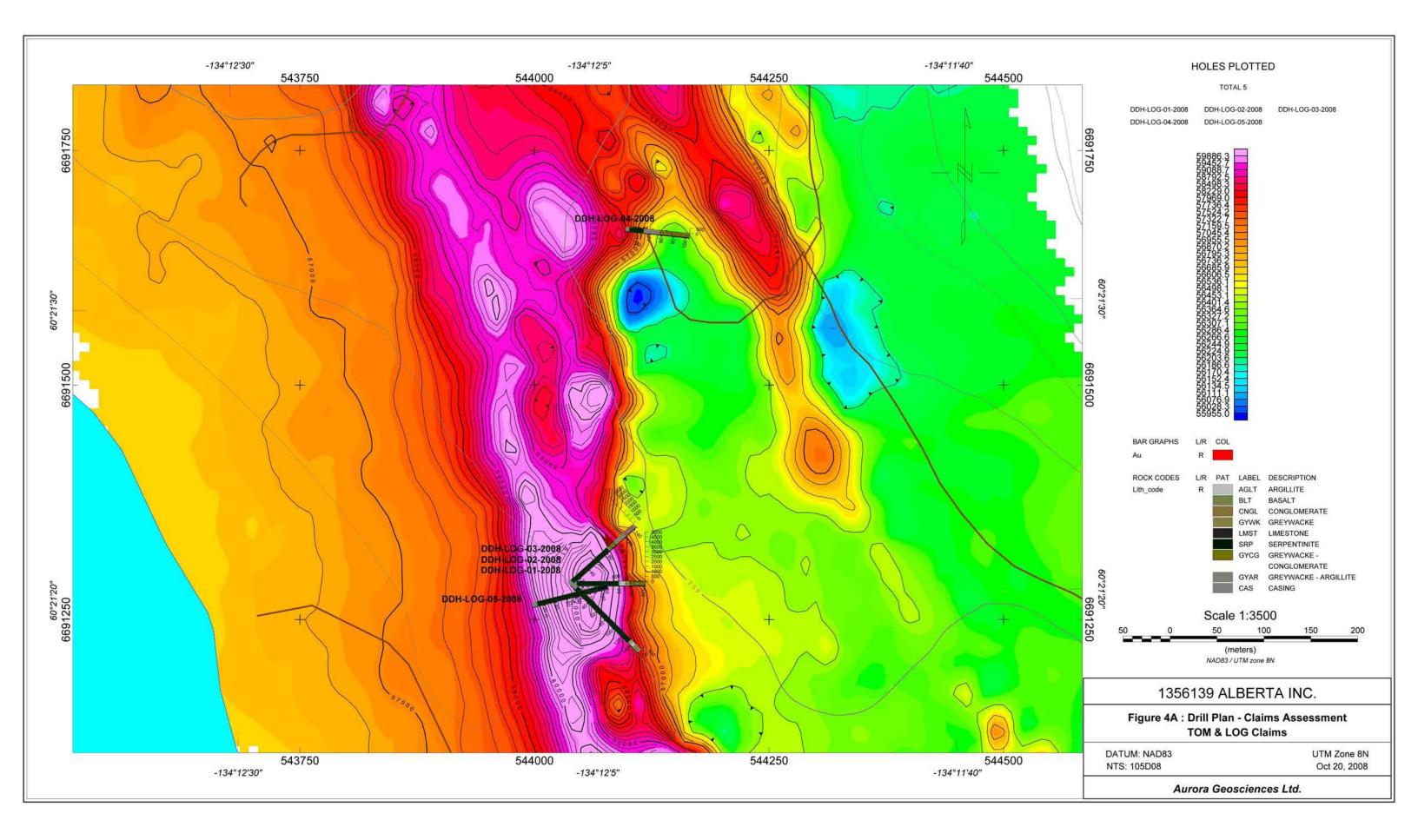
The fire assay gold technique requires 1 assay ton of pulp was weighed into a 40 gm crucible. Flux with 140 gm of a mixture, consisting of : Litharge, Soda Ash, Silica, Borax Glass, excess Litharge where required (ie high sulphides) also add 1 silver Inquart. Place crucible in assay furnace at 1100 °C and fuse for 40- 45 min. Cupels are preheated in the furnace. Lead buttons are placed onto the cupels. The Lead is driven off at a rate of 1 gm/min. Cupels are then removed and cooled. Silver beads are then removed and cleaned, then placed into parting cups where 1:7 HNO₃ is added to all parting cups. Samples are then placed on a medium-heat hot plate where silver is dissolved, then washed and dried. The beads are then annealed, cooled and then weighed in Milligrams. 1 mg of gold on 1 assay ton is ounces/ton.

Table 3. Assay Detection Limits

Flomont	Detection Limit		
Element	Lower	Upper	
Ag	0.5ppm	30.0 ppm	
AI	0.01%	10.00%	
As	5ppm	10,000 ppm	
Au	5ppb	100%	
В	1ppm	10,000 ppm	
Ва	1ppm	10,000 ppm	
Bi	1ppm	10,000 ppm	
Са	0.01%	25.00%	
Cd	1ppm	10,000 ppm	
Со	1ppm	10,000 ppm	
Cr	1ppm	10,000 ppm	
Cu	1ppm	10,000 ppm	
Fe	0.01%	25.00%	
К	0.01%	25.00%	
La	1ppm	10,000 ppm	
Mg	0.01%	25.00%	
Mn	1ppm	10,000 ppm	
Мо	1ppm 10,000 ppm		
Na	0.01% 25.00%		
Ni	1ppm	10,000 ppm	
Р	1ppm	10,000 ppm	
Pb	1ppm	10,000 ppm	
Sb	1ppm	10,000 ppm	
Sr	1ppm	10,000 ppm	
Sn	1ppm	10,000 ppm	
Sr	1ppm	10,000 ppm	
Th	1ppm	10,000 ppm	
Ti	0.01%	25.00%	
U	1ppm	10,000 ppm	
V	1ppm	10,000 ppm	
Zn	1ppm	10,000 ppm	

9.0 RESULTS

Gold mineralization in the Atlin Terrane generally occurs in quartz—carbonate alteration zones in close association with ultramafic intrusives and strong normal faults. Gold mineralization in this environment typically exhibits a strong spatial correlation with elevated arsenic values. Anomalous gold mineralization has been identified in drill core from the 2008 drilling program on the Marsh Lake property held by 1356139 Alberta Inc. Results from the 2008 exploration drilling program returned an anomalous zone of gold mineralization in a greywacke unit on the eastern flank of a serpentinized ultramafic unit.


9.1 DIAMOND DRILLING RESULTS

During the period of January 5 2008 to January 26 2008 and April 19 2008 to April 28 2008, E. Caron Diamond Drilling of Whitehorse, Yukon completed 5 holes with a Val'dor diamond drill. All holes were cased through overburden in HQ and reduced to NQ in bedrock. Four diamond drill holes (DDH-LOG-01-2008 to DDH-LOG-03-2008 and DDH-LOG-05-2008) were collared on the LOG 6 claim to test for an association between magnetic high anomalies and anomalous gold mineralization at depth. Hole DDH-LOG-04-2008 was collared 385m to the north on the LOG 7 claim and was designed to test a magnetic low embayment feature for bedrock gold mineralization at depth.

Drill hole locations are plotted in plan view on Figures 4 and 4A with contoured total field magnetic. Drill hole sections are included as Figures 4B to 4D. Strip logs are included as Figures 5A to 5E. Drilling logs are included in appendix D. Assay certificates are included in appendix C. Table 4 summarizes the diamond drilling information.

Hole ID	UTME_NAD 83	UTMN_NAD 83	Elevation (m)	Azi.	Dip	Depth (m)	Started	Completed
DDH-LOG- 01-2008	544039	6691286	683	90	-50	122.83	Jan 14, 2008	Jan 17, 2008
DDH-LOG- 02-2008	544039	6691286	683	48	-50	145.69	Jan 17, 2008	Jan 19, 2008
DDH-LOG- 03-2008	544039	6691286	683	135	-50	156.36	Jan 19, 2008	Jan 22, 2008
DDH-LOG- 04-2008	544097	6691664	716.3	96	-50	106.07	Jan 23, 2008	Jan 25, 2008
DDH-LOG- 05-2008	543998	6691263	678	76	-51	131.98	Apr 22, 2008	Apr 27, 2008

 Table 4. Diamond Drilling Summary

Drill core was logged split and sampled at Aurora Geosciences' core facility in Whitehorse, YT. A total of 169 samples were cut or manually split and sent for assay to Loring Laboratories Ltd. in Calgary, Alberta. Core from DDH-LOG-01-2008 and DDH-LOG-02-2008 is presently stored at Yukon Geological Survey's core library for future reference. The remaining 3 holes are currently stored on site at Aurora Geosciences' warehouse.

DDH-LOG-01-2008

Hole DDH-LOG-01-2008 was collared on the LOG 6 claim to test a magnetic high "bullseye" within a 1.1 km long N-S trending magnetic high anomaly coincident with a serpentinized ultramafic unit. DDH-LOG-01-2008 penetrated 9.14 m of overburden.

From 9.14 to 79.31 m a dark green to almost black serpentinite unit was encountered. This interval was strongly magnetic and contained abundant chromite and magnetite. Gold mineralization in this ultramafic unit was very weak with the best assay returning only 13 ppb gold.

From 79.31 to 80.53 m, a weakly brecciated, medium grained massive limestone was encountered. Assays of this material did not return any significant gold mineralization above 13 ppb gold.

From 80.53 to 89.0 m, coring continued through a dark grey to black finely bedded argillite. Minor pyrite was noted in this interval. The best assay from this interval was from 88.0 to 89.0 m and returned 21 ppb gold.

From 89.0 to 96.1 m, drilling continued through a fine-grained dark coloured pyritic greywacke. Significantly anomalous gold mineralization was encountered within this interval. From 89.0 to 95.0 m assays returned an average value of 1215 ppb (1.21 g/ton) gold and 126 ppm arsenic, the best 1.0 m sample was collected at 92.0 to 93.0 m returning 4782 ppb (4.78 g/ton) gold, and 77 ppm arsenic.

From 96.1 to 96.87 m a dark-grey to black, finely bedded argillite was cored. A single assay of this unit returned a value of 35 ppb gold.

From 96.87 to 122.83 m (EOH) drilling continued through an interval of dark grey to black, fine-grained, heterogenous pyritic greywacke-conglomerate. Assays of this unit did not return gold values above 67 ppb.

DDH-LOG-02-2008

Hole DDH-LOG-02-2008 was collared on the same pad as DDH-LOG-01-2008 and drilled on an azimuth of 48°. This hole was designed to further test the eastern flank of the magnetic high on the LOG 6 claim and to continue to delineate the zone of anomalous gold mineralization encountered in DDH-LOG-01-2008. DDH-LOG-02-2008 was cased through 6.09 m of overburden.

From 6.09 to 86.51 m, a dark-green to black, magnetite, talc, chlorite rich serpentinite was cored. Sections of this interval were strongly brecciated and sheared. Assays collected through this unit returned only weak gold mineralization with the best value was collected from 82.0 to 83.0 m which returned an assay of 19 ppb gold.

From 86.51 to 88.97 m, a weakly brecciated, medium-grained massive limestone was encountered. Assays of this material did not return any significant gold mineralization above 18 ppb gold.

From 88.97 to 90.0 m a dark-grey to black, finely bedded argillite with 45% greywacke was cored. A single assay of this unit returned a value of 19 ppb gold.

From 90.0 to 101.70 m, drilling continued through a dark-grey to black, fine-grained, heterogenous, pyritic, greywacke-conglomerate with minor argilliceous interbeds. This interval displayed brecciation with up to 1% late pyrite and silica veining and fracture fillings. Significantly anomalous gold mineralization was encountered within this interval. From 90.0 to 102.0 m assays returned an average value of 998 ppb (0.998 g/ton) gold, and 234 ppm arsenic. The best 1.0 m sample was collected at 94.0 to 95.0 m returning 3175 ppb (3.175 g/ton) gold and 270 ppm arsenic. As well, three additional 1.0 m samples within this 12.0 m interval returned greater than 1000 ppb (1.0 g/ton) gold and 240 ppm arsenic.

From 101.70 to 123.83 m a unit of dark-grey to black fine-grained greywacke with interbedded argillite was cored. Minor pyrrohtite was associated with the agillaceous interbeds. Two samples were collected from the top of this interval and returned less than the detection limit of 5 ppb gold.

From 123.83 to 142.18 m (EOH) a heterogenous conglomerate was recovered. This interval contained angular clasts of sandstone, limestone and argillite and was cross cut by minor calcic veining. Four samples were collected from 130.5 m to 135.5 m and also returned less than the detection limit of 5 ppb gold.

DDH-LOG-03-2008

Hole DDH-LOG-03-2008 was collared on the same pad as DDH-LOG-01-2008 and DDH-LOG-02-2008 and drilled on an azimuth of 135[°]. This hole was designed to further test the eastern flank of the magnetic high on the LOG 6 claim, and to continue to delineate the zone of anomalous gold mineralization encountered in DDH-LOG-01-2008 and DDH-LOG-02-2008. DDH-LOG-03-2008 was cased through 9.14 m of overburden.

From 9.14 to 133.5 m, a dark-green to black, mottled-textured, sheared serpentinite was cored. Sections of this interval were strongly magnetic. A total of 18 assays were collected through this unit and returned up to 130 ppb gold. The best two assays were collected from 19.0 to 21.0 m and returned 130 and 100 ppb gold. Mineralization decreases towards the bottom of this interval with 7 samples returning less than the

detection limit of 5 ppb gold.

From 133.5 to 134.07 m a medium-grained massive limestone was encountered. Assays of this material did not return any significant gold mineralization above 11 ppb gold.

From 134.07 to 136.55m a fine grained greywacke was recovered. This interval did not contain calcic veining or sulphides. No assays were collected.

From 136.55 to 138.37 m drilling continued through a heavily veined sequence of massive limestone. Two samples of this unit were collected with the 1.0 m sample at the base of the interval returning 151 ppb gold.

From 138.37 to 143.97 m, a dark coloured weakly veined argillite was cored. Samples collected from this interval were below the 5 ppb detection limit for gold.

From 143.97 to 154.90 m a fine grained calcic matrix greywacke was recovered. The best assay from this interval was collected from 151.0 to 152.0 m and returned a value of 20 ppb gold.

From 154.90 to 156.36 m (EOH) a dark coloured unmineralized argillite was cored. No assays were collected from this unit.

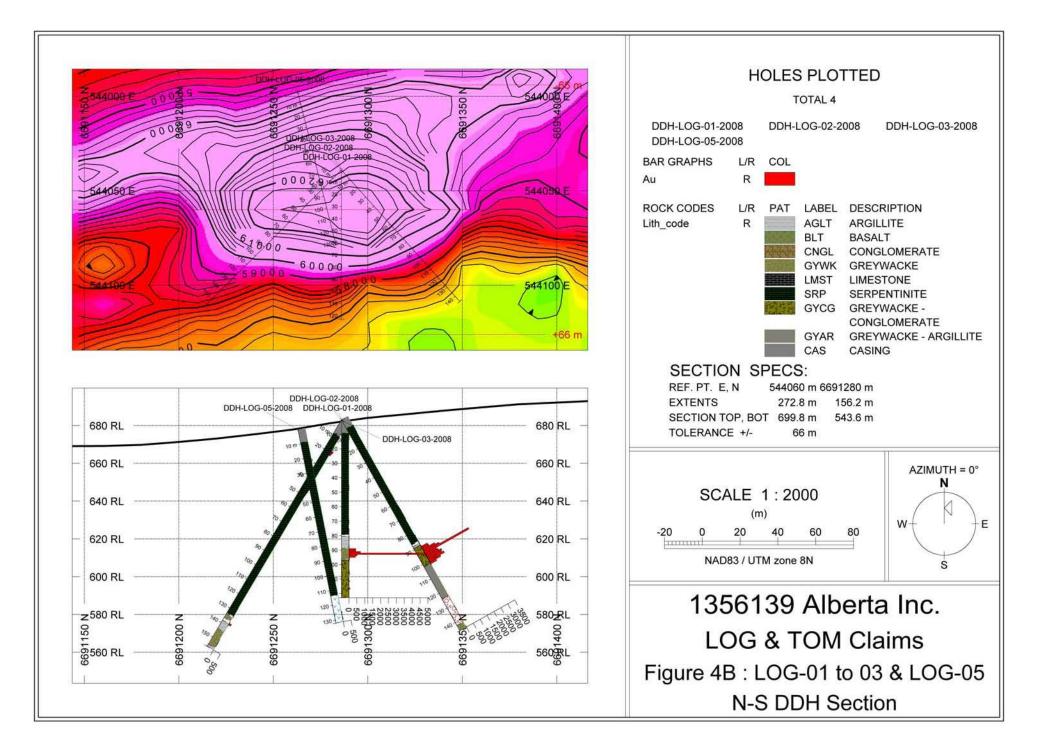
DDH-LOG-04-2008

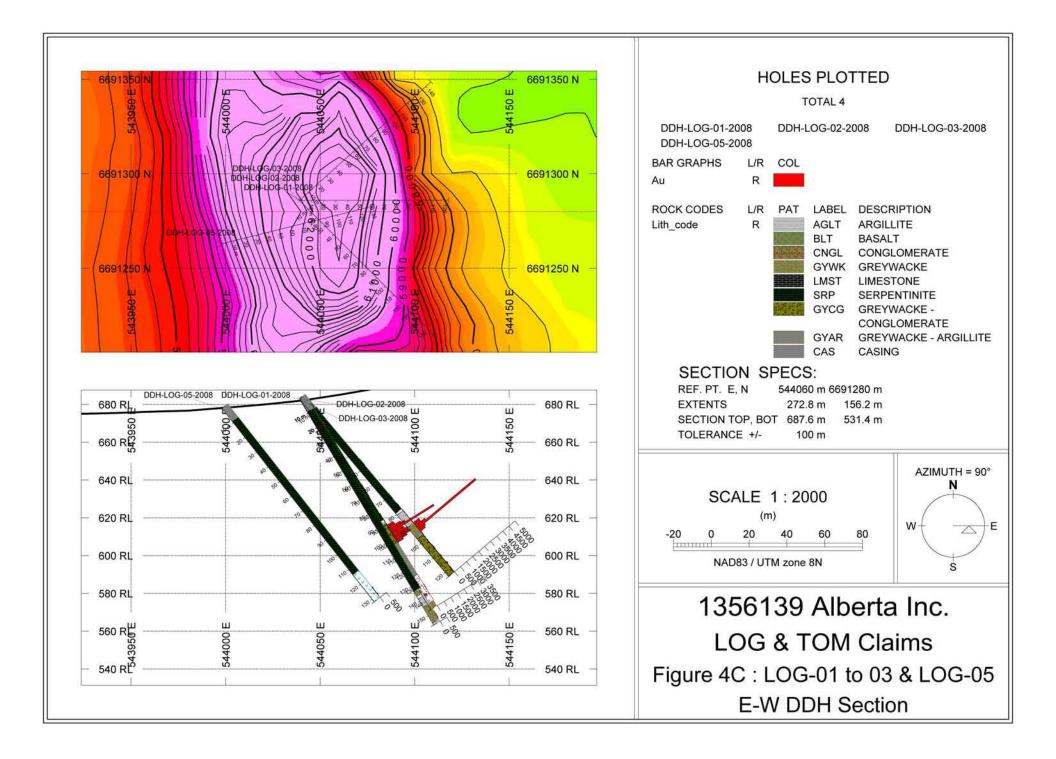
Hole DDH-LOG-04-2008 collared 385 m to the north of holes 1, 2, and 3 on the LOG 7 claim was designed to test a magnetic low embayment feature for bedrock gold mineralization at depth. DDH-LOG-04-2008 was cased through 6.09 m of overburden.

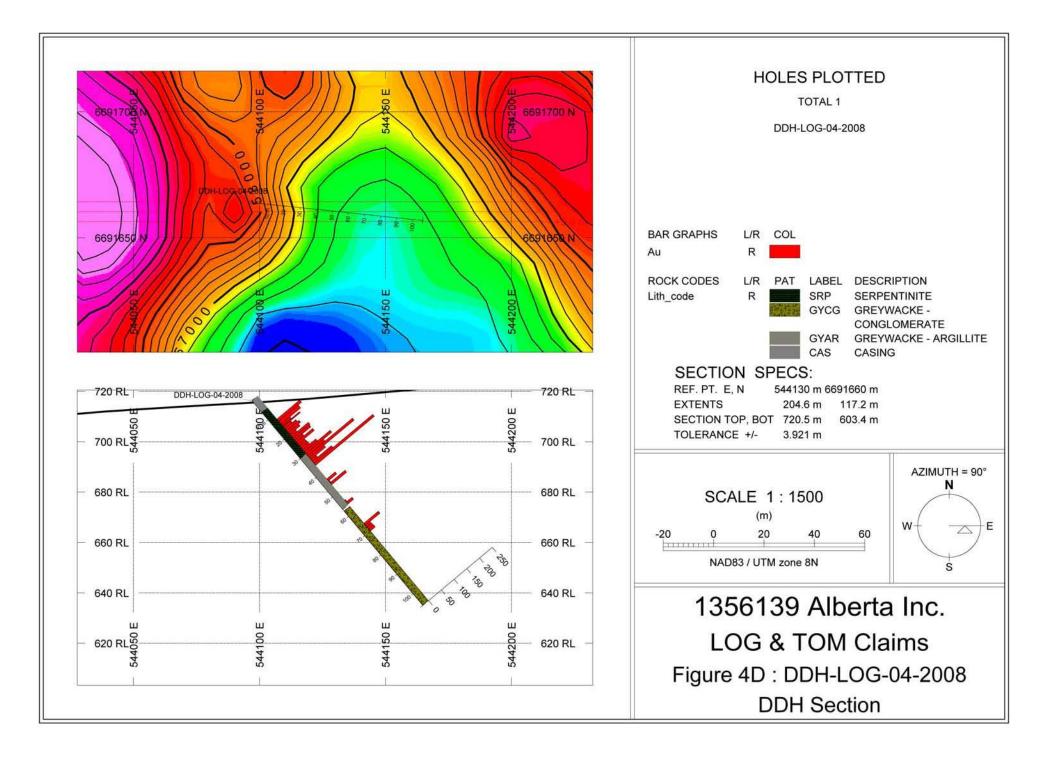
From 6.09 to 30.5 m, a dark green to black, strongly magnetic serpentinite was cored. Sections of this interval were oxidized and rusty-yellow in colour. This unit contained minor sulphides present in late veins near the bottom of the interval. A total of twenty assays were collected of this ultramafic unit and returned a best result of 176 ppb gold with the second highest assay yielding 101 ppb gold.

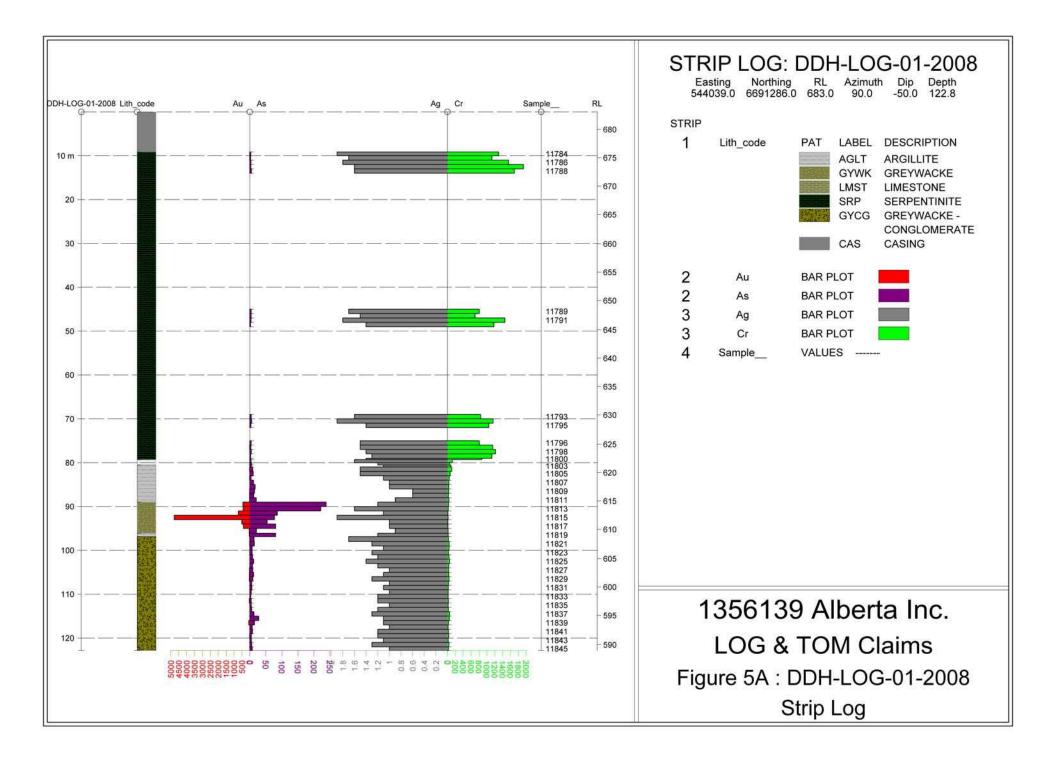
From 30.5 to 57.19 m, the hole intersected a sequence of dark coloured, weakly calcic argillite with fine to medium-grained, light-grey greywacke. Traces of pyrite were observed in fractures within the more argillaceous sections. A total of seven samples were collected from this unit with a sample collected from 35.0 to 36.0 m returning 230 ppb gold and 116 ppm arsenic.

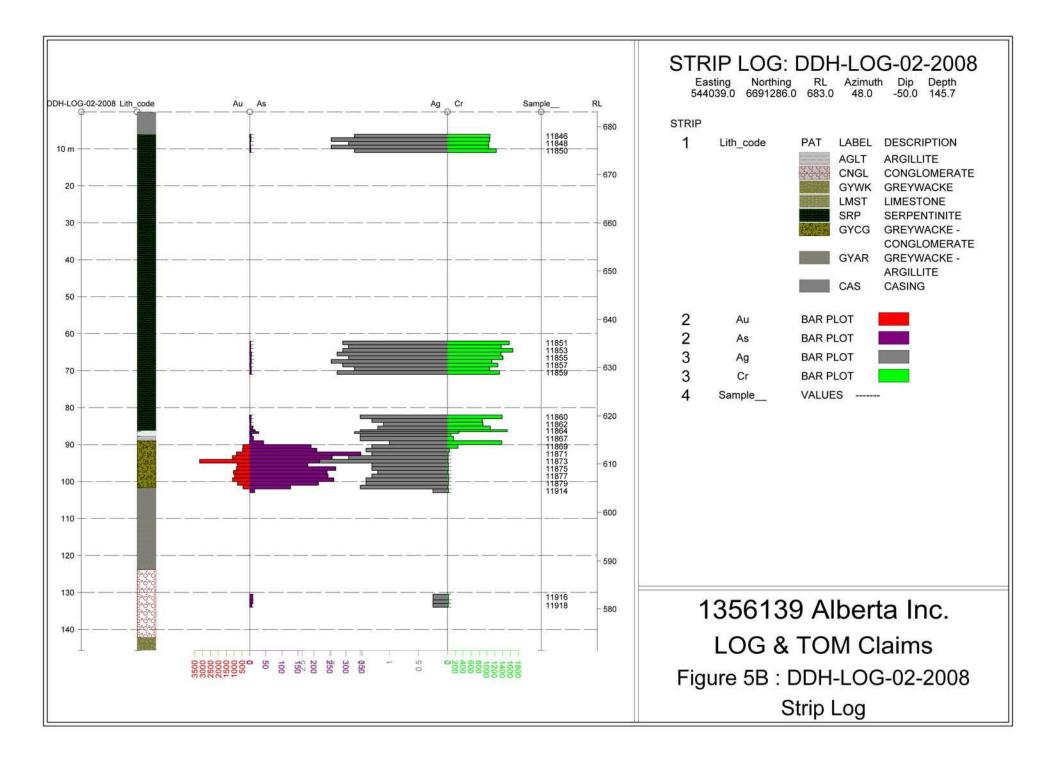
From 57.19 to 106.07 m (EOH), a grey-green, fine to medium-grained greywackeconglomerate with irregular subangular clasts was cored. This unit contained rare traces of pyrite. Four samples were collected of the better mineralized intervals with the best assay returning 56 ppb gold.

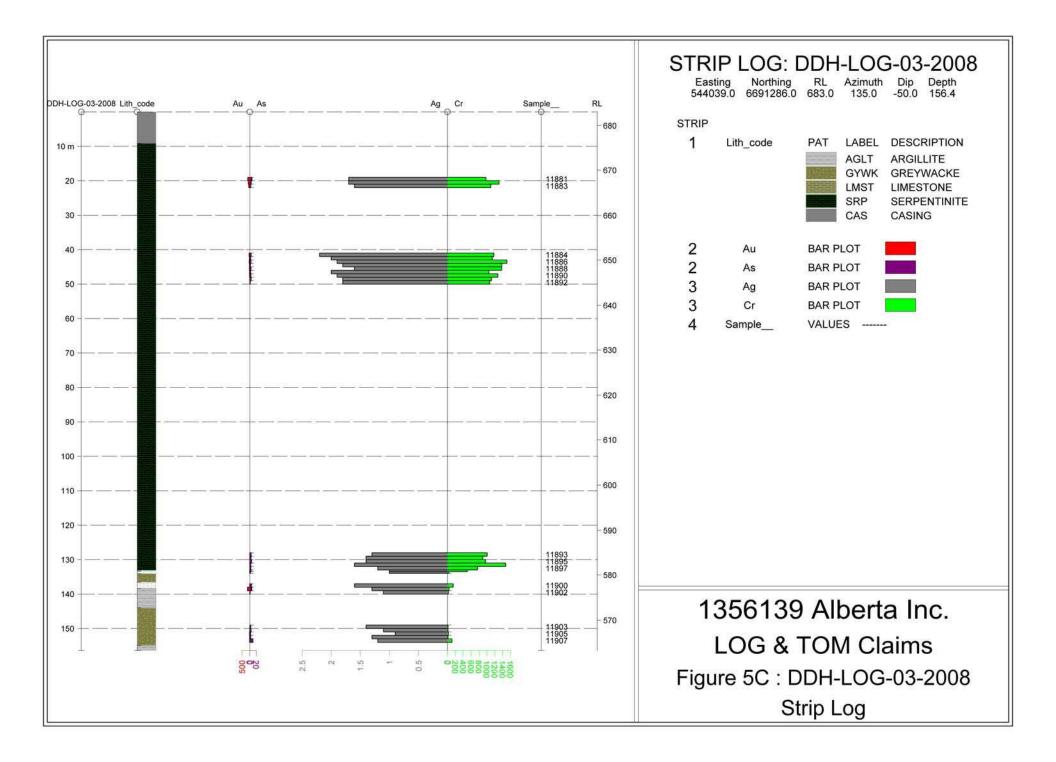

DDH-LOG-05-2008

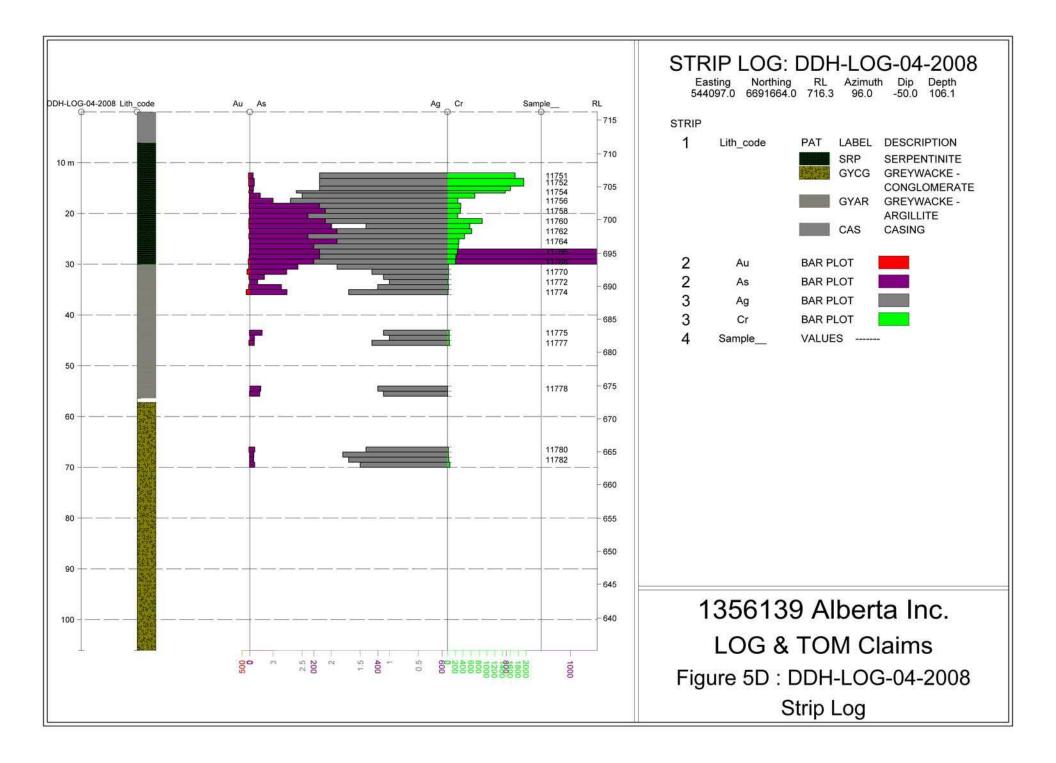

Hole DDH-LOG-05-2008 was collared 50 m to the west of the DDH-LOG-01-2008 to DDH-LOG-03-2008 pad on the LOG 6 claim. The hole was designed to further test the eastern flank of the magnetic high on the LOG 6 claim, and to evaluate at depth the zone of anomalous gold mineralization encountered in DDH-LOG-01-2008 and DDH-LOG-02-2008. DDH-LOG-05-2008 was cased through 9.14 m of overburden.

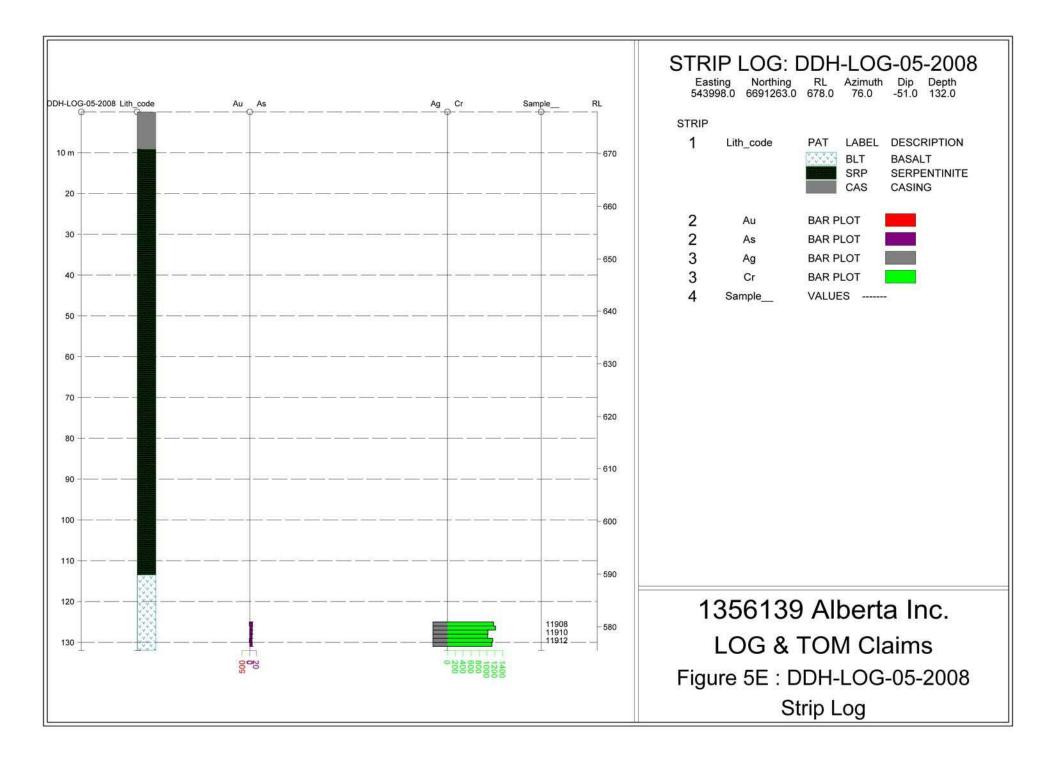

From 9.14 to 113.46 m, a dark-green to black fine-grained, heavily sheared, strongly magnetic, magnetite and chromite rich serpentinite was cored. No assays of this ultramafic sequence were collected.


From 113.46 to 131.98 m (EOH), a dark-brown to black, magnetite and chromite rich pillow basalt suite was drilled. Weak sulfide mineralization associated with fractures and slickensides was noted. Six assays were collected from this core with the best result returning 30 ppb gold over 1.0m.


Due to environmental and operating conditions legislated under the Yukon Quartz Mining Act, DDH-LOG-05-2008 was stopped prior to reaching the intended target depth. Spring ground thaw resulted in an environment that could result in disturbance to the vegetative mat from continued vehicle and equipment movement. Casing was left in the hole when the drill rig was demobilized with the intention being to re-enter and complete this hole during a future drilling program when ground conditions are more favourable. It is estimated that an additional 35 – 40 m of coring will be required to reach the ultramafic – sedimentary rock contact and to test the zone encountered in holes DDH-LOG-01-2008 and DDH-LOG-02-2008.







10.0 CONCLUSIONS AND RECOMMENDATIONS

The objective of the 2008 exploration program was to determine the source of widespread anomalous gold mineralization on the TOM - LOG claims, and to search for possible similarities between the Marsh Lake property and other analagous exploration targets within the prospective Cache Creek Terrane. The program did return some encouraging results from the drilling on the LOG 6 claim: the best drill core samples were recovered from DDH-LOG-01-2008 and DDH-LOG-02-2008 holes. From 89.0 m to 95.0 m DDH-LOG-01-2008 returned an average of 1215 ppb (1.215 g/ton) gold and 126 ppm arsenic over 6.0 m with a best individual assay collected at 92.0 to 93.0 m returning 4782 ppb (4.78 g/ton) gold and 77 ppm arsenic. From 90.0 to 102.0 m DDH-LOG-02-2008 returned an average of 998 ppb (0.998 g/ton) gold and 234 ppm arsenic over a width of 12.0 m, the best 1.0 m sample was collected at 94.0 to 95.0 m returning 3175 ppb (3.175 g/ton) gold and 270 ppm arsenic. As well, three additional 1.0 m samples within this 12.0 m interval returned greater than 1000 ppb (1.0 g/ton) gold and 240 ppm arsenic. This encouraging mineralization is located along the eastern flank of a roughly north - south trending Jurassic aged, strongly serpentinized, peridotite ultramafic body. The ultramafic unit does not host the best mineralization, rather it occurs within the contact zone in a sheared and locally brecciated greywacke sequence. A strong positive correlation exists between the presence of gold and arsenic. This spatial relationship is common in listwanite lode gold deposits within the Cache Creek Terrane and in such prolific gold producing camps as those in Atlin, B.C. Based on the results of the 2008 program further exploration is warranted. A follow up 2009 exploration program and a proposed budget is listed below.

Recommendations for future work on the property are:

- 1. Compile the historical and current work done on the property in an effort to establish new exploration drill targets.
- 2. Conduct additional prospecting and geological mapping, with the purpose of increasing the understanding of the geology and mineralization on the TOM LOG property.
- 3. Analyze rock and drill core samples at Aurora Geosciences' rock physics lab to better understand geophysical responses and the relationship between known geology and the geophysics of the Marsh Lake property.
- 4. Continue with a 1000 m drilling program on the LOG TOM claims in an effort to extend the zone of gold mineralization encountered in holes DDH-LOG-01-2008 and DDH-LOG-02-2008 and complete DDH-LOG-05 to a minimum depth of 160 m. This drilling would also test recently identified IP chargeability anomalies, magnetic low linear features and coincident soil geochemistry anomalies in an attempt to locate additional gold mineralization.

A proposed budget to follow up on the recommendations follows:

2000 m diamond drilling @ \$355.00 / m (a Drill supervision and core logging Drill core assays (\$30.00 x 325samples) 10 days data compilation @ \$700.00 / day 10 days geological mapping/prospecting of Rock geochemistry 24 Samples for rock physics @ \$55.00 / s	y @ \$1300.00 / day	\$355,000.00 \$88,750.00 \$9,750.00 \$7,000.00 \$13,000.00 \$2,250.00 \$1,320.00
S	Sub Total	\$477,070.00
Contingency and miscellaneous expenses	s (10%)	\$ 47,707.00
-	Total	\$524,777.00

Respectfully submitted, **AURORA GEOSCIENCES LTD.**

6 2

Derek Torgerson, B.Sc. Geologist

11.0 STATEMENT OF EXPENDITURES

1356139 Alberta Inc. Marsh Lake Property 2008 Diamond Drilling Program

Statement of Expenditures

Preparation, mobilization & demobilization:

Drafting and plotting maps	\$	337.50
Project management	<u>\$</u>	1,860.00
	\$	2,197.50

\$ 2,197.50

Diamond Drilling Operations:

Direct drilling cost (Caron Diamond Drilling)	\$205,110.11
Project management and support	\$ 22,566.30
Expediting and support	<u>\$ 670.00</u>
	\$228,346.41

\$ 228,346.41

Diamond Drilling Expenses:

Equipment rental (Non-differential GPS)	\$	6.00
Vehicle rental	\$	2,282.95
Fuel expense	\$	772.07
Accommodation and meals expense	\$	6.80
Administrative expense	\$	13.16
Core assay expense	<u>\$</u>	4,867.60
	\$	7,948.58

\$ 7,948.58

TOTAL \$238,492.49

12.0 REFERENCES

Ash, C.A., 1994. Origin and Tectonic Setting of Ophiolitic ultramafic and related rocks in the Atlin Area, British Columbia (NTS 104N). Bulletin 94, British Columbia Geological Survey.

Bultman, T.R. (1979). Geology and Tectoic History of the Whitehorse Trough West of Atlin, B.C. Ph.D. Thesis, Yale University.

Cairnes, D.D. (1912). Wheaton District, Yukon Territory. G.S.C., Mem 31.

Cockfield, W.E. and Bell, A.H. (1944). Whitehorse District, Yukon. G.S.C., Paper 44-14.

Davidson, G.S. (1990). Assessment Report On The NLC 1-32, 37-52 Claims. Report Number 092837

Erdmer, P., and J.K. Mortenson. 1993. A 1200-km-long Eocene metamorphic-plutonic belt in the northwestern Cordillera—Evidence from southwest Yukon, *Geology*, **21**, 1039-1042.

Gordey, S.P., Makepeace, A.J. (compilers), 2003. Yukon digital geology. Yukon Geological Survey, Open File 2003-9(D), 2 CD-ROMs.

Gordey, S.P. and Stevens, R.A., 1994. Tectonic framework of the Teslin region, southern Yukon Territory; <u>in</u> Current Research 1994-A; Geological Survey of Canada, p. 11-18.

Hunt, J.A., Hart, C.J.R., and Gordey, S.P. (1995). Interpretive Geology of the Jakes Corner Geophysical Survey, 1:50 000 scale map. Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Open File 1995-7.

MacGregor, D. (1998) Assessment Report on The LOG Property for CRA-MAR MINING INC.

McLeod, G. (1983). Geological, Geophysical and Line Cutting Assessment Report On The MF and FM Claims Report Number 091412 by G. Macdonald.

Mihalynuk, M.G., Mountjoy, K.J., Smith, M.T., Currie, L.D., Gabites, J.E., Tipper, H.W., Or chard, M.J., Poulton, T.P. and Cordey, F. 1999: Geology and mineral resources of the Tagish Lake area (NTS 104M/ 8, 9, 10E, 15 and 104N/12W), north western British Columbia; BC Ministry of Energy and Mines, Bulletin 105, 217 pages.

Roots, C.F., 1982. Geology of the Montana Mountain area, Yukon. Unpublished MSc. Thesis, Charleton University, Ottawa, Ontario, pp. 127.

Smith, M.J. (1981). The Skukum Volcanic Complex, 105DSW: Geology and Comparison to the Bennett Lake Cauldron Complex; Yukon Exploration and Geology 1982, pp. 68-72.

Wheeler, J.O. (1961). Whitehorse Map-Area, Yukon Territory. G.S.C., Mem. 312.

AURORA GEOSCIENCES LTD.

APPENDIX A

CERTIFICATE OF QUALIFICATIONS

TOM - LOG Property 2008 Exploration Program 40

Statement of Qualifications

I, Derek Torgerson.B.Sc, certify that:

1. I reside in Whitehorse, Yukon Territory.

2. I am a Geologist employed by Aurora Geosciences Ltd. of Whitehorse, Yukon Territory.

3. I graduated from Brock University in St. Catharines, Ontario with a Bachelor of Science Degree Dual Major in Geology and Environmental Sciences in 1994.

4. I have worked as a Geologist since 2004.

5. I am responsible for the preparation of this report entitled "**REPORT ON THE DIAMOND DRILLING AT THE MARSH LAKE PROPERTY, WHITEHORSE MINING DISTRICT SOUTHERN YUKON TERRITORY**" dated, December 18, 2008.

Dated this 18th day of December, 2008, at Whitehorse, Yukon Territory.

1/2

Derek Torgerson, BSc.

AURORA GEOSCIENCES LTD.

APPENDIX B

SAMPLE DESCRIPTIONS

Hole #	From	То	Interval	Sample #	Shipped	Safety Tag	Notes
					••		
DDH-LOG-01-2008	9.14	10	0.86	11784	February 27th 2008	2996	casing to serpentinite
DDH-LOG-01-2008	10		1	11785	February 27th 2008	2996	serpentinite
DDH-LOG-01-2008	11	12	1	11786	February 27th 2008	2996	serpentinite
DDH-LOG-01-2008	12	13	1	11787	February 27th 2008	2996	serpentinite
DDH-LOG-01-2008	13		1	11788	February 27th 2008	2996	serpentinite
DDH-LOG-01-2008	45		1		February 27th 2008	2996	sheared serpentinite
DDH-LOG-01-2008	46		1	11790	February 27th 2008	2996	sheared serpentinite
DDH-LOG-01-2008	47	48	1	11791	February 27th 2008	2996	sheared serpentinite
DDH-LOG-01-2008	48		1	-	February 27th 2008	2996	sheared serpentinite
DDH-LOG-01-2008 DDH-LOG-01-2008	69 70	70 71	1	11793	February 27th 2008	2996 2991	strongly magnetic serpentinite
DDH-LOG-01-2008	70	71	1	11794 11795	February 27th 2008 February 27th 2008	2991	weakly magnetic, talc rich serpentinite weakly magnetic, talc rich serpentinite
DDH-LOG-01-2008	75		1	11796	February 27th 2008	2991	footwall serpentinite
DDH-LOG-01-2008	76		1		February 27th 2008	2991	footwall serpentinite
DDH-LOG-01-2008	77	78	1	11798	February 27th 2008	2991	footwall serpentinite
DDH-LOG-01-2008	78		1	11799	February 27th 2008	2991	footwall serpentinite
DDH-LOG-01-2008	79		0.31	11800	February 27th 2008	2991	footwall serpentinite contact
DDH-LOG-01-2008	79.31	80	0.69	11801	February 27th 2008	2991	limestone
DDH-LOG-01-2008	80	80.53	0.53	11802	February 27th 2008	2991	limestone
DDH-LOG-01-2008	80.53	81	0.47	11803	February 27th 2008	2991	pyritic argillite
DDH-LOG-01-2008	81	82	1	11804	February 27th 2008	2992	argillite
DDH-LOG-01-2008	82	83	1	11805	February 27th 2008	2992	argillite
DDH-LOG-01-2008	83	84	1	11806	February 27th 2008	2992	argillite
DDH-LOG-01-2008	84	85	1	11807	February 27th 2008	2992	argillite
DDH-LOG-01-2008	85	86	1	11808	February 27th 2008	2992	argillite
DDH-LOG-01-2008	86		1	11809	February 27th 2008	2992	argillite
DDH-LOG-01-2008	87	88	1	11810	February 27th 2008	2992	argillite
DDH-LOG-01-2008	88		1	11811	February 27th 2008	2992	argillite
DDH-LOG-01-2008	89	90	1		February 27th 2008	2992	pyritic greywacke
DDH-LOG-01-2008	90		1	11813	February 27th 2008	2992	pyritic greywacke
DDH-LOG-01-2008	91	92	1		February 27th 2008	2994	pyritic greywacke
DDH-LOG-01-2008	92	93	1	11815	February 27th 2008	2994	pyritic greywacke
DDH-LOG-01-2008	93	94	1	11816	February 27th 2008	2994	pyritic greywacke
DDH-LOG-01-2008 DDH-LOG-01-2008	94	95 96.1	1.1	11817 11818	February 27th 2008	2994 2994	pyritic greywacke
DDH-LOG-01-2008	95	96.87	0.77	11819	February 27th 2008 February 27th 2008	2994	pyritic greywacke argillite
DDH-LOG-01-2008	96.87	90.07	1.13	1	February 27th 2008	2994	pyritic greywacke and conglomerate
DDH-LOG-01-2008	98		1.13	11821	February 27th 2008	2994	pyritic greywacke and conglomerate
DDH-LOG-01-2008	99	100	1	11822	February 27th 2008	2994	pyritic greywacke and conglomerate
DDH-LOG-01-2008	100		1		February 27th 2008	2994	pyritic greywacke and conglomerate
DDH-LOG-01-2008	101	102	1		February 27th 2008	2994	pyritic greywacke and conglomerate
DDH-LOG-01-2008	102	103	1		February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	103	104	1	11826	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	104	105	1	11827	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	105	106	1	11828	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	106	107	1	11829	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	107		1	11830	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	108		1	1	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	109		1	11832	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	110		1	11833	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	111	112	1	11834	February 27th 2008	2997	pyritic greywacke and conglomerate
DDH-LOG-01-2008	112		1	11835	February 27th 2008	2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008	113		1	11836	February 27th 2008	2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008	114		1	11837	February 27th 2008	2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008	115		1	11838	February 27th 2008	2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008	116		1		February 27th 2008	2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008	117		1	11840	February 27th 2008	2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008	118		1	11841	February 27th 2008	2974 2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008 DDH-LOG-01-2008	119		1	11842 11843	February 27th 2008	2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008	120	121	1	11843	February 27th 2008 February 27th 2008	2974	pyritic greywacke and conglomerate
DDH-LOG-01-2008	121	122.83	0.83		February 27th 2008	2974	pyritic greywacke and congiomerate pyritic greywacke and conglomerate, tra
DDH-LOG-02-2008	6.09	7	0.83	11845	February 29th 2008	2974	Casing to serpentinite
DDH-LOG-02-2008	7	8	1	11847	February 29th 2008	2929	Serpentinite
DDH-LOG-02-2008	8	9	1	11848	February 29th 2008	2929	Serpentinite
		~	•				1
DDH-LOG-02-2008	9	10	1	11849	February 29th 2008	2929	Serpentinite

Hole #	From	То	Interval	Sample #	Shipped	Safety Tag	Notes
DDH-LOG-02-2008	62	63	1	11851	February 29th 2008	2929	Strongly sheared serpentinite
DDH-LOG-02-2008	63	64	1	11852	February 29th 2008	2929	Strongly sheared serpentinite
DDH-LOG-02-2008	64	65	1	11853	February 29th 2008	2929	Strongly sheared serpentinite
DDH-LOG-02-2008	65	66	1	11854	February 29th 2008	2929	Strongly sheared serpentinite
DDH-LOG-02-2008	66	67	1	11855	February 29th 2008	2929	Strongly sheared serpentinite
DDH-LOG-02-2008	67	68	1	11856	February 29th 2008	2983	Strongly sheared serpentinite
DDH-LOG-02-2008	68	69	1	11857	February 29th 2008	2983	Strongly sheared serpentinite
DDH-LOG-02-2008	69	70	1	11858	February 29th 2008	2983	Strongly sheared serpentinite
DDH-LOG-02-2008	70	71	1	11859	February 29th 2008	2983	Strongly sheared serpentinite
DDH-LOG-02-2008	82	83	1	11860	February 29th 2008	2983	Footwall serpentinite
DDH-LOG-02-2008	83	84 85	1	11861 11862	February 29th 2008	2983 2983	Footwall serpentinite
DDH-LOG-02-2008 DDH-LOG-02-2008	85	86	1	11863	February 29th 2008 February 29th 2008	2983	Footwall serpentinite Footwall serpentinite
DDH-LOG-02-2008	86	86.51	0.51	11864	February 29th 2008	2983	Footwall serpentinite, contact
DDH-LOG-02-2008	86.51	87	0.49	11865	February 29th 2008	2983	Limestone
DDH-LOG-02-2008	87	87.78	0.43	11866	February 29th 2008	2905	Limestone
DDH-LOG-02-2008	87.78	88.97	1.19	11867	February 29th 2008	2970	Limestone
DDH-LOG-02-2008	88.97	90	1.13	11868	February 29th 2008	2970	Argillite
DDH-LOG-02-2008	90	91	1	11869	February 29th 2008	2970	Pyritic brecciated greywacke
DDH-LOG-02-2008	90	91	1	11870	February 29th 2008	2970	Pyritic brecciated greywacke
DDH-LOG-02-2008	92	92	1	11870	February 29th 2008	2970	Pyritic brecciated greywacke
DDH-LOG-02-2008	92	93	1	11872	February 29th 2008	2970	Pyritic brecciated greywacke
DDH-LOG-02-2008	93	94	1	11872	February 29th 2008	2970	Pyritic brecciated greywacke
DDH-LOG-02-2008	95	96	1	11873	February 29th 2008	2970	Pyritic brecciated greywacke
DDH-LOG-02-2008	96	97	1	11875	February 29th 2008	2970	Pyritic brecciated greywacke
DDH-LOG-02-2008	97	98	1	11876	February 29th 2008	2985	Pyritic brecciated greywacke
DDH-LOG-02-2008	98	99	1	11877	February 29th 2008	2985	Pyritic brecciated greywacke
DDH-LOG-02-2008	99	100	1	11878	February 29th 2008	2985	Pyritic brecciated greywacke
DDH-LOG-02-2008	100	100	1	11879	February 29th 2008	2985	Pyritic brecciated greywacke
DDH-LOG-02-2008	100	101	1	11880	February 29th 2008	2985	Pyritic brecciated greywacke
DDH-LOG-02-2008	101	102	1	11914		10221	greywacke and interbedded argilite
DDH-LOG-02-2008	102	104,5	1.5	11915		10221	greywacke and interbedded argilite, buf
DDH-LOG-02-2008	130.5	132	1.5	11916		10221	Conglomerate, buffer zone
DDH-LOG-02-2008	132	133	1	11917		10221	Conglomerate, py at 1%
DDH-LOG-02-2008	133	134	1	11918		10221	Conglomerate, py at 1%
DDH-LOG-02-2008	134	135.5	1.5	11919		10221	Conglomerate, buffer zone
DDH-LOG-03-2008	19.0	20.0	1.0	11881	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	20.0	21.0	1.0	11882	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	21.0	22.0	1.0	11883	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	41.0	42.0	1.0	11884	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	42.0	43.0	1.0	11885	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	43.0	44.0	1.0	11886	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	44.0	45.0	1.0	11887	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	45.0	46.0	1.0	11888	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	46.0	47.0	1.0	11889	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	47.0	48.0	1.0	11890	February 29th 2008	2951	Strongly sheared serpentinite
DDH-LOG-03-2008	48.0	49.0	1.0	11891	February 29th 2008	2931	Strongly sheared serpentinite
DDH-LOG-03-2008	49.0	50.0	1.0	11892	February 29th 2008	2931	Strongly sheared serpentinite
DDH-LOG-03-2008	128.0	129.0	1.0	11893	February 29th 2008	2931	Strongly sheared serpentinite
DDH-LOG-03-2008	129.0	130.0	1.0	11894	February 29th 2008	2931	Strongly sheared serpentinite
DDH-LOG-03-2008	130.0	131.0	1.0	11895	February 29th 2008	2931	Footwall serpentinite
DDH-LOG-03-2008	131.0	132.0	1.0	11896	February 29th 2008	2931	Footwall serpentinite
DDH-LOG-03-2008	132.0	133.0	1.0	11897	February 29th 2008	2931	Footwall serpentinite
DDH-LOG-03-2008	133.0	133.5	0.5	11898	February 29th 2008	2931	Footwall serpentinite, contact
DDH-LOG-03-2008	133.5	134.0	0.5	11899	February 29th 2008	2931	Contact and limestone
DDH-LOG-03-2008	137.0	138.0	1.0	11900	February 29th 2008	2931	Limestone
DDH-LOG-03-2008	138.0	139.0	1.0	11901	February 29th 2008	2999	Limestone
DDH-LOG-03-2008	139.0	140.0	1.0	11902	February 29th 2008	2999	Argillite
DDH-LOG-03-2008	149.0	150.0	1.0	11903	February 29th 2008	2999	Brecciated Greywacke
DDH-LOG-03-2008	150.0	151.0	1.0	11904	February 29th 2008	2999	Brecciated Greywacke
DDH-LOG-03-2008	151.0	152.0	1.0	11905	February 29th 2008	2999	Brecciated Greywacke
DDH-LOG-03-2008	152.0	153.0	1.0	11906	February 29th 2008	2999	Brecciated Greywacke
DDH-LOG-03-2008	153.0	154.0	1.0	11907	February 29th 2008	2999	Brecciated Greywacke
DDH-LOG-04-2008	12	13.11	1.11	11751	February 22nd 2008	2982	Serpentinite
DDH-LOG-04-2008	13.11	14.63	1.52	11752	February 22nd 2008	2982	Only 56 cm of broken, rubbly core
DDH-LOG-04-2008	14.63	15.5	0.87	11753	February 22nd 2008	2982	Serpentinite
DDH-LOG-04-2008	15.5	16	0.5	11754	February 22nd 2008	2982	Serpentinite

Hole #	From	То	Interval	Sample #	Shipped	Safety Tag	Notes
DDH-LOG-04-2008	16	17	1	11755	February 22nd 2008	2982	Serpentinite, very blocky
DDH-LOG-04-2008	17	18	1	11756	February 22nd 2008	2982	Serpentinite
DDH-LOG-04-2008	18	19	1	11757	February 22nd 2008	2982	Rusty-Yellow serpentinite
DDH-LOG-04-2008	19	20	1	11758	February 22nd 2008	2982	Rusty-Yellow serpentinite
DDH-LOG-04-2008	20	21	1	11759	February 22nd 2008	2982	Rusty-Yellow serpentinite
DDH-LOG-04-2008	21	22	1	11760	February 22nd 2008	2982	Rusty-Yellow serpentinite
DDH-LOG-04-2008	22	23	1	11761	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	23	24	1	11762	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	24	25	1	11763	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	25	26	1	11764	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	26	27	1	11765	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	27	28	1	11766	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	28	29	1	11767	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	29	30	1	11768	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	30	31	1	11769	February 22nd 2008	2995	Rusty-Yellow serpentinite
DDH-LOG-04-2008	31	32	1	11770	February 22nd 2008	2995	Rusty-Yellow serpentinite, contact
DDH-LOG-04-2008	32	33	1	11771	February 22nd 2008	2995	Argilite-Greywacke
DDH-LOG-04-2008	33	34	1	11772	February 22nd 2008	2998	Argilite-Greywacke
DDH-LOG-04-2008	34	35	1	11773	February 22nd 2008	2998	Argilite-Greywacke
DDH-LOG-04-2008	35	36	1	11774	February 22nd 2008	2998	Argilite-Greywacke
DDH-LOG-04-2008	43	44	1	11775	February 22nd 2008	2998	Argilite-Greywacke
DDH-LOG-04-2008	44	45	1	11776	February 22nd 2008	2998	Argilite-Greywacke
DDH-LOG-04-2008	45	46	1	11777	February 22nd 2008	2998	Argilite-Greywacke
DDH-LOG-04-2008	54	55	1	11778	February 22nd 2008	2998	Pyritic argillite-greywacke
DDH-LOG-04-2008	55	56	1	11779	February 22nd 2008	2998	Pyritic argillite-greywacke
DDH-LOG-04-2008	66	67	1	11780	February 22nd 2008	2998	Sulphides conglo-greywacke
DDH-LOG-04-2008	67	68	1	11781	February 22nd 2008	2998	Sulphides conglo-greywacke
DDH-LOG-04-2008	68	69	1	11782	February 22nd 2008	2998	Sulphides conglo-greywacke
DDH-LOG-04-2008	69	70	1	11783	February 22nd 2008	2998	Sulphides conglo-greywacke
DDH-LOG-05-2008	125	126	1	11908	May 2 2008	2778	Basalt
DDH-LOG-05-2008	126	127	1	11909	May 2 2008	2778	Basalt
DDH-LOG-05-2008	127	128	1	11910	May 2 2008	2778	Basalt, pyrite at 2% in slickenside tremo
DDH-LOG-05-2008	128	129	1	11911	May 2 2008	2778	Basalt, pyrite at 2% in slickenside tremo
DDH-LOG-05-2008	129	130	1	11912	May 2 2008	2778	Basalt
DDH-LOG-05-2008	130	131	1	11913	May 2 2008	2778	Basalt

AURORA GEOSCIENCES LTD.

APPENDIX C

GEOCHEMICAL ANALYTICAL CERTIFICATES

TO: 1356139 Alberta Inc 291 Sunvale Dr. SE FILE: 50772

DATE: May 11, 2008

Attn: Tom Kinney

30 ELEMENT ICP ANALYSIS

Loring Laboratories Ltd. 629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 Ioringlabs@telus.net

Sample	Ag	AI	As	Au	В	Ва	Bi	Ca	Cd	Со	Cr	Cu	Fe	К	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	V	W	Zn
No.	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
																														ļ
11908	<0.5	0.18	8	30	179	5	<1	0.07	4	111	1170	7	4.65	<0.01	<1	13.01	716	2	<0.01	1940	<0.01	<1	26	10	<1	<0.01	<1	23	<1	14
11909	<0.5	0.17	8	<5	119	5	<1	0.20	4	111	1220	9	4.89	< 0.01	<1	13.05	621	2	<0.01	1990	<0.01	<1	24	33	<1	<0.01	<1	25	<1	14
11910	<0.5	0.16	8	10	196	6	<1	0.34	4	109	1030	8	4.64	<0.01	<1	13.34	838	2	<0.01	1890	<0.01	<1	23	44	<1	<0.01	<1	24	<1	9
11911	<0.5	0.14	7	<5	128	8	<1	0.37	4	109	1020	10	4.83	<0.01	<1	13.40	730	1	<0.01	1900	<0.01	<1	24	53	<1	<0.01	<1	25	<1	11
11912	<0.5	0.15	7	28	122	6	<1	0.09	4	109	1150	15	4.74	<0.01	<1	13.25	711	2	<0.01	1920	<0.01	<1	28	16	<1	<0.01	<1	26	<1	12
11913	<0.5	0.15	8	<5	119	6	<1	0.28	4	112	1130	18	4.85	<0.01	<1	13.29	555	2	<0.01	1960	<0.01	<1	27	43	<1	<0.01	<1	23	<1	12
11908 chk	<0.5	0.16	6	<5	177	5	<1	0.06	4	107	1100	6	4.56	<0.01	<1	12.98	695	2	<0.01	1920	<0.01	<1	26	10	<1	<0.01	<1	22	<1	12
																														ļ
																														ļ

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water. Partial dissolution for Al, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Gold analyzed using 30 grams fusion Fire Assay with AA finish.

Certified by:

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

TO: 1356139 ALBERTA INC. 291 SUNVALE DR. SE Calgary, AB Ph: 403-819-3944 File No: 5 0 5 9 9Date: March 26, 2008Samples<td: Drill Core</td>

Attn: TOM KINNEY

Certificate of Assay

Sample	Au
No.	ppb
<u>"Assay Analysis"</u>	
11846	13
11847	<5
11848	<5
11849	<5
11850	<5
11851	<5
11852	<5
11853	<5
11854	7
11855	<5
11856	<5
11857	9
11858	<5
11859	<5
11860	19
11861	7
11862	<5
11863	11
11864	<5
11865	18
11866	13
11867	<5
11868	19
11869	435
11870	465

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Assayer

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

TO: 1356139 Alberta Inc 291 Sunvale Dr. SE

Attn: Tom Kinney

FILE: 5 0 5 9 9

DATE: March 14, 2008

30 ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	в	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	κ	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	v	w	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
44070		0.04	04.4			F 4		4 77	0	F 4	04	70	0 77	0.00	05	4.04	000	-	0.04	00	0.05		0	005		0.04		00		00
11879	1.4	0.24	214	<1	<1	54	<1	4.77	3	51	21	72				1.94	639	5	0.04	32	0.05	11	6	365	<1	< 0.01	<1	38	<1	98
11880 11881	1.5	0.30	127 7	<1	<1 146	33 5	<1	4.92	3 5	54 114	14 979	62 14	3.91	0.08	26	1.76	675	6	0.04	30 2000	0.12 <0.01	15	8 21	394	<1	< 0.01	<1	40	<1	126
11881	1.7	0.29	•	<1	146	с 8	<1	0.62	э 5		979 1310	14 8		< 0.01		14.93		2 2	< 0.01					29	<1	< 0.01	<1	25	<1	15
11882	1.7	0.24 0.23	4 3	<1	152	8	<1	0.44	э 5	116	1100	8 5		< 0.01		14.56		_	<0.01 <0.01	2210 1910	< 0.01		26	20	4 9	< 0.01	<1	28	<1	8
11884	1.6 2.2	0.25	3 4	<1		3 3	<1	0.42	5 5	101 105	1180			< 0.01		14.16					< 0.01		23 22	19 7	9	<0.01 <0.01	<1	26 24	<1	6
			-	<1	157		<1	0.19				9 7		< 0.01		14.95			< 0.01	2000	< 0.01			-	2 3		<1		<1	9
11885	2.0	0.21	3 4	<1	151	3	<1	0.51	5	108	1140			< 0.01		14.60			< 0.01	2040	< 0.01		21	15	3 9	< 0.01	<1	25	<1	6
11886	1.9	0.27	•	<1	149	2	<1	0.07	5	120	1510	6		< 0.01		14.70		_	< 0.01	2380	< 0.01		26	6	9	< 0.01	<1	28	<1	6
11887	1.8	0.26	2	<1	138	2	<1	0.15	5	106	1380	6		< 0.01		14.68			< 0.01	1960	< 0.01		25	7	5	< 0.01	<1	24	<1	5
11888	1.6	0.25	4	<1	159	2	<1	0.25	6	117	1380	9		< 0.01		14.84			< 0.01	2250	< 0.01		25	9	1	< 0.01	<1	26	<1	5
11889	2.0	0.24	3	<1	161	2	<1	0.15	5	118	1050	5		< 0.01		14.60			< 0.01	2170	< 0.01		19	8	3	< 0.01	<1	23	<1	5
11890	1.9	0.33	3	<1	151	2	<1	0.25	5	111	1280	5		< 0.01		14.77			< 0.01	1990	<0.01		21	7	4	<0.01	<1	26	<1	4
11891	1.8	0.25	4	<1	152	2	<1	0.48	5	106	1120	5		< 0.01		14.75		_	<0.01		<0.01		19	9	8	<0.01	<1	23	<1	4
11892	1.8	0.28	2	<1	168	2	<1	0.14	5	112	1070	2		< 0.01		15.19					<0.01	1	20	6	2	<0.01	<1	26	<1	5
11893	1.3	0.21	4	<1	50	11	<1	0.59	4	95	1010	6		<0.01		11.57		56	0.01	1840	<0.01		20	62	4	<0.01	<1	20	<1	12
11894	1.4	0.31	4	<1	25	16	<1	0.86	4	88	897	5		<0.01		11.22			<0.01	1690	<0.01		16	88	7	<0.01	<1	19	<1	12
11895	1.4	0.23	5	<1	54	11	<1	0.13	4	108	966	7		<0.01		11.88			<0.01	2130	<0.01	<1	19	26	12	<0.01	<1	21	<1	12
11896	1.6	0.40	3	<1	41	5	<1	0.09	4	96	1480	7		<0.01		12.50			<0.01	1680	<0.01	<1	30	25	8	<0.01	<1	29	<1	13
11897	1.2	0.27	3	<1	14	12	<1	2.55	3	63	763	7		<0.01		7.47	383		<0.01	1170	<0.01		15	228	3	<0.01	<1	17	<1	3
11898	1.0	0.51	4	<1	<1	20	<1	5.20	2	40	503	2		<0.01		4.27	319		<0.01	806	<0.01	<1	13	545	10	<0.01	<1	12	<1	<1
11899	1.0	0.10	2	<1	<1	63	<1	6.83	<1	6	35	1		<0.01		0.88	159	3	<0.01	74	0.06	<1	1	1260	3	0.04	<1	13	<1	<1
11900	1.6	0.56	5	<1	<1	64	<1	11.20	<1	31	146	4	0.77	0.32	38	1.36	205	61	<0.01	715	<0.01	<1	14	1410	<1	0.01	<1	13	<1	<1
11901	1.3	0.17	6	<1	<1	125	<1	9.52	<1	19	41	41	0.99	0.05	38	0.52	218	15	0.03	198	0.04	2	13	932	4	0.06	<1	30	<1	22
11902	1.1	0.14	1	<1	<1	47	<1	4.18	<1	10	21	108	0.62	0.03	31	0.26	152	2	0.06	16	0.08	5	2	268	6	0.13	<1	29	<1	23
11903	1.4	0.30	3	<1	<1	139	<1	9.54	<1	5	12	179	0.41	0.16	39	0.70	150	3	0.01	10	0.05	3	<1	882	2	0.07	<1	18	<1	<1
11904	1.1	0.22	4	<1	<1	252	<1	7.63	<1	3	12	5	0.27	0.06	33	0.89	130	2	0.02	5	0.06	9	<1	743	2	0.07	<1	17	<1	<1
11905	0.9	1.32	3	<1	<1	73	<1	6.56	<1	9	21	5	0.71	0.41	28	2.52	252	2	0.02	14	0.05	<1	<1	562	3	0.09	<1	23	<1	15
11906	1.3	0.26	3	<1	<1	179	<1	9.34	<1	5	12	29	0.33	0.11	39	0.78	113	2	0.01	10	0.05	4	<1	1190	3	0.06	<1	19	<1	7
11907	1.2	0.93	10	<1	9	170	<1	7.73	<1	24	113	18	0.80	0.71	32	1.94	150	2	0.02	426	0.03	<1	39	721	2	0.04	<1	15	<1	8
11882R	1.8	0.27	3	<1	150	7	<1	0.41	5	111	1320	9	5.42	<0.01	<1	14.34	680	2	<0.01	2230	<0.01	<1	23	20	3	<0.01	<1	26	<1	6
11900R	1.6	0.56	5	<1	<1	64	<1	11.22	<1	32	154	3	0.79	0.31	39	1.39	211	64	<0.01	731	<0.01	<1	14	1430	1	0.01	<1	12	<1	<1
blk	<0.5	<0.01	<1	<1	<1	<1	<1	<0.01	<1	<1	<1	<1	<0.01	<0.01	<1	<0.01	<1	<1	<0.01	<1	<0.01	<1	<1	<1	<1	<0.01	<1	<1	<1	<1

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water.

Partial dissolution for AI, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

TO: 1356139 ALBERTA INC. 291 SUNVALE DR. SE Calgary, AB Ph: 403-819-3944 File No : 5 0 5 9 4 Date : March 26, 2008 Samples : Drill Core

Attn: TOM KINNEY

Certificate of Assay

Sample	Au
No.	ppb
<u>"Assay Analysis"</u>	
11784	11
11785	8
11786	<5
11787	<5
11788	<5
11789	<5
11790	<5
11791	<5
11792	6
11793	<5
11794	<5
11795	<5
11796	<5
11797	13
11798	<5
11799	<5
11800	<5
11801	<5
11802	13
11803	<5
11804	19
11805	<5
11806	14
11807	<5
11808	<5

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Assayer

Rejects and pulps are retained for one month unless specific arrangements are made in advance.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

TO: 1356139 Alberta Inc 291 Sunvale Dr. SE

Attn: Tom Kinney

FILE: 5 0 5 9 4

DATE: March 14, 2008

30 ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	в	Ba	Bi	Ca	Cd	Со	Cr	Cu	Fe	Κ	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	v	W	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	n %	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
11784	1.9	0.23	3	<1	105	3	<1	0.31	4	100	1300	13	5.29	<0.01	<1	13.32		1	<0.01	2130	<0.01	<1	20	9	3	<0.01	<1	20	<1	3
11785	1.7	0.22	3	<1	101	2	<1	0.22	4	89	1130	13	4.90	<0.01	<1	12.52	750	1	<0.01	1810	<0.01	<1	14	9	1	<0.01	<1	18	<1	<1
11786	1.8	0.59	3	<1	73	3	<1	0.49	4	86	1550	1	4.47	< 0.01	<1	12.18	615	2	<0.01	1660	<0.01	<1	24	7	9	<0.01	<1	30	<1	<1
11787	1.6	0.59	3	<1	91	3	<1	0.77	4	88	1930	22	4.62	<0.01	<1	12.48	699	1	<0.01	1850	<0.01	<1	30	11	13	<0.01	<1	35	<1	4
11788	1.6	0.64	5	<1	68	4	<1	0.86	4	87	1700	5	4.70	<0.01	1	11.92	685	1	<0.01	1700	<0.01	<1	23	14	9	<0.01	<1	30	<1	<1
11789	1.7	0.23	4	<1	125	2	<1	0.49	4	81	809	9	4.17	< 0.01	<1	12.35	772	1	<0.01	1600	<0.01	<1	11	7	<1	<0.01	<1	17	<1	1
11790	1.5	0.18	4	<1	114	6	<1	0.83	4	85	700	6	4.38	< 0.01	<1	11.94	878	<1	<0.01	1920	<0.01	2	9	11	<1	<0.01	<1	16	<1	<1
11791	1.8	0.23	4	<1	113	2	<1	0.46	4	92	1460	2	4.89	< 0.01	<1	11.61	781	<1	<0.01	1700	<0.01	<1	22	7	11	<0.01	<1	25	<1	<1
11792	1.4	0.21	2	<1	131	2	<1	0.26	4	93	1180	9	4.96	< 0.01	<1	12.68	648	1	<0.01	1780	<0.01	<1	19	6	<1	<0.01	<1	20	<1	<1
11793	1.6	0.18	4	<1	48	8	<1	0.25	3	85	841	4	4.03	< 0.01	<1	12.76	519	2	<0.01	1810	<0.01	<1	13	33	3	<0.01	<1	13	<1	2
11794	1.9	0.23	5	<1	52	10	<1	0.25	4	97	1160	3	4.96	< 0.01	<1	12.75	486	1	<0.01	1880	<0.01	<1	17	29	<1	<0.01	<1	19	<1	6
11795	1.4	0.29	3	<1	82	14	<1	1.05	4	79	1050	4	4.16	<0.01	<1	11.77	765	<1	<0.01	1520	<0.01	<1	16	131	3	<0.01	<1	20	<1	5
11796	1.5	0.30	4	<1	61	4	<1	0.66	3	72	808	4	3.64	<0.01	<1	9.91	486	17	<0.01	1330	<0.01	<1	12	40	2	<0.01	<1	15	<1	3
11797	1.5	0.25	3	<1	71	4	<1	0.27	4	82	1150	6	4.13	< 0.01	<1	11.02	523	12	0.01	1620	<0.01	<1	18	18	3	<0.01	<1	16	<1	5
11798	1.4	0.19	5	<1	74	6	<1	1.12	3	76	1220	6	3.91	<0.01	3	10.24	643	3	0.01	1430	<0.01	<1	20	68	10	<0.01	<1	20	<1	5
11799	1.3	0.26	3	<1	67	6	<1	1.01	3	71	1130	7	3.57	<0.01	4	9.81	534	8	<0.01	1340	<0.01	<1	17	56	6	<0.01	<1	19	<1	4
11800	1.4	0.37	3	<1	53	11	<1	4.64	3	61	871	6	3.32	<0.01	17	9.25	633	19	<0.01	1190	<0.01	<1	11	281	3	<0.01	<1	17	<1	<1
11801	1.6	1.76	4	<1	36	42	<1	8.55	1	23	120	2	1.89	0.10	35	1.75	495	3	0.01	108	0.03	<1	2	389	<1	0.10	<1	76	<1	31
11802	1.2	1.22	6	<1	45	259	<1	5.90	1	16	57	111	1.22	0.04	25	0.86	153	3	0.01	37	0.03	<1	3	391	<1	0.11	<1	68	<1	43
11803	1.1	1.06	4	<1	44	167	<1	2.99	2	35	86	61	2.74	0.80	22	1.23	215	2	0.07	52	0.03	<1	5	181	<1	0.20	<1	100	<1	76
11804	1.5	1.38	9	<1	42	77	<1	2.99	3	49	106	75	4.42	0.96	20	1.93	523	1	0.08	60	0.03	<1	6	117	<1	0.23	<1	138	<1	87
11805	1.5	0.88	10	<1	45	65	<1	1.62	3	52	66	97	4.68	0.58	17	1.68	378	1	0.12	40	0.03	1	5	82	<1	0.13	<1	115	<1	75
11806	1.1	0.37	4	<1	44	41	<1	2.96	2	42	43	86	3.84	0.18	23	1.20	471	1	0.08	32	0.04	3	3	117	<1	0.03	<1	69	<1	59
11807	1.0	0.19	11	<1	39	41	<1	2.74	1	30	34	74	2.72	0.05	24	1.05	522	<1	0.04	30	0.04	6	8	94	<1	<0.01	<1	30	<1	46
11808	1.0	0.25	17	<1	33	45	<1	2.96	2	34	29	96	2.92	0.05	25	0.84	657	2	0.04	21	0.06	6	8	79	<1	<0.01	<1	38	<1	42
11809	0.6	0.33	15	<1	35	71	<1	0.78	1	32	30	87	2.56	0.04	22	0.69	438	2	0.07	20	0.07	9	13	35	<1	<0.01	<1	48	<1	57
11810	0.6	0.25	12	<1	33	98	<1	1.27	1	23	22	66	1.94	0.05	25	0.70	370	2	0.06	13	0.07	10	7	55	<1	<0.01	<1	28	<1	43
11811	0.9	0.21	20	<1	33	92	<1	2.41	2	23	36	55	1.83	0.04	26	0.97	404	4	0.04	20	0.06	8	12	104	<1	<0.01	<1	57	<1	59
11812	1.2	0.12	238	<1	31	19	<1	3.40	2	35	26	34	3.16	0.05	18	1.70	757	<1	0.06	28	<0.01	7	4	322	<1	<0.01	<1	19	<1	29
11813	1.6	0.15	221	<1	31	28	<1	3.57	2	39	18	52	3.63	0.06	20	1.75	688	1	0.05	29	0.01	9	4	320	<1	<0.01	<1	24	<1	52
11814	1.1	0.33	86	<1	31	37	<1	2.63	2	41	12	41	3.82	0.12	22	1.39	732	<1	0.04	13	0.08	5	4	220	<1	<0.01	<1	42	<1	49
11815	1.9	0.31	77	<1	31	29	<1	2.32	2	40	14	51	3.67	0.12	19	1.20	749	<1	0.05	11	0.04	6	3	150	<1	<0.01	<1	36	<1	47
11784R	1.9	0.22	3	<1	110	2	<1	0.33	4	104	1290	12	5.45	<0.01	<1	13.60	837	1	<0.01	2250	<0.01	<1	20	8	4	<0.01	<1	23	<1	4
11802R	1.1	1.35	5	<1	46	285	<1	6.10	1	18	62	113	1.30	0.05	28	0.90	160	4	0.01	39	0.03	<1	2	405	<1	0.12	<1	71	<1	45
blk	<0.5	< 0.01	<1	<1	<1	<1	<1	<0.01	<1	<1	<1	<1		< 0.01		< 0.01	<1	<1	<0.01	<1	< 0.01	<1	<1	<1	<1	< 0.01	<1	<1	<1	<1

 $0.500 \; \text{Gram}$ sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water.

Partial dissolution for AI, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Certified by:

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

Certificate of Assay

TO: 1356139 ALBERTA INC. 291 SUNVALE DR. SE Calgary, AB Ph: 403-819-3944 File No : 5 0 5 6 8 Date : March 26, 2008 Samples : Drill Core

Attn: TOM KINNEY

Sample	Au	
No.	ppb	
110.		
"Assay Analysis"		
11776	<5	
11777	58	
11778	<5	
11779	22	
11780	56	
11781	17	
11782	18	
11783	19	

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Assayer

ects and pulps are retained for one month unless specific arrangements are made in advance.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

TO: 1356139 Alberta Inc 291 Sunvale Dr. SE

Attn: Tom Kinney

FILE: 5 0 5 6 8

DATE: March 11, 2008

30 ELEMENT ICP ANALYSIS

Sample	Ag	Al	As	Au	В	Ва	Bi	Са	Cd	Со	Cr	Cu	Fe	к	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	v	w	Zn
No.	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
011751	2.2	0.41	11	<1	64	10	<1	1.38	5	87	1720	12	4.93	<0.01	2	12.89	889	1	<0.01	1740	<0.01	<1	23	57	4	<0.01	<1	34	<1	9
011752	2.2	0.43	14	<1	64	11	<1	2.09	5	96	1940	35	4.99	<0.01	3	13.18	1098	1	<0.01	1970	<0.01	<1	27	103	8	<0.01	<1	36	<1	6
011753	2.2	0.29	11	<1	76	14	<1	1.37	5	104	1600	4	5.11	<0.01	<1	13.11	657	1	<0.01	2120	<0.01	<1	22	90	<1	<0.01	<1	28	<1	5
011754	2.6	0.35	10	<1	56	60	<1	4.82	4	89	1470	5	4.23	<0.01	14	11.13	860	1	<0.01	1810	<0.01	<1	21	400	10	<0.01	<1	32	<1	6
011755	2.5	2.54	33	<1	10	171	<1	5.93	5	69	694	60	4.82	0.02	20	7.99	1190	2	<0.01	715	0.04	<1	15	629	<1	<0.01	<1	123	<1	25
011756	2.7	3.18	73	<1	7	238	<1	5.08	6	75	266	56	7.09	0.04	21	7.70	1193	2	<0.01	352	0.04	<1	7	662	<1	<0.01	<1	192	<1	48
011757	2.2	0.08	281	<1	16	63	<1	2.10	4	70	339	6	4.06	0.01	6	10.65	652	1	<0.01	1450	<0.01	2	24	201	<1	<0.01	<1	16	<1	<1
011758	2.1	0.09	245	<1	14	52	<1	2.28	4	72	329	5	3.85	0.01	9	10.44	596	<1	<0.01	1470	<0.01	2	32	240	<1	<0.01	<1	16	<1	<1
011759	2.4	0.08	295	<1	<1	82	<1	5.97	4	50	259	27	3.47	0.03	22	8.54	695	<1	<0.01	744	<0.01	2	38	925	<1	<0.01	<1	26	<1	<1
011760	2.1	0.17	272	<1	<1	26	<1	1.26	4	73	882	9	3.79	0.01	4	10.11	661	1	<0.01	1370	<0.01	<1	18	123	1	<0.01	<1	21	<1	<1
011761	1.4	0.12	255	<1	10	25	<1	0.47	4	69	568	5	3.62	<0.01	<1	10.66	587	1	<0.01	1390	<0.01	<1	19	39	<1	<0.01	<1	14	<1	<1
011762	1.9	0.10	356	<1	10	16	<1	0.50	4	74	614	6	3.66	0.01	<1	10.26	647	1	<0.01	1320	<0.01	1	30	32	<1	<0.01	<1	14	<1	<1
011763	2.4	0.03	430	<1	12	31	<1	0.81	5	78	431	8	4.49	0.01	<1	12.08	777	1	<0.01	1570	<0.01	2	42	70	<1	<0.01	<1	15	<1	<1
011764	1.9	0.02	505	<1	11	14	<1	0.53	4	62	290	5	3.39	0.01	<1	10.07	583	1	<0.01	1150	<0.01	1	42	49	<1	<0.01	<1	15	<1	<1
011765	2.3	0.03	247	<1	8	26	<1	2.21	4	66	280	5	3.74	0.02	6	10.15	705	1	<0.01	1210	<0.01	3	31	231	<1	<0.01	<1	16	<1	<1
011766	2.2	0.02	1210	<1	9	21	<1	1.22	4	82	251	5	4.04	0.02	3	10.48	618	1	<0.01	1470	<0.01	3	65	164	<1	<0.01	<1	15	<1	5
011767	2.2	0.02	1140	<1	7	16	<1	0.43	4	72	213	3	3.64	0.01	<1	10.35	566	1	<0.01	1260	<0.01	2	57	69	<1	<0.01	<1	16	<1	2
011768	2.3	0.07	1370	<1	8	48	<1	2.00	4	67	202	8	3.74	0.04	9	9.46	641	<1	0.01	1040	<0.01	4	51	377	<1	<0.01	<1	18	<1	6
011769	1.9	0.34	150	<1	<1	42	<1	2.77	3	39	21	77	3.28	0.06	19	2.25	469	1	0.03	60	0.02	10	12	407	4	<0.01	<1	14	<1	65
011770	1.3	0.42	115	<1	<1	49	<1	3.27	3	42	24	66	3.63	0.12	21	1.78	725	<1	0.02	29	0.07	10	7	300	<1	<0.01	<1	13	<1	69
011771	1.1	0.32	45	<1	10	67	<1	3.20	3	39	21	50	3.22	0.16	24	1.60	754	<1	0.02	22	0.06	7	4	362	<1	<0.01	<1	17	<1	67
011772	1.0	0.42	24	<1	19	73	<1	1.93	3	46	16	80	3.79	0.19	21	1.60	624	<1	0.03	32	0.08	11	4	201	<1	<0.01	<1	22	<1	85
011773	1.2	0.35	99	<1	9	50	<1	2.51	2	39	24	72	3.09	0.15	20	1.35	582	<1	0.02	23	0.09	9	5	303	<1	<0.01	<1	15	<1	73
011774	1.7	0.35	116	<1	11	53	<1	2.00	3	46	16	131	3.78	0.17	17	1.53	601	<1	0.03	30	0.06	10	4	315	<1	<0.01	<1	14	<1	97
011775	1.1	0.64	39	<1	16	82	<1	3.56	3	38	44	48	3.17	0.10	23	1.76	928	5	0.04	24	0.08	8	4	171	<1	<0.01	<1	38	<1	65
011776	1.0	0.65	14	<1	13	100	<1	2.47	2	34	44	50	2.63	0.11	22	1.17	574	<1	0.03	26	0.08	6	4	132	<1	<0.01	<1	42	<1	57
011777	1.3	1.09	14	<1	12	145	<1	2.78	3	42	50	69	3.23	0.09	23	1.52	640	1	0.03	27	0.09	2	2	101	<1	<0.01	<1	67	<1	78
011778	1.2	0.44	34	<1	4	72	<1	3.38	3	48	4	85	3.94	0.15	18	1.57	682	2	<0.01	30	0.08	9	6	261	<1	<0.01	<1	16	<1	90
011779	1.1	0.51	31	<1	<1	64	<1	3.09	3	44	5	66	3.66	0.14	20	1.60	692	1	0.01	22	0.09	8	4	179	<1	<0.01	<1	19	<1	79
011780	1.4	0.53	16	<1	<1	226	<1	3.83	4	54	22	87	4.87	0.10	22	1.23	985	2	0.03	14	0.11	11	4	106	<1	<0.01	<1	72	<1	77
011781	1.8	0.63	13	<1	14	136	<1	8.33	3	42	23	36	3.98	0.10	37	1.21	1117	2	0.03	13	0.09	4	3	242	<1	<0.01	<1	61	<1	48
011782	1.7	1.25	12	<1	18	153	<1	5.54	3	46	31	58	4.23	0.06	34	1.18	1112	1	0.05	12	0.11	<1	4	116	<1	0.06	<1	95	<1	56
011783	1.5	1.44	15	<1	21	188	<1	3.56	3	48	59	40	4.27	0.06	22	1.22	826	2	0.04	13	0.09	<1	3	66	<1	0.15	<1	107	<1	67
011761 chk	1.6	0.10	258	<1	9	26	<1	0.47	4	69	552	5	3.30	<0.01	<1	10.41	558	1	<0.01	1380	<0.01	<1	18	39	<1	<0.01	<1	13	<1	<1
blk	<0.5	< 0.01	<1	<1	<1	<1	<1	< 0.01	<1	<1	<1	<1	<0.01	<0.01	<1	<0.01	<1	<1	<0.01	<1	<0.01	<1	<1	<1	<1	<0.01	<1	<1	<1	<1

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water.

Partial dissolution for AI, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Certified by:

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

TO: 1356139 Alberta Inc

291 Sunvale Dr. SE

Attn: Tom Kinney

FILE: 5 1 0 3 4

DATE: Aug. 7, 2008

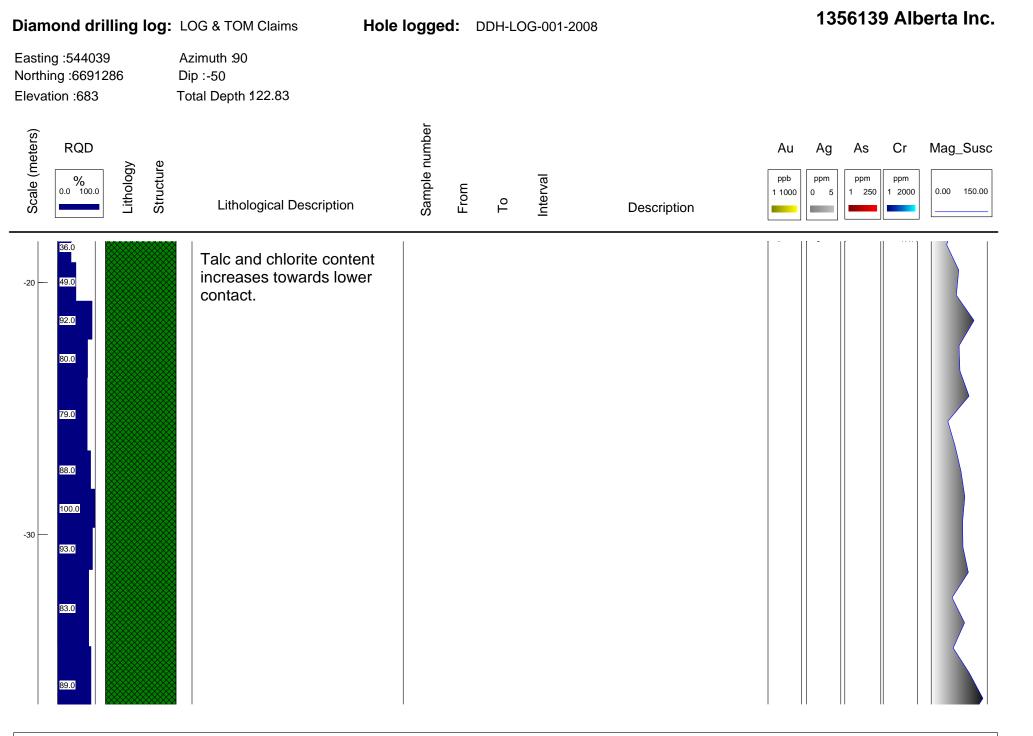
30 ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	в	Ba	Bi	Са	Cd	Co	Cr	Cu	Fe	Κ	La	Mg	Mn	Мо	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	v	w	Zn
No.	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppn
11914	<0.5	0.55	15	<5	<1	36	<1	2.86	2	38	27	44	3.36	0.10	23	1.11	744	<1	0.04	18	0.08	51	2	166	<1	<0.01	<1	46	<1	50
11915	< 0.5	1.18	15	<5	<1	39	<1	2.52	3	45	36	61	4.13	0.05	25	1.31	665	2	0.04	22	0.08	18	3	132	<1	<0.01	<1	104	<1	62
11916	< 0.5	1.29	9	<5	<1	31	<1	3.73	3	42	24	47	4.06	0.04	25	1.04	868	2	0.03	12	0.09	12	1	52	<1	0.15	<1	86	<1	53
11917	< 0.5	1.71	9	<5	<1	23	<1	2.47	3	46	24	60	4.41	0.04	24	1.14	705	2	0.03	13	0.09	27	3	38	<1	0.17	<1	93	<1	69
11918	<0.5	1.07	7	<5	13	19	<1	6.90	2	30	17	44	2.78	0.03	31	0.73	756	2	0.02	6	0.08	13	1	160	<1	0.11	<1	64	<1	37
11919	<0.5	1.04	12	<5	<1	16	<1	6.69	2	35	32	235	3.25	0.03	31	0.83	830	2	0.02	13	0.08	14	2	108	<1	0.11	<1	67	<1	39
11914 check	<0.5	0.58	16	<5	<1	38	<1	2.95	2	39	27	43	3.33	0.10	24	1.14	741	1	0.04	19	0.09	49	2	168	<1	<0.01	<1	46	<1	52

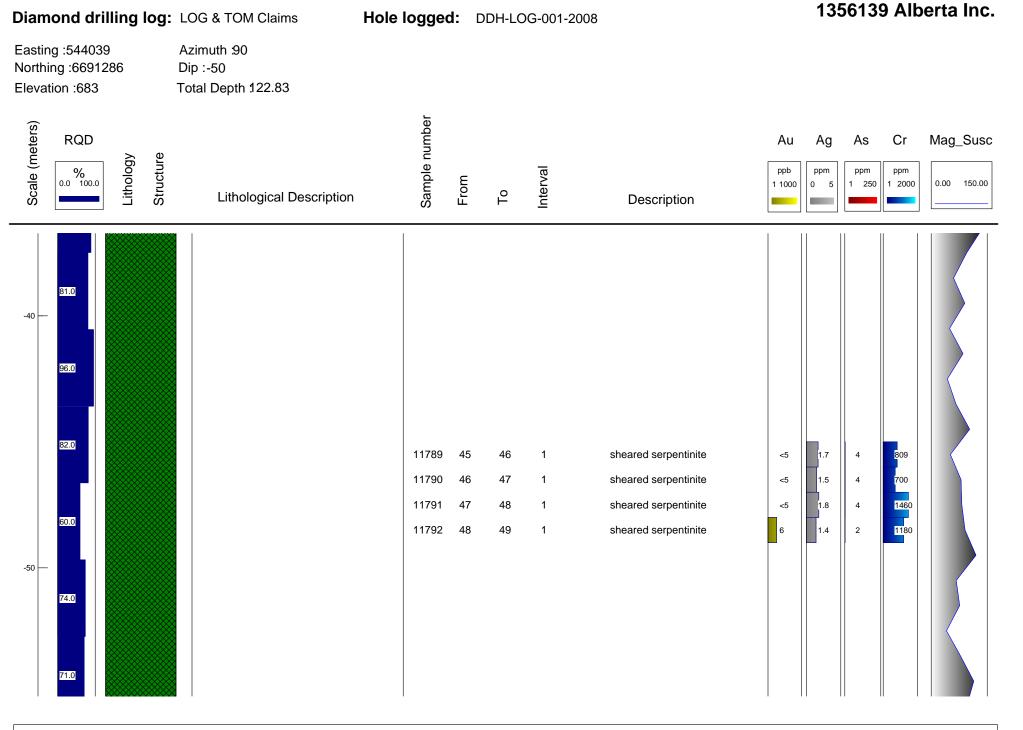
0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water. Partial dissolution for Al, B, Ba, Ca, Cr, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

Gold analyzed using 30 grams fusion Fire Assay with AA finish.

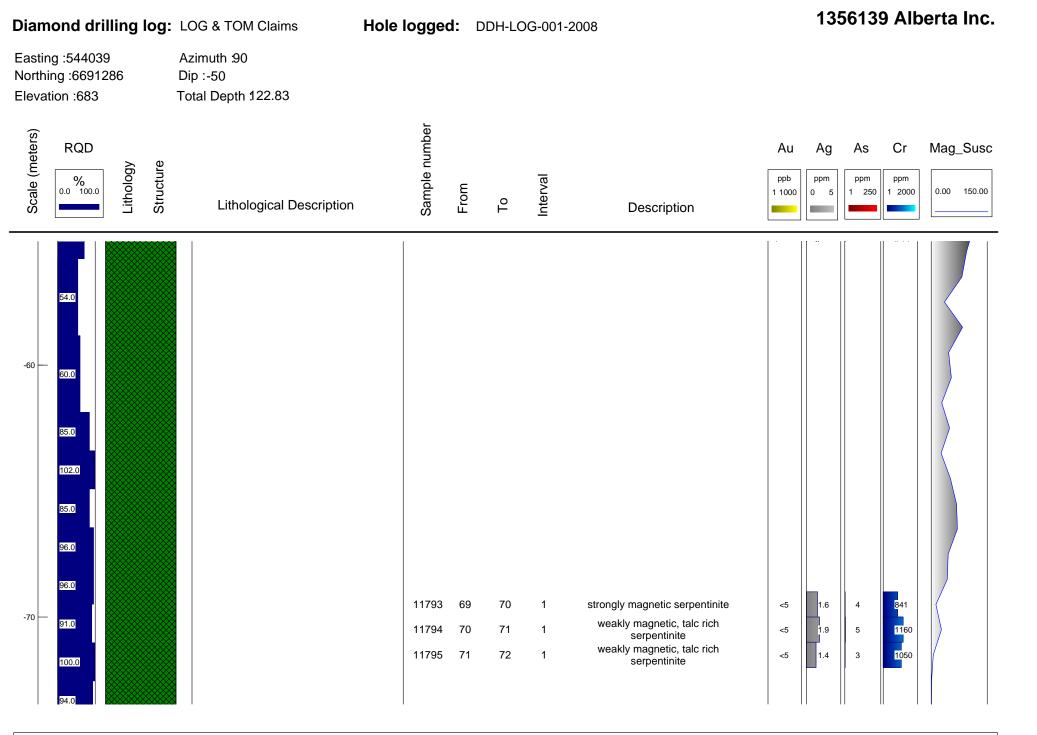
Certified by:


AURORA GEOSCIENCES LTD.

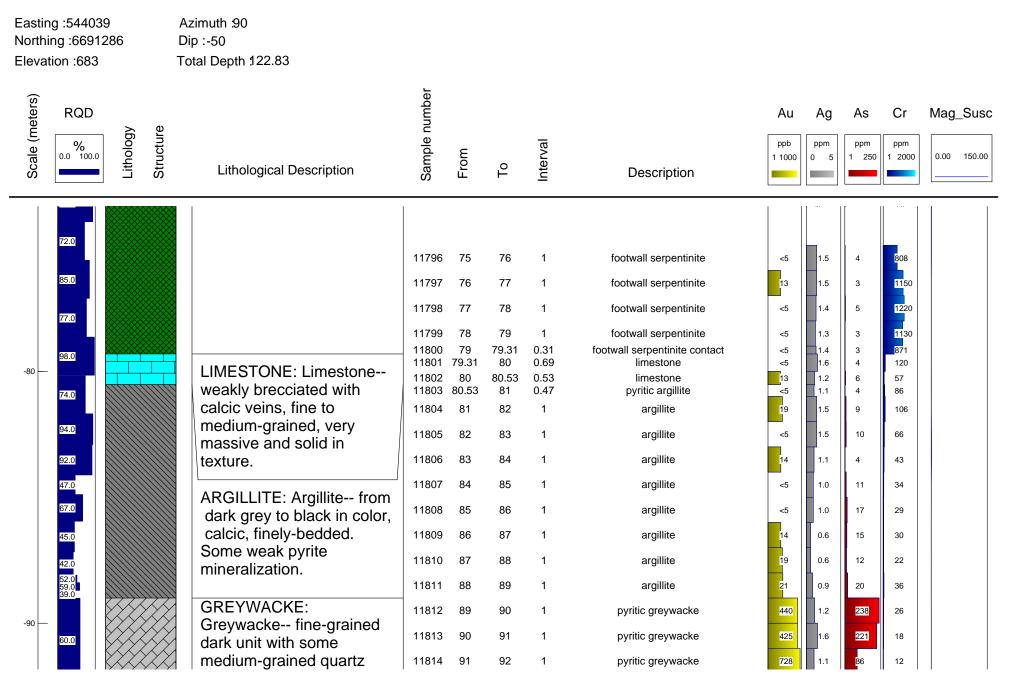
APPENDIX D


DIAMOND DRILL LOGS

Diamond drilling log:		logged:	DDH-L	OG-001-2008		1	356139 All	perta Inc.
Northing :6691286	Azimuth 90 Dip :-50 Fotal Depth 122.83							
Scale (meters)	Lithological Description	Sample number	From To	Interval	Description	Au A	m ppm ppm	Mag_Susc
	CASING: Casing. Overburden. SERPENTINITE: Magnetite and chromite rich serpentinite. Highly magnetic at top of sequence, becoming patchy and decreasing toward the bottom of the sequence as talc content increases. Magnetism absent at sheared contact. Dark green to almost black in color grey as we reach lower sheared contact.	11785 11786 11787 11788	9.14 10 10 11 11 12 12 13 13 14	0.86 1 1 1 1	casing to serpentinite serpentinite serpentinite serpentinite serpentinite		7 3 1130	



Total hole depth:122.83Logged by:Kel Sax



Diamond drilling log: LOG & TOM Claims

ns Hole logo

Hole logged: DDH-LOG-001-2008

Diamond drilling log: LOG & TOM Claims

Claims Hol

Hole logged: DDH-LOG-001-2008

North	ng :544039 ing :66912 tion :683		D	zimuth 90 9ip :-50 otal Depth 122.83										
Scale (meters)	RQD	Lithology	Structure	Lithological Description	Sample number	From	То	Interval	Description	Au ppb 1 1000	Ag	As ppm 1 250	Cr ppm 1 2000	Mag_Susc
			$\langle \rangle$	clasts. Pyrite mineralization	11815	92	93	1	pyritic greywacke	4782	1.9	77	14	
	54.0	XX	\sum	is present.	11816	93	94	1	pyritic greywacke	<mark>510</mark>	1.0	54	8	
	54.0				11817	94	95	1	pyritic greywacke	410	1.0	81	11	
					11818	95	96.1	1.1	pyritic greywacke	38	0.9	20	15	
				ARGILLITE: Argillite from	11819	96.1	96.87	0.77	argillite	35	1.2	80	17	
	45.0			dark grey to black in color,	11820	96.87	98	1.13	pyritic greywacke and conglomerate	9	1.7	13	24	
				calcic, finely-bedded.	11821	98	99	1	pyritic greywacke and conglomerate	13	1.3	14	41	
				GREYWACKE -	11822	99	100	1	pyritic greywacke and conglomerate	<5	1.1	7	42	
-100	94.0			CONGLOMERATE:	11823	100	101	1	pyritic greywacke and conglomerate	9	1.3	7	24	
				Greywacke-Conglomerate from dark-grey to black,	11824	101	102	1	pyritic greywacke and conglomerate	<5	1.2	8	39	
				fine-grained,	11825	102	103	1	pyritic greywacke and conglomerate	<5	1.4	12	54	
	98.0			heterogeneous	11826	103	104	1	pyritic greywacke and conglomerate	<5	1.2	9	29	
				conglomerate towards the bottom of the sequence.	11827	104	105	1	pyritic greywacke and conglomerate	23	1.0	9	28	
				Pyrite mineralization is	11828	105	106	1	pyritic greywacke and conglomerate	28	1.1	12	30	
	80.0			present.	11829	106	107	1	pyritic greywacke and conglomerate	34	1.3	9	39	
					11830	107	108	1	pyritic greywacke and conglomerate	<5	1.0	6	25	
					11831	108	109	1	pyritic greywacke and conglomerate	<5	1.1	6	19	
	79.0				11832	109	110	1	pyritic greywacke and conglomerate	<5	1.0	5	16	
-110 -					l									

Diamond drilling log: LOG & TOM Claims

laims Hol

Hole logged: DDH-LOG-001-2008

Northi	ng :544039 ing :6691286 tion :683		Azimuth 90 Dip :-50 Total Depth 122.83										
Scale (meters)	RQD % 0.0 100.0 Trithology	Structure	Lithological Description	Sample number	From	То	Interval	Description	Au ppb 1 1000	Ag	As ppm 1 250	Cr	Mag_Susc
				11833	110	111	1	pyritic greywacke and conglomerate	<5	1.2	3	17	
				11834	111	112	1	pyritic greywacke and conglomerate	34	1.2	4	21	
	94.0			11835	112	113	1	pyritic greywacke and conglomerate	<5	1.0	4	17	
				11836	113	114	1	pyritic greywacke and conglomerate	<5	1.2	6	22	
				11837	114	115	1	pyritic greywacke and conglomerate	<5	1.3	13	51	
	96.0			11838	115	116	1	pyritic greywacke and conglomerate	<5	1.1	28	45	
				11839	116	117	1	pyritic greywacke and conglomerate	67	1.1	15	23	
				11840	117	118	1	pyritic greywacke and conglomerate	<5	1.0	8	15	
	89.0			11841	118	119	1	pyritic greywacke and conglomerate	<5	1.2	8	23	
-120 —		/ 		11842	119	120	1	pyritic greywacke and conglomerate	12	1.2	5	29	
-120				11843	120	121	1	pyritic greywacke and conglomerate	<5	1.1	5	17	
				11844	121	122	1	pyritic greywacke and conglomerate	<5	1.3	6	38	
	73.0			11845	122	122.83	0.83	pyritic greywacke and conglomerate, trace pyrrhotite	<5	1.0	8	24	

1356139 Alberta Inc. Diamond drilling log: LOG & TOM Claims Hole logged: DDH-LOG-02-2008 Easting :544039 Azimuth :48 Northing :6691286 Dip :-50 Total Depth 145.69 Elevation :683 Sample number Scale (meters) RQD Au Ag As Structure Lithology Interval % ppb ppm ppm From 0.0 100.0 1 1000 1 250 0 5 Ч Lithological Description Description 0 CASING: Overburden Casing to serpentinite 13 11846 6.09 7 0.91 1.6 3 SERPENTINITE: Magnetite-rich serpentinite-Serpentinite 11847 7 1 2.0 8 <5 3 - with magnetite content 11848 8 9 1 Serpentinite 1.7 2 <5 decreasing towards the Serpentinite 2.0 bottom of the sequence. 11849 9 10 1 <5 3 -10 Color is dark green to Serpentinite 1.6 11850 10 11 1 <5 3 almost black in color-- grey as we reach lower sheared contact. Talc and chlorite content also increases towards lower

contact. Magnetite content decreases at 75m depth and is not present at

sheared contact. Contact is

heavily brecciated.

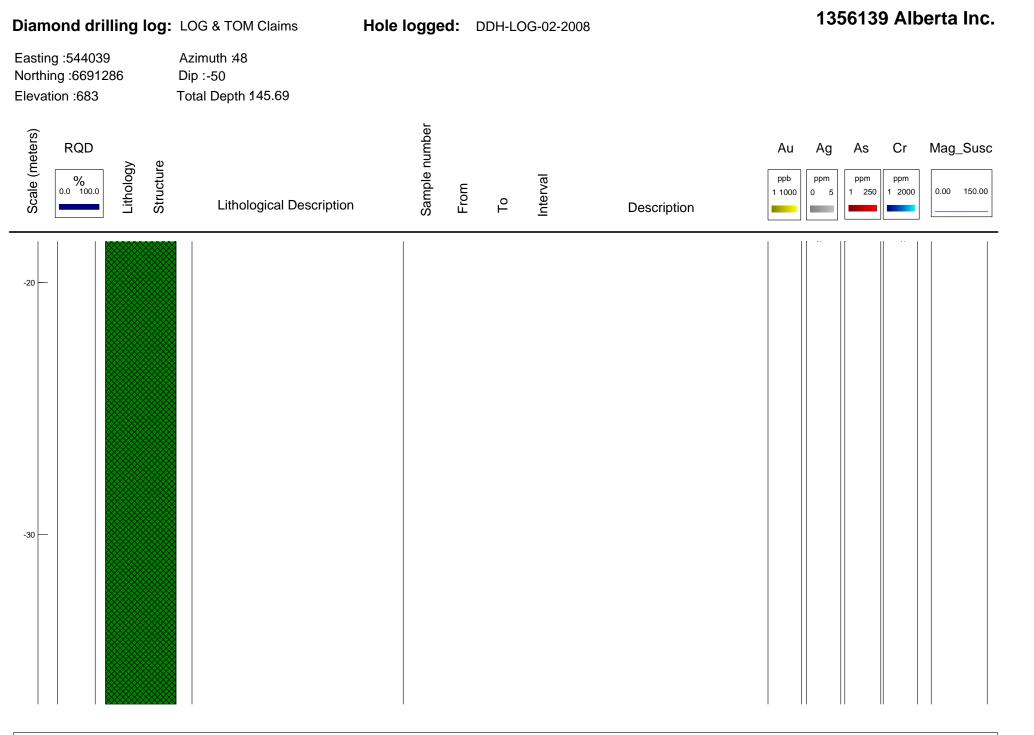
Mag_Susc

0.00 150.00

Cr

ppm

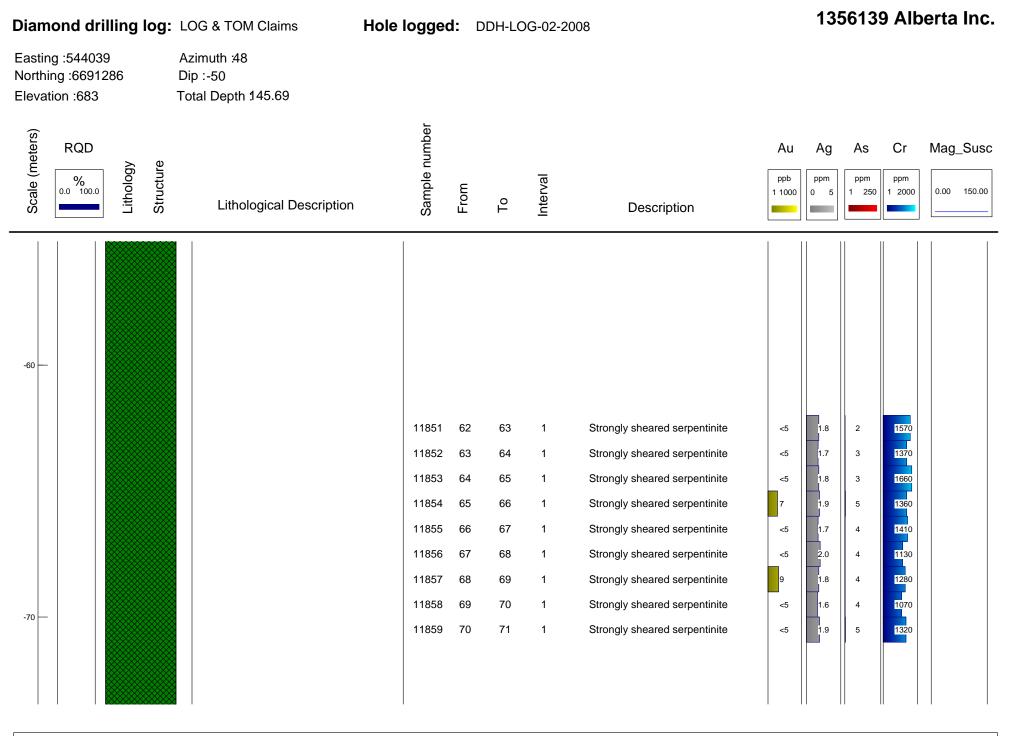
1 2000


1080

1070

1050

1050

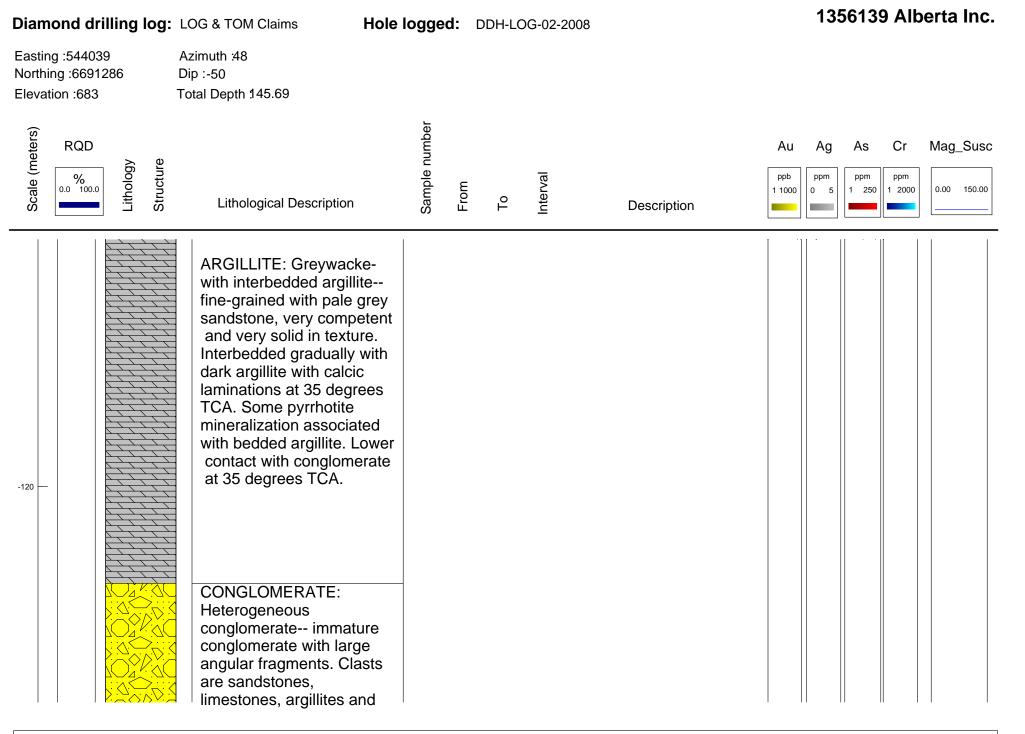

1240

Diamond drilling	log: LOG & TOM Claims	Hole logged:	DDH-LOG-02-2008		1356139 Alberta Inc.
Easting :544039 Northing :6691286 Elevation :683	Azimuth :48 Dip :-50 Total Depth 145.69				
Scale (meters)	בי די גי גי גי גי גי גי גי גי גי גי גי גי גי	s Sample number From	To Interval	Description	Au Ag As Cr Mag_Susc ppb ppm ppm ppm 0.00 150.00 1 1 250 1 2000 0.00 150.00 150.00
-40					

Total hole depth:145.69Logged by:Stephan Ruest

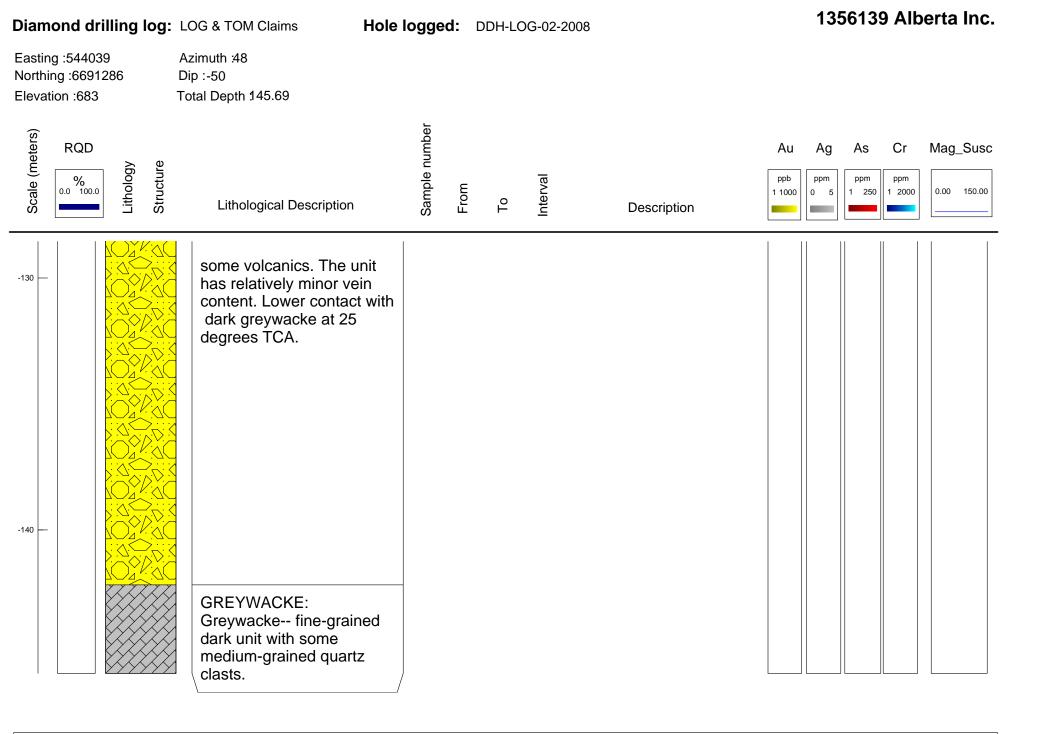
Diamond drilling log: LOG & TOM Claim	s Hole logge	ed: DD	H-LOG-	02-2008	1350	6139 Alberta Inc.
Easting :544039Azimuth :48Northing :6691286Dip :-50Elevation :683Total Depth 145.69						
Scale (meters) Scale (meters) Lithology Fructure Fithology	Description	From	To	Description	ppb ppm	As Cr Mag_Susc
-80	ared contact11866s TCA11867: Limestone11868iated with11868fine to11869ned, very11869	83 84 85 86.51 87 8 87.78 8 88.97 90	84 85 86 87.78 87.78 88.97 1. 90 1. 91	1 Footwall serpentinite 51 Footwall serpentinite, conta 49 Limestone .78 Limestone .19 Limestone .03 Argillite 1 Pyritic brecciated greywack 1 Pyritic brecciated greywack	ict <5 1.5 18 1.6 13 1.5 <5 1.5 <5 1.5 <5 1.5 19 1.0 435 1.3	4 1330 4 881 3 901 10 1090 17 1520 7 88 11 152 7 88 11 152 43 1360 191 265 209 48

Diamond drilling log: LOG & TOM Claims


ims Hole

Hole logged: DDH-LOG-02-2008

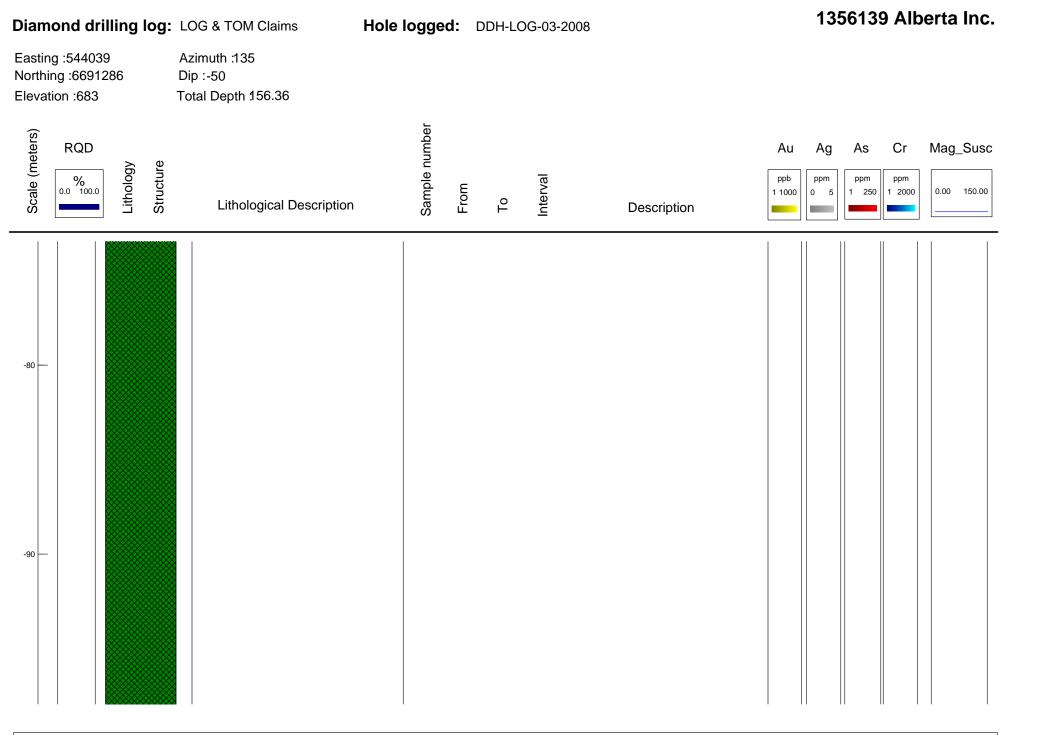
Northi	ng :544039 ing :6691286 tion :683	Azimuth :48 Dip :-50 Total Depth 145.69										
Scale (meters)	RQD Lithology Structure	Lithological Description	Sample number	From	То	Interval	Description		Ag	As ppm 1 250	Cr ppm 1 2000	Mag_Susc
		contact possibly eroded at 40 degrees TCA.	11871 11872	92 93	93 94	1 1	Pyritic brecciated greywacke Pyritic brecciated greywacke	845	1.3 1.7	346 257	20 15	
		ARGILLITE: Argillite from	11873	94	95	1	Pyritic brecciated greywacke	3175	2.2	<mark>270</mark>	15	
		dark grey to black in color,	11874	95	96	1	Pyritic brecciated greywacke	795	1.3	181	21	
		calcic, finely-bedded, sheared contact with 45%	11875	96	97	1	Pyritic brecciated greywacke	855	1.3	268	20	
		greywacke content.	11876	97	98	1	Pyritic brecciated greywacke	1035	1.2	<mark>241</mark>	14	
		GREYWACKE -	11877	98	99	1	Pyritic brecciated greywacke	975	1.3	<mark>244</mark>	25	
-100 —		CONGLOMERATE:	11878	99	100	1	Pyritic brecciated greywacke	1095	1.4	262	29	
		Greywacke-Conglomerate	11879	100	101	1	Pyritic brecciated greywacke	775	1.4	214	21	
		from dark-grey to black, fine-grained,	11880	101	102	1	Pyritic brecciated greywacke	430	1.5	127	14	
		heterogeneous										
		conglomerate towards the bottom of the sequence.										
		Brecciated by silica veins										
		with pyrite mineralization up to 1% in veins. Some										
		argilliceous interbedding at										
		35 degrees TCA. Lower contact is sheared at 35										
		degrees TCA.										
-110		GREYWACKE -										


Total hole depth:145.69Logged by:Stephan Ruest

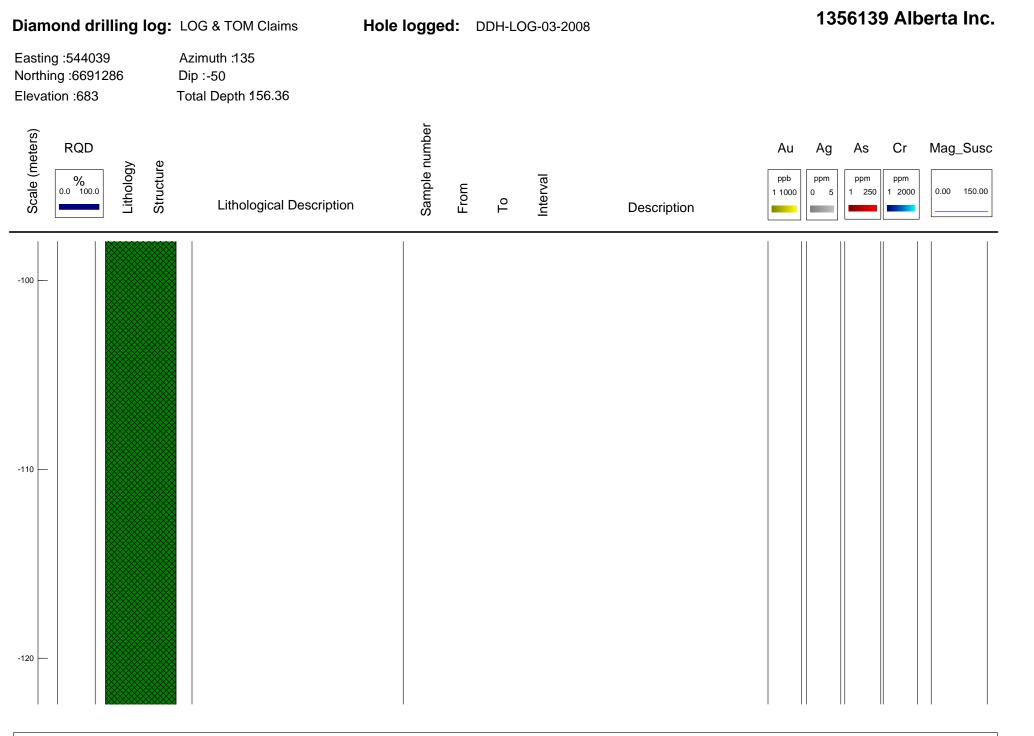
Total hole depth:145.69Logged by:Stephan Ruest

Diamond drilling log:	LOG & TOM Claims Hole	logge	d: D	DH-LO	G-03-200	08	13	56139 All	perta Inc.
Easting :544039 Northing :6691286 Elevation :683	Azimuth :135 Dip :-50 Total Depth 156.36								
Scale (meters)	Lithological Description	Sample number	From	То	Interval	Description	Au Ag ppb 1 1000 ppm 5 	As Cr	Mag_Susc
	CASING: Overburden SERPENTINITE: Texture is mainly mottled with colour going from dark- green to almost black towards dark grey. Some areas show serpentinization, rock is very magnetic especially at top of sequence. Patchy magnetism is present as we get closer to the lower contact and decreases markedly with increasing talc content. Heavily sheared throughout, no evidence of sulphide	11881 11882 11883	20.0	20.0 21.0 22.0	1.0 1.0 1.0	Strongly sheared serpentinite Strongly sheared serpentinite Strongly sheared serpentinite	130 100 68 1.7 1.6	7 979 4 1310 3 1100	

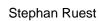
Total hole depth:156.36Logged by:Stephan Ruest



Dian	Diamond drilling log: LOG & TOM Claims			Hole	logge	d: [DH-LO	G-03-20	008		13	5613	9 Alb	erta Inc.	
North	ng :544039 ning :66912 ation :683			Azimuth :135 Dip :-50 Total Depth 156.36											
Scale (meters)	RQD	Lithology	Structure	Lithological Description	1	Sample number	From	То	Interval	Description	Au ppb 1 1000	Ag	As ppm 1 250	Cr	Mag_Susc
-30	_			mineralization.											
-40	-					11884 11885 11886 11887 11888 11889 11890 11891	42.0 43.0 44.0 45.0 46.0 47.0	42.0 43.0 44.0 45.0 46.0 47.0 48.0 49.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Strongly sheared serpentinite Strongly sheared serpentinite	45 32 38 24 32 20 20 <5	2.2 2.0 1.9 1.8 1.6 2.0 1.9 1.9 1.9	4 3 4 2 4 3 3 4	1180 1140 1510 1380 1050 1280 1120	

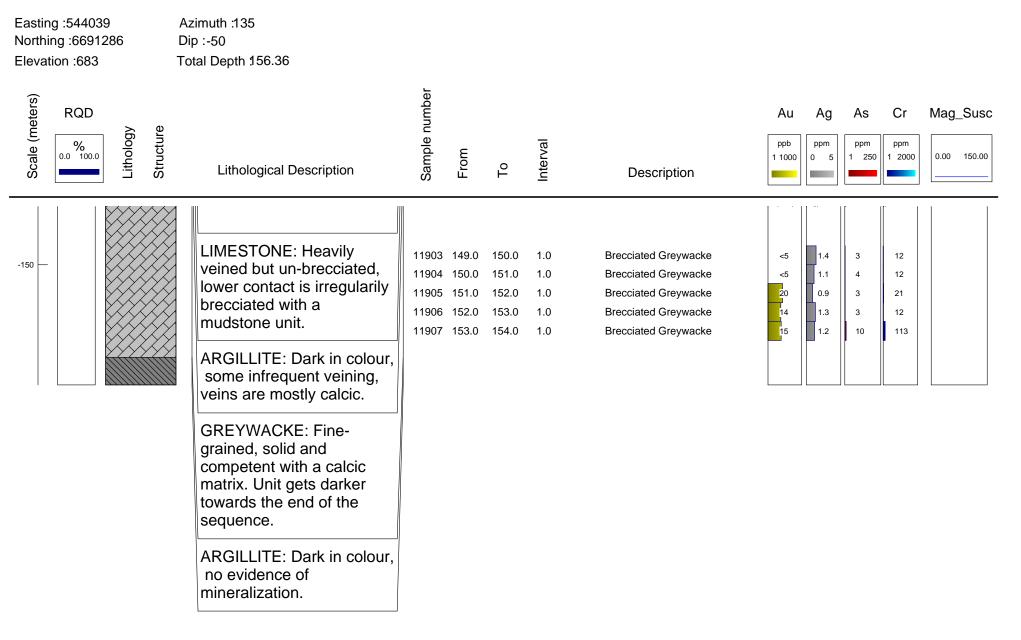


Diamond drilling log: LOG & TOM Claims	Hole logged: DDH-LOG-03-2008	1356139 Alberta Inc.					
Easting :544039Azimuth :135Northing :6691286Dip :-50Elevation :683Total Depth 156.36							
Scale (meters) Scale (meters) Scale (meters) Scale (meters) Scale (meters) Scale (meters) Scale (meters)	Sample number To To To To Interval	Au Ag As Cr Mag_Susc ppb 0 5 ppm ppm 0.00 150.00 Image: Structure Image: Structure Image: Structure 0.00 150.00					
	11892 49.0 50.0 1.0 Strongly sheared serpentinite						



Diamond drilling log	LOG & TOM Claims Hole	logge	d: D	DH-LO	G-03-2	008	1356139 Alberta Inc.				
Easting :544039 Northing :6691286 Elevation :683	Azimuth :135 Dip :-50 Total Depth 156.36										
Scale (meters)	Lithological Description	Sample number	From	То	Interval	Description	Au ppb 1 1000	Ag	As ppm 1 250	Cr ppm 1 2000	Mag_Susc
-130 —	SHEAR: Sheared contact solid but no clear evidence of contact angle.	11894 11895	130.0	129.0 130.0 131.0 132.0 133.0 133.5 134.0	1.0 1.0 1.0 1.0 0.5 0.5	Strongly sheared serpentinite Strongly sheared serpentinite Footwall serpentinite Footwall serpentinite Footwall serpentinite Footwall serpentinite Footwall serpentinite, contact Contact and limestone	<5 <5 34 <5 10 11	1.3 1.4 1.4 1.6 1.2 1.0 1.0	4 4 5 3 3 4 2	1010 897 966 1480 763 503 35	
-140 —	LIMESTONE: Very competent and solid in texture, lower contact at 25 degrees TCA highlighted by pale green veins. GREYWACKE: Fine- grained with no evidence of calcite or sulphides. Lower contact is brecciated by calcic veins.	11902	137.0 138.0 139.0	138.0 139.0 140.0	1.0 1.0 1.0	Limestone Limestone Argillite	8 151 <5	1.6	5 6 1	146 41 21	

Total hole depth: 156.36 Logged by:



Diamond drilling log: LOG & TOM Claims

aims Hole log

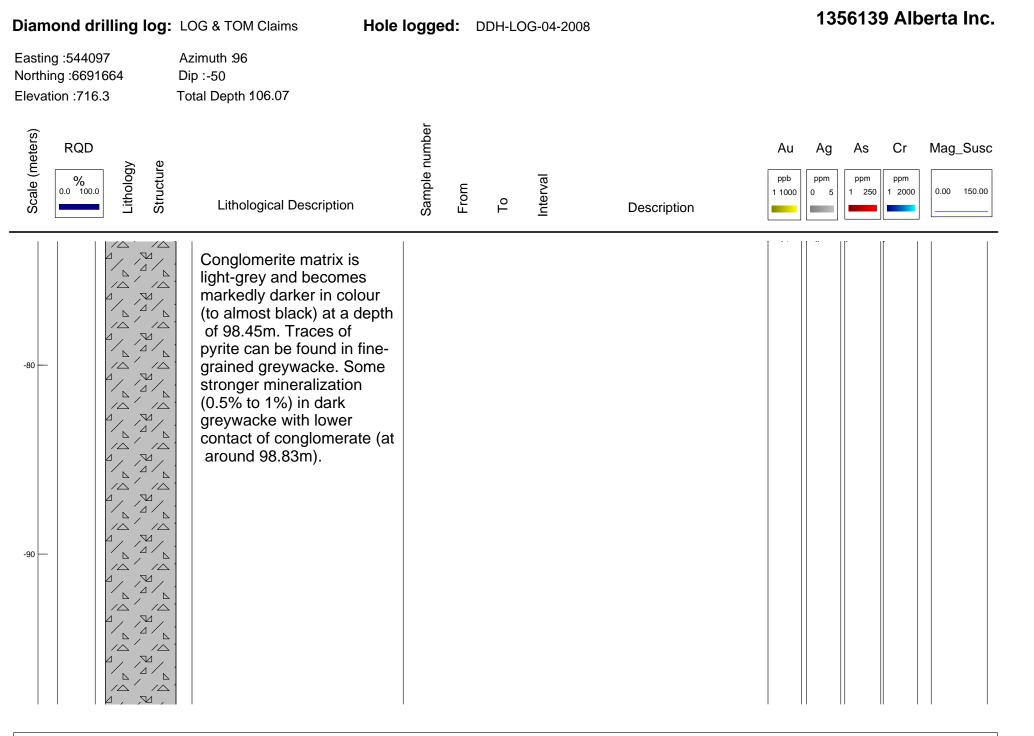
Hole logged: DDH-LOG-03-2008

Total hole depth:156.36Logged by:Stephan Ruest

Diamond drilling	og: LOG & TOM Claims Ho	e logged:	DDH-LC)G-04-2008	3	1	35613	9 Alb	erta Inc.
Easting :544097 Northing :6691664 Elevation :716.3	Azimuth 96 Dip :-50 Total Depth 106.07								
Scale (meters)	Lithological Description	Sample number	From To	Interval	Description	Au A	-	Cr ppm 1 2000	Mag_Susc
	CASING: Overburden								
-10	SERPENTINITE: From very dark green to black (color lightens down-hole) strongly magnetic at the top decreasing as talc content increases. A rusty- yellow alteration zone from	. 11751	12 13.11	1.11	Serpentinite	89 2.	: 11	1720	
	17.86-28.76m with richest zone (by colour) from 17.86 to 20.86m this alteration shows greenish	11752 13 11753 14 11754 1		1.52 Or 0.87 0.5 1	nly 56 cm of broken, rubbly core Serpentinite Serpentinite Serpentinite, very blocky	76 2.: 34 2.: 66 2. 28 2. 42 2.		1940 1600 1470 694	
	fine-grained mineral fillings in small fractures (malachite?) at up to 1.5%	11757	17 18 18 19 19 20	1 1 1	Serpentinite Rusty-Yellow serpentinite Rusty-Yellow serpentinite	48 2.: 40 2.	281 245	266 339 329	
-20	and is not necessarily associated with rusty- yellow alteration. Sulphide	11760 2	20 21 21 22 22 23	1 1 1	Rusty-Yellow serpentinite Rusty-Yellow serpentinite Rusty-Yellow serpentinite	22 2. 66 2. 63 1.		259 882 568	
	content seems to increase towards the bottom of the	11762 2	23 24 24 25	1 1	Rusty-Yellow serpentinite Rusty-Yellow serpentinite	30		614	

Diamond drilling log: LOG & TOM Claims

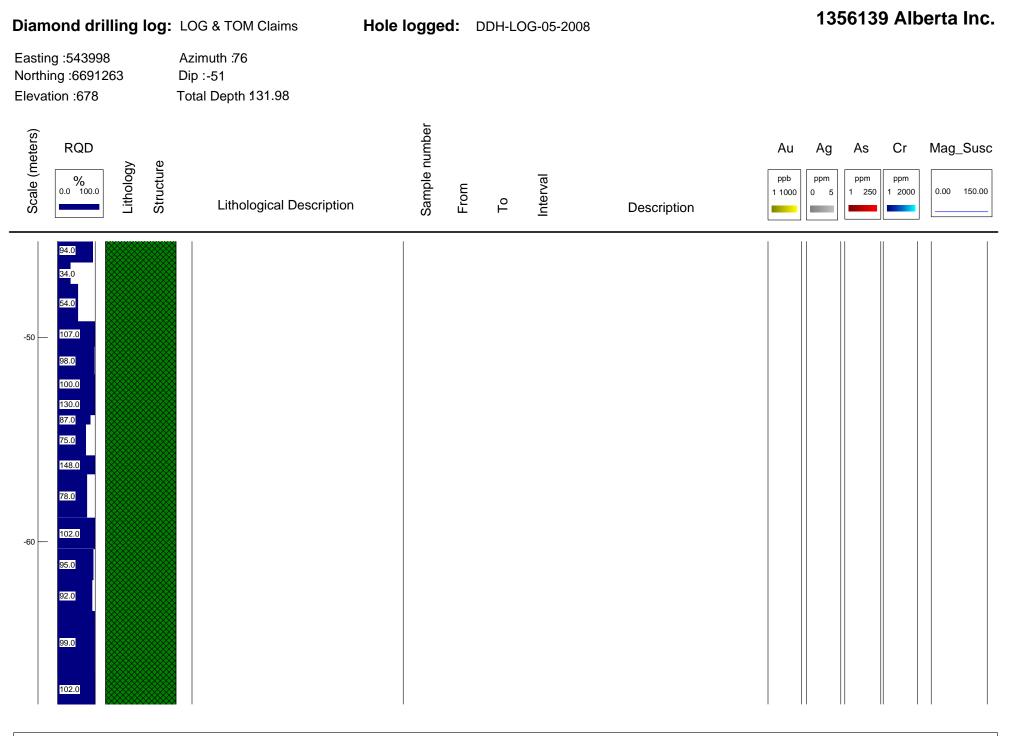
aims **Hole**


Hole logged: DDH-LOG-04-2008

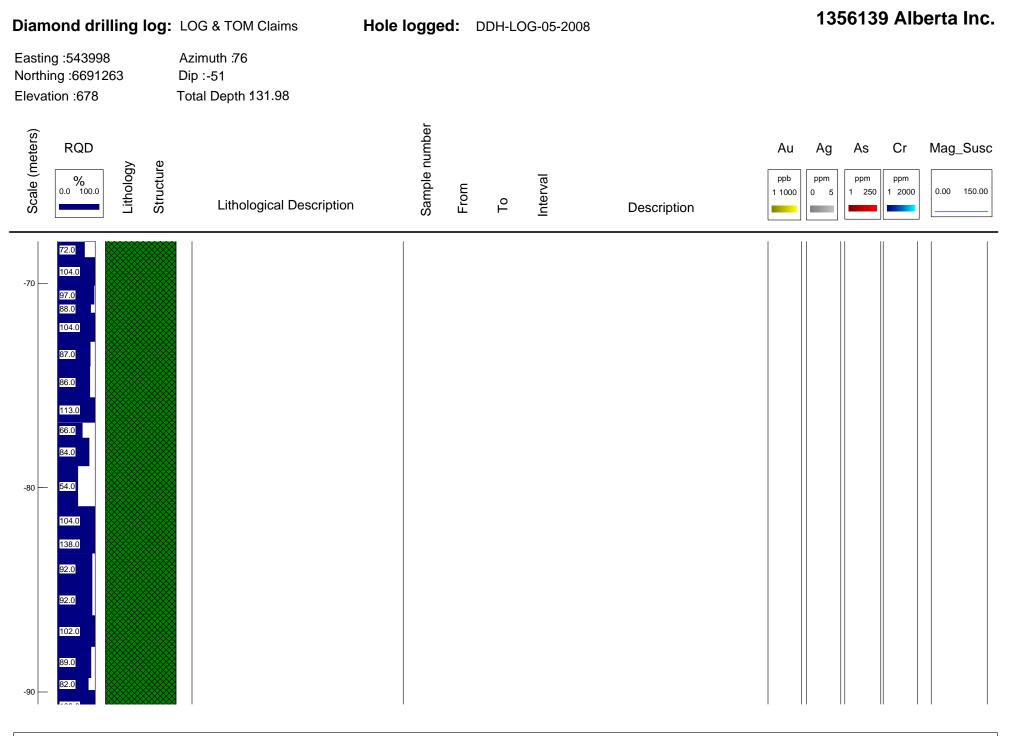
North	ng :544097 ing :66916 ition :716.3	Azimuth 96 Dip :-50 Total Depth 106.07												
Scale (meters)	RQD 0.0 100.0	Lithology	Structure	Lithological Description	Sample number	From	То	Interval	Description	Au ppb 1 1000	Ag	As	Cr ppm 1 2000	Mag_Susc
-30				unit, the lower contact is heavily veined and traces of fine-grained sulphides can be found. Contact is heavily fragmented and un- clear. GREYWACKE - ARGILLITE: Sequence of dark, weakly calcic argillite with fine to medium- grained, light-grey Greywacke. Greywacke is occasionally medium to relatively coarse-grained. Argillite forms finely laminated wedges (40 degrees TCA) within greywacke. Traces of pyrite can be found in argillite fractures.	11764 11765 11766 11767 11768 11770 11771 11772 11773 11774	25 26 27 28 29 30 31 32 33 34 35	26 27 28 29 30 31 32 33 34 35 36	1 1 1 1 1 1 1 1 1 1	Rusty-Yellow serpentinite Rusty-Yellow serpentinite Rusty-Yellow serpentinite Rusty-Yellow serpentinite Rusty-Yellow serpentinite, contact Argilite-Greywacke Argilite-Greywacke Argilite-Greywacke Argilite-Greywacke Argilite-Greywacke	25 26 27 51 101 68 20 74 230 74 230	2.4 1.9 2.3 2.2 2.3 1.9 1.3 1.1 1.0 1.2 1.7	430 505 247 1210 1140 1370 150 115 45 24 99 116 399 116	 431^m 290 280 251 213 202 21 24 21 16 24 16 24 16 24 16 24 50 	

Diam	nond drilling log:	LOG & TOM Claims Hole	logge	d: [DDH-LC)G-04-200	8		13	5613	9 Alb	erta Inc.
North	ng :544097 ing :6691664 ition :716.3	Azimuth 96 Dip :-50 Total Depth 106.07										
Scale (meters)	Lithology Structure	Lithological Description	Sample number	From	То	Interval	Description	Au ppb 1 1000	Ag	As ppm 1 250	Cr ppm 1 2000	Mag_Susc
-50		SHEAR: Contact between greywacke-argillite with	11778 11779	54 55	55 56	1 1	Pyritic argillite-greywacke Pyritic argillite-greywacke	<5 22	1.2	34 31	4	
-60		greywacke-conglomerate. GREYWACKE - CONGLOMERATE: Fine to medium-grained greywacke, grey-green in colour, alternating with conglomerate in a non- transitional way (not graded bedding). Clasts	11780	66 67	67 68	1	Sulphides conglo-greywacke Sulphides conglo-greywacke	56	1.4	16	22 23	
-70 —		are sedimentary and	11782 11783	68 69	69 70	1 1	Sulphides conglo-greywacke Sulphides conglo-greywacke	18	1.7	12	31 59	

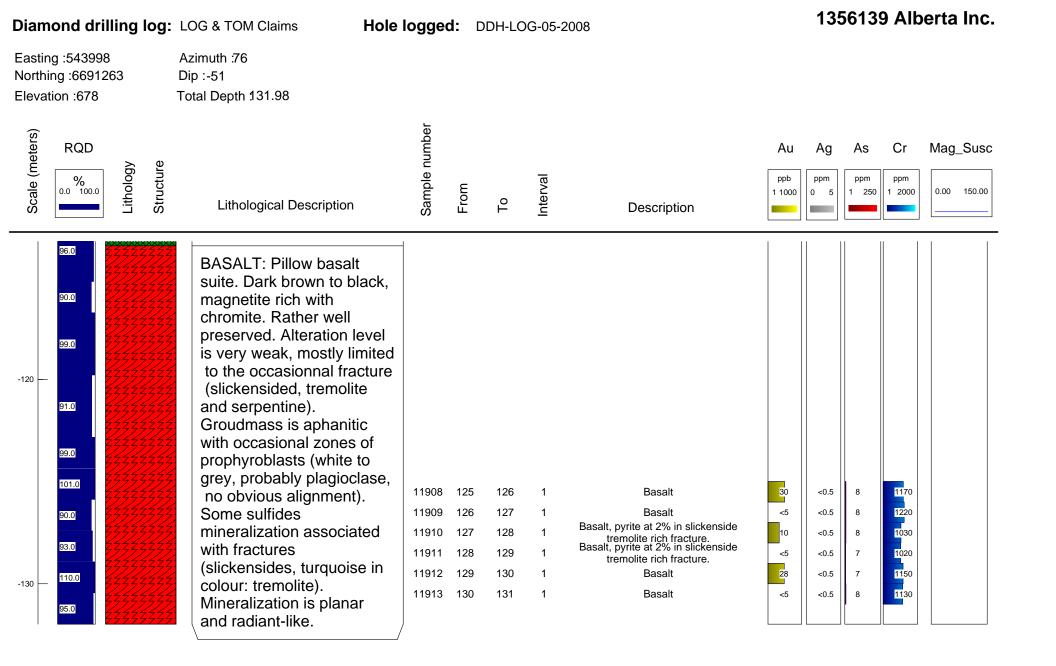
Diamond drilling log	: LOG & TOM Claims	Hole logged:	DDH-LOG-04-2008		1356139 Alberta Inc.				
Easting :544097 Northing :6691664 Elevation :716.3	Azimuth 96 Dip :-50 Total Depth 106.07								
Scale (meters)	Lithological Description	Sample number	From To Interval	Description	Au Ag As Cr Mag_Susc ppb 0 5 ppm ppm 0.00 150.00 Image: Description of the second secon				

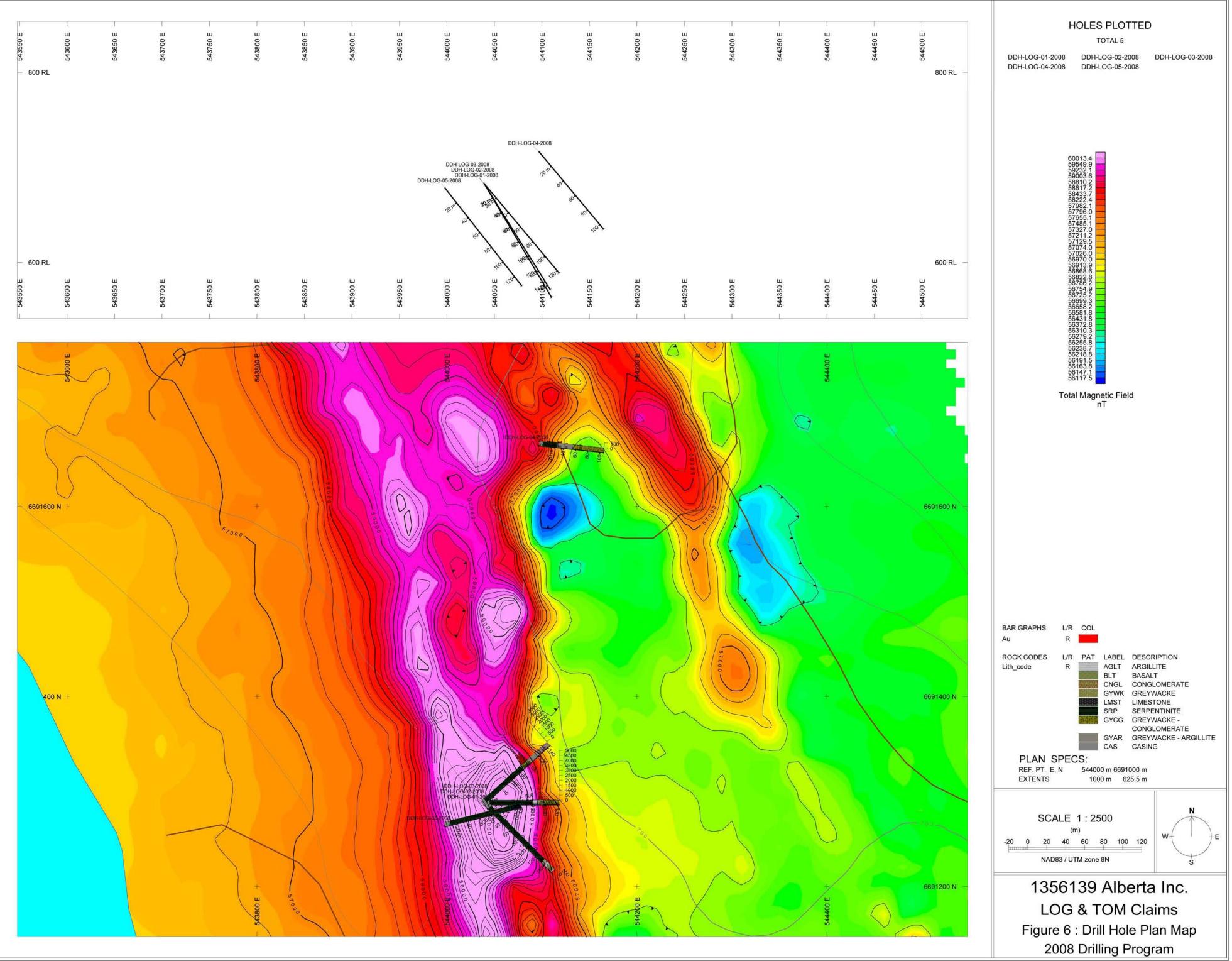


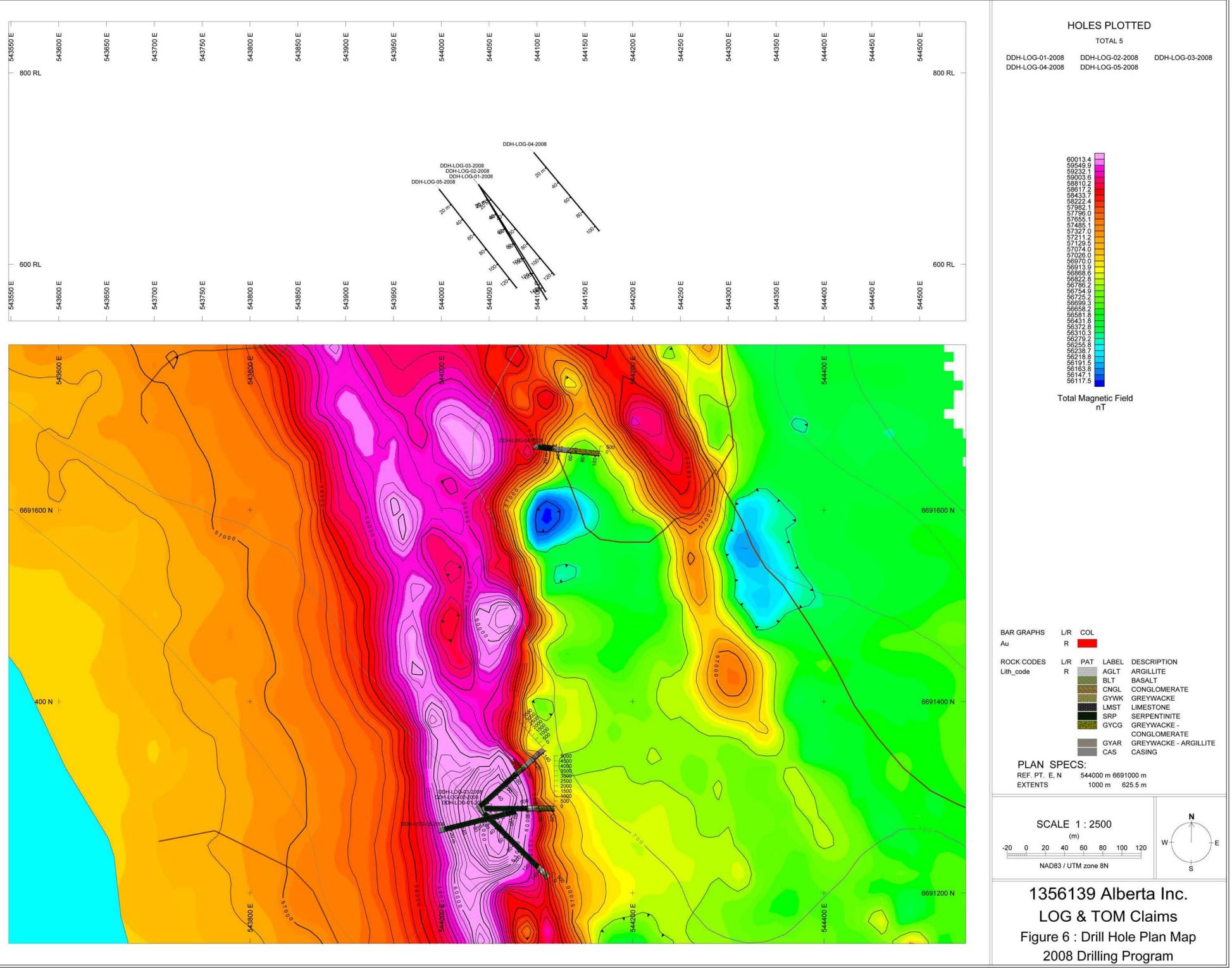
Diamond drilling log	J: LOG & TOM Claims Hole I	ogged: DDH-LOG-05-2008	1356139 Alberta Inc.
Easting :543998 Northing :6691263 Elevation :678	Azimuth :76 Dip :-51 Total Depth 131.98		
Scale (meters)	Lithological Description	Sample number To To Description	Au Ag As Cr Mag_Susc ppb 0 5 ppm ppm 0.00 150.00 Image: Contract of the second s
-10 46.0 27.0 0.0 0.0 67.0 54.0 54.0 50.0 110.0 7.0 54.0 50.0 110.0 7.0 54.0 50.0	CASING: Overburden SERPENTINITE: Magnetite and chromite rich ultra-mafic rock altered to serpentinite. Dark green to black, fine grained. Very lightly veined, both by quartz and calcite (60% and 40% respectively). Heavily sheared and altered (serpentine and talc) towards the top of the sequence. Remnant olivine crystals,medium grained and strongly serpentinized. Magnetite and chromite in		



Dian	nond drilling lo	•g: LOG & TOM Claims Hol	logged: DDH-LOG-05-2008	1356139 Alberta Inc.
North	ng :543998 ning :6691263 ation :678	Azimuth :76 Dip :-51 Total Depth 131.98		
Scale (meters)	RQD % 0.0 100.0 Lithology	e to by Lithological Description	Sample number To To Description	Au Ag As Cr Mag_Susc ppb ppm ppm ppm 250 0.00 150.00
-30	110.0 20.0 74.0 195.0 195.0 118.0 46.0 104.0 49.0 128.0 89.0 118.0 89.0 104.0 83.0 98.0 98.0 104.0 83.0 104.0 83.0 98.0 104.0 105.0 104.0 105.0 104.0 105.0 104.0 105.0 105.0	groundmass, with chromite becoming more evident along fractures. The section is strongly magnetic throughout. Some sulfides are associated with fractures in serpentine and chlorite rich zones. Lower contact brecciated and sharp at approximately 55 degrees towards core axis.		






Dian	Diamond drilling log: LOG & TOM Claims			Hole l	ogge	d:	DDH-LC)G-05-2008		1356139 Alberta Inc.				
North	ng :543998 ing :66912 ition :678			Azimuth :76 Dip :-51 Total Depth 131.98										
Scale (meters)	RQD 0.0 100.0	Lithology	Structure	Lithological Description	ı	Sample number	From	То	Interval	Description	Au A	n ppm	Cr ppm 1 2000	Mag_Susc
-100	104.0 97.0 121.0 79.0 93.0 118.0 73.0													

