ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 -510 West Hastings Street

Vancouver, B.C. V6B 1L8

<u>Telephone: 604-688-2568</u> Fax: 604-688-2578

ASSESSMENT REPORT

describing

GEOPHYSICAL SURVEYS AND DIAMOND DRILLING

at the

CONVERT PROPERTY

Convert 1-128	YB60028-YB75165
133-154	YB75170-YB75191
159-186	YB75196-YB75223
191-208	YB75228-YB75245
315-320	YB75352-YB75357

NTS 105B/5 Latitude 60°20'N; Longitude 131°47'W

in the

Watson Lake Mining District Yukon Territory

prepared by

Archer, Cathro & Associates (1981) Limited

for

ZINCCORP RESOURCES INC.

by

Martin W. Núñez, B.Sc. Geology and W.A. Wengzynowski, P.Eng.

June 2008

TABLE OF CONTENTS

	<u>PAGE</u>
INTRODUCTION	1
PROPERTY LOCATION, CLAIM DATA AND ACCESS	1
HISTORY	2
GEOMORPHOLOGY	2
REGIONAL GEOLOGY	2
PROPERTY GEOLOGY	3
MINERALIZATION AND GEOCHEMISTRY	6
GEOPHYSICAL SURVEYS	7
DIAMOND DRILLING	8
CONCLUSIONS AND RECOMMENDATIONS	10
REFERENCES	11

APPENDICES

- I STATEMENT OF QUALIFICATIONS
- II CERTIFICATES OF ANALYSIS
- III GEOLOGICAL AND GEOTECHNICAL LOGS

FIGURES

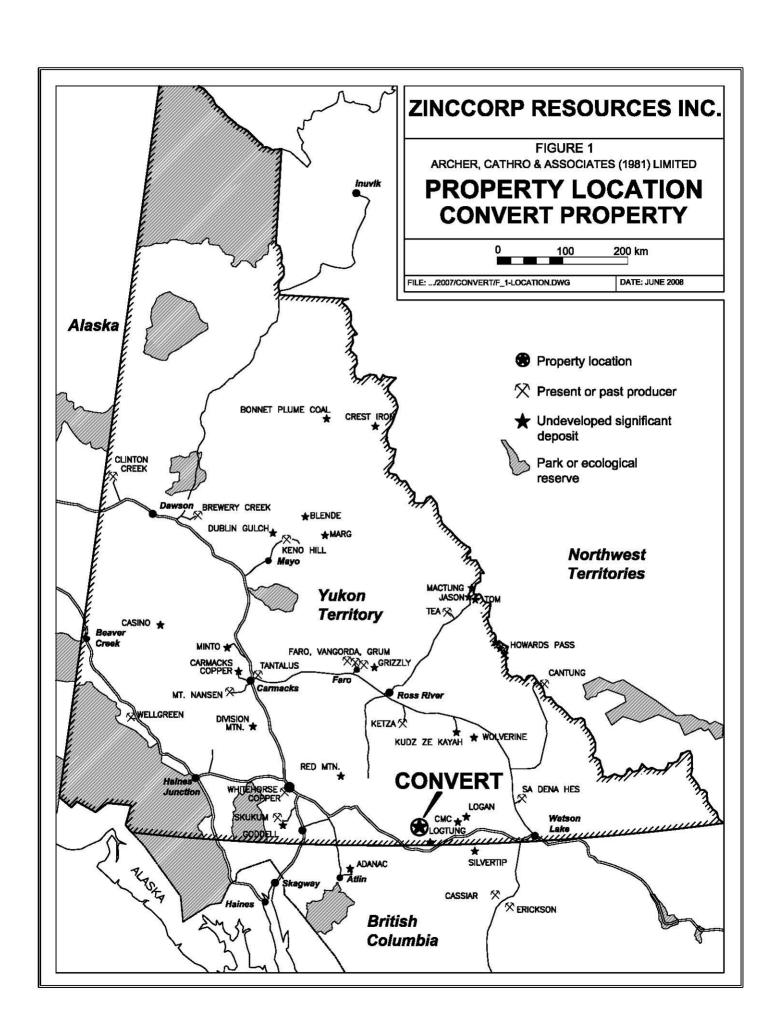
<u>No.</u>	Description	Follows Page
1	Property Location	1
2	Claim Location	1
3	Historical Work Areas	2
4	Tectonic Setting	3
5	Regional Geology	3
6	Property Geology	3
7	Mineralization and Drill Hole Location	6
8	VTEM Compilation	7
9	DDH Section CV-07-01	9
10	DDH Section CV-07-02	9
11	DDH Section CV-07-03, CV-97-01, 03 & 05	10
	<u>TABLES</u>	
I	Claim Registration Data	1
II	Main Lithological Units	3
III	Peak Values (ppm)	6
IV	Drill Hole Data	9

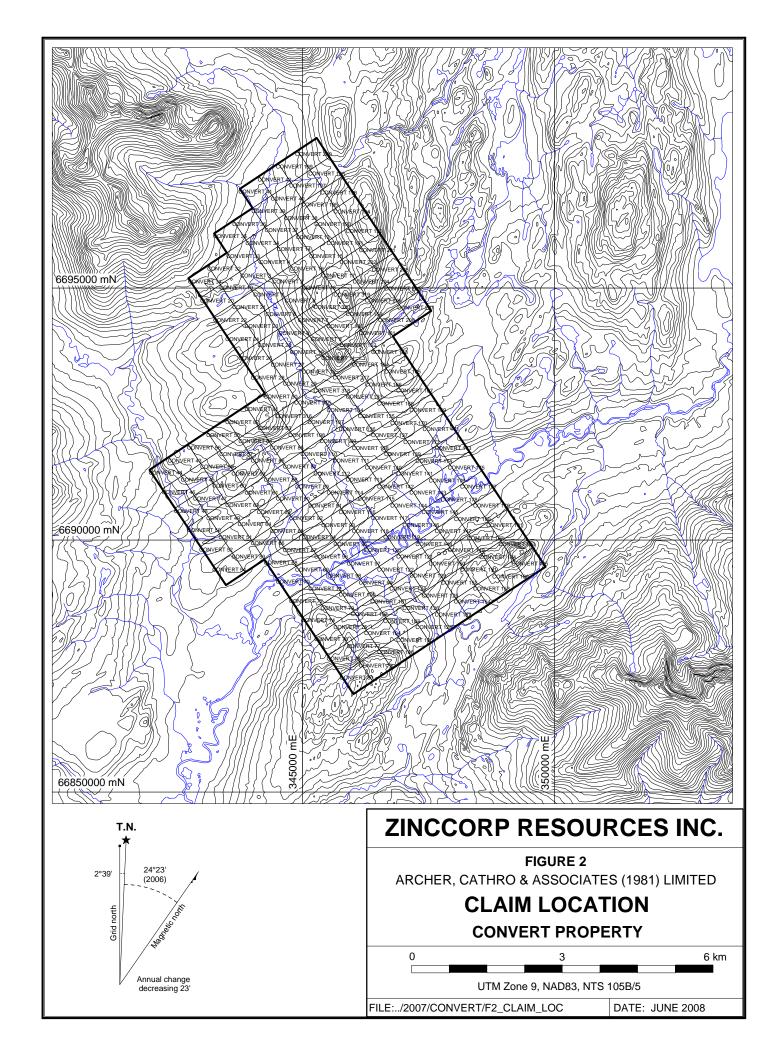
INTRODUCTION

The Convert property is a volcanogenic massive sulphide (VMS) prospect located in southern Yukon Territory. It is owned 100% by Zinccorp Resources Inc.

This report describes the results of 479 m of diamond drilling done in three holes during 2007. The drilling was conducted with daily helicopter support from a tent camp located on private land alongside the Alaska Highway, 45 km southwest of the property. The work was started on June 21 and drilling was completed on June 29. The program was funded by Zinccorp and was managed by Archer, Cathro & Associates (1981) Limited. The authors participated in and supervised the work program. The authors' Statements of Qualifications appear in Appendix I.

PROPERTY LOCATION, CLAIM DATA AND ACCESS


The Convert property consists of 202 mineral claims located in southern Yukon at latitude 60°20'N and longitude 131°47'W on NTS map sheet 105B/5 (Figure 1). The claims are registered with the Watson Lake Mining Recorder in the name of Archer Cathro, which holds them in trust for Zinccorp. The locations of individual claims are shown on Figure 2 while claim registration data are tabulated on table I.


Table I: Claim Registration Data

Claim Name	Grant Number	Expiry Date*
Convert 1-10	YB60028-YB60037	February 15, 2018
11-30	YB63774-YB63793	February 15, 2016
31-36	YB75068-YB75073	February 15, 2014
37-38	YB75074-YB75075	February 15, 2016
39-106	YB75076-YB75143	February 15, 2014
107-112	YB75144-YB75149	February 15, 2016
113-128	YB75150-YB75165	February 15, 2014
133-138	YB75170-YB75175	February 15, 2016
139-154	YB75176-YB75191	February 15, 2014
159-170	YB75196-YB75207	February 15, 2016
171-186	YB75208-YB75223	February 15, 2014
191-196	YB75228-YB75233	February 15, 2016
197-200	YB75234-YB75237	February 15, 2014
201-204	YB75238-YB75241	February 15, 2016
205-208	YN75242-YB75245	February 15, 2014
315-320	YB75352-YB75357	February 15, 2016

^{*} Expiry dates include assessment credit for work done in 2007, which has been filed but not yet accepted.

The property is situated 58 km by road east of Teslin, a village that lies alongside the Alaska Highway approximately 183 km by road east-southeast of Whitehorse. The closest ground

access to the Convert property is an old bulldozer trail that ends 17 km to the south. In 2007, mobilization to and from the property and daily crew moves were performed with an Astar 350 BX operated by Kluane Helicopters Ltd. from the base camp at Morley River.

HISTORY

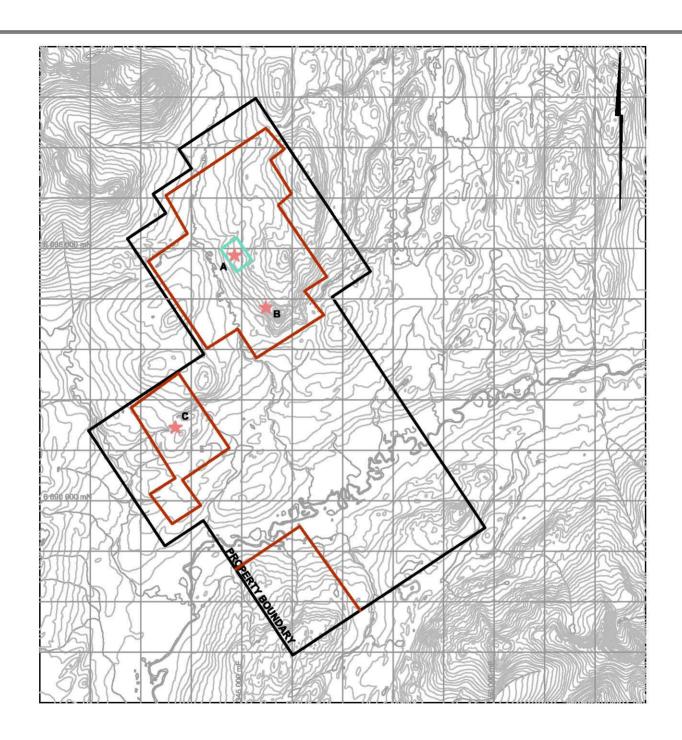
In 1971 Wolf Lake Joint Venture conducted regional scale exploration in the Convert area. Although this work identified soil geochemical anomalies and some mineralization, no claims were staked (Archer, 1971). In 1988 geologists from Archer Cathro revisited the area and discovered a prominent gossan that is naturally devoid of vegetation (a "kill zone"). Soil samples from the kill zone yielded strongly anomalous, multi-element values, but again no claims were staked.

Nordac Resources Ltd. (the predecessor to Strategic Metals Ltd.) staked the first 10 Convert claims in summer 1995 and later that year conducted grid soil sampling, prospecting and geological mapping (Carne, 1996). In early 1996, the claim block was expanded and airborne and ground, electromagnetic and magnetic surveys were performed. The following summer, geological mapping, prospecting and soil sampling were conducted at reconnaissance scale across the entire property and in more detail on four grids (Wengzynowski, 1997).

In 1997 Strategic Metals completed 993 m of diamond drilling in six holes (Wengzynowski, 1998). It also performed minor prospecting and hand trenching in 2005 (Wengzynowski, 2006), and conducted a helicopter-borne VTEM and magnetic survey in 2006 (Wengzynowski, 2007).

The Convert property was purchased from Strategic Metals by Zinccorp in March 2007.

Historical work areas are shown on Figure 3.


GEOMORPHOLOGY

The property lies along the northwestern flank of the Cassiar Mountains. It is drained by creeks that are tributaries of the Morley River, which is part of the Yukon River watershed. Terrain on the property is gentle to moderate with elevations ranging from 900 m near the Morley River to 1500 m atop a ridge in the northern part of the claim block. The property was covered by Pleistocene ice sheets and glacial features are common. Outcrop is rare.

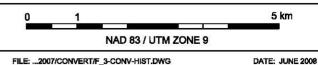
Treeline in the Convert area is at about 1450 m. Most of the property is well vegetated with black spruce, pine or alder on hillsides and thick willow along creeks and in marshes. Buckbrush predominates at higher elevations.

REGIONAL GEOLOGY

Geology on the Wolf Lake map sheet, where the Convert property is located, was mapped at 1:250,000 scale in the 1950s and 1970s by the Geological Survey of Canada (Poole et al., 1960, and Tempelman-Kluit, et al, 1976). More recent mapping has been done in the immediate vicinity of the property at 1:50,000 scale by the Yukon Geological Survey (Roots et al, 2004).

Soil geochemical grid

Area of diamond drilling and ground geophysical surveys


Showing referred to in text

ZINCCORP RESOURCES INC.

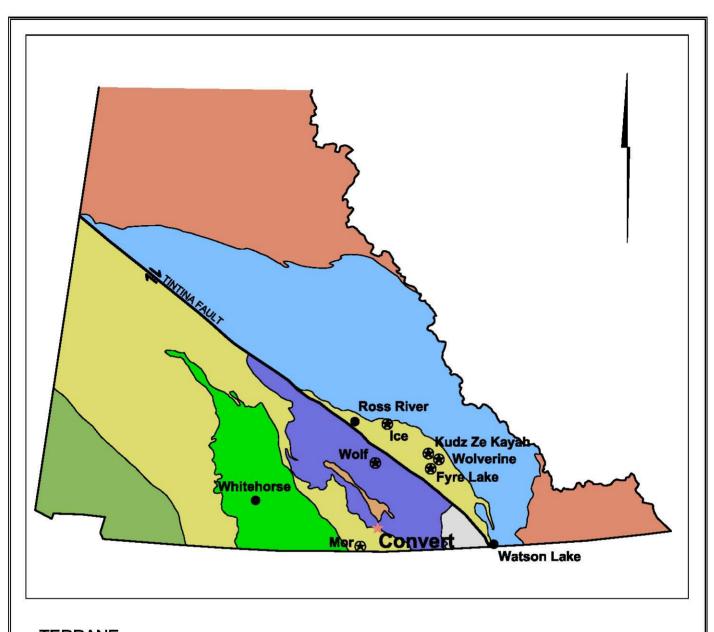
FIGURE 3
ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

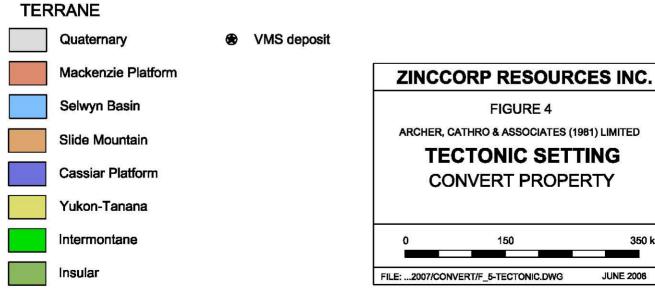
HISTORICAL WORK AREAS

CONVERT PROPERTY

The Convert property is located on the southwestern side of the D'Abbadie Thrust Fault within a package of rocks assigned to the Yukon-Tanana Terrane (Figures 4 and 5). These rocks represent continental margin sediments and island arc assemblages that were metamorphosed and deformed during their accretion to North America in early Mesozoic times. Following accretion they were extensively intruded by various Early Jurassic to Early Tertiary intrusions that range up to batholith in size. The main lithologies in the vicinity of the property are summarized on the following table.

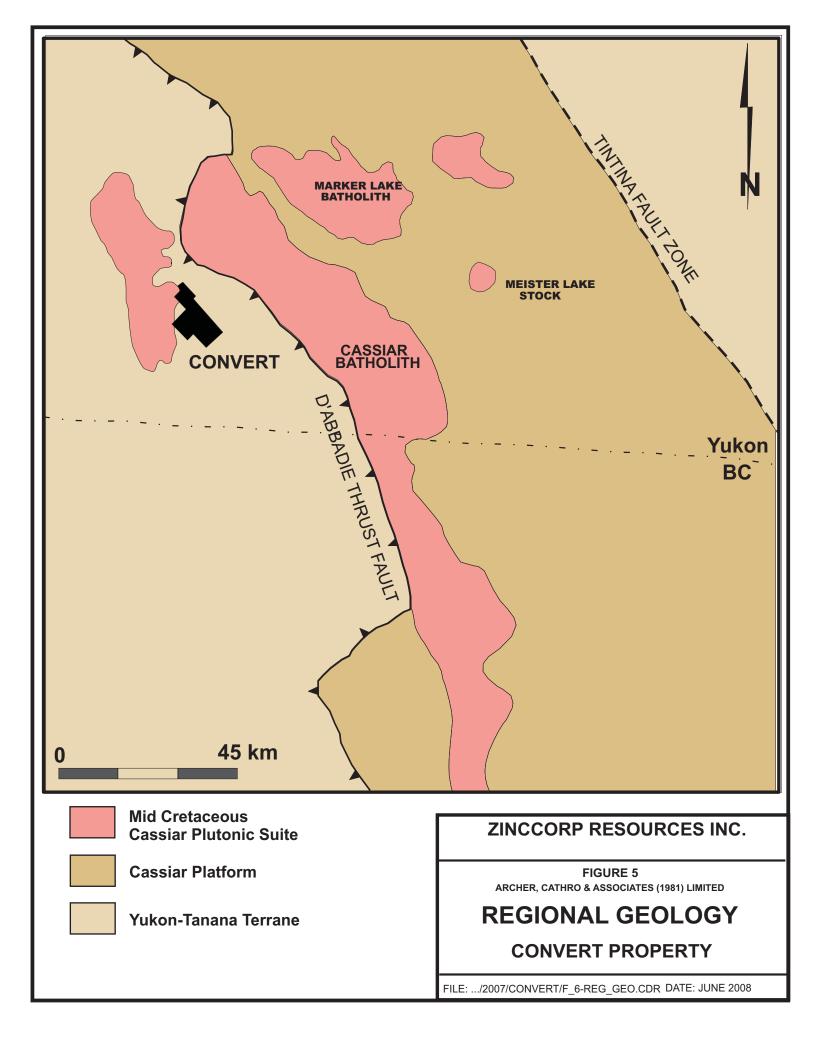
Table II: Main Lithological Units

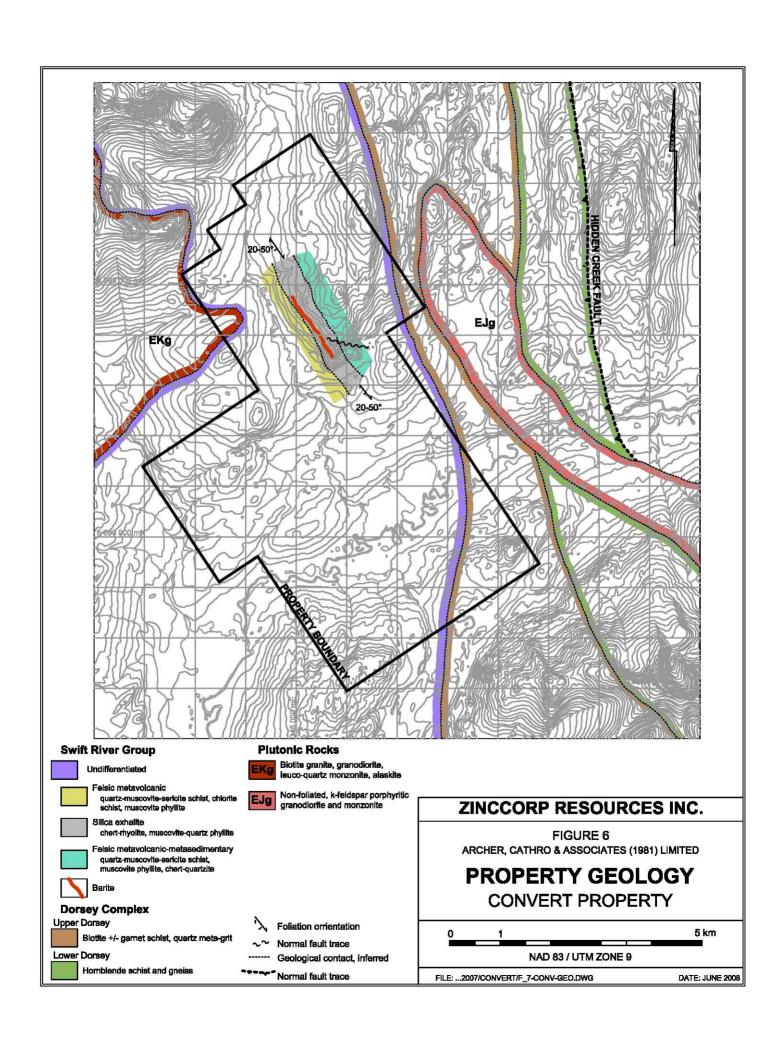

Recent	Glacial till, lateral and terminal moraines and
Overburden	glaciofluvial outwash
Late Cretaceous or Early Tertiary	Quartz monzonite and quartz-feldspar
	porphyry
Mid Cretaceous	Biotite granite, granodiorite, leuco-quartz
	monzonite and alaskite
Early Jurassic	Porphyritic granodiorite, monzonite, minor
	diorite and gabbro
<u>Upper Carboniferous to Permian</u>	Marble, meta-tuff and volcanic breccia of
Klinkit Group	intermediate composition and limestone
Lower Carboniferous to Upper Silurian	Quartz-plagioclase grit, meta-sandstone,
Swift River Group	argillite, limestone, chloritic meta-tuff and
	andesitic intrusions, breccias and tuff.
Carboniferous or older	Biotite±garnet schist, quartz meta-grit,
Dorsey Complex	hornblende schist and gneiss


After Roots et al, 2004

PROPERTY GEOLOGY

The Convert property is mostly underlain by metasedimentary and metavolcanic rocks, which belong to the Swift River Group and Dorsey Complex of the Yukon-Tanana Terrane (Figure 6). An unnamed batholith of Mid Cretaceous granite lies along the northwest edge of the property while an elongate stock of Early Jurassic porphyritic granodiorite is situated along to the eastern boundary. Smaller Mid Cretaceous granitic plutons are located two to three kilometres to the south.


Outcrop exposure on the Convert property is poor, ranging from less than 1% at lower elevations to about 2% near ridge tops. Nine lithological units have been identified by previous detailed mapping which are described below.



350 km

JUNE 2008

Lithologies

Swift River Group

Felsic metavolcanics

Quartz-feldspar-muscovite±biotite grit is found south of the Morley River. It is tan to yellow and weakly to moderately foliated. Quartz forms between 20 and 40% of the rock and typically exhibits sucrosic textures. Pitting is common, likely resulting from feldspar weathering to clay.

Quartz-muscovite±biotite±chlorite schist is well foliated and varies from tan to pale green to green with white bands. This unit is most abundant in the north-central part of the property and is common in drill core. Quartz is the main mineral (≥30%) and commonly forms eyes up to 2 mm across. Muscovite, biotite and chlorite define well developed foliation. Individual horizons within this unit vary from non-calcareous to moderately calcareous and occasionally contain minor graphite. This unit is thought to be metamorphosed felsic volcanic.

Silica exhalite

Chert is also most abundant in the north-central part of the property where it is interbedded with quartz-muscovite±biotite±chlorite schist. The chert is moderately banded; white, grey or tan; and, thickly to thinly laminated. Muscovite content varies from 0 to 20% and in places this unit grades to quartz-muscovite schist. Minor pyrite and hematite parallel foliation in several areas while magnetite and graphite laminae are observed in float boulders and drill core. This unit is interpreted to be a silica-rich exhalite.

Felsic metavolcanics - metasediments

Phyllite has only been identified in the north-central part of the property and is the dominant unit in drill core. This unit is closely associated with the chert and quartz-muscovite±biotite±chlorite schist, and if often interbedded with these units. Outcrops are well foliated, dark grey and in places contain thin quartz and/or graphite laminae. In drill core, phyllite is normally dark grey or black but becomes grey to pale green where it is sericite-or chlorite-altered. Crenulations are common and minor disseminated pyrite is often present.

Other Stratified Units

Limestone is grey to white, buff weathering and thinly bedded. Disseminated pyrite is present in minor quantities. This unit is exposed in the northeastern part of the property. Its relationship to other units is uncertain.

Andesite is grey to orange weathering, green on fresh surfaces, aphanitic and moderately foliated. It is generally strongly fractured and contains foliaform quartz-carbonate sweats and crosscutting veinlets. Trace pyrite is present in some outcrops. This unit is found in the western part of the property. It is either part of an andesitic intrusion, breccia and tuff unit within the Swift River Group or is a folded layer of volcanic fragmental belonging to the Klinkit Group.

Intrusive Units

Peridotite outcrops are found near the southeastern edge of the property. These rocks are greenish black, moderately to strongly serpentinized and weakly to moderately magnetic. Narrow discontinuous bands of chrysotile (≥ 1 mm) are present in some float boulders. This unit probably belongs to the hornblende schist and gneiss at the base of the Dorsey Complex.

Greenstone is medium grained, olive green and strongly calcareous. It is dominantly composed of chlorite, quartz and carbonate with 2 to 3 mm wide carbonate veinlets. This unit is only seen in the drill area where it appears to form <1 m wide dykes with sharp but irregular contacts.

Granodiorite is tan, grey to white, generally blocky weathering and non-foliated. It locally weathers to fine, uniformly pebble-sized rubble where feldspar is dominant. Composition is variable ranging from granite to hornblende diorite. The two largest exposures are found along the eastern and western edges of the claim block while smaller dykes and sills outcrop in the southeastern part of the property. Based on the recent regional mapping, the eastern pluton is considered to be Early Jurassic and the western pluton to be Mid Cretaceous.

Structure

Property-scale faults are observed both subparallel and parallel to foliation. Displacement on the faults is not known. Characteristic features include brecciation and slickensides at surface and gouge zones in drill core. At least some of the property-scale faults are likely related to the Hidden Creek Fault and the Ram Creek Fault, which are regional scale thrusts located 3 and 6 km to the east of the claims, respectively.

Outcrop-scale folds occur throughout the property. These are generally high amplitude structures. Deformation fabrics are well developed in outcrops and drill core. Phase 1 deformation is indicated by foliation, which strikes northwesterly and usually dips moderately to the southwest. Phase 2 deformation is defined by slaty cleavage that is only observed in drill core. Angles between the two planar features range from 0 to 40°. Relict bedding is rarely preserved and where present is roughly parallel to foliation. Quartz±carbonate sweats, veins and veinlets are common in all units, except the granodiorite.

MINERALIZATION AND GEOCHEMISTRY

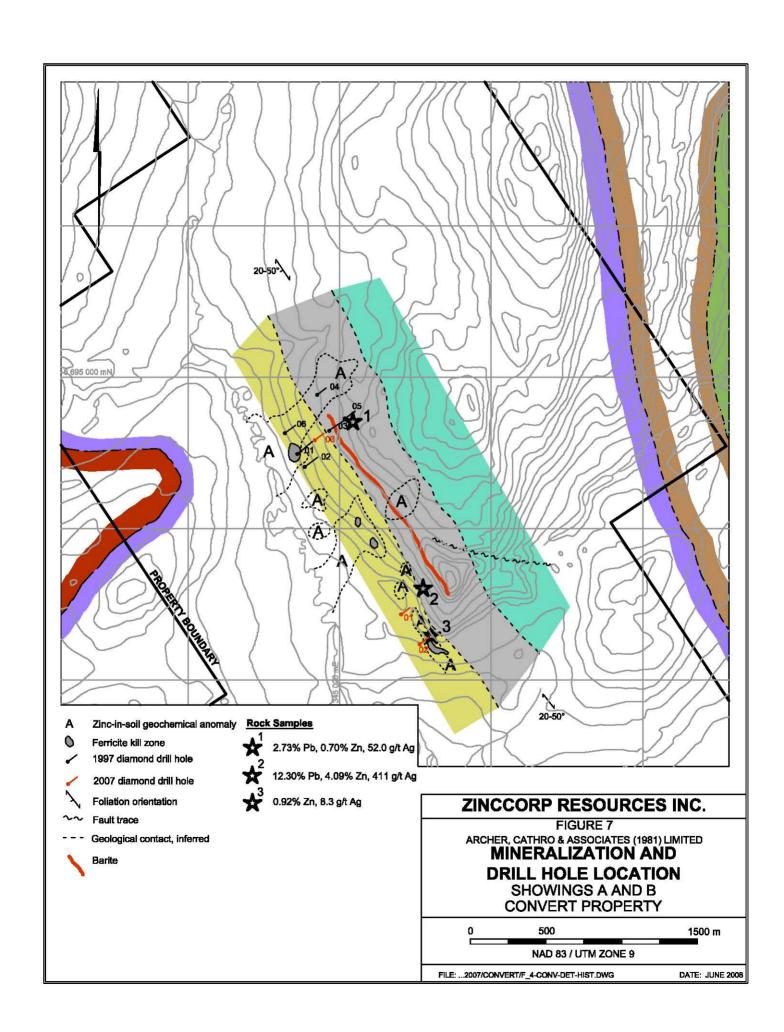

Volcanogenic massive sulphide (VMS) or skarn mineralization has been discovered at three main showings on the Convert property. Two of these zones have been partially tested by diamond drilling. The locations of Showings A, B and C are shown on Figure 3. In 1995 and 1996, grid- and reconnaissance-scale soil sampling was performed in various parts of the property. This work outlined three main areas of anomalous lead-zinc-copper-silver response coincident with the areas where mineralization has been discovered. The following table lists peak soil geochemical values for key VMS indicator elements, which were obtained in the vicinity of the main showings.

Table III: Peak Values (ppm)

Showing	Lead	Zinc	<u>Copper</u>	Silver
A	682	9720	306	10.6
В	348	>10000	1345	10.6
C	4050	5320	499	21.0

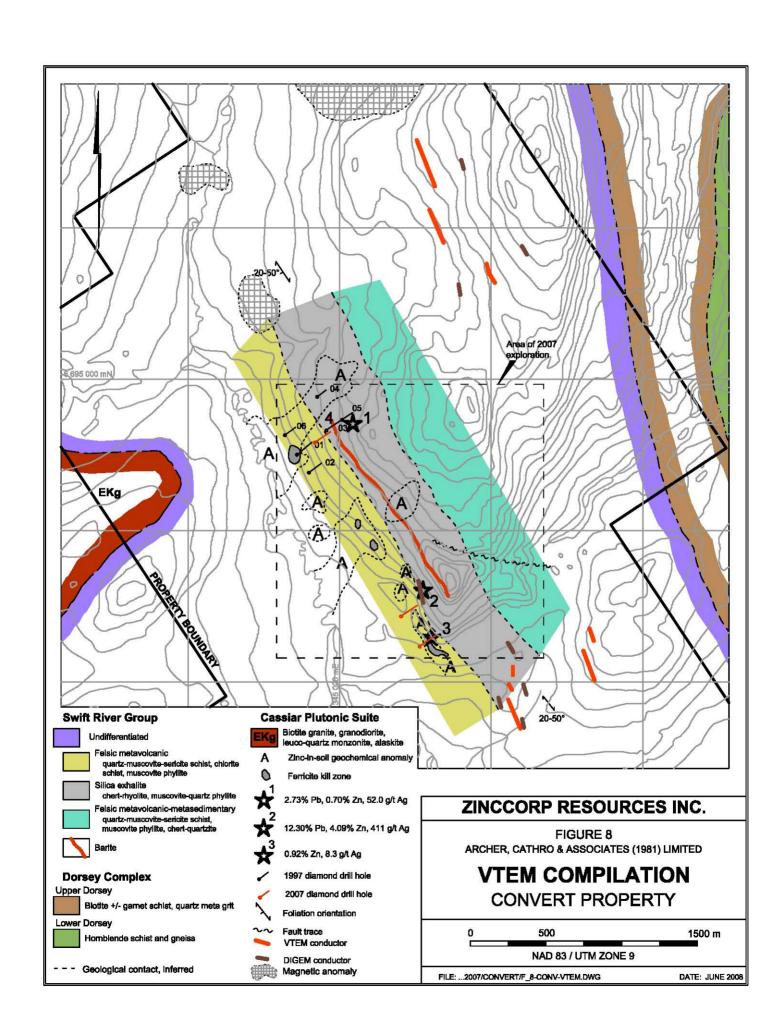
Showing A is located in the north-central part of the property. It occurs within a section of metamorphosed felsic volcanic rocks that are capped by a thick silica exhalite horizon containing narrow intermittent bands of nearly massive barite (Figure 7). This showing was the focus of the 1997 drill program (see Diamond Drilling section). It is centred on the discovery kill zone, a 75 by 50 m unvegetated area where the ground is covered by a thick layer of rusty transported iron oxide. The area around the kill zone is heavily vegetated and outcrop is rare. Prospecting found scattered barite float and a 30 cm diameter boulder of silica-muscovite exhalite that contains fine laminations of galena, honey sphalerite and lesser pyrite. A rock sample from this boulder returned 0.70% zinc, 2.73% lead and 52 g/t silver (Wengzynowski, 2005). Showing A is marked by a 900 by 250 m area exhibiting multi-element soil geochemical response. The highest zinc values occur within and immediately downhill from the discovery kill zone. Lead and silver response crosscuts the zinc trend and are best developed uphill from the kill zone. Copper values are highest within the kill zone.

Showing B lies one kilometre south of Showing A and is within the same stratigraphic section. It is marked by a 1000 by 300 m area of weak to strong lead-zinc soil geochemical response with sporadic copper and silver support. The anomaly trends northwesterly approximately parallel to topography and stratigraphy. It contains another ferricrete kill zone at its southern end. Again the area is well vegetated and outcrop is sparse. Detailed prospecting and hand pitting exposed wispy foliaform galena and sphalerite in locally derived talus, a chip sample from which yielded 12.3% lead, 4.09% zinc and 411 g/t silver across 10 cm (Wengzynowski, 2006). Numerous blocks of silica exhalite containing clots and disseminations of sphalerite were found nearby and bands of massive barite were discovered about 75 m up-section. The ferricrete kill zone, which is located downhill and along strike to the south from the showing, is enriched in iron, zinc, cobalt, nickel, manganese and barium.

Showing C is located about 3.5 km west-southwest of Showing A. The soil geochemical anomaly associated with this showing consists of a 2300 by 300 m northerly trending cluster of coincident lead-zinc response within which are scattered high copper and silver values. The anomaly roughly parallels foliation and is open to the south. Rocks in the vicinity of the anomaly are foliated andesite with minor limestone. The showing consists of calc-silicate skarn float with magnetite and/or sulphide minerals. A specimen of skarn found in 1996 returned 5.37% lead, 4.83% zinc and 69 g/t silver (Wengzynowski, 1997) while fragments of strongly oxidized material collected in 1971 from the bottom of a soil sample pit reportedly assayed 21.3% zinc (Archer, 1971).

GEOPHYSICAL SURVEYS

In early 1996, helicopter-borne electromagnetic, resistivity and magnetic surveys were flown over the entire Convert property. These surveys were immediately followed by ground magnetic and electromagnetic surveys in the vicinity of the discovery kill zone.


The helicopter-borne surveys were done by Dighem Power of Ontario and consisted of 349 line kilometres flown at an average airspeed of 100 km/hr with an EM bird height of approximately 30 m

Three strong EM conductors were identified, the best of which overlies the geochemical anomaly and mineralization at Showing B and extends approximately 600 m south beyond the area of geochemical coverage. A strong 900 m long, northerly trending magnetic high coincides with the area of anomalous geochemistry at Showing C. This magnetic anomaly is likely due to skarn alteration.

The 1996 ground geophysical surveys were conducted by Amerok Geosciences Ltd. of Whitehorse. They consisted of 15.1 line kilometres of magnetometer and VLF surveys done on cut lines using: a Maximum 1-10 and MMC; two Omni Plus magnetometer/VLF receivers; and, an Omni IV base station magnetometer. The ground surveys were conducted in the vicinity of Showings A and B. The VLF survey identified a conjugate set of conductors, one of which passes directly through the discovery ferricrete kill zone. Magnetic response was relatively flat, which confirmed results of the airborne survey in that area.

In May 2006 a helicopter-borne VTEM and magnetic survey was carried out by Geotech Ltd. across the northern portion of the Convert claim block. A total of 205 line km was flown at 100 m line spacing with four perpendicular tie lines spaced approximately 1000 m apart. Where possible, the apparatus maintained a terrain clearance of 50 m.

The magnetic field data over the survey area was generally weak with the strongest response in the northern and western parts of the property (Figure 8). Euler Deconvolution inversion of the magnetic data identified numerous shallow arcuate to circular anomalies and lesser north to northwest trending linear features.

VTEM response was subdued across most of the property but for four areas of weak to moderate conductivity. All conductors are believed to be associated with steeply dipping thick plates and are directly coincident with Euler magnetic features.

DIAMOND DRILLING

Pre-2007 Drilling

The only drill program conducted on the property prior to 2007 was done in 1997 by Strategic's predecessor Nordac Resources. A total of 993 m was completed in six holes by E. Caron Diamond Drilling Ltd. of Whitehorse using NQ equipment.

Drilling was focused on the mineralized stratigraphy found at Showing A near the discovery kill zone. The holes intersected cyclical metavolcanic and metasedimentary rocks that exhibit alteration consistent within a distal VMS setting and roughly corresponds to the lithologies of the Swift River Group.

The metavolcanic sequence consists of white to grey, phyric and aphyric rhyolite, quartz-feldspar augen schist and barite-silica exhalite. These rocks have been subjected to strain that is reflected by flattened lapilli textures and high augen ratios. Unit contacts are sharp and are often quartz veined.

The metasedimentary sequence is composed of graphitic and non-graphitic phyllite and white to grey ribbon chert. Metasedimentary contacts are more gradational than those between volcanic rocks.

The most common sulphide mineral in the core is pyrite, which occurs as coarsely disseminated recrystallized grains and lesser fine grained foliaform wisps. Only minor base metal sulphides were intersected. The best grades are from a 4.92 m interval of chloritized felsic tuff that averaged 1.71% zinc and 5.74 g/t silver, including a 0.60 m section that assayed 9.14% zinc and 25.6 g/t silver. In this interval, sphalerite occurs as irregular bands, patches and disseminations. Sphalerite was also observed as thin wisps and bands in rhyolite within narrow intervals. Only traces of galena and chalcopyrite were recognized in core. Magnetite occurs as fine grained disseminations within the silica exhalite horizon. This mineralization is situated about 450 m stratigraphically above the barite horizon.

Sericite alteration is pervasive throughout the metavolcanic sequence. It is also observed within metasedimentary rocks adjacent to metavolcanics but the intensity is much lower. Chlorite alteration is rare and is localized along vein selvages.

2007 Drilling

General

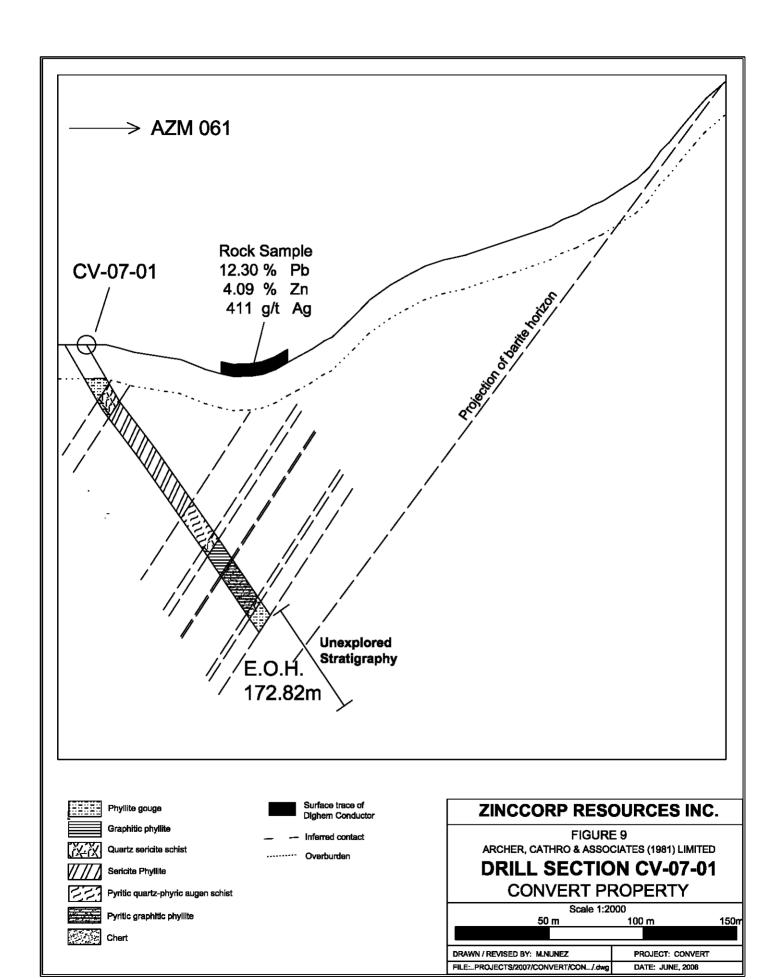
Drilling was conducted between June 22 and 29 and was contracted to Top Rank Drilling Ltd. of St. Rose Du Lac, Manitoba. A total of 479 m were completed in three holes using a helicopter

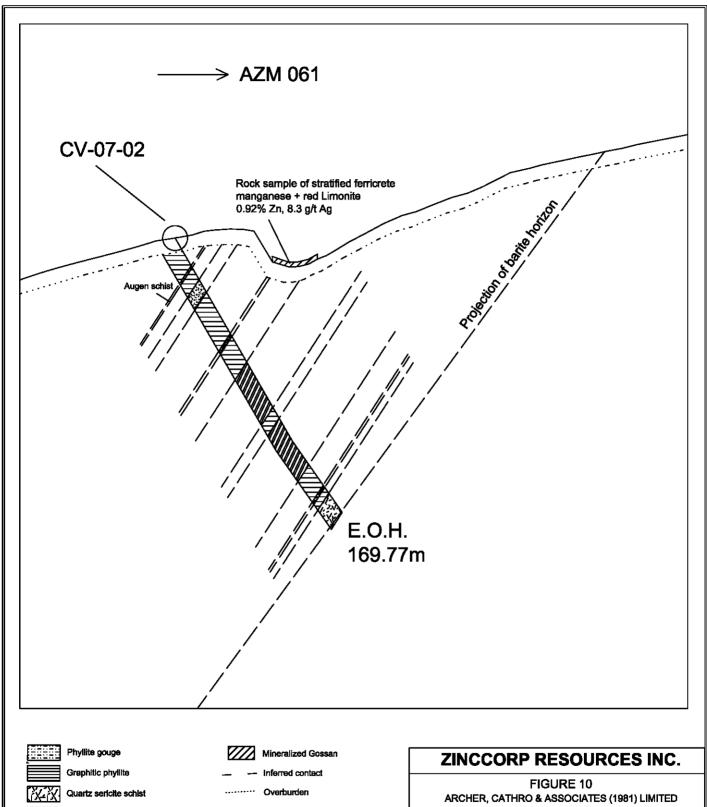
portable, diesel powered JKS 300 drill and BTW equipment. One hole was designed to complete a pre-2007 drill section across the prospective stratigraphy at Showing A. The other holes tested the northwesterly trending geochemical and geophysical anomalies that defines Showing B. Drill hole data are shown in Table IV.

Table IV: Drill Hole Data

Hole	Easting (m)	Northing (m)	Elevation (m)	Azimuth	Dip	Depth (m)
CV-07-01	345405	6693434	1139	061°	50°	172.82
CV-07-02	345527	6693238	1121	061°	60°	169.77
CV-07-03	344835	6694585	1244	058°	50°	136.25

The drill core was geotechnically and geologically logged on the property.


Mineralized intervals were split with one half returned to the box and the other half put into plastic bags each containing a unique pre-numbered sample tag. The core boxes were stacked and secured at their respective drill site.


All samples were transported to Whitehorse and then shipped to ALS Chemex of North Vancouver where they were dried and fine crushed to better than 70% passing 2 mm. A 250 g split of the crushed material was pulverized to better than 85% passing 75 microns. A split was then subjected to aqua-regia digestion and analyzed for 34 elements using the ME-ICP41 procedure. Certificates of Analysis are contained in Appendix II, while geological and geotechnical logs are contained in Appendix III.

Results

Drilling at Showing B tested two sites within the areas of anomalous geochemical and geophysical response. A stratified ferricrete kill zone is located at the southern end of the anomalous area along strike from a prominent linear recessive gully. CV-07-01 was collared 100 m southwest from this gully and tested a 1997 EM conductor (Figure 9). The hole intersected a sequence of metavolcanic quartz-sericite schist and graphitic phyllite that was weakly mineralized with coarse grained euhedral pyrite. The surface trace of the EM conductor was found to correspond with a metavolcanic quartz-augen schist but no significant intervals of mineralization were identified. Drilling was terminated before reaching target depth due to squeezing and loss of circulation, in a sequence of gritty crushed graphitic phyllite. No anomalous values were obtained from samples taken from this hole.

CV-07-02 was collared 230 m southeast of CV-07-01 and drilled directly beneath a site within the ferricrete kill zone where a specimen returned an assay of 0.92% Zn and 8.3 g/t Ag (Figure 10). This hole intersected a sequence of metavolcanic quartz-sericite schist and graphitic phyllite, the same sequence observed in CV-07-01. The location of the mineralized ferricrete specimen corresponds to the surface projection of a weakly mineralized quartz-sericite chert horizon cut in the hole. This chert horizon is interpreted as a rhyolitic metavolcanic exhalative. It hosts minor pyrite and traces of chalcopyrite and sphalerite. Ouartz flooding and banding are

DRILL SECTION CV-07-02 CONVERT PROPERTY

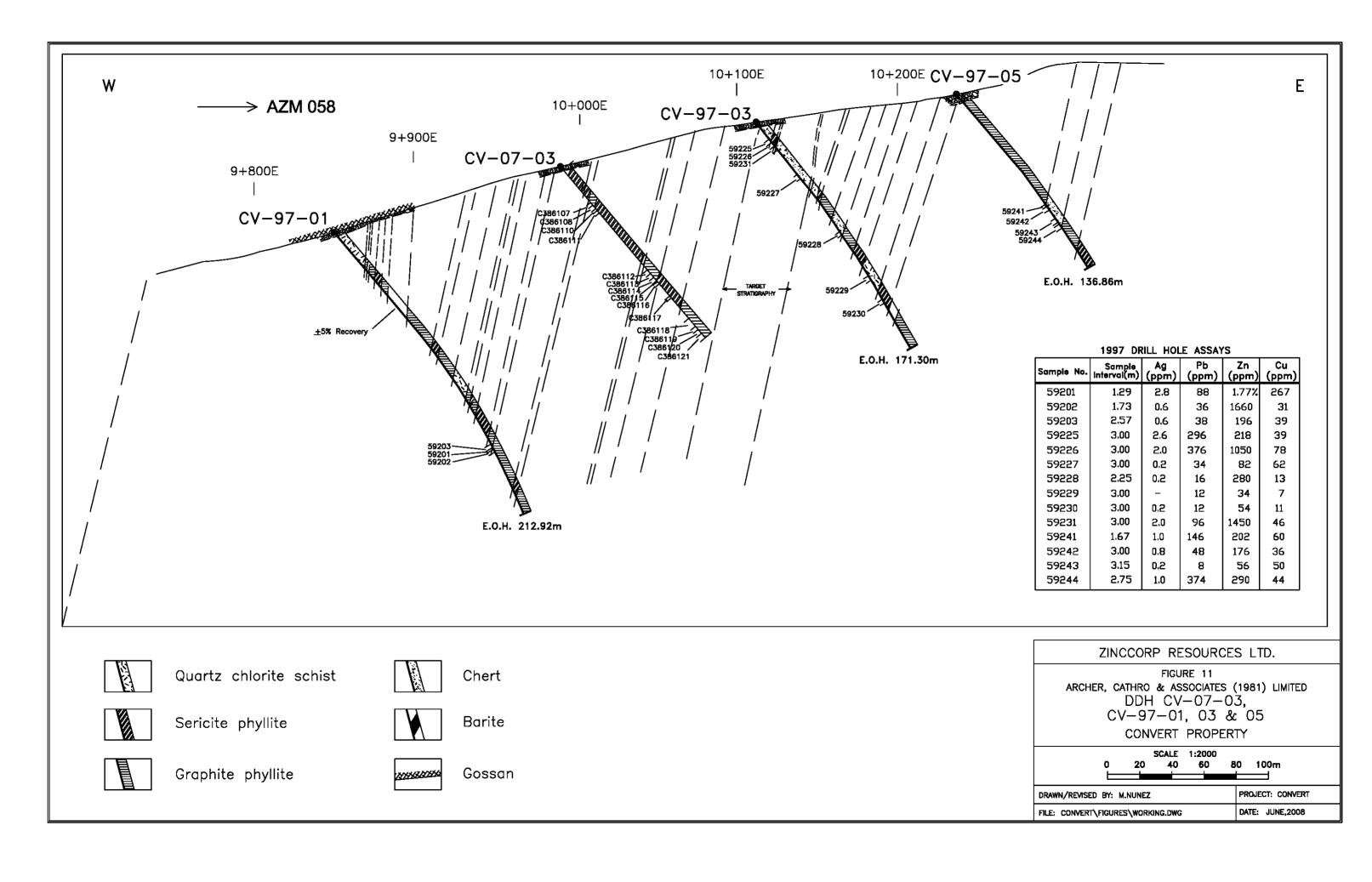
Scale 1:2000									
50 m 100 m									
DRAWN / REVISED BY: M.NUNEZ	PROJECT: CONVERT								
FILE:PROJECTS/2007/CONVERT/CON/.dwg	DATE: JUNE, 2008								

common in this hole occurring mainly within sections of sericitic schist. No significant assays were obtained from this hole.

Drilling at Showing A was centred on the core portion of the geochemical anomaly that was the focus of the drill hole program conducted by Nordac Resources in 1997. CV-07-03 was collared approximately midway between CV-97-01 and CV-97-03 and was drilled to complete a section line across the geochemical anomaly (Figure 11). This hole encountered an alternating sequence of volcaniclastic quartz-chlorite±sericite schist and graphitic phyllite. Stratigraphic correlations were made between the top 30 m of CV-07-03 and corresponding units towards the bottom of CV-97-01. Visible sulphide mineralization occurs from the top of the hole to 109 m. The first 87 m contains minor amounts of fine grained pyrite. From 87 m to 109 m mineralization consists of weak fine grained pyrite and wisps of pyrrhotite in sericitic schist with prominent carbonate porphyroblasts. At 109 m there is a sharp transition to barren carbonaceous phyllite. Drilling was halted 30 m above target depth in a sequence of crushed and gritty graphitic phyllite that caused squeezing and loss of circulation. The target stratigraphy was a barite-silica exhalite horizon reported in CV-97-03. All samples from this hole returned low values.

CONCLUSIONS AND RECOMMENDATIONS

Drill results from 2007 returned disappointingly low values. However, drill problems in two of the three holes have left portions of the favourable stratigraphy untested. The presence of the mineralized gossans has not yet been adequately explained. Deep weathering in the vicinity of the barite exhalative horizon requires that any future holes be collared further back.


Although results to date have been sub-economic, a large portion of the property remains unexplored. Showing C, which hosts calc-silicate skarn mineralization, has received only cursory work and a number of conductors and magnetic anomalies in the vicinity of Showings A and B remain to be tested.

Respectfully submitted,

Archer, Cathro & Associates (1981) Limited

W.A. Wengzynowski, P.Eng.

Martin W. Núñez, B.Sc Geology

REFERENCES

- Archer, A.R.
 - 1971 Final Report, Wolf Lake Joint Venture; private report, December, 1971.
- Carne, R.C.
 - 1996 Prospecting and Geochemical Survey Report on the Convert 1-130 Claims, Watson Lake Mining District, Yukon Territory; assessment report for Nordac Resources Ltd.
- Poole, W.H., Roddick, J.A. and Green, L.H.
 - 1960 Geology of Wolf Lake (105B), Yukon Territory, Geological Survey of Canada Map 10-1960.
- Pritchard, R.A.
 - 1996 Dighem^V Survey for Nordac Resources Ltd., Convert Property & Simpson Property, Watson Lake, Yukon; private report to Nordac Resources Ltd.
- Roots, C., Nelson, J. and Stevens, R.
 - 2004 Bedrock Geology, Morris Lake, Yukon Territory; Geological Survey of Canada, Open File 4631; Yukon Geological Survey, Open File 2004-3.
- Tempelman-Kluit, D.J., Gordey, S.P. and Read, B.C.
 - 1976 Stratigraphic and Structural Studies in the Pelly Mountains, Yukon Territory; Geological Survey of Canada, Paper 76-1A, pp. 97-106.
- Traynor, S.
 - 2005 Yukon Minfile, Yukon Geological Survey, Yukon Energy, Mines and Resources.
- Wengzynowski, W.A.
 - 1997 Assessment Report describing Geological Mapping, Prospecting, Soil Geochemistry and Geophysical Surveys on the Convert Property, Watson Lake Mining District, Yukon Territory; assessment report for Nordac Resources Ltd.
 - 1998 Assessment Report describing Prospecting, Soil Geochemistry and Diamond Drilling on the Convert Property, Watson Lake Mining District, Yukon Territory; assessment report for Nordac Resources Ltd.
 - 2000 Re-evaluation of 1997 Diamond Drilling on the Convert Property; private report to Nordac Resources Ltd.
 - Assessment Report describing Prospecting and Hand Pitting on the Convert Property; assessment report for Strategic Metals Ltd.
 - 2007 Assessment Report describing Geophysical Surveys and Diamond Drilling at the Convert Property; assessment report for Strategic Metals Ltd

APPENDIX I STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, William A. Wengzynowski, geological engineer, with business addresses in Vancouver, British Columbia and Whitehorse, Yukon Territory and residential address at 301 Fairway Drive, North Vancouver, British Columbia, V7G 1L4 do hereby certify that:

- 1. I am President of Archer, Cathro & Associates (1981) Limited.
- 2. I graduated from the University of British Columbia in 1993 with a B.A.Sc in Geological Engineering, Option I, mineral and fuel exploration.
- 3. I registered as a Professional Engineer in the Province of British Columbia on December 12, 1998 (Licence Number 24119).
- 4. From 1983 to present, I have been actively engaged in mineral exploration in the Yukon Territory, Northwest Territories, northern British Columbia and Mexico.
- 5. I have personally participated in and supervised the fieldwork reported herein.

William A. Wengzynowski, P. Eng.

STATEMENT OF QUALIFICATIONS

I, Martin W. Núñez, geologist, with business addresses in Vancouver, British Columbia and Whitehorse, Yukon Territory and residential address in Vancouver, British Columbia, do hereby certify that:

- 1. I graduated from the University of British Columbia in 2006 with a B.Sc. majoring in Geological Sciences.
- 2. I am registered as a Geologist in Training in the Province of British Columbia.
- 3. From 2004 to present, I have been actively engaged in mineral exploration in the Yukon Territory with Archer, Cathro & Associates (1981) Limited.
- 4. I have personally participated in the fieldwork reported herein.

Martin W. Núñez, B.Sc., GIT

APPENDIX II CERTIFICATES OF ANALYSIS

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax. 604 984 0218 www.alschemex.com To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST **VANCOUVER BC V6B 1L8**

Finalized Date: 25-FEB-2008 This copy reported on 25-JUN-2008

Account: MTT

CERTIFICATE VA08010827

Project: CONVERT CV-07-01

P.O. No.:

This report is for 21 Drill Core samples submitted to our lab in Vancouver, BC, Canada on

31-JAN-2008.

The following have access to data associated with this certificate:

JOAN MARIACHER

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um

ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: STRATEGIC METALS LTD. ATTN: JOAN MARIACHER C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED **1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8**

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED **1016-510 W HASTINGS ST**

VANCOUVER BC V6B 1L8

Project: CONVERT CV-07-01

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

									(CERTIF	ICATE (OF ANA	LYSIS	VA080	10827	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
C386060 C386061 C386062 C386063 C386064		2.90 1.32 2.40 2.36 1.48	<0.2 0.4 <0.2 0.2 <0.2	3.26 2.59 1.65 1.82 2.08	17 <2 4 2 6	<10 <10 <10 <10 <10	360 290 240 230 240	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 2 <2 <2	1.38 2.64 1.55 1.22 1.82	<0.5 <0.5 <0.5 <0.5 <0.5	14 11 6 8 7	16 12 15 16 12	11 55 33 44 50	5.23 4.59 2.23 2.84 2.66	10 <10 <10 <10 <10
C386065 C386066 C386067 C386068 C386069		3.20 3.10 2.88 4.20 1.24	0.2 0.5 0.2 0.2 0.2	1.79 1.73 1.71 2.16 2.08	13 98 20 7 <2	<10 <10 <10 <10 <10	400 410 340 360 240	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	1.78 1.12 0.97 0.69 0.50	<0.5 <0.5 <0.5 <0.5 <0.5	7 10 8 11 9	16 24 13 29 19	37 24 26 57 43	2.91 2.75 2.63 3.57 3.23	<10 <10 <10 <10 <10
C386070 C386071 C386072 C386073 C386074		2.72 2.14 2.42 1.80 3.84	<0.2 0.2 <0.2 <0.2 0.2	2.17 2.47 0.05 2.19 2.35	5 11 3 8 4	<10 <10 <10 <10 <10	190 200 20 150 150	<0.5 <0.5 <0.5 <0.5 <0.5	<2 2 <2 <2 <2 <2	0.76 0.55 19.5 0.48 0.40	<0.5 <0.5 <0.5 <0.5 <0.5	11 13 2 10 10	31 28 1 19 21	71 65 2 51 44	3.87 4.19 0.44 3.42 3.47	10 10 <10 10
C386075 C386076 C386077 C386078 C386079		3.14 2.08 0.66 1.64 0.68	<0.2 0.2 0.4 0.2 0.2	1.54 1.31 1.31 2.30 2.15	2 3 17 24 21	<10 <10 <10 <10 <10	120 140 420 210 190	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	1.43 2.25 3.90 0.45 1.10	<0.5 <0.5 <0.5 <0.5 <0.5	5 5 6 11 9	10 5 28 22 34	19 31 22 34 22	1.96 2.12 1.96 3.74 4.00	<10 <10 <10 10
C386080		1.16	<0.2	2.15	10	<10	220	<0.5	<2	2.08	<0.5	11	19	17	4.03	<10

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED **1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8**

Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

Page: 2 - B

Project: CONVERT CV-07-01

Sample Description	Method Analyte Units LOR									CERTIF	ICATE (OF ANA	LYSIS	VA080	10827	
		ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0 01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
C386060		<1	0.26	10	2.37	1460	<1	0.04	11	640	8	0.13	<2	5	98	<20
C386061		1	0.33	10	1.87	1630	<1	0.03	12	530	31	0.91	<2	4	169	<20
C386062		<1	0.35	10	0.87	630	2	0.02	10	370	14	0.35	<2	1	104	<20
C386063		<1	0.32	10	0.89	457	1	0.02	22	420	16	0.64	<2	2	87 100	<20 <20
C386064		<1	0.33	10	0.93	738	1	0.02	6	430	5	0.46	<2	2	100	<20
C386065		2	0.38	20	0.72	746	2	0.03	21	550	17	0.36	<2	2	134	<20
C386066		<1	0.42	20	0.71	585	1	0.02	24	530	37	0.27	4	2	111	<20
C386067		<1	0.42	20	0.79	538	1	0.02	14	460	33	0.18	<2	2	83	<20
C386068		1	0.43	20	0.92	354	2	0.02	31	790	24	0.49	<2	2	68	<20
C386069		<1	0.41	30	0.88	348	1	0.02	26	620	10	0.32	<2	2	44	<20
C386070		<1	0.35	20	0.97	429	1	0.02	34	690	16	0.50	<2	2	69	<20
C386071		<1	0.38	20	1.05	391	1	0.02	45	730	23	0.55	<2	2	50	<20
C386072		<1	0.02	<10	11.90	191	<1	0.02	<1	190	<2	<0.01	<2	<1	45	<20
C386073		<1	0.37	30	1.03	278	1	0.02	31	640	10	0.35	2	2	30	<20
C386074		<1	0.38	30	1.06	313	1	0.01	28	640	15	0.39	<2	2	34	<20
C386075		<1	0.34	10	1.10	691	5	0.02	11	270	16	0.19	<2	1	94	<20
C386076		<1	0.41	10	1.23	1010	1	0.02	8	370	19	0.53	<2	1	139	<20
C386077		<1	0.24	10	0.52	1225	1	0.02	15	360	43	0.05	2	2	345	<20
C386078		<1	0.39	30	0.85	335	2	0.02	33	720	18	0.11	<2	3	58	<20
C386079		<1	0.33	20	0.81	468	1	0.02	28	650	23	0.30	2	3	203	<20
C386080		<1	0.36	30	1.12	566	1	0.02	27	750	13	0.17	<2	3	191	20

C386080

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

<0.01

<10

<10

24

<10

114

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED **1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8**

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

Project: CONVERT CV-07-01

								CERTIFICATE OF ANALYSIS VA08010827
Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
C386060 C386061 C386062 C386063 C386064		<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	53 35 11 21 13	<10 <10 <10 <10 <10	108 116 41 61 42	
C386065 C386066 C386067 C386068 C386069		<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	15 18 15 24 19	<10 <10 <10 <10 <10	88 97 92 93 97	
C386070 C386071 C386072 C386073 C386074		<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	25 29 1 22 23	<10 <10 <10 <10 <10	109 124 14 104 100	
C386075 C386076 C386077 C386078 C386079		<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	10 7 13 28 30	<10 <10 <10 <10 <10	43 30 59 126 105	

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Page: 1 Finalized Date: 25-FEB-2008 This copy reported on 14-AUG-2008 Account: MTT

CERTIFICATE VA08010823

Project: CONVERT CV-07-02

P.O. No.:

This report is for 26 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 31-JAN-2008.

The following have access to data associated with this certificate:

JOAN MARIACHER

SAMPLE PREPARATION								
ALS CODE	DESCRIPTION							
WEI-21	Received Sample Weight							
LOG-22	Sample login - Rcd w/o BarCode							
CRU-31	Fine crushing - 70% <2mm							
SPL-21	Split sample - riffle splitter							
PUL-31	Pulverize split to 85% <75 um							

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: STRATEGIC METALS LTD.
ATTN: JOAN MARIACHER
C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

C386100

C386101

C386102

C386103

C386104

C386105

C386106

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Lt

1.98

1.70

4.58

2.80

1,60

3.48

1.90

1.4

0.5

0.6

0.4

0.7

<0.2

0.66

1.25

0.40

1.19

0.77

1.14

0.91

8

13

2

3

7

<10

<10

<10

<10

<10

<10

<10

160

130

250

370

330

220

230

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

CERTIFICATE OF ANALYSIS VA08010823

1016-510 W HASTINGS ST VANCOUVER BC V6B 1L8

<2

<2

<2

<2

<2

<2

0.04

0.14

0.05

0.05

0.06

0.16

0.84

0.6

1.7

8.0

< 0.5

<0.5

0.7

<0.5

9

11

10

8

15

15

42

18

48

17

17

68

81

60

67

53

80

3.87

3.71

1.23

3.15

2.25

2.87

<10

<10

<10

<10

<10

<10

<10

< 0.5

<0.5

< 0.5

<0.5

<0.5

<0.5

<0.5

Project: CONVERT CV-07-02

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

					ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	<u> </u>	OLIVIII IOATE OF ANALTOID VAUGOTOUZS							
Sample Description	Method Analyte Units LOR	Recvd Wt. kg	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01				ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	M E-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
C386081	*****	3.96	<0.2	1.49	9	<10	160	<0.5	<2	0.45	<0.5	6	8	28	2.44	<10
C386082		3.18	0.7	1.31	34	<10	500	<0.5	<2	0.29	3.4	7	9	28	2.25	<10
C386083		1.88	0.4	1.28	8	<10	320	<0.5	<2	0.13	0.5	8	21	60	2.75	<10
C386084		4.22	0.5	0.81	<2	<10	520	< 0.5	<2	0.07	<0.5	4	34	36	3.53	<10
C386085		1.46	0.6	0.40	4	<10	270	<0.5	<2	0.04	<0.5	7	8	40	2.97	<10
C386086		2.32	1.2	1,99	28	<10	40	0.7	2	0.09	<0.5	30	20	134	6.92	10
C386087		2.84	8.0	0.97	16	<10	70	<0.5	2	0.05	<0.5	14	19	71	3.59	<10
C386088		2.90	0.3	0.78	10	<10	150	<0.5	<2	0.18	<0.5	9	12	54	2.21	<10
C386089		0.94	1.0	0.91	12	<10	120	<0.5	<2	0.03	0.5	13	13	65	2.87	<10
C386090		1,92	0.2	0.31	3	<10	210	<0.5	<2	0.02	<0.5	8	15	27	1.20	<10
C386091		2.26	0.2	0.32	5	<10	240	<0.5	<2	0.03	<0.5	4	13	30	1.23	<10
C386092		1.34	1.2	0.20	44	<10	260	< 0.5	<2	0.09	3.0	17	21	91	1.04	<10
C386093		2.44	0.2	0.03	2	<10	10	<0.5	<2	20.1	<0.5	1	1	3	0.45	<10
C386094		1.42	0.6	0.51	3	<10	360	< 0.5	<2	0.37	2.4	7	14	29	1.13	<10
C386095		5.28	1.5	0.33	7	<10	80	<0.5	<2	0.15	0.7	22	11	86	2.16	<10
C386096		3.62	1.3	1.04	7	<10	230	<0.5	<2	0.15	<0.5	7	15	46	1.44	<10
C386097		3.76	1.2	0.92	11	<10	150	<0.5	<2	0.11	<0.5	5	22	43	1.74	<10
C386098		4.14	1.0	0.37	3	<10	270	<0.5	<2	0.12	<0.5	8	16	41	1.61	<10
C386099		2,82	2,1	0.73	12	<10	60	< 0.5	<2	0.10	0.7	7	25	84	2.13	<10

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

1016-510 W HASTINGS ST **VANCOUVER BC V6B 1L8**

Project: CONVERT CV-07-02

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

(CERTIF	ICATE (VA080				
	ME-ICP41						
	P	Pb	S	Sb	Sc	Sr	Th
	ppm	ppm	%	ppm	ppm	ppm	ppm
	10	2	0.01	2	1	1	20

									CERTIFICATE OF ANALTSIS VAUGUTUOZS							
Sample Description	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr	Th
	Units	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
	LOR	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1	20
C386081		<1	0.33	20	0.62	400	1	0.02	16	400	18	0.18	<2	1	51	<20
C386082		1	0.35	20	0.55	595	1	0.01	18	500	131	0.19	<2	1	48	<20
C386083		1	0.27	10	0.47	1435	1	0.01	33	470	57	0.47	<2	2	33	<20
C386084		<1	0.03	<10	0.58	3020	<1	0.01	23	270	17	0.21	<2	2	14	<20
C386085		<1	0.20	10	0.39	2840	<1	0.01	37	100	18	0.60	<2	1	6	<20
C386086		<1	0.29	10	0.80	7020	7	0.01	77	340	30	1.65	<2	5	13	<20
C386087		<1	0.28	10	0.40	2300	2	0.01	56	130	46	1.23	<2	2	8	<20
C386088		<1	0.32	10	0.32	1255	1	0.01	49	130	19	0.66	<2	2	46	<20
C386089		<1	0.23	10	0.32	1390	2	0.01	51	110	82	1.01	<2	2	6	<20
C386090		<1	0.14	<10	0.08	1390	2	0.01	20	60	10	0.18	<2	1	2	<20
C386091 C386092 C386093 C386094 C386095		<1 <1 <1 1 <1	0.15 0.07 0.02 0.09 0.13	<10 <10 <10 10	0.17 0.06 12.40 0.29 0.28	1640 339 212 1045 1290	1 2 <1 <1 7	0.01 0.01 0.02 0.01 0.01	15 65 1 33 123	100 460 180 90 210	5 134 4 42 108	0.13 0.58 <0.01 0.27 1.07	<2 5 <2 <2 2	1 1 <1 1	5 35 56 38 17	<20 <20 <20 <20 <20
C386096 C386097 C386098 C386099 C386100		<1 <1 <1 <1 <1	0.06 0.03 0.11 0.06 0.07	10 <10 10 <10 <10	0.15 0.28 0.28 0.22 0.68	921 1370 1860 1340 4760	1 1 1 1	0.01 0.01 0.01 0.01 0.01	37 37 37 58 53	520 100 380 450 110	109 105 65 81 55	0.27 0.46 0.49 1.06 0.55	<2 2 <2 2 <2	1 1 1 2 2	89 95 59 55 5	<20 <20 <20 <20 <20
C386101		<1	0.10	10	0.52	2050	3	0.01	54	290	36	1.18	<2	3	24	<20
C386102		<1	0.10	<10	0.14	778	1	0.01	26	130	45	0.26	<2	1	15	<20
C386103		<1	0.17	10	0.66	4150	<1	0.01	31	140	17	0.38	<2	2	10	<20
C386104		<1	0.17	10	0.36	2080	<1	0.01	31	130	28	0.41	<2	1	17	<20
C386105		<1	0.28	10	0.48	1290	2	0.01	72	330	82	0.70	<2	1	29	<20
C386106		<1	0.22	10	0.69	1700	1	0.02	26	290	29	0.13	<2	1	108	<20

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016-510 W HASTINGS ST

Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

Page: 2 - C

Project: CONVERT CV-07-02

VANCOUVER BC V6B 1L8

								CERTIFICATE OF ANALYSIS VA08010823
	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	
	Analyte	Ti	TI	U	V	w	Zn	
	Units	%	ppm	ppm	ppm	ppm	ppm	
Sample Description	LOR	0.01	10	10	1	10	2	
C386081		<0.01	<10	<10	11	<10	82	
C386082		<0.01	<10	<10	11	<10	626	
C386083		<0.01	<10	<10	23	<10	291	
C386084		<0.01	<10	<10	29	<10	112	
C386085		<0.01	<10	<10	12	<10	46	
C386086		<0.01	<10	<10	32	<10	607	
C386087		<0.01	<10	<10	28	<10	196	
C386088		<0.01	<10	<10	18	<10	195	
C386089		<0.01	<10	<10	23	<10	289	
C386090		<0.01	<10	<10	6	<10	397	
C386091		<0.01	<10	<10	4	<10	105	
C386092		<0.01	<10	<10	22	<10	170	
C386093		<0.01	<10	<10	3	<10	28	
C386094		<0.01	<10	<10	7	<10	744	
C386095		<0.01	<10	<10	22	<10	398	
C386096		<0.01	<10	<10	17	<10	113	
C386097		<0.01	<10	<10	15	<10	97	
C386098		<0.01	<10	<10	17	<10	90	
C386099		<0.01	<10	<10	31	<10	280	
C386100		<0.01	<10	<10	32	<10	209	
C386101		<0.01	<10	<10	51	<10	530	
C386102		<0.01	<10	<10	14	<10	251	
C386103		0.01	<10	<10	22	<10	176	
C386104		<0.01	<10	<10	11	<10	249	
C386105		0.01	<10	<10	18	<10	302	
C386106		<0.01	<10	<10	5	<10	401	
		1						
		1						
		1						
		1						
		1						
		1						
		1						
		1						
		1						
		1						

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD.

C/O ARCHER, CATHRO & ASSOCIATES (1981)
LIMITED

1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Page: 1 Finalized Date: 25-FEB-2008 This copy reported on 25-JUN-2008

Account: MTT

CERTIFICATE VA08010824

Project: CONVERT CV-07-03

P.O. No.:

This report is for 15 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 31-JAN-2008.

The following have access to data associated with this certificate:

JOAN MARIACHER

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
PUL-QC	Pulverizing QC Test	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	35 Element Aqua Regia ICP-AES	ICP-AES

To: STRATEGIC METALS LTD.
ATTN: JOAN MARIACHER
C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED
1016-510 W HASTINGS ST
VANCOUVER BC V6B 1L8

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED **1016-510 W HASTINGS ST**

CERTIFICATE OF ANALYSIS VA08010824

VANCOUVER BC V6B 1L8

Project: CONVERT CV-07-03

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
C386107		3.18	0.2	0.37	5	<10	420	<0.5	<2	0.05	2.6	7	7	68	1.26	<10
C386108		3.94	0.3	0.34	8	<10	470	<0.5	<2	0.04	1.5	10	7	54	1.25	<10
C386109		2.40	0.2	0.42	8	<10	510	<0.5	<2	0.04	4.4	10	8	129	1.33	<10
C386110		2.00	<0.2	0.03	3	<10	20	<0.5	<2	20.2	<0.5	1	1	5	0.47	<10
C386111		2.78	0.2	0.43	6	<10	490	<0.5	<2	0.08	4.7	9	6	58	1.28	<10
C386112		2.38	0.7	0.55	17	<10	240	<0.5	<2	0.12	2.2	8	18	85	2.07	<10
C386113		1.60	2.5	0.85	69	<10	50	<0.5	<2	0.12	0.9	18	26	170	3.16	<10
C386114		2.90	<0.2	1.04	<2	<10	220	<0.5	<2	1.25	<0.5	3	3	14	1.22	<10
C386115		1.04	<0.2	1.29	5	<10	120	< 0.5	<2	0.93	<0.5	4	3	12	1.68	<10
C386116		2.48	<0.2	1.46	2	<10	130	<0.5	<2	3.19	<0.5	4	2	15	2.29	<10
C386117		2.66	0.9	0.82	7	<10	210	<0.5	<2	2.45	0.7	7	5	30	1.93	<10
C386118		2.80	3.0	1.45	11	<10	140	<0.5	<2	1.97	<0.5	8	15	39	2.73	<10
C386119		2.96	0.4	1.87	177	<10	110	<0.5	<2	0.99	<0.5	13	15	38	3.35	<10
C386120		1.08	0.5	1.65	6	<10	160	<0.5	<2	1.29	<0.5	7	15	32	3.06	<10
C386121		1.12	0.2	1.41	7	<10	200	<0.5	<2	2.48	<0.5	8	12	45	2.84	<10

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED **1016-510 W HASTINGS ST**

VANCOUVER BC V6B 1L8 Project: CONVERT CV-07-03

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

(CERTIF	ICATE	JF ANA	LYSIS	VA080	10824	
41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICI
	P	Pb	s	Sb	Sc	Sr	Th
	ppm	ppm	%	ppm	ppm	ppm	ppm

Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20
C386107		<1	0.17	10	0.15	826	1	0.01	26	190	6	0.34	<2	1	12	<20
C386108		<1	0.16	10	0.17	940	1	0.01	32	170	11	0.24	<2	1	12	<20
C386109		<1	0.17	10	0.16	565	<1	0.01	37	190	20	0.33	<2	1	12	<20
C386110		1	0.02	<10	12.40	213	<1	0.02	1	210	3	<0.01	<2	<1	56	<20
C386111		<1	0.15	10	0.21	508	<1	0.01	30	140	26	0.27	<2	1	11	<20
C386112		<1	0.17	10	0.14	747	1	0.01	32	410	17	0.88	<2	1	20	<20
C386113		<1	0.16	10	0.31	644	2	0.01	84	490	186	1.65	2	1	31	<20
C386114	•	<1	0.25	10	0.64	573	1	0.01	8	140	21	0.22	<2	<1	202	<20
C386115		<1	0.25	20	0.76	567	<1	0.01	6	160	12	0.25	<2	1	120	<20
C386116		<1	0.26	10	0.85	1090	<1	0.02	3	250	10	0.46	<2	1	291	<20
C386117		<1	0.28	10	0.42	778	3	0.01	14	310	169	1.02	<2	1	170	<20
C386118		1	0.18	10	0.69	611	1	0.01	23	660	42	0.42	<2	1	86	<20
C386119		<1	0.18	10	0.87	471	1	0.01	24	610	11	0.46	<2	1	56	<20
C386120		<1	0.19	10	0.67	664	<1	0.01	20	390	94	0.31	2	1	86	<20
C386121		<1	0.15	10	0.63	606	<1	0.02	21	470	25	0.81	<2	1	120	<20

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: STRATEGIC METALS LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED **1016-510 W HASTINGS ST**

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 25-FEB-2008

Account: MTT

Project: CONVERT CV-07-03

VANCOUVER BC V6B 1L8

CERTIFICATE	OF	ANALYSIS	VA08010824
-------------	----	----------	------------

								CERTIFICATE OF ANALYSIS VA08010824
-	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	
	Analyte	Ti	TI	U	V	w	Zn	
	Units	%	ppm	ppm	ррт	ppm	ppm	
Sample Description	LOR	0.01	10	10	1	10	2	
C386107		0.01	<10	<10	5	<10	283	
C386108		0.01	<10	<10	5	<10	128	
C386109		0.01	<10	<10	6	<10	99	
C386110		<0.01	<10	<10	3	<10	16	
C386111		<0.01	<10	<10	7	<10	87	
C386112		0.01	<10	<10	22	<10	311	
C386113		<0.01	<10	<10	29	<10	203	
C386114		<0.01	<10	<10	3	<10	52	
C386115		<0.01	<10	<10	3	<10	74	
C386116		<0.01	<10	<10	6	<10	50	
C386117		<0.01	<10	<10	6	<10	88	
C386118		<0.01	<10	<10	15	10	101	
C386119		<0.01	<10	<10	19	<10	92	
C386120		<0.01	<10	<10	18	<10	185	
C386121		<0.01	<10	<10	14	<10	75	

APPENDIX III GEOLOGICAL AND GEOTECHNICAL LOGS

PROJECT

PROPERTY: CONVERT HOLE: CV-07-01

Easting Northing Elev. Depth (m) Contractor: TOP RANK DRILLING CO. 0344835 6694585

Drill: JKS-300 1244 172.82

SURVEY								
Depth (m)	Azimuth	Dip	Method	Depth (m)	Azimuth	Dip	Method	
0.00	061	50	Brunton					
63.1	061	54	Acid					
124.05	061	55	Acid					
172.82	061	56	Acid					

Core size: BTW

Casing depth: 26.00 (m) out

Drilling dates: June 22 - June 24, 2007

Logged by: Martin Nunez

Target: _

			SUM	MARY
From (m)	To (m)	Interval	Unit	Coments
0	20.42	20.42	OVER	
20.42	23.67	3.25	GOU	Phyllitic gouge
23.67	34.39	10.72	Ser SCH	Chl altered
34.39	95.51	61.12	Phy SCH	Interbedded phyllitic gouge
95.51	95.71	0.2	Ser SCH	
95.71	99.57	3.86	Phy SCH	Fair carbonate
99.57	119.63	20.06	Aug SCH	Qtz phyric augen schist w rhombs of Py
119.63	124.18	4.55	Ser SCH	
124.18	129.24	5.06	Phy SCH	Ser GOU occuring around QTZ flood
129.24	136.39	7.15	PHY	Kink banded
136.39	137.37	0.98	Ser SCH	
137.37	161	23.63	PHY	Speckled with rhombs of PY
161	163.98	2.98	Ser SCH	
163.98	164.34	0.36	PHY	

	SAMPLES
Numbers:	C386060-C386080

Date sent: July 17, 2007

Total: 21

COMMENTS

				LITHO	LOGY						ALT.		MINE	RALS				s	AMPLES				Blocks			GEC	DTECHN	IICAL			JC	INTS	,
Struc	ct.				1						ΪΪ		1					Ĭ	<u></u>			ĺ	2.00.0		RI	EC	RQ			lт	Ī	1	
Type	Attitude	From (m)	To (m)	Interval (m)	Type	Unit	Texture	Modifier	Notes:						From (m)	(11)	To (m)	Interval (m)	Sample			From (m)	To (m)	Intvl. (m)	(m)	Percent	(m)	Percent	Weathering Hardness	Frequency	Attitude	Roughness	Infilling
		0	20.42			OVER															 	11.28	14.33					0					
	-					ļl	L				ļļ.										 	14.33		3.04			0.00	0		 .			
	-	20.42	23.67	ļ	Gr-Pl	GOUG	Ε		GY BK Gr PHY w. clasts of Qz		ļļ.										 	17.37		3.05			0.00	0		 -			ļ
	-						ļ				ļĻ.			ļļ							 	20.42	23.47	3.05	0.17	6	0.00	0		 -			ļ
C 6		23.67	34.39						Sharp contact forming SER-MU FEL VOL; Pale Green; thinnly foliated; partings occur on SER surfaces; w. car; t rhombs of Py; local sections ALT to CLY where kink bands incr.; unit becomes m Qz FD towards FW 33.93-34.32			Ру					26.76 33.47		RS RS			23.47 26.52					0.00	0					
									Qz FD w. chl? ALT FR infill + Py infill; Py is		 					,.40	33.47	:			 	20.02	25.51	5.00	1.20	, 72	0.00	٠		 -			
									C; w BL of cal													29.57	32.61	3.04	1.04	34	0.00	0					
	-				1][32.61	33.12					0					
		04.00	00.74						GY BK Gr PHY; m kink band folding shown by narcon Qz car foliation; unit is thinly LA; t rhombs of Py; local 10cm sections of Qz FR w. w cal and c fr. Infill rhombs of Py; l Qz is												 	20.40	05.00	0.54	4.00	. 70	0.50	0.4					
	90	34.39	38.71			ļl			bull.		 	Ру			38	3.81	38.89		RS		 	33.12					0.53						
FO 5					╂		Н	Н		<u> </u>		+	+			-		\rightarrow			 	35.66 38.71					0.32		-	╫┼	+	+	\vdash
_A 5	<u> </u>						 		GY competent SLT PHY; Non Friable w.		 										 	30.71	39.02	0.91	0.00) 91	0.04	70					
		38.71							occ. LA bands of cal;													39.62	41.76	2.14	2.06	96	1.09	51					
A 6	60				1		1				1			ll							 	41.76					2.35			111-			
_A 6	65				1][44.81					0.38	45]
									40.17-40.75													45.65	47.85	2.20	2.11	96	0.48	22					
									M Qz FD Gr PHY w. chl assoc with Qz FD			Т										4									\top		
_A 5	57 -		ļ	ļ		ļ		den en el l	sections.	ļ	 							-		ļ	 	47.85					2.36						ļ
	-		ļ		-	ļ	ļ	h	46.14-46.34	ļ	 -										 	50.90		0.42			0.13						
.A 5	57 -					ļ	ļ		GY PHY Gouge	ļ	┼┼-						57.00			ļ	 	51.32					1.70	65		₩			ļ
	-					ļ	ļ		57.79-57.85		 				57	7.21	57.29		RS	ļ	 	53.95	57.00	3.05	2.96	97	1.5/	51					ļ
LA 6	63								GY PHY Gouge; gouge marks beginning of M QZ FD section; QZ FDS occ. Kink bands; occ. interla rhombs of Py; unit remains GYuninteresting;													57.00					0.10						
	-		ļ	ļ		ļ	ļ		68.83		ļļ.			ļļ							 	57.11					1.33			. .			ļ
	-		ļ	ļ		ļ	ļ		PR w C Py + Qz	ļ	ļļ.			ļļ							 	60.05					1.91			. .			ļ
			ļ	ļ		ļ		h	71.01	ļ	 -										 	62.90					0.13			 -			ļ
A 4			ļ		-	ļ			Intensity of kink bands increases.		 -							-			 	63.09					0.97	32					
_A 5	52 -			_	-	\vdash	Н	Н	75.00.70.00	<u> </u>	\vdash	+	+	\vdash		00	70.07		00	\vdash	 	66.14					0.57	26	+	+	+	+	₩
	-					ļ	ļ		75.29-78.33	ļ	┼┼-				⁷⁹	9.20	79.27		RS	ļ	 	68.33					0.49			₩			ļ
	-				-	ļ			M Qz FD section w. kink Bands of BULL Qz. and interla BL of Cal;		 -										 	69.19	12.24	3.05	2.02	. 66	0.94	31					ļ
LA 5	57								minor rhombs Py; local 3cm sections of gouge.												 	72.24					1.21						
	-		ļ	ļ		ļl				ļ	ļļ.			ļļ							 	74.61					0.27			 .			ļ
\perp	4					\Box	Ш	-	80.92-81.98		\sqcup	\perp			84	1.83	84.89		RS	\sqcup		75.29	78.33	3.04	3.04	100	0.45	15		\Box	\perp	_	
_A 1	16								M Qz FD; C/A Shallows to 16 and unit grades into Qz and PHY RBL; Qz FDs are w-m car + occ bear chl filled FR													78.33	80.18	1.85	1.85	5 100	1.05	57					
																					 	80.18	81.38	1.20	1.20	100	0.14	12					
		95.51	95.71						W. Pale GN-GY interla SER Musc Schist. Definitive Ser on LA surfaces. Schistose.													81.38					0.44						
-1	11-		I	I	11	T		T		l	T	1	1	Il	-1			1-		T	 	84.43	85.84							111-			

				LITHO	LOGY						ALT.		MIN	ERAL	s			9	SAMPLES			Blocks			GFC	TECH	IICAI			JOL	NTS	
Struc	t.		1		1		T				<u> </u>		141114					ΤÌ	DAMII EEG		1	DIOCKS		RI	EC	RQ			\vdash	1	1	
Type		From (m)	To (m)	Interval (m)	Fype	Jnit	Fexture	Aodlfier	Notes:							rom (m)	(m)	nterval (m)	Sample		From (m)	To (m)	Intvl. (m)	(m)	Percent	(m)		Hardness	Frequency	Shape	Soughness	nfilling
	`		99.57		 		75	1	M. GY PHY SCHIST			_						_	- <i>0</i> /		85.84				_	0.25	15	_		\		
LA 5	7						†		unit is still very competent		\Box		\top	\top	П						87.48					0.42	14	\top		\top	\Box	
							1		96.12-96.69												90.53	92.23	1.70	1.53	90	0.56	33					
									Qz FD w. w chl; PHY after this FD are		П																					
ı			-		-	ļ			stwked w. car to 98.51						ļ						92.23					0.31	23		 		.	
			-		-	·			DK GN GY		+				ļ						93.57 96.62					0.55 0.89			∦ ∤		-	
+	╢		+		-		+	+	Qz FD ± SER ± MUSC Schist (Vol); local	H	\vdash	-	+	+	Н						90.02	96.31	1.09	1.70) 90	0.09	4' -	+		+	\vdash	
		00.57							PHY; unit resembles GRIT; Fd weakly saucertized? Chl; unit grades in and out								44400		D0		00.54	00.07	4.40	4.04		0.44						
FO 5		99.57	119.63		-	·			with SER MUSC Schist.		+					114.80 114.91			RS C386060		98.51	99.67				0.11	9		 }		-	
FO 6			-			·			119.63-123.34		+					114.91	110.00		0300000			102.72							 			
									SER GN SCH. local inter FC Hb? Hb SCH?; t cal; unit becomes Incr. chl towards bottom of section; with incr. Rhombs of Py 1-2% occ.; inter foliated Qz AM; occ bands of cal; cal close w. Qz FDs													105.77										
					-	·			Unit becomes lighter GN with incr. Cal		+										104.40	100.77	1.20	1.0-	. 00	0.11	J		 		-	
		123.34	124.18						bands							123.31	124.05		C386061		105.77	108.81	3.04	1.88	33	0.14	5					
									Qz Fd Ser FEL VOL, unit loses schistose texture, becomes more MA (Fragmental) FW contact w. gouge.							124.05	125.56		C386062		108.81	111.86	3.05	2.26	6 74	0.00	0					
	,											Sp	h								111.86	114.91	3.05	2.66	87	0.87	29					
		10110							DK GY-BK Gr-PHY w. trace Py; FO 60 w.							405 50	407.04				44404			0.50		0.00						
FO 6		124.18	129.24		-				undulose Qz Bands.		+					125.56	127.01		C386063		114.91	139.29	3 04	2.50		0.86	40		 		-	
100					-	·			124.80-125.41		+											142.34							 		-	
									SER-Gouge Qz section with (Hem?) occuring within FR of FD Qz (sph?). M Qz Fd; grades back to PHY MD GY kink banded Chert? PHY; PHY alt.													145.39										
.									To CLY, HW C gradational; M VTS of Qz;																							
		129.24	136.39	ļ		ļ			and occ undulose Qz bands.							129.90			C386064			148.44				0.31	10					
LA 6	0				-	ļ			and occ undulose Q2 bands.							130.10	130.15		RS			151.49 154.53					15 0		 			
				 -		ł			GEAGEBY T		·										151.49						0		 			
LA 5	7		1		1		+	+		\vdash	$\vdash \vdash$	-	+	+	Н			\vdash				160.63					0	+	\vdash	+	\vdash	
= +-				1	1	†	+	+	Cal assoc. w. Qz VTS; unit becomes darker		+													- 		0.00			1			
	_					ļ	1		+ incr. Qz FD towards FW;		<u> </u>		.								160.63					0.00	0		<u> </u>			
	[ļ	ļ		ļ						[163.68	166.73	3.05	1.21	40	0.00	0					
		136.39	137.37						Pale GN Qz Ser Schist with interla Qz eyes + t Py; sharp FW Contact; Sx assoc. with Qz eyes												166.73	169.77	3.04	0.91	30	0.00	0					
LA 5				1	1	†	+	+			+										169.77					0.00	0		 			
C 4			1	1		İ		1													EOH	172.82			1							
		137.37							BK Gr PHY; unit has speckled appearance w. rectangular Feldspars?(Fd). Fd occur near thin Gr LA and cause kinks within LA							142.34	144.84		C386065													
"						"	"	"	occ. Interla car bands; t-w Py assoc w. LA			- []													"				
LA 5	3 _		-	ļ	-	ļ			car; Py rhombs assoc. w. Qz. 142.34-153.54							144.82	147.54 147.84		C386066 RS			ļ	ļ	 	ļ				∦ ∔		.	

	Г			LITHO	LOGY				1		ALT		Nen	NERA	16	1		_	SAMPLES				Blocks		1	GE/	OTECH	NICAL		П		OINT	
Struc	ct.			LITHO	LOGY		T	T			ALI	i	IVIII	NEKA	1			1	SAMPLES		\Box		BIOCKS	1	RI	EC	RO			-	7	OINI	"
Type		From (m)	To (m)	Interval (m)	Type	Unit	Texture	Modifier	Notes:							From (m)	To (m)	Interval (m)	Sample			From (m)	To (m)	Intvl. (m)	(m)	rcent		Percent	Weathering	Frequency	Attitude	Shape	Kougnness
									Unit becomes incr. Qz FD + SLT becoming more competent; w BL of Py assoc w. Qz Fd bands; Bull Qz is kink banded and occ. Internally FR'd w. interla Qz eyes.							149.39	149.39 151.94		C386067 C386068														
	-		ļ		-				Unit is same as above.		ļ					151.94	152.63		C386069		łl	ļ			 	ļ	ļ						
LA 8	80		163.98						Qz Ser Schist; Inter LA Qz sweats with w occ. Contact stringers of Py; Py also occurs as 3-5% rhombs (Pale green + white) Unit grades into GY Gr SLT PHY with intermittent Qz Floods;							154.57	154.57 156.32 Blank		C386070 C386071														
			172.82						Drillers report high washout; low recovery; Qz FD rubble + GY Gr PHY gouge w. intermittent of competent undulose Qz Gr Phy; rhombs + infill FR of Py occuring both. 170.18 - EOH							156.32	157.58 160.21		C386073														
	-								Competent undulose Gr PHY; Qz FD Rbl																1		ļ						
	-				-				bears Fr infill chl ALT. EOH 172.82		ļ						162.75 163.10		C386075 RS							ļ	ļ						
	-				-				2011112.02		·						164.34		C386076			ŀ			 	·	ł						
																164.34	166.73		C386077														
	-					ļ											170.18		C386078														
-	-		ļ	 	-						ł						172.82 172.62		C386079 RS		 	ļ	l			ł	 						
	-				1						†					EOH	172.82					l			1		t						
	[ļ																				ļ	ļ						
	-				-						ļ															ļ	ļ						
	-				-						·											ŀ			 	·	ł						
	-				-						ļ											ļ			 	ļ	ļ						
	-		 	 	-	†	+	+			 										 	ļ			 	†	 						
					1	1					1									1							1						
\vdash	- -				-	-	+	+		<u> </u>	-	\sqcup	\vdash	+	+	<u> </u>		_		+	\vdash				<u> </u>	-	-		_	- -	+	+	+
	-				-						 										 	ŀ	l		 	·	ł						
	-		<u> </u>		1	_t	1	1			1									1		l			1	1	<u> </u>						
	1					ļ	I																			1							
$\vdash \vdash$	- -			-	-	+-	+	+		-	\vdash	$\vdash\vdash$	\vdash	+	+			-		+	\vdash			-	-	-	-		+	-	+	+	+-
	-		 	 	-	†	+	+			 	 									 	ļ			 	†	 						
	-			1	1	1	1	<u>t</u>			1				1					1		l			1	1	<u> </u>						
											ļ															1	ļ						
$\vdash \vdash$			-	-	-	+	+	+			\vdash	Н	\vdash	+	+	-		-		+	\vdash				-	-	-		+	+	+	+	+-
	-				-	·	+	+			†										 	·			 	†	ł						
	_					1					1																						
-	-		ļ		-	- 					ļ										ļ	ļ	ļ		 	ļ	ļ						
\vdash	- -				1	+	+	+			\vdash	Н	\vdash	+	+					+		-			-	-			+	+	+	+	+-
	-		·	1	1	1		†			†				1			1		+	†	l			1	1	t						

		LITHOL	.OGY						ALT.		MINER	ALS			5	AMPLES					Blocks			GEC	TECH	NICAL			JOI	INTS	
																							RE	С	RC	ΣD					
From (m)	To (m)	Interval (m)	Туре	Unit	Texture	Modifier	Notes:						From (m)	To (m)	Interval (m)	Sample				From (m)	To (m)	Intvl. (m)	(m)	Percent	(m)	Percent	Weathering Hardness	Frequency	Attitude Shape	Roughness	Infilling
																									ļ			_			
					Ш			Ш	_	\perp	\perp																			\sqcup	
																						ļ			ļ	ļ <u>-</u>		<u>-</u> -		-	
															ļ							ļ		ļ	ļ			 		- -	
																				ļ		ļ			ļ			 -		- -	
	From (m	From (m)	From (m) To (m) Interval (m)	From (m) To (m) Interval (From (m) To (m) Interval (m) Type Unit	From (m) To (m) Interval (m) Type Unit Texture	From (m) To (m) Interval (m) Type Type Texture Modifier	From (m) To (m) Interval (m) Type Texture Modifier Modifier	From (m) To (m) To (m) Type Texture Modifier	From (m) To (m) Interval (m) Type Modifier Modifier	From (m) To (m) To (m) Interval (m) Interval (m) Notes:	From (m) To (m) Interval (m) Type Modifier Modifier	From (m) To (m) Interval (m) Nodelifier Modifier	From (m) To (m) Interval (m) Interval (m) Nodifier Modifier From (m)	From (m) To (m) Interval (m) Interval (m) Notes:	From (m) To (m) Type Modifier Modifier From (m) From (m) To (m)	From (m) To (m) Interval (m) Interval (m) From (m)	From (m) To (m) Interval (m) From (m)	From (m) To (m) Type Nodifier From (m) From (m) From (m) From (m) From (m)	From (m) To (m) Interval (m) From (m)	From (m) To (m) Interval (m) From (m) From (m) From (m) From (m) From (m) From (m)	From (m) To (m) To (m) From (m) From (m) From (m) From (m) From (m) From (m)	From (m) To (m) To (m) From (m)	To (m) T	From (m) To (m) From (m)	Percent Perc	Prom (m) Interval	To (m) T	To (m) Interval (To (m) T	To (m) T

CONVERT PROJECT

PROPERTY: CONVERT

Easting Northing Elev. Depth (m) 0345527 6693238 1121 169.77

			SUR	VEY			
Depth (m)	Azimuth	Dip	Method	Depth (m)	Azimuth	Dip	Method
0	061	60	Brunton				
66.14	061	60	Acid				
124.05	061	59.5	Acid				
169.77	061	55	Acid				

HOLE: CV-07-02

Contractor: TOP RANK DIAMOND DRILLING LTD.

Drill: JKS-300

Core size: BTW

Casing depth: (m) OUT

Drilling dates: June 24- June 26, 2007

Logged by: M.Nunez

Target:

			SUMI	MARY
From (m)	To (m)	Interval	Unit	Comments
0	8.23	8.23	OVER	
8.23	17.02	8.79	PHY	
17.02	18.08	1.06	Aug SCH	
18.08	19.79	1.71	CHT	
19.79	23.32	3.53	PHY	
23.32	24.18		CHT	
24.18	25.05		PHY	
25.05	33.13	8.08	CHT	
33.13	58.39	25.26	CHT+PHY	
58.39	60.04		CHT	
60.04	75.5	15.46		
75.5	84.58	9.08	RHY	
84.58	103.36	18.78	Ser SCH	
103.36	104.89		RHY	
104.89	139.29		SED	
139.29	152.45	13.16		
152.45	153.59	1.14	Ser SCH	
153.59	157.58	3.99	PHY	
157.58	169.77	12.19	Ser SCH	

SAMPLES Numbers: C386081-C386106

Total: 26

Date sent: July 17,2007

COMMENTS

PAD WAS SURVEYED IN 18 M 241SW ALONG SECTION FROM COORDINATES ...

				ITH	IOLO	GΥ				l	AL	T.	M	NERA	ıs			9	AMPLES			Blocks			GFO	TECHN	CAI		1	ın	INTS	
Stru	ıct		1	1	. <u>J_J</u>	"						'i	IVII	NA	ĭ	l l i			CHILLES		i	PIOCES		RE		RQI		1	+	1		
J. (40t.			_								1						_						NE.	ř	r Wi	_					
Туре	Attitude	From (m)	To (m)	Interval (m)	Type	adk-	Unit	Texture	_	Notes:						From (m)	To (m)	Interval (m)	Sample		From (m)	To (m)	Intvl. (m)	(m)	Percent	(m)	Percent	Weathering	Frequency	Attitude Shape	Roughness	Infilling
										DK GY to BK thinnly La Gr- PHY; w. overdpainted flecks of Rd? Qz? Gives dusted																						
		8.23	17.0	7						appearance						8.23	10.82		C386081		0.00	2.13	2.13	0.06	3	0.00	0					
A	74									8.23-10.78			1							 	2.13	5.18		1.27					- -		† <u> </u>	
										occ. Local vuggy Qz FD's w. weak chl alt along contacts and vug filling Liweak BL Cal																						
			-							assoc w. Qz 10.78-16.37			l							 	5.18 8.23	8.23 11.28		0.53 3.05					-			
			-								+		1							 	0.20		0.00	0.00	100	0.11			- -		t1	
										Occ. Inter LA FR infills of coarse rhombic Re- xtallized Py assoc. w. weak car											11.28	11.42	0.14	0.12	86	0.00	0					
										16.37-17.07										 	11.42	14.33	2.91	2.68	92	0.20	7]			
										InterLA transition to light GY thinlly laminated z Fd Augen Schist; LA unoulose Qz bands + whisps w. w chl alt along contacts; t Py											14.33	17.37		3.04								
																				 	17.37	20.42	3.05	2.78	91	0.57	19					
		17.07	7 18.0							Qz Fd Augen Schist; unit becomes weakly ser toward FW.						17.83	17.89		RS		20.42	23.47	3.05	2.47	01	0.23	8					
FO	62	17.07	10.0	0						Sei towaru r vv.	+		l			18.07	20.18		C386082	 	23.47			3.05					- -			
Ť										GY LA Gr CHT; occ. Unulose Qz FDs; section incl 6cm of GY BK gouge w. Eu			П			10.00															П	
		18.08	19.7	9		_		ļ		rhombs of Py						19.38	19.45		RS	 	26.52	29.05		1.77							ļ	
		40.70	9 23.3							GY BK Gr PHY w. FRr infills of Py; local Qz FD's w. BL of cal.										 	29.05	29.57		0.52					-			
		19.79	23.3	۷						FDS W. BL OI Cal.			l							 	29.57 32.61	32.61 34.23		2.84 1.49					- -			
		23.32	2 24.1	8						M Qz FD'd ribbon cht Gr PHY + exhalite CHT; undulose Qz bands throughout section w. occ FR infilling Py + occ. Flecks; recrystalized coarse cubic Py ocurs as stringers along CHT Gr boundaries + rhombs within PHY; Local ser/chl on FR surfaces along with brushings of Py						23.80	23.84		RS		34.23	35.66	1.43	1.39	97	0.42	29					
								ļ								23.32	24.67		C386083	 	35.66	38.71	3.05	2.85	93	0.35	11		-			
		24.18	3 25.0	5						Gr BK-DK GY PHY w. occ. Qz FDs and FR infill C Py											39.71	40.46	1.75	0.95	54	0.23	13					
		27.10									+		1							 	40.46	41.76						+	- -		† <u> </u>	
		25.05	5 32.2	4						Qz-Sil CHT EXHL ± interLA ser ± Gr ± dxhl FR infill coarse rhombs Py; min in irale; local wisps of chl? On FR						29.26	29.31		RS		41.76											
					_					<u> </u>					1	29.57	32.96		C386084	 	44.81	46.50							_[1	
		32.24	4 33.1	3						Qz ribbon CHT; gradational contact; with wisps + LA Gr PHY; GY-DKGY											46.50			1.28								
		32 12	3 58 3	9						SIL Gr PHY w. undulose Qz FDs + whisps and FR infill coars PY, DKGY to BK; unmisthble GR on Parting surfaces, unit is very competent and bears tw rhombs of PY; towards FW parting surfaces tend to be PHYt; Local interLA Qz eyes and ribbon CHT											47.85 50.90	53.31		3.01								
		33.13	58.3	9		_		ļ		CHT. 46.50-53.95					.]					 	50.90 53.31		2.41 0.64			0.00			_		ļ!	

	-		Conve						1							-11										1									
				LITH	OLOG	Y					A	LT.	N	INER	ALS	4		S	AMPLES				1	Blocks				TECHN			_		JOIN	TS	
Str	Attitude 15	From (m)	To (m)	Interval (m)	Туре	Unit	Texture	ModIfier	Notes:							From (m)	To (m)	Interval (m)	Sample				From (m)	To (m)	Intvl. (m)	RE (m)	Percent	RQ (m)	Percent C	Weathering	Hardness	r requency Attitude	Shape	Roughness	Infilling
										A w. Gr Bands bearing c rhombs FLD's? + Py is																									
									Eu and F	oo													53.95	57.00	3.05	1.57	51	0.10	3						
									53.95-58.39														57.00	59.41	2.41	2.25	93	0.32	13						
										Broken up and incr CY or																									
					-		-+		FR		-							+				-	59.41 60.04	60.04	0.63	0.53 2.11				+			 -		
					-		-+				· +		-					+				-	00.04	03.09	3.03	2.11	09	0.12		+			 		
		58.3	9						Chl? And local Qz F MDGY, unit is weak PHYL? Occ rhombs														63.09	64.96	1.87	1.83	98	1.29	69						
									graphite with local s	of SILDK GY-BK LA SLT ections of phyl + GF																									
	Ш		4 63.0						gouge							61.1	8 63.0	9	C386085	i		_ _	64.96			1.15					_	'		\perp	
		63.0	9 72.8	1	-													ļ	ļ			-	66.14	69.19	3.05	3.05	100	1.99	65		-				
LA C	52 36								is 3-5% min with MD as wisps and are as sucrosic Qz (sweats	A SLT graphite MST; unit O grained Py; Py occurs sociated with wisps of s?) beaks occ BI of Cal. ALT; Qz sweats Fi to Gr ntact with Bx gouge	-												69.19 70.77	70.77 72.24		1.57 1.47			83						
					-		-+		Bx MD GY DHYL ac	ouge + fragments with oc	: +		-					+				-	70.77	12.24	1.47		100	1.37	33	+			 		
		72.8	1 75.	5					frags of Py	sage i nagmente min ee	1					72.8	1 74.5	1	C386089	,			72.24	75.29	3.05	2.31	76	0.40	13						
		75.	5 103.	4					assoc with Qz overp	Bull Qz 42 degrees; ad Py t Po +DR GN CWL orint; min occurs 1.5m s into intela RHY Gr with						74.5	4 75.79	9	C386090)			75.29	76.48	1.19	1.19	100	1.19	100						
VT	42															77.0			RS			[76.48			1.85									
LA		ļ		-	-						-			 -		75.7			C386091			-	78.33	81.38		3.00					-				
LA	71									n thin hairline LA of SER pulses dom in LA with G	·					83.7 Blank	7 84.6 Blank	0	C386092			-	81.38 81.75			0.36 2.58									
						Ţ			84.58-85.38							84.6	6 85.4	3	C386094				84.43	87.31	2.88	2.78	97	1.54	53						
									dom. STR chl LA 5% 2mm contact stringe pulse + SER RHY p	amor + pale wk GN with % bearing flecks of Po; er of sphl ocurs btwn Qz iulse;													87.31	87.48		0.16									
				1					85.38-87.47							85.4	3 88.2	3	C386095			L	87.48			3.02			54						
									Unit is tw-w min with with infill Gr phyl witl 87.47-88.27	n flecks of Po + Py assoc hin RHY pulses;													90.53 92.97	92.97 93.57		2.43			79 90	[
			-	1	1	1	-†		w. Bl f FG Py + wea	k diss of Po assic with	11		1			-11	1	T	T'			-											1†		
_	Ш		_	-	1-	_	\perp	\perp	incr infill Fr oc Gr ph	nyl	$\parallel \perp \parallel$	\perp	1	\sqcup	\perp	93.2			C386096		_	_ -	93.57	96.62		3.05				_	_	<u> </u>	\sqcup	+	
l	L	L		_1	_U	_L			88.27-103.36		.ILL			L		97.9	8 100.0	1	C386097	L		IL	96.62	98.80	2.18	2.18	100	1.94	89						

	1			LITHO	ו הפע	,				Λ.	LT.	M	NERA	LS	ll e		Ç	AMPLES			$\neg \Gamma$		Blocks			GEO	TECHN	CAI		I		JOIN.	rs
Str	uct		1	LITTIC	LUGI	1	1	1		A	<u>- 1.</u>	IVII	NEKA	LO			3/	AWIFLES			⊣⊦		DIOCKS		RE		RQE		·	╬	$\overline{}$	JUIN	-
otr	uct.		1	_	I	1																			KE	ĭ	KUL	<u>,</u>					
Туре	Attitude	From (m)	To (m)	Interval (m)	Туре	Unit	Texture	Modifier	Notes:						From (m)	То (m)	Interval (m)	Sample				From (m)	To (m)	Intvl. (m)	(m)	Percent	(m)	Percent	Weathering	Frequency	Attitude	Shape	Roughness
									Unit grades plus or minus SER plus or minus Gr; Py more closely assoc with Gr however FG; Po still occurs as minor fiscers; at most unit is 3-5 min with 88% Py 10% Po 2% Sph						98.80	98.86		RS				98.80	99.67	0.87	0.87	100	0.60	69					
		103.4	104.9						DK GY to Bk Gr PHY with rhombs of Py; contacts are observed by rubble +washout; 2m before contact RHY was incr blackened w incr Gr													99.67	102.72	3.05	3.01	99	1.58	52					
		104.9	109.8						MA LT GY GN - LT GY BR SIL SLT/RHY? With inter LA SER plus or minus Gr; Qz RHY lacks structure internal but is banded between LT GY + MDGY phases; Py is M and FG cross cutting banding and occ pitted; t hairline Fr infill Gn; parting surfaces usually bear SER ALT						105.77	108.26		C386098				102.72	104.24	1.52	1.06	70	0.12	8					
LA	72						-†								108.26	109.80		C386099				104.24	105.77	1.53	1.06	70	0.51	33			11		
		109.8	139.3					\top	SIL MD-DRGY with Gr Qrzite? M		\neg	\vdash	\top	1	122.74		-	RS				105.77								$\neg \vdash$	111	\dashv	-
			1				-†		abundant fr infill + wisps of SER;	1					133.97			C386100				108.81	110.15										
									unit overall has a REG uninterrupted appearance; 11491 unit becomes incr Gr + relized; stwk bull Qz apparent;														111.86 114.91	1.17 3.05									
							-T	7	Gw-w Py occuring on Gr parting	[T				7								114.91	117.96	3.05	1.13	37	0.12	4	T-		11		
									surfaces; Qz stwk overprinting SER													117.96	118.15	0.19	0.15	79	0.10	53					
							-T	7	wisps; unit internally Fr + brittle	[T				7								118.15	121.01	2.86	2.24	78	0.50	17	T-		11		
							-T	7	deformed; eal? SIL GR PHY GR	[T				7								121.01	123.84	2.83	2.62	93	0.27	10	T-		11		
									partings 58 degrees to dp	I				-1								123.84	124.05	0.21	0.19	90	0.00	0			11		
									SER variable distributed occuring													124.05	127.10	3.05	2.57	84	0.00	0					
LA	46							\top	as wispy patches +BL 5-7% to 2-3%;			П		1								127.10	129.00	1.90	1.74	92	0.92	48	Driller	s rep	ort cav	/e	\neg
							-†		partings are w GR; Py occurs W-F													129.00	130.15	1.15	1.06	92	0.23	23	T	11-;-	77		
							-†		as FG, and recrystallized rhombs;													130.15	133.20			91							
									occ seams of SER appear cubically	l		l										133.20	134.76	1.56	1.53	98	0.46	29			11		
									pitted.	l		l										134.76	136.25	1.49	1.46	98	0.90	60			11		
		139.3	142.8					\top	Gr Bk MST; unit is uniform Bk with			\Box			140.48	140.58		RS				135.25	139.29	3.04	2.94	97	0.90	30		$\neg \vdash$		\neg	
							-†		Gr partings occuring 47 degrees													139.29	140.63	1.34	1.10	82	0.34	25			11		
							-†		with recrystallized cubic Py													140.63	142.34	1.71	1.41	82							
							-†		along Gr partings													142.34	145.39	3.05			0.48	16			11		
		142.8	149.6				-†		MD GY SIL SLT with M stwk bull Qz						142.84	144.37		C386101				145.39	146.62	1.23	1.17	95	0.62	50			11		
LA	75							\top	floods pale yellow CL alt FLD? SER?			\Box			144.37	147.01		C386102				146.62	148.44	1.82	1.73	95	0.42	23		$\neg \vdash$		\neg	
			-				-+		Unit is competent but brittle Fr with	h		l			147.01	148.66		C386103				148.44	151.49										
			-				-+		G-W Py on Fr assoc with PHYL	h		l			148.66			C38614				151.46											
							-†		partings; unit is F-M inter LA with coarse	1												152.55	154.53	1.98									
							-†		PHYL partings assoc with GN alt (chl?)	1										+		154.53	157.58										
							+	\top	and rhombic to FG Py (see right in rain)	\vdash	\top	\vdash	\dashv	\top			\vdash					157.58	158.71	1.13					\dashv	╙	+	\dashv	+
		149.6	152.5				-†		SIL MD-DKGY SLT with PHYL partings	1					150.44	152.45		C386105				158.71	160.63										
LA	80		1				-†		FG PY + Po 3-5% assoc with partings;	1		-		-1								160.63	163.68										
						h	-†		unit is interla with ribbon CHT; local	h		-								+		163.68	164.67	0.99					+-				
						h	-†		sections of GN CHT ALT; minor	h		-								+		164.67	166.73						+-				
\neg	-						+	+	interla vitreous Qz assoc with flecks	\vdash	+	\vdash	+	+			\vdash		-	-			169.77						-	\dashv	1	+	+
			·			·	-+		of FLO CY ALT	h+-		-								+		OH		3.04					+-		- -		
		152 5	153.5			·	-+		DK GY + WH Qz flooded + CY ALT	h+-		 -			152.87	152.93		RS		+	-								+-		- -		
ΙΔ	67					·	-+		LA Qz SER Sch; pale + ALT ANK?	h+-		 -			152.45			C386106		+									+-		-		
	01	L	.			ļ	-+		Hosed in Qz; Qz is bull; contact is	L		I			102.40	100.48		2000100			I L .				I	l	l				- -		

				LITHO	I OGV	,				1	ALT.	- 1	MIN	IERAI	s			S	AMPLES					Blocks		1	GFO	TECHN	ICAI		1	.1	JOINT	TS	—
Str	uct.						T	1		thai	1	-	1		Ĭ				AIVII EEC			1		Dioons		RE		RQI			_	П		.	-
	Attitude	From (m)	To (m)	Interval (m)	Гуре	Unit	Texture	Modifier	Notes:							-rom (m)	Го (m)	Interval (m)	Sample				From (m)	To (m)	Intvl. (m)	(m)	Percent		_	Neathering	requency	Attitude	Shape	Soughness	nfilling
	_								grad with incr Qz interla followed by																								<u> </u>		_
							I	1	complete ALT. SER CHL on FR SUR																			1							
		153.5	157.6				ļ		DR Gn thinly LA w Gr PHY w local Qz	.											ļ							ļ							
							 		floods and interla FG Py closely assoc w Qz interla W-F chil-ser-alt; unit has	-																		ļ							
-					-	-	+	\vdash	an almost D. GN quality	+	\dashv	\dashv	-	+				Н		_									\dashv	+	-		+	+	-
LA	67	157.6	169.8			·	+		157.58 QMSS w local Qz floods and	-						162.13	162.19		RS		 						 	ł		+-		-			
							†	1	w occ Pv assoc w interla PHY + EP?	-						168.87	168.93		RS RS									†							
							İ	1	ALT; unit towards FW becomes chl																										
									alt + more SED; Py is t-tw																								\perp	\perp	
		EOH 1	69.77m				ļ			-											ļ	ļ					ļ	ļ				-			
							+			-											ļ					ļ		ł				-			
						·	+			-											 			 			 	 		+-					
							†			-																		ł							
	\Box											\neg	\neg	\top																\neg			\top	\top	
							İ																												
							Ţ																												
							ļ			-											ļ	ļ					ļ	ļ				-			
-	-					-	+	\vdash		\parallel	\rightarrow	\dashv	-	+	\vdash			\vdash					<u> </u>						\rightarrow	+	- -	\vdash	+	+	-
						·	+			-											 							ł				-			
						·	+			-																		ł				-			
						·	†			-											 						·	t		+-		-			
					II		†																			l		1							
					II		1																												
					 		ļ			.											ļ							ļ				-			
						·	 			-											ļ	ļ					ļ	ļ				-			
							+			-											ļ					ļ		ł				-			
\vdash					-	+	+			╫─	\dashv	\dashv	_	+				Н					<u> </u>						\rightarrow	+	-		+	+	
						·	†			-											 						·	t		+-		-			
						·	†								1						†					ļ	·	1							
							I																	[
<u> </u>	Ш					<u> </u>	\perp			\square]	_						\square					<u> </u>				_		[1		
			ļ				 			-											ļ	ļ		ļ			ļ	ļ				-			
		···				·	+			-											 			 		ļ	 -	ļ		+-		-			
						·	+	1		-					1						 	·		l			†	t		+-					
						·	†	1		1 1											†					l		1				-			
							Ţ															ļ		ļ				ļ							
		ļ				.	ļ			-								ļ			ļ	ļ		ļ			ļ	ļ							
		ļ	ļ			·	+			-											ļ			ļ		ļ	ļ	ļ				-			
\vdash	\vdash				 	+	\vdash	\vdash		$\parallel = \parallel$	-	\dashv	+	+	\vdash			\vdash					 			<u> </u>			\dashv	+	-	\vdash	+	+	-
						·	+			-											 			 			 	 		+-					
		l				·	†	1		1					1						t	<u> </u>		 			†	†		+-					
							I														İ			İ				1							
							T																												
			ļ		ļ		1																			ļ	ļ	ļ							
			ļ			·	ļ			-								ļ			ļ	ļ		ļ		ļ		ļ				-			
			ļ			·	+			-											ļ			ļ		ļ	ļ	ļ				-			
l		L		l	U	L	⊥	لتبل	L				LL.			L	l	L	L	l	1	L	IL	L	1	J	J	1			U	IJ.	L		J

		LITH	OLOG	,			-	LT.	MINE	RALS			SA	AMPLES	;			Blocks			GEO	TECHN	ICAL			JOI	NTS	
Type Attitude Prom (m)	E	To (m) Interval (m)	Туре	Unit	Texture	Notes:					From (m)	To (m)	Interval (m)	Sample			From (m)	To (m)	Intvl. (m)	RE(Percent O	RQI (m)	Percent Weathering	Hardness	Frequency	Shape	Roughness	Infilling

PROJECT

PROPERTY:

Easting Northing Elev. Depth (m) 0344835 6694585 1244 136.25

			SUR	VEY			
Depth (m)	Azimuth	Dip	Method	Depth (m)	Azimuth	Dip	Method
0.00	058	50	Brunton				
124.05	058	49.5	Acid				

HOLE: CV-07-03

Contractor: TOP RANK DIAMOND DRILLING LTD.

Drill: JKS-300

Core size: BTW

Casing depth: 11.28 (m) OUT

Drilling dates: June 27- June 28, 2007

Logged by: M.Nunez

Target: Complete section line established by 1996 drilling between CV-97-01 and CV-97-03

			SUMN	IARY
From (m)	To (m)	Interval	Unit	Comments
0	2.13	2.13	OVER	
2.13	14.33	12.2	Rubble	
14.33	20.42		Qz PHY	
20.42	27.27		Qz Mus SCH	
27.27	72.79		Qz Ser SCH	
72.79	74.63			Recovery 50%
74.73	87.48		Sil PHY	
87.48	109.07		Qz Ser SCH	
109.07	136.85	27.78	Gr PHY	
EOH	136.85			

SAMPLES Numbers: C386107-C386121

Total: 15

Date sent: July 17, 2007

COMMENTS

Hole shut down at 447 feet 150 feet from target depth due to poor ground. Rods were being gripped by Phyllitic gouge, hole shut down for fear of losing rods.

		LITHOLOGY									ALT.			RALS				Blocks			GEO	JOINTS												
Stru	ct			LITHU						- 	<u> </u>	+	MINIT	MLO	11		AMPLES	П	-	 	SIJUKS		GEOTECHNICAL REC RQD					+		SIN I	-			
Stru	Ct.			_																	- 1				KE		NQD.	-						
Туре	Attitude	From (m)	To (m)	Interval (m)	Type	Unit	Z I A	Modifier	Notes:						From (m)	To (m)	Interval (m)	Sample				From (m)	To (m)	Intvl. (m)	(m)	Percent	_ ` / _ `	rercent	Weatnering	Frequency	Attitude	Shape	rougnness Infilling	
		0	2.13			ļ			Over								ļ					0.00	2.13	2.13	0.06	3	0.00	0]				
	-	2 12	14.33			ļ			Bkk + rubble of Gy CHT; SER schist						-	ļ	ļ					2.13	5.18	3.05	1.67	55	0.10	-		-				
	-	2.13	14.33			ļ	-+-		Qz Phyl; units are highly oxidized and							ł						L	8.23	3.05		 56		3	+	-				
	-															ļ	ļ					5.18						8		-				
	-								fragmented w M Qz flooding						-	ļ						8.23	9.41	1.18				10		-				
\rightarrow					-		+	_		_	-	-	+	_								9.41	11.28	1.87				7	+	┈	_	+	+-	
	-	14.33	20.42		 				DK GY Qz PHY with 5 cm gouge @							ļ	ļ					11.28	14.33	3.05			\	0		-				
LA	65				II				16.12; MCHTY with W interla Qe + Qz							ļ	ļ	LI				14.33	16.70	1.37		95		0		_				
					II				floods. Oxidation on parting/Fr	ILL			Ll				L	L				16.70	17.37	1.67		96		27		_ .				
									surfaces. Weak Py on Fr surfaces +								L	L				17.37	20.42	3.05	2.86	94	0.10	3		_ .				
									w oxidation													20.42	21.09	0.67	0.66	99	0.00	0						
	[]														11	L	L	L																
		20.42	27.27				\perp		GY Qz Mu SCH; F-M						26.63	28.74		C386107				L			L				\perp					
LA	55						T		oxidation resulting from roning of wispy													21.09	23.47	2.38	2.33	98	0.34	14	\top			\Box		
			[T			F Py onparting surfaces; local Gy CHT;						28.74	31.58	Γ	C386108				23.47	26.52	3.05	2.68	88	0.38	12	1				1	
						ļ			occ wisps pf SPM? Oxid Py?						11	1	T					26.52	26.63	0.11	0.10			0		1			1	
	-								-							İ	†													1				
	-	27.27	52.44						Pale Gn Qz ser Sch; noncalcareous						1	†						26.63	29.57	2.94	2.73	93	0.48	16	+	1				
LA	57						-+-		t Po, tw Py occuring as thin wisps on						31.58	33.10		C386109				29.57	32.51	2.94		82			+	-				
-	"				-		+	+	ser LA; W-M Qz flooded; local 5 cm		-	+	+ +	_	Blank	Blank	 	C386110		_		32.51	32.61	0.10		90		0	+	+	-	+	+	
	-						-+-		sections of gritty Qz pebbel gouge;						33.10		ļ	C386111				32.61	35.66	3.05				12	+	-				
	-						-+-		upper 10m W oxidized						33.10	35.06	ļ	C300111											+	-				
	-								upper form w oxidized						-	ļ	ļ					35.66	38.25	2.59					-+	-				
	-				 											ļ	ļ					38.25	38.71	0.46						-				
	-	52.44	72.79		<u> </u>	-	+	_	Unit becomes more thinly LA w SER;	-	_	_	+		-							38.71	41.76	3.05		95			+	+	_	_	+	
LA	50								occ Fr infill Py; Py is finer grained;							ļ	ļ	L				41.76	43.94	2.18		81		0		_				
					II				Py also occurs on Fr surfaces as blebs							ļ	ļ	LI				43.94	44.81	0.87		82		0		_				
					II				SCH becomes incr friable towards	ILL			Ll				L	L				44.81	47.85	3.04						_ .				
									FW contact; 63.09m C/A fluctuates								L	L				47.85	49.45	1.60	1.59	99				_ .				
	[[T		btwn 37-50 degrees													49.45	50.90	1.45	1.44	99	1.00	69	T					
							Т						\Box																Т				Т	
									68.85-69.00													50.90	53.95	3.05	3.03	99	1.01	33						
LA 6	ō -						-+		DK Gy to Bk PHYL w BL of Py on						1	†		ll				53.95	54.96	1.01					+	-				
							-+-		parting surfaces; PHYL assoc w bull Qz							†	 					54.96	57.00	2.04		98			+	-				
	-						-+-		& rubble							†	 					57.00	60.05	3.05		99			+	-				
	-						-+-								-	 		ll						0.00					+	-				
	-	72 20	74.63				-+-		Low recovery approx 50% bull Qz							ł	 					60.05	60.26	0.21	0.18	86	0.00	0	+	-				
+		, 2.23	7-7.03		-	1	+	+	vein; contact surfaces unclear; vein	$-\parallel$	+	+	+	_	1				-	+	-	60.26	63.09	2.83			-	4	+	11	+	+	+	
	-					·	-+-		material bears stwk chl? Alt with Py +	+						ł	 			+		63.09	66.14	3.05				0	+	-				
	-					ļ	-+-		PHYL							ł	ļ					66.14	69.19	3.05		28		0	+	-				
	-					ļ	-+-		FIII L							ł	ļ					h							+	-				
	-	74.00				ļ			Crow Sil DHV: + Dv or 5								ļ	0000445				69.19	69.74	0.55		91	0.00	0	-+	-				
	_	74.63	87.48				+	+	Grey Sil PHY; t Py on Fr surfaces; unit	$-\parallel$	+	-	+	+	81.38			C386112		\rightarrow		69.74	72.24	2.50		91	0.00	0	+	+	+	+	+	
LA						ļ			has been brittly deformed with Fr occ						84.43	87.48	ļ	C386113				72.24	75.29	3.05				4	-+	-				
FR	20					ļ			20 degrees to C/A; unit is intermittently		_				-	ļ	ļ	ļ				75.29	77.33	2.04				15	-4	_ -				
	L					ļ			chl with occ pale green alt bands; unit							ļ	ļ	ļl.				77.33	78.33	1.00		93		38		_ .				
LA	55		[]		<u> </u>	<u> </u>			becomes incr Gr towards Fw;	LI]			l	L	L	<u>[</u>			78.33	81.38	3.05	1.58	52	0.33	11						
	[L		I	Γ		LI												
									84.42-87.48										T			81.38	84.43	3.05	1.55	51	0.00	0						
\neg								Т	Low recovery ; unit is crushed and				\Box									84.43	85.93	1.50	0.52	35	0.00	0	T			Т		
-						ļ			rubblelized with occ 3cm sections of Bk-						11	1	T					85.93	87.48	1.55		36		0		1			1	
							-+-		DKGY Gr gouge				-		1	†	†			+		87.48	90.53	3.05			\	0	+	1			-1	
-	-					·	-+-			+					1	t	†			+				0.00					+	-				
	-	87.48	109 1			·	-+-		Competent Qz SER carbonate schist?						87.48	90.26	 	C386114		+		90.53	93.37	2.84	2.83	100	1.88	36	+	-				
- 1	1	J7.70	100.1				-+-		Unit is M LA with SER ALT LA but													93.37	93.57	0.20					+	-				
LA	52										- 1		1 1		90.26			C386115									0.16							

		LITHOLOGY								Ш		MINERALS			SAMPLES								Blocks				JOINTS									
Stru	ıct.								╁	ALT.				Ī								1	Biooks		RE	GEOTECHNICAL EC RQD					\top	1				
	Attitude	From (m)	To (m)	Interval (m)	Fype	†id		Fexture	Modifier	Notes:							From (m)	Го (m)	nterval (m)	Sample				From (m)	To (m)	Intvl. (m)	(m)	Percent	(m)	Percent	Neathering	Hardness	Attitude	Shape	Roughness	nfilling
	_					T-				+ wisps of Po assoc with SER LA							102.72	104.33		C386117				96.62			2.62	94								
										unit is highly carbonaceous														99.42												
										90.80-91.60	-	ļ							ļ	ļ		ļ	ļ	99.67												
-	$-\parallel$				-	+	\dashv	\dashv	-	Gritty carbonaceous SER gouge 91.60-109.07	-		\dashv	-	-	+	-							102.72	105.25						+	-	+-'	\vdash	+	
			-				+			Porphyroblasts are variable; as well	-								 	t		 	 		108.81											
			-			-	†			as car; Po + car correlate though not	-								†	†I		†	†	108.81								-				
										dependent. Local gouge on parting									I	I		Į	I		114.91		2.36			0						
_	_		-		┞	-	4		\blacksquare	urfaces; occ Fr fillings of Py; Fw contact	-		\Box	\rightarrow	_	+	-						-		117.96					0		_			\rightarrow	
										is grad with underlying Phy	-								ļ	ł		ļ	ļ	117.96	119.79	1.83	0.97	53	0.00	0						
		109.1	136.9				+			Gy Gr PHY; inter la Qz lenses + occ	-						121.01	127.47	 	C386118		 -	 	119.79	121.01	1.22	0.65	53	0.00	0				<u> </u>		
LA	50									Qz floods; BL of car assoc with Qz	-						127.47			C386119		†	†	121.01						0						
LA	55									lenses; occ cubic Py							130.02			C386120					127.10					0						
			-		-	-	-	\dashv	-	124.65-127.10 Gr gouge	-			\rightarrow	\perp	+	133.20	136.86		C386121			-		130.02		2.35			\rightarrow		_		\vdash	_	
LA	28		-		-		+			130.02- ECH crushed +gouge Gr PHY; C/A 28 degrees in final fragments of	-								ļ	 		ļ	ļ		130.15					0						
			-	ļ			+			bull Qz in gouge	-								 	 		 -	 		136.25					0				<u> </u>		
											-								†	†I		†	†		136.86											
		EOH	136.9																					EOH												
-		ļ	-	ļ	.		+				-	ļ							ļ	ļ		ļ	ļ				ļ		ļ					ļ		
			-		-		+				-								ļ	 		ļ	ļ		·		ļ		ļ		:+-					
			-	ļ			+				-								 	 		 -	 		·									<u> </u>		
										·	-								†	†I		†	†		·				·							
]																									
											-	ļ							ļ	ļ		ļ	ļ											ļ		
			-	ļ			+				-	ļ							ļ	ļ		ļ	ļ		ļ		ļ									
			-				+				-								 	 		ł	 		·				ł							
\dashv							\dashv	\dashv	\dashv		1			\dashv		+															\perp	1	+			
											-	ļ							ļ	ļ		ļ	ļ		ļ									ļļ		
											-								ļ	ļ		ļ	ļ		ļ											
\dashv			-		-	+	\dashv	\dashv	\dashv			Н		-	+	+	1							 						\dashv	+	-	+-'	\vdash	+	
			-				+				-								†	t		 	 		·							-				
		ļ									-	ļ							ļ	ļ		ļ	ļ				ļ							ļļ		
\dashv	$-\parallel$		-		-	+	\dashv		\vdash				\vdash	+	+	+	-		-			-			-	\vdash		-		-	+		+-'	$\vdash \vdash$	+	—
			-	 			+				-								 	 		 -	 		· 				·		+-			 		
				l	1		+				-						11		†	† <u> </u>		t	†		·						+-		-			
																						I			1				I							
7	_]				-	1										1	-							-	1			L			\perp	_ _	4		7	
			·	ļ			+				-								ļ	 		ļ	 		·		ļ		ļ					<u> </u>		
		·	·	ł	-		+				-								 	 		 -	 		· 				ļ		+-			 		
			-				+				-						11		†	†		t	 		·				·		+-					
][<u> </u>							<u> </u>							
											-									ļ		ļ			ļ											
-		ļ	ļ	ļ	.		‡				-	ļ							ļ	ļ		ļ	ļ		ļ		ļ		ļ					ļļ		
- 1	- 11	I	I	1	II				1		H				- 1	1	H	1	1	1		1	1	H	1		II.		1		. 1	ll l	- 1 '		. 1	

			LITHO	LOGY					ALT.		MI	NER/	ALS			S	AMPLES	i			Blocks			GEO	TECHN	IICAL		T	JO	INTS	-
Type Attitude	From (m)	To (m)	Interval (m)	Туре	Unit	Texture	ModIfier	Notes:						From (m)	То (m)	Interval (m)	Sample			From (m)	To (m)	Intvl. (m)	RE (m)	Percent	RQ (m)	Percent 0	Weathering	Frequency	Attitude	Roughness	Infilling
																												\blacksquare			
										- 1																					