2006 GEOLOGICAL and GEOPHYSICAL ASSESSMENT REPORT ON THE HARLAN PROPERTY

Comprising the Following Claims:

Cam 1-8, Harlan 3-7, 9-23, 39-50, 55-69, 71, 263, 265-274, 276-283

Located in the Dahl Mountain Area Mayo Mining District Yukon Territory, Canada N.T.S. 1050/04, 05

> Latitude: 63° 14' North Longitude: 131° 40' West

> > Prepared for

650399 BC Ltd Dba: Alexco Resource Corp. 1920 – 200 Granville Street Vancouver, BC, V6C 1S4

Prepared by Melanie Roberts, BSc Mike Stammers, P.Geo Lou O'Connor, Geophysicist

Dates work performed: August 22-31, 2006 Date of Report: January 25, 2007

EXECUTIVE SUMMARY

The Harlan property is located in east-central Yukon, approximately 150 kilometres north-northeast of Ross River and 60 kilometres northwest of the North Canol Road (Yukon Highway #6). The Harlan Property consists of 75 contiguous quartz mining claims within NTS Sheets 105 O/4 and O/5 in the Mayo Mining District. The claims are owned by 650399 B.C. Ltd., a wholly owned subsidiary of Alexco Resource Corp (Alexco) and are all in good standing.

The Harlan property is located within the Paleozoic Selwyn Basin sedimentary package extending eastsoutheast from north-west of Dawson City to the Yukon-Northwest Territory border, north of the major northwest-southeast trending Tintina Fault. The package consists of shallow shelf to off-shelf marine clastic and chemical sediments and basinal clastic sediments, intruded by the Mid-Cretaceous Tombstone-Tungsten Suites which control much of the gold mineralization within the package. Multiple large scale east-southeast oriented thrust faults dip to the southwest and may be offset by later northeast-southwest high angle faults.

On the Harlan property, large thrust faulted units of Road River Group chert and graphitic argillite overlie broad units of Earn Group chert pebble conglomerate and minor siltstone. Multiple narrow, variably argillically altered and mineralized quartz monzonite to monzonitic dykes intrude the package.

In the Vortex Zone, dyke emplacement caused localized and pervasive silicification, clay alteration and mineralization within the Earn Group sediments, with highly variable alteration patterns, multiple veining events and brecciation. Soil sampling and rock sampling show consistent anomalous gold, arsenic, silver and antimony within the Earn Group sediments, with increasing gold content associated with more intense silicification and clay alteration and the presence of disseminated and veined pyrite, arsenopyrite and scorodite.

The highest gold grades (3.81, 4.25, 2.95 and 3.34 parts per million) returned from 2006 sampling were associated with a highly silicified and clay altered northwest-trending shear zone cutting through Earn Group chert pebble conglomerate and minor siltstone, with multiple intrusive sills nearby. Mineralization consisted of massive sulphide – silica aggregates at dilational areas, coarse crystalline quartz-scorodite veining and disseminated pyrite-arsenopyrite with extensive scorodite staining. A second silicified, clay altered and slickenlined northeast trending fault structure within chert-pebble conglomerate and siltstone returned a 1.79 parts per million gold sample.

The Vortex Breccia, in the southern Vortex Zone, contained heterolithic breccia outcrops. Samples overall returned low anomalous gold mineralization (0.02-0.08 parts per million) except for one sample with disseminated pyrite in the matrix that returned 1.0 parts per million gold and 1350 parts per million arsenic. Soil samples taken through the breccia zone show elevated gold values up to 1.69 parts per million gold.

Rock sampling of intrusive phases showed no significant mineralization although a soil sample taken from intrusive material returned 0.96 parts per million gold and >10,000 parts per million arsenic. No significant mineralization was found in the Road River Group samples.

The geophysical survey showed a strong magnetic high in an area of Steel Formation (a member of the Road River Group) shale talus, which differs significantly from the surrounding Steel Formation rocks that form a magnetic low. The magnetic high could be related to the thrust fault contact between the Road River Group and Earn Group sediments, as the trace of the fault is not well constrained in the vegetated lower elevations. The intrusive sills and the variably silicified and clay altered Earn Group sediments form a moderately magnetic mass, with the high grade samples occurring along a shear structure at the edge of a break from moderate to low magnetic susceptibility. The intrusive sills could not be distinguished from the sediments in the magnetic data.

Field work completed in 2006 confirmed the presence of widespread anomalous to well mineralized, pervasively altered Earn Group sediments over at least an 800 x 600 metre area. Altered Earn Group sediments also extend westward beneath the thrust faulted Road River Group sediments, and the northern,

eastern and southern extents are not well constrained. The Earn Group sediments remain the most prospective target in the Vortex Zone. The volumetrically minor intrusive phases show sporadic mineralization despite the extensive alteration so are not considered a viable target in this area. The historically inferred intrusive stock at the south end of the Vortex Zone was not visited and could not be confirmed.

A two phase exploration program is proposed for future work at the Harlan property.

Phase I would entail detailed, systematic mapping and soil sampling. Mapping would concentrate on finding outcrop within the extensive talus to refine the lithology distributions, particularly the dyke orientations, and to determine the extents of the breccia body. The mineralized shear zone and fault found in 2006 highlight the probability of high grade mineralized structures within a lower grade disseminated ore body, so collection of structural information is a priority. The trace and extent of the mineralized shear zone should be refined to aid in drillhole targeting. The trace of the thrust fault on the western edge of the Vortex Zone could be better constrained to try to determine its relationship to the magnetic high seen in the 2006 survey.

A soil sample grid should be conducted over the Vortex Zone at 100 metre spacing with samples taken every 25 metres.

An airborne magnetic and radiometric survey should be flown over the entire property to help define intrusive bodies and major structures. The Tombstone Suite intrusives are generally highlighted in potassium radiometric maps.

Phase II would consist of a 2000 metre, 10 hole reconnaissance drill program with hole locations defined by results in Phase One. Two five hole fences oriented north-south could cover all the main targets identified to date: the mineralized shear zone, disseminated sulphide mineralization, the Vortex breccia body and the magnetic high.

TABLE OF CONTENTS

		Page
	EXECUTIVE SUMMARY	2
1.0	INTRODUCTION	6
2.0	PROJECT DESCRIPTION AND LOCATION	6
3.0	ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	10
4.0	HISTORY 4.1 Regional Exploration History and Competitor Activity 4.2 Property Exploration History	10
5.0	2006 EXPLORATION PROGRAM 5.1 Soil and Rock Sampling Methodology, Preparation and Analysis 5.2 Geophysical Surveying Methodology	11
6.0	GEOLOGICAL SETTING 6.1 Regional Geology 6.2 Property Geology	12
7.0	2006 EXPLORATION RESULTS7.1 Results-Mapping and Rock Sampling7.2 Results-Soil Sampling7.3 Geophysics	16
8.0	CONCLUSIONS	21
9.0	RECOMMENDATIONS	22
10.0	REFERENCES	23
CERTI	FICATES OF QUALIFICATIONS	24

LIST OF FIGURES

Page

Page 1

Figure 1:	Property Location and Surrounding Claims	7
Figure 2:	Property Claim Holdings	8
Figure 3:	Regional Geology	13
Figure 4:	Rock and Soil Sample Locations	14
Figure 5:	Property Geology	19
Figure 6:	Magnetic Contour Map	20

LIST OF TABLES

Table 1:	Status of Claim Holdings	9
Table 2:	List of Geological Formations	15

LIST OF APPENDICES

Appendix 1:	List of Personnel and Contractors
Appendix 2:	Statement of Expenditures
Appendix 3:	Rock Sample Descriptions
Appendix 4:	Soil Sample Descriptions
Appendix 5:	ALS Chemex Laboratory Certificates
Appendix 6:	Aurora Geophysical Report with CD

1.0 INTRODUCTION

This report presents the results of the 2006 field program conducted on the Harlan property. The exploration program consisted of geological mapping and sampling, ground magnetic surveying and soil sampling. Work was conducted over a ten day period from August 22-31, 2006. Planning, logistics and field work were conducted by NovaGold Resource Inc. exploration personnel on behalf of 650399 BC Ltd. Aurora Geosciences Ltd of Whitehorse was contracted for geophysical surveying and provision of a fly camp. Trans North Helicopters provided all transportation for the fly camp, and mob/demob was conducted from Twin Creeks airstrip on the North Canol Road.

The Harlan Property consists of 75 contiguous quartz mining claims (Cam 1-8, Harlan 3-7, 9-23, 39-50, 55-69, 71, 263, 265-274, 276-283 Claims) within NTS Sheets 105 O/4 and O/5 in the Mayo Mining District (Figures 1 and 2). The claims are currently registered in the name of 650399 B.C. Inc., a wholly owned subsidiary of Alexco and are all in good standing.

A summary of expenditures for the program is presented in Appendix 1.

The reference datum used is UTM NAD27 Zone 9, unless otherwise noted.

The report was prepared in accordance with the guidelines of the Yukon Quartz Mining Act and is based on field observations made by the author and geochemical data obtained from samples submitted to an accredited laboratory. Qualified Person Mike Stammers of NovaGold Resources Inc conducted a one day property visit during the field program. Background information is based on data and geological information gathered from public sources, assessment files and internal company reports and memorandum.

2.0 PROJECT DESCRIPTION AND LOCATION

The Harlan property is located in the Mayo district, Yukon, approximately 150 kilometres north-northeast of Ross River and 60 kilometres northwest of the North Canol Road (Yukon Highway #6). The property is centered at latitude 63° 15' and longitude 131° 41' and is split between NTS Map Sheets 105 O/4 and O/5. (Figure 1).

Property Holdings

The Harlan Property consists of 75 contiguous quartz mining claims (Cam 1-8, Harlan 3-7, 9-23, 39-50, 55-69, 71, 263, 265-274, 276-283 Claims) within NTS Sheets 105 O/3 and O4 in the Mayo Mining District (Figure 2). The claims are currently registered in the name of 650399 B.C. Ltd., a wholly owned subsidiary of Alexco Resource Corp and are all in good standing. Table 1 provides listings of the property holdings for the claim block.

Property Agreement

On February 1, 2005, Alexco Resource Corporation acquired all the issued shares of the company 650399 BC Ltd., (Spectrumsub-a subsidiary of NovaGold) from NovaGold Canada Inc. Through this agreement, Alexco acquired the retained assets of Spectrumsub in British Columbia and the Yukon, including the Harlan property, subject to underlying agreements.

Land Use and Environmental

Activities on the property have been conducted under a current class III Quartz Mining Land Use Permit, approval number LQ00014 with an expiry date of 30 September 2008.

Table 1: Status of Claims Listing

Grant Number	Claim Name	Claim Number	Claim Expiry Date *		Grant Number	Claim Name	Claim Number	Claim Expiry Date *
YB81297	Cam	1	10/17/2011		YB97984	Harlan	49	10/17/2011
YB81298	Cam	2	10/17/2011	1	YB97985	Harlan	50	10/17/2011
YB81299	Cam	3	10/17/2011	1	YB97990	Harlan	55	10/17/2011
YB81300	Cam	4	10/17/2011		YB97991	Harlan	56	10/17/2011
YB81301	Cam	5	10/17/2011		YB97992	Harlan	57	10/17/2011
YB81302	Cam	6	10/17/2011	1	YB97993	Harlan	58	10/17/2011
YB81303	Cam	7	10/17/2011		YB97994	Harlan	59	10/17/2011
YB81304	Cam	8	10/17/2011		YB97995	Harlan	60	10/17/2011
YB97938	Harlan	3	10/17/2011		YB97996	Harlan	61	10/17/2011
YB97939	Harlan	4	10/17/2011		YB97997	Harlan	62	10/17/2011
YB97940	Harlan	5	10/17/2011		YB97998	Harlan	63	10/17/2011
YB97941	Harlan	6	10/17/2011		YB97999	Harlan	64	10/17/2011
YB97942	Harlan	7	10/17/2011		YB98000	Harlan	65	10/17/2011
YB97944	Harlan	9	10/17/2011		YB98001	Harlan	66	10/17/2011
YB97945	Harlan	10	10/17/2011		YB98002	Harlan	67	10/17/2011
YB97946	Harlan	11	10/17/2011		YB98003	Harlan	68	10/17/2011
YB97947	Harlan	12	10/17/2011		YB98004	Harlan	69	10/17/2011
YB97948	Harlan	13	10/17/2011		YB98006	Harlan	71	10/17/2011
YB97949	Harlan	14	10/17/2011		YB98562	Harlan	263	10/17/2011
YB97950	Harlan	15	10/17/2011		YB98564	Harlan	265	10/17/2011
YB97951	Harlan	16	10/17/2011		YB98565	Harlan	266	10/17/2011
YB97952	Harlan	17	9/2/2011		YB98566	Harlan	267	10/17/2011
YB97953	Harlan	18	10/17/2011		YB98567	Harlan	268	10/17/2011
YB97954	Harlan	19	10/17/2011		YB98568	Harlan	269	10/17/2011
YB97955	Harlan	20	10/17/2011		YB98569	Harlan	270	10/17/2011
YB97956	Harlan	21	10/17/2011		YB98570	Harlan	271	10/17/2011
YB97957	Harlan	22	10/17/2011		YB98571	Harlan	272	10/17/2011
YB97958	Harlan	23	10/17/2011		YB98572	Harlan	273	10/17/2011
YB97974	Harlan	39	10/17/2011		YB98573	Harlan	274	10/17/2011
YB97975	Harlan	40	10/17/2011		YB98575	Harlan	276	10/17/2011
YB97976	Harlan	41	10/17/2011		YB98576	Harlan	277	10/17/2011
YB97977	Harlan	42	10/17/2011		YB98577	Harlan	278	10/17/2011
YB97978	Harlan	43	10/17/2011		YB98578	Harlan	279	10/17/2011
YB97979	Harlan	44	10/17/2011		YB98579	Harlan	280	10/17/2011
YB97980	Harlan	45	10/17/2011		YB98580	Harlan	281	10/17/2011
YB97981	Harlan	46	10/17/2011		YB98581	Harlan	282	10/17/2011
YB97982	Harlan	47	10/17/2011		YB98582	Harlan	283	10/17/2011
YB97983	Harlan	48	10/17/2011					

397983Harlan4810/17/2011*Claim expiry is after acceptance of value of assessment work from this program

3.0 ACCESSIBILITY, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Harlan property is accessed by helicopter from Ross River or staging points along the North Canol Road. The Twin Creeks Airstrip was used as a mobilization point for the 2006 field camp. A winter road that extends to the Plata property to the northwest passes within ten kilometres of the north property boundary.

Ross River and Faro are the nearest full service communities with an available workforce and limited contracting facilities.

The property covers fairly rugged terrain, with elevations to ranging from 4,200 feet to 6,600 feet at the summit of Dall Mountain. Typical northern boreal spruce forest covers lower elevations, grading to subalpine fir forests towards the tree line. Higher elevations are covered by typical tundra vegetation, with sizable barren zones.

4.0 HISTORY

4.1 Regional Exploration History and Competitor Activity

The land surrounding the Harlan property continues to see limited exploration (Figure 1). Alliance Pacific Gold Ltd holds numerous claims in the area (AU, HER, ET, FIDO, WEAS) including the nearest claim block to Harlan (YZ) located 7 kilometres to the east, mostly overlying Tombstone Suite stocks and associated gold mineralization and gold in silt anomalies. The JET Claims (located roughly thirty kilometres north-west, held by the Archer-Cathro Group) overlying barite occurrences within Earn Group sediments have been largely dropped. Ron Berdahl staked the DASHA and MYSCHKA claims 40 kilometres to the south-west in 2002. The PLATA claims (a lead-zinc-silver prospect) and INCA claims, located roughly eighty kilometres to the north-west, continue to be held by Western Energy Services Corp. Archer Cathro picked up the ROGUE claims in 2006, close to the PLATA property. The TOM and JASON lead-zinc-silver Sedex style deposits, located roughly forty kilometres to the east and just south of the Mactung deposit, are held by Hudson Bay Exploration & Development Company Ltd and MacPass Resources Ltd, respectively.

4.2 Property Exploration History

No evidence of significant past exploration activity exists across the present Harlan property. In 1997, Viceroy Exploration (Canada) Inc. conducted a regional geochemical sampling program focused on identifying new potential bulk tonnage intrusive related and sediment hosted gold systems. The Harlan property was first identified as a target based on coincident gold-arsenic-mercury-antimony anomalies from RGS silt sampling and favorable stratigraphic and structural settings. The Cam 1-8 and Harlan 1-331 claims were staked in 1997 over kilometric-scale anomalous to high grade gold values from soils and rock chip sampling in Earn Group and Road River Group sediments intruded by Cretaceous quartz-monzonite dykes. Additional reconnaissance soil and rock sampling conducted in 1998 further defined anomalous areas.

NovaGold Resources Inc. acquired 100% interest in the property in 1999 and completed sampling and prospecting work focused on highly prospective areas. Further geological prospecting and sampling work was conducted in 2000 in conjunction with property visits by Teck Exploration Ltd and Homestake Canada.

5.0 2006 EXPLORATION PROGRAM

The 2006 field program consisted of a ten day, three person fly camp to conduct mapping, rock and soil sampling and a ground geophysical survey.

5.1 Rock and Soil Sampling Methodology, Preparation and Analysis

All rock and soil sample characteristics were recorded in the field and entered into standardized spreadsheets (Appendix 2 and 3). Criteria for each sample included: UTM location, sample type, width of chip sampling, color, lithology, alteration, mineralization and a brief description. In addition, texture and organic content, and horizon sampled were recorded for soil samples. Rock grab and chip samples were taken almost exclusively from outcrops amid the extensive talus. Sample locations are shown in Figure 4.

One soil line was planned passing through areas with anomalous to high historical assay results, with 25 samples taken at 40 metre spacing.

Samples were sent to ALS Chemex Labs in North Vancouver, B.C. Soil and rock samples were analyzed by gold fire assay using a 30gram sample and by ICP for a 33-element excluding mercury package using "near total" four acid digestion. Standards were inserted into each of the rock and soil sample batches for assay quality control. Laboratory certificates are found in Appendix 4.

5.2 Geophysical Surveying Methodology

The geophysical equipment, procedures and analysis methods used for the 2006 total magnetic field program is outlined in the Aurora Geosciences Ltd report in Appendix 6. A total of 7.32 line kilometres were surveyed over a one square kilometre area.

6.0 GEOLOGICAL SETTING

6.1 Regional Geology

Adapted from Schulze, 1999

The Harlan property is located within the Selwyn Basin which consists of a broad package of Paleozoic sediments extending east-southeast from north-west of Dawson City to the Yukon-Northwest Territory border north of the major northwest-southeast trending Tintina Fault. This stratigraphy consists of shallow shelf to off-shelf marine clastic and chemical sediments, as well as basinal clastic sediments derived from the Ancient North American Platform to the north-east with ages of deposition ranging from Late Precambrian to Permian. At least two major episodes of rifting have occurred: the first during deposition of the Late Precambrian Hyland Group sediments, and the second during deposition of the Devono-Mississippian Earn Group sediments (Table 2, Figure 3). These major rift zones often host poorly sorted coarse clastic sediments, such as debris flows or turbidite horizons. Several episodes of continental uplift have led to periods of increased erosion and resulting continental margin or miogeosynclinal deposition, resulting in the creation of sequences of comparatively high energy, shallow water sediments, often coarsely grained and variably calcareous. These are separated by strata formed under deeper, quieter water conditions, resulting in formation of fine clastic sediments and chert. The Mid-Cretaceous Tombstone-Tungsten Plutonic Suites (95-89Ma) consisting primarily of monzonitic to quartz-monzonitic intrusive structures, have been emplaced within the Selwyn Basin. Members of these suites occur along an eastsoutheast trending belt extending for over 500 kilometres from north-west of Dawson City to the Yukon-Northwest Territory border. Tombstone Suite intrusives are believed to control much of the economic gold mineralization within the Selwyn Basin.

Extensive thrust faulting along the entire extent of the Selwyn Basin began during Late Jurassic time, with most thrust faults oriented roughly east-southeast and dipping to the south-west, subparallel to the overall east-southeast trend of stratigraphy. Several major regional thrust faults were formed including the Dawson Thrust, Tombstone Thrust, and Robert Service Thrust. This regional fabric has been overprinted by a slightly less pronounced northeast-southwest fabric, marked by high angle orthogonal faults that are strongly pronounced within the Harlan property area.

The Harlan property occurs within a broad deformation belt unofficially called the "Gold River Fold Belt" extending along the south side of the Hess River. Several west-northwest trending thrust faults, reactivated as strike-slip faults associated with fairly intense folding, extend across this belt. Tombstone Suite intrusives occur within the belt, particularly along the north and south flanks, and are common in the Harlan property area.

6.2 Property Geology

Adapted from Johnson, 2001

A thick sequence of Earn Group locally calcareous chert pebble conglomerate, sandstone and greywacke underlie the Harlan Property, with lesser shale to siltstone members. Several roughly southeast trending units of Road River Group shale to siltstone, and graphitic argillite units extend across the property and appear to be thrust over locally intensely altered Earn Group formation rocks. In the central part of the property called the Vortex Zone, these Earn Group coarse clastic sedimentary rocks have undergone strong argillic and advanced argillic alteration and display multi-episodic fine quartz vein and stockwork development. Southeast trending, moderately south dipping thrust faults have been mapped within Earn and Road River Group stratigraphy in the area.

A suite of altered late-stage Tombstone Suite quartz-feldspar porphyritic dikes extends across the central property area. These extend primarily east-southeast, but also map other lineation orientations, largely in the Vortex Zone area. These dikes have intruded the graphitic argillite unit within the "West Porphyry Zone" up to three kilometers west of the central Vortex area. Dikes display variable intensities of argillic and phyllic alteration and localized silicification. An area of abundant feldspar porphyritic rubblecrop in a wooded area south of the Vortex Zone indicates the presence of a monzonitic stock.

Table 2: List of Geological Formations

Age	Group	Formation (Lithology)	Geology Map Designation	Rock Code	Description
Mid- Cretaceous	Tombstone - Tungsten Plutonic Suite	Monzonite, Quartz Monzonite	Kqm, Kg	QM, QFP, QPM	Felsic to intermediate quartz monzonitic, monzonitic, to quartz dioritic intrusives. The name "Selwyn Suite" often applies to eastern portion of the suite. Anvil Intrusives and coeval South Fork Volcanics now considered part of Tombstone Suite; varying phases due to different fractionation states rather than a separate major intrusive event. Quartz-monzonite dikes within Harlan are argillically altered and limonitic.
Devonian - Mississippian	Earn Group	Prevost Formation	DMp (Dme)	CH, ARG ARGG	Brown weathering shale, grey to grey-brown weathering chert-pebble conglomerate, dark grey-black chert-quartz sandstone.
Devonian - Mississippian	Earn Group	Prevost Formation	Dme	CPC	Chert Pebble Conglomerate: pebble to cobble sized clasts in Silicified or calcareous matrix, local breccia fragments; lesser coarse to fine sandstone members. Host for major sediment-hosted mineralization within Harlan Property.
Devonian	Earn Group	Portrait Lake Formation	Dp (Dme)	CH, ARG, ARGG	Argillite, chert, minor sandstone and conglomerate. Black siliceous argillite form lower member. May contain minor greywacke, siltstone and baritic horizons.
Ordovician- Early Devonian	Road River Group	Steel Formation	(OSDr)	SS	Weakly to moderately calcareous orange weathering mudstone to siltstone, often bioturbated reflecting oxygenated bottom water conditions. Baritic horizons often form distinctive upper members near top of formation.
Ordovician- Early Devonian	Road River Group	Duo Lake Formation	Osd (OSDr)	CH, SLT, ARG	Black argillite and massive to thick bedded chert, weathers bluish white, local tan limonitic weathering.

After Roots, C.F. Abbott, J.G. Cecile, M.P. Gordey, S.P. 1995

7.0 2006 EXPLORATION RESULTS

Previous work on the Harlan property had identified two areas of interest, the Vortex Zone and the Western Porphyry Zone, within a ten square kilometre area of anomalous surface geochemistry. Descriptions of the Western Porphyry zone may be found in earlier assessment reports.

Field work in 2006 concentrated on the Vortex Zone, a previously identified area of strongly altered and mineralized Earn Group sediments in the south-eastern portion on the property. Field work consisted of mapping and rock sampling, soil sampling and a geophysical survey. The area mapped contains extensive coarse talus slopes with little certain outcrop. Lower elevations are covered with buckbrush and balsam fir with very little outcrop, and likely have extensive talus cover. An effort was made to only to take samples from confirmed outcrop or highly probable in situ rubblecrop. Soil sampling on the talus slopes is likely collecting talus fines samples rather than well developed soils.

7.1 Mapping and Rock Sampling

Mapping work confirmed the presence of variably altered Earn Group sediments, consisting largely of chert pebble conglomerate with minor siltstone and greywacke, covering most of the upper portions of the mountainside in the Vortex Zone (Figure 5). Well fractured and oxidized Road River Group interbedded shales and siltstones are thrust faulted over the Earn Group sediments to the south of the Vortex Zone and several phases of Tombstone intrusive phases intrude both sedimentary packages.

Intrusive Phases

Two texturally distinct phases of intrusive were found: a sparse megacrystic unit ("megacrystic") and a finer-grained porphyritic unit ("crowded"). The megacrystic unit consists of 2-5% 1-3cm white alkali feldspar phenocrysts (often zoned), 5% 2-5mm round quartz eyes and 5% biotite lathes in a fine-grained feldspar groundmass. The crowded unit consists of 10-20% 2-5mm white equant alkali feldspar phenocrysts and 10% 2-5mm biotite books in a medium grained light green feldspathic groundmass.

Both intrusive units are often well altered, though the megacrystic phase tend to form more massive sills with unaltered areas. Feldspar phenocrysts are often clay-carbonate-quartz altered and leached out, biotite is often altered to coarse sericite or is oxidized and obliterated, and the groundmass is generally clay altered, well oxidized and orange weathering. The strongly altered dikes tend to form recessive units.

Mineralization noted in the intrusive phases was limited to 1-2% disseminated cubic to blebby pyrite in the groundmass, occasionally rimming grains or replacing biotite. Unaltered intrusive phases did not appear to contain primary sulphides. Assay results for the eight intrusive samples did not have any significant gold mineralization (all < 0.05 parts per million gold) despite anomalous arsenic values in several samples (up to 1050 parts per million arsenic).

Earn Group sediments

The Earn Group sediments in the Vortex Zone show highly variable alteration patterns, multiple veining events and brecciation. They host the majority of mineralization found in the Vortex Zone.

The chert pebble conglomerate showed large variation in grain sizes but typically appeared as a well sorted conglomerate with sub-rounded to rounded chert pebbles to cobbles, along with occasional angular to sub-rounded, clay altered siltstone clasts. Small outcrops of thinly bedded siltstone were observed with conformable contacts with overlying chert pebble conglomerate. The siltstone units were often bleached and clay altered, and may form recessive units under the more resistant chert pebble conglomerate talus.

The chert pebble conglomerate unit is pervasively silicified, sometimes texturally enhancing but often texturally destructive where only vague outlines of pebbles survive. Large areas previously mapped as siltstone are likely highly altered chert pebble conglomerate. Strong pervasive clay alteration in the central Vortex Zone is characterized by an earthy bleached appearance with leached vugs (carbonate and clay

removed?) and ubiquitous leached disseminated cubic pyrite, along with broad zones of earthy yellow alteration (antimony/arsenic oxides?). Clay alteration extends into the surrounding broadly silicified sediments in discrete, often oxidized corridors. Several generations of quartz veining were observed: a milky white quartz vein set (highly irregular stringers, 0.5-2 centimetres wide, occasional swarms) is cut by a clear dark quartz vein set (1-5 millimetres wide, planar, often sheeted).

Assay results for chert pebble conglomerate and siltstone samples show anomalous gold mineralization throughout the Earn Group sediments, with increasing gold content associated with more intense silicification and clay alteration and the presence of disseminated and veined pyrite and aresenopyrite. A forest green color due to scorodite staining is common. Geochemical results show a strong correlation amongst gold and silver, arsenic, Cu, Fe, Pb and particularly sulphur and antimony.

The highest gold grades (3.81, 4.25, 2.95 and 3.34 parts per million) were associated with a highly silicified and clay altered northwest-trending shear zone cutting through chert pebble conglomerate and minor siltstone, with multiple intrusive sills nearby. The relationship between the fault structure and the intrusive sills is unclear. The fault zone was approximately five metres wise, with discrete anastomizing clay-rich fault structures mirrored by a strong jointing fabric and quartz veining in surrounding silicified sediments. The jointing fabric extended over 100 metres along strike, with the fault structure likely recessive for the most part. Mineralization consisted of massive sulphide – silica aggregates at dilational areas, coarse crystalline quartz-scorodite veining and disseminated pyrite-arsenopyrite with extensive scorodite staining.

A second silicified, clay altered and slickenlined northeast trending fault structure within chert pebble conglomerate and siltstone returned a 1.79 parts per million gold sample.

Mapping in the area previously referred to as the Vortex Breccia, in the southern Vortex Zone, confirmed the presence of heterolithic breccia outcrops. Breccia clasts consisted of angular chert pebble conglomerate, argillite, clay altered siltstone and a small number of highly altered clasts of unknown lithology (possible intrusive?). The breccia matrix was composed of rock fragments and silica, with possible minor carbonate and minor blebby pyrite. The argillite clasts contained minor disseminated cubic pyrite. Several chert pebble conglomerate clasts contained milky quartz veins terminating at the clast edge, indicating that breccia formation occurred after that phase of veining. The breccia body appears to grade out into fractured chert pebble conglomerate with intense quartz veining, though the boundary is often difficult to distinguish due to strong texturally destructive silicification.

Breccia outcrop samples overall returned low anomalous gold mineralization (0.02-0.08 parts per million) except for one sample with disseminated pyrite in the matrix that returned 1.0 parts per million gold and 1350 parts per million arsenic.

Road River Group sediments

The Steel Formation interbedded shales and siltstones (part of the Road River Group stratigraphy) outcrop along the western edge of the Vortex Zone as they are thrust over altered Earn Group sediments to the east. The rocks close to the thrust surface are highly fractured or friable, oxidized and often brecciated. No samples were taken from these outcrops.

Dark grey blocky argillite talus slopes inferred to be Steel Formation sediments also occur in the southern portion of the Vortex Zone, where they become oxidized, bleached and clay altered adjacent to intrusive sills. Two samples taken from argillite lithologies did not show any significant mineralization.

7.2 Soil Sampling

Soil sample results largely confirm values seen in previous work. Almost all of the soil samples showed anomalous gold, arsenic, silver and antimony values, except for the south end of the soil line where the underlying lithology is likely Road River Group sediments. In the Vortex Breccia, elevated gold values of 1.69, 0.54, 0.34 and 0.31 parts per million were seen. In the Earn Group sediments, gold values ranged from 0.09 to 0.99 parts per million, while two samples taken near the clay altered shear zone returning 0.73

and 0.79 parts per million gold. A sample taken in intrusive material contained 0.96 parts per million gold and >10,000 parts per million arsenic.

7.3 Geophysical survey results

Aurora Geosciences Ltd. (Aurora) of Whitehorse, Yukon completed a ground magnetic survey on the Harlan property in the Yukon during the summer season of 2006 for Alexco. The data was collected on GPS located, northeast-southwest oriented reconnaissance profiles with a nominal station spacing of 12.5 metres and a nominal line spacing of 100 metres. Ten lines were run in an area of about one square kilometre. The data were reduced using a local recording magnetic base station to remove diurnal drift. Aurora provided a color contour map of the reduced data and a digital file containing line and station ID's, locations in UTM coordinates, the field measurements and the reduced total magnetic field data.

The dominant feature of the contour map (Figure 6) of the magnetic field is a sharp, positive 600 to 900 nanoTesla anomaly located in the southwest corner of the survey area. The anomaly extends 400 metres along strike to the northwest and is 200 to 300 metres wide. The axis of the anomaly is located from about 366500E, 7014900N southeast to about 366725E, 7014600N. The anomaly is not completely defined and appears to extend to the south and southwest off the map. A southwest to northeast profile extracted from the magnetic grid indicates a shallow edge on the southwest end of the profile and a dike source with a dip to the northeast. The source is estimated to be about 40 metres deep. The contour map pattern indicates that a deeper, broad source extends up to 300 metres to the north and northeast of this shallow feature. A very flat magnetic response covers the rest of the survey area.

Subtle north-south, east-west and northwest-southeast magnetic linears can be seen in the magnetic map. These linears could be associated with structures or the edges of magnetic bodies. A north-south linear is located at about 366800E, marking the eastern edge of the high amplitude anomaly. An east-west linear is visible at about 7015000N. Two northwest -southeast linears that generally parallel the strike direction of the shallow magnetic body are visible extending from 367000E, 7015000N to the southeast to about 367150E, 7014800N and from 366700E, 7015300N to 367050E, 7014800N.

The geophysical survey showed a strong magnetic high in an area of Steel Formation (Road River Group) shale talus, which differs significantly from the surrounding Steel Formation rocks that form a magnetic low. The magnetic high could be related to the thrust fault contact between the Road River Group and Earn Group sediments, as the trace of the fault is not well constrained in the vegetated lower elevations. The intrusive sills and the variably silicified and clay altered Earn Group sediments form a moderately magnetic mass, with the high grade samples occurring along a shear structure at the edge of a break from moderate to low magnetic susceptibility. The intrusive sills could not be distinguished from the sediments in the magnetic data.

ALEXCO RESOURCE CORP Harlan Property, Yukon Figure 6: 2006 Ground Magnetics with Profile January 25, 2006

8.0 CONCLUSIONS

The Harlan property is located within the Paleozoic Selwyn Basin sedimentary package extending eastsoutheast from northwest of Dawson City to the Yukon-Northwest Territory border, north of the major northwest-southeast trending Tintina Fault. The package consists of shallow shelf to off-shelf marine clastic and chemical sediments and basinal clastic sediments, intruded by the Mid-Cretaceous Tombstone-Tungsten Suites which control much of the gold mineralization within the package. Multiple large scale east-southeast oriented thrust faults dip to the southwest and may be offset by later northeast-southwest high angle faults.

On the Harlan property, large thrust faulted units of Road River Group chert and graphitic argillite overlie broad units of Earn Group chert pebble conglomerate and minor siltstone. Multiple narrow, variably argillically altered and mineralized quartz monzonite to monzonitic dykes intrude the package.

In the Vortex Zone, dyke emplacement caused localized and pervasive silicification, clay alteration and mineralization within the Earn Group sediments, with highly variable alteration patterns, multiple veining events and brecciation. Soil sampling and rock sampling show consistent anomalous gold, arsenic, silver and antimony within the Earn Group sediments, with increasing gold content associated with more intense silicification and clay alteration and the presence of disseminated and veined pyrite, arsenopyrite and scorodite.

The highest gold grades (3.81, 4.25, 2.95 and 3.34 parts per million) were associated with a highly silicified and clay altered northwest trending shear zone cutting through chert pebble conglomerate and minor siltstone, with multiple intrusive sills nearby. Mineralization consisted of massive sulphide – silica aggregates at dilational areas, coarse crystalline quartz-scorodite veining and disseminated pyrite-arsenopyrite with extensive scorodite staining. A second silicified, clay altered and slickenlined northeast trending fault structure within chert pebble conglomerate and siltstone returned a 1.79 parts per million gold sample.

The Vortex Breccia, in the southern Vortex Zone, contained heterolithic breccia outcrops, consisting of angular chert pebble conglomerate, argillite, clay altered siltstone and a small number of highly altered clasts of unknown lithology (possible intrusive?) in a rock fragment/silica matrix. Breccia outcrop samples overall returned low anomalous gold mineralization (0.02-0.08 parts per million) except for one sample with disseminated pyrite in the matrix that returned 1.0 parts per million gold and 1350 parts per million arsenic. Soil samples taken through the breccia zone show elevated gold values up to 1.69 parts per million gold.

Rock sampling of intrusive phases showed no significant mineralization although a soil sample taken from intrusive material returned 0.96 parts per million gold and >10,000 parts per million arenic. No significant mineralization was found in the Road River Group samples.

The geophysical survey showed a strong magnetic high in an area of Steel Formation shale talus (part of the Road River Group stratigraphy), which differs significantly from the surrounding Steel Formation rocks that form a magnetic low. The magnetic high could be related to the thrust fault contact between the Road River Group and Earn Group sediments, as the trace of the fault is not well constrained in the vegetated lower elevations. The intrusive sills and the variably silicified and clay altered Earn Group sediments form a moderately magnetic mass, with the high grade samples occurring along a shear structure at the edge of a break from moderate to low magnetic susceptibility. The intrusive sills could not be distinguished from the sediments in the magnetic data.

Field work completed in 2006 confirmed the presence of widespread anomalous to well mineralized, pervasively altered Earn Group sediments over at least an 800 x 600 metre area. Altered Earn Group sediments also extend westward beneath the thrust faulted Road River group sediments, and the northern, eastern and southern extents are not well constrained. The Earn Group sediments remain the most prospective target in the Vortex Zone. The volumetrically minor intrusive phases show sporadic mineralization despite the extensive alteration so are not considered a viable target in this area. The

historically inferred intrusive stock at the south end of the Vortex Zone was not visited and could not be confirmed.

9.0 RECOMMENDATIONS

Retention of the Harlan property is recommended and a two phase exploration program is proposed for future work at the Harlan property.

Phase One would entail detailed, systematic mapping and soil sampling. Mapping would concentrate on finding outcrop within the extensive talus to refine the lithology distributions, particularly the dyke orientations, and to determine the extents of the breccia body. The mineralized shear zone and fault found in 2006 highlight the probability of high grade mineralized structures within a lower grade disseminated ore body, so collection of structural information is a priority. The trace and extent of the mineralized shear zone should be refined to aid in drillhole targeting. The trace of the thrust fault on the western edge of the Vortex Zone could be better constrained to try to determine its relationship to the magnetic high seen in the 2006 survey.

A soil sample grid should be conducted over the Vortex Zone at 100 metre spacing with samples taken every 25 metres.

An airborne magnetic and radiometric survey should be flown over the entire property to help define intrusive bodies and major structures. The Tombstone Suite intrusives are generally highlighted in potassium radiometric maps.

Phase Two would consist of a 2000 metre, 10 hole reconnaissance drill program with hole locations defined by results in Phase One. Two five-hole fences oriented north-south could cover all the main targets identified to date: the mineralized shear zone, disseminated sulphide mineralization, the Vortex breccia body and the magnetic high.

Respectfully submitted

Melanie Roberts, BSc

M. A. STAN Michael A. Stammers, P. Geo., FGAC

10.0 REFERENCES

- Department of Indian and Northern Affairs, 1995: Yukon Minfile, Frances Lake Area (Sheet 105O); Exploration and Geological Services, Whitehorse.
- Diment, R, 1997; Brewery Creek Report, 1996: Exploration Progress Report, In-house report, Viceroy International Exploration, Inc.
- Gordey, S.P. and Anderson, R.G., 1996: Evolution of the Northern Cordilleran Miogeosyncline, Nahanni Map Area (105I), Yukon and Northwest Territories; Geological Survey of Canada, Memoir 428.
- Johnson, G., 2001: 2000 Geological and Geochemical Assessment Report on the Harlan Property: In-house report, NovaGold Resources Inc.
- Poulson, K.H., 1996: Carlin Type Gold Deposits: Canadian Potential?, in New Deposit Models of the Cordillera, Northwest Mining Association short course.
- Roots, C.F. Abbott, J.G. Cecile, M.P. Gordey, S.P. 1995: Bedrock Geology of Lansing Range Map Area (105N), East Half, Hess Mountains, Yukon; Exploration and Geological Services, Yukon Region, and Indian and Northern Affairs Canada.
- Schulze, C, 1997: Yukon Regional Project, 1997 Progress Report; In-house Report, Viceroy Exploration (Canada), Inc.
- Schulze, C. 1999: 1998 Geological and Geochemical Assessment Report on the Harlan Property; In-house report, Viceroy Exploration (Canada) Inc.
- Schulze, C. 2000: 1999 Geological and Geochemical Assessment Report on the Harlan Property; In-house report, NovaGold Resources Inc.

CERTIFICATE OF QUALIFICATIONS

I, Melanie Roberts, of 502-1100 Jervis Street, Vancouver, in the Province of British Columbia, Canada, certify that:

- 1. I am a project geologist employed with NovaGold Resources Inc., 2300 200 Granville Street, Vancouver, BC, V6E 1S4.
- 2. I am a graduate of the University of Victoria with a Bachelor of Science (Honors) in Geology in 2000.
- 3. I have practiced my profession continuously since 2000 and have been involved in projects in Australia, South Africa and Canada.
- 4. I was present at the Harlan property from August 22nd -August 31st, 2006 and during this time performed the mapping and rock sampling work, and supervised the geophysical survey and soil sampling. I reviewed the results from the program and have compiled this report based on these results and field observations.
- 5. I have no interest in the property described herein, nor do I expect to receive any such interest.

Dated at Vancouver, British Columbia, Canada, this 3/ day of January, 2006.

M. Roberts, B.Sc.

GEOLOGIST'S CERTIFICATE

I, Michael A. Stammers, of 941 Kennedy Avenue, North Vancouver, in the Province of British Columbia, Canada, DO HEREBY CERTIFY:

- 1 THAT I am a Senior Geologist with NovaGold Resources Inc., 2300 200 Granville Street, Vancouver, BC, V6E 1S4.
- 2 THAT I have practiced in my profession with various mining companies in Yukon, British Columbia, Ontario, Nova Scotia, Northwest Territories, Alaska, Oregon, Vanuatu and Venezuela for 30 years.
- 3 THAT I am a graduate of McMaster University (1977) and hold a combined Honours B.A. in Geology and Geography.
- 4 THAT I am duly registered as a Professional Geoscientist in the Province of British Columbia (#18883).
- 5 THAT I am a Fellow of the Geological Association of Canada.
- 6 THAT this report is based on a Harlan property visit in 2005 and Harlan property work that I supervised from August to December, 2006.
- 7 THAT I have no interest in the property described herein, nor do I expect to receive any such interest.

M. A. STAM Michael A. Stammers, P. Geo., FGAC CLLOW!

DATED at Vancouver, British Columbia, Canada, this 2/2 day of January, 2006.

APPENDIX 1: List of Personnel and Contractors

PERSONNEL

- Melanie Roberts, Project Geologist, NovaGold Resources Inc. 502-1100 Jervis Street, Vancouver, BC, V6E 2C4
- Mike Stammers, Senior Geologist, NovaGold Resources Inc. 941 Kennedy Avenue, North Vancouver, BC

CONTRACTORS

- Lauren Blackburn, Geologist/geophysical technician Aurora Geosciences, 108 Gold Road, Whitehorse, YT, Y1A 2W3
- Ron Stacks, Technician/prospector Aurora Geosciences, 108 Gold Road, Whitehorse, YT, Y1A 2W3
- Trans North Helicoptors PO Box 8, 115 Range Road, Whitehorse, YT, Y1A 5X9

ALS Chemex

212 Brooksbank Avenue, North Vancouver, BC, V7J 2C1

APPENDIX 2: Statement of Expenditures

COST STATEMENT - HARLAN Alexco Resource Corp. and 65039	9 BC Ltd.	
CONTRACT GROUND GEOPH	YSICAL SURVEYS	
Contractor:	Aurora Geosciences	
Description:	Ground Magnetics and Supp	ort
Geophysical Charges:	\$9,800.00	
Camp and Equipment Support Charges:	\$5,700.00	
Food, Fuel, Truck Rental	\$2,030.00	\$17,530.00
CONTRACT GEOLOGICAL MA	PPING AND SAMPLI	NG SURVEYS
Wages: M. Roberts 32 days x \$350	\$11,200.00	
M. Stammers 3 days x \$500	\$1,500.00	
Lou O'Connor 1 day x \$600	\$600.00	
Trans North Helicopters	\$4,440.06	
'	\$5,178.80	
	\$2,412.77	
Freight	\$123.41	
Norcan	\$1,040.38	
Stammers Expenses - Hotel/gas/meals	\$644.00	
Roberts Expenses – Hotels/gas/meals	\$391.00	
Assays Soils - 25	\$560.00	
Rocks - 59	\$1,565.00	\$29,655.42
Total Minimum Expenditures Applied:		\$47,185.42
Estimated Minimum Expenditure per Work C	aim*: Can	n 5. 6 \$14.155.63 each
*Pro-rated to 30% to Cam 5 & 6 and 20% to Cam 7 and	8 Can	n 7. 8 \$9.437.08 each
		, - . .,

APPENDIX 3: Rock Sample Descriptions

ALEXCO RESOURCE CORP Harlan Property, Mayo Mining District, YT 2006 Rock Sample Descriptions

Alteration

Sample No	Assay No	Fasting	Northing	Sample Type	Sample Descr	Form	Lithology	Modifier	Colour	Carh	Silic Arailli	c Phyllic	Limonite	Mineral #1	% Mine	ral#2 %	Other Min %	Date	Sampler	Comments	Au nnm		% As non	m Ba nnm	Renmm Rinnn	Ca %	d nnm Co nnm	Cr nnm C	u nnm F	Fe% K%	Ma %	Mn nnm Mo nn	m Na%	Ni nom	P nnm Ph nr	m \$%	Sh nnm S	Sr nnm Ti %	V nnm	W nnm 7	7n nnm
LI NO6 001	D125601	266560	7014024	Crah	Outcrop	Earn	CPC	broccia	COIOU	Calb.	mild mild	C FIIYIIIC	LIIIUIIIIC	Ne Ac	76 WIIIIC	101 #2 /0	Other Mill 76	25/0/2006	M Pohorts	Extensive ntz filled fractures	0.06	<0.5 2.0	06 26	2270		0.02	<0.5 <1	/10		0.45 1.17	0.17	17 <1	0.02	2	70 4	0.07	6 K	22 0.21	167	<10	<u>211 pp111</u> 6
TILIN00-001	P135(02	300307	7014924	Giab	Outcrop	Lam	CPC	Dieccia	grey		mild mild			AS	u			25/0/2000	M. Dehests	Extensive da filled fractures	0.00	<0.J J.(42 20	2270	0.7 2	0.03	0.5 1	47	0 1	0.40 0.15	0.17	4/ 1	0.03	J 1	100 20	0.07	10	32 0.21	107	10	
HLIN00-002	P133002	300020	7014929	Giab	Outcrop	Edill	CPC	diz veineu	yiey		inita inita	_						23/0/2000	IVI. RODEITS	Choose and a state of the state	0.24	3 0.4	43 20	200	<0.3 <2	0.01	<0.3 <1	30	4 1	0.26 0.13	0.04	21 <1	0.01	<1	100 39	0.05	13	7 0.02	JZ	<10	
HLN06-003	P135603	300008	7014910	Grab	Outcrop	Earn	LPL	bleached	it grey		strong mild							25/8/2006	M. Roberts	Strongry snichled, with qtz venning and breccia infili	0.19	1.6 0.4	21 33	220	<0.5 <2	0.01	<0.5 <1	24	3 (0.33 0.09	0.03	19 <1	0.01		40 45	0.04	19	2 0.01	30	<10	<2
HLN06-004	P135604	366682	/014898	Grab	Outcrop	Earn	Siltstone	bleached	It tan	mild	strong mild	minor		ру	tr			25/8/2006	M. Roberts	Highly bleached +sil, ox pyrite, yellow-red ox surfaces,	0.67	2.3 0.5	51 2540	200	<0.5 <2	0.01	<0.5 <1	41	15 (0.95 0.17	0.05	24 1	0.01	<1	2020 17	80.0	32	5 0.03	89	10	4
LI NO6 005	D125605	266947	7015024	Grah	Outcrop	Kam	Mogacovstic Intrusiv	no massivo	orango	mod	minor	minor		DV/	1			25/0/2006	M Doborts	20m sill menacrystic intrusive with quartz eves	0.02	-0.5 6'	22 0	1440	22 -2	1.4	0.5 1	7	2	1.62 2.06	0.17	260 -1	12	1	290 10	0.17	-5	142 0.12	16	<10	24
HLN04 004	D12E404	244047	7015024	Crab	Outcrop	Forn	cpc	c massive	orange	mou	mod mod	minor	mod	PJ				25/0/2000	M. Roberts	Discrete zones of silicification, or weathered surfaces	0.02	17 1	12 170	050	0.4 .2	0.01	-0.5 1	22	7 /	0.24 0.54	0.17	12 .1	0.02	-1	200 7	0.17	.5	2 0.07	70	-10	- 27
TILIN00-000	F 133000	300047	7013024	Giau	Outcrop	Lam	CFC	UA	grey		mou mou		mou					23/0/2000	IVI. INDUCIUS	low veining density	0.04	1.7 1.4	42 170	000	0.0 <2	0.01	(0.5 (1	33	/	0.30 0.30	0.07	13 11	0.02	~1	300 7	0.00	 	3 0.07	10	<10	< <u>2</u>
HLN06-007	P135607	366769	7015026	Grab	Subcrop	Kam	Crowded intrusive		vellow	trace	mod	mild	mild					25/8/2006	M. Roberts	Higher % of smaller feldspar phenos, no quartz eyes.	0.01	< 0.5 7.7	79 98	1640	2.7 <2	0.17	<0.5 <1	9	51 3	2.26 2.91	0.45	198 <1	1.55	8	500 24	0.01	6	222 0.18	39	10	28
HI N06-008	P135609	366569	7015017	Grab	Outcrop	Farn	CPC	atz veined	grev		mild							26/8/2006	M. Roberts	Moderate to abundant sheeted to stockworked gtz veined	d 0.08	0.9 0.4	48 60	360	<0.5 <2	0.03	<0.5 <1	30	6 (0.31 0.18	0.03	22 1	0.01	<1	60 10	0.03	12	4 0.02	71	<10	2
				0.00	P			4	57																				-												_
HLN06-009	P135610	366569	7015017	Grab	Outcrop	Earn	Siltstone	qtz veined, ox	tan									26/8/2006	M. Roberts	Discrete zones of bleaching, sheeted qtz veins	0.03	0.9 2.0	05 46	1440	0.9 <2	0.01	<0.5 <1	74	3 (0.24 0.86	0.11	15 <1	0.01	<1	70 19	0.02	24	8 0.12	515	10	2
111 1107 010	DADE (A A	0//5/0	7045047	0.1	0.1	F	000					_						01/00001		throughout	1 0.05		04 070	1000		0.01	0.5	10		0.00	0.05	40 (0.01		050 45	0.00	0(F 0.04	474	- 10	
HLN06-010	P135611	300209	/01501/	Grab	Outcrop	Earn	CPC	OX	grey		mila		moa					26/8/2006	M. Roberts	Moderate to abundant sneeted to stockworked dtz veined	d 0.05	2 0.9	91 8/8	1000	0.6 <2	0.01	<0.5 <1	49	33 .	2.62 0.35	0.05	13 0	0.01	1	350 15	0.03	96	5 0.04	1/4	<10	/
HLN06-011	P135612	366575	7015067	Grah	Subcrop	Earn	CPC	bleached	It orange		strong mod			nv	tr			26/8/2006	M Roberts	V. bleached, friable with leached pyrite, probable mod	0.13	51 10	06 169	510	<0.5 <2	0.01	<0.5 <1	35	11 (0.64 0.34	0.1	20 1	0.01	<1	160 37	0.07	49	16 0.05	165	<10	20
THENOO OTT	1 100012	000070	1010007	olub	Gaborop	cum	010	biodenied	it ordingo		strong			PJ	a			20/0/2000	III. HOBOILD	clay alteration. Minor gtz veining	0.10	0.1	107	010	10.0	0.01	10.0	00		0.01 0.01	0.1	20 1	0.01		100 07	0.07		10 0.00	100	110	20
HLN06-012	P135613	366580	7015127	Grab	Outcrop	Earn?	CPC?	fine-grained	dk grey		strong	mod?		v.f.g. sulphide	?			26/8/2006	M. Roberts	Texturally destructive silicification, well developed bio/ser	er 0.12	1.2 1.	.3 34	1100	0.7 <2	< 0.01	< 0.5 1	51	4 (0.21 0.57	0.07	11 <1	0.01	<1	40 9	0.04	10	5 0.06	216	<10	<2
																				lathes, possible v.f.g. dissem sulphide, narrow glassy qtz	z																				
LIL NO4 012	D12E414	244500	7015107	Crah	Outgrop	Earn?	CDC2	fine grained	lt top	mild	strong mod		mild					24/0/2004	M Deborts	veining. bloaching texturally destructive silicification leached	1 70	4.4 0.0	0E 110	450	.0.5 .2	0.02	-0.F -1	4.4	2 1	0.54 0.25	0.1	17 .1	-0.01	.1	00 7	0.10	20	4 0.05	124	-10	- 2
TILINOU-UTJ	F 133014	300300	/01312/	Giab	Outcrop	Latti:	Gro	inie-graineu	it tall	mila	strong		milu					20/0/2000	IVI. INDUCIUS	minor sheeled dk atz veining	1.77	4.4 0.0	03 117	0.00	(0.5 (2	0.02	<0.5 <1	44	2	0.30 0.33	0.1	17 11	0.01	~1	70 7	0.10	30	4 0.05	130	<10	< <u>2</u>
HLN06-014	No sample	366603	7015361	Grab	Outcrop		Vein		white					xstal scorodite	1			26/8/2006	M. Roberts	Massive coarse crystalline quartz vein with elongate	nple Mis	sina																			
																				green crystals: beryl?		5																			
HLN06-015	P135615	366676	7015166	Grab	Subcrop	Earn	CPC?	bleached	It green		strong mod			as	0.5 p	oy 0.5		26/8/2006	M. Roberts	Sulphide mineralization in light green weathered (clay	2.95	5.9 0.1	12 >1000	0 50	<0.5 54	< 0.01	0.5 36	31	185	22.3 0.09	0.01	5 5	0.01	18	2520 17	3.62	505	1 0.02	42	10	20
111 NO(01/	D125/1/	2///00	7015157	Carl	Cubaran	E e e e	CDC	blanderd	h			-			r	ta vetala 0.5		27/0/2007	M. Deheste	allered) rock. bloachod and cilicified CBC with wurdw covetalling quatra	0.17	10 10	FF (700	500	0/ 7	0.01	0.5 1	40	22	1 0.75	0.11	15 0	0.01	1	250 50	0.12	70	1 0.00	107	10	
HLI100-010	P133010	200044	7013130	Giab	Subcrup	Edili	CPC	Diedcheu	it green		suong suong	1		dS	5 SCOIDUI	le Asidis 0.5		21/0/2000	W. RODEITS	containing green crystals and c.g. as masses.	0.17	1.2 1.3	55 6720	390	0.0 7	<0.01	<0.5	42	22	1 0.75	0.11	10 0	0.01	<1	300 00	0.12	12	1 0.09	127	10	4
HLN06-017	P135617	366678	7015183	Grab	Outcrop	Earn	CPC	massive	grey		mod mild			as	0.2 p	oy 0.5	scorodite 0.5	27/8/2006	M. Roberts	Massive CPC with 1-2mm as-py veining, green scorodite	e 0.5	<0.5 1.8	85 9750	1470	0.5 <2	0.01	< 0.5 2	52	45	1.27 0.82	0.1	16 <1	0.01	7	670 9	0.27	25	4 0.1	146	<10	3
					p				5-5	1 1			1				5.0			staining on fracture surfaces, pervasive yellow-orange																					
LUNC OIC	D115 (10	2///70	7015400	C- 1	0.4		000			+ +	alanan	+	+	Course 12				07/0/0001	MIDL	staining on surfaces.	× 0/7	10	20 . 4000	0 400	0.5 11	0.01	0.5	24	100	0.70 0.40	0.02	1/ -	0.01		000	0.07	00	4 0.00		10	
HLN06-018	P132018	3000/8	/015183	Grap	Outcrop	Earn	UPC	vuggy	white	1 1	suong mod	1	1 1	Scorodite	2			21/8/2006	IVI. ROberts	zono in CPC	JU.6/	1.5 0.2	∠ŏ >1000	u 480	<u.5 46<="" td=""><td>0.01</td><td><u.0 9<="" td=""><td>31</td><td>120</td><td>z.78 0.13</td><td>U.U2</td><td>10 1</td><td>0.01</td><td>34</td><td>×3∪ 20</td><td>0.37</td><td>రర</td><td><1 0.03</td><td>34</td><td><10</td><td>П</td></u.0></td></u.5>	0.01	<u.0 9<="" td=""><td>31</td><td>120</td><td>z.78 0.13</td><td>U.U2</td><td>10 1</td><td>0.01</td><td>34</td><td>×3∪ 20</td><td>0.37</td><td>రర</td><td><1 0.03</td><td>34</td><td><10</td><td>П</td></u.0>	31	120	z.78 0.13	U.U2	10 1	0.01	34	×3∪ 20	0.37	రర	<1 0.03	34	<10	П
HLN06-019	P135619	366678	7015183	Grab	Outcrop	Earn	CPC	earthv	areen arev	1 1	strong mod	1	1 1	Scorodite	20			27/8/2006	M. Roberts	Silica and green mineral massive crystalline intergrowth	. 1.1	5.7 1	74 >1000	0 440	0.6 38	< 0.01	0.8 38	58	483 1	8.45 0.78	0.11	13 3	0.01	31	2270 24	1.03	166	<1 0.07	98	10	15
							5.0	-2001	5 9-07									2							50								5.01		24	1.00		0.07			
HLN06-020	P135620	366669	7015195	Grab	Float/subcrop?	? Eam	CPC	earthy	dark grey, green					as	30 p	oy 50		27/8/2006	M. Roberts	Massive as-py-bright light green mineral (Clay?)	3.81	4.2 0.7	72 >1000	0 40	< 0.5 24	< 0.01	< 0.5 47	27	280	17.4 0.35	0.05	9 10	0.01	21	1140 <2	7.77	219	2 0.03	38	<10	9
HLN06-021	P135621	366687	7015048	Grab	Subcrop	Earn	CPC		It grey		strong mod		T	ру	1			27/8/2006	M. Roberts	Mod to completely texturally destructive	0.08	3.7 0.9	95 1040	640	<0.5 <2	< 0.01	<0.5 <1	51	12 (0.58 0.4	0.05	13 <1	0.01	1	300 21	0.21	31	4 0.04	162	<10	3
					1	1				1 1			1					1	1	silicification, dissem or vein py, scorodite staining on one						1	1											1	1		
					1	1	1	1		1 1			1					1	1	surface, milky white quartz veins crosscut by clear dark						1	1	1						1				1	1		
LI NO4 022	D125400	266722	701/702	Grah	Outcrop	Kam	Mogachustic inter-	o marcino		med		poild	+ +	DV.	2			20/0/2004	M Dobort-	Sm sill menacrystic intrusive quartz evec discom mu	0.01	0.6 7	5 04	1440	27 2	0.02	-0.5 2	0	21	2.07 2.54	0.24	210 1	1 5	6	460 00	0.44	5	105 0.10	17	<10	74
HLIN06-022	P10022	300/32	7014703	Giab	Outcrop	KqIII Stool E=-0	Accellen	e mdssive		mou	mild	mild	med	РУ	4			20/0/2000	M D-L	Availitie provimal to intrusive is bleeshed, along better	0.01	0.0 7.	J 90	1040	3.1 3	0.03	NU.D 3	7	21 4	2.07 3.04	0.42	310 I	1.0	0	400 20	0.44	່ .E	100 0.13	1/	<10	20
HLN06-023	P135623	366/32	/014/03	Grab	Outcrop	Steel Fm?	Argillite	рюску			strong	3	moa					28/8/2006	M. Roberts	Arglilite proximal to intrusive is bleached, clay latered, more evidized	0.02	<0.5 5.0	63 187	2550	1.7 <2	0.14	<0.5 3	80	35	1.46 2.51	0.43	78 2	0.2	25	450 /	0.13	<5	105 0.34	205	<10	33
HI N06-024	P135624	366844	7014786	Grah	Outcrop	Earn?	Breccia	heterolithic			mild mild			nv	0.5			28/8/2006	M Roberts	Breccia with angular CPC, siltstone and argillite clasts.	1	25 23	25 1350	600	14 4	0.03	<0.5 <1	71	7	14 0.65	0.27	31 4	0.09	2	2330 276	0.23	108	48 0.1	278	<10	5
					P									-7						rock flour matrix? Py dissem in argillite and matrix.														_							
HLN06-025	P135625	366810	7014827	Grab	Outcrop	Earn?	Breccia	heterolithic			mod mod							28/8/2006	M. Roberts	Variably sil breccia, siltstone and arg clay altered or	0.01	2.9 0.0	63 129	360	0.5 <2	0.02	<0.5 <1	38	11 (0.66 0.24	0.03	21 1	0.01	1	2790 29	0.02	19	9 0.03	93	<10	2
LII N06 026	D125626	266902	7014927	Grah	Outcrop	Earn	CDC	fino grainod			mild			DV/	0.5			20/0/2006	M Poborts	Finer-arained CPC with quartz veining and dissem ny	0.04	22 0	70 200	440	0.6 2	0.02	<0.5 <1	46	12 (0.56 0.22	0.04	21 4	0.01	1	090 22	0.05	47	9 0.05	125	<10	2
LI NO6 027	D125627	266702	7014037	Grab	Outcrop	Earn?	CPC broccia2	ov		+ +	strong		mod	PJ	0.5			20/0/2000	M. Roberts	Broad atz voins with arean clay solvanes in ov	0.09	0.7 1.3	26 662	440	0.0 2	<0.02	<0.5 <1	90	10 1	0.30 0.32	0.07	10 17	0.01	2	620 5	0.05	24	4 0.09	207	20	2
1121100-027	1 133027	300773	7014033	Giab	Outcrop	Editi:	CI C DICCOL:	07			strong		mou					20/0/2000	WI. RODORS	pervasively sil CPC breccia?	0.00	0.7	30 002	400	0.7 \2	NO.01	-0.5 -1	02	-	0.71 0.05	0.07		0.01	2	030 3	0.15	27	4 0.00	207	20	2
HLN06-028	P135628	366788	7014847	Grab	Outcrop	Kqm	Megacrystic intrusiv	e	orange		mild		mild					28/8/2006	M. Roberts	30cm sill, minor oxidation	0.05	0.6 7.	.4 130	1790	4.1 <2	< 0.01	<0.5 <1	18	3 .	1.07 3.24	0.27	39 2	0.04	2	240 26	0.21	45	12 0.14	21	<10	5
HLN06-029	P135629	366788	7014847	Grab	Outcrop	Earn?	CPC breccia?		-		strong			py	2			28/8/2006	M. Roberts	Breccia is variably silicified, often texturally destructive,	0.03	0.6 0.7	74 119	300	<0.5 <2	< 0.01	<0.5 <1	41	6 (0.44 0.34	0.04	19 1	0.01	2	510 6	0.07	17	7 0.03	141	<10	<2
											5			13						dissem pv cubes often leached.																					
HLN06-030	P135630	366769	7014855	Grab	Outcrop	Earn	seds				mod							28/8/2006	M. Roberts	Green altered seds near sill outcrop, sheeted or massive	e 0.02	1.4 3.	.5 499	1740	1.3 <2	<0.01	<0.5 <1	119	7	1.01 1.48	0.16	20 13	0.04	1	180 8	0.05	75	11 0.2	703	10	3
LI NO6 021	D125622	266547	701/020	Grah	Outcrop	Earn	CDC	atz voinod	dark grov	+ +	strong	mod2						20/9/2006	M Doborts	alz veining Fine-grained CPC with extensive milky atz vein network	0.09	21 0/	49 40	410	-0.5 -2	0.01	<0.5 <1	50	2 1	0.26 0.27	0.04	22 1	<0.01	2	20 6	0.01	10	6 0.02	112	<10	-2
1111100-031	F IJJUJZ	300347	7014737	Giab	Outcrop	Lain	GFG	qiz venieu	uaik giey		suong	mou						27/0/2000	IVI. INDUCIUS	broadly silicifies zones and crosscutting narrow clear dz	0.00	3.1 0.0	40	410	(0.5 (2	0.01	<0.5 <1	50	3 1	0.20 0.27	0.04	23 1	0.01	2	30 0	0.01	10	0 0.03	113	<10	~z
																				veins, v. dark matrix.																					
HLN06-032	P135633	366574	7014919	Grab	Outcrop	Kqm	Megacrystic intrusiv	e earthy, ox	orange		mod		mod					29/8/2006	M. Roberts	Strong clay alt of feldspars	0.01	<0.5 7.5	57 1050	2330	3.7 <2	0.03	0.9 3	7	14	2.05 3.92	0.19	114 1	0.15	7	510 15	0.02	11	50 0.15	21	<10	58
HLN06-033A	P135634	366569	7014919	Grab	Subcrop/float	? Earn?	Shale?		lt grey		mod strong	1						29/8/2006	M. Roberts	Strong clay alt f.g. rock, fine qtz fracture network, often	0.01	<0.5 3.8	81 42	2630	1.3 <2	< 0.01	<0.5 <1	58	5 (0.33 1.5	0.21	30 1	0.03	2	100 4	0.04	10	37 0.29	215	<10	5
									5,											vuqqy, near contact with intrusive sill																					
HLN06-033B	P135635	366625	7014926	Grab	Outcrop	Earn	CPC	fine-grained	grey		mod mild							29/8/2006	M. Roberts	2-4mm pebbles, some silica replaced, rare siltstone	0.09	2.4 1.0	04 52	790	0.5 <2	0.01	<0.5 <1	49	3	0.2 0.42	0.05	15 1	< 0.01	2	110 13	0.02	14	22 0.06	148	<10	<2
LI N06 024	D125626	266622	701/020	Grah	Outcrop	Earn	CDC2		dk grov to black		strong			DV.	2			20/9/2006	M Deborts	Tradments clav all. Pervasive sit, texturally destructive relic clasts, leached	0.02	15 0	70 /0	700	-0.5 -2	<0.01	<0.5 <1	57	7 (0.25 0.20	0.04	10 2	0.01	1	40 5	0.02	11	12 0.05	155	<10	-2
111100-034	F 133030	300032	7014727	Giab	Outcrop	Lain	Gro		uk grey to black		suong			Py	2			27/0/2000	IVI. INDUCIUS	dissem pv cubes	0.03	1.5 0.1	70 47	170	(0.5 (2	<0.01	<0.5 <1	37	, ,	0.23 0.29	0.04	10 2	0.01		40 5	0.02		12 0.05	133	<10	< <u>2</u>
HLN06-035	P135637	366637	7014956	Grab	Outcrop	Earn	CPC	bleached			strong mod		mod	ру	3			29/8/2006	M. Roberts	Pervasive sil CPC (breccia?) with clay alt siltstone clasts,	s, 0.04	5.5 0.9	96 79	1060	0.5 2	< 0.01	<0.5 <1	51	4 (0.38 0.4	0.05	14 3	0.01	2	60 8	0.06	15	7 0.04	129	<10	2
																				dissem py, yellow staining on fracture surfaces, red ox																					
LI N06 026	D125620	266710	701/020	Grah	Outcrop	Stool fm2	Araillito	07	dk arou			+	mod	DV.	2			20/9/2006	M Poborts	staining Dark grey fig. rock with dissolved by cubes, gtz stringers	0.02	11 23	21 /02	1240	0.0 2	0.01	<0.5 <1	07	5 (0.76 0.99	0.17	22 1	0.05	2	2440 11	0.02	10	26 0.14	222	<10	6
HLI100-030	P 133030	200719	7014939	Giab	Outcrop	Steer IIII?	Arginite	UX	uk grey				mou	РУ	2			29/0/2000	W. RODEITS	well or surfaces	0.03	1.1 2.3	31 402	1240	0.0 2	0.01	<0.5 <1	0/	5 1	0.70 0.00	0.17	22 1	0.05	3	2440 11	0.03	10	30 0.14	333	<10	0
HLN06-037	P135639	366716	7014969	Grab	Subcrop	Earn	CPC?		Lt cream	1 1	strong mod							29/8/2006	M. Roberts	Texturally destructive sil and clay alt CPC?	0.04	2 1	1 612	450	< 0.5 3	0.01	<0.5 <1	72	7	1 0.42	0.05	23 3	0.01	1	2840 7	0.09	18	12 0.03	186	<10	3
HI N06-038	P135640	366718	7014982	Grah	Outcrop	Earn?	CPC2 Breccia?	veined		n	mod-strong strong	1						29/8/2006	M Roberts	Large rounded clasts (clay alt), may be breccia or coarse	er 0.01	42 08	89 48	620	<0.5 <2	<0.01	<0.5 1	30	3 (0.18 0.36	0.03	11 1	0.01	1	50 26	0.02	30	10 0.05	129	<10	<2
					p							,								CPC, strong qtz veining-random stringers and sheeted									-												
	B105			. ·		<u> </u>				<u> </u>			+							Announcements allowers and by the terms of the terms						1		+						$ \downarrow \downarrow$		-					
HLN06-039	P135641	366678	7015029	Grab	Proximal float	t Earn	CPC				strong mod	_		as	0.5			29/8/2006	M. Roberts	Arsenopyrite dissem and in vines in strong alt CPC	0.3	1.3 1.0	06 >1000	0 380	<0.5 14	0.01	<0.5 <1	42	314	3.8 0.44	0.12	17 5	< 0.01	1	1450 16	0.1	83	12 0.08	85	<10	11
HLN06-040	P135642	366749	7015111	Grab	Outcrop	Earn	CPC (breccia?)	heterolithic		1 1	strong		mild	ру	0.5			30/8/2006	M. Roberts	Iron stained heterolithic well silicified rock, minor qtz	0.03	0.9 1.3	74 182	1120	0.6 <2	<0.01	<0.5 <1	52	4 (0.44 0.77	0.09	14 1	0.01	2	50 4	0.05	12	4 0.11	106	<10	2
UI NO4 041	D12F442	266702	7015001	Grah	Subgrop	Kam	Crowdod intrust-	oathy or	072520		ctr		strong					20/0/2004	M Dobort-	veining, strong joint pattern Recessive unit, strong clay alt and ovidized	0.01	-0.5 0/	04 445	2170	22 2	<0.01	-0.5 -1	10	22	2.01 2.24	0.22	54 /	0.04	2	970 04	0.24	20	20 0.10	20	<10	62
	P10043	300/83	7015001	Giab	Subcrop	Kqm	CIOWUEU INITUSIVE	eariny, ox	urange		suong	1	suong	26	0.5			20/0/2000	M D-L	Strong cit all CDC with well or coordito cloinod surfaces	0.01	<u.u 8.0<="" td=""><td>045</td><td>21/0</td><td>3.2 2</td><td><u.ut< td=""><td> U.0 </td><td>10</td><td>JZ 107</td><td>2.01 3.30</td><td>0.05</td><td>J4 0</td><td>0.04</td><td>3</td><td>0/U 24</td><td>0.34</td><td>37</td><td>JU U.19</td><td>29</td><td>10</td><td>10</td></u.ut<></td></u.u>	045	21/0	3.2 2	<u.ut< td=""><td> U.0 </td><td>10</td><td>JZ 107</td><td>2.01 3.30</td><td>0.05</td><td>J4 0</td><td>0.04</td><td>3</td><td>0/U 24</td><td>0.34</td><td>37</td><td>JU U.19</td><td>29</td><td>10</td><td>10</td></u.ut<>	 U.0 	10	JZ 107	2.01 3.30	0.05	J4 0	0.04	3	0/U 24	0.34	37	JU U.19	29	10	10
HLN06-042	P135644	300/83	/015081	Grab	Outcrop	Earn	UPU (breccia?)		grey		strong mild		mod	as	0.5 F	oy 0.5		30/8/2006	M. Roberts	suong siran CPC with well ox scorodite stained suffaces vuony as ov mineralization	», 3.34	43./ 0.9	AI >1000	U 590	<0.5 367	0.01	U.8 3	43	107	2.21 0.45	0.05	18 4	0.01	4	วชบ 473	0.69	275	o 0.05	35	<10	10
HLN06-043	P135645	366763	7015095	Grab	Proximal float	t Earn	CPC	OX	grey		strong	1	strong	as	0.5 p	oy 0.5	scorodite 0.2	30/8/2006	M. Roberts	Rusty and green stained float, as+/-py veins and vugs in	4.25	19.5 3.2	21 >1000	0 90	1.4 1040	< 0.01	2.3 53	65	155	7.32 1.36	0.13	19 9	0.02	17	1650 322	3.04	674	8 0.13	215	20	23
	B.4.05							_		↓ ↓	-	-	, i							well sil CPC						1							_							<u> </u>	
HLN06-044	P135646	366714	7015265	Grab	Outcrop	Earn	CPC		grey	1 1	strong mod		mod	ру	1 a	as 0.2		30/8/2006	M. Roberts	Dissem I.g. py+/-as vuggy aggregate in strong all CPC,	2.32	2.8 0.1	/1 4300	550	<0.5 39	<0.01	<0.5 1	33	23	2.04 0.31	0.06	19 1	< 0.01	2	1000 27	0.96	53	14 0.05	52	<10	2
					1	1							1					1	1	iocany yellow or red stained, bleached, moderate qtz							1											1	1		
HLN06-045	P135647	366714	7015265	Grab	Outcrop	Earn	CPC	qtz veined	grev	1	strong mod	1	mod	as	0.2	1		30/8/2006	M. Roberts	Possible f.g. as in qtz vein in strong alt CPC, locally	0.56	<0.5 0.0	93 232	390	<0.5 1.3	< 0.01	<0.5 <1	35	4 (0.43 0.32	0.06	17 3	< 0.01	3	70 12	0.02	11	11 0.04	52	<10	9
									3-3											vellow or red stained, bleached, moderate atz veining.												Ŭ									
HLN06-200	P135649	366595	7015057	Grab	Outcrop	Earn	CPC	bx			strong		mod	ру	tr			29/8/2006	L. Blackburn	Silicitied and brecciated CPC, leached out py cubes	0.11	1.5 0.4	48 703	510	<0.5 <2	0.03	<0.5 <1	41	9 (0.77 0.17	0.03	26 1	0.01	3	670 5	0.24	11	14 0.02	51	<10	4
HLN06-201	P135650	366617	7015042	Grab	Outcrop	Earn	CPC	veined		1 T	strong				T			29/8/2006	L. Blackburn	Texturally destructive silicification in CPC with quartz	0.04	3.1 0.8	83 2480	410	<0.5 5	0.01	<0.5 <1	44	16	1.39 0.27	0.09	17 3	0.02	1	2360 19	0.18	37	12 0.04	77	<10	4
LILNO(201	D125/51	244701	7015005	Croh	Out	E a a a	CDC2 P	L.,		+ +	strong		+	54	+-			20/0/20001	I Dicebby	Veining Strong sil CPC braccia, discom loophod ny, colorities also		14 .	04 500	700	12 2	0.01	.0.5 1	70		0.00 0.04	0.00	24 -	0.02		2140	0.1/	27	27 0.00	202	-10	
TILINU0-200	r 100001	200041	1010030	GIGD	outcrop	Egui	UPU? BIECCIA?	UX			suony mod		1	РУ	u			231012000	L. DIACKOUTI	alteration of clasts	0.3	1.4 2.0	00 248	120	1.3 <2	0.01	<1	10	3 (0.77 0.94	0.09	∠4 5	0.02	2	∠100 04	U. 10	51	37 0.09	295	<10	U
HLN06-207	P135652	366826	7015050	Grab	Outcrop	Earn	CPC	fine-grained			strong						1	29/8/2006	L. Blackburn	Rusty vuggy outcrop with variable silica alteration	0.05	4.5 1.2	28 1330	420	0.6 4	0.03	0.9 <1	30	35 4	4.74 0.71	0.12	25 4	0.01	2	1480 81	0.48	121	56 0.08	108	<10	8
HLN06-226	P135653	366779	7015169	Grab	Outcrop	Earn	CPC	OX					strong					30/8/2006	L. Blackburn	Heavily weathered, conglomerate with rusty chalky	0.02	1.5 1.0	03 67	480	0.5 <2	0.06	<0.5 1	27	23	3.14 0.28	0.41	181 1	0.02	7	220 11	0.04	13	13 0.1	39	<10	192
	B. 1 0				· ·					↓ ↓		_	, ĭ							matrix, clasts are unaltered				_		1							_								
HLN06-237	P135654	366663	7015302	Grab	Outcrop	Earn	CPC	mineralized		1 1	strong? mod?	1	1	as	5 scor	odite 0.5		30/8/2006	L. Blackburn	Highly altered conglomerate with dissem as, scorodite	0.94	15.8 0.8	83 >1000	U 410	<0.5 132	0.01	0.8 4	37	100 4	4.47 0.36	0.08	29 2	< 0.01	4	780 135	1.11	249	4 0.05	60	10	8
HI N06-230	P135655	366622	7015303	Grah	Outcron	Farn	CPC	fine-orained		1 1	mod?	1	+ +	DV	tr			30/8/2004	L. Blackhurn	Relict vugs of pyrite, rusty yellow and purple sample.	0.07	1.9 0	7 778	610	<0.5 5	<0.01	<0.5 <1	40	11	1.28 0.3	0.03	15 2	<0.01	7	80 18	0.72	32	5 0.04	82	<10	2
HI N06-100	P135656	366679	7014862	Grah	Outcron?	Kam	Intrusive	granica		+ +		+	1 1	as		v		29/8/2004	R. Stark	5-6 inch vien in altered intrusive dike	0.03	3.5 70	05 632	410	2.7 0	<0.01	<0.5 <1	5	23	3 3.02	0.37	38 2	0.05	<1	200 35	2 15	51	9 0.14	19	<10	- 6
HI N06-101	P135657	366674	7015030	Grah	Float	Earn	CPC	1		+ +		-	+ +	as	r P	v		29/8/2006	R. Stark	As and Py in CPC float	0.27	3.6 0.3	79 4350	820	<0.5 10	0.01	0.5 <1	52	24	1.4 0.25	0.05	17 2	<0.01	2	1270 25	0.11	64	20 0.05	128	<10	68
HI N06-102	P135658	366571	7015058	Grah	2	Farn	CPC	1		+ +		+	mod	DV.	score	- ndite?		20/8/2000	R Stark	rusty CPC with pyrite and green gtz vien	0.26	88 10	89 0700	1/100	0.6 -2	0.01	0.7 /	84	110	1.82 0.73	0.11	17 22	0.02	57	1790 70	0.74	03	14 0.1	466	<10	20
HI NO4 044	D135450	365702	701/705	Grah	: Elost	Kam	Monacrustic intrusiv	e massivo	nink	+ +	mild mild	mild	mdu	25	0.5	ounto:		21/0/2000	M Stammorr	Relatively unaltered intrusive, primary bio, discom as	0.20	0.5 7.	/3 00	2220	3.2 .2	44.0	0.8 2	10	10	1.02 0.73	0.11	175 23	1.02	12	580 24	0.74	-5	225 0.14	-100	<10	62
11L1100*040	1 100007	303173	1017173	Giau	i IUal	isqui	mogaci youc initi dSIV	- ind551VC	Pilly .	1	inina iniliu	- THIC		4.5	0.0	1	1	1012000	an. Stammers		0.02	0.0 1.4	70	2320	J.Z \Z	0.00	J.U J	10	10		0.00	Z	1.74	1.0	200 20	U.Z I	~ J	U.14	20	- 10	UJ UJ

APPENDIX 4: Soil Sample Descriptions

ALEXCO RESOURCE CORP

Harlan Property, Mayo Mining District, YT

2006 Soil Sample Descriptions

Soil Sample	Sample #	Easting	Northing	Sample depth (m)	Slope angle	e Colo	our Texture	Permafros	% Coarse frag	s Vegetation	Surface geology	Frag lithology	Organics	Au ppm	Ag ppm	AI %	As ppm	Ba ppm E	Be pmm E	Bippm (Ca % Cd	ppm Co pp	m Cr ppm	Cu ppm	Fe %	K% M	g % Mn p	pm Mo pp	m Na %	Ni_ppm	P ppm F	b ppm	S% Sh	b ppm S	r ppm 📑	fi% Vr	opm W pr	om Zn ppm
Soil Stn 1	M397451	366668	7014611	0.3	25	Lt bro	own Gritty	No	60	Moss, ground shrubs	Shale	Shale	20	0.01	0.7	5.54	179	1140	1.2	<2 (0.77 <	0.5 2	39	24	2.23	1.59 0	.35 22	6 4	1.16	10	1220	16	0.07	8	264 (J.32 1!	54 <10	J 65
Soil Stn 2	M397452	366671	7014642	0.3	25	Brov	wn Grit	No	70	Moss, buck brush	Shale	Shale, intrusive, qtz	10	0.01	<0.5	7.2	35	940	1.1	<2 '	1.81 <	0.5 4	17	21	2.23	1.91 ().6 36	0 3	2.37	8	810	13	0.06	<5	547 ().27 7	/1 <10	J 51
Soil Stn 3	M397453	366671	7014683	0.3	25	Lt bro	own Grit	No	85	None	Shale	Shale, intrusive	No	0.28	2.6	4.95	975	1790	2	4 (0.36 0	.5 5	82	128	7.59	1.64 1	.07 38	2 8	0.29	25	2210	49	0.68	49	191 (J.31 2'	.93 <10	0 122
Soil Stn 4	M397454	366666	7014721	0.45	25	Brov	wn Grit	No	80	Moss, buck brush	Shale	Shale, CPC	10	0.04	2.3	7.01	84	780	1.2	<2 '	1.83 <	0.5 6	16	37	2.35	1.73 ().6 37	0 2	2.22	6	1090	10	0.08	<5	529 (J.24 ć	53 <1C	J 51
Soil Stn 5	M397455	366673	7014752	0.3	30	Ta	n	No	65	Moss, buck brush	CPC	CPC, shale	10	0.31	5.1	3.64	1590	350	1.4	10 (0.34 <	0.5 4	79	65	11.85	1.33 0	.63 52	3 13	0.39	11	4140	78	1.35	80	196 (J.26 3′	.27 <10	0 83
Soil Stn 6	M397456	366672	7014804	0.3	30	Lt bro	own	No	75	Moss, buck brush, balsam fir	CPC	CPC	10	0.16	1.5	7.38	176	790	1.1	2 2	2.12 <	0.5 6	12	29	2.54	1.85 0	.69 41	4 2	2.47	6	2340	11	0.05	6	589 (J.26 7	/1 <1(0 51
Soil Stn 7	M397457	366678	7014829	0.3	35	Та	n	No	65	Moss, buck brush	CPC	CPC, intrusive	5	0.34	15.5	3.79	2150	1740	1.7	14 (0.61 <	0.5 2	134	51	8.45	1.15 0	.31 11	0 15	0.14	10	>10000	131	0.53	68	194 (J.23 30	.96 <10	J 61
Soil Stn 8	M397458	366683	7014883	0.3	35	Gre	ey	No	?	None	CPC	Intrusive, CPC	No	0.54	11.3	4.73	2480	2290	1.9	14 (0.29 <	0.5 2	146	50	5.06	1.55 0	.55 25	3 20	0.27	10	5320	247	0.55	146	177 (J.41 5′	39 10	J 58
Soil Stn 9	M397459	366679	7014919	0.3	40	Gre	ey	No	75	Moss	CPC	CPC, siltstone, chert	5	1.69	33.4	4.5	3790	1840	2.3	29 (0.12 <	0.5 1	164	33	3.04	1.06 0	.63 15	4 15	0.25	4	6670	772	0.26	138	112 (J.42 5/	68 20	29 ز
Soil Stn 10	M397460	366675	7014959	0.3	40	Gre	ey	No	75	Moss	CPC	CPC, siltstone	5	0.17	10.1	4.02	736	1530	1.1	7 (0.51 <	0.5 2	103	23	2.92	1.12 0	.33 14	99	0.47	11	5720	193	0.27	55	162 (J.38 2 ⁻	.74 <10	0 44
Soil Stn 11	M397461	366668	7014996	0.45	25	Lt bro	own	No	60	Moss	CPC, siltstone	CPC, siltstone	5	0.23	42	5.17	1450	2180	1.5	7 (0.58 <	0.5 2	131	29	3.51	1.55 0	.53 22	8 14	0.55	15	3480	625	0.35	255	150 (J.42 4'	12 10	58
Soil Stn 12	M397462	366669	7015042	0.45	25	Gre	ey	No	65	Moss	Siltstone	Siltstone, CPC	5	0.14	8.7	3.68	1070	2160	1.4	5	0.4 <	0.5 1	128	19	3.22	1.46 0	.33 13	4 14	0.34	9	5220	330	0.59	138	88 (J.29 4	71 10	36
Soil Stn 13	M397463	366667	7015071	0.45	25	Gre	ey	No	70	Moss	Siltstone, CPC	Siltstone, CPC	5	0.14	7	3.83	618	2270	1.4	6 (0.18 <).5 <1	130	14	1.83	1.47 0	.26 8	5 13	0.2	9	1270	144	0.3	60	63 ().44	49 <10	J 36
Soil Stn 14	M397464	366668	7015115	0.3	30	Brov	wn	No	45	Moss	CPC	CPC, siltstone	5	0.11	1.7	4.1	701	1640	1.4	4 (0.38 <	0.5 2	101	16	1.9	1.45 0	.33 15	0 5	0.4	10	1010	61	0.08	33	82 (J.42 40	07 <10	J 44
Soil Stn 15	M397465	366665	7015162	0.3	20			No	70	Moss	Siltstone	Siltstone, CPC	5	0.3	4.6	4.53	3910	2760	1.2	24 (0.36 <	0.5 1	115	36	2.87	1.57 0	.35 16	8 17	0.38	10	960	82	0.3	60	82 (J.46 4/	48 10	47 ر
Soil Stn 16	M397466	366669	7015202	0.3	30			No	80	None	CPC	Siltstone, CPC	No	0.73	2.8	3.18	6730	510	0.6	33 (0.91 <	0.5 4	40	92	3.45	0.98 0	.46 17	6 11	0.73	8	2960	397	0.5	102	219 (J.23 1(09 <10	J 33
Soil Stn 17	M397467	366689	7015207	0.3	40	Та	n	No	85	None	CPC	Siltstone, CPC	No	0.79	4.5	2.31	5240	600	0.8	82 (0.13 <	0.5 1	53	53	2.49	1.05 0	.19 6	6 6	0.09	6	1630	208	0.51 [·]	102	89	0.2 1/	48 10	J 21
Soil Stn 19	M397469	366673	7015307	0.3	35	Gre	ey	No	80	None	CPC	CPC, silicified breccia	No	0.09	<0.5	7.05	566	9090	1.1	8 2	2.31 <	0.5 7	13	22	2.17	1.72 ().8 37	52	2.38	6	820	17	0.28	9	628 (J.26 7	/4 <10	J 46
Soil Stn 20	M397470	366678	7015360	0.3	45	Та	n	No	70	None	Intrusive sill	Intrusive, CPC	No	0.26	2.6	8.17	2040	1690	4	44 (0.37 1	.1 5	38	48	4.37	2.5 ().7 41	1 7	0.22	20	1390	101	0.63	47	96 (J.21 1.	21 <10	J 127
Soil Stn 21	M397471	366669	7015392	0.3	45	Lt bro	own	No	70	None	Intrusive	Intrusive	No	0.96	4.9	5.22	>10000	310	1.9	170 (D.18 C	.7 2	57	72	7.66	2.39 0	.41 14	3 15	0.19	13	2370	150	1.78 [·]	108	101	0.2 1/	66 <10	J 89
Soil Stn 22	M397472	366664	7015443	0.3	35	Та	n	No	70	None	Intrusive	Intrusive	No	0.38	5.9	9.9	5730	2610	4.7	149 (0.11 3	.6 14	30	91	6.23	3.28 0	.47 11	50 9	0.07	30	1690	233	1.04	93	130 (J.17 8	37 <10	J 236
Soil Stn 23	M397473	366655	7015473	0.3	40			No	80	None	CPC	Intrusive, chert, CPC	No	NSS	9.3	7.3	7980	1880	2.8	200 (0.21 <	0.5 5	61	76	4.09	2.8 0	.47 24	0 9	0.27	8	1440	297	0.6	169	132 (J.34 20	.03 10	111
Soil Stn 24	M397474	366648	7015502	0.3	40	Gre	ey	No	80	None	CPC Breccia	Intrusive, CPC	No	0.53	8.8	6.24	>10000	1200	2	253	0.3 <	0.5 <1	75	45	5.09	2.76 0	.41 88	3 14	0.38	<1	1980	170	1.09	217	175 (J.39 2	.39 10	43
Soil Stn 25	M397475	366617	7015531	0.3	40	Gre	ey	No	80	None	CPC	CPC	No	0.99	6.7	7.01	4480	2160	2.6	171 (0.05 <	0.5 <1	62	37	4.33	2.81 0	.35 90) 10	0.09	8	2180	145	0.76	123	80 (J.35 10	96 10	123

Coordinates in NAD 27 Zone 9

APPENDIX 5: ALS Chemex Laboratory Certificates

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ALEXCO RESOURCE CORP. 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4

Au-AA25

Ore Grade Au 30g FA AA finish

Page: 1 Finalized Date: 30-SEP-2006 Account: ALERES

INSTRUMENT

AAS

CE	RTIFICATE VA0609127	3		SAMPLE PREPARATION
0			ALS CODE	DESCRIPTION
Project: Harlan			WEI-21	Received Sample Weight
PO No:			LOG-24	Pulp Login - Rcd w/o Barcode
This report is for 25 Sail some	los submitted to sur lob in Vanas	war BC Canada an	LOG-22	Sample login - Rcd w/o BarCode
5-SEP-2006.		iver, BC, Carlada ori	SCR-41	Screen to -180um and save both
The following have access	to data associated with this ce	rtificate.		
MELANIE ROBERTS	MIKE STAMMERS	M. STAMMERS		ANALYTICAL PROCEDURES
			ALS CODE	DESCRIPTION
			ME-ICP61	27 element four acid ICP-AES

To: ALEXCO RESOURCE CORP. ATTN: MIKE STAMMERS 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Please Com

Signature: Keith Rogers, Executive Manager Vancouver Laboratory

ALS Canada Ltd.

To: ALEXCO RESOURCE CORP. 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 2 (A - B) Finalized Date: 30-SEP-2006 Account: ALERES

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project: Harlan

CERTIFICATE OF ANALYSIS VA06091273

Sample Description	Method	WEI-21	Au-AA25	ME-ICP61												
	Analyte	Recvd Wt.	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%
	LOR	0.02	0.01	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	0.01
M397451		0.44	0.01	0.7	5.54	179	1140	1.2	<2	0.77	<0.5	2	39	24	2.23	1.59
M397452		0.22	0.01	<0.5	7.20	35	940	1.1	<2	1.81	<0.5	4	17	21	2.23	1.91
M397453		0.18	0.28	2.6	4.95	975	1790	2.0	4	0.36	<0.5	5	82	128	7.59	1.64
M397454		0.14	0.04	2.3	7.01	84	780	1.2	<2	1.83	<0.5	6	16	37	2.35	1.73
M397455		0.32	0.31	5.1	3.64	1590	350	1.4	10	0.34	<0.5	4	79	65	11.85	1.33
M397456		0.28	0.16	1.5	7.38	176	790	1.1	2	2.12	<0.5	6	12	29	2.54	1.85
M397457		0.38	0.34	15.5	3.79	2150	1740	1.7	14	0.61	<0.5	2	134	51	8.45	1.15
M397458		0.28	0.54	11.3	4.73	2480	2290	1.9	14	0.29	<0.5	2	146	50	5.06	1.55
M397459		0.26	1.69	33.4	4.50	3790	1840	2.3	29	0.12	<0.5	1	164	33	3.04	1.06
M397460		0.56	0.17	10.1	4.02	736	1530	1.1	7	0.51	<0.5	2	103	23	2.92	1.12
M397461		0.48	0.23	42.0	5.17	1450	2180	1.5	7	0.58	<0.5	2	131	29	3.51	1.55
M397462		0.30	0.14	8.7	3.68	1070	2160	1.4	5	0.40	<0.5	1	128	19	3.22	1.46
M397463		0.34	0.14	7.0	3.83	618	2270	1.4	6	0.18	<0.5	<1	130	14	1.83	1.47
M397464		0.38	0.11	1.7	4.10	701	1640	1.4	4	0.38	<0.5	2	101	16	1.90	1.45
M397465		0.44	0.30	4.6	4.53	3910	2760	1.2	24	0.36	<0.5	1	115	36	2.87	1.57
M397466		0.52	0.73	2.8	3.18	6730	510	0.6	33	0.91	<0.5	4	40	92	3.45	0.98
M397467		0.40	0.79	4.5	2.31	5240	600	0.8	82	0.13	<0.5	1	53	53	2.49	1.05
M397468		0.06	1.23	0.8	3.93	3590	510	0.5	22	13.85	<0.5	101	48	103	8.27	0.87
M397469		0.56	0.09	<0.5	7.05	566	9090	1.1	8	2.31	<0.5	7	13	22	2.17	1.72
M397470		0.54	0.26	2.6	8.17	2040	1690	4.0	44	0.37	1.1	5	38	48	4.37	2.50
M397471		0.44	0.96	4.9	5.22	>10000	310	1.9	170	0.18	0.7	2	57	72	7.66	2.39
M397472		0.40	0.38	5.9	9.90	5730	2610	4.7	149	0.11	3.6	14	30	91	6.23	3.28
M397473		0.32	NSS	9.3	7.30	7980	1880	2.8	200	0.21	<0.5	5	61	76	4.09	2.80
M397474		0.36	0.53	8.8	6.24	>10000	1200	2.0	253	0.30	<0.5	<1	75	45	5.09	2.76
M397475		0.38	0.99	6.7	7.01	4480	2160	2.6	171	0.05	<0.5	<1	62	37	4.33	2.81

Comments: NSS is non-sufficient sample.

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: ALEXCO RESOURCE CORP. 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4 Page: 2 - B Total # Pages: 2 (A - B) Finalized Date: 30-SEP-2006 Account: ALERES

Project: Harlan

TIFICATE	OF ANALYS	SIS VA06091273

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
M397451 M397452 M397453 M397454 M397455		0.35 0.60 1.07 0.60 0.63	226 360 382 370 523	4 3 8 2 13	1.16 2.37 0.29 2.22 0.39	10 8 25 6 11	1220 810 2210 1090 4140	16 13 49 10 78	0.07 0.06 0.68 0.08 1.35	8 <5 49 <5 80	264 547 191 529 196	0.32 0.27 0.31 0.24 0.26	154 71 293 63 327	<10 <10 <10 <10 <10	65 51 122 51 83	
M397456 M397457 M397458 M397459 M397460		0.69 0.31 0.55 0.63 0.33	414 110 253 154 149	2 15 20 15 9	2.47 0.14 0.27 0.25 0.47	6 10 10 4 11	2340 >10000 5320 6670 5720	11 131 247 772 193	0.05 0.53 0.55 0.26 0.27	6 68 146 138 55	589 194 177 112 162	0.26 0.23 0.41 0.42 0.38	71 396 539 568 274	<10 <10 10 20 <10	51 61 58 29 44	
M397461 M397462 M397463 M397464 M397465		0.53 0.33 0.26 0.33 0.35	228 134 85 150 168	14 14 13 5 17	0.55 0.34 0.20 0.40 0.38	15 9 9 10 10	3480 5220 1270 1010 960	625 330 144 61 82	0.35 0.59 0.30 0.08 0.30	255 138 60 33 60	150 88 63 82 82	0.42 0.29 0.44 0.42 0.46	412 471 549 407 448	10 10 <10 <10 10	58 36 36 44 47	
M397466 M397467 M397468 M397469 M397470		0.46 0.19 1.87 0.80 0.70	176 65 3380 375 411	11 6 9 2 7	0.73 0.09 0.62 2.38 0.22	8 6 31 6 20	2960 1630 1140 820 1390	397 208 15 17 101	0.50 0.51 0.87 0.28 0.63	102 102 15 9 47	219 89 303 628 96	0.23 0.20 0.19 0.26 0.21	109 148 106 74 121	<10 10 <10 <10 <10	33 21 146 46 127	
M397471 M397472 M397473 M397474 M397475		0.41 0.47 0.47 0.41 0.35	143 1150 240 88 90	15 9 9 14 10	0.19 0.07 0.27 0.38 0.09	13 30 8 <1 8	2370 1690 1440 1980 2180	150 233 297 170 145	1.78 1.04 0.60 1.09 0.76	108 93 169 217 123	101 130 132 175 80	0.20 0.17 0.34 0.39 0.35	166 87 203 239 196	<10 <10 10 10 10	89 236 111 43 123	

Comments: NSS is non-sufficient sample.

ALS CHEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ALEXCO RESOURCE CORP. 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4 Page: 1 Finalized Date: 2-OCT-2006 Account: ALERES

CERTIFICATE VA06091274

Project: Harlan

P.O. No.:

This report is for 59 Rock samples submitted to our lab in Vancouver, BC, Canada on 5-SEP-2006.

The following have access to data associated with this certificate:

212 Brooksbank Avenue North Vancouver BC V7J 2C1

MELANIE ROBERTS

MIKE STAMMERS

uic.		
	M.	STAMMERS

	SAMPLE PREPARATION								
ALS CODE	DESCRIPTION								
WEI-21	Received Sample Weight								
LOG-24	Pulp Login - Rcd w/o Barcode								
LOG-22	Sample login - Rcd w/o BarCode								
CRU-31	Fine crushing - 70% <2mm								
SPL-21	Split sample - riffle splitter								
PUL-31	Pulverize split to 85% <75 um								
PUL-QC	Pulverizing QC Test								
BAG-01	Bulk Master for Storage								

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	27 element four acid ICP-AES	ICP-AES
Au-AA25	Ore Grade Au 30g FA AA finish	AAS

To: ALEXCO RESOURCE CORP. ATTN: MIKE STAMMERS 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Pleed log

Signature: Keith Rogers, Executive Manager Vancouver Laboratory

ALS Canada Ltd.

2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4 Page: 2 - A Total # Pages: 3 (A - B) Finalized Date: 2-OCT-2006 Account: ALERES

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project: Harlan

To: ALEXCO RESOURCE CORP.

Sample Description	Method	WEI-21	Au-AA25	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%
	LOR	0.02	0.01	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	0.01
P135601 P135602 P135603 P135604 P135605		0.80 0.64 0.62 0.58 0.82	0.06 0.24 0.19 0.67 0.02	<0.5 5.0 1.6 2.3 <0.5	3.06 0.43 0.27 0.51 6.22	26 28 33 2540 9	2270 260 220 200 1440	0.9 <0.5 <0.5 <0.5 3.2	<2 <2 <2 <2 <2 <2 <2	0.03 0.01 0.01 0.01 1.40	<0.5 <0.5 <0.5 <0.5 0.5	<1 <1 <1 <1 1	49 35 24 41 7	8 4 3 15 2	0.45 0.28 0.33 0.95 1.63	1.17 0.15 0.09 0.17 3.06
P135606		0.74	0.04	1.7	1.42	170	850	0.6	<2	0.01	<0.5	<1	33	7	0.36	0.56
P135607		0.96	0.01	<0.5	7.79	98	1640	2.7	<2	0.17	<0.5	<1	9	51	2.26	2.91
P135608		0.06	5.87	2.3	4.63	1090	350	0.5	6	13.30	<0.5	49	42	205	8.83	0.91
P135609		0.56	0.08	0.9	0.48	60	360	<0.5	<2	0.03	<0.5	<1	30	6	0.31	0.18
P135610		0.90	0.03	0.9	2.05	46	1440	0.9	<2	0.01	<0.5	<1	74	3	0.24	0.86
P135611 P135612 P135613 P135614 P135615		0.62 0.66 0.74 0.82 0.52	0.05 0.13 0.12 1.79 2.95	2.0 5.1 1.2 4.4 5.9	0.91 1.06 1.30 0.85 0.12	878 169 34 119 >10000	1000 510 1100 650 50	0.6 <0.5 0.7 <0.5 <0.5	<2 <2 <2 <2 <2 54	0.01 0.01 <0.01 0.02 <0.01	<0.5 <0.5 <0.5 <0.5 0.5	<1 <1 1 <1 36	49 35 51 44 31	33 11 4 2 185	2.62 0.64 0.21 0.56 22.3	0.35 0.34 0.57 0.35 0.09
P135616		0.72	0.17	1.2	1.55	6720	590	0.6	7	<0.01	<0.5	1	42	22	1.00	0.75
P135617		0.36	0.50	<0.5	1.85	9750	1470	0.5	<2	0.01	<0.5	2	52	45	1.27	0.82
P135618		1.42	0.67	1.5	0.28	>10000	480	<0.5	46	0.01	<0.5	9	31	120	2.78	0.13
P135619		0.76	1.10	5.7	1.74	>10000	440	0.6	38	<0.01	0.8	38	58	483	8.45	0.78
P135620		0.76	3.81	4.2	0.72	>10000	40	<0.5	24	<0.01	<0.5	47	27	280	17.40	0.35
P135621		0.82	0.08	3.7	0.95	1040	640	<0.5	<2	<0.01	<0.5	<1	51	12	0.58	0.40
P135622		0.98	0.01	0.6	7.50	96	1640	3.7	3	0.83	<0.5	3	9	21	2.07	3.54
P135623		0.80	0.02	<0.5	5.63	187	2550	1.7	<2	0.14	<0.5	3	80	35	1.46	2.51
P135624		0.98	1.00	2.5	2.25	1350	600	1.4	4	0.03	<0.5	<1	71	7	1.40	0.65
P135625		0.72	0.01	2.9	0.63	129	360	0.5	<2	0.02	<0.5	<1	38	11	0.66	0.24
P135626 P135627 P135628 P135629 P135630		0.76 0.90 0.74 0.56 0.64	0.04 0.08 0.05 0.03 0.02	3.2 0.7 0.6 0.6 1.4	0.79 1.36 7.40 0.74 3.50	290 662 130 119 499	440 400 1790 300 1740	0.6 0.7 4.1 <0.5 1.3	2 <2 <2 <2 <2 <2	0.02 <0.01 <0.01 <0.01 <0.01	<0.5 <0.5 <0.5 <0.5 <0.5	<1 <1 <1 <1 <1	46 82 18 41 119	13 4 3 6 7	0.56 0.71 1.07 0.44 1.01	0.32 0.63 3.24 0.34 1.48
P135631 P135632 P135633 P135634 P135635		0.06 0.58 0.48 0.64 0.64	1.27 0.08 0.01 0.01 0.09	<0.5 3.1 <0.5 <0.5 2.4	4.03 0.68 7.57 3.81 1.04	3080 40 1050 42 52	510 410 2330 2630 790	0.5 <0.5 3.7 1.3 0.5	19 <2 <2 <2 <2 <2	14.25 0.01 0.03 <0.01 0.01	<0.5 <0.5 0.9 <0.5 <0.5	106 <1 3 <1 <1	48 50 7 58 49	104 3 14 5 3	8.49 0.26 2.05 0.33 0.20	0.88 0.27 3.92 1.50 0.42
P135636		0.86	0.03	1.5	0.78	49	790	<0.5	<2	<0.01	<0.5	<1	57	7	0.25	0.29
P135637		0.76	0.04	5.5	0.96	79	1060	0.5	2	<0.01	<0.5	<1	51	4	0.38	0.40
P135638		0.46	0.03	1.1	2.31	482	1240	0.8	2	0.01	<0.5	<1	87	5	0.76	0.88
P135639		0.86	0.04	2.0	1.00	612	450	<0.5	3	0.01	<0.5	<1	72	7	1.00	0.42
P135640		0.90	0.01	4.2	0.89	48	620	<0.5	<2	<0.01	<0.5	1	39	3	0.18	0.36

ALS Chemex

ALS Canada Ltd.

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: ALEXCO RESOURCE CORP. 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4

Page: 2 - B Total # Pages: 3 (A - B) Finalized Date: 2-OCT-2006 Account: ALERES

Project: Harlan

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
P135601 P135602 P135603 P135604 P135605		0.17 0.04 0.03 0.05 0.17	47 21 19 24 368	<1 <1 1 <1	0.03 0.01 0.01 0.01 1.30	3 <1 1 <1 1	70 100 40 2020 380	4 39 45 17 10	0.07 0.03 0.04 0.08 0.17	6 13 19 32 <5	32 7 2 5 143	0.21 0.02 0.01 0.03 0.13	167 52 36 89 16	<10 <10 <10 10 <10	6 2 <2 4 24	
P135606 P135607 P135608 P135609 P135610		0.07 0.45 1.66 0.03 0.11	13 198 3210 22 15	<1 <1 109 1 <1	0.02 1.55 0.84 0.01 0.01	<1 8 52 <1 <1	300 500 940 60 70	7 24 75 10 19	0.08 0.01 2.58 0.03 0.02	<5 6 12 12 24	3 222 409 4 8	0.07 0.18 0.21 0.02 0.12	70 39 103 71 515	<10 10 <10 <10 10	<2 28 128 2 2	
P135611 P135612 P135613 P135614 P135615		0.05 0.10 0.07 0.10 0.01	13 20 11 17 5	6 1 <1 <1 5	0.01 0.01 <0.01 <0.01 0.01	1 <1 <1 <1 18	350 160 40 90 2520	15 37 9 7 17	0.03 0.07 0.04 0.18 3.62	96 49 10 38 505	5 16 5 4 1	0.04 0.05 0.06 0.05 0.02	174 165 216 136 42	<10 <10 <10 <10 10	7 20 <2 <2 20	
P135616 P135617 P135618 P135619 P135620		0.11 0.10 0.02 0.11 0.05	15 16 16 13 9	8 <1 1 3 10	0.01 0.01 0.01 0.01 0.01	<1 7 34 31 21	350 670 830 2270 1140	50 9 20 24 <2	0.12 0.27 0.37 1.03 7.77	72 25 88 166 219	1 4 <1 <1 2	0.09 0.10 0.03 0.07 0.03	127 146 34 98 38	10 <10 <10 10 <10	4 3 11 15 9	
P135621 P135622 P135623 P135624 P135625		0.05 0.26 0.43 0.27 0.03	13 310 78 31 21	<1 1 2 4 1	0.01 1.50 0.20 0.09 0.01	1 6 25 2 1	300 460 450 2330 2790	21 20 7 276 29	0.21 0.44 0.13 0.23 0.02	31 5 <5 108 19	4 185 105 48 9	0.04 0.13 0.34 0.10 0.03	162 17 205 278 93	<10 <10 <10 <10 <10	3 26 33 5 2	
P135626 P135627 P135628 P135629 P135630		0.04 0.07 0.27 0.04 0.16	21 19 39 19 20	4 17 2 1 13	0.01 0.01 0.04 0.01 0.04	1 2 2 2 1	980 630 240 510 180	22 5 26 6 8	0.05 0.15 0.21 0.07 0.05	47 24 45 17 75	8 4 12 7 11	0.05 0.08 0.14 0.03 0.20	135 287 21 141 703	<10 20 <10 <10 10	2 2 5 <2 3	
P135631 P135632 P135633 P135634 P135635		1.93 0.04 0.19 0.21 0.05	3500 23 114 30 15	10 1 1 1 1	0.63 <0.01 0.15 0.03 <0.01	35 2 7 2 2	1180 30 510 100 110	15 6 15 4 13	0.89 0.01 0.02 0.04 0.02	17 10 11 10 14	310 6 50 37 22	0.19 0.03 0.15 0.29 0.06	113 113 21 215 148	<10 <10 <10 <10 <10	149 <2 58 5 <2	
P135636 P135637 P135638 P135639 P135640		0.04 0.05 0.17 0.05 0.03	18 14 22 23 11	2 3 1 3 1	0.01 0.01 0.05 0.01 0.01	1 2 3 1 1	40 60 2440 2840 50	5 8 11 7 26	0.02 0.06 0.03 0.09 0.02	11 15 10 18 30	12 7 36 12 10	0.05 0.04 0.14 0.03 0.05	155 129 333 186 129	<10 <10 <10 <10 <10	<2 2 6 3 <2	

ALS Canada Ltd.

To: ALEXCO RESOURCE CORP. 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4 Page: 3 - A Total # Pages: 3 (A - B) Finalized Date: 2-OCT-2006 Account: ALERES

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project: Harlan

Sample Description	Method	WEI-21	Au-AA25	ME-ICP61												
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%
	LOR	0.02	0.01	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	0.01
P135641		0.48	0.30	1.3	1.06	>10000	380	<0.5	14	0.01	<0.5	<1	42	314	3.80	0.44
P135642		0.84	0.03	0.9	1.74	182	1120	0.6	<2	<0.01	<0.5	<1	52	4	0.44	0.77
P135643		0.62	0.01	<0.5	8.04	645	2170	3.2	2	<0.01	<0.5	<1	10	32	2.01	3.36
P135644		1.56	3.34	43.7	0.91	>10000	590	<0.5	367	0.01	0.8	3	43	107	2.21	0.45
P135645		0.48	4.25	19.5	3.21	>10000	90	1.4	1040	<0.01	2.3	53	65	155	7.32	1.36
P135646		0.38	2.32	2.8	0.71	4300	550	<0.5	39	<0.01	<0.5	1	33	23	2.04	0.31
P135647		0.66	0.56	<0.5	0.93	232	390	<0.5	13	<0.01	<0.5	<1	35	4	0.43	0.32
P135648		0.06	5.60	2.5	4.62	826	440	0.5	13	13.65	<0.5	51	39	202	8.70	0.89
P135649		0.90	0.11	1.5	0.48	703	510	<0.5	<2	0.03	<0.5	<1	41	9	0.77	0.17
P135650		0.50	0.04	3.1	0.83	2480	410	<0.5	5	0.01	<0.5	<1	44	16	1.39	0.27
P135651		0.40	0.30	1.4	2.06	598	720	1.3	<2	0.01	<0.5	<1	78	5	0.99	0.94
P135652		1.02	0.05	4.5	1.28	1330	420	0.6	4	0.03	0.9	<1	30	35	4.74	0.71
P135653		0.60	0.02	1.5	1.03	67	480	0.5	<2	0.06	<0.5	1	27	23	3.14	0.28
P135654		0.70	0.94	15.8	0.83	>10000	410	<0.5	132	0.01	0.8	4	37	100	4.47	0.36
P135655		0.48	0.07	1.9	0.70	778	610	<0.5	5	<0.01	<0.5	<1	40	11	1.28	0.30
P135656		0.48	0.03	3.5	7.05	632	410	2.7	9	<0.01	<0.5	<1	5	23	3.00	3.02
P135657		0.82	0.27	3.6	0.79	4350	820	<0.5	10	0.01	0.5	<1	52	24	1.40	0.25
P135658		0.60	0.26	8.8	1.89	9700	1490	0.6	<2	0.01	0.7	4	84	110	1.82	0.73
P135659		0.58	0.02	0.5	7.43	98	2320	3.2	<2	0.66	0.8	3	10	10	1.87	3.31

ALS Canada Ltd.

To: ALEXCO RESOURCE CORP. 2300-200 GRANVILLE ST VANCOUVER BC V6C 1S4 Page: 3 - B Total # Pages: 3 (A - B) Finalized Date: 2-OCT-2006 Account: ALERES

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

Project: Harlan

	they said in	ME ICDE1	ME ICD61	ME ICD61	ME ICD61	ME ICD61	ME LODGI	ME ICD61	ME ICD61	ME ICD61	ME ICDE1	ME ICD61	ME ICD61	ME ICD61	ME ICD61	
	Method	WE-ICFUT	ME-ICFOT	ME-ICFUT	NE-ICFUT	NE-ICFOT	ME-ICFUT	ME-ICFUT	WIE-ICFUT	WIE-ICFUT	WE-ICFUT	WE-ICFOI	WE-ICFOT	WE-ICFUT	WE-ICFUT	
	Analyte	wig	IVIN	IVIO	Na	INI	٢	PD	5	50	Sr	11	v	vv	Zn	
Sample Description	LOP	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
campie Bescription	LOK	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01	1	10	2	
P135641		0.12	17	5	<0.01	1	1450	16	0.10	83	12	0.08	85	<10	11	
P135642		0.02	14	1	0.01	2	50	1	0.05	12	12	0.11	106	<10	2	
D125642		0.03	F4	6	0.01	2	970	7	0.00	20	30	0.11	20	<10	63	
P135043		0.22	54	0	0.04	3	670	24	0.34	39	30	0.19	29	<10	63	
P135644		0.05	18	4	0.01	4	580	473	0.69	275	6	0.05	35	<10	10	
P135645		0.13	19	9	0.02	17	1650	322	3.04	674	8	0.13	215	20	23	
P135646		0.06	19	1	< 0.01	2	1000	27	0.96	53	14	0.05	52	<10	2	
P135647		0.06	17	3	< 0.01	3	70	12	0.02	11	11	0.04	52	<10	9	
P135648		1.65	3300	110	0.87	52	930	78	2.71	13	427	0.22	100	<10	126	
P135649		0.03	26	1	0.01	3	670	5	0.24	11	14	0.02	51	<10	4	
P135650		0.09	17	3	0.02	1	2360	19	0.18	37	12	0.04	77	<10	4	
		0.00		•	0.02		2000	10	0.10	07	12	0.04		-10	-	
P135651		0.09	24	5	0.02	2	2160	64	0.16	37	37	0.09	293	<10	6	
P135652		0.12	25	4	0.01	2	1480	81	0.48	121	56	0.08	108	<10	8	
P135653		0.41	181	1	0.02	7	220	11	0.04	13	13	0.10	39	<10	192	
P135654		0.08	29	2	< 0.01	4	780	135	1.11	249	4	0.05	60	10	8	
P135655		0.03	15	2	< 0.01	7	80	18	0.72	32	5	0.04	82	<10	2	
P135656		0.37	38	2	0.05	<1	200	35	2.15	51	9	0.16	19	<10	6	
P135657		0.05	17	3	<0.01	2	1270	25	0.11	64	20	0.05	128	<10	68	
P135658		0.11	17	23	0.02	57	1790	72	0.74	93	14	0.10	466	<10	20	
P135659		0.38	175	20	1 92	13	580	36	0.21	<5	225	0.10	26	<10	63	
1 100000		0.00	175	2	1.52	15	500	50	0.21	-0	225	0.14	20	-10	05	
1																
1																
1																
1																
1																
1																
1																
1		1														
1																
1																
1																
1																
1																
1																
1																
1																

APPENDIX 6: Aurora Geophysical Report with CD

Whitehorse Office 108 Gold Road Whitehorse, Yukon Y1A 3W2 Phone (867) 668-7672 Fax: (867) 393-3577

www.aurorageosciences.com phil@aurorageosciences.com

Date: 19 Sept 2006

MEMORANDUM

<u>To:</u>	Mike Stammers
	Alexco Resource Corp.

From: Phil Jackson

<u>Re:</u> Field Report - Harlan Magnetic Survey

This memorandum is a field report describing the results of a total magnetic field survey conducted for Alexco Resource Corp. at the Harlan Property. The purpose of the survey was to test the magnetic response on the property in order to better define lithological discontinuities.

a. Personnel and equipment. The total magnetic field survey was conducted by the following personnel:

Lauren Blackburn	Crew chief / technician
Ron Stack	Technician

The crew was equipped with the following instruments and equipment:

Base Magnetometer	1 - Gem GSM-19 Overhauser magnetometers
Mobile Magnetometer	2 - Gem GSM-19 Overhauser magnetometers
<u>Other:</u>	P-1.2GHz laptop 2 - VHF radios

The project was conducted between August 18th and August 31st, 2006 inclusive.

Harlan Property - Total magnetic field survey report - page 1

b. Survey area and stations. A total of 7.32 line km of total field magnetic data was surveyed. The area is bounded by (UTM NAD27 Zone 9N) 366000E 7014000N to 367500E 7106000N. This area is centred on the Harlan Property with the station distribution designed to measure the property scale magnetic fields.

c. Survey specifications. The geophysical surveys were conducted according the following specifications with exceptions as noted:

TOTAL MAGNETIC FIELD SURVEY

Station spacing: 12.5 m

Base station: Installed at a fixed location in a magnetically quiet area on the grid and cycled at a three second interval throughout the survey period.

Registration: Data was registered to UTM coordinates (NAD27) using a nondifferential GPS receiver mounted on the rover magnetometer.

d. Data processing. Data processing included the following steps and procedures:

TOTAL MAGNETIC FIELD SURVEY

1. Registration. The total magnetic field data was registered to UTM coordinates by matching or interpolating locations in the track log to corresponding magnetic field readings based on their record times.

2. Geomagnetic variation removal. Base and rover magnetometers were synchronized to GPS time prior to each survey day. Temporal geomagnetic variation was removed by linear interpolation using the base station data. Data collected during periods in which geomagnetic variation exceeds 10 nT / 10 s were not included in the final data set; no data was rejected as being above this noise threshold.

e. Survey notes and data. An orthogonal levelling line was surveyed by the operator at the start of each survey day to serve as a datum for levelling the operators daily drift.

f. Results. A digital archive is included with this report on CD-ROM. This contains the following:

Final TFM data after all corrections (Geosoft gdb & xyz text file) Images of the merged TFM maps (Geosoft maps & Geotifs). Project Summary spreadsheets (.xls files). Thank you for the opportunity to work with you on this interesting project. If you have any questions, please contact me directly in Whitehorse.

Respectfully submitted, **AURORA GEOSCIENCES LTD.**

Rie 10.

Phil Jackson, P.Geoph. Geophysicist

/attach.

COST STAT	EMENT - HARLAN	CLAIMS			
Alexco	Resource Corp. and 650399	BC Ltd.			
CONTRACT	GROUND GEOPHY	SICAL SU	RVEYS	j.	
Contractor:	Aurora	Geosciences			
Description:	Ground	d Magnetics and	d Support		
Coophysical Oher		* 0 000 00			
Geophysical Char	ges:	\$9,800.00			
Camp and Equipm	ient Support Charges:	\$5,700.00 ¢500.00		¢16 000 00	
roou and ruei				\$16,000.00	
CONTRACT					
CUNIKACI	GEOLOGICAL WAF	FING AN	J SAIVIF	LING SU	VE13
Wages M Rob	erte 20 dave v \$350	\$7,000,00			
M Stan	amers 3 days \times \$500	\$1,500.00			
Trans North Helico	intere e days x ¢ccc	\$4 440 06			
	ptore	\$5 178 80			
		\$2,412,77			
Freight		\$123.41			
Norcan		\$1,040.38			
Stammers Expens	es - Hotel/gas/meals	\$644.00			
Roberts Expenses	- Hotels,gas meals	\$391.00			
Assays Soils - 2	25	\$560.00			
Rocks -	59	\$1,565.00		\$24,855.42	
Total Minimum Ex	penditures Applied:			\$40,855.42	
Estimated Minimur	n Expenditure per Work Clai	m*:	Cam 5, 6	\$12.256.63	each
*Pro-rated to 30% to Ca	am 5 & 6 and 20% to Cam 7 and 8		Cam 7, 8	\$8,171.08	each
1					

