GEOPHYSICAL & GECOCHEMICAL REPORT

on the

RUM RUN PROPERTY
East Block

Quartz Claims RUM RUN 43-49, 53-58
Grant Nos. YC20214, YC36188, YC20216, YC36189, YC20218,
YC36190, YC20220, YC20222 to YC20227
Dawson Mining District, Yukon
Owner: Gordon G Richards

Claim Sheet No 1150/02 & 115J/15
Latitude 63° 00’ N
Longitude 138° 32’ W

written by
Gordon G Richards

work performed
August 26 to Sept 2, 2005
by Gordon Richards

January 5, 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION AND ACCESS</td>
<td>5</td>
</tr>
<tr>
<td>CLAIMS</td>
<td>5</td>
</tr>
<tr>
<td>HISTORY</td>
<td>6</td>
</tr>
<tr>
<td>GEOLOGY</td>
<td>7</td>
</tr>
<tr>
<td>PREVIOUS WORK</td>
<td>10</td>
</tr>
<tr>
<td>CURRENT WORK</td>
<td>12</td>
</tr>
<tr>
<td>RESULTS</td>
<td>13</td>
</tr>
<tr>
<td>Geology Survey</td>
<td>13</td>
</tr>
<tr>
<td>Magnetometer Survey</td>
<td>13</td>
</tr>
<tr>
<td>Geochemical Survey</td>
<td>14</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>14</td>
</tr>
<tr>
<td>STATEMENT OF QUALIFICATIONS</td>
<td>15</td>
</tr>
<tr>
<td>STATEMENT OF COSTS</td>
<td>16</td>
</tr>
<tr>
<td>APPENDIX- GEOCHEMICAL RESULTS</td>
<td>17</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

- Figure 1. Property Location 3
- Figure 2. Claim Map. 4
- Figure 3. Magnetometer Survey In Pocket
- Figure 4. Geochemical Survey, Geological & Magnetometer Int. In Pocket

LIST OF TABLES

- Table 1. Claims List 6
LOCATION AND ACCESS.

The claims are located 70 km south of the Dawson City airport along Scroggie Creek on map sheets 1150/02 and 115J/15. See Figure 1. The property is accessible by fixed-wing aircraft from Dawson City to a 750-meter long north-south airstrip along Scroggie Creek 3 km northwest of the claims. The property is usually accessible by ATV from Pelly Farm on the north side of Pelly River, 40 km west of Pelly Crossing but a forest fire in 2003 has made much of this trail impassable. This is a four hour trip over 90 km of the old Dawson Trail to the mouth of Walhalla Creek and then over a 14 km dirt road along the ridge tops east of Scroggie Creek arriving at Scroggie Creek on RUM RUN 13. From here access by ATV over existing roads is possible along Scroggie and Mariposa Creeks.

CLAIMS.

The following claims, owned by Gordon Richards, occur within the Dawson Mining District. Current expiry dates are provided on the following table. Work described in this report will be applied as representation work to extend the expiry dates.

Table 1. Claims List.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant Number</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUM RUN 43</td>
<td>YC20214</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 44</td>
<td>YC36188</td>
<td>2006/06/28</td>
</tr>
<tr>
<td>RUM RUN 45</td>
<td>YC20216</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 46</td>
<td>YC36189</td>
<td>2006/06/28</td>
</tr>
<tr>
<td>RUM RUN 47</td>
<td>YC20218</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 48</td>
<td>YC36190</td>
<td>2006/06/28</td>
</tr>
<tr>
<td>RUM RUN 49</td>
<td>YC20220</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 53</td>
<td>YC20222</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 54</td>
<td>YC20223</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 55</td>
<td>YC20224</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 56</td>
<td>YC20225</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 57</td>
<td>YC20226</td>
<td>2009/06/29</td>
</tr>
<tr>
<td>RUM RUN 58</td>
<td>YC20227</td>
<td>2009/06/29</td>
</tr>
</tbody>
</table>
HISTORY.

Scroggie and Mariposa Creeks are old placer gold creeks first discovered in 1898 and extensively mined by hand with the aid of steam boilers and points in the early 1900's. Refer to GSC Memoir 97. Two small cuts were mined by tractor, equipped with cable dozer blade in the mid-1950s. Cat mining began in earnest about 1980 as a result of the then high gold prices and has continued uninterrupted until today. The writer mined with partners along Scroggie Creek from two km below the airstrip to a point along Mariposa Creek about four km above its mouth. Although early records have not been thoroughly researched, something like 100,000 ounces raw gold with a fineness of 905 has likely been produced from Mariposa and Scroggie Creeks between the top of Mariposa Creek and a point four-km below the airstrip on Scroggie Creek. This area coincides with the bulk of cabins, shafts and diggings associated with pre dozer-tractor mining.

A granite batholith mapped by H S Bostock in 1935-37 and shown on GSC Map 711A, Ogilvie, occurs north of the area of placer mining. Schists and gneisses of the Yukon Group underlie the placer mining area. A large body of pyroxenite underlies Pyroxene Mountain to the northeast.

During 1988, mining cuts along Scroggie Creek just downstream from Stevens Creek yielded abundant arsenopyrite crystals in the sluice-concentrates over about 300 meters. Although bedrock was examined closely, no source for the arsenopyrite could be found in the mining cuts. In 1990 a black-sand sluice-concentrate, with coarse gold recovered, was sent to Chemex Labs for multi-element analyses to determine other significant metals that might be present in the Scroggie drainage. This concentrate was highly anomalous for several elements including Au, Pd, Pt, Ag, Bi, Pb, W and Sn, which, except for the Pd-Pt are indicative of intrusion-related gold deposits. Common minerals found in sluice concentrates include gold, magnetite, garnet and kyanite.

Over 100 WINE and FISH Quartz Claims were staked in 1987 over the area encompassing the significant placer gold production area described above. Only minor representation work was recorded with a modest gold anomaly described in soils north of upper Mariposa Creek and now covered by the WOLF 29-41 claims, which are a recent restaking of the MCPHEE claims which lapsed in 2000. Quartz veins staked in 1917 are
described along Mariposa Creek in this same area (Minfile O-075). Other minfile occurrences, well removed from all the recently staked claims include a Cu-Mo occurrence in upper Scroggie Creek, a U occurrence in upper Stevens Creek and a PGM-Au occurrence over Pyroxenite Mt.

The writer began prospecting the area assisted by Mr. Dave Bennett, in 1999 and staked the RUM RUN 1-20 quartz claims in Sept 1999. The writer returned in June 2000 with Mr. Dave Bennett to continue prospecting the general area, conduct representation work on the RUM RUN 1-20 and to stake the RUM RUN 21-50 and 53-59. The writer returned again in late Aug 2000 to evaluate the RUM RUN 21-50 and 53-59. In early July 2001, Mr. Dave Bennett and the writer returned to conduct additional geochemical sampling and mapping on the claims. In late August 2001, the writer returned to do additional sampling and mapping as well as conduct a VLF – EM geophysical survey over some of the claims. Work in 2003 included primarily magnetometer surveys in three separate areas and some limited geochemical surveying over one of these areas. Work in 2005 involved magnetometer and VLF-EM surveys on RUM RUN West Block in June at which time three claims, RUM RUN 44, 46 and 48 were re-staked as part of the RUM RUN East Block. The writer returned to the area in late August, 2005 to carry out the representation work described in this report.

All work has been done with the aid of YMIP grubstake and target evaluation grants.

GEOLOGY.

"The large granitic body exposed on either side of Scroggie and Walhalla Creeks is a coarse white granite near the junction of these creeks but, farther south and east, is more nearly a granodiorite and carries large pink feldspar crystals. Along its southern contact is a zone composed mainly of hornblende and pink feldspar. The body contains numerous xenoliths of the Yukon Group and innumerable pegmatitic intrusions that, in places, make up fully 30 percent of the volume of the rock." (H.S. Bostock, 1942, Map 711A, OGILVIE). Mr Jim Ryan and others of the Geological Survey of Canada have recently remapped some of the batholith and adjacent areas throughout the Stewart Map Sheet. Based on initial mapping of part of the batholith, Mr. Ryan describes the batholith as a composite intrusive complex with many phases often with diffuse contacts with
country rock (personal communication). The northern boundary of the clam block
described in this report lies one to two km south of the southern contact of this batholith.
“Granite” in this area contains pink feldspar phenocrysts up to two cm long, plagioclase
and quartz. It is often foliated and contains hornblende and lesser biotite of 10 to 20
percent. This fits with Bostock’s description of the granodiorite, which term is used
throughout this report.

A stock of “granite”, separated from the main batholith by three to five km of
metamorphic rocks is a coarse-grained, moderately foliated granite composed of one-half
cm long quartz grains set in coarse to medium-grained pink feldspar with five to ten
percent variably chloritized hornblende and biotite. About 20 percent of the feldspars are
white. Mafic biotite-hornblende rich xenoliths are common locally. The northern contact
of this stock lies about one km south of the south boundary of the claim block.

A large poorly defined body of pegmatite occurs northwest of the airstrip within
the granite batholith. This may be a single large body or more likely an area of intense
dyking. It measures three by four km as defined by chips in soil pits, float in creeks,
boulders on hillsides and a few outcrops. Dykes of pegmatite can be seen cutting
granodiorite outcrop near the miner’s camp and along adjacent Scroggie Creek.
Pegmatite is typically comprised of 20 – 30 percent quartz, 50 percent Kspar, 20 percent
plagioclase and <5 percent biotite plus muscovite. Miarolytic cavities are present but rare.
Pegmatite can also be seen as narrow dykes within the country rocks at numerous
locations. Pale buff-colored aplite is occasionally seen within the batholith as outcrop and
float particularly northeast of the miner’s camp and throughout the drainage of the
westerly flowing creek two km north of the claim block.

Country rock to the batholith includes schists and gneisses of the Yukon Group.
Float and outcrop of metamorphic rocks along Scroggie and Mariposa Creeks display a
wide variety of textures. Most common by far are quartz-feldspar-hornblende gneisses of
highly variable grain size and texture in places containing garnet of quite variable size
and content. Kyanite, common in placer gold concentrates, is seen in float along most of
Scroggie Creek as subround disc-shaped boulders of kyanite-muscovite ± garnet, ±
magnetite ± staurolite (?) gneiss. Float of pegmatite, granite and chlorite and biotite rich
gneisses is also common. A low but persistent amount of quartz-eye porphyry is also present throughout Scroggie and Mariposa Creek gravels.

A quartz-muscovite + garnet schist unit, QMS, up to a few hundred meters thick has been mapped across the area from Mariposa Creek to Cabin Creek. The unit is not massive as intercalations of other schists and gneisses do occur within it as can best be seen on the placer-mined bench opposite the mouth of Stevens Creek. Its muscovite content, generally five to twenty percent but locally over 90 percent, characterize it. Weathering of pyrite, usually forming less than one percent has produced a distinctive orange surface. The unit strikes northwest and dips about 45 degrees northeast except near Scroggie Creek. Nearing Scroggie Creek from the east, strikes become progressively more northerly and dips steepen to near vertical. This change could be caused by drag along an unexposed north-south fault with right lateral sense of movement. In 1986 during placer mining, the unit along Lower Mariposa Creek was seen by the writer to terminate against a sharp fault as shown on Figure 4. The similar rock type mapped further north of this point may be a faulted offset of the same unit and not a repetition. The unit continues east along Mariposa Creek drainage for several km.

South of the QMS unit along Scroggie Creek, from Mariposa Creek to north of Stevens Creek, a dark green to grey chlorite-biotite gneiss with fine laminations and augen of pink feldspar makes a distinctive unit at least several hundred meters thick. It outcrops across the floor of Scroggie Creek as seen during the course of placer mining in the late 1980's and now evidenced by the abundance of angular pieces of this rock type on the placer tailing piles. North of the quartz-muscovite schist, outcrops of quartzofeldspathic gneiss containing variable amounts of hornblende and garnet make up the bulk of the exposed country rock.

The Scroggie Creek drainage in the area of this report is described as unglaciated (Duk-Rodkin 1999, G.S.C. O.F.3694). Mr. Lionel Jackson of the G.S.C. suggested that older glacial periods of greater than one my bp could have affected the area. During a placer test in the late 1980s of a bench immediately above the southwest corner of RUM RUN 59 (now lapsed), the writer examined material that looked like till. Large rounded boulders and till-like soils occur in the headwaters of Mariposa Creek. It is curious that oxidation of sulfides is absent or only shallowly developed at best on the property
whereas elsewhere in unglaciated terrain it is deeply developed. The Casino porphyry Cu-Mo deposit, 25 km south is deeply leached, in places to over 100 meters. Loess is present on hillsides as was seen in two pits dug in 2001.

PREVIOUS WORK.

Previous work, described in previous assessment reports, subdivided the property into three areas named the Pegmatite Zone, the QMS Zone and the East Zone. The claim block shown on Figure 2 and the subject of this report covers the East Zone.

The Pegmatite Zone occurs on the RUM RUN 1-20. Gold mineralization occurs associated with pegmatite dykes along Scroggie Creek. Gold values up to 3020 ppb Au occur associated with very fine sulfide in quartz breccias within dykes of pegmatite cutting the foliated medium-grained hornblende granodiorite. Immediately to the west, on a moderate sloping hillside devoid of outcrop, soil samples are geochemically anomalous for gold over a one-km diameter area. The rocks and some soils are moderately anomalous for Mo, Pb and Sb. Rock chips in soils and float in creeks indicate this area occurs within a large pegmatite body or intense dyke swarm about three km in diameter. A north trending fault is believed to occur along Scroggie Creek, from evidence collected further south, and may form the east boundary of the large pegmatite body.

This fault and associated splays are targets for gold mineralization. The quartz-breccia sulfide mineralization within pegmatite dykes would have to be more continuous and higher grade if similar mineralization exists under the gold soil anomaly west of Scroggie Creek to be of interest. During June 2001, the placer operator on Scroggie Creek, Mr. Zdenuk Bidrman, showed the writer two gold-quartz pebbles measuring about two cm in maximum dimension. Mr Bidrman described the collection of about fifty other smaller gold-quartz pieces together with the two larger pieces from a small area of placer mining west of C184 tight against the bank. About one-quarter of the volume of the gold-quartz pieces is gold. Such pieces, though not common, were occasionally seen by the writer in placer concentrates during his mining of Scroggie and Mariposa Creeks from 1985 to 1992. The occurrence of numerous pieces of gold-quartz pebbles in one restricted area could come from several possible sources. They could be caused by gold-quartz weathered from nearby bedrock or from disintegration of a single or few pieces of gold-
quartz weathered from a source previously several thousand feet above the present land surface. The first possibility offers a target worthy of pursuing as small volume high-grade veins associated with the north trending fault and has been suggested by others. "The fragility of the pristine gold crystals projecting from the clasts suggests that they were not transported far following their introduction into the fluvial system. Consequently, a source on adjacent hillsides is suggested." (Rotheisler, P.N. GSC Current Research 2003-A1).

The QMS Zone occurs on the RUM RUN 21-40. A quartz muscovite schist unit (QMS) was crudely mapped from chips in soil pits across these claims over a strike length of 1500 m open to the northwest. The unit is eventually terminated against the granite-pegmatite intrusive complex in this direction, but extends over ten-km east along Mariposa Creek where it includes the East Zone. Soil results indicated strong geochemically anomalous patterns for Au, As, Bi, Pb, Te, S and Zn over the QMS Zone. Outcrops are very rare on the hillside within the anomalous patterns but a 45-degree northeasterly dip to foliation within the QMS, and adjacent units nearby, has been well documented. Attitudes steepen to near vertical with a northerly strike along Scroggie Creek. This change of attitude is believed to be related to drag along a north-south fault along Scroggie Creek. Well-formed arsenopyrite crystals were abundant within gold placer concentrates along the portion of Scroggie Creek underlain by the QMS unit as seen by the writer in the late 1980's. The placer gold collected from this area of Scroggie Creek was also unique in being coated by a fine, deep-blood-red powder. The arsenopyrite could be related to gold mineralization associated with the north trending fault. Scroggie Creek gold is well known to be very coarse.

In the QMS target, the occurrence of anomalous Au-Bi-As-Pb in soils with Sn-W in Au placer concentrates within high-grade metamorphics in association with granite and pegmatite is indicative of mesothermal intrusion related gold mineralization. The anomalous geochemical patterns are obviously large enough to contain a sizeable gold deposit.

CURRENT WORK.

G Richards traveled to the claims by fixed-wing aircraft from Dawson City on June 6, 2005 and conducted a work program on RUM RUN West Block claims and re-
staked the RUM RUN 44, 46 and 48 quartz claims as part of the RUM RUN East Block before flying out to Carmacks on June 19, 2005. He returned August 26 to perform representation work on the East Block. Work in 2005 was designed to collect soil samples around previous soils that were anomalous for gold with a high of 1333 ppb Au and to complete a magnetometer survey in the same area.

Limited geological mapping was conducted in the area at the same time as conducting the other surveys using the grid described below for control. This was done to relate magnetometer and geochemical patterns to geology.

A grid for the magnetometer survey was measured using hip chain and compass with GPS co-ordinates of a few selected points for control. One northwest baseline, BLB, 800m long as indicated on Figures 3 and 4 was used to place northeast cross lines at 100 m intervals. Readings were taken at 20-m intervals along the baseline and all cross-lines with stations labeled with felt pens on flagging that were tied to trees. Seven lines from 300 to 500m long were run northeast of the baseline and four lines 300m long were run southwest of the baseline.

The survey was conducted with a Scintrex MP2 magnetometer. Two magnetometer readings were taken at each station in order to assure a relatively quiet magnetic field. If electric storms were present or the earth’s magnetic field was rapidly changing for any reason, the survey was postponed. Magnetic disturbance associated with electric storms did occur, usually in late afternoon, so much of the survey was conducted starting in early morning and continuing into early afternoon.

Results were plotted on Figure 3. Figure 3 shows the 2003 and 2005 mag results with data contoured at 100 gammas after a best-fit correction of diurnal changes was made to the raw data. Data from 2005 was also elevated by 80 to 120 gammas to bring base level up to the 2003 data base level. 57,000 gammas should be added to each reading shown on Figure 3 to bring them to absolute values.

42 soil samples were collected along selected portions of the magnetometer grid as shown on Figure 4. Most of the samples, numbers P1 to P27 and P32 to P42 were collected at 40m intervals along four grid lines spaced 100m apart as shown, surrounding three previously collected soils that assayed 50, 204, and 1333 ppb Au with some Sb, As and B support. Four soils samples, numbers P28 to P31 were collected along BLA
southwest to test for continuation of anomalous gold values along a previously defined northwesterly trend parallel to stratigraphy as shown on Figure 4. Soil samples were collected by mattock typically from depths of ten to twenty cm. About one kg of soil was collected and placed in numbered gusseted kraft sample bags. All samples were sent to Acme Analytical Laboratories in Vancouver for analysis using their 1F1 assay method, an ICP/MS & ES technique. Results are in an Appendix.

A pit was dug by mattock on soil sample site Q227, collected in 2003, that assayed 1333 ppb Au. A few outcrops of gneiss and schist were mapped as indicated on 2005 grid lines.

RESULTS.

Geology Survey.

Angular boulders of quartz-eye porphyry were found beside Q217 and P28 along the northwesterly multi-element anomalous geochemical trend shown on Figure 4. The pit dug at soil sample site Q227, (1333 ppb Au), revealed a variety of metamorphic rocks with a preponderance of muscovite gneiss and muscovite schist along with numerous angular pieces of quartz. The few outcrops found along grid lines confirm the gneiss and schist attitudes previously mapped. Flat lying isoclinal folds were noted in the outcrop at BLA 6NW 550SW.

Magnetometer Survey.

Mag results over the East Zone display linear mag high features parallel to the known west northwesterly strike of metamorphic foliation. A high of 58,590 at B560SE-180ne is roughly 1200 gammas above the background of about 57,400 gammas. Three distinct bands of mag highs have been interpreted from the data separated by lows of about 100 gammas below background. This area of mag highs is known from a few outcrops to be underlain by biotite hornblende quartz-feldspar gneiss. The mag highs terminate abruptly on line B300SE-ne. This is coincident with the previous area of geochemically high gold in soils but the cause is unknown. The broad area of flat mag response over most of the survey is underlain by quartz muscovite schist from the north limit of the mag highs to the northern portion of the survey area. The mag data was not of much use to map the northern limit of the quartz muscovite schist known to occur from soil pits somewhere in this area.
Geochemical Soil Survey.

Results of this survey were almost all low, restricting the previous three gold anomalous soils to that specific area. The only adjacent anomalous values occurred at P10, 12 ppb Au, at P25, 13 ppb Au and 23 ppb As, and at P26, 23 ppb Au. These values, although marginally anomalous for gold, do not enhance the target.

The four samples collected along line A6NW to the southwest of Q212 returned anomalous results in the first two samples. P28 gave 0.62 ppm Bi, 24 ppm Pb and 0.58 ppm Te. P29 gave 1.42 ppm Bi, 88 ppm Pb, 0.92 ppm Te and 21 ppm As. Gold was low but the multi-element northwesterly band remains intact across one km, open on both ends.

CONCLUSIONS

A band of weakly anomalous Au with anomalous Bi, Pb, Te, +As, +Ag extends across a 50 to 100m width and over a km length open on both ends. Some quartz-eye rhyolite rubble was found at two localities within this band of anomalous geochemistry indicating a possible genetic relationship. Strong linear magnetic highs are parallel to the anomalous geochemical pattern and lie some 100 to 300 m to the south.

The pattern of three soils with high Au values from the 2003 survey could not be expanded beyond a very weak response in three adjoining samples limiting the potential for significant Au mineralization. The strongest magnetic patterns trend towards the high gold values but abruptly stop about 100m to the southeast. This magnetic high termination may be related to magnetite-destructive alteration associated with gold mineralization, but there is no outcrop in this area to confirm this possibility. Numerous quartz boulders were found in a pit dug at the highest gold soil site.

RECOMMENDATIONS.

Results are not encouraging. Analyses of the quartz boulders collected from the soil pit at sample site Q227 is recommended. If these results are significantly high then it is recommended that additional pits be dug around Q227 to define distribution of mineralization.
STATEMENT OF QUALIFICATIONS

I, Gordon G Richards, of 6410 Holly Park Drive, Delta, B.C., Canada do hereby certify that:

1. I am a graduate of The University of British Columbia (B.A.Sc in Geology 1968, M.A.Sc in Geology 1974)

2. I am registered as a Professional Engineer in the Province of British Columbia.

3. I have practiced my profession since 1968.

4. This report is based on my fieldwork during August 26 to Sept 2, 2005 and literature cited.

Respectfully submitted,

Gordon G Richards, P.Eng.
STATEMENT OF COSTS

Wages
G Richards Aug 26 – Sep 2 7 days @ $600/day $ 4200.00

Expenses
Great Beaver Air: Carmacks-Scroggie return (shared expense) 800.00
Acme Analytical Labs 895.08
Food 7 days @ $35/day 245.00
Supplies 60.00
Mag Rental 100.00

Report
Correcting mag readings for drift, plotting, contouring
drafting, writing, typing, reproduction, collating 1000.00

Total $ 6,308.08
APPENDIX

GEOCHEMICAL RESULTS
The image contains a table with data, but the content is not legible due to the quality of the image. It appears to be a scientific or technical table, possibly related to analysis or measurement results. However, without clearer visuals, it's difficult to extract meaningful information from this image.
SAMPLE	Mn	Ca	P	Zn	Ag	Ni	Cu	Co	Fe	As	Hg	Cr	Ba	Sr	Mg	Ti	Al	Cl	K	Pb	%														
P34	1.29	19.77	8.41	49.1	54.17	13.7	250.3	19.7	7.7	6.3	3.6	3.1	16.2	0.8	36.16	78	19	0.33	9.8	35.0	53	177.6	097	1.2	21.3	0.11	0.06	< 1.3	4	12< 0.1	0.15	2.03	6.2		
P35	1.11	31.56	8.46	48.8	58.48	7.15.7	364.3	63.6	4.7	3.9	4.1	7.18	9.0	0.6	36.13	90	26.0	0.38	6.6	110.0	27	154.2	168	1.2	19.17.15.6	44	1.51	1.7	1.8	6.3	10< 0.1	7.1	0.92	7.4	
P36	1.19	14.22	6.45	79.4	50.17	13.6	488.3	71.7	6.6	11	3.9	15.6	8.8	0.8	36.17	77	23.0	117.1	30.5	80	123.8	116	2.2	19.18.19.19.1	1.5	13	0.14	2.53	2.1						
P37	0.78	11.46	5.56	10.1	30.6	8.6	14.91071.3	50.4.7	4.6	8.8	2.4	15.9	9.0	0.6	19.13	83	59.167.12.14.172.145	1.2	21.18.07	35< 1.8	0.23	0.11	1.1	0.33	10.7										
P38	71	7.68	5.57	52.9	46.37	3.13	737	2.61	4.6	7.5	3.1	24.5	11	0.4	34.11	59	41.085.5	56.7	163.96.2	0.07	1.16	0.15	0.07	1.33	0.06	16.2< 2.5	5.9								
P39	0.73	7.96	4.98	9.1	63.12	11.14	999.3	26.5	7.7	3.2	6.2	4.2	22.8	11	28	13	64	44.078.6	3.19	2.82	1.68	120.2	1.18	0.17	49< 1.5	4.25	0.20	0.13	0.34	7.5					
P40	0.99	12.44	5.95	89.7	160.12	6.14.6	11.5	3.7	4.4	4	13.3	7.26.8	0.0	32.14	74	33.026.8	5.1	21.3	14.1	0.83	5.6< 1.6	0.22	0.14	3.73	7.8										
P41	1.00	12.29	7.07	57.7	141.15.0	10.6	688.3	26.6	6.4	4.3	9.2	9.12.5	0.12	35	14	65	63.035.5	9.8	27.9	58.356.1	0.04	2.17	0.17	0.19< 1.4	3.10	0.12	0.02	5.8							
P42	0.85	10.10	10.34	39.5	90.10	3.5	5.8	172.13.5	5.3	6	9.1	7.18	17.6	10	20	13	43	25.022.2	2.2	17.6	34.200.1	0.08	1.13	0.07	0.15< 1.8	0.09	0.12	3.2	5.4						
P43	1.13	68.18	4.51	110.1	3.16	9.6	22.7	676.6	7.5	2	9	4.32	5.36	9.03	1.1	31	55.2	10.134.18.7	10	8	1	30.3	0.06	1.22	0.06	0.08< 1.5	0.03	0.15	2.18	6.8					

STANDARD DATA: 11.74 125.34 29.98 145.7 278.25 1.19 5 718.7 8421.2 6.7 4.3 3.4 4.1 6.6 19.3 5.5 10 57 86 0.08 14.4 1.86 8 59 1667.0 0.79 16 1.93 0.14 15.3 3.3 1.78 0.3 232 4.3 2.29 6.1

All results are considered the confidential property of the client. Acmes assumes the liabilities for actual cost of the analysis only.

Sample Type: SOJ, 5000 SOJ

Date: FA
Fig 4. Geochemical Survey, Geological & Magnetometer Interpretation

Mariposa

RUN RUN PROPERTY East Zone

Rougge Creek Y.T. 1980/12

Scale 1:5,000

Strong mag. high

Moderate mag. high

Soil sample 3 to 5 ft.

2005 soils

Fig. 4

Jan 2004, plotted June 5

mag values taken from Figure 3