for
EXPLORATION

on the

ANNE 1 to 4 QUARTZ MINING

CLAIMS (YC26740-YC26743)

MARSH LAKE, YUKON TERRITORY

NTS $105 \mathrm{D} / 8$
ZONE 8
6704100N, 542450E (NAD27)
LATITUDE $60-29 \mathrm{~N}$
LONGITUDE 134-17W
between
APRIL, 2003
and APRIL, 2004

WHITEHORSE MINING DISTRICT

YUKON TERRITORY
by
JOSEPH A. J. CLARKE MARSH LAKE, YUKON AUGUST, 2005

TABLE OF CONTENTS

INTRODUCTION 2
LOCATION, AND ACCESS, 2
TOPOGRAPHY AND CLIMATE, 2
EXPLORATION HISTORY 3
EXPLORATION WORK 3
REGIONAL GEOLOGY 3
PROPERTY GEOLOGY 3
CONCLUSIONS 6
RECOMMENDATIONS 6
APPENDIX 1 LIST OF FIGURES
FIGURE 1.; LOCATION MAP $(\mathbf{1 : 6 , 0 0 0 , 0 0 0})$ 7
FIGURE 2.; CLAIM MAP ($\mathbf{1 : 3 0 , 0 0 0)}$ 8
FIGURE 3; REGIONAL GEOLOGY ($1: 250,000)$ 9
FIGURE 4.; PROPERTY GEOLOGY (1:9000) 10
FIGURE 5.; TRENCH MAPPING 11
APPENDIX II STATEMENT OF EXPENDITURES 12
APPENDIX III STATEMENT OF QUALIFICATIONS 13
APPENDIX IV ACKNOWLEDGMENTS 14

INTRODUCTION

This report describes the exploration work carried out on the claims Anne $1-4$ from April, 2003 and Apri, 2004. This work consisted of 3 days of grassroots prospecting and mapping and hand trenching. Total value of work preformed is $\$ 800$. The property has potential for mesothermal Motherlode gold, PGE, and Rare Earth/gemstone deposits.

Prospecting revealed a small syenite body intruding cherty sediments and mafic volcanics, and several new lamprophyre dykes. Age relationships are not clear to date but it is expected that the lamprophyre dykes may intrude the syenite and may be of possible Tertiary age. Prospecting and trenching revealed moderate sulfide mineralization at the contact a lamprophyre dike intruding cherty sediments of the Cache Creek Group. Trenching in the 2000 m listwanite alteration fault zone revealed intense shearing and brecciation of Cache Creek mafic volcanics and cherts. Further trenching in talus is required to enable sampling across this fault zone. Establishment of a baseline and several cross lines has set the stage for future geological mapping and geophysical surveys.

LOCATION, AND ACCESS

The Anne 1-4 claims are located just east of the south entrance of Old Constabulary Subdivision, 65 km south of Whitehorse along the Alaska Highway at Marsh Lake. Access is possible by 4 -wheeler, snowmachine, or small 4 -wheel drive truck to most areas of the claims.

TOPOGRAPHY, CLIMATE

The topography of the immediate area consists of small $50 \mathrm{~m}-100 \mathrm{~m}$ hills and valleys running parallel to Marsh Lake. The terrain rises gently from Marsh Lake (elev 2200') for an average of 3 km NE of the Alaska Highway then rises steeply reaching 5800 ft at the peak of Mt Mitchie. Several periods of glaciation have rounded the hills and have resulted in moderate to deep deposits of till, clay, and ancient raised beaches. Outcrop exposure is 35% on the property.

The climate of the area vanies from a high of +30 C in the summer to lows of -40 C during the winter. Typical are long hot summers (May to September) with up to 18 hours of daylight and moderate to harsh winters (October to April) with less than 7 hours of daylight.

Black spruce is the most commen tree species on the property. These favor the NE side of valleys and are a common indicator of local permafrost. More exposed areas have a mixture of white and black spruce with occasional pine. In the most exposed areas aspen colonies are well established. Willows are abundant in the valleys and low areas. Wildlife
inhabiting the area are typical of the Southern Yukon and include moose, wolves, and various small birds and mammals.

EXPLORATION HISTORY

Hard rock exploration in the Marsh Lake area dates from 1895 on the nearby Rossbank property. Only scattered prospecting was performed until 1988 when exploration activity increased with discovery of the Diamond zone by Bill LeBarge, a geologist with DIAND. The zone is now covered by the Anne 1-4 Claims. Further activity was seen on the Bug, Tog, and Rossbank properties. Mr. Gary Reynolds staked the original Mike $1-8$ claims in 1989 and filed one years assessment work. The 1994 Jakes Comer Helicopter EM survey revealed several strong EM conductors resulting in the prospector staking the Uchi claims to the 15 km to the northeast. Several other claim groups in the area are active.

EXPLORATION WORK

Exploration work consisted of prospecting, mapping and hand trenching on all 4 claims. Hand trenching focused on the Highway Fault Zone in the area of TR95-1 as indicated in Figure 4. Other small trenches were dug to expose small splays and to look for various contacts.

REGIONAL GEOLOGY

The geology of the NE side of Marsh Lake consist of a tectonic assemblage of island arc mafic volcanics, cherts, and up-thrusted and altered ultramafic bodies known collectively as the Cache Creek Group. Intruding these are vatious Cretaceous felsic and mafic bodies. The NW-SE trending Marsh Lake fault is the prominent feature and includes many oblique splay faults forming drainage basins into the lake. These splay fault features are observable at outcrop scale Latter fresh gabbros, lamprophyre, and diabase dikes are common.

PROPERTY GEOLOGY

Geology of the Anne 1-4 claims consists of an accreted assemblage of oceanic mafic volcanics, cherts, limestone and ancient serpentinized peridotites intruded by felsic, mafic to ultramafic dykes, pods and sills. These are possible related to mid to late Cretaceous
felsic intrusions located 3 km to the east.

Structure

Structure of the property is dominated by two NW trending, steeply dipping splay faultsknown as the Highway Fault, and the Pipeline fault. Both parallel the Alaska Highway A large mafic volcanic package forming a distinct ridge separates the two fault systems by. $200-400 \mathrm{~m}$ may be a horst block thrust up by faulting along Marsh Lake or during Cretaceous intrusion Similarly the large chert packages that predominate in the valleys formed by fault systems may be graben structures. Oblique splay faults on a smaller scale are common as well as a strong lineament running along the ridge between the two fault systems. Trenching across the Highway Fault revealed brecciation, quartz veining and small scale folding across 20 m . The fault zone continues under talus cover. A strong lineament runs NS on the SE corner of the property:

Lamprophyre mKI

Four different lamprophyre bodies intrude have been mapped on the property.
A small ($<1 \mathrm{~m}$) EW trending vertical dike intrudes CPu along the west side of the Pipeline Fault $1 t$ is of medium to coarse-grained mafic composition containing well rounded, black easily weathered grains of a miceous mineral up to 2 mm in diameter.

A irregular shape body of lamprophyre intrudes or is in part accreted to $\mathrm{CPv}, \mathrm{mKg}$, and TJts. It is light colored with large biotite crystals in a potassium feldspat/pyroxene medium grained matrix. Further mapping is required to determine the true attitude of this body.

Two small irregular lamprophyre dikes intrude CPv. On is located on the east side of the large CPy unit between the two fault systems. The are both medium grained with large hypershene megacrysts up to 2 cm in size. The seem to follow narrow, recessive areas which appear to be splays off the main faults. Further trenching in these areas is required.

Syenite Ksy

Located at the SE comer of the property is a small body of medium grained syenite it is feldspar rich with homblende and biotite mica. This body may be of Cretaceous age and related to the large syenite pegmatite intrusion located -4 km to the north. It is possible however that the syenite is temporally related to the mKI. Trenching is required to answer this question.

Diabase mKd

Several small ($<1 \mathrm{~m}$) diabase dikes occur and have been identified intruding both CP v, CPu , TIts. They appear unaltered and are moderately silicified. The dikes trend EW and are vertical Further trenching and mapping of the dikes are required as some may be older representing mafic hypabyssal intrusion with in $\mathrm{CPv}_{\mathrm{V}}$ or CPu

Gabbro mKg

A large irregular gabbro body intrudes CPv and TIts. It is unaltered, medium grained showing a weak columnar structure. Mapping of the contact is required as it is possible this unit may be a interflow intrusion within CPv.

Chert TJts

This unit occurs throughout the property and is comfortable with CPy representing seafloor deposition during a long period of volcanic quiescence. The chert is highly silicified well ribboned and vares from light gray-green to dark gray in color, Quartz flooding has resulted in $1-2 \mathrm{~cm}$ fracture filled veinlets. Hand trenching has revealed an area of brittle fracturing of chert in the center of the property and west of the Highway Fault. This good represent a fault contact with a CPu outcrop to the south. Only the occasional grain of pyrite can be found in this unit except where altered to listwanite near faulted zones where up to 1% pyrite occurs as fine grained brass to silver crystals. A thin bed of blue-gray fine grained silicified tuff is commonly found along these zones and may represent a basal unit of the chert beds or a upper unit of CPv.

Mafic Volcanics CPv

This is the most well exposed unit on the property. It is an uplifted and accreted package of deep sea andesite and basalts. The package itself may represent several separate accreted volcanic sequences. The volcanics are moderately to highly chloritized. Silicification vanies from low to locally high. These unit is also well silicified along the hanging wall on the east side of the Highway Fault. Fracture of the unit at right angles has resulted in a stockwork of $>1 \mathrm{~cm}$ quartz veining with an average distance of 5 m east of the fault This is well exposed in trench 95-1. This package also shows weak remnant flow banding and pillow margins.

Serpentinized peridotites CPu

This unit is exposed in several NS predominant narrow outcrops east of the Alaska highway It is carbonate altered with may bright patches of serpentinite. Quartz veining and mineralization is rare.

Limestone CPC

Dirty light brown limestone is exposed in a small outcrops at the north end of the property. It has a shallow dip to the NE. This package may be part of CPv or a older unit. Further investigation for fossils is required to better date this unit.
This unit may be covered with overburden in other areas of the property.

CONCLUSIONS

Anomalous gold and pathfinder element assay results from two strong parallel fault systems were obtained in 1995 . Zones showing pervasive listwanite alteration in fractured brecciated units similar in mineralogy and age to those in a geological setting similar to Mother Lode style gold camps have been exposed. Mineralization at lamprophyre contacts shows that some metals are in the system. The syenite body may have provided a heat source for hy drothermal fluids and potential mineralization. Further trenching in $2003 / 2004$ indicates the continuous nature of the listwanite alteration in the Highway Fault This gives significant justification to continue exploring the Anne 1-4 claims next year.

RECOMMENDATIONS

A 1.2500 compilation basemap should be produced for the property. This should be base on airphotos at a scale to $1: 5000$ Flagged gridines should be run east and west of the existing Highway Fault BL and the new Pipeline baseline. An EDM survey instruments should be brought in to tie the two baselines together, survey in cultural features and stake out marker pins on prominent outcrops.

Small backhoe trenching should be performed along contact and faulted areas followed by mapping and sampling. Further outcrop mapping at a detailed scale should be conducted with Au +30 element assaying. Soil samples should be taken in overburden covered areas and along the small recessive splays with a sample kept for panning and heavy mineral identification A VLF-Mag geophysical unit should be used to provide further information on geology, structure and mineralization in overburden covered areas. The cost of this work would be approximately $\$ 10,000$ over two seasons.

APPENDIX I

FIGURE 1 to FIGURE 4

Legend

APPENDIX II

 STATEMENT OF EXPENDITURES

 STATEMENT OF EXPENDITURES

 Prospecting, Mapping, and Hand Trenching

 Prospecting, Mapping, and Hand Trenching 2003/2004

 2003/2004}
Fuel/Supplies: $\$ 50.00$
Personnel: Joseph Clarke, prospector 3 days $\$ 250 /$ day $\$ 750.00$ (mapping, hand-trenching, prospecting)
TOTAL COST $\$ 800.00$

APPENDIX III
STATEMENT OF QUALIFICATIONS

I, Joseph A I Clarke, of Marsh Lake Yukon Territory with mailing address of General Delivery, Whitehorse, Yukon hereby certify

That I have graduated from the Haley bury School of Mines in 1985 with a diploma in Mining Engineering Technology,

That 1 have been engaged in prospecting in the Yukon on a full time basis since May of 1993 and have been engaged in prospecting and in the mineral industry for 20 years elsewhere in Canada,

That I have a commitment to prospect in a gentlemanly manner with respect for others who use the land.

Signed at Whitehorse, Yukon Territory on the \qquad day of \qquad 2005.

Joseph A. J. Clarke

$$
660-4702
$$

APPENDIX IV

ACKNOWLEDGMENTS

Assessment Report 092965 by Gary Reynolds

The Liswanite-Lode Gold Association of British Columbia Ash and Arksey
Geological Fieldwork 1989, paper 1990-1

Airborne EM and MAG Survey
 Jakes Corner Project
 DIAND Open File 1994-10 (G)
 by Dighem I Power

Notes to Prospectors - Jakes Comer
Dighem Survey Interpretation
DIAND Open File 1995-12(G)
by M.A. Power Msc, Amerok Geophysics

Special thanks for geological discussions with the staff of the MDA and DIAND offices in Whitehorse, the staff at Aurum Geological and local prospectors.

