2002 ASSESSMENT REPORT
FLO-4 MINERAL CLAIMS

In the

WATSON LAKE MINING DISTRICT
YUKON TERRITORY

NTS 105G-12
Latitude 61 37.4'N Longitude 131 32.9'W

James S. Dodge
Professional Engineer, Yukon

25 October, 2002
This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mining Act and is allowed as representation work in the amount of $2,000.

M.R.
Regional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.

Costs associated with this report have been approved in the amount of $2,000.00 for assessment credit under Art. of Work No. 0125613.

WATSON LAKE MINING DIST.
TABLE OF CONTENTS

1.0 SUMMARY 1
2.0 LOCATION AND ACCESS 2
3.0 GEOLOGY 3
4.0 GREISENIZATION 4
5.0 CONCLUSIONS 5
6.0 RECOMMENDATIONS 5
7.0 SUMMARY OF EXPENDITURES 6
8.0 REFERENCES 9

LIST OF FIGURES

Figure 1 Location Map
Figure 2 Claim Map
Figure 3 Geology Map

APPENDIX 1 STATEMENT OF QUALIFICATIONS
APPENDIX 2 ASSAY RESULTS – ACME LABORATORIES
SUMMARY

The FLO property is located east of the Hoole River near the divide with the western branches of Mink Creek, approximately 60km southeast of the village of Ross River.

The four FLO claims were staked by James S. Dodge following results obtained from a program of deep-pit glacial moraine sampling conducted in mid-2001.

Two geologic terranes are recognized in southeastern Yukon; namely, the Yukon-Tanana (YTT) and the Slide Mountain (SMT). The augen gneiss underlying the FLO property is identified as being Devonian-Mississippian metaplutonic rocks within the ‘middle unit’ equivalent to the YTT of Alaska.

Outcrops are extensive and expose a large area of greisenization of augen gneiss characterized by pervasive chalcedonic replacement and accompanying white mica and fluorspar with several sites of anomalously high concentrations of boron as tourmaline. Minor base metal mineralization occurs as narrow veinlets in float boulders of greisen.

The absence of tin and beryllium, as characterized by many greisens worldwide, reduces the potential for discovery of economic mineral deposits on the FLO claims. However, concentrations of fluorspar in miarolitic cavities and the high bedrock boron analyses support a pneumatolithic (gas phase) stage of igneous differentiation; possibly a setting for topaz and emeralds.
LOCATION AND ACCESS

The FLO 1-4 property is located northeast of the Tintina Fault, east of the Hoole River and west of the Mink Creek drainage. The Robert Campbell Highway lies 12 km east of the claims. The property is shown on NTS 105G-12 centered at Latitude 61 37.397'N and Longitude 131 32.948'W.

The property comprises four contiguous quartz mineral claims for which 5 year’s renewal is requested:

- FLO 1-4 Grant Numbers YB93525-YB93528 recorded with the Watson Lake Mining District

Access to the claims is by helicopter from the village of Ross River approximately 60km to the northwest (Figures 1 and 2).
GEOLOGY

The FLO claims lie within that part of the Nisutlin Allochthon in the Yukon Territory east of the Tintina Fault with a thick layered metamorphic sequence; equivalent to Yukon-Tanana Terrane (Alaska).

The lowest of three units (Mortensen 1986) comprise pre-Upper Devonian garnetiferous and quartz-muscovite schist, and micaceous quartzite. Overlying this is a middle unit of carbonaceous phyllites with interbedded mafic and felsic metavolcanics. The upper unit contains abundant quartz grits along with carbonate and quartzite.

A broad exposure of augen gneiss on the FLO claims is assigned to a metapluton corresponding to a 'middle unit' of Pelly Gneiss which intrudes rocks of the Nisutlin Allochthon. Whole rock age for the gneiss is early Mississippian.

Centered on the FLO claims are extensive outcrops of greisenized augen gneiss distinguished by pervasive chalcedonic and white mica replacement with a distinguishing fabric of relict gneissic banding. At several sites sea-green and violet fluorspar and fine grained tourmaline occupy large miarolitic cavities. Minor base metal mineralization occurs as several narrow veinlets in float boulders of greisen. No outcrops are known of the pluton responsible for the pneumatolitic greisenization of the gneiss.
GREISENIZATION

During June 2002 prospecting, geological mapping, and bedrock sampling was carried out on the FLO 1-4 mineral claims which had been staked on 30 September, 2001, following discovery of several outcrops of pneumatolitic greisen replacing augen gneiss.

Detailed prospecting not only extended major 2001 areas of greisen, but discovered a separate greisen area north of the man showings FLO #1.

During 2002, 14 rock samples were taken from bedrock greisen sites and sent to ACME Laboratories in Vancouver for 35-element ICP analyses which were returned under their File No. A202072 (Appendix 2). Eight of the samples (#118669-118676) were from the North Zone which was discovered by detailed prospecting in 2002. The remaining six samples were taken on the Lower and Upper Zones from newly dug trenches on FLO #2 and #4 claims.

An overview of these and the 2001 results indicates that where boron (in tourmaline) displays anomalously high values, there are also high concentrations of calcium (as fluorspar) and potassium+aluminum (as white mica) – which along with pervasive chalcedonic silicification defines the macroscopic signature of this style of greisenization.
CONCLUSIONS

The pneumatolytic replacement style of greisen mineralization is well displayed by the widespread pervasive chalcedonic silicification coupled with white mica, fluorspar and tourmaline. Detailed prospecting in 2002 did not discover the up-ice bedrock source of the single greisen boulder west of the Lower Zone which carried sub-economic values in base and precious metals samples taken in 2001.

Although no tin or beryllium concentrations are known in the FLO greisen, the boron (tourmaline), coupled with pneumatolitic silicification and white mica, point to the potential for the occurrence of emeralds on or near the FLO property.

RECOMMENDATIONS

In order to discover the bedrock source of the single sulphide-bearing greisen boulder, it is recommended that deep pit sampling be carried out west of the Lower Zone.

The discovery of boron-bearing North Zone greisen points to the potential for emeralds further north in search of areas of possible greisenization of mafic units of the Yukon-Tanana terrane.
EXPENDITURES FLO 1-4 CLAIMS 2002

Transportation

Helicopter: Trans North Helicopters
10 June Invoice #29476 Ross River to FLO Claims $896.16
02 July Invoice #29494 FLO Claims to Ross River 896.16

Assays

ACME Lab, Vancouver, 15 July #202072 292.11

Camp provisions

James Dodge 8 days @ $25/day 200.00

Personnel:

James Dodge (Prospector) 6 days @ $150 900.00
James Dodge (P.Engr.) 2 days @ $400 800.00
James Dodge (Report) 1 day @ #400 400.00

TOTAL 2002 Assessment Expenditures $4,384.43

James S. Dodge, P.Eng. Yukon
25 October, 2002
REMIT PAYMENT TO:
TRANS NORTH HELICOPTERS
TRANS NORTH TURBO AIR LTD.
20 NORSEMAN ROAD • WHITEHORSE • YUKON • Y1A 6E6
TELEPHONE (867) 668-2177 FAX (867) 668-3430

INVOICE NUMBER 29476
INVOICE DATE 10/06/02

ACCOUNT HOLDER

AVC TYPE 13406
AIRCRAFT REGISTRATION C K F 0

FLIGHT DATE 10/06/02

PURCHASE ORDER NO.

FROM 10/06 02
TO 10/06 02

FUEL OIL X TNTA FUEL USED HRS/LITRES
FROM 9/12 02
TO 10/06 02

REMARKS - NO. OF PASS - FREIGHT
pd. Cheque #063

CARRIAGE SUBJECT TO TERMS OF PUBLISHED TARIFF.
TARIFF AVAILABLE TO PUBLIC VIEW AT TRANS NORTH OFFICE.

FLIGHT REPORT - CUSTOMER'S COPY
<table>
<thead>
<tr>
<th>QTY</th>
<th>ASSAY</th>
<th>PRICE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>GROUP 1DA (10 gm) @</td>
<td>11.50</td>
<td>161.00</td>
</tr>
<tr>
<td>14</td>
<td>ADDITIONAL BE & SN @</td>
<td>3.00</td>
<td>42.00</td>
</tr>
<tr>
<td>14</td>
<td>R150 - ROCK @</td>
<td>5.00</td>
<td>70.00</td>
</tr>
</tbody>
</table>

GST Taxable
7.00% GST

CAD $ 273.00
19.11

Total: CAD $ 292.11

Samples submitted by Jim Dodge

Please pay last amount shown. Return one copy of this invoice with payment.

TERMS: Net two weeks. 1.5% per month charged on overdue accounts.
REFERENCES

Bond, J.D., Surficial Geology and Till Geochemistry of Weasel Lake Map Area (105G-13), East-Central Yukon in Yukon Exploration and Geology 2000, Yukon, Indian and Northern Affairs Canada, p. 73-96.

ABRIDGED RESUME
JAMES S. DODGE, P.ENG.

Education:

B.S. Mining Engineering, 1941, Missouri School of Mines, Rolla, Missouri, U.S.A.
M.S. Economic Geology, 1951, Leland Stanford University, Palo Alto, California, U.S.A.
Field Geology Mapping, 1940, Princeton University, Red Lodge, Montana, U.S.A.
African Ore Deposits, 1952, Albert Ludwigs Universitaet, Freiburg im Breisgau, Germany

Experience:

Miner - 1939 South London, Colorado; 1941 Hirst Chichagof, Alaska
Mine Geologist – 1941-1943, under Reno Sales, Anaconda Copper, Butte, Montana
Mine Operator – 1945 U.S. Army Engineer Lieutenant, air field construction, Kyushu, Japan
Deputy Chief, Mining/Geology – 1946-1949 SCAP Occupation, Tokyo, Japan
Deputy Chief, Mining/Geology – 1955 SCAP Occupation, Tokyo, Japan
Prospector – 1958-1959 Southern Rhodesia/Northern Rhodesia – emeralds
Geologist – 1959 Guest Gov’t. France, Uranium deposits, Massif Central, France
Consultant – 1960-1964 Mitsui Mining/Smelting – Porphyry Coppers Peru, Chile, U.S.A.
Consultant – 1967 Thayer Lindsay (B.C.); ESSO staked Eaglehead (B.C.); Eisenman Chemical Nevada discovered largest No.Am. barite deposit; Glidden Co. barite New Mexico; DIAND Whitehorse copper; unconformity uranium, Sask.; magnetite Southern California; beach sand gold, Yagataga, Alaska
Atlas Exploration, copper Chile; bedding sands, Manitoba; expanded shale, Japan; TEA barite Yukon; minette pipes, Dawson, Yukon; Tarvisio, Italy Pb/Zn; Morocco/Algeria 1952 Pb/Zn.

Affiliation:

Senior Fellow, Society of Economic Geologists
Member, Association of Professional Engineers, Yukon Territory
Greisen Sample Preparation and Analysis

Handpicked rock samples from distal (fluorspar-poor) and core (fluorspar-rich) areas of the greisen, as well as the sulfides-fluorspar veinlets of the greisen boulder, were bagged and shipped to ACME Laboratories in Vancouver, British Columbia for assaying. A 0.5 gm sample, sieved to -150 mesh, was digested by aqua regia and assayed by ICP-ES. Additionally, separate rock samples from the greisen and from other bedrock sites in the project area, were sent to International Plasma via Northern Analytical Laboratories for similar preparation and analysis by ICP.

Greisen Sample Assay Results

Attached (Appendix) are four geochemical analysis certificates on greisen rock samples. Two certificates are by ACME Laboratories under File Nos. A102271 and A103489. Two certificates are by Northern Analytical Laboratories/International Plasma Laboratories under WO#00200 and WO#00221.

Of particular interest are (1) the anomalously high suite of copper, lead, zinc, and silver exposed as bands flanking the fluorspar veinlets in a greisen boulder. The following assays were obtained from Sample #118655 of ACME File No. A103489: 3263 ppm copper, 6877 ppm lead, 3478 ppm zinc, 2.3 oz silver, and 840 ppm boron - and (2) the quite anomalously high values for boron in a cluster of fluorspar-rich (high Ca %) greisen samples.

The cluster of high boron assays from a group of nine samples (below) taken near the center of the ‘upper’ greisen indicates that the tourmaline and fluorspar (note high Ca in assays) are concomitant – even in the above veinlet Sample #118655.

<table>
<thead>
<tr>
<th>File Number</th>
<th>Sample Number</th>
<th>Boron ppm</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A103489</td>
<td>118655</td>
<td>840</td>
<td>Boulder vein</td>
</tr>
<tr>
<td>A103489</td>
<td>118660</td>
<td>149</td>
<td>Lower greisen</td>
</tr>
<tr>
<td>A103489</td>
<td>118659</td>
<td>36</td>
<td>Upper greisen</td>
</tr>
<tr>
<td>A103489</td>
<td>118661</td>
<td>745</td>
<td>Upper greisen</td>
</tr>
<tr>
<td>A103489</td>
<td>118662</td>
<td>251</td>
<td>Upper greisen</td>
</tr>
<tr>
<td>A103489</td>
<td>118663</td>
<td>268</td>
<td>Upper greisen</td>
</tr>
<tr>
<td>A103489</td>
<td>118664</td>
<td>309</td>
<td>Upper greisen</td>
</tr>
<tr>
<td>A102271</td>
<td>122630</td>
<td>516</td>
<td>Upper greisen</td>
</tr>
<tr>
<td>A102271</td>
<td>122631</td>
<td>108</td>
<td>Upper greisen</td>
</tr>
</tbody>
</table>

Correlation between Ca % and B ppm indicates that in samples with a high concentration of fluorspar (CaF2) there is a corresponding high in boron (as in tourmaline), and conversely where fluorspar is sparse or absent, noticeably in chalcedonic silica flooding near borders of the greisen, boron content is very low if detectable.
GEOCHEMICAL ANALYSIS CERTIFICATE

Dodge, Jim File # A202072
Box 31013 MPO, Whitehorse YT Y1A 5P7 Submitted by: Jim Dodge

SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga Be Sn ppm ppm

S1 4 .4 1.2 <1 .1 .2 .1 4 .03 <.5 <.1 <.5 <.1 3 <.1 <.1 <.1 1 .15 <.001 <1 2.4 <.01 4 <.001 1 .01 .683 01 <1 .1 <1 .05 <1 <.1 .02
C 118665 24.6 4.1 25.9 4 .1 2.2 .3 37 .56 22.8 5 14.1 4.2 13 <1 1.3 7 .4 3 3 5.9 1 7.6 1 6.0 .013 48 <.001 <1 .13 .005 11 .1 .01 6 .016 1 .2 .02
C 118666 8.6 5.7 23.6 6 .2 3.0 .4 63 .65 22.2 5 24.1 6 15.8 21 <1 1.1 1.1 1 2 <.001 6 .0 .036 9 18.2 <1 100 <.002 4 .9 .012 61 .8 <1 .7 .4 .10 5 .5 .06 1 3 .1 .02
C 118667 1.8 10.1 29.1 60 <.1 3.9 1.2 83 .66 8.0 3.5 2.6 17.4 7 <1 1.5 4 5 <.1 .05 9 .015 27 46.2 <1 59 <.001 1 .5 .004 23 <1 1.4 <1 .7 .2 .05 1 <1 .5 .02
C 118668 7.4 14.1 10.2 16 <1 .1 .2 2.7 .8 113 .96 3.4 7.6 .5 22.1 6 <1 1.1 .3 2 <.001 1.6 058 14 13.1 .04 115 <.002 1 .4 .032 .16 5.2 <1 1.2 <1 .1 .05 3 .4 .2 4.4
C 118669 2.0 4.0 16.9 7 .1 1.9 2.0 40 .61 35.9 1.3 21.9 7.3 37 <1 1.6 .5 6 3.3 1 17 9 58.4 .08 102 <.004 45 2.03 <1 1.4 01 <1 1.4 .7 02 8 9 .4 3.3
C 118670 3.4 2.8 9.8 3 <1 2.9 1.2 33 .48 9.5 1.3 3.2 4 8 61 <1 1.9 4 4 7.2 22 .019 8 20.3 .06 80 .004 222 1.54 <.038 .8 9.5 <1 4.1 1.6 <.05 5 .5 .06 1 3 .4 3.31
C 118671 1.2 10.3 12.5 18 .1 2.0 1.2 1.3 116 .96 1.9 2.0 <1 19.2 4 <1 1.1 1.1 8 <1 6 .22 065 20 33.2 .10 24 .001 6 .5 037 15 1.8 <1 1.1 1.07 3 .3 .7 4.3
C 118672 3.4 2.8 9.1 11 .1 2.7 2.2 32 .51 26.0 .8 31.2 10.6 5 <1 1.1 1.8 2 <1.027 16 21.1 .02 40 .001 3 .4 .003 .25 7.7 <1 1.3 <1 .2 <1 0.8 2 2 .3 1.2 0
RE C 118673 3.3 2.7 9.1 1 1.1 3.3 1 31 .53 26.1 .8 32.7 10.2 5 <1 1.1 2.8 <1 1.3 .028 12 21.1 2 16 21.1 .02 39 .001 1 .4 .002 .24 8.1 <1 1.3 <1 .2 <1 .6 0.6 .6 2.4
C 118673 1.4 8.7 10.3 19 .1 1.8 1.4 150 .85 2.0 2.8 .9 19.1 4 <1 1.1 .5 6 .26 059 24 29.0 9 19 .001 1 .52 .038 .14 1.4 01 1.3 1.0 <1 0.5 2 <1 .5 6.2 0
C 118674 3.2 8.8 11.6 18 .1 2.6 1.3 149 .94 2.6 2.5 1.4 17.9 4 <1 1.1 .7 <1 6 .22 057 18 13.7 9 24 .001 2 .5 .031 .15 5.3 <1 1.0 1.0 <1 0.5 3 <1 4.6 2.8
C 118675 2.5 3.5 9.1 1 1.1 2.0 2 .2 21 .71 29.7 .3 44.6 2.3 10 <1 1.2 3 3 <1 05 13 4 49 71 .6 64 <1 1 3 .17 .002 .15 2 1.0 1.7 <1 3 <1 .2 <1 2.1 4
C 118676 3.1 4.2 14.4 8 .1 3.4 .3 49 .51 12.6 1.1 3.2 9.5 7 14 <1 1.7 5 6 1.6 033 7 21.5 .07 115 .002 4 1.78 .01 1.0 09 <1 5.9 <1 1.0 <1 2 <1 6 .4 .4 4.4
C 118677 44.7 18.6 90.0 69 .3 3.3 1.1 96 .66 13.7 11.7 13 6.6 4 <1 1.6 4 6 <1 1.6 018 2 71.2 .09 60 .001 1 .4 .002 .15 3.0 <1 .6 <1 01 2 <1 7 .4 .1 1.1
C 118678 3.1 3.7 8.4 4 .1 3.4 .2 35 .73 43.0 5 .1 72.6 7.7 23 <1 1.2 <1.4 <1 .2 2 <1.017 4 22.0 .02 355 .001 6 .6 .004 .33 8.6 <1 1.5 <1 .2 <1 2 <1 .4 1.0
STANDARD DS3 9.2 122.7 31.6 157 .3 8 38.0 12 1.7 288 31.2 1.7 21.8 4.1 30 6.0 5.5 5.6 79 56 .087 18 18.18 61.1 142 .099 3 1.8 .036 .17 3.5 2.2 3.9 1.2 <1 5 2.5 6.7 4

GROUP 10A - 10.0 GM SAMPLE LEACHED WITH 60 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 200 ML, ANALYZED BY ICP-MS.
UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.
SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Rejects and 'RRE' are Reject Rejects.

DATE RECEIVED: JUL 5 2002 DATE REPORT MAILED: July 15 02 SIGNED BY: D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
| SAMPLE# | Mo | Cu | Pb | Zn | Ag | Ni | Co | Mn | Fe | As | U | Th | Sr | Cd | Sb | Bi | V | Ca | P | La | Cr | Mg | Ba | Ti | B | Al | Na | K | W | Au* | Hg |
|---------|
| C 122622 | 3 123 390 46 <.3 | 7 1 36 .72 67 | <8 <2 | 2 | 6 | .75 | <3 <3 | 4 | <.01 | .005 | 1 | 95 | .01 | 110 | <10 | <3 | .16 | .02 | .21 | 3 | 35.9 | <10 |
| C 122623 | 5 270 1358 .76 | 3 1 33 .89 | 75 | <8 <2 | 3 | 7 | 1.2 | <3 <3 | 2 | <.01 | .005 | 1 | 67 | .01 | 81 | <10 | <3 | .22 | .03 | .32 | 3 | 53.6 | 15 |
| C 122624 | 4 10 12 51 <.3 | 7 1 202 | 1.04 | 3 | 10 <2 | 11 | 3 | .5 | <3 <3 | 4 | .08 | .048 | 5 | 64 | .07 | 28 | <10 | <3 | .91 | .02 | .42 | <2 | 1.3 | <10 |
| C 122625 | 6 8 68 5 <.3 | 3 | 1 | 36 | .69 | 25 | <8 <2 | 1 | 9 | .5 | <3 <3 | 2 | .16 | .103 | 6 | 79 | .01 | 78 | <10 | .39 | .01 | .42 | 2 | 23.5 | <10 |
| C 122626 | 4 22 109 9 <.3 | 7 | 1 | 83 | .58 | 8 | <8 <2 | 7 | 4 | .5 | <3 <3 | 3 | .04 | .016 | 5 | 99 | .02 | 70 | <10 | <3 | .48 | .01 | .46 | 2 | 5.5 | <10 |

RE C 122626

<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Mo</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>Ni</th>
<th>Co</th>
<th>Mn</th>
<th>Fe</th>
<th>As</th>
<th>U</th>
<th>Th</th>
<th>Sr</th>
<th>Cd</th>
<th>Sb</th>
<th>Bi</th>
<th>V</th>
<th>Ca</th>
<th>P</th>
<th>La</th>
<th>Cr</th>
<th>Mg</th>
<th>Ba</th>
<th>Ti</th>
<th>B</th>
<th>Al</th>
<th>Na</th>
<th>K</th>
<th>W</th>
<th>Au*</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 122627</td>
<td>7 3</td>
<td>7</td>
<td>7</td>
<td><.3</td>
<td>15</td>
<td>1</td>
<td>90</td>
<td>.43</td>
<td>4</td>
<td><8 <2</td>
<td>10</td>
<td>20</td>
<td><5</td>
<td><3</td>
<td>8</td>
<td>3.26</td>
<td>0.43</td>
<td>13</td>
<td>50</td>
<td>.15</td>
<td>46</td>
<td><10</td>
<td>12.2</td>
<td>0.22</td>
<td>.15</td>
<td>1.56</td>
<td>2</td>
<td>1.2</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 122628</td>
<td>8</td>
<td>7</td>
<td>40</td>
<td><.3</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>43</td>
<td>1.68</td>
<td>186</td>
<td><8 <2</td>
<td>6</td>
<td>45</td>
<td><5</td>
<td><3</td>
<td>5</td>
<td>1.19</td>
<td>0.23</td>
<td>15</td>
<td>82</td>
<td>.05</td>
<td>160</td>
<td><10</td>
<td>.51</td>
<td>.01</td>
<td>.86</td>
<td>3</td>
<td>138.2</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 122629</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td><.3</td>
<td>2</td>
<td>3</td>
<td><1</td>
<td>35</td>
<td>4.7</td>
<td>10</td>
<td><8 <2</td>
<td>4</td>
<td>11</td>
<td><5</td>
<td><3</td>
<td>3</td>
<td>.73</td>
<td>0.07</td>
<td>9</td>
<td>62</td>
<td>.04</td>
<td>64</td>
<td><10</td>
<td>4.4</td>
<td>.01</td>
<td>.64</td>
<td>2</td>
<td>4.0</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 122630</td>
<td>8</td>
<td>7</td>
<td>14</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>57</td>
<td>.40</td>
<td>11</td>
<td><8 <2</td>
<td>7</td>
<td>40</td>
<td><5</td>
<td><3</td>
<td>6</td>
<td>3.26</td>
<td>0.019</td>
<td>6</td>
<td>74</td>
<td>.05</td>
<td>46</td>
<td><10</td>
<td>516.1</td>
<td>6.02</td>
<td>.05</td>
<td>.92</td>
<td>2</td>
<td>2.4</td>
<td><10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C 122631

<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Mo</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>Ni</th>
<th>Co</th>
<th>Mn</th>
<th>Fe</th>
<th>As</th>
<th>U</th>
<th>Th</th>
<th>Sr</th>
<th>Cd</th>
<th>Sb</th>
<th>Bi</th>
<th>V</th>
<th>Ca</th>
<th>P</th>
<th>La</th>
<th>Cr</th>
<th>Mg</th>
<th>Ba</th>
<th>Ti</th>
<th>B</th>
<th>Al</th>
<th>Na</th>
<th>K</th>
<th>W</th>
<th>Au*</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 122632</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td><.3</td>
<td>3</td>
<td>1</td>
<td>67</td>
<td>.59</td>
<td>15</td>
<td><8 <2</td>
<td>9</td>
<td>25</td>
<td><5</td>
<td><3</td>
<td>5</td>
<td>5.72</td>
<td>0.029</td>
<td>9</td>
<td>67</td>
<td>.07</td>
<td>77</td>
<td><10</td>
<td>108</td>
<td>2.84</td>
<td>.02</td>
<td>1.62</td>
<td>3</td>
<td>1.3</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C 122633</td>
<td>7</td>
<td>650</td>
<td>44</td>
<td>6579</td>
<td>1.1</td>
<td>83</td>
<td>29</td>
<td>3108</td>
<td>9.13</td>
<td>61</td>
<td><8 <2</td>
<td>4</td>
<td>100</td>
<td>17.4</td>
<td><3</td>
<td>3</td>
<td>26</td>
<td>1.0</td>
<td>0.060</td>
<td>5</td>
<td>70</td>
<td>.12</td>
<td>90</td>
<td><10</td>
<td>.37</td>
<td>.03</td>
<td>.89</td>
<td><2</td>
<td>675.7</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>C 122634</td>
<td>9</td>
<td>129</td>
<td>38</td>
<td>146</td>
<td>.3</td>
<td>3</td>
<td>1</td>
<td>761</td>
<td>2.97</td>
<td>29</td>
<td><8 <2</td>
<td>4</td>
<td>32</td>
<td>5.4</td>
<td>4</td>
<td>5</td>
<td>73</td>
<td>.52</td>
<td>0.02</td>
<td>20</td>
<td>185</td>
<td>.57</td>
<td>150</td>
<td><10</td>
<td>.16</td>
<td>.02</td>
<td>.16</td>
<td>4</td>
<td>21.8</td>
<td>1005</td>
<td></td>
</tr>
</tbody>
</table>

STANDARD DS5/C3

GEOCHEMICAL ANALYSIS CERTIFICATE

Dodge, Jim
File # A102271
Box 3101 MPD, Whitehorse Y1A 5P7
Submitted by: Jim Dodge

UPPER LIMITS
- AC, AU, IIC, U = 100 PPM
- MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM
- CU, PB, ZN, NI, MN, AS, V, LA, Cr = 10,000 PPM.

GROUP 1D
- 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCl-1HNO3-1H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

SAMPLE TYPE
ROCK R150 60C
AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gin)

HG GROUP 1C
- ANALYSIS BY FLAMELESS AA FROM A.R. LEACH. Samples beginning 'RE' are Reverses, and 'RRE' are Reject Reverses.

DATA RECEIVED: JUL 19 2001
DATE REPORT MAILED: Aug 2/01
SIGNED BY: C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
ACME ANALYTICAL LABORATORIES LTD.
ISO 9002 Accredited Co.
P.O. BOX 703
WHITEHOUSE YUKON Y1A 2P7
PHONE (604) 253-3158 FAX (604) 253-1716

GEOLOCAL ANALYSIS CERTIFICATE
Dodge, Jim File # A103489

SAMPLE No.
Sample Weight:
Sample Description:
Sample Location:
Sample Date:
Sample Type:
Sample Notes:

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Cu</th>
<th>Ni</th>
<th>Co</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Zn</th>
<th>Pb</th>
<th>Al</th>
<th>Mo</th>
<th>Bi</th>
<th>As</th>
<th>Se</th>
<th>V</th>
<th>W</th>
<th>Mo</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Zn</th>
<th>Pb</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>11</td>
<td>40</td>
<td>38</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>27</td>
<td>32</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

DATE RECEIVED: Oct 3, 2001
DATE REPORT MAILED: Oct 15/01
SIGNED BY: C. TOYE, C. LEONG, C. WANG; CERTIFIED B.C. ASSAYERS

GROUP 150: 30.00 Gram Sample Leached with 180 mL 2-2-2 HCl-HNO₃-H₂O At 95° C FOR ONE HOUR, DILUTED TO 200 ML, ANALYSED BY ICPEES & MS.

UPPER LIMITS: Au, Ag, As, Cu, Hg, In, Sn, Se, Te, Tl, Ga, Sn = 100 PPM; Co, Cr, Ni, Zn, Bi, Th, U, B = 2,000 PPM; Cu, Pb, Zn, Ni, Mn, As, V, La, Cr = 10,000 PPM.

SAMPLE TYPE: Rock 5000 GC
Samples beginning ‘SC’ are Residue and ‘RRE’ are Reject Residue.

NOTES:
- All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.
- Data / FA
GEOLOGY

FLO 1-4 MINERAL CLAIMS
YUKON TERRITORY

NTS 1090-12
WATSON LAKE MINING DISTRICT

Legend

- Auger gneiss
- Gneiss gneiss
- Trenches

Legend:

- Samples
- Claim posts
- Hedged

Scale

1:1000
1=10.5 m

James S. Dodge
Professional Engineer, Yukon
25 October 2010