GEOLOGICAL AND GEOCHEMICAL REPORT ON THE

ENCHANTMENT CREEK

INTRUSION-RELATED GOLD TARGET, WEST CENTRAL YUKON TERRITORY

DAWSON MINING DISTRICT

N.T.S. 094072
115N/16

LATITUDE: 63°55' N LONGITUDE: 140°25' W

CLAIMS

LOT 1-10
JOJO 1-10
LOGO 1-35

FOR:

PROSPECTOR INTERNATIONAL RESOURCES INC.
530-800 West Pender St.
Vancouver, British Columbia
V6C 2V6

BY:

Bart J. Jaworski, G.I.T.
Brian Meyer, P.Geol.

January 2000
GEOLOGICAL AND GEOCHEMICAL REPORT
ON THE
ENCHANTMENT CREEK
INTRUSION-RELATED GOLD TARGET,
WEST CENTRAL YUKON TERRITORY

DAWSON MINING DISTRICT

N.T.S.
115N/16

LATITUDE: 63°55' N LONGITUDE: 140°25' W

CLAIMS
LOTO 1-10
JOJO 1-10
LOGO 1-35

FOR:
PROSPECTOR INTERNATIONAL RESOURCES INC.
530-800 West Pender St.
Vancouver, British Columbia
V6C 2V6

BY:
Bart J. Jaworski, G.I.T.
Brian Meyer, P.Geol.

January 2000
This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mining Act and is allowed as representation work in the amount of $3000.

Regional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.
SUMMARY

An extensive research effort focussed on finding 'Pogo-style' and other intrusion related gold targets within the western portion of the Yukon Tanana Terrane of the Yukon Territory was conducted during the period February to March, 1999. The study resulted in the staking of 16 claim blocks within six target areas located in west central Yukon. The LOTO, JOJO and LOGO claims, located in the Enchantment Creek area approximately 80 kilometers west-southwest of Dawson City, comprise one of the target areas.

Claims selection was based on regional similarities to 'Pogo-style' and other intrusion-related gold mineralization using a combination of the following primary criteria:

- Regional stream sediment sampling values anomalous in Au, As, W, Sn, Sb, Hg, and Mo (Bi, Te not available in database).
- Reconnaissance rock geochemistry with multi-element anomalous values.
- Mid-late Cretaceous intrusives, preferably felsic in composition, with coincident magnetic low anomalies, intruding schist and gneiss of the Yukon Tanana Terrane.
- Associated northwesterly and northeasterly trending structures.

The target area is partially drained by seven (7) geochemically anomalous creeks (government data) with silt samples weakly to strongly anomalous in Au (up to 27 ppb, 917 ppb), As, Sb, and Ag. The creeks drain the Mount Hart area, which is underlain by upper Cretaceous Carmacks volcanics, as well as, a late Cretaceous granodiorite pluton that intrudes Devonian to Mississippian schists of the Yukon Tanana Terrane. The target area contains rock geochemistry anomalous in As, Hg, and Mo.

The claims cover geochemically anomalous areas with coincident magnetic low anomalies adjacent to magnetic high anomalies.

The target area occurs within the Sixty Mile active placer district. All three surrounding creeks that drain the target area, contain active placer mining claims. Several significant quartz vein occurrences exist 2 to 10 kilometers west of the target area. These include the Butler, Connaught and Lerner occurrences / past producers. The Enchantment Creek target area has, to date, received limited systematic hard rock exploration.

The Company's 1999 fieldwork identified an area, 1-2 square kilometres, drained by 6 anomalous creeks, 4 of which were sampled by the Company and contained anomalous Au (up to 167 ppb), As, Bi, Te, Sb, Hg, Mo, Ag, Pb and Cu. Reconnaissance rock samples collected adjacent to the area contain elevated W. Fluid inclusion analysis conducted on a float sample from the eastern portion of the claims, was shown to contain abundant vapour-rich fluid inclusions similar to inclusions found in intrusive-related deposits, carbonic inclusions and less common saline fluid inclusions.
TABLE OF CONTENTS

Summary i

(1) Introduction 1

(2) Intrusion-Related Gold Mineralization 1

(3) Profile of Pogo Deposit
 (3.1) Property Location, Access and Physiography 4
 (3.2) Area History 4
 (3.3) Regional Geology 5
 (3.4) Local Geology 5
 (3.5) Structure 6
 (3.6) Alteration 6
 (3.7) Geochemistry 6
 (3.8) Aeromagnetic Signature 6

(4) 1999 Exploration Program
 (4.1) Scope of Program 6
 (4.2) Sampling 6
 (4.3) Analytical Procedures 7
 (4.4) Geochemical Evaluation 7

(5) Enchantment Creek Property
 (5.1) Location, Access and Physiography 8
 (5.2) Property Description 8
 (5.3) Area History 10
 (5.4) Area Activity 10
 (5.5) Regional Geology 11
 (5.6) Local Geology 11
 (5.7) Regional Geochemical Thresholds 12
 (5.8) Reconnaissance Rock Geochemistry 12
 (5.9) LOTO, LOGO and JOJO Claims
 (5.9.1) Property Geology 16
 (5.9.2) Regional Silt Geochemistry 16
 (5.9.3) Aeromagnetic Signature 16
 (5.9.4) 1999 Exploration Results 16

(6) Conclusions 19

(7) Recommendations 20

(8) Statement of Work 21
(9) Statement of Qualifications (Bart J. Jaworski, G.I.T.) 22
(10) Statement of Qualifications (Brian Meyer, P.Geol.) 23
(11) References 24

TABLES

Table 1: Thresholds for elevated values in soils 7
Table 2: Thresholds for elevated values in rock 8
Table 3: Claim Information 8
Table 4: Claims in Sixty Mile Area. 10
Table 5: Regional Geochemistry of the Stewart Map Sheet 12
Table 6: Silt Geochemistry of the Enchantment Creek Area 16
Table 7a: 1999 Silt Geochemistry of the Enchantment Creek Property 18
Table 7b: 1999 Soil Geochemistry of the Enchantment Creek Property 19
Table 7c: 1999 Rock Geochemistry of the Enchantment Creek Property 19
Table 8: Budget for Recommended Fieldwork 20

FIGURES

Figure 1. Map of Tintina Gold Belt 2
Figure 2. Location Map 3
Figure 3. Regional Silt Geochemistry of Enchantment Creek Area 9
Figure 4a. Reconnaissance Rock Geochemistry (As) of Stewart Map Sheet 115N W ½ 13
Figure 4b. Reconnaissance Rock Geochemistry (Hg) of Stewart Map Sheet 115N W ½ 14
Figure 4c. Reconnaissance Rock Geochemistry (Mo) of Stewart Map Sheet 115N W ½ 15
PHOTOGRAPHS

Photograph looking east towards 1-2 km² anomalous area and anomalous Creek containing 53.3 ppb Au (sample 99SBJ079).

APPENDICIES

Certificate of Analyses (Silt Samples) Appendix A
Certificate of Analyses (Soil Samples) Appendix B
Certificate of Analyses (Rock Samples) Appendix C
Fluid Inclusion Analysis Appendix D
(1) INTRODUCTION

The Pogo Deposit, located in the Goodpaster District, East-Central Alaska, is a significant new gold discovery containing a geological resource of 9.98 million tons at an average grade of 0.52 oz/ton (The Northern Miner, March 15, 1999). The deposit appears to be, at least in part, genetically related to an arcuate belt of rocks known as the ‘Tintina Gold Belt’ (see Figure 1), which extends from southeastern Alaska to southwestern Yukon Territory, and contains the Donlin Creek, Fort Knox, Brewery Creek, and other deposits.

The discovery is of significance as the area was relatively unexplored with only limited placer mining and/or exploration conducted prior to the discovery. The deposit is spatially associated with the mid-Cretaceous Goodpaster batholith and occurs within the Yukon Tanana Terrane, which underlies much of east central Alaska, as well as, central and western Yukon. Considering that west-central Yukon contains numerous mid-Cretaceous plutons that intrude Yukon Tanana Terrane, it is not unreasonable to expect ‘Pogo-style’ mineralization on the Canadian side of the border.

The staking rush that ensued in Alaska following the initial discovery of the Pogo deposit has begun to spread to the Yukon. In addition to favourable geology, there exists considerable cost advantages to conducting mineral exploration in the Yukon versus Alaska. These include: (1) the currency exchange rate, (2) the newly introduced 22% rebate on exploration by the Yukon government, (3) relative ease of raising flow-through funds possible only with Canadian projects, and (4) government-industry cooperatives with organizations such as NATMAP and NATGAM which contributed to companies, a percentage of the cost of geophysical work in the southwestern Yukon region in 1999.

An extensive research effort focussed on finding ‘Pogo-style’ and other intrusion related gold targets within the western portion of the Yukon Tanana Terrane of the Yukon Territory was conducted during the period February to March, 1999. The study resulted in staking 16 claim blocks within six target areas in west-central Yukon (see Figure 2). The LOTO, JOJO and LOGO claims, located in the Enchantment Creek area, comprise one of the target areas (see Figure 2).

As part of their overall exploration program covering all six (6) target areas, Prospector International conducted a first-pass exploration program on the Enchantment Creek property on August 26th, 1999. The program consisted of 3 mandays and included 7 silt samples, 21 soil samples and 2 rock samples. The following report summarizes pertinent features of the Pogo deposit and other intrusion related Au mineralization, describes the characteristics of the Enchantment Creek target area and summarizes the results of the Company’s 1999 field season.

(2) INTRUSION-RELATED GOLD MINERALIZATION

The Pogo Deposit appears to represent a deep-seated manifestation of the ‘plutonic-related gold’ deposit type, which includes Fort Knox, True North, Brewery Creek and Dublin Gulch deposits (Smith, Cordilleran Abstract, 1999). Plutonic-related gold mineralization, or, ‘intrusion-related’ as per more current nomenclature, represents a suite
PRIME PROPERTIES

TINTINA GOLD BELT - "WIDE SEARCH"

ALASKA

- Ft. Knox True North (7.2 Moz)
- Brewery Creek (+1.3 Moz)
- Dublin Gulch (+2 Moz)
- Pogo (+5.2 Moz)

YUKON

- Golden Zone
- Donlin Creek (+6.7 Moz)

EXPLANATION

- Au Occurrences in or near Mid K Intrusions (~85-110 Ma)
- Au Occurrences in or near Late K igneous rocks (~66-73 ma)
- Deposits with +0.5 Million ounces of Drill-Indicated Resource/Reserves

Figure 1
Figure 2. Location Map
of mineralization encountered throughout the Tintina Gold Belt (see Figure 1). The belt, which extends from southwestern Alaska to east central Yukon Territory, is estimated to contain in excess of 39 million ounces of Au in current resources (The Northern Miner, November 30, 1999) with past production totaling 29.9 million ounces.

Intrusion-related gold mineralization is defined by its distinct association with reduced, I-type, calc-alkaline and/or alkaline intrusions (McCoy, Cordilleran Roundup Abstract, 1999). These intrusions are part of two subduction-related magmatic arcs: one that formed between 105-85 Ma in Interior Alaska and the Yukon, and the other between 73 and 67 Ma in southwest Alaska (McCoy Abstract, 1999). The types, sizes, and grades of gold deposits depends on the (1) proximity and size of the gold source, i.e. porphyritic granitoid bodies, (2) physio-chemical controls on hydrothermal fluids and cooling rock bodies (e.g. pressure and temperature gradients controlled by emplacement depth) and (3) local lithologies and structures (McCoy, Cordilleran Roundup, Abstract, 1999).

Gold deposited at high (>400°C) temperatures is only preserved or originally present in the more deeply emplaced gold deposits in Interior Alaska and the Yukon (McCoy, Cordilleran Abstract, 1999). This mineralization shows evidence of early, very low-sulfidation state with characteristic mineral assemblages containing pyrrhotite±pyrite, arsenopyrite-loellingite, native Bi, and low-S Bi-Te minerals.

(3) PROFILE OF THE POGO DEPOSIT

As the Pogo-deposit is a relatively new discovery, information pertaining to its characteristics is limited. A model for the deposit does not currently exist, at least in the public domain. The information contained herein was collected from The Northern Miner (articles dated August 3, November 30, 1998 and March 15, 1999), as well as, from an abstract from the Cordilleran Roundup by Moira Smith, Project Geologist at Teck Corp. As more information pertaining to the deposit becomes available, exploration parameters are subject to modification.

(3.1) Property Location, Access, and Physiography

The Pogo Deposit occurs in the far-northwestern corner of the Stoneboy property, 90 miles east-southeast of Fairbanks and 40 miles north of the town of Delta Junction in the Goodpaster district of east-central Alaska (see Figure 1 and 2). The property is accessible by helicopter and small fixed-wing aircraft, with road access limited to winter months.

The terrain consists of rolling, tundra-covered and lightly timbered hills, with a vertical relief of about 3,000 feet (915 meters). The property boundaries enclose approximately 72 square miles (18,648 ha).

(3.2) Area History

Little placer mining has occurred in the area, and until the discovery of the Pogo deposit, limited systematic exploration work had been undertaken.
In 1981, the Alaskan subsidiary of Watts Griffis & McQuat (WGM) conducted regional stream sediment-sampling and found that Pogo Creek, and to a lesser extent, Liese Creek, returned weak Au (35 ppb) and multi-element anomalies. Follow-up work revealed some gold-mineralized quartz float. Working on behalf of Sumitomo Metals, WGM returned to the area 10 years later, in 1991, and carried out a grid soil-sampling program that identified a 1 sq-mile gold anomaly with greater than 100 ppb Au. In 1994, three holes were drilled, followed by 13 more the next year. To date, 176 holes have intersected the Liese zone.

Teck Corp., which signed a joint venture deal with Sumitomo in late 1997, has carried out geophysical work on the Liese zone, however, geochemical sampling has been found to be the most effective exploration tool. Regional reconnaissance work has identified an 8-mile-long trend of anomalous gold in rocks and soils, extending to the southeast. In particular, quartz boulder trains, found in four separate area, have yielded multi-ounce gold values, including 13- and 28-oz. grab samples from Tan Creek Ridge and 3 oz. samples from Sonora Creek Ridge.

(3.3) Regional Geology

The deposit is underlain by highly deformed, amphibole-grade paragniess and minor orthogneiss of the late Proterozoic to mid-Paleozoic Yukon-Tanana terrane. Both sedimentary and volcanic sequences comprise the protolith of the gneisses.

(3.4) Local Geology

The Pogo deposit consists of two or more, tabular, gently dipping subparallel quartz bodies hosted by Proterozoic to early Paleozoic gneisses of the Yukon Tanana Terrane. It occurs approximately 1 mile (1.6 kilometers) south of the southern margin of the mid-Cretaceous Goodpaster Batholith.

The deposit is divided into an upper zone and a lower zone. The upper is referred to as the Main Liese, or L1, whereas, the lower, as the Lower Liese or L2. The two zones are spaced about 500 feet (152 meters) apart. The bodies range in thickness from 1 to 70 feet (0.30 meters to 21.3 meters), and averaging 20 feet (6.1 meters) thick. The Main zone is 4,500 feet (1372 meters) long and 2,000 feet (610 meters) wide. A possible third zone has been intersected by two deep drill holes 400 feet (122 meters) below the Lower Liese. A quartz body occurs above the L1, however it is discontinuous.

A distinct spatial association with mid-Cretaceous intrusions, combined with a lithophile (Sn, W, Mo) metal signature suggest that gold mineralization within the deposit was derived from fluids that came from the mid-Cretaceous Goodpaster Batholith granitoid bodies.

Quartz veins contain 3% ore minerals consisting of pyrite, pyrrhotite, loellingite (FeAs₂), and arsenopyrite, with lesser amounts of chalcopyrite, bismuthinite, maldonite (Au₂Bi), native bismuth and native gold. The gold occurs uniformly fine-grained.
(3.5) Structure

Northwest-trending structures that parallel the Tintina and Denali fault systems, as well as, northeast-trending structures are present on the property. The Pogo is divided along a flexure point, where half the deposit dips to the northwest and the other half dips to the north.

(3.6) Alteration

Early biotite and later quartz-sericite stockwork and sericite-dolomite alteration is spatially associated with the Liese Zone, suggesting both vein and replacement types of mineralization. This alteration indicates the deposit was emplaced fairly deep in the crust and under very high temperatures.

(3.7) Geochemistry

Strong correlation exists between Au and Bi, and weaker correlation exists between Au and other elements such as Te, As, W, Sn, Mo, (Hg, Sb).

(3.8) Aeromagnetic Signature

Regional aeromagnetic and geologic surveys have revealed linear magnetic low anomalies, which coincide with a series of small plutons. The Pogo deposit occurs along one of these linear magmatic features, known as ‘the Pogo Trend’. A second linear feature, defined by similar parameters has been interpreted to the south of Pogo and is know as the “Big Swede Trend”.

Local aeromagnetic signature consists of a magnetic low with an adjacent magnetic high. It is interpreted that the magnetic low is a result of low oxidation state plutons that have low magnetite abundance. The magnetic high is interpreted to be a result of a pyrrhotite-bearing hornfels within the aureole of the pluton.

(4) 1999 EXPLORATION PROGRAM

(4.1) Scope of Program

The 1999 Enchantment Creek exploration program, consisting of 3 mandays, was conducted by Bart Jaworski, G.I.T., Brian Meyer, P.Geol. and Michael Glynn, under contract to Prospector International Resources during August 26th, 1999. This program involved stream sediment (silt) sampling of secondary drainages, contour and ridgeline reconnaissance soil sampling, rock sampling of available outcrop and prospecting. The program was helicopter supported from Dawson City, YT. On October 31, 1999, an additional 25 quartz claims (LOGO 11-35) were staked by the Company.

(4.2) Sampling

Soil samples were collected in kraft bags at 100 to 200 metre spacing along ridgelines and topographic contours. Soil samples were typically collected from pits at least 30-60
centimetres deep in order to attain the ‘C’ soil horizon. Each soil sample was described using a standard fill-out form with topography, vegetation, soil characteristics, and rock fragment lithology categories.

Silt samples were collected in plastic bags in order to retain fine particle size fractions that may have been in solution. In-field sieving was not conducted.

Samples were identified using the following system: e.g. ‘99XBM010’ – where ‘99’ is the year of sample collection, ‘X’ is type of sample (‘X’ is soil, ‘S’ is silt, ‘R’ is rock), ‘BM’ is the sampler’s initials, and ‘010’ is the tenth sample.

(4.3) Analytical Procedures

Field samples were shipped to ACME Analytical Laboratory located at 852 E. Hastings in Vancouver, BC. Soil samples were sieved to –80 mesh and silt samples were sieved to two fractions: -150 +230 mesh and -230 mesh. Rock samples were crushed to –10 mesh, split and then pulverized to –100 mesh. All samples were analyzed using Group 1F (30 grams) ICP-MS.

(4.4) Geochemical Evaluation

Results from the Company’s silt samples were compared to geochemical thresholds (see Table 5) used by Geological Survey of Canada (G.S.C.) surveys of the region (Regional Geochemical Reconnaissance Map 100-1986; Stewart River area, NTS: 115O and 115N E1/2, Open File 1364).

Soil samples collected by the Company were evaluated using geochemical thresholds derived from qualitative inspection of the Company’s data set, as well as, threshold values being used by companies working in Alaska within the Yukon Tanana Terrane (as per Western Keltic Mines’ news release dated September 9, 1999, and Northern Miner Article “Pogo area gold play mixed bag for juniors” dated November 1, 1999). These thresholds, representing ‘elevated’ elemental values, are listed below:

<table>
<thead>
<tr>
<th>Element</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>10 ppb</td>
</tr>
<tr>
<td>As</td>
<td>50 ppm</td>
</tr>
<tr>
<td>Bi</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>Te</td>
<td>0.1 ppm</td>
</tr>
<tr>
<td>Sb</td>
<td>4 ppm</td>
</tr>
<tr>
<td>Hg</td>
<td>100 ppb</td>
</tr>
<tr>
<td>Ag</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>Pb</td>
<td>100 ppm</td>
</tr>
<tr>
<td>Cu</td>
<td>100 ppm</td>
</tr>
<tr>
<td>W</td>
<td>1 ppm</td>
</tr>
</tbody>
</table>

Rock values collected by the Company were evaluated using thresholds derived from qualitative inspection of the Company’s data set only. The following thresholds, representing elevated values in rock, are listed below:
Table 2. Thresholds for Elevated Values in Rock

<table>
<thead>
<tr>
<th>Element</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>95 ppb</td>
</tr>
<tr>
<td>As</td>
<td>100 ppm</td>
</tr>
<tr>
<td>Bi</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>Te</td>
<td>0.1 ppm</td>
</tr>
<tr>
<td>Sb</td>
<td>4 ppm</td>
</tr>
<tr>
<td>Hg</td>
<td>100 ppb</td>
</tr>
<tr>
<td>Ag</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td>Pb</td>
<td>100 ppm</td>
</tr>
<tr>
<td>Cu</td>
<td>100 ppm</td>
</tr>
<tr>
<td>W</td>
<td>1 ppm</td>
</tr>
</tbody>
</table>

(5) ENCHANTMENT CREEK PROPERTY

(5.1) Location, Access, Physiography

The Enchantment Creek target area, located approximately 80 kilometers west-southwest of Dawson City, Yukon, is situated on Mount Hart and approximately 14 kilometres west of the confluence of Sixty Mile River and Enchantment Creek. Active placer creeks that drain the area include Fiftymile, Enchantment, and Boucher Creeks (see Figure 3). Access to the property is by helicopter from Dawson.

The area is unglaciated with elevations ranging from 2000 feet (610 meters) to 5200 feet (1585 meters).

(5.2) Property Description

The Enchantment Creek claims are located within the Dawson Mining District and consist of the contiguous LOTO, JOJO and LOGO claim blocks, together totaling 55 claims (1149.5 hectares). The claims are located on the NTS map sheet 115N/16 and are 100% owned by Prime Properties c/o Terry King. Claim information is summarized below:

Table 3. Claim Information.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant No.</th>
<th>No. of Claims</th>
<th>Area (ha)</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOJO 1-10</td>
<td>YC13359-YC13368</td>
<td>10</td>
<td>209</td>
<td>2000/03/22</td>
</tr>
<tr>
<td>LOTO 1-10</td>
<td>YC13349-YC13358</td>
<td>10</td>
<td>209</td>
<td>2000/03/22</td>
</tr>
<tr>
<td>LOGO 1-10</td>
<td>YC13369-YC13378</td>
<td>10</td>
<td>209</td>
<td>2000/03/22</td>
</tr>
<tr>
<td>LOGO 11-35</td>
<td>YC17734-YC17758</td>
<td>25</td>
<td>522.5</td>
<td>2000/11/01</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>55</td>
<td>1,149.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Prospector International has the option to earn 70% interest in any of the six properties owned by the Syndicate by spending $52,000 on exploration in 1999 (fulfilled) and an additional $120,000 in 2000. The Company has until November 1, 2000 to decide in which of the six properties to acquire an interest. To acquire 70% interest, the Company must issue 100,000 shares by November 1, 2000, pay $100,000 before June 1, 2001, obtain a favourable preliminary feasibility report within six years and issue an additional
LEGEND

IKgd — late Cretaceous granodiorite
IKva — late Cretaceous volcanics
DMs — Devonian–Mississippian schist
DMgdg — Devonian–Mississippian granodiorite gneiss
Inferred geological contact
Quarried Geological Contact
Geochronologically anomalous creek
Au — poor anomalous creek

Magnetic low
Magnetic high
Fault line
Lithology

1019
11(7) Au
4.0 As
0.5 Sb
45 Hg
0.2 Ag
24 Cu

1020
5.0 Au
0.5 Sb

1024
11(3) Au
4.0 As
1.0 Sb
55 Hg
23 Cu

1095
55 Hg

1102
12 As
0.4 Ag

1103
9.0 As
0.7 Sb
21 Cu

1104
26 (917) Au
6.0 As
0.6 Sb
21 Cu

(Geology modified from J.K. Mortensen (1996))

PROSPECTOR INTERNATIONAL
Regional Silt Geochemistry
LOT0, JOJO & LOGO CLAIMS
Enchantment Creek Area
115N16

Sample number (O.S.C.)
ppm (g/g for Au, Hg)
of anomalous elements in silt

Prospector International

Scale on sheet

Figure 3
1,000,000 shares and pay an additional $1,000,000 within 30 days of receipt of a preliminary feasibility report. The Company's interest will be subject to a 3% net smelter return royalty, which can be bought-out up to 50% for US$1,500,000.

(5.3) Area History

The Enchantment Creek target area was staked as the Hart & Dolly claims in January 1973 by Silver Standard ML., which performed mapping and sampling later in the year. L. Stevenson restaked the area as the Spork claims in June 1981.

Several quartz vein occurrences are documented from 2 to 10 kilometers west of the target area. These are, the Lerner Ag-Pb-Au-Zn vein open-pit / past producer (Minfile No.115N039), the Connaught Ag-Pb-Au-Zn vein open-pit / past producer (115N040), the Per Ag-Pb-Zn-Au-Hg vein drilled prospect (Minfile No.115N041), and the Butler Cu-Ag-Pb-Au skarn/vein drilled prospect (Minfile No.115N042).

(5.4) Area Activity

Recently staked quartz claims located approximately 2.5 kilometers south of the LOTO, JOJO and LOGO claims include the AI 1-22, staked by Tim Gunter and Brad Keenan on April 5, 1999, as well as, the Ax 1-12, staked by Sylvian Fleurant on April 5, 1999. The MONICA 1-10 claims staked 1.8 kilometers south of the JOJO claims, by Albert Rudis and Ralph Nordling on September 21, 1997.

Claims are also staked within the vicinity of known vein occurrences east of the LOTO, JOJO and LOGO claims. The Butler vein occurrence is staked by the MAG 1-14 claims and the OM 1-12 claims, whereas, the Lerner and Connaught veins are staked by the MOS 1-209 claims. These and other quartz claims in the area are summarized below:

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Owner</th>
<th>Staking Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>OM 1-12</td>
<td>Peter Ledwidge</td>
<td>27 Jun 98</td>
</tr>
<tr>
<td>MAG 1-14</td>
<td>17363 Yukon Inc.</td>
<td>05 Aug 98</td>
</tr>
<tr>
<td>MUG 1-8</td>
<td>Peter Ledwidge</td>
<td>27 Jun 98</td>
</tr>
<tr>
<td>MOS 1-209</td>
<td>Morley Baker & 17363 Yukon Inc</td>
<td>10 Sept 98</td>
</tr>
<tr>
<td>ERNI 1-80</td>
<td>John Peter Ross</td>
<td>19 Jun 98</td>
</tr>
<tr>
<td>KEY 1-26</td>
<td>Dredge Master Gold Ltd.</td>
<td>11 Sept 97</td>
</tr>
<tr>
<td>SIXTY 1-143</td>
<td>Kennecott Canada Expl. Inc.</td>
<td>26 Aug 98</td>
</tr>
<tr>
<td>SIXTY 144-157</td>
<td>Kennecott Canada Expl. Inc.</td>
<td>11 April, 1999</td>
</tr>
</tbody>
</table>

Placer activity in the target area is summarized as follows:

- Boucher Creek, located approximately 5.6 km north of the claims. Active placer claims are staked from the base of the creek to approximately 900 metres downstream of its confluence with Huot Gulch. Huot Gulch drains the claims. Expired placer claims exist at Huot Gulch, Boucher Creek, (upsteam from its confluence with Hout Creek) and Granite Gulch, which also directly drains the claim area.
• Enchantment Creek, which drains the claim block and its immediately surrounding area, is completely staked by active placer claims starting from its confluence with the Sixtymile River to within 3.2 km of the claim block. Expired placer claims continue upstream of the active placer claims to within 600 metres of the claim block.

• Active placer claims are located 2.4 km south of the JOJO claims, on the same creek that contains 26 (917) ppb Au (see Figure 3). This creek drains into Fifty Mile Creek, which is completely staked by active placer claims and has a vast placer mining history.

(5.5) Regional Geology

The project area occurs within the Yukon Tanana Terrane, which underlies much of central and western Yukon and east central Alaska. There has been considerable debate as to whether the Yukon Tanana Terrane represents autochthonous North American strata, or a truly allochthonous terrane not directly related to North American margin or both (J.K. Mortensen, 1992). A compilation of the Yukon Tanana Terrane by Wheeler et. al. (1988), considers a large part of the terrane to represent a fragment of displaced North American continental margin.

The Yukon Tanana Terrane consists mainly of a poorly exposed assemblage of poly-deformed metamorphic rocks derived from a variety of igneous and sedimentary protolith. The following assemblages, as described by J.O. Wheeler & P. McFeely, 1991, occur within the study area and belong to the Yukon Tanana Terrane. They are listed from oldest to youngest:

• The Upper Proterozoic to Cambrian Nisling assemblage, which represents a metamorphosed passive continental margin assemblage consisting of muscovite-biotite schist, phyllite, slate, micaceous quartzite, marble, skarn, greenstone and amphibolite.

• The Cambrian to Devonian Nasina assemblage, which is a partly metamorphosed carbonaceous and siliceous offshelf sedimentary package. It consists of dark grey to black graphitic and micaceous quartzite with interfoliated graphitic, biotite muscovite schist.

• The Upper Proterozoic to Triassic Nisutlin subterrane, which consists of cataclastic sediments and volcanics of the pericratonic Kootney Terrane. The Kootney Terrane is correlated with the Yukon Tanana Terrane.

(5.6) Local Geology

The target area is centred on a Late Cretaceous pluton composed of massive hornblende-biotite granodiorite (J.K. Mortensen, 1996), which intrudes relatively coarse-grained, locally garnetiferous biotite-quartz-muscovite schist. This unit belong to the Nasina assemblage of the Yukon Tanana Terrane (Mortensen, 1996). Late Cretaceous Carmacks volcanics, interpreted to be coeval with the pluton occur immediately east of the pluton.
The volcanics are potassic, alkaline, mainly porphyritic andesite flows and pyroclastics with lesser rhyolite, trachyte and dacite (Wheeler & McFeely, 1991).

The igneous body covered by the LOTO, JOJO, and LOGO claims is the easternmost of five discrete plutons, of similar age and composition, that lie along a 17 km long, east-west trend. All five plutons are late Cretaceous granodiorite igneous bodies that intrude coarse-grained, locally garnetiferous biotite-quartz-muscovite schist. The Butler quartz vein is spatially associated with the pluton immediately to the west of the claims, whereas, the Connaught and Lerner quartz vein occurrences are spatially associated with the most westerly pluton.

(5.7) Regional Geochemical Thresholds

Regional silt geochemistry data was used as one of the main exploration parameters for selecting targets during the study. This information was gathered from Geological Survey of Canada Open File 1364 (Regional Geochemical Reconnaissance Map 100-1986; Stewart River area, NTS: 115J, 115K E1/2). Concentrations and corresponding percentile ranges of pertinent elements from this Open File, are summarized below:

Table 5. Regional Geochemistry of the Stewart River map sheet.

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentile as shown</th>
<th>Percentile as shown</th>
<th>Percentile as shown</th>
<th>Percentile as shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au (ppb)</td>
<td>21-1328 (98.1%)</td>
<td>14-20 (95.6%)</td>
<td>9-13 (91%)</td>
<td>4-8 (76%)</td>
</tr>
<tr>
<td>As (ppm)</td>
<td>17.1-91 (98%)</td>
<td>11.1-17 (95.6%)</td>
<td>6.1-11.0 (90.1%)</td>
<td>3.1-6 (71.5%)</td>
</tr>
<tr>
<td>Mo (ppm)</td>
<td>3-7 (98.9%)</td>
<td>2 (97.7%)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>W (ppm)</td>
<td>5-24 (98.8%)</td>
<td>3-4 (97.2%)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Sn (ppm)</td>
<td>6-25 (98.9%)</td>
<td>5 (95.2%)</td>
<td>3-4 (80.1%)</td>
<td>n/a</td>
</tr>
<tr>
<td>Sb (ppm)</td>
<td>1.2-58 (98%)</td>
<td>0.9-1.1 (95.8%)</td>
<td>0.7-0.8 (90.9%)</td>
<td>0.5-0.6 (76.8%)</td>
</tr>
<tr>
<td>Hg (ppb)</td>
<td>111-390 (98%)</td>
<td>81-110 (95.3%)</td>
<td>61-80 (90.8%)</td>
<td>41-60 (71.4%)</td>
</tr>
<tr>
<td>Ag (ppm)</td>
<td>0.5-1.1 (98.2%)</td>
<td>0.4 (95.8%)</td>
<td>-</td>
<td>0.2-0.3 (76.1%)</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>39-123 (98.1%)</td>
<td>30-38 (95%)</td>
<td>26-29 (90.3%)</td>
<td>21-25 (74%)</td>
</tr>
<tr>
<td>Pb (ppm)</td>
<td>36-106 (98.1%)</td>
<td>22-35 (95.1%)</td>
<td>16-21 (90.9%)</td>
<td>11-15 (74.2%)</td>
</tr>
</tbody>
</table>

The reader should be aware that important pathfinder elements such as Bi, and Te are not reported in Open File 1364. No known Bi, and Te data exist for the Dawson, Stewart and Snag map sheets. Additionally, the reader should be aware that percentile ranges for elements reported in Open File 1364, do not discriminate between lithologies, and hence represent the map sheet as a whole. This may obscure certain anomalies.

Geochemical anomalies are regarded by the author as strongly anomalous if within the >95 percentile range, moderately anomalous if between the 90-95 percentile range, and weakly anomalous if within the 70 – 90 percentile range.

(5.8) Reconnaissance Rock Geochemistry

Reconnaissance rock geochemistry, conducted by Templeman-Kluit and Currie (1978), covered the Aishihik Lake, Snag and Stewart River map areas. Data collected during the study shows the Enchantment Creek area to be anomalous in As, Hg and Mo (see Figure 4a, b, c, respectively).
Figure 4c. Reconnaissance Rock Geochemistry (Mo) of the Stewart River Map Sheet 115N W1/2 (Templeman-Kluit and Currie, 1978).
Figure 4b. Reconnaissance Rock Geochemistry (Hg) of the Stewart River Map Sheet 115N W1/2 (Templeman-Kluit and Currie, 1978).
Figure 4a. Reconnaissance Rock Geochemistry (As) of the Stewart River Map Sheet 115N W1/2 (Templeman-Kluit and Currie, 1978).
(5.9) LOTO, LOGO, JOJO Claims

(5.9.1) Property Geology

The contiguous LOTO, LOGO and JOJO claim blocks are underlain by Late Cretaceous hornblende-biotite granodiorite, late Cretaceous volcanics, and Devonian-Mississippian coarse-grained, locally garnetiferous biotite-quartz-muscovite schist (see Figure 3).

(5.9.2) Regional Silt Geochemistry

Seven geochemically anomalous creeks drain the LOTO, LOGO and JOJO claim blocks. Anomalous samples from these creeks are shown in Figure 3 and summarized in Table 6, below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppb)</th>
<th>As (ppm)</th>
<th>Sb (ppm)</th>
<th>Hg (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1018</td>
<td>5</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1019</td>
<td>11 (7)</td>
<td>-</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>1020</td>
<td>-</td>
<td>4.0</td>
<td>0.5</td>
<td>45</td>
<td>0.2</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>1094</td>
<td>11 (3)</td>
<td>4</td>
<td>1.0</td>
<td>55</td>
<td>-</td>
<td>23</td>
<td>42</td>
</tr>
<tr>
<td>1095</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td>47</td>
</tr>
<tr>
<td>1102</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>41</td>
</tr>
<tr>
<td>1103</td>
<td>-</td>
<td>9.0</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>1104</td>
<td>26 (917*)</td>
<td>6.0</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>17</td>
</tr>
</tbody>
</table>

* sample under 10 grams.

(5.9.3) Aeromagnetic Signature

The LOTO claim block covers a linear northwest trending 0.4 kilometer wide by 0.8 kilometer long magnetic low (57,340 gammas), located approximately 0.8 kilometers north of the pluton. The eastern tributary of Huot Creek (see Figure 3) intersects this magnetic low.

The JOJO block, located on the southwestern portion of the pluton, covers a strong, northwest trending linear magnetic high (58,800 gamma). This anomaly occurs within the pluton and hence, may suggest a high concentration of mafic minerals and/or magnetite or pyrrhotite.

The LOGO claims cover a northeast-trending, 1.2 kilometer long and 0.4 kilometer wide, magnetic low (57,460 gamma), which occurs within schist. A strong geochemically anomalous tributary of Enchantment Creek intersects this magnetic low (see Figure 3).

(5.9.4) 1999 Exploration Results

The Company’s 1999 fieldwork on the contiguous LOTO, LOGO and JOJO claim blocks consisted of 7 silt samples, 21 soil samples, and 3 rock samples. Silt samples identified four creeks, draining a 1-2 square kilometre area (see Figure 5), highly anomalous in Au (up to 167 ppb), with pathfinders As (up to 100 ppm), Bi (up to 0.72 ppm), Te (up to 16).
0.37 ppm), Sb (up to 4.6 ppm) and Hg (121 ppb). Significant silt geochemistry results are shown in Figure 4 and summarized in Table 7a below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppb)</th>
<th>As (ppm)</th>
<th>Bi (ppm)</th>
<th>Te (ppm)</th>
<th>Sb (ppm)</th>
<th>Hg (ppm)</th>
<th>Mo (ppm)</th>
<th>Ag (ppm)</th>
<th>Pb (ppm)</th>
<th>Cu (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99SMG061</td>
<td>167.0</td>
<td>100.0</td>
<td>0.60</td>
<td>0.37</td>
<td>4.60</td>
<td>103</td>
<td>2.07</td>
<td>0.317</td>
<td>22.45</td>
<td>48.23</td>
</tr>
<tr>
<td>99SBM048</td>
<td>19.1</td>
<td>18.8</td>
<td>0.55</td>
<td>-</td>
<td>0.92</td>
<td>43</td>
<td>3.02</td>
<td>0.355</td>
<td>44.53</td>
<td>30.49</td>
</tr>
<tr>
<td>99SBJ079</td>
<td>53.3</td>
<td>11.0</td>
<td>-</td>
<td>0.14</td>
<td>1.03</td>
<td>42</td>
<td>2.53</td>
<td>0.212</td>
<td>27.56</td>
<td>37.97</td>
</tr>
<tr>
<td>99SBJ080</td>
<td>4.0</td>
<td>8.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>2.19</td>
<td>-</td>
<td>20.09</td>
<td>22.49</td>
</tr>
<tr>
<td>99SBJ081</td>
<td>5.4</td>
<td>4.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.65</td>
<td>21.35</td>
</tr>
<tr>
<td>99SBJ082</td>
<td>4.4</td>
<td>9.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>18.14</td>
<td>24.02</td>
</tr>
<tr>
<td>99SBJ083</td>
<td>7.6</td>
<td>19.7</td>
<td>0.72</td>
<td>0.22</td>
<td>4.40</td>
<td>121</td>
<td>1.107</td>
<td>109.63</td>
<td>30.56</td>
<td></td>
</tr>
</tbody>
</table>

Photograph looking east towards 1-2 km² anomalous area (background) and anomalous creek (foreground) containing 53.3 ppb Au (sample 99SBJ079).

Soil sampling on the property was conducted at 100 metre spacing, outside of the anomalous area described above. The samples returned sporadic results containing anomalous Au (up to 48.0 ppb), Bi (up to 1.79 ppm), Te (up to 0.20 ppm), Sb (5.23 ppm) and Ag (1.352 ppm). These samples are shown in Figure 4 and summarized in Table 7b, below:
Table 7b. 1999 Soil Geochemistry of the Enchantment Creek property.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (ppb)</th>
<th>As (ppm)</th>
<th>Bi (ppm)</th>
<th>Te (ppm)</th>
<th>Sb (ppm)</th>
<th>Hg (ppb)</th>
<th>Ag (ppm)</th>
<th>Pb (ppm)</th>
<th>Fragment Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>99XBJ076</td>
<td>-</td>
<td>-</td>
<td>0.52</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Granodiorite</td>
</tr>
<tr>
<td>99XBJ078</td>
<td>-</td>
<td>-</td>
<td>0.56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Granodiorite</td>
</tr>
<tr>
<td>99XBJ084</td>
<td>-</td>
<td>62.2</td>
<td>-</td>
<td>0.20</td>
<td>7.24</td>
<td>160</td>
<td>-</td>
<td>-</td>
<td>Rusty quartz vein, schist</td>
</tr>
<tr>
<td>99XBM038</td>
<td>22.8</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Schist, granodiorite</td>
</tr>
<tr>
<td>99XBM041</td>
<td>48.0</td>
<td>-</td>
<td>0.99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Granodiorite</td>
</tr>
<tr>
<td>99XBM042</td>
<td>-</td>
<td>1.60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Granodiorite</td>
</tr>
<tr>
<td>99XBM045</td>
<td>-</td>
<td>141.8</td>
<td>1.79</td>
<td>-</td>
<td>5.23</td>
<td>-</td>
<td>1.352</td>
<td>659.61</td>
<td>Granodiorite</td>
</tr>
</tbody>
</table>

Rock sampling returned elevated amounts of W, Cu and Mo. Results are shown in Figure 4 and summarized in Table 7c, below:

Table 7c. 1999 Rock Geochemistry of the Enchantment Creek property.

<table>
<thead>
<tr>
<th>Sample</th>
<th>W (ppm)</th>
<th>Cu (ppm)</th>
<th>Mo (ppm)</th>
<th>Rock Description (Type of Sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99RBJ069</td>
<td>3.3</td>
<td>36.80</td>
<td>4.65</td>
<td>Grey, medium grained, equigranular, magnetite-bearing biotite-granodiorite (7 metre chip across outcrop)</td>
</tr>
<tr>
<td>99RBM046</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>Magnetite-bearing schist (Grab sample)</td>
</tr>
<tr>
<td>99RMG062</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>Andesite with platy metallic mineral on exposed fracture surface (float from large talus slope)</td>
</tr>
</tbody>
</table>

(5.9.5) Fluid Inclusion Analysis

Fluid inclusion analysis was conducted by Cadence Mineral Resources on float sample Lotto-1, a pegmatitic veinlet within equigranular monzonite (see Appendix), collected from the eastern LOGO claims (see Figure 5). This sample was shown to contain abundant vapour-rich fluid inclusions typical of intrusion-related deposits, carbonic inclusions and less common saline fluid inclusions.

(6) CONCLUSIONS

The LOTO, JOJO and LOGO claims contain good potential to host ‘Pogo-style’ and other intrusion-related gold mineralization, as evidenced by the following:

- The target area contains a late-Cretaceous granodiorite pluton that intrudes schists of the Nasina assemblage of the Yukon Tanana terrane.
- The claim blocks are partially drained by creeks containing silt samples weakly to strongly anomalous in Au (27 ppb, 917 ppb), As (12 ppm), Sb (1.0 ppm), and Ag (0.4 ppm).
- The LOTO and LOGO claims cover magnetic low anomalies situated within schistose country rocks proximal to the pluton.
- Active placer creeks occur within close proximity to the claims.
- A number of quartz-sulphide vein occurrences, spatially related to late Cretaceous plutons, occur in the area.
The Company’s 1999 fieldwork identified an area, approximately 1-2 square kilometres, drained by 6 anomalous creeks, 4 of which were sampled by the Company and contained anomalous Au (up to 167 ppb), As (up to 100 ppm), Bi (up to 0.72 ppm), Te (up to 0.37 ppm), Sb (up to 4.60 ppm), Hg (up to 121 ppb), as well as, Mo, Ag, Pb and Cu. Reconnaissance rock samples collected adjacent to the area contain elevated W. Fluid inclusion analysis conducted on a float sample from the eastern portion of the claims, was shown to contain abundant vapour-rich fluid inclusions typical of intrusion-related deposits, carbonic inclusions and less common saline fluid inclusions.

(7) RECOMMENDATIONS

Recommended work for the Enchantment Creek project consists of gridded soil sampling, talus fine sampling, rock chip sampling, prospecting, and geological mapping, focussed on the 1-2 square kilometre anomalous area within the LOGO claims. Further reconnaissance soil sampling outside of this area is also recommended, especially proximal to sample 99XBM045, which contains strongly elevated As, Bi, Sb, Ag and Pb. The budget for the recommended field program is as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Cost per unit</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Geologist</td>
<td>5</td>
<td>$250.00</td>
<td>$1,250.00</td>
</tr>
<tr>
<td>2 Samplers</td>
<td>5</td>
<td>$200.00</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>Soil Samples</td>
<td>250</td>
<td>$17.40</td>
<td>$4,350.00</td>
</tr>
<tr>
<td>Rock Samples</td>
<td>20</td>
<td>$19.60</td>
<td>$392.00</td>
</tr>
<tr>
<td>Silt Samples</td>
<td>10</td>
<td>$34.96</td>
<td>$349.60</td>
</tr>
<tr>
<td>Helicopter (wet)</td>
<td>5 days @ 1.7 hr/day</td>
<td>$785.00</td>
<td>$6,672.50</td>
</tr>
<tr>
<td>Truck Rental</td>
<td></td>
<td></td>
<td>$133.33</td>
</tr>
<tr>
<td>Camp, food, etc.</td>
<td>5 days</td>
<td>$65/man/day</td>
<td>$975.00</td>
</tr>
<tr>
<td>Assessment Report</td>
<td></td>
<td></td>
<td>$500.00</td>
</tr>
<tr>
<td>Filing Fees</td>
<td></td>
<td>$10/claim</td>
<td>$550.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$17,172.43</td>
</tr>
</tbody>
</table>

Contingent upon the success of this work, further work would consist of follow-up gridded soil sampling, detailed geologic mapping, ground geophysical surveys consisting of magnetics and induced polarization, followed by trenching.
(8) STATEMENT OF WORK

Prospector International Resources Inc.

Enchantment Creek Project

August 26, 1999

<table>
<thead>
<tr>
<th>LOTO & JOJO CLAIMS – Geological and Geochemical Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Labour</td>
<td>2 mandays @ $300/day</td>
</tr>
<tr>
<td>Workers Compensation</td>
<td></td>
</tr>
<tr>
<td>Helicopter</td>
<td>0.8 hrs @ $700/hr, 0.3 hrs @ $785/hr</td>
</tr>
<tr>
<td>Assays</td>
<td>20 soils @ $17.40, 6 silts @ $34.96ea, and 1 rock @ $19.60ea</td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
</tr>
<tr>
<td>Truck Rental</td>
<td>1 truck @ $2,000/mo</td>
</tr>
<tr>
<td>Airfare</td>
<td></td>
</tr>
<tr>
<td>Field Supplies</td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>($2,000/15 claimblocks)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOGO CLAIMS – Geological and Geochemical Costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Labour</td>
<td>1 manday @ $300/day</td>
</tr>
<tr>
<td>Workers Compensation</td>
<td></td>
</tr>
<tr>
<td>Helicopter</td>
<td>0.6 hrs @ $700/hr</td>
</tr>
<tr>
<td>Assays</td>
<td>1 silt @ $34.96ea, 1 rock @ $19.60ea</td>
</tr>
<tr>
<td>Shipping samples</td>
<td></td>
</tr>
<tr>
<td>Truck Rental</td>
<td>1 truck @ $2,000/mo</td>
</tr>
<tr>
<td>Airfare</td>
<td></td>
</tr>
<tr>
<td>Field Supplies</td>
<td></td>
</tr>
<tr>
<td>Fluid Inclusion Analysis</td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>($2,000/15 claimblocks)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
(9) STATEMENT OF QUALIFICATIONS

I, Bart J. Jaworski, of Vancouver, British Columbia, hereby certify that:

1. I am a graduate of the University of British Columbia with a Bachelor of Science (Hons.) Degree (1996) in Geology.

2. I have practiced my profession as a geologist in Canada, continually since graduation.

3. I am a Consulting Geologist with offices at 4042 W 27th Ave, Vancouver, British Columbia.

4. I am a registered member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia and hold the title of ‘Geoscientist-In-Training’ (Reg #112628).

5. I am the author of this report. The information in this report is based on personal examination of the property during Prospector’s 1999 field season and an overview of published reports and maps on the property and the surrounding area.

6. I have a 10% direct interest in Prime Properties. I expect to receive 100,000 options (at 15 cents/share) of Prospector International Resources Inc. by the end of January 2000.

7. I have not received nor do I expect to receive, any additional interest, direct or indirect, in the properties and securities of Prime Properties and/or Prospector International.

8. Prime Properties and its affiliates are hereby authorized to use this report in any prospectus, statement of material facts, or other public document.

[Signature]
Bart J. Jaworski, G.I.T.
STATEMENT OF QUALIFICATIONS

I, Brian H. Meyer, of the city of Burnaby in the province of British Columbia do hereby certify that:

1) I am a Professional Geologist registered with the Association of Professional Engineers, Geologists and Geophysicists of Alberta.

2) I am a graduate of the University of Alberta (1979) with a B.Sc. degree in geology.

3) I have practiced my profession as a geologist since graduation in 1979.

4) I have participated in the field examination of the Enchantment Creek property on August 26, 1999, and having reviewed the related report titled Geological And Geochemical Report On The Enchantment Creek Intrusion-Related Gold Target, West-Central Yukon Territory, verify its authenticity and the professional quality as prepared by Bart Jaworski G.I.T.

5) I have no interest, directly or indirectly, nor do I expect to receive any interest, directly or indirectly in the Enchantment Creek property, or any other property of Prime Properties or Prospector International Resources Inc. or any affiliate, nor do I beneficially own, directly or indirectly, any securities of Prime Properties or Prospector International Resources Inc. or any affiliate.

6) Permission is hereby granted to Prime Properties or Prospector International Resources Inc. to use this report in any prospectus, statement of material facts, or other public document.

Dated this fourth day of January, 2000.

Brian H. Meyer, P.Geol.
(11) REFERENCES

Regional Geochemical Reconnaissance, Western Yukon (NTS 115O and 115N E1/2), Geological Survey of Canada Open File 1364, Map 100-1986, scale 1:250,000.

Stewart River Minfile Map 1992: (NTS 116B, 116C), Yukon, Canada.

Templeman-Kluit, D.J. & Currie, R., 1978: Reconnaissance Rock Geochemistry of Aishihik Lake, Snag and Stewart River Map Areas in the Yukon Crystalline Terrane;

APPENDIX A

CERTIFICATE OF ANALYSES (ROCK SAMPLES)
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	Al	Na	K	W	Hg	Se	Te	Ga	S		
99GJ-069	4.65	36.80	8.77	32.4	41	35.2	11.9	210	2.19	.8	1.0	4.7	3.9	54.1	.04	.10	.08	135	.65	.147	15.2	154.2	.82	177.8	.232	1	.86	.114	.54	3.3	.06	<5	1	<0.2	3.8	0.1
99BM-046	.02	4.68	4.54	40.2	19	12.0	13.0	300	4.46	1.9	.3	1.0	.7	148.4	.11	.18	.04	192	1.72	.179	7.0	18.5	.70	179.5	.222	2	1.93	.277	.40	2.6	.08	7	.2	<0.2	8.0	0.1
99MG-062	.60	2.12	2.50	36.2	41	3.4	11.6	728	5.85	.6	.1	<2	1.2	50.0	.10	.18	.02	114	1.77	.174	4.5	6.2	1.81	56.0	.119	1	2.77	.086	.16	1.1	.07	<5	2	<0.2	13.2	<0.1
99GJM-062	.93	2.08	2.58	38.1	45	2.9	10.3	744	5.96	.9	<1	<2	1.3	52.0	.09	.15	.02	150	1.82	.177	4.6	12.5	1.07	57.8	.122	1	2.98	.091	.16	1.2	.07	<5	2	<0.2	13.6	0.1

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, Sn = 100 PPM; Hg, Co, Cd, Sb, Bi, Th, U, B = 2,000 PPM; Cu, Pb, Zn, Ni, Mn, As, V, La, Cr = 10,000 PPM.

SAMPLE TYPE: ROCK

SAMPLES BEGINNING 'RE' ARE REWORKS AND 'RRE' ARE REJECT REWORKS.

DATE RECEIVED: SEP 9 1999
DATE REPORT MAILED: Sept 17/99
SIGNED BY: .

D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS.
APPENDIX B

CERTIFICATE OF ANALYSES (SOIL SAMPLES)
SAMPLE	Mo	Cu	Pt	Zn	Ag	Ni	Co	Mn	Fe	As	Al	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W	Ti	Cu	Pb	Ag	Hg	Se	Fe	Ga	
P9X6J-036	92	22	24	20	72	49	23	12	826	272	11	1.1	6.1	28	300	5.5	2.8	11.1	3.7	7.3	62	24	66	48	062	24	74	62	262.7	084	2.81	046	0.8	13	74	7	15	6.5	01
P9X6J-037	96	17	89	11	43	64	39	21	490	93	7.9	9.8	8.5	34	21	7.7	15	15	9.9	27	49	39	33	7.4	15	29	0.9	0.3	11	51	6.4	01							
P9X6J-038	64	12	21	24	85	86	61	16	68	42	9.7	9.2	22	88	212	2.3	74	15	49	39	63	03	24	46	193	33	0.27	11	21	12	0.3	10	15	0.6	01				
P9X6J-039	65	11	99	26	87	87	59	17	73	17	4	1.1	9.4	7.6	21	126.2	32	74	15	49	100	03	7.6	23.5	43	185	037	1.26	049	0.10	11	50	10	5.5	01				
P9X6J-040	1.15	12.78	15.25	38.5	142.11	51	180	1.94	7.8	6	3.3	5	42.4	36	72	20	51	17	056	7.4	22.3	24	180.3	041	1.53	019	0.02	12	89	82	0.5	03							
P9X6J-041	0.65	41.53	12.49	65.8	122	31	33	1.22	255	3.15	10.9	1.3	3.9	5.6	41.6	22	76	24	107	54	108	13.8	64.0	72.1	276.6	143	1.78	025	12	10	44	5.5	01						
P9X6J-042	2.50	62.15	13.57	88.8	123	34	18.7	562	3.42	9.3	1.3	48.0	5.2	202	0	76	75	59	130	2.0	154.16	65	7.91	5.12	145.9	101	2.16	031	22	31	0.5	09	6.3	01					
P9X6J-043	1.43	50.88	39.71	84.8	126	29	21.5	746	9.34	20.2	2.0	1.4	6.6	43.6	7.6	72	140	64.4	125	13.0	7.41	162	25.3	109	2.13	026	16	3	32	7.6	0.8	6.5	01						
P9X6J-044	1.45	41.57	19.67	66.9	122	24	3.3	769	3.74	9.8	1.0	3.3	4.4	88.8	16	61	45	141	63.5	13.9	7.62	2.0	235.7	212	2.37	030	18	13	12	35	4.7	07	0.6						
P9X6J-045	1.10	36.97	27.39	60.6	103	20	6.1	291	3.10	11.5	1.3	3.0	5.3	47.5	15	68	35	129	58.0	110	13.0	0.80	232.4	169	1.75	029	10	3	10	7.4	0.4	5.6	01						
P9X6J-046	2.55	69.61	659.6	147	1352	22.2	11.0	352	3.33	141.8	1.5	5.4	6.2	66.9	38	5.23	1.79	104	54	100	13.2	37.5	82.2	103.1	161	1.92	024	18	10	12	35	8.6	0.6	10					
P9X6J-047	0.61	23.09	9.13	65.3	44	27	11.4	662	2.96	10.9	1.4	7.6	4.7	24	33.0	14	71	14	74	32.0	54	9.7	85	152.7	157	2.31	022	10	0.12	33	4.0	10	0.4	5.6					
STANDARD	14.66	129.90	33.24	164.1	243	37	12.3	833	3.21	65.0	21.7	204.7	3.5	26.7	11.7	339	10.9	161	56.0	032	18.1	163.7	60.0	143.4	171	4.17	040	17	0.9	1.95	25.9	2.5	16.7	6.5	0.7				

GROUP 1F30 - 30.00 GMS SAMPLE LEACHED WITH 180 ML 2:2:2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.
UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; Mo, CO, CD, SB, Bi, Th, U, B = 2,000 PPM; Cu, Pb, Zn, Hg, Ni, Mn, As, V, La, Ca, Cr = 10,000 PPM.

SAMPLE TYPE: SOIL

SAMPLES BEGINNING 'RE' are Runouts and 'RE' are Reject Runouts.

DATE RECEIVED: SEP 9 1999
DATE REPORTmailed: Sept 17/99 SIGNED BY: J. TOYE, C.L. LONG, J. WANG; CERTIFIED B.C. ASSAYERS.
APPENDIX C

CERTIFICATE OF ANALYSES (SILT SAMPLES)
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>Ni</th>
<th>Co</th>
<th>Fe</th>
<th>As</th>
<th>U</th>
<th>Au</th>
<th>Th</th>
<th>Ta</th>
<th>V</th>
<th>Ti</th>
<th>Al</th>
<th>Si</th>
<th>Mg</th>
<th>Al</th>
<th>Tl</th>
<th>Ba</th>
<th>C</th>
<th>Ca</th>
<th>Sr</th>
<th>Nd</th>
<th>Eu</th>
</tr>
</thead>
<tbody>
<tr>
<td>99BJ-69</td>
<td>2.23</td>
<td>35.0</td>
<td>21.56</td>
<td>69.9</td>
<td>154.3</td>
<td>13.8</td>
<td>12.1</td>
<td>714.3</td>
<td>8.4</td>
<td>8.3</td>
<td>5.7</td>
<td>8.6</td>
<td>209.9</td>
<td>.41</td>
<td>.62</td>
<td>37</td>
<td>96</td>
<td>18</td>
<td>7.1</td>
<td>31.8</td>
<td>73</td>
<td>230.1</td>
<td>.014</td>
<td>+1.87</td>
<td>0.2</td>
</tr>
<tr>
<td>99BJ-68</td>
<td>2.14</td>
<td>22.27</td>
<td>26.89</td>
<td>64.2</td>
<td>199.9</td>
<td>19.9</td>
<td>6.7</td>
<td>543.3</td>
<td>4.5</td>
<td>5.5</td>
<td>5.3</td>
<td>8.4</td>
<td>21.7</td>
<td>.57</td>
<td>.53</td>
<td>1.3</td>
<td>26</td>
<td>162</td>
<td>.97</td>
<td>137</td>
<td>14.9</td>
<td>69</td>
<td>7</td>
<td>2747.5</td>
<td>1.45</td>
</tr>
<tr>
<td>99BJ-81</td>
<td>1.74</td>
<td>21.25</td>
<td>17.45</td>
<td>50.5</td>
<td>115.3</td>
<td>16.4</td>
<td>12.4</td>
<td>418.2</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>8.4</td>
<td>14.1</td>
<td>.51</td>
<td>.54</td>
<td>1.6</td>
<td>26</td>
<td>19.9</td>
<td>.63</td>
<td>190.9</td>
<td>10.9</td>
<td>59</td>
<td>2</td>
<td>717.5</td>
<td>1.49</td>
</tr>
<tr>
<td>99BJ-80</td>
<td>1.75</td>
<td>21.25</td>
<td>17.45</td>
<td>50.5</td>
<td>115.3</td>
<td>16.4</td>
<td>12.4</td>
<td>418.2</td>
<td>5.5</td>
<td>5.4</td>
<td>5.4</td>
<td>8.4</td>
<td>14.1</td>
<td>.51</td>
<td>.54</td>
<td>1.6</td>
<td>26</td>
<td>19.9</td>
<td>.63</td>
<td>190.9</td>
<td>10.9</td>
<td>59</td>
<td>2</td>
<td>717.5</td>
<td>1.49</td>
</tr>
<tr>
<td>99BJ-135</td>
<td>5.08</td>
<td>30.56</td>
<td>10.9</td>
<td>53.1</td>
<td>12.7</td>
<td>11.2</td>
<td>10.5</td>
<td>198.3</td>
<td>7.7</td>
<td>6.6</td>
<td>6.6</td>
<td>9.2</td>
<td>14.3</td>
<td>.64</td>
<td>14.8</td>
<td>17</td>
<td>26</td>
<td>7</td>
<td>58</td>
<td>129.2</td>
<td>11.4</td>
<td>63</td>
<td>333.3</td>
<td>0.37</td>
<td>+1.97</td>
</tr>
<tr>
<td>99BN-68</td>
<td>3.07</td>
<td>28.87</td>
<td>28.17</td>
<td>90.5</td>
<td>233.7</td>
<td>22.9</td>
<td>12.8</td>
<td>523.3</td>
<td>4.5</td>
<td>15</td>
<td>1.3</td>
<td>4.7</td>
<td>91.9</td>
<td>.75</td>
<td>.78</td>
<td>46</td>
<td>138</td>
<td>.14</td>
<td>74</td>
<td>154</td>
<td>17.9</td>
<td>67</td>
<td>81</td>
<td>1967</td>
<td>1.42</td>
</tr>
</tbody>
</table>

GROUP 1F3O - 30.00 CM SAMPLE LEACHED WITH 180 ML 2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS.

UPPER LIMITS - AG, AU, Au, Hg, Zn, Fe, Ti, Ca, Sn, Pb = 100 PPM; Mo, Cd, Co, Sr, Bi, Th, U, B = 2,000 PPM; Cu, Pb, Zn, Ni, Mn, As, V, La, Cr = 10,000 PPM.

SAMPLE TYPE: SILT

Samples beginning 'RE' are Refused and 'RR' are Rejected Results.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.
SAMPLE	Ho	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W	Hg	Se	Te	Ca	S			
999BLJ-079	2.30	37.97	27.56	63.8	212.16	4.14	16.4	11.6	804	2.98	11.0	3.3	53.3	8.6	144.6	.51	1.03	.41	83.1	1.04	.135	18.7	35.0	.67	238.4	.029	<1	1.99	.022	.11	.2	.39	.42	.8	.13	6.2	03
999BLJ-080	1.65	16.98	15.69	51.2	124.15	6.10	10.0	456	2.26	8.0	1.9	4.0	3.2	64.7	.19	.40	.21	7.7	.49	.099	12.8	41.3	.56	232.7	.093	1	1.59	.019	.07	.4	.11	.45	.5	.04	5.9	04	
999BLJ-081	.93	15.76	11.22	48.8	125.18	9.9	8.9	375	1.86	4.8	1.1	5.4	1.1	38.6	.24	.30	.18	60	.38	.080	10.9	46.8	.56	160.6	.087	1	1.32	.015	.07	.3	.09	.39	.5	.04	5.2	04	
999BLJ-082	1.11	21.66	14.59	55.8	179.21	3.10	10.4	445	2.33	9.3	.9	4.4	1.3	41.8	.22	.47	.36	69	.39	.076	9.4	44.4	.63	179.6	.072	1	1.59	.015	.07	.5	.10	.42	.5	.05	5.6	04	
999BLJ-083	3.59	23.84	82.11	77.5	939.14	2.15	15.4	891	2.42	16.5	1.0	6.0	.5	65.5	.47	3.50	.64	59	.45	.105	9.5	22.8	.54	267.7	.033	1	1.76	.015	.06	.2	.18	.94	1.1	.16	6.0	07	
999SM-048	3.00	30.49	44.53	80.4	355.21	14.2	592	2.83	18.8	2.0	19.1	3.8	82.1	.37	.92	.55	92	.67	.110	15.5	49.4	.78	214.9	.102	1	1.81	.017	.08	1.5	.12	.43	.5	.06	6.6	02		
999SM-061	1.83	41.19	16.18	79.2	284.20	6.8	21.4	603	3.04	80.0	1.1	18.8	2.6	33.6	.32	3.63	.53	63	.36	.091	12.1	29.2	.65	300.6	.053	1	1.43	.015	.14	.6	.18	.99	1.0	.26	5.2	08	
999SMG-061	1.82	41.31	16.32	79.5	292.21	1.1	21.1	602	3.06	80.9	1.1	11.9	2.5	33.4	.32	3.62	.54	64	.36	.091	11.9	23.2	.66	306.6	.055	1	1.44	.018	.14	.6	.18	103.1	1.1	.27	5.1	09	
STANDARD DS2	14.66	129.90	33.24	164.1	270.37	13.1	833	3.21	65.0	21.7	204.7	3.5	26.7	11.73	10.96	11.1	79	.56	.082	15.0	167.3	.60	143.4	.117	4	1.79	.040	.17	7.9	1.95	259	2.5	1.87	6.5	02		

Sample type: SILT, Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
APPENDIX D

FLUID INCLUSION ANALYSIS
December 14, 1999

Mr. B. Jaworski
Prospector International Resources Inc.
530-800 West Pender St.
Vancouver, B.C. V6C 2V6

Re: Petrographic examination of fluid inclusions

Lotto-1 is a pegmatitic veinlet composed of medium grained intergrown quartz and feldspar within an intrusion. It contains abundant vapor rich FI typical of intrusive-hosted and intrusive related deposits, carbonic inclusions, plus less common saline FI. This association is common in virtually all of the intrusion-related gold deposits of the Tombstone Suite.

Lotto-1
- Pegmatitic veinlet in fine-grained equigranular monzonitic intrusive.

<table>
<thead>
<tr>
<th>In quartz phenocrysts:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) FI with large vapor bubble, classic magmatic vapor-rich FI</td>
<td>Abundant</td>
</tr>
<tr>
<td>(2) FI with moderate bubble size, some deformed bubbles indicating clathrates</td>
<td>Common</td>
</tr>
<tr>
<td>(3) FI with small bubble and small halite DM, plus other DM</td>
<td>Rare</td>
</tr>
<tr>
<td>(4) FI with large bubble and small DM</td>
<td>Rare</td>
</tr>
<tr>
<td>(5) FI that appear to be mostly liquid CO₂, a few of which are large enough to nucleate a vapor bubble.</td>
<td>Rare</td>
</tr>
</tbody>
</table>

DM means “daughter mineral”, DB means “double bubble”, indicates presence of liquid CO₂
Inclusions are classified as “rare”, “common” or “abundant”, based on the number present in the slide.

Sincerely,

J.J. Irwin