EXPLORATION
NTS 105G8

1999 ASSESSMENT REPORT
ANG PROPERTY
GROUND GEOPHYSICAL SURVEYS (HLEM/MAG)
WATSON LAKE M.D., YUKON
WOLVERINE LAKE AREA

WORK PERIOD
MARCH 1-31, 1999
LATITUDE: 61°24'
LONGITUDE: 130°17'

APRIL 1999

PAUL A. MACROBBIE
ROBERT W. HOLROYD
This report has been examined by
the Geological Evaluation Unit
under Section 53 (4) Yukon Quartz
Mining Act and is allowed as
representation work in the amount
of $12,100.

M. B. Regional Manager, Exploration and
Geological Services for Commissioner
of Yukon Territory.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2.0 LOCATION AND ACCESS</td>
<td>1</td>
</tr>
<tr>
<td>3.0 PROPERTIES AND OWNERSHIP</td>
<td>1</td>
</tr>
<tr>
<td>4.0 PREVIOUS WORK</td>
<td>1</td>
</tr>
<tr>
<td>5.0 REGIONAL GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>6.0 1999 FIELD WORK</td>
<td>6</td>
</tr>
<tr>
<td>7.0 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>7</td>
</tr>
<tr>
<td>8.0 REFERENCES</td>
<td>8</td>
</tr>
</tbody>
</table>

FIGURES

- **FIGURE 1** GENERAL LOCATION MAP
 Page 2
- **FIGURE 2** REGIONAL PROPERTY INDEX MAP
 Page 3
- **FIGURE 4** REGIONAL TERRANE MAP
 Page 5

APPENDICES

- **APPENDIX 1** STATEMENT OF EXPENDITURES

ATTACHMENTS

- **FIGURE 3** PROPERTY TENURE MAP
 Page 6
- **FIGURE 5** PROPERTY GEOLOGICAL MAP WITH 1999 GRID LOCATIONS
 Page 7
1.0 SUMMARY

The rocks underlying this part of the southeastern Yukon have been assigned to two terranes: the Yukon Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT). Recent geological mapping by Murphy (1997, 1998), Hunt and Murphy (1998) and Murphy and Piercey (1998) in the Grass Lakes, Fire Lake and Wolverine Lake areas has subdivided the YTT into 7 units. Two significant, felsic hosted VMS deposits have been discovered in this belt in recent years. The ABM VMS Deposit is hosted in a thick accumulation of Unit 3 felsic metavolcanics. Unit 3 comprises a mixed sequence of felsic metavolcanic schist (meta-tuff) and feldspar-quartz augen schist (metaporphryry) with lesser calcareous psammite, mafic metavolcanic schists and black, carbonaceous phyllite. Mortensen (1983a) has reported Lower Mississippian U-Pb ages from Unit 3 felsic metavolcanic rocks. The Wolverine/Lynx VMS Deposit is hosted in Unit 6 which comprises thinly bedded, pale coloured siliceous rocks (meta-exhalite) with associated barite-magnetite Fe-formations and light coloured phyllite with intercalated dark grey to black phyllite. Unit 6 is thought to be Mississippian to Pennsylvanian in age.

The ANG Property is underlain by a sequence of favourable, felsic metavolcanic quartz-feldspar and feldspar phyrnic schists (QFP/FP intrusives) and fine granular quartz-sercite+biotite-chlorite schists (tuffs and lesser flow/sills) and lesser mafic metavolcanic schists and phyllites. This sequence is equivalent to that hosting the ABM Deposit.

The 1999 field program was conducted in early March and involved ground geophysical surveys (HLEM/MAG) on 2 grids. These 2 identical grids totalled 7.6 kms and were established with hard chain and compass. A total of 6.4 kms of HLEM and 7.6 kms of MAG were completed on both grids.

The surveys on the ANG1 grid identified two sub-parallel, narrow, weak conductors which flank magnetic horizons. On the ANG2 grid, HLEM and magnetics surveys identified a weak conductor with a moderate magnetic signature.

The conductors on both grids, ANG1 and ANG2, do not represent significant massive sulphide targets. No additional work is required at this time.

2.0 LOCATION AND ACCESS

The ANG Property is located on the northern flank of the Pelly Mountain range, 150 km south of Ross River, Yukon (Figure 1). The area is accessed by the gravel, all-weather Robert Campbell Highway which links the towns of Watson Lake and Ross River. The property is situated 5 kms southwest of Wolverine Lake, 15 kms southeast of the ABM VMS Deposit and 9 kms west-southeast of the Wolverine/Lynx VHMS Deposit (Figure 2). In 1999, access was via a 18 km snowmobile trail established from Cominco’s KZK camp.

3.0 PROPERTIES AND OWNERSHIP

The ANG Property comprises 39 mineral claims owned 100% by Cominco and listed as follows:

<table>
<thead>
<tr>
<th>NAME</th>
<th>UNITS</th>
<th>CLAIM NO.</th>
<th>DUE DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANG 1-39</td>
<td>39</td>
<td>YB71309-347</td>
<td>April 2, 1999</td>
</tr>
</tbody>
</table>

4.0 PREVIOUS WORK

Cominco’s interest in the area peaked in 1995/96 with the discovery of the ABM VMS Deposit (mineable reserve of 11.3 Mt grading 0.9% Cu, 1.5% Pb, 5.9% Zn, 133g/t Ag and 1.3g/t Au) in 1994 and the subsequent discovery of the
Wolverine/Lynx VMS Deposit (in situ resource of >6.2 Mt grading 1.3% Cu, 1.6% Pb, 12.7% Zn, 371g/t Ag and 1.8g/t Au) in 1995.

The ANG Property was staked by Cominco in 1995 to cover areas of favourable geology with good VMS potential, stratigraphically located between the 2 newly discovered deposits and on strike with a mineral showing on the adjacent REDLINE Property.

With the exception of an AEM/AMAG survey flown in 1995 and recce scale geological mapping, Cominco has not conducted any ground exploration program on the property. The AEM/AMAG survey identified 2 weak EM conductors on the property which are the subject of the 1999 exploration program.

Other properties in the immediate ANG area include the adjacent REDLINE Property (Expatriate; drilled 6 DDHs in 1996 targeting a multi-element soil anomaly in felsic metavolcanics with no significant results) to the west and the adjoining ON Property (Cominco and Cominco/Expatriate/Atna JV; drilled 1 DDH targeting a UTEM anomaly with a supporting, multi-element soil anomaly with no significant results) to the north.

5.0 REGIONAL GEOLOGY

The rocks underlying this part of the southeastern Yukon have been assigned to two terranes; the Yukon Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT) (Figure 4) (Mortensen, 1983a; Mortensen and Jilson, 1985).

Recent geological mapping by Murphy (1997, 1998), Hunt and Murphy (1998) and Murphy and Piercey (1998) in the Grass Lakes, Fire Lake and Wolverine Lake areas has subdivided the YTT into 7 units.

The lowermost unit (Unit 1) comprises a mixed sequence dominated by quartzo psammite and metapelite with minor felsic metavolcanic schist, calcareous schist/metapelite and marble members. Felsic metavolcanic members locally host minor sulphide (py+sp+ga-cpy) occurrences. The age of this unit is uncertain, but presumed to be pre-Mississippian. This unit would correlate with the pre-Devonian (?) "lower unit" as described by Mortensen (1983a).

The overlying 6 units, described below, would correlate to the Devonian-Mississippian "middle unit" as described by Mortensen (1983a).

Unit 2 consists of mafic metavolcanic schist and phyllites with very minor carbonaceous phyllite, quartzite and rare marble. Locally significant meta-gabbro, meta-pyroxenite and meta-ultramafic bodies are present representing comagmatic intrusions. Columbia Gold's Fyre Lake Deposit is a significant besshi-type, Cu-Co-Au VMS deposit hosted by mafic metavolcanics at the top of Unit 2.

Unit 3 comprises a mixed sequence of felsic metavolcanic schist (meta-tuff) and feldspar-quartz augenved schist (meta-porphyry) with lesser calcareous psammite, mafic metavolcanic schists and black, carbonaceous phyllite. The thickest accumulation of felsic metavolcanics occurs in the area of Cominco's ABM Deposit. Mortensen (1983a) reports Lower Mississippian U-Pb ages from these metavolcanics. The ANG Property is underlain by stratigraphy belonging to Unit 3 (Figure 5).

Unit 4 consists of grey to black, carbonaceous phyllite and mafic metavolcanic phyllite/schist with minor psammitite and quartzite which forms a very thick sequence extending north of the ABM Deposit.

Units 1-4 are intruded by two to three Lower Mississippian, mafic to felsic meta-plutonic suites (Simpson Range Suite and granitic to monzonitic, augen orthogneisses).

Murphy and Piercey (1998) suggests that Units 1-4, and the intrusive suites mentioned above, have undergone a Lower to Middle Mississippian (?) deformation event which resulted in uplift and erosion to produce an unconformity, separating this sequence from the overlying Units 5-7. This controversial suggestion is based on the interpretation of a coarse feldspathic sandstone (containing eroded detrital feldspars) in Unit 5 and the belief that Units 1-4 have undergone 2 phases of deformation while Units 5-7 have been deformed by only 1 phase of deformation.

Murphy and Piercey (1998) have described Units 5-7 only in the Wolverine Lake area.
Yukon Regional Terranes
Unit 5 comprises a mixed package of carbonaceous phyllite, with coarse feldspathic sandstone and grits forming lower members, and felsic metavolcanic, locally porphyritic, phyllite (meta-tuff) intruded by locally significant felsic quartz-feldspar meta-porphry.

Unit 6 consists of thinly bedded, pale colored siliceous rocks (exhalite) with associated barite-magnetite deformations and light colored phyllite grading up section into pale siliceous rocks with intercalated dark grey to black phyllite. Expatriate/Atna’s Wolverine/Lynx VMS Deposit is positioned at the base of Unit 6.

The overlying Unit 7 comprises carbonaceous phyllite/argillite, sandstone with minor mafic metavolcanic flows and locally developed diamictites containing both mafic and felsic fragments.

Units 5-7 are thought to be Mississippian to Pennsylvanian in age (Murphy, 1998).

Unit 7 is thought to pass conformably into a thick sequence of mafic breccias and pillow and massive mafic flows with minor intrusive gabro/diabase and maroon chert and argillite. This sequence is thought to be Pennsylvanian to Permian in age (Murphy and Piercey, 1998) and is equivalent to the Campbell Range Belt. Others (Plint, 1994; Mortensen and Jilson, 1985; Mortensen, 1983a) have described the Campbell Range Belt as the allochthonous SMT. The significant question of whether allochthonous SMT exists in this area, or not, requires further work. Mafic volcanics of the Campbell Range Belt are host to a significant mafic-type (Cyprus-type) VMS deposit on Expatriate’s ICE property and to mineralization at the Julia showing on Atna Resources’ MONEY property.

The YTT stratigraphic sequence appears to reflect stable, continental platform/shelf sedimentation with intervening periods of rifting/extension and mafic to felsic arc volcanism developed within more reduced basinal settings.

A sub-horizontal to moderately steep north to northeast dipping, penetrative ductile deformation fabric and locally preserved isoclinal folding with associated middle greenschist facies (chlorite-biotite grade) metamorphism affects all YTT rocks, but is particularly well developed in Units 1-4 and less prominent moving up section into Unit 7. These fabrics and metamorphism may reflect 2 phases of deformation; an early Mississippian event and a event related to a continent-arc collision during the Late Permian to early Triassic time.

As mentioned above, others have described the Campbell Range Belt as belonging to the allochthonous, Devonian to Permian aged, SMT and is described as a heterogeneous package of mafic to ultramafic plutonic rocks, mafic volcanics, massive carbonates and cherts. The SMT is thought to represent a disrupted oceanic and volcanic arc assemblage once located between the YTT and the North American craton (Mortensen, 1983a; Mortensen and Jilson, 1985).

Late Triassic (?) immature clastics, comprising micaceous argillites, siltstones and sandstones, unconformably (?) overlie the deformed and metamorphosed YTT rocks. These sediments are often closely associated with "SMT" mafic metavolcanics and are invariably in fault contact with YTT rocks.

The YTT, "SMT", late Triassic sediments, and late Triassic to Middle Jurassic plutons are all affected by a period of Middle Jurassic to late Cretaceous thrust faulting and felsic plutonism, during which the Finlayson Lake Fault Zone was formed. This complex fault zone contains both thrust and steep, transient (?) faults and separates the YTT from autochthonous North America (Mortensen, 1983a; Mortensen and Jilson, 1985). Thrust faulting continued after the formation of the Finlayson Lake Fault Zone as indicated by the presence of over thrust sheets of SMT rocks (Campbell Range Belt) above the fault zone (Plint, 1994). Murphy and Piercey (1998) suggest that the Finlayson Lake Fault Zone, as described, does not exist. Further mapping, geochemistry and geochronology studies are obviously required.

6.0 1999 FIELD WORK

The 1999 field program was a winter (early March), snowmobile supported program, based out of the Cominco KZK camp, and involved establishing 2 grids totalling 7.6 lkms (3.8 lkms each) with hard chain and compass and subsequently conducting ground geophysical surveys (6.4 lkms of HLEM and 7.6 lkms of MAG).

The grids were positioned to cover 2 weak airborne EM conductors (ANG1 and ANG2) in areas of high AMAG. The anomalies are hosted within a sequence of favourable, felsic metavolcanic quartz-feldspar and feldspar phryic
schists (QFP/FP intrusives) and fine granular quartz-sericite-biotite-chlorite schists (tuffs and lesser flow/sills) and lesser mafic metavolcanic schists and phyllites. This sequence is equivalent to that hosting the ABM Deposit.

6.1 ESTABLISHING THE GRIDS

The 2 grids each comprise 3.8 km for a total of 7.6 km. The grids were established using a hard chain and compass by Cominco personnel. The grids were positioned with a differential GPS instrument using a base station at the KZK camp. Location of the ANG1 and ANG2 grids are shown on Figure 5.

6.2 GROUND GEOPHYSICAL SURVEYS

The 2 grids were surveyed for a total of 6.4 km of HLEM and 7.6 km of MAG by a Cominco geophysical crew. The HLEM survey was carried out using an Apex MaxMin I-10 system, with a 100 m coil separation. The HLEM readings were taken at 25 m intervals along the lines and three frequencies (440, 1760 and 3520 Hz) were recorded. The magnetic survey was carried out using GEM GSM-19 magnetometers. A base station was established at the KZK camp and the total field magnetic readings were corrected for diurnal variations. The base and field magnetometers were synchronized to record simultaneously, eliminating inaccuracies due to interpolation between base readings. Total field magnetic readings were taken at 12.5 m intervals along the grid lines. Data for the ANG1 and ANG2 surveys is presented as 6 attached Figures.

ANG1 Grid

The HLEM and magnetic surveys on the ANG1 grid outlined two conductors flanking the 8900N base line. The northern conductor weakens on the easternmost line, and the southern conductor is weak on the western margin of the grid. Both conductors are low conductivity, as indicated by the fact that there is little response on low frequencies, and mainly quadrature responses at higher frequencies. Conductor axes are interpreted on the highest frequency (3520 Hz) plots. Conductivity***thickness values are interpreted to be less than 1S, and there are no measurable apparent thicknesses evident in the HLEM interpretation. Due to interference between conductors, the dips are difficult to interpret without modelling, though it is anticipated that the attitude of the conductors is similar to the local geology, which has dips to the north. The magnetic responses do not correlate directly with the conductors, since, though closely related, the magnetic features do not consistently follow the conductor axes. These magnetic trends show magnetic relief of 250-300 nT.

ANG2 Grid

Geophysical surveys on the ANG2 grid identified a single weak conductor extending across and beyond this small grid. Like the conductors on the ANG1 grid, this conductor is narrow (<5 m), shallow (<5 m), and has low conductivity*thickness values (<1 S). The conductor dips moderately to the north. The magnetic survey shows the ANG2 conductor to have a direct magnetic expression of 50-100 nT. However, even with a direct magnetic signature, the low conductivity*thickness product and narrow thicknesses indicate that this is not a massive sulphide target.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The conductors defined by the 1999 HLEM/MAG surveys on the ANG1 and ANG2 grids are too narrow and of too low conductances to be of interest as massive sulphide targets. No further work is recommended on these targets.
REFERENCES

APPENDIX

STATEMENT OF EXPENDITURES
Statement of Expenditures

Ana Property

1) PROGRAM/GEOPHYSICS
 HLEM/MAG

<table>
<thead>
<tr>
<th>#days</th>
<th>cost/employee</th>
<th>employee</th>
<th>subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$410.00</td>
<td>PAM</td>
<td>$2,050.00</td>
</tr>
<tr>
<td>8.5</td>
<td>$220.00</td>
<td>SHB</td>
<td>$1,870.00</td>
</tr>
<tr>
<td>6</td>
<td>$235.00</td>
<td>KB</td>
<td>$1,410.00</td>
</tr>
<tr>
<td>2</td>
<td>$300.00</td>
<td>GKG</td>
<td>$600.00</td>
</tr>
<tr>
<td>3</td>
<td>$200.00</td>
<td>JA</td>
<td>$600.00</td>
</tr>
<tr>
<td>10.5</td>
<td>$270.00</td>
<td>JE</td>
<td>$2,935.00</td>
</tr>
<tr>
<td>3</td>
<td>$350.00</td>
<td>DH</td>
<td>$1,050.00</td>
</tr>
<tr>
<td>3</td>
<td>$240.00</td>
<td>DLT</td>
<td>$720.00</td>
</tr>
<tr>
<td>2</td>
<td>$476.00</td>
<td>RWH</td>
<td>$952.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$12,087.00</td>
</tr>
</tbody>
</table>

dates worked-field
March 1-12, 1999

2) Airfare and expenses

$2,395.00

3) Food, Expenitng, Freight

$5,048.00

4) Truck and equipment
 rental, fuel

$2,550.00

$19,582.04 Grand total

Credit split evenly between 2 grids.

ANG1 Grid - 60% Cominco ground	$9,781.00	$5,898.60
ANG2 Grid - 75% Cominco ground	$9,781.00	$7,335.75
$13,204.35 Grand total		

Ground distribution credit coverage

Ang 10 $4401.45
Ang 12 $1457.15

Ang 19 $366.78
Ang 21 $733.57
Ang 23 $366.78
Ang 20 $1457.15
Ang 22 $2934.3
Ang 24 $1457.15
COMINCO LTD.
PELLY MOUNTAIN PROJECT
ANG1 GRID
HLEM AND MAGNETICS SURVEY

HLEM - 100m coil spacing, 3520 Hz
MAGNETICS - Total Field
Survey Date: March 1999

RWH