PROPERTY ASSESSMENT REPORT

on the
JUBE CLAIMS
1 to 6
QUARTZ MINING
CLAIMS
(YC08041-YC08046)

WHITEHORSE MINING DISTRICT
YUKON TERRITORY
JUBILEE MT.

NTS 105 D/1
LATITUDE 60-14 N
LONGITUDE 134-07W

between
JULY 8, 1997
JULY 22, 1998

For
Brian Carter (50% owner)
Brian Scott (50% owner)

By B. Carter and J. Clarke
Jan 14, 1999
This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz
Mining Act and is allowed as representative work in the amount
of $120,000.

Regional Manager, Exploration and Geologic Services for Commissioner
of Yukon Territory.
LOCATION MAP
TABLE OF CONTENTS

SUMMARY 3
ACCESS 3
REGIONAL GEOLOGY 3
LOCAL GEOLOGY 4
CONCLUSIONS AND RECOMMENDATIONS 5
STATEMENT OF ELIGIBLE COSTS 6
APPENDIX A - HISTORY OF THE AREA 7
APPENDIX B - ASSAY RESULTS/ROCK SAMPLE DESCRIPTIONS 8
STATEMENT OF QUALIFICATIONS 9
APPENDIX C - DATA 10
SUMMARY

On July 8th, 1998 the property was prospected by B. Scott, B. Carter and J. Clarke (Aurum Geological Consultants Inc.). Claims 1-3 and 5,6 were traversed and prospected and Mr. Clarke carried out reconnaissance geological mapping of outcrops and shears.

On July 22nd B. Scott and B. Carter prospected Claims 1-2 and located a mineralized outcrop not known to have been sampled. The mineralized outcrop is in a contact with a shear zone striking 300°. Two rock samples (JM-98-3, JM-98-4) were taken nine metres apart and returned assays of 4.5, 3.6 g/t Au, 2.7, 1.9 g/t Ag and 5810, 4087 ppm Cu respectively.

As of the writing of this report six more claims, (the Harry Claims) previously the Jubilee claims have been staked by the owners and added to the Jube claims. The Harry claims contain a shear zone (the Jubilee Shear) with an arsenopyrite bearing quartz vein with an indicated strike length exceeding 1600 metres and a width of 1-2 metres. Assays from previous owners returned 9.3 g/t Au, 27.4 g/t Ag and 1.0% Cu across 1.5 metres. B. Scott sampled the vein in 1997 and one rock sample (97-JB-7) returned results of 21 g/t Au, 8.9 g/t Ag and 8865 ppb Cu.

ACCESS

The Claims are located approximately 80 km. SE of the City of Whitehorse, Yukon Territory. Access is via the Alaska Highway to Jakes Corners, then 22 km south on the Tagish Road, 7 km up the Tagish Fire Tower Road then 7 km along an ATV trail to the foot of Jubilee Mountain. A 2 km walk along clear ground gives access to the property. Total distance from the City of Whitehorse is 128 km as described above or 77 km by helicopter.

REGIONAL GEOLOGY

Rocks described by Wheeler (GSC M. 312) include:

<table>
<thead>
<tr>
<th>Taku Group</th>
<th>Cretaceous</th>
</tr>
</thead>
<tbody>
<tr>
<td>2c</td>
<td>6</td>
</tr>
<tr>
<td>Limestone, Limestone Breccia</td>
<td>Peridotite, Dunite, Serpentinite, Pyroxenite</td>
</tr>
<tr>
<td>2ds</td>
<td></td>
</tr>
<tr>
<td>Metamorphosed Rocks and numerous Serpentine Bodies</td>
<td></td>
</tr>
<tr>
<td>8b</td>
<td></td>
</tr>
<tr>
<td>Leucocratic granite, Biotite Granite</td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td></td>
</tr>
<tr>
<td>Hornblende Diorite</td>
<td></td>
</tr>
</tbody>
</table>
LOCAL GEOLOGY

The property is underlain by Cretaceous Taku Group andesite flows, pyroclastic rocks and inter-calciated cherts that form a roof pendant above or an embayment into a large dunite intrusion. Pyrrhotite, bornite and chalcopyrite occur as narrow lenses in diopside-garnet-epidote skarn developed in Permo-Pennsylvanian limestone near the contact of a dunite body (Yukon Minfile 105 D-001).

Gold bearing arsenopyrite and pyrite and quartz-calcite gangue in a 1-2 metre wide vein and stockwork zone in a 10-25 metre wide, 300° vertically dipping shear zone with an indicated strike length of 1600 metres (Minfile No 105 D-157) returned assays of 9.3 g/t Au and 27.4 g/t Ag and 1.0% Cu.

Numerous skarn bodies or pods are located on Jube 5 and 6 claims. The skarn pods are 1 to 2 metres by 1 to 7 metres on surface and are on strike with a limestone lens. The skarns are essentially actinolite, pyrrhotite- pyrite, chalcopyrite, epidote and garnet. The skarns are heavily stained with goethite.

Sampling in 1997 showed skarn samples contained from 0.3% to 0.9% Cu. The skarning is contained mostly in a large brecciated area.

In the Regional stream sediment reconnaissance data (Yukon G.S.C. 1218, 1985) from the Jube Claims area the elements that returned above average or anomalous values are U, W, Sn, Sb, Au.
CONCLUSIONS AND RECOMMENDATIONS

A shear striking 300° (Jube Shear) in the most northern part of the Jube Claims (Jube 1-2) returned two assays from samples taken 9 metres apart with results of 4.5 g/t Au, 3.6 g/t Au, 2.7 g/t Ag, 1.9 g/t Ag, 5810 ppm Cu respectively. This coincides with a sheared quartz-calcite vein 600 metres north on the Jubilee Claims. The Jubilee Claims have lapsed and been re-staked as the Harry Claims and now make up a 12 claim block of the Jube and Harry Claims.

The Jubilee Shear has an indicated strike length of 1600 metres in a 300° direction with a width of 10 to 25 metres and a vertical dip. The Jubilee Shear is host to a 1 to 2 metre wide quartz-calcite arsenopyrite bearing vein and stockwork zone. Assays of 9.3 g/t Au, 27.4 g/t Ag and 1.0% Cu across 1.5 metres were obtained by the previous owner. Sampling (grab) by B. Scott, the present owner, returned 21 g/t Au, 8.9 g/t Ag and 8865 ppm Cu.

Prospecting of the Jube Shear in both directions should be carried out which could reveal more mineralization over a known strike length. Also prospecting on existing claims and surrounding areas on 100-200 metre grid could lead to the discovery of further mineralized veins and stockworks. Attention should be paid to the 300° striking lineaments. Blasting of trenches on the Jube Shear in the two Au mineralized areas is recommended with follow up chip sampling preformed on any revealed mineralization.

A baseline following the claim line (N-S) with 50 metre spaced cross lines should be laid out. Cross lines should be from 200-400 metres E-W. A detailed grid should also be established over the Jube Shear to facilitate 12.5-25 metres spaces soil sampling, a mag/VLF geophysical survey and geological mapping. Results from this program should give information on existing shears (strike length/width) and may indicate or reveal new shears covered by overburden. Several lineaments are noted on air photos and warrant detailed prospecting.

All historic, existing and future results should be digitally compiled into a 1:2500 scale base map.
STATEMENT OF ELIGIBLE COSTS

Report by B. Carter, J. Clarke
Field Work by B. Carter, J. Clarke, B. Scott
July 8 and July 29, 1998

<table>
<thead>
<tr>
<th>Item</th>
<th>July 8th, 1998</th>
<th></th>
<th></th>
<th>July 22nd, 1998</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Item</td>
<td>Cost</td>
<td></td>
<td>Item</td>
<td>Cost</td>
</tr>
<tr>
<td>Prospector</td>
<td>$150/day x 1</td>
<td></td>
<td></td>
<td>$150/day x 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Scott</td>
<td>$150/day x 1</td>
<td></td>
<td></td>
<td>$150/day x 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Carter</td>
<td>$150/day x 1</td>
<td></td>
<td></td>
<td>$150/day x 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Clarke</td>
<td>$150/day x 1</td>
<td></td>
<td></td>
<td>$150/day x 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rental</td>
<td>$80/truck/day x 3</td>
<td></td>
<td></td>
<td>$240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Trucks 4x4</td>
<td>$150/day x 3</td>
<td></td>
<td></td>
<td>$450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ATV’s 4x4</td>
<td>$150/day x 3</td>
<td></td>
<td></td>
<td>$450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile Phone</td>
<td>$20/day</td>
<td></td>
<td></td>
<td>$20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td></td>
<td>$75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prospector</td>
<td>$150/day x 1</td>
<td></td>
<td></td>
<td>$150/day x 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Scott</td>
<td>$150/day x 1</td>
<td></td>
<td></td>
<td>$150/day x 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Carter</td>
<td>$150/day x 1</td>
<td></td>
<td></td>
<td>$150/day x 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rental</td>
<td>$80/truck/day x 2</td>
<td></td>
<td></td>
<td>$160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Trucks 4x4</td>
<td>$150/day x 2</td>
<td></td>
<td></td>
<td>$300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ATV’s 4x4</td>
<td>$150/day x 2</td>
<td></td>
<td></td>
<td>$300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile Phone</td>
<td>$20/day</td>
<td></td>
<td></td>
<td>$20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td></td>
<td>$50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assay Costs</td>
<td></td>
<td></td>
<td></td>
<td>$171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Costs</td>
<td></td>
<td></td>
<td></td>
<td>$300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>$2536</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX A - HISTORY OF THE AREA

YUKON MINFILE
YUKON MINFILE
YUKON GEOLOGY PROGRAM
WHITEHORSE

NAME(S): Jubilee
MINFILE #: 105D 001
MAJOR COMMODITIES: Cu
MINOR COMMODITIES: Ni, Au, Ag, Mo
TECTONIC ELEMENT: Cache Creek Terrane

NTS MAP SHEET: 105 D 1
LATITUDE: 60°12'00"N
LONGITUDE: 134°06'00"W
DEPOSIT TYPE: Skarn
STATUS: Showing

CLAIMS (PREVIOUS AND CURRENT)

AD, FIRST CHANCE, ALLIN, IRON MASK, DOUGLAS, ROVER, SMOKY, JJ, JM, APOLLO

WORK HISTORY

Staked as AD, First Chance, Allin & Iron Mask cl (8568) in Jun/06 by A. Dickson, J. Shermer and J.M. Stewart. The property was sold to A.B. Palmer, who added Douglas, etc cl (9779) in Jun/07, performed hand trenching and claim surveys and took the claims to lease in 1910.

Restaked as Rover & Smoky cl (65599) by J. Johns and H. Vrsulce in Jul/53; as JJ cl (Y9051) in Jul/66 by A. Johns; and JM cl (Y18878) in Jun/67 by J. Amato for R.G. Hilker and M. Hougen, who added the Apollo cl (Y23893) in Feb/68. The property was explored with mapping, mag and EM surveys in 1968-69 by Lion Nickel M of Can L under option and was trenched in 1970 by the owners.

GEOLOGY

Pyrrhotite and minor bornite and chalcopyrite occur as narrow lenses in diopside-garnet-epidote skarn developed in Permo-Pennsylvanian limestone near the contact of a dunite body. Geophysical work indicated no extensions. Character samples assayed up to 0.3% Cu and trace Ni, Au, Ag and Mo.

REFERENCES

GEOLOGICAL SURVEY OF CANADA, Memoir 312, p. 142.

ENERGY, MINES AND RESOURCES CANADA. Yukon Mineral Inventory.

ENERGY, MINES AND RESOURCES CANADA. Legal Survey Group Sheets.
NAME(S): Pennycook (Jubilee)
MINFILE #: 105D 157
MAJOR COMMODITIES: Au
MINOR COMMODITIES: Ag, Cu
TECTONIC ELEMENT: Cache Creek Terrane

NTS MAP SHEET: 105 D 1
LATITUDE: 60°14'00"N
LONGITUDE: 134°07'00"W
DEPOSIT TYPE: Vein
STATUS: Drilled Prospect

CLAIMS (PREVIOUS AND CURRENT)
JUBILEE, J&M

WORK HISTORY

This showing was probably staked and hand trenched as part of the Jubilee occurrence (MINFILE 105D 001) in 1906-10.

Restaked as Jubilee cl (YA48321) in Oct/79 by H. Verslue, who hand trenched in 1980. In 1981 Nithcx El optioned the claims, added J & M cl (YA59945) in April and explored with minor mapping and sampling and 6 holes (304 m) later in the year. The property was reoptioned by Golden Slipper Res Inc and Logan ML, which explored with VLF EM and geochemical surveys, hand trenching and 12 holes (404 m) in 1982 and mapping and trenching in 1983. Golden Slipper changed its name to Napa Res Inc in 1983.

After the option terminated, Verslue performed geophysical and geochemical surveys in 1987.

GEOLOGY

The property is underlain by Cretaceous Taku Group andesite flows, pyroclastic rocks and intercalated cherts that form a roof pendant above, or an embayment into a large dunite intrusion. Gold-bearing arsenopyrite occurs withchalcopyrite, minor pyrrhotite and pyrite and quartz-calcite gangue in a 1 to 2 m wide vein and stockwork zone in a 10 to 25 m wide east-west, vertically-dipping shear zone that has an indicated strike length exceeding 1600 m.

The average grade of seven trenches was 9.3 g/t Au, 27.4 g/t Ag and 1.0% Cu across 1.5 m. A length of 300 m was suggested by the EM and geochem anomalies. Drilling showed that the mineralization is erratically distributed but locally more widespread than indicated by surface work. Four of 18 holes intersected significant mineralization. Best results were from Hole J82-1, which averaged 0.69 g/t Au, 6.9 g/t Ag and 0.35% Cu over 21.8 m.

REFERENCES

LOGAN MINES LTD AND GOLDEN SLIPPER RESOURCES LTD, Nov/82. Assessment Report by V. Cukor.

APPENDIX B - ASSAY RESULTS/ROCK SAMPLE DESCRIPTIONS

Rock Sample Descriptions.
From B. Carter, B. Scott's Jube Claims 105 D1
Wed July 8th, 1998
Visited by J. Clarke (Aurum Geological)

R-98-1: Pyrite, Pyrrhotite, Chalcopyrite, Hosted in Wheelers 2d meta-volcanics.

R-98-2: Feldspar Porphyry, Large angular float. Located 50m S. of R-98-1

R-98-4: Siliceous (Rhyolite or Quartzite) with tr-1/4 % < 1mm Mo.

R-98-5: (1997 Sample Assay 97-JB-7) From trench. 1-3 m. wide shear hosted quartz vein with massive sulfides. 30% As, 20% Py. Host rock appears to be a mix of light coloured fine grained seds and/or rhyolite flows with tuffs.

JM-98-1: Skarn, massive, Pyrrhotite, Pyrite, lens 1-2 m wide, vertical dip with 2-7 m strike length EW at contact with unit 6/2ds

JM-98-2: Representative of ultra-mafic unit near EW shear/fault with mylonites of unit 2ds (<1% sulfides)

JM-98-3, JM-98-4: Sample 9m apart. The above samples are located at a junction where a 90° shear intersects a 300° shear. The sample comes from a goethite capped massive pyrrhotite/pyrite – chalcopyrite – quartz matrix vein. The host rock is a sheared meta-volcanic (greenstone).
CERTIFICATE OF ANALYSIS

iPL 98H0890

21 Samples

21 Pulp

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Type</th>
<th>Au (ppb)</th>
<th>Pt (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Sb (ppm)</th>
<th>Hg (ppm)</th>
<th>Mo (ppm)</th>
<th>Ti (ppm)</th>
<th>Bi (ppm)</th>
<th>Cd (ppm)</th>
<th>Co (ppm)</th>
<th>Ni (ppm)</th>
<th>Ba (ppm)</th>
<th>W (ppm)</th>
<th>Cr (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JKR-98-1F</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.1m</td>
<td>11771</td>
<td>14023</td>
<td>18450</td>
<td>586</td>
<td>0.6</td>
<td>9</td>
<td><1</td>
<td><10</td>
<td><2</td>
<td>1.1m</td>
<td>4</td>
<td>9</td>
<td><2</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-2</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>8.7</td>
<td>137</td>
<td>243</td>
<td>174</td>
<td>186</td>
<td>46</td>
<td><3</td>
<td>2</td>
<td><10</td>
<td><2</td>
<td>12.0</td>
<td>16</td>
<td>19</td>
<td>52</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-3</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>5.7</td>
<td>69</td>
<td>93</td>
<td>76</td>
<td>24</td>
<td>26</td>
<td><3</td>
<td>3</td>
<td><10</td>
<td><2</td>
<td>7.4</td>
<td>11</td>
<td>6</td>
<td>131</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-5</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>3.2</td>
<td>84</td>
<td>84</td>
<td>35</td>
<td>579</td>
<td>7</td>
<td><3</td>
<td>2</td>
<td><10</td>
<td><2</td>
<td>3.6</td>
<td>19</td>
<td>91</td>
<td><2</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-6</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>15.5</td>
<td>798</td>
<td>109</td>
<td>323</td>
<td>205</td>
<td>20</td>
<td><3</td>
<td>2</td>
<td>41</td>
<td>148</td>
<td>38.1</td>
<td>24</td>
<td>20</td>
<td>110</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-6A</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>2.1</td>
<td>369</td>
<td>24</td>
<td>4463</td>
<td>580</td>
<td>20</td>
<td><3</td>
<td>1</td>
<td>41</td>
<td><2</td>
<td>33.7</td>
<td>15</td>
<td>33</td>
<td>1013</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-7</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.2m</td>
<td>19775</td>
<td>621</td>
<td>3.6</td>
<td>120</td>
<td>8</td>
<td><3</td>
<td><1</td>
<td>102</td>
<td>820</td>
<td>0.4m</td>
<td>124</td>
<td>90</td>
<td>23</td>
<td>64</td>
<td>53</td>
</tr>
<tr>
<td>JKR-98-8</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>60.5</td>
<td>14113</td>
<td>470</td>
<td>3.5</td>
<td>199</td>
<td>16</td>
<td><3</td>
<td><1</td>
<td>54</td>
<td>186</td>
<td>0.4m</td>
<td>77</td>
<td>47</td>
<td>22</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>JKR-98-8A</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.2m</td>
<td>2.04</td>
<td>750</td>
<td>3.5</td>
<td>159</td>
<td>15</td>
<td><3</td>
<td><1</td>
<td>112</td>
<td>947</td>
<td>0.4m</td>
<td>74</td>
<td>52</td>
<td>16</td>
<td>48</td>
<td>62</td>
</tr>
<tr>
<td>JKR-98-9</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>5.3</td>
<td>560</td>
<td>36</td>
<td>1520</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>5</td>
<td><10</td>
<td>23</td>
<td>16.5</td>
<td>7</td>
<td>21</td>
<td>54</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-11</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>2.7</td>
<td>189</td>
<td>24</td>
<td>479</td>
<td>58</td>
<td><5</td>
<td><3</td>
<td>4</td>
<td><10</td>
<td>6</td>
<td>5.4</td>
<td>7</td>
<td>7</td>
<td>133</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-12</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>1.2</td>
<td>132</td>
<td>57</td>
<td>201</td>
<td>141</td>
<td><5</td>
<td><3</td>
<td>2</td>
<td>12</td>
<td><2</td>
<td>4.5</td>
<td>14</td>
<td>33</td>
<td>92</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-13</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.9</td>
<td>85</td>
<td>47</td>
<td>167</td>
<td>166</td>
<td><5</td>
<td><3</td>
<td>3</td>
<td><10</td>
<td><2</td>
<td>3.9</td>
<td>12</td>
<td>14</td>
<td>17</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-14</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>134</td>
<td>39</td>
<td>175</td>
<td>138</td>
<td><5</td>
<td><3</td>
<td><1</td>
<td>30</td>
<td><2</td>
<td>5.6</td>
<td>23</td>
<td>68</td>
<td>12</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-15</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>61</td>
<td>39</td>
<td>114</td>
<td>128</td>
<td><5</td>
<td><3</td>
<td>2</td>
<td><10</td>
<td><2</td>
<td>3.0</td>
<td>10</td>
<td>11</td>
<td>39</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-16</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>123</td>
<td>33</td>
<td>54</td>
<td>115</td>
<td><5</td>
<td><3</td>
<td>2</td>
<td><10</td>
<td><2</td>
<td>4.6</td>
<td>18</td>
<td>49</td>
<td>23</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-17</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.1</td>
<td>32</td>
<td>25</td>
<td>18</td>
<td>92</td>
<td><5</td>
<td><3</td>
<td>1</td>
<td><10</td>
<td><2</td>
<td>2.4</td>
<td>8</td>
<td>22</td>
<td>29</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JKR-98-18</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>0.6</td>
<td>290</td>
<td>23</td>
<td>49</td>
<td>47</td>
<td>13</td>
<td><3</td>
<td>3</td>
<td>30</td>
<td><2</td>
<td>5.8</td>
<td>92</td>
<td>1867</td>
<td><2</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>JM-98-2</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>2.7</td>
<td>5810</td>
<td>13</td>
<td>38</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td><1</td>
<td>308</td>
<td>79</td>
<td>25.2</td>
<td>99</td>
<td>41</td>
<td>11</td>
<td>253</td>
</tr>
<tr>
<td>JM-98-3</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>4500</td>
<td>15</td>
<td>4087</td>
<td>14</td>
<td>31</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>1</td>
<td>296</td>
<td>45</td>
<td>22.9</td>
<td>128</td>
<td>86</td>
<td>11</td>
<td><5</td>
</tr>
<tr>
<td>JM-98-4</td>
<td>Pulp</td>
<td>—</td>
<td>—</td>
<td>3600</td>
<td><15</td>
<td>1.9</td>
<td>4087</td>
<td>14</td>
<td>31</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>1</td>
<td>296</td>
<td>45</td>
<td>22.9</td>
<td>128</td>
<td>86</td>
<td>11</td>
</tr>
</tbody>
</table>

Minimum Detection

- Au: 2 ppb
- Pt: 1 ppb
- Ag: 0.1 ppm
- Cu: 1 ppm
- Pb: 2 ppm
- Zn: 1 ppm
- As: 5 ppm
- Sb: 3 ppm
- Hg: 1 ppm
- Mo: 10 ppm
- Ti: 2 ppm
- Bi: 2 ppm
- Cd: 0.1 ppm
- Co: 1 ppm
- Ni: 1 ppm
- Ba: 1 ppm
- W: 1 ppm
- Cr: 1 ppm

Method:
- FA/AAS

No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate ¼ NS=No Sample
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>V (ppm)</th>
<th>Mn (ppm)</th>
<th>La (ppm)</th>
<th>Sr (ppm)</th>
<th>Zr (ppm)</th>
<th>Sc (ppm)</th>
<th>Ti (ppm)</th>
<th>Al (ppm)</th>
<th>Ca (ppm)</th>
<th>Fe (ppm)</th>
<th>Mg (ppm)</th>
<th>K (ppm)</th>
<th>Na (ppm)</th>
<th>P (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JKR-98-1F</td>
<td>3</td>
<td>52</td>
<td><2</td>
<td>5</td>
<td>1</td>
<td><1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.27</td>
<td>0.34</td>
<td>0.13</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>JKR-98-2</td>
<td>134</td>
<td>190</td>
<td>5</td>
<td>297</td>
<td>2</td>
<td>10</td>
<td>0.14</td>
<td>5.54</td>
<td>3.63</td>
<td>2.82</td>
<td>0.72</td>
<td>0.39</td>
<td>0.36</td>
<td>0.09</td>
</tr>
<tr>
<td>JKR-98-3</td>
<td>51</td>
<td>130</td>
<td>14</td>
<td>42</td>
<td>3</td>
<td>3</td>
<td>0.20</td>
<td>0.82</td>
<td>0.67</td>
<td>2.63</td>
<td>0.54</td>
<td>0.17</td>
<td>0.04</td>
<td>0.17</td>
</tr>
<tr>
<td>JKR-98-5</td>
<td>7</td>
<td>89</td>
<td>5</td>
<td>601</td>
<td>3</td>
<td>1</td>
<td>0.07</td>
<td>6.31</td>
<td>5.01</td>
<td>1.30</td>
<td>0.10</td>
<td>0.02</td>
<td>0.25</td>
<td>0.11</td>
</tr>
<tr>
<td>JKR-98-6</td>
<td>31</td>
<td>1675</td>
<td>4</td>
<td>553</td>
<td>10</td>
<td>2</td>
<td>0.05</td>
<td>1.44</td>
<td>13</td>
<td>2.61</td>
<td>0.66</td>
<td>0.04</td>
<td><0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>JKR-98-6A</td>
<td>44</td>
<td>2276</td>
<td>4</td>
<td>810</td>
<td>8</td>
<td>3</td>
<td>0.04</td>
<td>2.93</td>
<td>17</td>
<td>2.88</td>
<td>6.38</td>
<td>0.76</td>
<td><0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>JKR-98-7</td>
<td>26</td>
<td>2254</td>
<td>2</td>
<td>342</td>
<td>8</td>
<td>1</td>
<td>0.03</td>
<td>0.79</td>
<td>13</td>
<td>5.26</td>
<td>0.60</td>
<td>0.02</td>
<td><0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>JKR-98-8</td>
<td>20</td>
<td>1108</td>
<td>8</td>
<td>263</td>
<td>8</td>
<td>2</td>
<td>0.05</td>
<td>1.11</td>
<td>4.32</td>
<td>4.27</td>
<td>0.73</td>
<td>0.03</td>
<td><0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>JKR-98-9</td>
<td>29</td>
<td>1549</td>
<td>3</td>
<td>160</td>
<td>11</td>
<td>2</td>
<td>0.04</td>
<td>1.12</td>
<td>6.61</td>
<td>0.51</td>
<td>0.95</td>
<td>0.01</td>
<td><0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>JKR-98-11</td>
<td>4</td>
<td>227</td>
<td>4</td>
<td>988</td>
<td>3</td>
<td><1</td>
<td>0.03</td>
<td>1.61</td>
<td>21</td>
<td>1.00</td>
<td>3.21</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>JKR-98-12</td>
<td>15</td>
<td>159</td>
<td>4</td>
<td>278</td>
<td>4</td>
<td>1</td>
<td>0.08</td>
<td>4.14</td>
<td>6.08</td>
<td>1.56</td>
<td>0.18</td>
<td>0.09</td>
<td>0.18</td>
<td>0.11</td>
</tr>
<tr>
<td>JKR-98-13</td>
<td>13</td>
<td>60</td>
<td>3</td>
<td>488</td>
<td>4</td>
<td>1</td>
<td>0.13</td>
<td>5.59</td>
<td>4.11</td>
<td>1.26</td>
<td>0.15</td>
<td>0.07</td>
<td>0.69</td>
<td>0.07</td>
</tr>
<tr>
<td>JKR-98-14</td>
<td>4</td>
<td>258</td>
<td><2</td>
<td>156</td>
<td>4</td>
<td><1</td>
<td>0.02</td>
<td>2.68</td>
<td>0.96</td>
<td>3.15</td>
<td>0.75</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>JKR-98-15</td>
<td>17</td>
<td>96</td>
<td>5</td>
<td>339</td>
<td>5</td>
<td>1</td>
<td>0.12</td>
<td>4.05</td>
<td>1.13</td>
<td>1.05</td>
<td>0.22</td>
<td>0.11</td>
<td>0.35</td>
<td>0.08</td>
</tr>
<tr>
<td>JKR-98-16</td>
<td>8</td>
<td>93</td>
<td>5</td>
<td>335</td>
<td>4</td>
<td>1</td>
<td>0.08</td>
<td>4.19</td>
<td>3.09</td>
<td>2.87</td>
<td>0.12</td>
<td>0.07</td>
<td>0.55</td>
<td>0.11</td>
</tr>
<tr>
<td>JKR-98-17</td>
<td>8</td>
<td>100</td>
<td>5</td>
<td>351</td>
<td>4</td>
<td>1</td>
<td>0.09</td>
<td>3.39</td>
<td>2.76</td>
<td>1.51</td>
<td>0.14</td>
<td>0.08</td>
<td>0.38</td>
<td>0.12</td>
</tr>
<tr>
<td>JKR-98-18</td>
<td>5</td>
<td>87</td>
<td>2</td>
<td>159</td>
<td>4</td>
<td><1</td>
<td>0.04</td>
<td>2.47</td>
<td>1.14</td>
<td>0.96</td>
<td>0.19</td>
<td>0.03</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>JH-98-2</td>
<td>30</td>
<td>649</td>
<td><2</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td><0.01</td>
<td>0.46</td>
<td>0.04</td>
<td>4.37</td>
<td>15</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>JH-98-3</td>
<td>10</td>
<td>156</td>
<td><2</td>
<td>7</td>
<td>4</td>
<td><1</td>
<td>0.01</td>
<td>0.25</td>
<td>0.14</td>
<td>17</td>
<td>0.13</td>
<td><0.01</td>
<td><0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>JH-98-4</td>
<td>15</td>
<td>162</td>
<td><2</td>
<td>6</td>
<td>4</td>
<td><1</td>
<td>0.04</td>
<td>0.23</td>
<td>0.21</td>
<td>16</td>
<td>1.16</td>
<td><0.01</td>
<td><0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Minimum Detection: 2 1 2 1 1 1 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Maximum Detection: 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 5.00 5.00

Method: ICP ICP

---No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample
CERTIFICATE OF ANALYSIS

iPL 98G0729

Client: Northern Analytical Laboratories
Project: W0#5532

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Type</th>
<th>Au (ppb)</th>
<th>Pt (ppb)</th>
<th>Pd (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Sb (ppm)</th>
<th>Hg (ppm)</th>
<th>Mo (ppm)</th>
<th>Tl (ppm)</th>
<th>Bi (ppm)</th>
<th>Cd (ppm)</th>
<th>Co (ppm)</th>
<th>Ni (ppm)</th>
<th>Ba (ppm)</th>
<th>W (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-R-1</td>
<td>Pulp</td>
<td><2</td>
<td><15</td>
<td><5</td>
<td>8.7</td>
<td>552</td>
<td>856</td>
<td>317</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>1</td>
<td><10</td>
<td>14</td>
<td>5.3</td>
<td>30</td>
<td>37</td>
<td>12</td>
<td>27</td>
</tr>
</tbody>
</table>

Minimum Detection

- 2
- 15
- 5
- 0.1
- 1
- 2
- 1
- 5
- 5
- 3
- 1
- 10
- 2
- 0.1
- 1
- 1
- 2
- 5

Maximum Detection

- 10000
- 10000
- 10000
- 1000
- 20000
- 20000
- 20000
- 10000
- 10000
- 1000
- 1000
- 1000
- 1000
- 1000
- 1000
- 1000

Method

- FA/AAS
- FA/AAS
- FA/AAS
- ICP

JUBE
(CARter
ZONE)
Certificate of Analysis

iPL 98G0729

Samples

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Cr ppm</th>
<th>V ppm</th>
<th>Mn ppm</th>
<th>La ppm</th>
<th>Sr ppm</th>
<th>Zr ppm</th>
<th>Sc ppm</th>
<th>Ti</th>
<th>Al</th>
<th>Ca</th>
<th>Fe</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-R-1</td>
<td>22</td>
<td>10</td>
<td>3240</td>
<td><2</td>
<td>11</td>
<td><1</td>
<td>0.01</td>
<td>0.32</td>
<td>4.64</td>
<td>6.33</td>
<td>0.34</td>
<td>0.06</td>
<td><0.01</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- **No Test**
- **Ins=Insufficient Sample**
- **Del=Delay**
- **Max=Max Estimate**
- **Rec=ReCheck**
- **m=x1000**
- **%=Estimate %**
- **NS=No Sample**

Minimum Detection

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0.01</th>
<th>0.01</th>
<th>0.01</th>
<th>0.01</th>
<th>0.01</th>
<th>0.01</th>
<th>0.01</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Detection</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>1.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>5.00</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CERTIFICATE OF ANALYSIS

iPL 97G0675

7 Samples

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Type</th>
<th>Au (ppb)</th>
<th>Pt (ppb)</th>
<th>Pd (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Sb (ppm)</th>
<th>Hg (ppm)</th>
<th>Mo (ppm)</th>
<th>Tl (ppm)</th>
<th>Bi (ppm)</th>
<th>Cd (ppm)</th>
<th>Co (ppm)</th>
<th>Ni (ppm)</th>
<th>Ba (ppm)</th>
<th>W (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>97 - J8 - 1</td>
<td>Pulp</td>
<td>53</td>
<td><15</td>
<td><5</td>
<td>1.0</td>
<td>396</td>
<td>10</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>28</td>
<td><10</td>
<td><2</td>
<td><0.1</td>
<td>6</td>
<td>4</td>
<td>15</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>97 - J8 - 2</td>
<td>Pulp</td>
<td>21</td>
<td><15</td>
<td><5</td>
<td>1.0</td>
<td>1390</td>
<td>11</td>
<td>15</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>3</td>
<td><10</td>
<td><2</td>
<td><0.1</td>
<td>50</td>
<td>31</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>97 - J8 - 3</td>
<td>Pulp</td>
<td>9</td>
<td><15</td>
<td><5</td>
<td>3.1</td>
<td>9695</td>
<td>36</td>
<td>43</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>16</td>
<td><10</td>
<td>2</td>
<td>3.5</td>
<td>144</td>
<td>101</td>
<td>17</td>
<td>56</td>
</tr>
<tr>
<td>97 - J8 - 4</td>
<td>Pulp</td>
<td>139</td>
<td><15</td>
<td><5</td>
<td>0.5</td>
<td>1382</td>
<td><2</td>
<td>14</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>4</td>
<td><10</td>
<td><2</td>
<td><0.1</td>
<td>35</td>
<td>19</td>
<td>9</td>
<td>59</td>
</tr>
<tr>
<td>97 - J8 - 5</td>
<td>Pulp</td>
<td>14</td>
<td><15</td>
<td><5</td>
<td>0.5</td>
<td>1161</td>
<td>3</td>
<td>13</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>4</td>
<td><10</td>
<td><2</td>
<td>0.5</td>
<td>18</td>
<td>9</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>97 - J8 - 6</td>
<td>Pulp</td>
<td>4</td>
<td><15</td>
<td><5</td>
<td>5.4</td>
<td>9485</td>
<td>7</td>
<td>189</td>
<td><5</td>
<td><5</td>
<td><3</td>
<td>3</td>
<td><10</td>
<td><2</td>
<td>3.2</td>
<td>85</td>
<td>13</td>
<td>12</td>
<td>153</td>
</tr>
<tr>
<td>97 - J8 - 7</td>
<td>Pulp</td>
<td>21m</td>
<td><15</td>
<td><5</td>
<td>8.9</td>
<td>8865</td>
<td>42</td>
<td>53</td>
<td>33%</td>
<td>327</td>
<td><3</td>
<td>4</td>
<td><10</td>
<td>524</td>
<td><0.1</td>
<td>150</td>
<td>155</td>
<td><2</td>
<td>12</td>
</tr>
</tbody>
</table>

Minimum Detection

| 2 | 15 | 5 | 0.1 | 1 | 2 | 1 | 5 | 1000 | 10000 | 10000 | 100.0 | 20000 | 20000 | 200000 | 1000 | 1000 | 10000 | 10000 | 100000 | 1000 | 100000 | 100000 | 1000000 |

Maximum Detection

FA/AAS | FA/AAS | FA/AAS | ICP |

No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 ÷=Estimate
CERTIFICATE OF ANALYSIS

iPL 97G0675

Client: Northern Analytical Laboratories
Project: W007 7855

7 Samples
7=Pulp

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Cr ppm</th>
<th>V ppm</th>
<th>Mn ppm</th>
<th>La ppm</th>
<th>Sr ppm</th>
<th>Zr ppm</th>
<th>Sc ppm</th>
<th>Ti %</th>
<th>Al %</th>
<th>Ca %</th>
<th>Fe %</th>
<th>Mg %</th>
<th>K %</th>
<th>Na %</th>
<th>P %</th>
</tr>
</thead>
<tbody>
<tr>
<td>97 - JB - 1</td>
<td>50</td>
<td>34</td>
<td>279</td>
<td>13</td>
<td>23</td>
<td>5</td>
<td>1</td>
<td>0.15</td>
<td>0.76</td>
<td>0.67</td>
<td>8.05</td>
<td>0.22</td>
<td>0.09</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>97 - JB - 2</td>
<td>29</td>
<td>13</td>
<td>144</td>
<td>8</td>
<td>86</td>
<td>4</td>
<td>1</td>
<td>0.12</td>
<td>2.31</td>
<td>1.97</td>
<td>7.40</td>
<td>0.09</td>
<td>0.01</td>
<td>0.26</td>
<td>0.18</td>
</tr>
<tr>
<td>97 - JB - 3</td>
<td>7</td>
<td>27</td>
<td>80</td>
<td><2</td>
<td>2</td>
<td>9</td>
<td><1</td>
<td><0.01</td>
<td>0.04</td>
<td>0.06</td>
<td>25%</td>
<td>0.03</td>
<td><0.01</td>
<td><0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>97 - JB - 4</td>
<td>46</td>
<td>12</td>
<td>902</td>
<td><2</td>
<td>4</td>
<td>5</td>
<td><1</td>
<td>0.03</td>
<td>0.44</td>
<td>6.97</td>
<td>12%</td>
<td>0.03</td>
<td><0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>97 - JB - 5</td>
<td>57</td>
<td>11</td>
<td>101</td>
<td>5</td>
<td>67</td>
<td>6</td>
<td><1</td>
<td>0.10</td>
<td>1.66</td>
<td>7.62</td>
<td>11%</td>
<td>0.09</td>
<td>0.03</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>97 - JB - 6</td>
<td>48</td>
<td>23</td>
<td>950</td>
<td><2</td>
<td><1</td>
<td>11</td>
<td>1</td>
<td><0.01</td>
<td>0.12</td>
<td>6.76</td>
<td>18%</td>
<td>0.04</td>
<td><0.01</td>
<td><0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>97 - JB - 7</td>
<td>105</td>
<td>25</td>
<td>34</td>
<td><2</td>
<td>21</td>
<td>4</td>
<td><1</td>
<td><0.01</td>
<td>0.45</td>
<td>0.07</td>
<td>25%</td>
<td>0.07</td>
<td><0.01</td>
<td><0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Minimum Detection

<table>
<thead>
<tr>
<th>Method</th>
<th>Cr</th>
<th>V</th>
<th>Mn</th>
<th>La</th>
<th>Sr</th>
<th>Zr</th>
<th>Sc</th>
<th>Ti</th>
<th>Al</th>
<th>Ca</th>
<th>Fe</th>
<th>Mg</th>
<th>K</th>
<th>Na</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>ICP</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>5.00</td>
</tr>
</tbody>
</table>

I PL

--- No Test In=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate %
ROCK SAMPLE DESCRIPTION

From Brian Scott's Jubilee Mt. Property 105 D1; Wed, July 8, 1998
B. Scott (owner/prospector), B. Carter (prospector), J. Clarke (Aurum Geological)
By J. Clarke

Sample A.
Taken from middle of a series of Versluice hand trenches over a 1-3 m wide shear hosted QV with massive sulfides – Asp, Py. Host rock appears to be a mix of light color f.g. seds and/or rhyolite flows with tuffs. (Wheeler’s unit 2ds –Taku). B. Scott assayed last year - 23g/t Au.

Sample B.
Representative of ultra-mafic unit near EW shear/fault with mylonites of unit 2ds (Wheeler’s Unit 6 “peridotite, dunite, serpentinite, pyroxenite”)

Sample C.
From massive Po, Py lens 1-2m wide. Vertical dipping with 2-7m strike length EW. At Unit 6/2ds contact.

Sample D.
From “skarn are” found by B. Carter. Py, Po, Sp. Hosted in Wheelers 2d? meta-volc.

Sample E.
Feldspar porph. Angular float ~50m S. of Sample D.

Sample F.
Massive Po, Py typical of material in trenches from “Cu-Ni” area. Dark red garnets.

Sample G.
Typical of some host rock for sample F. This sample a little more gray than typical.

Sample H.
As above with tr-1/4% <1mm Mo.

Recommended Work.
Prospecting should concentrate on the ~300° linear’s for potential “Versluice” shear hosted mineralization. A soil auger could be used to get deeper samples from these areas which could then be panned out. The area around sample H. should be prospected and hand trenched to get an idea on the extent of Mo mineralization. As well the new “Carter” skarn should be hand trenched.

When funding is available a detailed grid should be established. A baseline following the claim line should be laid out NS with 50 m spaced cross lines laid out 200-400 m EW. A detailed soil sampling program with 25m spacing should be performed with Au +32 element assays. A mag/VLF survey could be preformed at a small cost by the prospector by renting an Omni instrument from Amerok.

As far as the platinum potential goes I think that once again auger samples taken from the ultra-mafics could be panned out and results plotted on a map. This could be done at one of the little lakes. Pan concentrates could be brought to the Core Library to view under the microscope.
ACKNOWLEDGMENTS

Yukon Territory
Selected Field Reports of the GSC 1898 to 1933
Compiled and Annotated by H.S. Bostock
GSC Memoir 284

Thanks also to conversations with the staff of Aurum Geological Consultants
Inc., the staff of the Whitehorse MDA office, and many local prospectors.
STATEMENT OF QUALIFICATIONS

I, Joseph A. J. Clarke, of Marsh Lake Yukon Territory with mailing address of General Delivery, Whitehorse, Yukon hereby certify:

I am writing this report at the request of Mr. Sid McKeown of Whitehorse, Yukon and have no direct or indirect interest in the Protecter 1 4 claims;

That I have graduated from the Haileybury School of Mines in 1985 with a diploma in Mining Engineering Technology;

That I have been engaged in prospecting in the Yukon on a full time basis since May of 1993 and have been engaged in prospecting and in the mineral industry for 15 years elsewhere in Canada;

That I have a commitment to prospect in a gentlemanly manner with respect for others who use the land.

Signed at Whitehorse, Yukon Territory on the ___ day of ___ , 1999,

Joseph A. J. Clarke
STATEMENT OF QUALIFICATIONS

I, Joseph A. J. Clarke, of Marsh Lake Yukon Territory with mailing address of General Delivery, Whitehorse, Yukon hereby certify:

I am assisting in the writing this report at the request of Mr. Brian Carter and Mr. Brian Scott of Whitehorse, Yukon and have no direct or indirect interest in the Claim Described;

That I have graduated from the Haileybury School of Mines in 1985 with a diploma in Mining Engineering Technology;

That I have been engaged in prospecting in the Yukon on a full time basis since May of 1993 and have been engaged in prospecting and in the mineral industry for 15 years elsewhere in Canada;

That I have a commitment to prospect in a gentlemanly manner with respect for others who use the land.

Signed at Whitehorse, Yukon Territory on the ___ day of ___, 1999

Joseph A. J. Clarke
APPENDIX C -DATA

Area Mag Map
Local Geology Map
Ref. To: Claim Locations
Sample Locations

Yukon Territory
Selected Field Reports of the GSC 1898 to 1933
Compiled and Annotated by H.S. Bostock
GSC Memoir 284

Thanks also to conversations with the staff of Aurum Geological Consultants Inc., the staff of the Whitehorse MDA office, and many local prospectors.