ASSESSMENT REPORT

1998 GEOLOGICAL AND GEOCHEMICAL PROGRAM

HEIDI PROPERTY

Heidi 51F, 52 – 54, 123, 124 quartz claims
HK18 – 19Fr, 22Fr, 26-27Fr quartz claims

Mayo Mining District, Yukon

Property Location:
90 Km NE of Dawson City, Yukon
NTS 116 A/5
Latitude: 64 23' N   Longitude 137 38" W

Owner and operator:

HOMESTAKE CANADA INC.
1100- 1055 West Georgia Street
Vancouver, B.C.
V6E 3P3

Report by:
Mike Papageorge, Geologist
Homestake Canada Inc.

Field Work completed: September 10, 1998
Report completed: December 8, 1998
The report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mining Act and is allowed as required Compensation work in the amount.

[Signature]

Manager, Exploration and Geological Services for Commissioner

Yukon Territory
SUMMARY

The Heidi property is 100% owned by Homestake Canada Inc. and is located 90 km northeast of Dawson City. The property lies on the boundary of the Mayo and Dawson mining districts and is only accessible by helicopter. The property consists of 37 granted claims in the Dawson mining district and 42 granted claims in the Mayo mining district.

The property is situated within the Selwyn Basin and is underlain by Late Proterozoic to Early Paleozoic Hyland Group rocks. Two distinct formations are recognized in the area: the Yusezyu Formation and the Narchilla Formation. The Yusezyu Formation, which consists of sandstone, grit bands and limy siltstone, is overlain by the maroon and green shales of the Narchilla Formation. Biotite porphyry dykes, mapped on the property, indicate that a buried intrusion may underlie the claims.

The Heidi claims were staked in 1995, to cover a new showing discovered while investigating a magnetic anomaly with a strong, coincident As/Sb stream silt anomaly. The showings consist of pyrite, arsenopyrite and stibnite/jamesonite replacing limestone and porous grit units near the axial plane of a ridge-scale anticline. The mineralization was exposed in trenches and chip sampling returned values up to 2.93 gm/t Au over 1.0 m.

The 1998 summer exploration program consisted of geological and geochemical prospecting and mapping.
# TABLE OF CONTENTS

SUMMARY .................................................................................................................................... 1  

TABLE OF CONTENTS ............................................................................................................ 2  

TABLE OF FIGURES .................................................................................................................. 2  

1.0 INTRODUCTION ................................................................................................................... 3  
1.1 LOCATION AND ACCESS .................................................................................................... 3  
1.2 PHYSIOGRAPHY, VEGETATION, AND CLIMATE ................................................................. 3  
1.3 PROPERTY HISTORY ........................................................................................................... 5  

2.0 CLAIM STATUS ..................................................................................................................... 5  
2.1 MAYO MINING DISTRICT .................................................................................................... 5  

3.0 GEOL OGY ............................................................................................................................ 7  
3.1 REGIONAL GEOLOGY ......................................................................................................... 7  
3.2 REGIONAL MINERALIZATION .............................................................................................. 8  
3.3 PROPERTY GEOLOGY AND MINERALIZATION .................................................................. 8  

4.0 1998 FIELD PROGRAM ....................................................................................................... 9  
4.1 SAMPLING METHOD ......................................................................................................... 9  
4.2 ANALYTICAL METHOD ..................................................................................................... 9  

5.0 RESULTS ............................................................................................................................... 9  
5.1 1998 SAMPLING ............................................................................................................... 9  

6.0 CONCLUSIONS AND RECOMMENDATIONS .................................................................. 9  

7.0 REFERENCES ....................................................................................................................... 10  

8.0 STATEMENT OF EXPENDITURES .................................................................................... 11  

9.0 STATEMENT OF QUALIFICATIONS ................................................................................... 12  

APPENDIX 1 SAMPLE DESCRIPTIONS AND LOCATIONS ...................................................... 13  
APPENDIX 2 ASSAY CERTIFICATES ......................................................................................... 16  
APPENDIX 3 CORRESPONDENCE WITH MAYO MINING RECORDER .................................... 26  
APPENDIX 4 SAMPLE LOCATION MAP .................................................................................... 29  

# TABLE OF FIGURES  

Figure 1: HEIDI LOCATION MAP ........................................................................................... 4  
Figure 2: CLAIM MAP ........................................................................................................... 6
INTRODUCTION

1.1 LOCATION AND ACCESS

The Heidi claims are located approximately 90 km northeast of Dawson City, Yukon at latitude 64°23'N and longitude 137°38'W. (Figure 1.1) The claims are bordered to the north by Lake Creek and to the south by the headwaters of Hamilton Creek. The claim block straddles the boundary of the Mayo and Dawson mining districts on NTS mapsheet 116 A/5.

The property can only be accessed by helicopter. Flying time from Dawson City is approximately 0.6 hours but a Dempster Highway maintenance yard, located 70 km from the Dempster Highway turnoff, is within 25 km of the property and can be used as a staging point to airlift equipment into the Heidi claims.

1.2 PHYSIOGRAPHY, VEGETATION, AND CLIMATE

The property is located within the Ogilvie Mountains physiographic region. East-west trending ridges are typically very steep on the north facing slopes and moderately steep (20-30 degrees) on the south facing slopes. Valley bottoms are at an elevation of approximately 4300 feet while most peaks are in the range of 6000-6500 feet.

Vegetation within the claim block consists entirely of alpine grasses, sedges and lichen, which makes for very easy walking. The situation changes dramatically in the lowlands of the Hamilton Creek and Lake Creek watersheds, where very thick buckbrush dominates the landscape.

The climate in the area is quite erratic during the exploration season. Typically, mornings are clear and sunny while showers are common in the afternoon. Temperatures tend to fluctuate but the days are generally warm from mid June to mid-August.
Figure 1: Location of the Heidi claims in the Yukon Territory
1.3 Property History

Prior to 1995, no known mineral exploration appears to have been conducted in the immediate vicinity of the Heidi claims. The nearest active quartz claims are the Lorrie Property and the Hami Claims located respectively 17 km southwest and 10 km southeast of the Heidi claims. Antimony Mountain, located 20 km west of the property, has also been the focus of much exploration activity. Brewery Creek mine, owned and operated by Viceroy Resources is located 40 km southwest of the Heidi property.

On August 5, 1995, the Heidi 1-24 claims were staked by Aurum Geological Consultants, for Homestake Canada Inc., to cover a new gold showing discovered while investigating an elevated arsenic/antimony stream silt anomaly and a coincident magnetic anomaly. Mineralization, consisting of massive to disseminated arsenopyrite, pyrite and stibnite, was found on a steep slope overlooking Lake Creek and gold values up to 6460 ppb were obtained from grab and chip samples.

2.0 Claim Status

2.1 Mayo Mining District

Table 1-1 summarizes the status of claims staked by Homestake Canada Inc. Figure 2 outlines the claims worked during the 1998 field season.

**Table 1-1 Claim Status - Mayo Mining District (October 31/98)**

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant Number and Claim Status</th>
<th>Number of Claims</th>
<th>Expiry Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heidi 1-10</td>
<td>YB64644-653 ( Granted)</td>
<td>10</td>
<td>August 18, 2001</td>
</tr>
<tr>
<td>Heidi 11-12</td>
<td>YB64654-655 ( Granted)</td>
<td>2</td>
<td>August 16, 1999</td>
</tr>
<tr>
<td>Heidi 13-24</td>
<td>YB64656-667 ( Granted)</td>
<td>12</td>
<td>August 16, 1999</td>
</tr>
<tr>
<td>Heidi 51-54</td>
<td>YB65141-144 ( Granted)</td>
<td>4</td>
<td>October 13, 2000 *</td>
</tr>
<tr>
<td>Heidi 123, 124</td>
<td>YB65146-147 ( Granted)</td>
<td>2</td>
<td>October 13, 2000 *</td>
</tr>
<tr>
<td>HK 3-5</td>
<td>YB55561-563 ( Granted)</td>
<td>3</td>
<td>July 16, 1999</td>
</tr>
<tr>
<td>HK 18-19</td>
<td>YB55876-877 ( Granted)</td>
<td>6</td>
<td>September 27, 2000 *</td>
</tr>
<tr>
<td>HK 22</td>
<td>YB65880</td>
<td>1</td>
<td>September 27, 2000 *</td>
</tr>
<tr>
<td>HK 26-27</td>
<td>YB65884-885 ( Granted)</td>
<td>2</td>
<td>September 27, 2000 *</td>
</tr>
<tr>
<td>HK 28-31</td>
<td>YB81021-024 ( Granted)</td>
<td>4</td>
<td>July 11, 1999</td>
</tr>
</tbody>
</table>

* Expiry dates indicated are subject to Government approval of current assessment work Report
Figure 2: Claim map outlining Granted claims relevant to assessment report.
3.0 GEOLOGY

3.1 REGIONAL GEOLOGY

The Heidi property is situated within the eastern Selwyn Basin, southwest of the Mackenzie Platform and within the Omineca Belt of the Canadian Cordillera. The regional geology has been described and mapped at 1:250,000 scale by Green (1972) and Tempelman-Kluit (1980). The Mackenzie Platform consists of a sequence of Middle Proterozoic to Middle Paleozoic carbonate and clastic sedimentary and volcanic rocks that were deposited on a subsiding continental shelf. The Selwyn Basin comprises a package of Late Proterozoic to Jurassic sedimentary rocks deposited in a deeper basin off the western margin of the platform. The area is bounded to the south by the northwest striking, steeply dipping Tintina Fault that separates the Selwyn Basin rocks from highly sheared and metamorphosed rocks of the Yukon-Tanana Terrane. Selwyn Basin rocks northeast of the Tintina Trench were displaced by three regionally extensive thrust sheets known as the Robert Service, Tombstone and Dawson thrusts. The northerly to northwesterly directed thrusting occurred during the Jura-Cretaceous compressional tectonic event and resulted in Proterozoic aged rocks being imbricated onto Devonian to late Jurassic strata. The sub-parallel thrust faults have been mapped on surface and extend in a northwesterly arc from the Keno Hill area to Dawson City.

Rocks of the Hyland, Road River and Earn Groups dominate the stratigraphic sequence in the area. The Late Proterozoic-Early Cambrian Hyland Group is a thick sequence of maroon and green shale, calcareous sandstone, grit and quartz pebble conglomerate (Abbot 1992, Gordey 1993). The Ordovician to Lower Devonian Road River Group consist primarily of interbedded black chert and argillite, with minor quartzite. The lithology of the Earn Group (Devonian-Mississippian) is a variable mix of black shale, greywacke and chert pebble conglomerate. A narrow northwesterly trending belt of Keno Hill Quartzite (Mississippian) and Jurassic Schist is also exposed in the base plate of the Robert Service Thrust.

Numerous granitic to syenitic stocks, dykes and sills are distributed across the southern portion of the Selwyn Basin. The intrusions occur in a belt parallel to, and approximately 45 kilometers east of the Tintina Fault. The intrusions are known as the Tombstone Suite (92 Ma.) and were emplaced during the late stages of the Jura-Cretaceous compressional tectonic event. Typically, they are rimmed by a contact metamorphic aureole up to 1 km wide. The biotite hornfels alteration, which displays a strong positive magnetic signature, is enriched with iron and, locally, with base and precious metals.

A gabbroic suite of intrusions, Triassic in age, (Mortenson and Thompson, 1990) has also been mapped in the area. The intrusions are typically sill-like and are predominantly concentrated in the Keno Hill Quartzite unit that forms the base plate of the Robert Service Thrust.
3.2 **Regional Mineralization**

The Omineca Belt displays the greatest diversity of metal occurrences in the Canadian Cordillera. Deposit type and distribution is quite variable but includes vein, porphyry, skarn, stratiform and volcanogenic massive sulphide deposits. Metals that characterize the belt include Pb, Ag, Zn and Au (Sinclair et al., 1978).

The Selwyn Basin is host to a variety of deposits. Large stratiform, shale-hosted, sedimentary-exhalative Zn-Pb deposits are contained within the Anvil and Howards Pass districts. The districts occupy linear belts on opposite sides of the basin and include the Faro, Grum, Vangorda, XY, Anniv and OP deposits.

Skarn and replacement deposits are most commonly localized where mid-Cretaceous granitic plutons of the Selwyn, Cassiar and Tombstone suites intrude carbonate sequences or calcareous units within the Selwyn Basin. The intrusions themselves are known to host low-grade, Fort Knox style mineralization. The belt of Tombstone intrusions, which extends from Dawson City down through the Keno Hill district, is related to several active exploration targets in the area including Dublin Gulch, Clear Creek, Red Mountain, Scheelite Dome and Brewery Creek.

Mineralization usually consists of gold-bismuth-arsenopyrite in sheeted veins and disseminations within the intrusions or in a fault-controlled setting spatially related to the intrusion. Other styles of mineralization include tin-tungsten and gold skarns, silver-lead-zinc veins, and silver-lead-antimony veins. A strong Au As, Bi, Sb, Hg, and Pb geochemical signature characterize the intrusions and their alteration aureoles.

3.3 **Property Geology and Mineralization**

The Heidi claim block is underlain by sedimentary rocks of the Upper Proterozoic-Lower Paleozoic Hyland Group. Two distinct formations within the Hyland Group, the Yusezyu Formation and the Narchilla Formation, outcrop on the property.

The Yusezyu Formation consists of rusty weathering gritty quartzite, sandstone, and quartz pebble conglomerate with up to 80 or 90% rounded quartz grains. Minor interbeds of limestone, calcareous sandstone and shale are common. The Narchilla Formation consists of black, maroon and green shales and slates. This unit is quite distinct and is usually identifiable from a distance.

The Heidi showing consist of 5%-50% massive to disseminated arsenopyrite, pyrite and stibnite/jamesonite replacing limestone and calcareous grit units. Irregular, narrow quartz/arsenopyrite veins intersect the mineralized beds and probably channeled the mineralizing fluids into the favourable horizons. The mineralization is quite poddy but is mainly localized within the recumbantly folded south limb of the Heidi anticline, near the Yusezyu/Narchilla contact. The mineralization is contained within an area measuring approximately 300m long and 100m high.
4.0 1998 FIELD PROGRAM

The 1998 field work was comprised of four man days of work completed on September 10, 1998, in an effort to locate key intrusive outcrops on the property and to sample the valley along strike from the mineralized outcrops on the main hillside.

4.1 SAMPLING METHOD

Soil samples were obtained using a Geotul mattock. Most of the samples were collected on level ground with well developed soil horizons. Samples were bagged in kraft sample bags and labeled with grid location coordinates or sample tag numbers. Channel samples were carefully chipped across measured intervals, bagged and tagged. Grab samples were tagged and marked for location.

4.2 ANALYTICAL METHOD

All of the samples collected were sent to IPL Laboratories in Vancouver for sample preparation and analysis. Silt and soil samples were dried and screened to -80 mesh. Rock samples were crushed to -10 mesh, split into a 250 gram sample and pulverized to 90% -150 mesh. A 30 gram portion was then analyzed for gold using the standard Fire Assay method with an A.A. finish. Assays over 1000ppb Au were re-done with a gravimetric finish. A 30 element I.C.P. analysis was completed for each sample.

5.0 RESULTS

5.1 1998 SAMPLING

The 1998 soil line was completed in the valley to the east of the steep face that contains the majority of the mineralization on the property. The results delineated an arsenic anomaly that has been interpreted to be an extension into the valley of the mineralized stratigraphy contained on the steep face.

Rock samples from 1998 failed to identify any new zones of mineralization, however an outcrop of a feldspar-biotite porphyry was mapped. Geochemical analyses and sample descriptions are included in Appendix I and II.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Sampling and prospecting on the property delineated the extent of a feldspar-biotite porphyry. Rocks and soil in the vicinity of the porphyry should be sampled and mapped to determine the presence of mineralization.

A second soil line should be extended in the valley to the west of the HSL line which was sampled in 1998, in order to expand the anomaly.
7.0 REFERENCES


Green, L.H., 1972. Geology of the Nash Creek, Larsen Creek, and Dawson map areas, Yukon Territory; Geological Survey of Canada, Memoir 364.


# 8.0 STATEMENT OF EXPENDITURES

Heidi Project - Assessment Work Completed Sept 10, 1998

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>$4,489.84</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>AMOUNT</td>
</tr>
<tr>
<td><strong>SALARIES</strong> (IN-HOUSE)</td>
<td></td>
</tr>
<tr>
<td>D. Bordin-Project Geologist</td>
<td>1.0</td>
</tr>
<tr>
<td>Field work</td>
<td></td>
</tr>
<tr>
<td>B. Traub-Field Geologist</td>
<td>1.0</td>
</tr>
<tr>
<td>Field Work</td>
<td></td>
</tr>
<tr>
<td>M. Papageorge-Field Geologist</td>
<td>1.0</td>
</tr>
<tr>
<td>Field Work</td>
<td></td>
</tr>
<tr>
<td>Report Writing</td>
<td>2.0</td>
</tr>
<tr>
<td><strong>FEES</strong> (CONSULTANTS)</td>
<td></td>
</tr>
<tr>
<td>Don Coolidge</td>
<td>1.0</td>
</tr>
<tr>
<td><strong>ANALYSIS</strong> (ASSAY, METALLURGICAL)</td>
<td></td>
</tr>
<tr>
<td>Rocks</td>
<td>8</td>
</tr>
<tr>
<td>Soils</td>
<td>13</td>
</tr>
<tr>
<td><strong>FIELD/CAMP</strong></td>
<td></td>
</tr>
<tr>
<td>Field Supplies</td>
<td>3 man days</td>
</tr>
<tr>
<td>Camp costs</td>
<td>35.00</td>
</tr>
<tr>
<td><strong>TRANSPORTATION</strong></td>
<td></td>
</tr>
<tr>
<td>Helicopter</td>
<td>2.9</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td></td>
</tr>
</tbody>
</table>
9.0 STATEMENT OF QUALIFICATIONS

I, Mike Papageorge, of 3340 west 10th avenue, Vancouver, British Columbia, do hereby certify that:

1. I am a geologist in the employ of Homestake Canada Inc.

2. I graduated in April 1997 from the University of British Columbia with a Bachelor of Science, Honors Geology.

3. I am a geologist-in-training with the Association of Professional Engineers and Geoscientists of British Columbia.

4. I personally conducted and supervised the September, 1998 field work on the Heidi Claims.

5. I have no interest in the properties described herein, nor in the securities of any company associated with the property, nor do I expect to acquire any such interest.

Mike Papageorge, B.Sc., G.I.T.
APPENDIX 1

SAMPLE DESCRIPTIONS AND LOCATIONS
## Heidi Rock Samples

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Description</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Sh (ppm)</th>
<th>Bi (ppm)</th>
<th>Northing</th>
<th>Easting</th>
</tr>
</thead>
<tbody>
<tr>
<td>01392</td>
<td>Intense quartz-carbonate veining with 1-2% galena, trace pyrrhotite and pyrite. Moderately altered veins are less than 2 cm wide.</td>
<td>2</td>
<td>0.7</td>
<td>13</td>
<td>1360</td>
<td>16</td>
<td>39</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01393</td>
<td>Coarse grained quartzite</td>
<td>2</td>
<td>0.05</td>
<td>12</td>
<td>32</td>
<td>23</td>
<td>22</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20728</td>
<td>Grey quartzite with brown oxidation along fracture surfaces...</td>
<td>7</td>
<td>0.4</td>
<td>26</td>
<td>83</td>
<td>54</td>
<td>59</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20729</td>
<td>Quartzite with a carbonate matrix, some fizzing, rare yellow oxidation color</td>
<td>9</td>
<td>0.4</td>
<td>19</td>
<td>48</td>
<td>4</td>
<td>21</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20730</td>
<td>Tension gashes from within the Narchilla shales</td>
<td>4</td>
<td>1.3</td>
<td>15</td>
<td>835</td>
<td>5</td>
<td>17</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20731</td>
<td>Tension gashes with remobilized quartz. Hosted in Narchilla shales.</td>
<td>40</td>
<td>0.4</td>
<td>8</td>
<td>21</td>
<td>23</td>
<td>2</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24498</td>
<td>Heidi sample. Green/grey quartzite. No visible sulphides</td>
<td>10</td>
<td>0.05</td>
<td>26</td>
<td>6</td>
<td>26</td>
<td>52</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24499</td>
<td>Heidi sample. Grey rusty quartzite with minor qtz stringers. No sulphides.</td>
<td>12</td>
<td>0.1</td>
<td>45</td>
<td>13</td>
<td>22</td>
<td>102</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Friday, December 11, 1998
# Heidi Soil Samples

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Sb (ppm)</th>
<th>As (ppm)</th>
<th>Bi (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSL 01</td>
<td>12</td>
<td>0.5</td>
<td>39</td>
<td>192</td>
<td>134</td>
<td>96</td>
<td>307</td>
<td>1</td>
</tr>
<tr>
<td>HSL 02</td>
<td>6</td>
<td>0.05</td>
<td>32</td>
<td>59</td>
<td>83</td>
<td>17</td>
<td>92</td>
<td>1</td>
</tr>
<tr>
<td>HSL 03</td>
<td>3</td>
<td>0.05</td>
<td>25</td>
<td>70</td>
<td>88</td>
<td>25</td>
<td>126</td>
<td>1</td>
</tr>
<tr>
<td>HSL 04</td>
<td>1</td>
<td>0.05</td>
<td>32</td>
<td>43</td>
<td>108</td>
<td>13</td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td>HSL 05</td>
<td>3</td>
<td>0.2</td>
<td>22</td>
<td>55</td>
<td>82</td>
<td>19</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>HSL 06</td>
<td>1</td>
<td>0.2</td>
<td>24</td>
<td>48</td>
<td>83</td>
<td>13</td>
<td>93</td>
<td>1</td>
</tr>
<tr>
<td>HSL 07</td>
<td>1</td>
<td>0.6</td>
<td>23</td>
<td>54</td>
<td>87</td>
<td>20</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td>HSL 08</td>
<td>3</td>
<td>0.5</td>
<td>26</td>
<td>104</td>
<td>117</td>
<td>37</td>
<td>115</td>
<td>1</td>
</tr>
<tr>
<td>HSL 09</td>
<td>1</td>
<td>0.4</td>
<td>31</td>
<td>67</td>
<td>87</td>
<td>25</td>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>HSL 10</td>
<td>12</td>
<td>0.4</td>
<td>28</td>
<td>77</td>
<td>148</td>
<td>31</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>HSL 11</td>
<td>9</td>
<td>0.3</td>
<td>38</td>
<td>86</td>
<td>156</td>
<td>49</td>
<td>131</td>
<td>1</td>
</tr>
<tr>
<td>HSL 12</td>
<td>3</td>
<td>0.6</td>
<td>24</td>
<td>77</td>
<td>92</td>
<td>31</td>
<td>133</td>
<td>1</td>
</tr>
<tr>
<td>HSL 13</td>
<td>1</td>
<td>0.1</td>
<td>25</td>
<td>35</td>
<td>90</td>
<td>7</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>
Comment:

Homestake Canada Inc.
Shipper: Dominic Bordin
Project: 90822 Yukon
Shipment: PO

Analysis:
Au(A/AAS 30g) ICP(A/qR)30

Document Distribution:
1 Homestake Canada Inc. 11115 1100-1055 W. Georgia St 1 2 2 2 1
POBox 11115 1100-1055 W. Georgia St
Vancouver, BC, V6E 3P3
Canada
Att: Dave Kuran
Ph: 604/684-2345
Fx: 604/684-9831
Em: dkuran@homestake.com

2 Homestake Canada Inc.
Vancouver, BC, V6E 3P3
Canada
Att: Dominic Bordin (E-mail)
Ph: 604/684-2345
Fx: 604/684-9831
Em: dbordin@homestake.com

3 Homestake Canada Inc.
Vancouver, BC, V6E 3P3
Canada
Att: Mike Papageorge
Ph: 604/684-2345
Fx: 604/684-9831
Em: yukonexp@homestake.com

Certificate of Analysis
iPL 9811018

121 Samples
Out: Sep 25, 1998
In: Sep 22, 1998

Analytical Summary

<table>
<thead>
<tr>
<th>Code</th>
<th>Amount</th>
<th>Type</th>
<th>Preparation Description</th>
<th>Element</th>
<th>Limit Low</th>
<th>Limit High</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0313</td>
<td>FA/AAS</td>
<td>ppb Au FA/AAS finish 30g</td>
<td>Gold</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>02</td>
<td>0364</td>
<td>FAggrav</td>
<td>g/ml Au FA/Grav in g/ml</td>
<td>Gold</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>03</td>
<td>0721</td>
<td>ICP</td>
<td>ppm Ag ICP</td>
<td>Silver</td>
<td>0.11</td>
<td>10000</td>
</tr>
<tr>
<td>04</td>
<td>0711</td>
<td>ICP</td>
<td>ppm Cu ICP</td>
<td>Copper</td>
<td>1</td>
<td>20000</td>
</tr>
<tr>
<td>05</td>
<td>0714</td>
<td>ICP</td>
<td>ppm Pb ICP</td>
<td>Lead</td>
<td>2</td>
<td>20000</td>
</tr>
<tr>
<td>06</td>
<td>0730</td>
<td>ICP</td>
<td>ppm Zn ICP</td>
<td>Zinc</td>
<td>1</td>
<td>20000</td>
</tr>
<tr>
<td>07</td>
<td>0703</td>
<td>ICP</td>
<td>ppm As ICP</td>
<td>Arsenic</td>
<td>5</td>
<td>10000</td>
</tr>
<tr>
<td>08</td>
<td>0702</td>
<td>ICP</td>
<td>ppm Sb ICP</td>
<td>Antimony</td>
<td>5</td>
<td>10000</td>
</tr>
<tr>
<td>09</td>
<td>0732</td>
<td>ICP</td>
<td>ppm Hg ICP</td>
<td>Mercury</td>
<td>3</td>
<td>10000</td>
</tr>
<tr>
<td>10</td>
<td>0717</td>
<td>ICP</td>
<td>ppm Mo ICP</td>
<td>Molybdenum</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>11</td>
<td>0747</td>
<td>ICP</td>
<td>ppm Ti ICP (Incomplete Digestion)</td>
<td>Thallium</td>
<td>10</td>
<td>10000</td>
</tr>
<tr>
<td>12</td>
<td>0705</td>
<td>ICP</td>
<td>ppm Bi ICP</td>
<td>Bismuth</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>13</td>
<td>0707</td>
<td>ICP</td>
<td>ppm Cd ICP</td>
<td>Cadmium</td>
<td>0.1</td>
<td>1000.0</td>
</tr>
<tr>
<td>14</td>
<td>0710</td>
<td>ICP</td>
<td>ppm Co ICP</td>
<td>Cobalt</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>15</td>
<td>0718</td>
<td>ICP</td>
<td>ppm Ni ICP</td>
<td>Nickel</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>16</td>
<td>0704</td>
<td>ICP</td>
<td>ppm Ba ICP (Incomplete Digestion)</td>
<td>Barium</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>17</td>
<td>0727</td>
<td>ICP</td>
<td>ppm W ICP (Incomplete Digestion)</td>
<td>Tungsten</td>
<td>5</td>
<td>10000</td>
</tr>
<tr>
<td>18</td>
<td>0709</td>
<td>ICP</td>
<td>ppm Cr ICP (Incomplete Digestion)</td>
<td>Chromium</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>19</td>
<td>0729</td>
<td>ICP</td>
<td>ppm V ICP (Incomplete Digestion)</td>
<td>Vanadium</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>20</td>
<td>0716</td>
<td>ICP</td>
<td>ppm Mn ICP (Incomplete Digestion)</td>
<td>Manganese</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>21</td>
<td>0713</td>
<td>ICP</td>
<td>ppm La ICP (Incomplete Digestion)</td>
<td>Lanthanum</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>22</td>
<td>0723</td>
<td>ICP</td>
<td>ppm Sr ICP (Incomplete Digestion)</td>
<td>Strontium</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>23</td>
<td>0731</td>
<td>ICP</td>
<td>ppm Zr ICP (Incomplete Digestion)</td>
<td>Zirconium</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>24</td>
<td>0735</td>
<td>ICP</td>
<td>ppm Sc ICP (Incomplete Digestion)</td>
<td>Scandium</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>25</td>
<td>0725</td>
<td>ICP</td>
<td>ppm Ti ICP (Incomplete Digestion)</td>
<td>Titanium</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>26</td>
<td>0701</td>
<td>ICP</td>
<td>ppm Al ICP (Incomplete Digestion)</td>
<td>Aluminum</td>
<td>0.01</td>
<td>10.00</td>
</tr>
<tr>
<td>27</td>
<td>0708</td>
<td>ICP</td>
<td>ppm Ca ICP (Incomplete Digestion)</td>
<td>Calcium</td>
<td>0.01</td>
<td>10.00</td>
</tr>
<tr>
<td>28</td>
<td>0712</td>
<td>ICP</td>
<td>ppm Fe ICP (Incomplete Digestion)</td>
<td>Iron</td>
<td>0.01</td>
<td>10.00</td>
</tr>
<tr>
<td>29</td>
<td>0715</td>
<td>ICP</td>
<td>ppm Mg ICP (Incomplete Digestion)</td>
<td>Magnesium</td>
<td>0.01</td>
<td>10.00</td>
</tr>
<tr>
<td>30</td>
<td>0720</td>
<td>ICP</td>
<td>ppm K ICP (Incomplete Digestion)</td>
<td>Potassium</td>
<td>0.01</td>
<td>10.00</td>
</tr>
<tr>
<td>31</td>
<td>0722</td>
<td>ICP</td>
<td>ppm Na ICP (Incomplete Digestion)</td>
<td>Sodium</td>
<td>0.01</td>
<td>5.00</td>
</tr>
<tr>
<td>32</td>
<td>0719</td>
<td>ICP</td>
<td>ppm P ICP (Incomplete Digestion)</td>
<td>Phosphorus</td>
<td>0.01</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Our liability is limited solely to the analytical cost of these analyses.

BC Certified Assayer: David Chiu
**CERTIFICATE OF ANALYSIS**

iPL 9811018

Client: Homestake Canada Inc
Project: 90822 Yukon

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Type</th>
<th>Au (ppb)</th>
<th>Au (g/mt)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Sb (ppm)</th>
<th>Hg (ppm)</th>
<th>Mo (ppm)</th>
<th>Tl (ppm)</th>
<th>Bi (ppm)</th>
<th>Cd (ppm)</th>
<th>Co (ppm)</th>
<th>Ni (ppm)</th>
<th>Ba (ppm)</th>
<th>W (ppm)</th>
<th>Cr (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24498</td>
<td>Rock</td>
<td>10</td>
<td>&lt;0.1</td>
<td>26</td>
<td>6</td>
<td>26</td>
<td>52</td>
<td>&lt;5</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>2.4</td>
<td>4</td>
<td>11</td>
<td>30</td>
<td>&lt;5</td>
<td>186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24459</td>
<td>Rock</td>
<td>12</td>
<td>0.1</td>
<td>45</td>
<td>13</td>
<td>22</td>
<td>102</td>
<td>&lt;5</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>2.6</td>
<td>3</td>
<td>10</td>
<td>31</td>
<td>&lt;5</td>
<td>188</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum Detection:

- Au: 0.07 ppm
- Ag: 2 ppb
- Cu: 1 ppm
- Pb: 1 ppm
- Zn: 5 ppm
- As: 1 ppm
- Sb: 1 ppm
- Hg: 1 ppm
- Mo: 2 ppm
- Tl: 5 ppm
- Bi: 2 ppm
- Cd: 1 ppm
- Co: 1 ppm
- Ni: 1 ppm
- Ba: 1 ppm
- W: 1 ppm
- Cr: 1 ppm

Maximum Detection:

- Au: 10000 ppm
- Ag: 100.0 ppm
- Cu: 20000 ppm
- Pb: 20000 ppm
- Zn: 10000 ppm
- As: 10000 ppm
- Sb: 10000 ppm
- Hg: 10000 ppm
- Mo: 10000 ppm
- Tl: 10000 ppm
- Bi: 10000 ppm
- Cd: 10000 ppm
- Co: 10000 ppm
- Ni: 10000 ppm
- Ba: 10000 ppm
- W: 10000 ppm
- Cr: 10000 ppm

Method:

- FA/AAS
- FA/Grav
- ICP

- No Test
- Insufficient Sample
- Del=Delay
- Max=No Estimate
- Rec=ReCheck
- m=x1000
- %=Estimate
- NS=No Sample
## Sample Analysis Results

**Sample Name**: 24496, 24499

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>V ppm</th>
<th>Mn ppm</th>
<th>La ppm</th>
<th>Sr ppm</th>
<th>Zr ppm</th>
<th>Sc ppm</th>
<th>Ti %</th>
<th>Al %</th>
<th>Ca %</th>
<th>Fe %</th>
<th>Mg %</th>
<th>K %</th>
<th>Na %</th>
<th>P %</th>
</tr>
</thead>
<tbody>
<tr>
<td>24496</td>
<td>5</td>
<td>99</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>&lt;0.01</td>
<td>0.24</td>
<td>0.11</td>
<td>1.18</td>
<td>0.02</td>
<td>0.11</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>24499</td>
<td>5</td>
<td>136</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>&lt;0.01</td>
<td>0.28</td>
<td>0.10</td>
<td>1.29</td>
<td>0.02</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

### Minimum Detection
- V: 2, Mn: 1, La: 2, Sr: 1, Zr: 1, Sc: 1, Ti: 0.01, Al: 0.01, Ca: 0.01, Fe: 0.01, Mg: 0.01, K: 0.01, Na: 0.01, P: 0.01

### Maximum Detection
- V: 10000, Mn: 10000, La: 10000, Sr: 10000, Zr: 10000, Sc: 10000, Ti: 1.00, Al: 10.00, Ca: 10.00, Fe: 10.00, Mg: 10.00, K: 5.00, Na: 5.00, P: 5.00

### Method
- ICP

**Notes:**
- No Test
- Insufficient Sample
- Del=Delay
- Max=No Estimate
- Rec=ReCheck
- m=x1000
- %=Estimate %
- NS=No Sample
**CERTIFICATE OF ANALYSIS**

**iPL 98II1019**

15 Samples  

<table>
<thead>
<tr>
<th>Code</th>
<th>Amount</th>
<th>Type</th>
<th>Preparation Description</th>
<th>Element</th>
<th>Limit</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8211</td>
<td>2</td>
<td>Rock</td>
<td>crush, split &amp; pulverize</td>
<td>Gold</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>8111</td>
<td>13</td>
<td>Soil</td>
<td>Dry &amp; sift to -80 mesh, discard reject</td>
<td>Silver</td>
<td>0.1</td>
<td>100.0</td>
</tr>
<tr>
<td>0721</td>
<td>ICP</td>
<td>ppm</td>
<td>Cu ICP</td>
<td>Copper</td>
<td>1</td>
<td>20000</td>
</tr>
<tr>
<td>0720</td>
<td>ICP</td>
<td>ppm</td>
<td>Pb ICP</td>
<td>Lead</td>
<td>2</td>
<td>20000</td>
</tr>
<tr>
<td>0724</td>
<td>ICP</td>
<td>ppm</td>
<td>Zn ICP</td>
<td>Zinc</td>
<td>1</td>
<td>20000</td>
</tr>
<tr>
<td>0706</td>
<td>ICP</td>
<td>ppm</td>
<td>As ICP</td>
<td>Arsenic</td>
<td>5</td>
<td>10000</td>
</tr>
<tr>
<td>0705</td>
<td>ICP</td>
<td>ppm</td>
<td>Cd ICP</td>
<td>Antimony</td>
<td>5</td>
<td>10000</td>
</tr>
<tr>
<td>0729</td>
<td>ICP</td>
<td>ppm</td>
<td>Hg ICP</td>
<td>Mercury</td>
<td>3</td>
<td>10000</td>
</tr>
<tr>
<td>0717</td>
<td>ICP</td>
<td>ppm</td>
<td>Mo ICP</td>
<td>Molybdenum</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>0747</td>
<td>ICP</td>
<td>ppm</td>
<td>Ti ICP (Incomplete Digestion)</td>
<td>Thallium</td>
<td>10</td>
<td>10000</td>
</tr>
<tr>
<td>0705</td>
<td>ICP</td>
<td>ppm</td>
<td>Bi ICP</td>
<td>Bismuth</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>0707</td>
<td>ICP</td>
<td>ppm</td>
<td>Cd ICP</td>
<td>Cadmium</td>
<td>0.1</td>
<td>100.0</td>
</tr>
<tr>
<td>0710</td>
<td>ICP</td>
<td>ppm</td>
<td>Co ICP</td>
<td>Cobalt</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>0718</td>
<td>ICP</td>
<td>ppm</td>
<td>Ni ICP</td>
<td>Nickel</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>0704</td>
<td>ICP</td>
<td>ppm</td>
<td>Ba ICP (Incomplete Digestion)</td>
<td>Barium</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>0727</td>
<td>ICP</td>
<td>ppm</td>
<td>W ICP (Incomplete Digestion)</td>
<td>Tungsten</td>
<td>5</td>
<td>10000</td>
</tr>
<tr>
<td>0709</td>
<td>ICP</td>
<td>ppm</td>
<td>Cr ICP (Incomplete Digestion)</td>
<td>Chromium</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>0729</td>
<td>ICP</td>
<td>ppm</td>
<td>V ICP (Incomplete Digestion)</td>
<td>Vanadium</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>0716</td>
<td>ICP</td>
<td>ppm</td>
<td>Mn ICP</td>
<td>Manganese</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>0713</td>
<td>ICP</td>
<td>ppm</td>
<td>La ICP (Incomplete Digestion)</td>
<td>Lanthanum</td>
<td>2</td>
<td>10000</td>
</tr>
<tr>
<td>0723</td>
<td>ICP</td>
<td>ppm</td>
<td>Sr ICP (Incomplete Digestion)</td>
<td>Strontium</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>0731</td>
<td>ICP</td>
<td>ppm</td>
<td>Zr ICP (Incomplete Digestion)</td>
<td>Zirconium</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>0736</td>
<td>ICP</td>
<td>ppm</td>
<td>Sc ICP (Incomplete Digestion)</td>
<td>Scandium</td>
<td>1</td>
<td>10000</td>
</tr>
<tr>
<td>0725</td>
<td>ICP</td>
<td>ppm</td>
<td>Ti ICP (Incomplete Digestion)</td>
<td>Titanium</td>
<td>0.01</td>
<td>1.00</td>
</tr>
<tr>
<td>0701</td>
<td>ICP</td>
<td>ppm</td>
<td>Al ICP (Incomplete Digestion)</td>
<td>Aluminum</td>
<td>0.01</td>
<td>10.0</td>
</tr>
<tr>
<td>0708</td>
<td>ICP</td>
<td>ppm</td>
<td>Ca ICP (Incomplete Digestion)</td>
<td>Calcium</td>
<td>0.01</td>
<td>10.0</td>
</tr>
<tr>
<td>0712</td>
<td>ICP</td>
<td>ppm</td>
<td>Fe ICP</td>
<td>Iron</td>
<td>0.01</td>
<td>10.0</td>
</tr>
<tr>
<td>0715</td>
<td>ICP</td>
<td>ppm</td>
<td>Mg ICP (Incomplete Digestion)</td>
<td>Magnesium</td>
<td>0.01</td>
<td>10.0</td>
</tr>
<tr>
<td>0720</td>
<td>ICP</td>
<td>ppm</td>
<td>K ICP (Incomplete Digestion)</td>
<td>Potassium</td>
<td>0.01</td>
<td>10.0</td>
</tr>
<tr>
<td>0722</td>
<td>ICP</td>
<td>ppm</td>
<td>Na ICP (Incomplete Digestion)</td>
<td>Sodium</td>
<td>0.01</td>
<td>5.00</td>
</tr>
<tr>
<td>0719</td>
<td>ICP</td>
<td>ppm</td>
<td>P ICP</td>
<td>Phosphorus</td>
<td>0.01</td>
<td>5.00</td>
</tr>
</tbody>
</table>

**Document Distribution**

1. Homestake Canada Inc.  
POBox 11115 1100-1055 W. Georgia St 1 2 2 2 1  
Vancouver  
BC  
Canada  
Att: Dave Kuran  
Ph:604/684-2345  
Fx:604/9831  
Em:dkuran@homestake.com

2. Homestake Canada Inc.  
EN RT CC IN FX  
POBox 11115 1100-1055 W. Georgia St 1 2 2 2 1  
Vancouver  
BC  
Canada  
Att: Dominic Bordin (E-mail)  
Ph:604/684-5700  
Fx:604/9973-5076  
Em:dbordin@homestake.com

3. Homestake Canada Inc.  
EN RT CC IN FX  
POBox 11115 1100-1055 W. Georgia St 1 2 2 2 1  
Vancouver  
BC  
Canada  
Att: Mike Papageorge  
Ph:604/684-2345  
Fx:604/9831  
Em:yukonexp@homestake.com

---

EN=Envelope  # RT=Report Style CC=Copies IN=Invoices Fx=Fax (1=Yes 0=No) Totals: 2=Copy 2=Invoice 0=3½ Disk  
DL=Download 3D=3½ Disk EM=E-Mail BT=BBS Type BL=BBS (1=Yes 0=No) ID=CO343040619

*Our liability is limited solely to the analytical cost of these analyses.*

---

**BC Certified Assayer:** David Chiu
### Sample Name

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Type</th>
<th>Au (ppb)</th>
<th>Ag (ppm)</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>As (ppm)</th>
<th>Sb (ppm)</th>
<th>Hg (ppm)</th>
<th>Mo (ppm)</th>
<th>Tl (ppm)</th>
<th>Bi (ppm)</th>
<th>Cd (ppm)</th>
<th>Co (ppm)</th>
<th>Ni (ppm)</th>
<th>Ba (ppm)</th>
<th>W (ppm)</th>
<th>Cr (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI-D 01392</td>
<td>Rock</td>
<td>2 -</td>
<td>0.7</td>
<td>13</td>
<td>1360</td>
<td>16</td>
<td>39</td>
<td>8</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>1.5</td>
<td>3</td>
<td>8</td>
<td>172</td>
<td>&lt;5</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>HI-D 01393</td>
<td>Rock</td>
<td>2 -</td>
<td>&lt;0.1</td>
<td>12</td>
<td>32</td>
<td>23</td>
<td>22</td>
<td>6</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>3.9</td>
<td>7</td>
<td>16</td>
<td>72</td>
<td>&lt;5</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>HSL 01</td>
<td>Soil</td>
<td>12 &lt;2</td>
<td>&lt;0.1</td>
<td>39</td>
<td>192</td>
<td>134</td>
<td>307</td>
<td>96</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>7.8</td>
<td>14</td>
<td>28</td>
<td>69</td>
<td>&lt;5</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>HSL 02</td>
<td>Soil</td>
<td>6 &lt;2</td>
<td>&lt;0.1</td>
<td>32</td>
<td>59</td>
<td>88</td>
<td>128</td>
<td>25</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>6.4</td>
<td>13</td>
<td>26</td>
<td>42</td>
<td>&lt;5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>HSL 03</td>
<td>Soil</td>
<td>3 &lt;2</td>
<td>&lt;0.1</td>
<td>26</td>
<td>70</td>
<td>88</td>
<td>126</td>
<td>25</td>
<td>&lt;1</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>6.8</td>
<td>13</td>
<td>24</td>
<td>95</td>
<td>&lt;5</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>HSL 04</td>
<td>Soil</td>
<td>&lt;2 &lt;2</td>
<td>&lt;0.1</td>
<td>32</td>
<td>43</td>
<td>108</td>
<td>68</td>
<td>13</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>6.9</td>
<td>12</td>
<td>29</td>
<td>63</td>
<td>5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>HSL 05</td>
<td>Soil</td>
<td>&lt;2 &lt;2</td>
<td>&lt;0.1</td>
<td>32</td>
<td>55</td>
<td>88</td>
<td>38</td>
<td>99</td>
<td>19</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>6.4</td>
<td>9</td>
<td>17</td>
<td>137</td>
<td>&lt;5</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>HSL 06</td>
<td>Soil</td>
<td>&lt;2 &lt;2</td>
<td>&lt;0.1</td>
<td>92</td>
<td>12</td>
<td>93</td>
<td>37</td>
<td>42</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>5.3</td>
<td>4</td>
<td>19</td>
<td>102</td>
<td>&lt;5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>HSL 07</td>
<td>Soil</td>
<td>&lt;2 &lt;2</td>
<td>&lt;0.1</td>
<td>23</td>
<td>54</td>
<td>87</td>
<td>38</td>
<td>99</td>
<td>19</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>5.3</td>
<td>4</td>
<td>19</td>
<td>102</td>
<td>&lt;5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>HSL 08</td>
<td>Soil</td>
<td>&lt;2 &lt;2</td>
<td>&lt;0.1</td>
<td>26</td>
<td>104</td>
<td>117</td>
<td>115</td>
<td>37</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>6.0</td>
<td>8</td>
<td>21</td>
<td>140</td>
<td>&lt;5</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>HSL 09</td>
<td>Soil</td>
<td>&lt;2 &lt;2</td>
<td>&lt;0.1</td>
<td>32</td>
<td>67</td>
<td>87</td>
<td>101</td>
<td>25</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>6.4</td>
<td>12</td>
<td>25</td>
<td>144</td>
<td>&lt;5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>HSL 10</td>
<td>Soil</td>
<td>12 &lt;2</td>
<td>&lt;0.1</td>
<td>28</td>
<td>77</td>
<td>148</td>
<td>256</td>
<td>31</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>7.6</td>
<td>11</td>
<td>26</td>
<td>151</td>
<td>&lt;5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>HSL 11</td>
<td>Soil</td>
<td>9 &lt;2</td>
<td>&lt;0.1</td>
<td>38</td>
<td>86</td>
<td>158</td>
<td>131</td>
<td>49</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>7.8</td>
<td>16</td>
<td>35</td>
<td>108</td>
<td>&lt;5</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>HSL 12</td>
<td>Soil</td>
<td>3 &lt;2</td>
<td>&lt;0.1</td>
<td>27</td>
<td>77</td>
<td>92</td>
<td>133</td>
<td>31</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>6.5</td>
<td>10</td>
<td>20</td>
<td>167</td>
<td>&lt;5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>HSL 013</td>
<td>Soil</td>
<td>&lt;2 &lt;2</td>
<td>&lt;0.1</td>
<td>25</td>
<td>35</td>
<td>90</td>
<td>50</td>
<td>7</td>
<td>&lt;3</td>
<td>&lt;10</td>
<td>&lt;2</td>
<td>6.5</td>
<td>11</td>
<td>26</td>
<td>80</td>
<td>&lt;5</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

### Minimum Detection

- Au: 2.07
- Ag: 0.1
- Cu: 1
- Pb: 1
- Zn: 1
- As: 5
- Sb: 5
- Hg: 3
- Mo: 1
- Tl: 2
- Bi: 0.1
- Cd: 0.1
- Co: 1
- Ni: 1
- Ba: 1
- W: 1
- Cr: 1

### Maximum Detection

- Au: 10000
- Ag: 10000
- Cu: 1000
- Pb: 10000
- Zn: 10000
- As: 1000
- Sb: 10000
- Hg: 10000
- Mo: 10000
- Tl: 10000
- Bi: 10000
- Cd: 10000
- Co: 10000
- Ni: 10000
- Ba: 10000
- W: 10000
- Cr: 10000

### Method

- FA/AS
- FAGrav
- ICP

### Notes

- No Test
- Ins=Insufficient Sample
- Del=Delay
- Max=No Estimate
- Rec=ReCheck
- m=x1000
- %=Estimate %
- NS=No Sample
## CERTIFICATE OF ANALYSIS

**iPL 9811019**

**Client:** Homestake Canada Inc  
**Project:** 90820 Yukon

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>V ppm</th>
<th>Mn ppm</th>
<th>La ppm</th>
<th>Sr ppm</th>
<th>Zr ppm</th>
<th>Sc ppm</th>
<th>Ti %</th>
<th>Al %</th>
<th>Ca %</th>
<th>Fe %</th>
<th>Mg %</th>
<th>K %</th>
<th>Na %</th>
<th>P %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI-D 01392</td>
<td>2</td>
<td>254.0</td>
<td>7</td>
<td>20</td>
<td>5</td>
<td>&lt;1</td>
<td>&lt;0.01</td>
<td>0.20</td>
<td>0.72</td>
<td>0.75</td>
<td>0.04</td>
<td>0.11</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>HI-D 01393</td>
<td>13</td>
<td>284.0</td>
<td>12</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td>&lt;0.01</td>
<td>0.70</td>
<td>0.32</td>
<td>1.72</td>
<td>0.23</td>
<td>0.12</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>HSL 01</td>
<td>20</td>
<td>630.0</td>
<td>30</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>0.01</td>
<td>1.16</td>
<td>0.08</td>
<td>3.72</td>
<td>0.29</td>
<td>0.07</td>
<td>&lt;0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>HSL 02</td>
<td>22</td>
<td>437.0</td>
<td>34</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>0.01</td>
<td>1.23</td>
<td>0.10</td>
<td>3.15</td>
<td>0.33</td>
<td>0.07</td>
<td>&lt;0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>HSL 03</td>
<td>28</td>
<td>472.0</td>
<td>30</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0.01</td>
<td>1.58</td>
<td>0.06</td>
<td>3.33</td>
<td>0.36</td>
<td>0.07</td>
<td>&lt;0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>HSL 04</td>
<td>21</td>
<td>440.0</td>
<td>30</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0.01</td>
<td>1.23</td>
<td>0.05</td>
<td>3.49</td>
<td>0.24</td>
<td>0.05</td>
<td>&lt;0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>HSL 05</td>
<td>36</td>
<td>390.0</td>
<td>20</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0.01</td>
<td>1.43</td>
<td>0.10</td>
<td>3.12</td>
<td>0.33</td>
<td>0.05</td>
<td>&lt;0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>HSL 06</td>
<td>26</td>
<td>268.0</td>
<td>16</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0.01</td>
<td>1.33</td>
<td>0.11</td>
<td>2.77</td>
<td>0.33</td>
<td>0.05</td>
<td>&lt;0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>HSL 07</td>
<td>19</td>
<td>333.0</td>
<td>20</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>&lt;0.01</td>
<td>1.22</td>
<td>0.09</td>
<td>3.01</td>
<td>0.29</td>
<td>0.05</td>
<td>&lt;0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>HSL 08</td>
<td>17</td>
<td>303.0</td>
<td>25</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>&lt;0.01</td>
<td>1.14</td>
<td>0.20</td>
<td>2.90</td>
<td>0.33</td>
<td>0.06</td>
<td>&lt;0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>HSL 09</td>
<td>18</td>
<td>550.0</td>
<td>22</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>&lt;0.01</td>
<td>1.09</td>
<td>0.15</td>
<td>3.09</td>
<td>0.31</td>
<td>0.04</td>
<td>&lt;0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>HSL 10</td>
<td>33</td>
<td>574.0</td>
<td>18</td>
<td>25</td>
<td>2</td>
<td>1</td>
<td>0.01</td>
<td>1.42</td>
<td>0.26</td>
<td>3.65</td>
<td>0.33</td>
<td>0.06</td>
<td>&lt;0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>HSL 11</td>
<td>25</td>
<td>558.0</td>
<td>18</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>0.01</td>
<td>1.29</td>
<td>0.19</td>
<td>3.85</td>
<td>0.47</td>
<td>0.06</td>
<td>&lt;0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>HSL 12</td>
<td>29</td>
<td>452.0</td>
<td>20</td>
<td>38</td>
<td>2</td>
<td>1</td>
<td>0.01</td>
<td>1.36</td>
<td>0.45</td>
<td>3.16</td>
<td>0.28</td>
<td>0.06</td>
<td>&lt;0.01</td>
<td>0.11</td>
</tr>
<tr>
<td>HSL 13</td>
<td>24</td>
<td>555.0</td>
<td>22</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0.01</td>
<td>1.25</td>
<td>0.08</td>
<td>3.26</td>
<td>0.37</td>
<td>0.05</td>
<td>&lt;0.01</td>
<td>0.06</td>
</tr>
</tbody>
</table>

**Minimum Detection**  
2 1 2 1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01

**Maximum Detection**  
10000 10000 10000 10000 10000 10000 1.00 10.00 10.00 10.00 10.00 5.00 5.00

**Method**  
ICP ICP

---

No Test  
Ins=Insufficient Sample  
Del=Delay  
Max=Max Estimate  
Re=ReCheck  
m=x1000  
%Estimate  
NS=No Sample
**CERTIFICATE OF ANALYSIS**

**iPL 9810933**

---

### 56 Samples

**Out:** Sep 10, 1998  
**In:** Sep 04, 1998

<table>
<thead>
<tr>
<th>CODE</th>
<th>AMOUNT</th>
<th>TYPE</th>
<th>PREPARATION DESCRIPTION</th>
<th>PULP</th>
<th>REJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B211</td>
<td>32</td>
<td>Rock</td>
<td>crush, split &amp; pulverize</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B111</td>
<td>24</td>
<td>Soil</td>
<td>Dry &amp; sift to -80 mesh, disc reject.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Comment:**
56 Samples  
Out: Sep 10, 1998  
In: Sep 04, 1998

---

### Analytical Summary

<table>
<thead>
<tr>
<th>#</th>
<th>Code</th>
<th>Method</th>
<th>Units</th>
<th>Element</th>
<th>Limit</th>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0313</td>
<td>FA/AAS</td>
<td>ppm</td>
<td>Au</td>
<td>2</td>
<td>10000</td>
<td>FA/AAS finish 30g</td>
</tr>
<tr>
<td>02</td>
<td>0356</td>
<td>FAGrav</td>
<td>g/mt</td>
<td>Au</td>
<td>0.07</td>
<td>10000</td>
<td>FAGrav in g/mt</td>
</tr>
<tr>
<td>03</td>
<td>0414</td>
<td>FAGrav</td>
<td>g/mt</td>
<td>Ag</td>
<td>0.3</td>
<td>99999.9</td>
<td>FAGrav in g/mt</td>
</tr>
</tbody>
</table>

---

**Document Distribution**

1. **Homestake Canada Inc.**  
   POBox 11115 1100-1055 W. Georgia St  
   1 2 2 2 1  
   Vancouver  
   BC  
   Phone: 604/684-2345  
   Fax: 604/684-9831

   **Project:** Yukon 90820  
   **Shipper:** Mike Papageorge  
   **Shipnent:** PC#:

---

**Analysis:**  
Au(FA/AAS 30g) ICP(AqR)30

---

**Comment:**  
56 Samples  
Out: Sep 10, 1998  
In: Sep 04, 1998

---

**Disclaimer:**  
Our liability is limited solely to the analytical cost of these analyses.

---

**BC Certified Assayer:** David Chiu
## CERTIFICATE OF ANALYSIS

**iPL 98I0933**

| Sample Name | Type | Au | Au | Ag | Ag | Cu | Pb | Zn | As | Sb | Hg | Mo | Tl | Bi | Cd | Co | Ni | Ba | W |
|-------------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 20728       | Rock | 7  | —  | —  | —  | 0.4| 26 | 83 | 54 | 59 | <5 | <3 | 7  | <10| <2 | 2.4| 21 | 66 | 252| <5 |
| 20729       | Rock | 9  | —  | —  | —  | 0.4| 19 | 48 | 4  | 21 | <5 | <3 | 2  | <10| <2 | 0.5| 2  | 10 | 64 | <5 |
| 20730       | Rock | 4  | —  | —  | —  | 1.3| 15 | 835| 5  | 17 | <5 | <3 | 3  | <10| <2 | 0.6| 1  | 8  | 36 | <5 |
| 20731       | Rock | 40 | —  | —  | —  | 0.4| 8  | 21 | 23 | <5 | <5 | <3 | 3  | <10| <2 | 1.8| 5  | 12 | 156| <5 |

### Minimum Detection
- Au: 2 ppb
- Cu: 0.07 ppm
- Pb: 0.3 ppm
- Zn: 0.1 ppm
- As: 1 ppm
- Sb: 5 ppm
- Hg: 5 ppm
- Tl: 5 ppm
- Bi: 5 ppm
- Cd: 1 ppm
- Co: 1 ppm
- Ni: 1 ppm
- Ba: 1 ppm
- W: 5 ppm

### Maximum Detection
- Au: 10,000 ppm
- Cu: 1000 ppm
- Pb: 2000 ppm
- Zn: 2000 ppm
- As: 10,000 ppm
- Sb: 10,000 ppm
- Hg: 10,000 ppm
- Tl: 10,000 ppm
- Bi: 10,000 ppm
- Cd: 10,000 ppm
- Co: 10,000 ppm
- Ni: 10,000 ppm
- Ba: 10,000 ppm
- W: 10,000 ppm

### Method
- FA/AA
- FA/Gav
- FA/Gav
- ICP

---

*No Test*  *Ins=Insufficient Sample*  *Del=Delay*  *Max=No Estimate*  *Rec=ReCheck*  *m=1000*  *%=Estimate*  *NS=No Sample*
### Certificate of Analysis

**iPL 9810933**

**.client:** Homestake Canada Inc  
**Project:** Yukon 90820

**56 Samples**  
32=Rock  24=Soil

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Cr ppm</th>
<th>V ppm</th>
<th>Mn ppm</th>
<th>La ppm</th>
<th>Sr ppm</th>
<th>Zr ppm</th>
<th>Sc ppm</th>
<th>Ti %</th>
<th>Al %</th>
<th>Ca %</th>
<th>Fe %</th>
<th>Mg %</th>
<th>K %</th>
<th>Na %</th>
<th>P %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20728</td>
<td>138</td>
<td>56</td>
<td>213</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>0.08</td>
<td>1.87</td>
<td>0.05</td>
<td>2.40</td>
<td>1.65</td>
<td>0.81</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>20729</td>
<td>212</td>
<td>3</td>
<td>24</td>
<td>&lt;2</td>
<td>2</td>
<td>1</td>
<td>&lt;1</td>
<td>&lt;0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.53</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>20730</td>
<td>289</td>
<td>&lt;2</td>
<td>28</td>
<td>&lt;2</td>
<td>2</td>
<td>1</td>
<td>&lt;1</td>
<td>&lt;0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.45</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>20731</td>
<td>132</td>
<td>8</td>
<td>410</td>
<td>3</td>
<td>87</td>
<td>1</td>
<td>1</td>
<td>0.03</td>
<td>0.35</td>
<td>1.72</td>
<td>1.86</td>
<td>0.09</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

**Minimum Detection**  
1 2 1 2 1 1 1 0.01 0.01 0.01 0.01 0.01 0.01 0.01

**Maximum Detection**  
10000 10000 10000 10000 10000 10000 1.00 10.00 10.00 10.00 10.00 5.00 5.00

**Method**  
ICP ICP

---  
*No Test In=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample*
APPENDIX 3  
CORRESPONDENCE WITH MAYO MINING RECORDER
DEPARTMENT OF INDIAN AFFAIRS AND NORTHERN DEVELOPMENT
YUKON QUARTZ MINING ACT
FORM "C" - APPLICATION FOR A CERTIFICATE OF WORK

I (Name) BRIAN TRAUB
Occupation GEOLoGIST

(Po. Box 1115, 110-155 West Georgia St
Vancouver, B.C. V6E 3P3

OFFICE DATE STAMP

MAKE OATH AND SAY, THAT:

1. I am the owner, or agent of the owner, of the mineral claim(s) to which reference is made herein.

2. I have done, or caused to be done, work on the following mineral claim(s):

(Here list claims on which work was actually done by number and name)

<table>
<thead>
<tr>
<th>Name</th>
<th>Claim</th>
<th>Value (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEIDI</td>
<td>S1F YB 65141</td>
<td>HK 14 Fr. Y865,872</td>
</tr>
<tr>
<td>HEIDI</td>
<td>S2 YB 65142</td>
<td>HK 15 Fr. Y865,963</td>
</tr>
<tr>
<td>HEIDI</td>
<td>S3 YB 65143</td>
<td>HK 16 Fr. Y865,874</td>
</tr>
<tr>
<td>HEIDI</td>
<td>S4 YB 65144</td>
<td>HK 17 Fr. Y865,875</td>
</tr>
<tr>
<td>HEIDI</td>
<td>S13 YB 65147</td>
<td>HK 18 Fr. Y865,876</td>
</tr>
<tr>
<td>HEIDI</td>
<td>S12 YB 65148</td>
<td>HK 19 Fr. Y865,877</td>
</tr>
</tbody>
</table>

situated at LAKE CREEK Claim Sheet No. 116 A15

in the MAYO Mining District, to the value of at least $3600.00

dollars, since the 10th day of SEPTEMBER 1998,

to represent the following mineral claims under the authority of Grouping Certificate No. (Here list claims to be renewed in numerical order, by grant number and claim name, showing renewal period requested).

REFER TO ATTACHED LIST.

3. The following is a detailed statement of such work: (Set out full particulars of the work done indicating dates work commenced and ended in the twelve months in which such work is required to be done as shown by Section 53.)

WORK COMPLETED ON SEPT 16/1998. WORK CONSISTED OF GEOLOGICAL AND GEOCHEMICAL PROSPECTING BY A CREW OF 4 GEOLOGISTS.

Sworn before me at [Signature] this 22 day of SEPTEMBER 1998.

Notary Public

Applicant