ASSESSMENT REPORT

describing

DIAMOND DRILLING

at the

END ZONE PROPERTY

End Zone 1-40 Claims YB75358-YB75397

Latitude 60°33' N; Longitude 130°02' W

NTS 105B/9

in the

WATSON LAKE MINING DISTRICT

YUKON TERRITORY

Prepared by

for

NORDAC RESOURCES LTD.

W.D. Eaton, B.Sc.
April, 1998
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>HISTORY</td>
<td>2</td>
</tr>
<tr>
<td>PROPERTY, LOCATION AND ACCESS</td>
<td>3</td>
</tr>
<tr>
<td>GEOMORPHOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>REGIONAL GEOLOGY</td>
<td>5</td>
</tr>
<tr>
<td>REGIONAL MINERALIZATION</td>
<td>7</td>
</tr>
<tr>
<td>PROPERTY GEOLOGY AND MINERALIZATION</td>
<td>8</td>
</tr>
<tr>
<td>PROPERTY GEOCHEMISTRY</td>
<td>11</td>
</tr>
<tr>
<td>DIAMOND DRILLING</td>
<td>12</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>14</td>
</tr>
<tr>
<td>SELECTED REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>

APPENDICES

I AUTHOR’S STATEMENT OF QUALIFICATIONS

II DIAMOND DRILL LOGS
<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Property Location</td>
<td>Following Page 3</td>
</tr>
<tr>
<td>2</td>
<td>Claim Location</td>
<td>Following Page 3</td>
</tr>
<tr>
<td>3</td>
<td>Tectonic Setting</td>
<td>Following Page 5</td>
</tr>
<tr>
<td>4</td>
<td>Regional Geology</td>
<td>Following Page 5</td>
</tr>
<tr>
<td>5</td>
<td>Property Geology</td>
<td>Following Page 8</td>
</tr>
<tr>
<td>6</td>
<td>Idealized Composite Section</td>
<td>Following Page 9</td>
</tr>
<tr>
<td>7</td>
<td>Compilation Map</td>
<td>Following Page 9</td>
</tr>
<tr>
<td>8</td>
<td>Sample Location</td>
<td>Following Page 11</td>
</tr>
<tr>
<td>9</td>
<td>Silver Geochemistry</td>
<td>Following Page 11</td>
</tr>
<tr>
<td>10</td>
<td>Lead Geochemistry</td>
<td>Following Page 11</td>
</tr>
<tr>
<td>11</td>
<td>Zinc Geochemistry</td>
<td>Following Page 11</td>
</tr>
<tr>
<td>12</td>
<td>Copper Geochemistry</td>
<td>Following Page 11</td>
</tr>
<tr>
<td>13</td>
<td>Cross Section EZ-97-1</td>
<td>Following Page 12</td>
</tr>
<tr>
<td>14</td>
<td>Cross Section EZ 97-2</td>
<td>Following Page 13</td>
</tr>
</tbody>
</table>
INTRODUCTION

Nordac Resources Ltd. has a 100% interest in the End Zone property which protects stratabound lead-zinc-silver and stratiform gold mineralization that was discovered and partially explored in the early 1980's. Nordac acquired the claims by staking in February 1996.

This report describes a diamond drill program conducted by Nordac in August 1997. Work consisted of 100.3 m in two drill holes. The program was managed by Archer, Cathro & Associates (1981) Limited and supervised by the author. Appendix I contains the Author's Statement of Qualifications.
HISTORY

The property was previously staked as the Wolf claims in 1980 by Regional Resources Ltd. which optioned it to Amax Exploration Limited in 1980 and 1981. Field work during that period consisted of geological mapping, prospecting, linecutting, grid soil sampling, a single geophysical test line (IP, EM and magnetics) (Verley, 1980) and 532 m of diamond drilling in four holes.

Geochemical response over most of the grid was near background except in the vicinity of the discovery showings where weakly anomalous but coincident silver-lead-zinc values were obtained. Mineralization is exposed in a creek cut and consists of a broad zone of sphalerite- and galena-bearing metavolcanics or metasediments with a narrower band of auriferous pyrite about 15 m upsection. The lead-zinc-silver showing was hand trenched and chip sampled with the best horizon returning 4.65% zinc, 3.05% lead, 43.4 g/t silver across 0.84 m. A grab sample from the semi-massive to massive pyrite horizon assayed 1.99 g/t gold and 14 g/t silver. Results were only reported for one drill hole and it did not yield any significant intersections. No further work was done and the claims were allowed to lapse.

In February 1996 Nordac staked forty contiguous claims approximately centred on the mineralized outcrops. During the following summer geological mapping, prospecting, hand trenching and drill pad construction were done from fly camps on the property.
PROPERTY, LOCATION AND ACCESS

The property is located in southeastern Yukon at latitude 60°33'N and longitude 130°02'W on NTS map sheet 105B/9 (Figure 1). It is comprised of 40 contiguous mineral claims (Figure 2) registered with the Watson Lake Mining Recorder in the name of Archer, Cathro & Associates (1981) Limited which holds them in trust for Nordac Resources Ltd. Claim registration data is listed below.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant Number</th>
<th>Expiry Date*</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Zone 1-40</td>
<td>YB75358-YB75397</td>
<td>February 15, 2006</td>
</tr>
</tbody>
</table>

*Expiry date includes work done in 1997 which has been filed but not yet accepted for credit.

The 1997 diamond drill program was done with daily helicopter support from an Aerospatiale B1 which was contracted from Kluane Helicopters. The crew and helicopter were based at a temporary trailer camp located 40 km to the south of the property at Km 1102 on the Alaska Highway.
GEOMORPHOLOGY

The End Zone property covers a series of broad knolls immediately west of the Liard Plain. Creeks draining the property flow southward into Allan Creek, a tributary of the Liard River watershed.

Local elevations range from 800 to a maximum of 1070 m. Topographic relief is gentle averaging 10° with occasional steeper areas along creek cuts. Pleistocene valley glaciers deposited a blanket of till ranging from 0.5 to 10 m thick over most of the property. Some areas exhibit hummocky "kame and kettle"-type topography and large glacial erratics. The entire property lies below treeline and vegetation consists of widely spaced stands of pine and lesser spruce with moderately thick alder and buckbrush undergrowth near drainages.
REGIONAL GEOLOGY

The End Zone property lies within a belt of metamorphic rocks belonging to the Yukon-Tanana Terrane and Cassiar Platform (Figure 3). This belt extends from northern B.C. across the Yukon into Alaska. The northeastern edge is defined by the Tintina Fault Zone, a series of subparallel transcurrent faults which have produced about 450 km of dextral offset in Late Cretaceous and/or Early Tertiary times (Tempelman-Kluit et al, 1976). The southwestern side is bound by the Teslin Suture, a deep-seated high angle fault zone.

Yukon-Tanana Terrane and Cassiar Platform rocks are composed largely of Paleozoic stratigraphy which has been intruded by Jurassic to Cretaceous plutons as illustrated on Figure 4. Both terranes are considered "suspect terranes" representing variably distal metamorphosed equivalents of North American Continental Margin sediments. Yukon-Tanana, the furthest outboard of the two terranes, is overthrust onto Cassiar Platform rocks by the D'Abbadie Thrust Fault. Some imbrication of the two terranes is also recognized and the structural position is further complicated by normal faulting. The regional metamorphic fabric within both terranes trends northwesterly and dips moderately toward the northeast.

Geology in the End Zone area was mapped at 1:250,000 scale in 1960 by the Geological Survey of Canada [GSC] (Poole et al, 1960).

Yukon-Tanana Terrane stratigraphy is the offset extension of similar rocks in the Finlayson Lake region some 85 km to the northeast. The Finlayson Lake rocks host the Kudz Ze Kayah and Wolverine volcanogenic massive sulphide (VMS) deposits. The favourable stratigraphy is
North American Miogeoclone
Pre-Triassic sedimentary and volcanic rocks

Slide Mountain Terrane
Chert, ultramafic, greenstone, metavolcanic and carbonate rocks

Yukon–Tanana Terrane
Paleozoic metasedimentary and metavolcanic rocks

Cassiar Platform
Paleozoic metasedimentary and metavolcanic rocks

Intrusive Suites
Paleozoic metaplutonic rocks
Mesozoic plutonic rocks

Native land claim
Property owned 100% by Nordac Resources Ltd.
Deposit owned by others
Access route to property

YUKON TERRITORY
BRITISH COLUMBIA

END ZONE PROPERTY

NORDAC RESOURCES LTD.
REGIONAL GEOLOGY
END ZONE PROPERTY

FIGURE 6
NORDAC, DOWNEY & ASSOCIATES (1983) LTD.

REGIONAL GEOLOGY
END ZONE PROPERTY

NORDAC RESOURCES LTD.
REGIONAL GEOLOGY
END ZONE PROPERTY

FIGURE 6
NORDAC, DOWNEY & ASSOCIATES (1983) LTD.
Devono-Mississippian in age and consists predominantly of dark siliceous phyllite that becomes increasingly carbonaceous toward the base of the section where it is interfingered with widespread mafic volcanic schists (Mortensen and Jilson, 1985). Localized felsic metavolcanic centres are also found throughout the section and are intimately associated with the deposits. Rocks of similar age and composition are recognized in the End Zone area within the Yukon-Tanana Terrane and Cassiar Platform. Regional mapping has not differentiated metavolcanic stratigraphy largely because it is usually thin, lacks regional continuity and often exhibits strong metamorphism and thermal overprinting by large igneous bodies such as the Cassiar Batholith.
REGIONAL MINERALIZATION

Over 140 mineral occurrences have been reported within the Yukon-Tanana Terrane and Cassiar Platform rocks on NTS mapsheet 105B (DIAND, 1995). The majority of the occurrences are silver-lead-zinc±copper±gold veins or tin-tungsten-zinc skarns. Several lead-zinc-silver replacement-type occurrences are also noted. The most significant discoveries in this region to date are vein and replacement-type mineralization at the Logan, Silvertip and Silver Hart Deposits (Figure 4). The Silvertip Deposit is classified as a manto replacement-type of Devonian age strata. Diamond drilling and underground development have outlined a mineral resource containing 2,570,000 tonnes with an average grade of 325 g/t silver, 6.4% lead, 8.8% zinc and 0.63 g/t gold (GCNL, 1998). Vein/shear-hosted mineralization occurs within the Cretaceous Marker Lake Batholith at the Logan Deposit where reserves are estimated at 12.3 million tonnes grading 6.17% zinc and 26 g/t silver (DIAND, 1995). The Silver Hart Deposit consists of a series of high grade silver-bearing veins reportedly containing 99,000 kg of silver (DIAND, 1995).
PROPERTY GEOLOGY AND MINERALIZATION

Outcrop exposures comprise less than 1% of the property and are restricted to creek cuts. Rocks are moderately to well foliated and strike northwesterly with moderate to gentle northeasterly dips. Outcrop descriptions were supplemented by logging the 1981 core left on site from diamond drill holes 1, 2 and 4, the locations of which are shown in Figure 5. The five main rock types belong to the Cassiar Platform and are described below.

Sericite±biotite±chlorite±quartz±garnet schist is the most common rock type observed in outcrop and drill core. It is silver-grey to pale green and well foliated. Some intervals (0.1 to 10 m) are strongly clay altered and contain up to 1% disseminated coarse-grained cubic pyrite. Garnets are common ranging from 1 to 2 mm in diameter. Most show partial or complete retrograde alteration to chlorite.

Biotite±muscovite±graphite phyllite is well foliated, grey to black weathering and highly fissile. Pyrite occurs as massive bands (1 to 4 mm thick) and disseminations mainly where graphite is present. Some sections are weakly manganese stained and contain minor amounts of oxidized hematite. This unit was only seen in drill core.

Muscovite-biotite metaquartzite is moderately to well foliated and tan weathering. This unit is weakly pyritic and occurs as narrow bands (1 to 3 m) within the schist and phyllite units.

Limestone is grey-blue and banded to massive in appearance. Muscovite is present only in banded sections as are minor quantities of coarse-grained pyrite.

Quartz-feldspar±muscovite metaporphry is weakly to moderately foliated and grey to tan-yellow weathering. The rocks are moderately to non-calcareous and contain variable amounts (trace to 5%) of disseminated medium- to coarse-grained pyrite.
Property scale structure cannot be determined due to lack of exposure however, outcrop scale isoclinal folds and faults were recognized in several locations. Folding is also demonstrated by dramatic variations in core to axis angles of foliation measured in drill core. Crenulation cleavage is present in highly fissile schists and phyllites. Faults and fractures show a wide variety of orientation but typically crosscut foliation. Some fractures are filled with quartz or siderite veins and veinlets.

Mineralized outcrop is exposed in one area near the centre of the property as shown on Figure 5. In 1996 hand trenching uncovered an approximately 11 m thick section of dolomitic or ankeritic schist with variable amounts of thinly banded sphalerite, galena, pyrite and minor chalcopyrite. An idealized composite section is shown on Figure 6. The best grades were obtained from the uppermost and lowermost parts of the section as tabulated below.

<table>
<thead>
<tr>
<th>Horizon</th>
<th>True Thickness</th>
<th>Zinc (%)</th>
<th>Lead (%)</th>
<th>Silver (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>0.7 m</td>
<td>4.67</td>
<td>3.17</td>
<td>46</td>
</tr>
<tr>
<td>Lower</td>
<td>2.8 m</td>
<td>2.38</td>
<td>1.61</td>
<td>22</td>
</tr>
</tbody>
</table>

Both mineralized horizons mentioned above were only partially exposed with the mineralization apparently extending beneath till in one case and under the creek in the other.

In 1996 five hand pits were dug in till uphill from the trenches (Figure 7). Each pit is about 1.5 sq m and 1.5 to 3.5 m deep. Limonitic galena- and sphalerite-rich float was discovered at the bottom of hand pit #3, 50 m along strike from the main showing, and returned 4.55% zinc, 9.39% lead and 157 g/t silver. Soil samples taken from most other pits yielded weakly to strongly anomalous lead and zinc values.
GAP

BARREN BiOTITE METAQUARTZITE.

1.89 g/t Au, 0.18 % Bi

MASSIVE TO SEMI-MASSIVE PYRITE

GAP

BARREN BiOTITE METAQUARTZITE

4.67% Zn, 3.17% Pb, 44 g/t Ag - UPPER HORIZON
2.39% Zn, 0.89% Pb, 12 g/t Ag

WEAKLY TO STRONGLY MINERALIZED SCHIST
SPHALERITE + GALENA + PYRITE ± CHALCOPYRITE BANDS

0.04% Zn, 0.01% Pb, - g/t Ag
0.51% Zn, 0.28% Pb, 4 g/t Ag
2.38% Zn, 1.61% Pb, 22 g/t Ag - LOWER HORIZON

APPROXIMATE STRATIGRAPHIC THICKNESS
NORDAC RESOURCES LTD.

0.00 Zn, 9.39% Pb, 15.7 g/t Ag
(FLOAT SAMPLE SB1H)

OUTCROP

BREAK IN SLOPE

MINERALIZATION

MASSIVE PYRITE FLOAT

HAND TRENCH

FOLIATION ORIENTATION

DRILL HOLE

HAND PIT WITH SOIL PROFILE SAMPLES AND CORRESPONDING ZINC, LEAD VALUES IN DDH.

NORDAC RESOURCES LTD.

ARCHER, CATHRO & ASSOCIATES (1989) LIMITED

COMPILATION MAP

END ZONE PROPERTY

DRAWN/REVISED BY: CB

PROJECT: NORDAC

DATE: NOV. 28, 1997
Chip sampling from the semi-massive to massive pyrite horizon situated approximately 15 m structurally above the lead-zinc-silver showing returned 1.89 g/t gold, 2 g/t silver and 0.18% bismuth across 0.6 m. This zone is not fully exposed because it dips into the creek. Cobbles of massive pyrite were discovered in till south and west of the showing.

In 1981 diamond drill holes DDH-2 and DDH-4 were collared 150 m southeast and 100 m east of the lead-zinc-silver showing, respectively. Placement of the holes was designed to test the showings at minimum depths of about 60 m assuming outcrop orientations remained relatively constant. DDH-4 intersected 5 cm of massive pyrite in the top 10 m of the hole and weakly pyritic schist intervals at depth. Only weakly pyritic schists were encountered in DDH-2. Both holes contain abundant clay altered schist intervals plus narrow gouge zones that may represent faulting. Gouge zones have not been mapped on surface, thus the attitudes of suspected faults are not known. Angles between core axis and foliation range from 20 to 90° in DDH-4 and 29 to 80° in DDH-2 which indicates a tight small scale folding. The structural complexities and lack of marker horizons makes stratigraphic correlation between drill holes and outcrops questionable.
PROPERTY GEOCHEMISTRY

Soil samples collected in 1996 returned values close to regional background. A few weakly to moderately anomalous results were obtained with peak values of 362 ppm zinc, 330 ppm lead, 139 ppm copper and 0.2 ppm silver. Nine stream sediment samples taken downstream of the discovery showings returned only weakly anomalous lead values, but this may be due to the coarse size of the sediments. Soil and stream sediment locations are illustrated on Figure 8 while geochemical values for silver, lead, zinc and copper are shown on Figures 9 to 12, respectively.

Soil profile sampling was done in four of the five hand pits dug above the lead-zinc showing. The general profile is composed of three layers: 1) an upper layer of brown glacial till with a mixture of boulders, cobbles and sand; 2) a middle section of grey sandy material with minor rusty streaks; and, 3) a lower layer of brown-grey micaceous sand. Hand pits 1, 2, 4 and 5 returned weakly to strongly anomalous values for zinc and lead (Figure 7) with peak values of 560 ppm zinc and 228 ppm lead. Hand pit 3 was not sampled.
PROPERTY BOUNDARY

Soil sample location with zinc value in ppm
Stream sediment sample location with zinc value in ppm
Mineral occurrence

Figure II
ARCHER,CATHRO & ASSOCIATES (1993) LIMITED
ZINC GEOCHEMISTRY
END ZONE PROPERTY
NORDAC RESOURCES LTD.

0 100 200 300 400 500 Metres
DIAMOND DRILLING

In August 1997 a diamond drill was mobilized to the End Zone property. Two holes totalling 100.3 m were completed using a Longyear 38 contracted from E. Caron Diamond Drilling Ltd. of Whitehorse. Hole locations are shown on Figure 7. Core size in both holes was HQ. The collars are marked by posts labelled with inscribed metal tags. The drill core was flown to the temporary trailer camp and is now stored at the drill contractor's equipment yard in MacRae, 15 km south of Whitehorse. The core was logged twice, once at the trailer camp while drilling was underway and again at MacRae in the fall. Drill logs are in Appendix II.

Hole EZ-97-1 was collared 25 m northwest of the discovery lead-zinc-silver showing and was designed to cut the mineralized horizons at a shallow depth (Figure 13). The hole intersected well foliated quartz-muscovite-biotite garnet schist with moderate compositional banding and locally crenulated cleavage. Foliation to core axis angles are usually about 60° but range from 10 to 80°, confirming tight small scale folding noted in previous holes. A suspected fold hinge was logged at 28.75 m which correlates to a possible hinge mapped at surface. This fold is interpreted as a tight syncline with the upper and lower lead-zinc-silver horizons likely representing the two limbs of a single horizon. Unfortunately if this interpretation is correct the fold nose lies above the hole. The only mineralization was intersected between 40.87 and 46.35 m and consisted of rare 1 to 3 mm wide, crosscutting veinlets of ankerite±quartz±sphalerite±galena. The veinlets are all parallel, at about 30° to core axis. The mineralization was too weak to warrant geochemical analysis so no samples were taken.
Lead–Zinc–Silver Showings

Projection of pyrite horizon

Inferred fault

Fold hinge

Rare ankerite±sphalerite ±galena stringers

Stream

Overburden

Quartz–muscovite–biotite±garnet schist

Quartz–muscovite–±garnet schist

NORDAC REOURCES LTD.

FIGURE 13

ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

CROSS SECTION

EZ-97-1

END ZONE PROPERTY

SCALE 1:1000

DRAWN/REVISED BY: J.M/A.C.

PROJECT: NORDAC

FILE: MPD/S/P/1001/1/A/MPD/VZ1/7803

DATED: DECEMBER, 1987
Hole EZ-97-2 was collared 55 m southwest of the first hole and along the projected strike of surface mineralization (Figure 14). This hole again intersected quartz-muscovite-biotite±garnet schist with variable core axis angles. The hole was abandoned at 46.7 m, short of the target, after the drill shifted and the collar could not be relocated. No mineralization was encountered.
CONCLUSIONS AND RECOMMENDATIONS

Hole EZ-97-1 was drilled under the discovery lead-zinc-silver showing but failed to intersect any significant mineralization. It is possible that the upper and lower sulphide horizons exposed in outcrop are actually limbs of a tight synclinal fold that closed above the drill hole. Hole EZ-97-2 was lost before reaching its target depth. Neither hole tested the gold-bearing pyrite horizon.

It is evident from surface mapping and drilling that there are significant structural complexities in the area of mineralization. The next stage of exploration should consist of hand trenching to trace the mineralization along strike and to provide additional data for structural and stratigraphic interpretation.

Respectfully submitted,

ARCHER, CATHRO & ASSOCIATES (1981) LIMITED

W.D. Eaton, B.Sc.
SELECTED REFERENCES

DIAND

George Cross News Letter Ltd.

Johnston, S.T. and Mortensen, J.K.
1994 Regional setting of porphyry Cu-Mo deposits, volcanogenic massive sulphide deposits, and mesothermal gold deposits in the Yukon-Tanana Terrane, Yukon; Yukon Metallogeny: Recent Developments, Canadian-Yukon Economic Development Agreement, pp.30-34.

Mortensen, J.K.

Mortensen, J.K. and Jilson, G.A.

Poole, W.H., Roddick J.A. and Green, L.H.

Tempelman-Kluit, D.J., Gordey, S.P. and Read, B.C.

Verley, C.G.

Wengzynowski, W.A.
APPENDIX I

AUTHOR'S STATEMENT OF QUALIFICATIONS
STATEMENT OF QUALIFICATIONS

I, W. Douglas Eaton, geologist, with business addresses in Whitehorse, Yukon Territory and Vancouver, British Columbia and residential address in North Vancouver, British Columbia, do hereby declare that:

1. I graduated from the University of British Columbia in 1980 with a B.Sc. majoring in Geological Sciences.

2. From 1971 to present, I have been actively engaged in mineral exploration in British Columbia and Yukon Territory and on June 1, 1981, I became a partner in Archer, Cathro & Associates (1981) Limited.

3. I have been a Director of Nordac Resources Ltd. since December 16, 1994.

4. I have personally participated in or supervised the field work reported herein and have interpreted all data resulting from this work.

APPENDIX II

DIAMOND DRILL LOGS
<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Interval (m)</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>4.65</td>
<td>4.65</td>
<td>OBDH</td>
<td>overburden</td>
</tr>
<tr>
<td>4.65</td>
<td>16.00</td>
<td>11.35</td>
<td>MGSH</td>
<td>muscovite-biotite-quartz-garnet schist</td>
</tr>
<tr>
<td>16.00</td>
<td>27.40</td>
<td>11.40</td>
<td>BGSH</td>
<td>biotite-muscovite-quartz-garnet schist</td>
</tr>
<tr>
<td>27.40</td>
<td>30.20</td>
<td>2.80</td>
<td>MGSH</td>
<td>muscovite-quartz-biotite-garnet schist</td>
</tr>
<tr>
<td>30.20</td>
<td>34.13</td>
<td>3.93</td>
<td>MGSH</td>
<td>muscovite-biotite-garnet schist</td>
</tr>
<tr>
<td>34.13</td>
<td>34.38</td>
<td>0.25</td>
<td>QZVN</td>
<td>bull quartz vein</td>
</tr>
<tr>
<td>34.38</td>
<td>36.50</td>
<td>2.12</td>
<td>MUSH</td>
<td>muscovite-quartz schist</td>
</tr>
<tr>
<td>36.50</td>
<td>40.99</td>
<td>4.49</td>
<td>MGSH</td>
<td>muscovite-garnet schist</td>
</tr>
<tr>
<td>40.99</td>
<td>41.54</td>
<td>0.55</td>
<td>MNSH</td>
<td>mineralized muscovite-quartz schist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-crosscutting sphalerite-galena-ankerite veinlets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1-0.3cm wide</td>
</tr>
<tr>
<td>41.54</td>
<td>46.35</td>
<td>4.81</td>
<td>MUSH</td>
<td>muscovite-quartz schist</td>
</tr>
<tr>
<td>46.35</td>
<td>53.64</td>
<td>7.29</td>
<td>MGSH</td>
<td>muscovite-biotite-garnet schist</td>
</tr>
</tbody>
</table>

EOH

*S-strong weathering, T-transitional weathering, F-fresh
SYNOPTIC LOG
NORDAC RESOURCES LTD.

Property: END ZONE
Hole: EZ-97-2
Section:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Azimuth</th>
<th>Dip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>305</td>
<td>-50</td>
</tr>
</tbody>
</table>

Easting: 442,976.00
Northing: 8,708,175.00
Elevation: 46.66
Drilling Dates: Aug 8-9, 1997
Method: Brunton

<table>
<thead>
<tr>
<th>From (m)</th>
<th>To (m)</th>
<th>Interval (m)</th>
<th>*</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>5.19</td>
<td>5.18</td>
<td></td>
<td>CSDH</td>
<td>casing</td>
</tr>
<tr>
<td>5.18</td>
<td>7.85</td>
<td>2.67</td>
<td></td>
<td>MUSH</td>
<td>muscovite schist</td>
</tr>
<tr>
<td>7.85</td>
<td>15.69</td>
<td>7.84</td>
<td></td>
<td>MGSH</td>
<td>muscovite-biotite-garnet schist</td>
</tr>
<tr>
<td>15.69</td>
<td>21.94</td>
<td>6.25</td>
<td></td>
<td>MBSH</td>
<td>muscovite-biotite schist</td>
</tr>
<tr>
<td>21.94</td>
<td>32.61</td>
<td>10.67</td>
<td></td>
<td>MGSH</td>
<td>muscovite-biotite-garnet schist</td>
</tr>
<tr>
<td>32.61</td>
<td>46.66</td>
<td>14.05</td>
<td></td>
<td>MGSH</td>
<td>muscovite-biotite-garnet schist</td>
</tr>
</tbody>
</table>

EOH

S: strong weathering, T: transitional weathering, F: fresh