ARCHER, CATHRO

& ASSOCIATES (1981) LIMITED

CONSULTING GEOLOGICAL ENGINEERS

1016 - 510 WEST HASTINGS STREET, VANCOUVER, B.C. V6B 1L8 TEL (604) 688 - 2568 - FAX (604) 688 - 2578

093718

ASSESSMENT REPORT

describing

GEOLOGICAL MAPPING, PROSPECTING, SOIL GEOCHEMISTRY, GEOPHYSICAL SURVEYS AND DIAMOND DRILLING

on the

ICE PROPERTY

Latitude 61°53' N; Longitude 131°21' W

NTS 105G/13 and 14

in the

WATSON LAKE MINING DISTRICT

YUKON TERRITORY

Prepared by

Archer, Cathro & Associates (1981) Limited

for

EXPATRIATE RESOURCES LTD.

W.D. Eaton, B.A., B.Sc.

L.C. Pigage, Ph.D., P.Geo.

May, 1997

This report has been examined by, the Geological Evaluation Unit ¥. under Section 53 (4) Yukon Quartz Mining Act and is allowed as representation work in the amount 01 \$ 248,167.07

1.15

M. Porte for Regional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.

093718

TABLE OF CONTENTS

<u>PAGE</u>

INTRODUCTION	1
PROPERTY, LOCATION AND ACCESS	3
GEOMORPHOLOGY, VEGETATION AND CLIMATE	6
REGIONAL GEOLOGY	7
REGIONAL MINERALIZATION	9
REGIONAL GEOCHEMISTRY AND GEOPHYSICS	12
PROPERTY GEOLOGY AND SURFACE MINERALIZATION	14
PROPERTY GEOCHEMISTRY	20
DIAMOND DRILLING	22
PROPERTY GEOPHYSICS	30
DISCUSSION AND CONCLUSION	32
SELECTED REFERENCES	34

TABLES

FOLLOWING PAGE

1	XRF Whole Rock Analyses for Mafic Volcanics	17
2	XRF Whole Rock Analyses for Cherts	18
3	1996 Drill Survey Data	23
4	Significant 1996 Drill Intersections	24
5	IC 96-34 Individual Assay Intervals	25

<u>NO.</u>

DESCRIPTION

FIGURES

NO. DESCRIPTION

FOLLOWING PAGE

1	General Location	3
2	Property Location	3
3	Claim Location	3
4	Location Ice 1-48 Claims	3
5	Tectonic Setting	7
6	Regional Geology	7
7	Regional Geochemical Stream Samples	12
8	Property Geology	14
9	Detailed Geology	15
10	Sample Location	20
11	Copper Geochemistry	20
12	Zinc Geochemistry	20
13	Cobalt Geochemistry	20
14	Drill Plan	23
15	Section 10500 N	23
16	Section 10700 N	23
17	Section 10950 N	23
18	Section 11000 N	23
19	Section 11100 N	23
20	Section 11150 N	23
21	Section 11200 N	23
22	Section 11300 N	23
23	Section 11400 N	23
24	HLEM Results	30

APPENDICES

- I AUTHORS' STATEMENTS OF QUALIFICATIONS
- II GROUND TOTAL MAGNETIC FIELD AND HLEM SURVEY OF PROPERTIES IN THE FINLAYSON ALLOCHTHON, YUKON TERRITORY BY C.C. LEE AND M.A. POWER, DECEMBER 6, 1996
- III CERTIFICATES OF ANALYSIS SOILS AND SURFACE ROCK SPECIMENS
- IV DRILL LOGS
- V CERTIFICATES OF ANALYSIS DRILL CORE
- VI REPORTS FROM VANCOUVER PETROGRAPHICS
- VII CERTIFICATES OF ANALYSIS XRF

INTRODUCTION

The Ice property consists of 1081 mineral claims owned 100% by Expatriate Resources Ltd. The first 16 claims were staked in early 1996 to cover a previously unstaked copper soil geochemical anomaly selected from a data base documenting 1973 exploration by a joint venture managed by Archer, Cathro & Associates Limited. The exploration target for the 1996 work was volcanogenic massive sulphide (VMS) mineralization.

A company geologist discovered secondary copper mineralization in late May close to the reported location of the 1973 soil sample. Immediately following the discovery the property was increased to 48 claims. The remainder of the claims were staked later in the summer after favourable drill results were obtained.

Field work described in this report was conducted at various times during summer and fall 1996 and in spring 1997. Initially crews worked from a base camp on Finlayson Lake with daily helicopter support. In September a 20 person tent-frame camp was built adjacent to the drill area and all operations were transferred to that camp. Exploration in 1996 included geological mapping, prospecting, linecutting, soil geochemistry, ground geophysical surveys, airborne geophysical surveys and 2,703.88 m of diamond drilling in 34 holes. The camp was closed for the winter on October 30 and two drills were left on site. With the exception of the airborne geophysical surveys all of the 1996 work was done in a 5 km area approximately centred on the discovery showing.

In early March 1997 a Caterpillar D6 bulldozer was mobilized to the property. It will be used to move the drills, build drill sites and construct roads on the property.

- 1 -

All work was managed by Archer, Cathro & Associates (1981) Limited. D. Eaton supervised the project. L. Pigage supervised the geological mapping and the early phase of the drilling. Appendix I contains the Authors' Statements of Qualifications.

The ground geophysical surveys were conducted by Amerok Geosciences Ltd. The surveys consisted of total magnetic field and HLEM (Maxmin) and are described in a report by C.C. Lee and M.A. Power, the appropriate portion of which appears in Appendix II. The airborne geophysics were contracted to Dighem which used a helicopter to fly an electromagnetic/ resistivity/magnetic/VLF survey. This work is the subject of a separate report titled "Dighem^V Survey for Expatriate Resources Ltd., Finlayson Lake Area, Yukon" Results of the geophysical surveys are briefly described in the Property Geophysics section of this report.

PROPERTY, LOCATION AND ACCESS

The Ice property is located in southeastern Yukon at latitude 61°53'N and longitude 131°21'W on NTS map sheets 105G/13 and 14 (Figures 1 and 2). It consists of 1081 contiguous mineral claims covering approximately 22,500 hectares (Figures 3 and 4). The claims are registered with the Watson Lake Mining Recorder in the name of Archer, Cathro & Associates (1981) Limited which holds them in trust for Expatriate Resources Ltd. Claim registration data is listed below.

<u>Claims Name</u>	Grant Number	Expiry Date
Ice 1-16	YB78632-YB78647	March 6, 2002*
17-48	YB84405-YB84436	March 6, 2002*
49-165	YB84880-YB84996	July 3, 1997
166FR	YB84997	July 3, 1997
167	YB84998	July 3, 1997
168FR	YB84999	July 3, 1997
169	YB85000	July 3, 1997
170FR	YB85001	July 3, 1997
171	YB85002	July 3, 1997
1 72FR	YB85003	July 3, 1997
173	YB85004	July 3, 1997
174FR	YB85005	July 3, 1997
175	YB85006	July 3, 1997
1 76FR	YB85007	July 3, 1997
177	YB85008	July 3, 1997
178FR	YB85009	July 3, 1997
179	YB85010	July 3, 1997
180FR	YB85011	July 3, 1997
181-212	YB85012-YB85043	July 3, 1997
213FR	YB85044	July 3, 1997
214-334	YB85045-YB85165	July 3, 1997
335-362	YB86186-YB86213	August 2, 1997
363-374	YB86878-YB86889	August 15, 1997
375-606	YB86214-YB86445	August 2, 1997
607-656	YB86890-YB86939	August 15, 1997

*These expiry dates include work filed for assessment credit but not yet accepted. Work performed on all other claims has not yet been filed.

<u>Claims Name</u>	Grant Number	Expiry Date*
Ice 657-714	YB86446-YB86503	August 2, 1997
715-758	YB86940-YB86983	August 15, 1997
759-766	YB86504-YB86511	August 2, 1997
767-776	YB86984-YB86993	August 15, 1997
777-790	YB86512-YB86525	August 2, 1997
791-802	YB86994-YB87005	August 15, 1997
803-909	YB86526-YB86632	August 2, 1997
910 FR	YB86633	August 2, 1997
911	YB86634	August 2, 1997
912FR	YB86635	August 2, 1997
913	YB86636	August 2, 1997
914FR	YB86637	August 2, 1997
915-924	YB87006-YB87015	August 15, 1997
925FR	YB87016	August 15, 1997
926	YB87017	August 15, 1997
927FR	YB87018	August 15, 1997
928-954	YB87019-YB87045	August 15, 1997
955FR	YB87046	August 15, 1997
956	YB87047	August 15, 1997
957FR	YB87048	August 15, 1997
958-1041	YB87049-YB87132	August 15, 1997
1042-1071FR	YB87133-YB87162	August 15, 1997
1072-1079 FR	YB86638-YB86645	August 2, 1997
1080-1081FR	YB87693-YB87694	October 23, 1997

From June to September 1996 access was from Expatriate's base camp at Finlayson Lake some 50 km southeast of the property. After the Ice camp was built, logistics were done from a staging area at the abandoned Mink Creek Airstrip, located 18 km south of the camp at Km 279 on the Robert Campbell Highway. Helicopter support was provided by an Aerospatiale 350B and Bell 206B which were on contract from Kluane Helicopters.

In spring 1997 Expatriate arranged for the Mink Creek Airstrip to be cleaned and graded (Land Use Permit YA7X311). It is now available for use by short take-off and landing aircraft.

- 4 -

Executive-type aircraft can use the government maintained IFR airstrip at Ross River, 60 km to the west, while float-equipped planes can operate out of Gonzo Lake, 4 km west of the Ice camp, with some weight restrictions.

In March 1997 a Caterpillar D6 bulldozer owned by E. Caron Diamond Drilling Ltd. was mobilized to the property (Land Use Permit YA6F268). The access route extended 25 km from the Robert Campbell Highway to the camp. It followed pre-existing bulldozer trails for the first 19 km.

The Ice camp lies 238 km northeast of Whitehorse, the regional transportation hub and main source of exploration supplies. Assuming a road was constructed along the bulldozer access trail, the camp would be 564 km by road from the year-round deepsea port at Skagway, Alaska. Anvil Range Mining Corporation is currently using 65 tonne trucks to transport its concentrate to Skagway. The concentrate storage and loading facility at Skagway is independently owned and is currently under-utilized.

GEOMORPHOLOGY, VEGETATION AND CLIMATE

The Ice property is situated in the Yukon Plateau some 30 km northeast of the Tintina Trench. The central part of the property straddles a series of low ridges while the eastern and western extremities cover broad swampy lowlands. Creeks in the western part of the property flow northerly into the Ross River but those in the remainder of the claim block are tributaries of the Pelly River which crosses the eastern end of the claims before turning to the west and paralleling the southern property boundary. Local elevations range from 820 m on the banks of the Pelly River to 1585 m.

The entire property was covered by a continental ice sheet during Pleistocene time. The general direction of ice movement was from east to west but pre-existing topographic relief locally controlled flow directions. Till cover is patchy to absent at higher elevations but almost completely blankets the broad flat valleys.

Treeline is at approximately 1400 m. Vegetation in the main valley consists of mature stands of spruce and poplar/aspen where drainage is good or grassy meadows with broad fringes of dense buckbrush and stunted black spruce in swampy areas. Southerly-facing slopes are well treed with spruce and poplar to about 1350 m giving way to buckbrush, slide alder and scattered trees then grass and lichen above 1400 m. Vegetation transitions occur about 150 m lower on northerlyfacing slopes.

Climate in the Ice area is categorized as continental and is characterized by relatively long cold winters with warm dry summers. Annual precipitation averages about 450 mm and occurs mostly as rain in summer. Snow cover rarely exceeds 60 cm. Permafrost is common in the area but is not pervasive. The local streams usually breakup in late May and freeze over in early November.

- 6 -

REGIONAL GEOLOGY

The Ice property is located within the Finlayson Block, a 380 by 60 km area comprised of Yukon-Tanana and Slide Mountain Terranes (Figure 5). These terranes represent the innermost of the accreted or "suspect" terranes in the Canadian Cordillera (Mortensen and Jilson, 1985). The northeastern margin of the block is the Finlayson Fault Zone, a zone of steep and shallow faults related to transpressive suturing between the accreted terranes and ancestral North America probably during Jurassic time (Plint and Gordon, 1997). The southwestern boundary of the block is the Tintina Fault Zone, a major strike-slip fault with at least 450 km of dextral displacement during Late Cretaceous and/or Early Tertiary time (Tempelman-Kluit et al, 1976).

Regional mapping of the Finlayson Block was completed by the Geological Survey of Canada (GSC) in the mid to late 1970's (Tempelman-Kluit, 1977, 1979). More recent regional studies have been published by Mortensen and Jilson (1985), Mortensen (1992) and Plint and Gordon (1997). Generalized regional geology is illustrated on Figure 6.

The Slide Mountain Terrane, which hosts the Ice Deposit, is comprised of disrupted oceanic crust and deep water sedimentary rocks. It includes variably strained, sub-greenschist to greenschist facies basaltic greenstone, ultramafic and mafic plutonic rocks, ribbon chert, argillite and minor marble. Mapping in various parts of the Canadian Cordillera has subdivided the Slide Mountain Terrane into a structurally lower metasedimentary package and an overlying igneous suite composed of metavolcanic and plutonic rocks. In the Finlayson Block units belonging to the igneous suite are thrust northeasterly over the metasedimentary package and southwesterly over rocks of the Yukon-Tanana Terrane. A radiolarian from an argillaceous metachert belonging to the metsedimentary package was determined to have a Mississippian-Permian age (Plint and Gordon, 1997).

The Yukon-Tanana Terrane is comprised largely of Paleozoic continental margin and/or arc stratigraphy deposited on a continental basement of uncertain origin (Mortensen, 1992). The Yukon-Tanana Terrane in the Finlayson Block contains three major units, collectively referred to as the Layered Metamorphic Sequence. The lower unit consists of garnet-mica schist with interbanded marble, calc-silicate and calcareous schist near the top. The middle unit is comprised of carbonaceous quartzite, schist or phyllite with rare conglomerate and locally extensive felsic and mafic volcanic interbands. The upper unit contains marble and quartzite. Radiometric dating of felsic metavolcanics in the middle unit has consistently resulted in Late Devonian to Mississippian crystallization ages (Mortensen, 1992). The upper unit is dated with fossils as Early Pennsylvanian to Early Permian (Tempelman-Kluit, 1979).

Although the two terranes were not accreted to North America until Jurassic time, cobbles from both units are present in Late Triassic immature sediments unconformably overlying Slide Mountain and North American stratigraphy.

Intrusive activity within the Finlayson Block includes: relatively undeformed Devonian to Permian mafic dykes and plugs within the Slide Mountain Terrane; and, sheet-like Devonian to Mississippian intermediate to felsic gneiss and foliated granitic rocks, relatively unfoliated Early Jurassic mafic to intermediate plutons, and unfoliated Late Cretaceous two-mica granite stocks and dykes, all of which are found within the Yukon-Tanana Terrane. Isolated patches of Late Cretaceous to Tertiary felsic volcanic flows and pyroclastic rocks cap both the Slide Mountain and Yukon-Tanana Terranes.

- 8 -

REGIONAL MINERALIZATION

The recent discovery of the Kudz Ze Kayah and Wolverine Deposits within the Finlayson Block has attracted VMS exploration activity to the area. Both are Kuroko-type deposits associated with felsic metavolcanic rocks occurring within the middle unit of the Yukon-Tanana Terrane. The Yukon Minfile (DIAND, 1995) describes twenty-one known or suspected VMS occurrences in Yukon-Tanana rocks within the Finlayson Block. Although most of the occurrences are thought to be of the Kuroko-type, the Fyre Lake Deposit and a few others are most likely Besshi-type (Morin, 1981; Johnston and Mortensen, 1994). Until Cyprus-type mineralization was discovered at the Ice Deposit, only one minor VMS occurrence had been reported in the Slide Mountain Terrane. Kudz Ze Kayah, Wolverine and Fyre Lake Deposits are briefly described in the following paragraphs so that their geological settings can be compared to the Ice Deposit.

The Kudz Ze Kayah (ABM) Deposit lies near the centre of the Finlayson Block (Cominco Exploration, 1995; Whiteway, 1995). It is hosted by an overturned assemblage of felsic pyroclastic, aphanitic massive rhyolite and metasiliciclastic rocks belonging to the middle unit of the Layered Metamorphic Sequence. Although both the sulphides and wallrocks are highly strained and exhibit pervasive schistosity, compositional layering in the immediate vicinity of the deposit is relatively undeformed with a consistent, shallow northerly dip. Sphalerite, chalcopyrite and galena are the main economic minerals while the gangue includes various mixtures of magnetite, barite, pyrrhotite, pyrite and carbonate. The deposit averages about 18 m thick and has been traced 700 m along strike and up to 400 m downdip. Open pit mineable ore reserves are

-9-

reported to be 11 million tonnes grading 5.9% zinc, 0.9% copper, 1.5% lead, 130 g/t silver and 1.3 g/t gold (Schultze, 1996). Preliminary studies suggest that satisfactory lead, zinc and copper concentrates can be produced using conventional flotation processes (Cominco Exploration, 1995). The mineralization responds well to magnetic and electromagnetic surveys but geochemical response is erratic because the entire deposit is covered by 2 to 10 m of glacial till.

The Wolverine Deposit is located 25 km east of the Kudz Ze Kayah property near a contact between Yukon-Tanana and overlying Slide Mountain rocks. It consists of the Wolverine and Lynx Zones which are hosted by rhyolitic metavolcanics and argillite lying within the middle unit of the Layered Metamorphic Sequence. The mineralization consists primarily of semi-massive to massive pyrite and sphalerite with varying amounts of galena, chalcopyrite, tetrahedrite and native gold. The surface expression of the Wolverine Zone is marked by a vegetation kill zone containing weakly malachite-stained argillite while the Lynx Zone is blanketed by glacial till. The deposit has been traced 700 m along strike and up to 450 m downdip, and it is still open. The mineralization averages 6.1 m thick and dips shallowly to the north. Both zones contain significantly more zinc and precious metals than Kudz Ze Kayah. The current geological inventory is reported to be 5,311,000 tonnes grading 12.96% zinc, 1.41% copper, 1.53% lead, 359.1 g/t silver and 1.81 g/t gold (Westmin/Atna News Release, November 30, 1996). Soil geochemistry outlined weakly to moderately anomalous values along the projected surface trace of the deposit while magnetic surveys easily traced a laterally extensive, banded iron formation which occurs about 80 m up-section from the massive sulphide horizon. Interpretation of electromagnetic results is complicated by the presence of graphite within the argillite.

- 10 -

The Fyre Lake Deposit is located near the Tintina Fault Zone in the southwestern part of the Finlayson Block. It is a Besshi-type VMS deposit hosted by chlorite±actinolite±quartz schist assigned to the middle unit of the Layered Metamorphic Sequence. The host stratigraphy is structurally overlain by phyllitic metasediments with a basal unit of quartz-chlorite-mica schist (Roberts, 1997). Drilling in 1996 traced a 70 to 80 m thick section containing three horizons comprised of massive to semi-massive pyrite, chalcopyrite and magnetite over a length of 1000 m and width of 100 m. Intersections on the Lower Horizon averaged 1.2% copper, 0.12% cobalt and 0.77 g/t gold across 7 m while those on the Upper Horizon averaged 1.9% copper, 0.12% cobalt and 0.53 g/t gold across 13 m (Columbia Gold News Release, December 2, 1996). The Middle Horizon is discontinuous and no averages have been reported for it.

REGIONAL GEOCHEMISTRY AND GEOPHYSICS

Expatriate's interest in the Slide Mountain Terrane rocks hosting the Ice Deposit resulted from a re-evaluation of soil geochemical and stream sediment data produced by a 1973 regional exploration program managed by Archer Cathro (Cathro, 1973). The program collected about 5000 samples from the Finlayson Block at a density of approximately one sample per square kilometre. All samples were analyzed for lead, zinc, copper and molybdenum.

The Ice property lies along the extreme northern edge of the survey area and only a small part of it was covered by a single sample line. Most samples returned background values but one yielded the second highest copper value (2000 ppm) obtained during the entire survey (the highest was from the vegetation kill zone at the Wolverine Deposit). The sample was also weakly anomalous for molybdenum (2 ppm) and zinc (248 ppm). The anomaly was never followed up because the sampler had mapped basalt in the area and this rock type often contains minor amounts of copper.

Published regional geochemical data for the Finlayson Lake map sheet (105G) are limited to reconnaissance scale stream sediment sampling conducted by the GSC (Hornbrook and Friske, 1988). The sampling was completed at an approximate density of one sample per 10 sq km. Each sample was analyzed for twenty elements including all of the common VMS pathfinder elements. Fifteen samples from the data base were collected in the vicinity of the Ice property (Figure 7).

The sample taken from the creek closest to the Ice Deposit (3014) returned background values for all metals. This is probably because the surface expression of the deposit drains into a

- 12 -

small southwesterly-trending gully that is dry for most of the summer and was not sampled by the GSC. The exact location of the copper-rich 1973 Archer Cathro sample is unknown but its plotted location approximately coincides with the gully.

Five of the GSC samples taken elsewhere on the property returned anomalous values. The elements that would most likely be associated with Cyprus-type mineralization (such as the Ice Deposit) are copper, cobalt, zinc and silver. Samples 1019 and 3013 are both anomalous for copper (95 and 90 percentile, respectively). The former is also strongly anomalous for silver (98 percentile). Samples 3009, 3010 and 3018 all returned 95 percentile cobalt values but this may be due to high backgrounds in ultramafic rocks known to occur in the area.

Published regional airborne magnetic surveys for the Finlayson Lake map sheet show a broad magnetic high, trending westerly for the length of the Ice property (DMTS, 1961). This magnetic signature corresponds closely to the areal distribution of the basaltic greenstones and ultramafic rocks belonging to the Slide Mountain Terrane.

PROPERTY GEOLOGY AND SURFACE MINERALIZATION

Aside from a few reconnaissance traverses all of Expatriate's 1996 mapping and prospecting was done in the immediate vicinity of the Ice Deposit. General property geology (Figure 8) was primarily compiled from unpublished 1:50,000 scale data (Mortensen 1996, personal communication).

The property lies 1 to 3 km south of the Finlayson Lake Fault and is almost completely underlain by igneous and sedimentary rocks belonging to the Slide Mountain Terrane. The most common unit consists of basalt with varying amounts of ribbon chert, some of which is argillaceous. Autobrecciation and pillows are occasionally found within the basalt but most are relatively massive. Examination of pillow textures and whole rock geochemical studies of similar basalt in the Wolverine Lake area indicates it was formed in a deep water environment (Plint and Gordon, 1997). A number of thrust faults have disrupted the sequence and they are often marked by elongate bodies of serpentinized ultramafic. At the eastern end of the property a massive carbonate unit is thrust over the basalt-chert sequence. The carbonate is also believed to be part of the Slide Mountain Terrane. Except for the serpentinized ultramafics, all units are relatively unstrained.

Argillaceous phyllite of the Yukon-Tanana Terrane cuts obliquely across the southwestern corner of the claim block then parallels the southern boundary for the length of the property. The Yukon-Tanana rocks dip shallowly toward the north and the Slide Mountain rocks appear to be thrust southwesterly over them.

- 14 -

Results of detailed mapping and prospecting by Expatriate geologists in a 5 sq km area surrounding the Ice Deposit are shown on Figure 9. The work was done at 1:2500 scale using the geophysical/geochemical grid for control.

Outcrop comprises about 5% of the area and is concentrated on a ridge crest about 400 m west of the discovery showing and along a creek 1000 m to the east. Glacial till blankets the entire northeastern part of the map area and is scattered throughout the remainder of the area. It is usually less than 3 m thick. Scour marks suggest that local ice direction was toward the south-southwest.

The geological section consists of two packages of massive and locally autobrecciated basalt separated by an approximately 60 m thick horizon comprised primarily of ribbon chert. No bedding was observed in basalt outcrops but attitudes in the chert indicate the entire section strikes northeasterly and dips moderately toward the southeast. A recessive topographic linear strikes northeasterly across the map area and corresponds with a steeply northwesterly-dipping fault. Displacement on the structure appears to be minimal. Available data is ambiguous but fault movement is best interpreted as sinistral strike slip or normal dip slip with the north side dropped down. The fault has not been observed at surface and was difficult to pinpoint in drill core. It appears to be a broad fracture zone with numerous breccia and gouge intervals. Other topographic linears may also mark faults but this has not been confirmed by drill holes.

The main rock types are described in the following paragraphs. These descriptions are based largely upon observations made during logging of drill core.

Basalt (MSBS, PHBS, BRBS)

The dominant unit near the Ice Deposit is brownish tan weathering, massive, fine-grained to aphanitic basalt. Typically it forms homogeneous, slightly rounded outcrops. Although internal textures are difficult to discern on weathered surfaces, a few pillows and autobreccias were noted. Patchy epidote alteration occurs locally while calcite, quartz or chlorite amygdules are rare. Foliation is very poorly developed or absent. Most outcrops exhibit irregular hairline fractures, some of which contain calcite or quartz veinlets and epidote altered selvages.

Petrography indicates that the primary mineralogy in the basalt is only partly altered (Payne 1996a). Fresh basalts consist of plagioclase microlites in a matrix of clinopyroxene (augite). During metamorphism and alteration the plagioclase was partially to completely replaced by epidote, clinozoisite or chlorite-actinolite. Pyroxenes were typically replaced by chlorite-epidote while ilmenite was replaced by leucoxene. The metamorphic mineral assemblage chlorite-epidote-actinolite-clinozoisite is representative of the uppermost greenschist facies of regional metamorphism (Turner, 1981; Winkler, 1974).

In drill core the basalt can be divided into subunits based on primary textures. MSBS is massive, aphanitic, dark green basalt. Locally it is slightly magnetic. The dominant characteristic of this unit is that it is homogeneous. If the basalt develops microphenocrysts, it is logged as porphyritic or phenocrystic basalt (PHBS). Two varieties of porphyritic basalt have been logged. PHBSp contains pale green to white plagioclase phenocrysts which rarely exceed 1 cm in length

- 16 -

and constitute up to 20 percent of the unit. PHBSm contains equant, dark green mafic phenocrysts which typically have been totally altered to chlorite. BRBS is a brecciated unit which consists of rounded to angular basalt clasts in a fine-grained chloritic matrix. Clasts are up to 10 cm across. Commonly they have an alteration rind up to 2 mm thick on the outside margin. BRBS is considered to be a depositional, autobrecciated unit.

Interbanding of the different primary textural units is on the order of metres to tens of metres. Inspection of the drill cross sections indicates units are consistent within a section but do not necessarily extend to adjacent sections suggesting rapid facies changes. Table 1 contains XRF whole rock analyses for the basalt units.

Chert (MSCH, CBMS, MSAR, BRCH)

This unit forms a distinctive bed within the basalt. It is a dark grey to black, ribbon bedded to massive, fine-grained, noncalcareous chert (MSCH). Locally the chert contains minor finely disseminated pyrite. Traces of chalcopyrite are also reported in some core samples (Payne, 1996b).

Minor intervals of siltstone to fine-grained sandstone (SLST) are found within the chert. Most grains within the siltstone are subrounded quartz or chert (Payne, 1996b) but minor amounts of sericite are also present. The groundmass is sparse to moderate and consists of cherty quartz, sericite and limonite-stained ankerite. Typically the siltstone horizons are less than 2 m thick.

- 17 -

	XRF Whole Rock Analyses						
Drill Hole Depth (m) Interval (m)	IC96-03 90.75-92.81 2.06	IC96-02 80.77-82.60 1.83	IC96-07 44.72-45.72 1.00	IC96-06 88.13-90.25 2.12	IC96-05 22.98-24.08 1.10	IC96-34 43.90	IC96-34 97.00
Sample No. Unit	N111050 BRBS	N111108 BRBS	N110292 MSBS	N110293 MSBS	N110294 MSBS	N110040 MSBS	N110041 BRBS
SiO2 % TiO2 % Al2O3 % *Fe2O3 % MnO % Cr2O3 % MgO % CaO % Na2O % K2O % P2O5 % LOI % Total % Ba ppm Rb ppm Sr ppm Nb ppm Zr ppm	44.12 1.23 13.47 11.58 0.18 0.01 13.69 6.52 1.39 0.83 0.11 6.52 99.65 155 8 286 2 33	46.78 1.18 13.89 11.68 0.20 0.01 8.73 7.78 2.47 0.39 0.09 5.81 99.01 155 8 52 0 69	48.39 1.43 13.28 12.89 0.22 0.00 7.18 9.07 3.31 0.91 0.11 2.31 99.10 200 18 136 2 63	47.69 1.58 13.08 12.74 0.20 0.00 6.67 9.97 3.07 0.33 0.14 2.98 98.45 405 2 214 214 2	46.01 2.26 13.15 15.22 0.23 0.00 6.42 7.78 3.52 0.24 0.20 3.42 98.45 1495 2 228 4 114	49.24 1.59 11.03 17.47 0.22 0.00 6.75 6.16 2.11 0.10 0.13 4.82 99.62 90 0 52 2 99	50.53 0.91 14.92 9.10 0.14 0.01 5.68 7.66 4.77 0.46 0.09 4.60 98.87 160 6 98.87 160 6 96 0 51
Y ppm *Fe2O3 - tota	14 al iron as Fe	28 2O3	30	30	46	28	16
			CIPW	/ Norms**			
Sample Mineral	N111050 Wt %	N111108 Wt %	N110292 Wt %	N110293 Wt %	N110294 Wt %	N110040 Wt %	N110041 Wt %
Quartz Zircon Orthoclase Albite Anorthite Diopside Hypersthene Olivine Magnetite Ilmenite Apatite	0.00 0.01 5.33 12.77 30.51 3.23 23.52 20.05 1.83 2.54 0.28	0.00 0.02 2.51 22.68 27.86 11.00 23.82 7.65 1.84 2.43 0.23	0.00 0.01 5.63 29.29 19.56 22.15 0.90 17.45 1.96 2.84 0.27	0.00 0.02 2.07 27.54 22.22 24.33 7.98 10.45 1.96 3.18 0.35	0.00 0.02 1.52 31.80 20.75 16.28 5.78 16.62 2.36 4.58 0.51	5.94 0.02 0.63 19.15 21.82 8.44 37.74 0.00 2.72 3.24 0.33	0.00 0.01 2.91 43.19 19.21 17.19 0.32 13.71 1.41 1.85 0.23
Total	100.07	100.04	100.06	100.09	100.23	100.04	100.04

** CIPW norms calculated from whole rock analyses (anhydrous basis) using computer program NEWPET (Clarke, 1991).

Iron distributed between Fe2O3 and FeO following Irvine and Baragar (1971).

Dark grey to black, carbonaceous, very fine-grained, noncalcareous shale (CBMS) and argillite (MSAR) form short intervals within the chert unit. These intervals are differentiated from the chert because they are softer, indicating a much lower silica content. Petrographic descriptions indicate these rocks are compositionally banded on a scale of a few mm with quartzrich bands separating sericite-rich bands (Payne, 1996b). Locally the chert unit is brecciated and logged as BRCH. In most cases it was not determined if the brecciation was a primary depositional or tectonic feature.

Table 2 contains XRF whole rock analyses of the chert unit. Silica content indicates that this unit should be considered a procellanite or argillaceous chert rather than a chert.

Prospecting located numerous copper bearing outcrops and float occurrences within a 350 by 150 m area (Figure 9). Six samples were sent to Chemex Labs in North Vancouver where they were geochemically analyzed for 32 elements by the Induced Coupled Plasma (ICP) technique. Some were later assayed for copper and gold. Certificates of Analysis are in Appendix III.

The discovery showing is marked by a 30 m in diameter vegetation kill zone and consists of malachite cemented glacial till. A typical specimen from the kill zone assayed 0.68% copper (935915) while a malachite-rich specimen returned 11.3% copper (935914). Both samples yielded near background values for other metals. About 20 m north of the kill zone a float boulder was found which consists of magnetite in a limonite boxwork exhibiting pyrite and chalcopyrite casts. A specimen of this material assayed 0.42% copper (935916).

- 18 -

XRF Whole Rock Analyses						
Drill Hole	Drill Hole IC96-24 IC96-24					
Depth (m)	62.98	54.04	77.70			
Interval (m)						
(7						
Sample No.	N110037	N110038	N110039			
Unit	BRCH	SLST	MSCH			
SiO2 %	82.74	74.07	77.62			
TiO2 %	0.38	0.66	0.36			
Al2O3 %	7.69	9.66	7.74			
*Fe2O3 %	3.41	3.37	3.03			
MnO %	0.05	0.17	0.08			
Cr2O3 %	0.00	0.00	0.00			
MgO %	0.60	0.89	1.47			
CaO %	0.10	2.30	1.30			
Na2O %	0.01	0.00	0.00			
K2O %	1.84	2.62	1.91			
P2O5 %	0.05	0.24	0.14			
LOI %						
Total %	99.23	99.31	99.20			
Ba ppm	6045	4995	4080			
Rb ppm	72	96	78			
Sr ppm	10	18	30			
Nb ppm	6	14	8			
Zr ppm	96	168	84			
Y ppm	om 10 20		12			
*Fe2O3 - total	*Fe2O3 - total iron as Fe2O3					
CIPW Norms**						
Sample	N110037	N110038	N110039			
Mineral	Wt %	Wt %	Wt %			
		,0				
Quartz	74.75	59.98	68.12			
Corundum	5.35	3.03	3.57			
Zircon	0.02	0.04	0.02			
Orthoclase	11.29	16.57	12.12			
Albite	0.09	0.00	0.00			
Anorthite	1.81	11.92	7.09			
Hypersthene	5.95	5.95 6.59 8.0				
Magnetite	0.51	0.52	0.47			
Ilmenite	0.75	1.34	0.73			
Apatite	0.21	0.65	0.39			
Total	100.72	100.65	100.52			

Table 2. XRF Whole Rock Analyses for Cherts - Ice Property

CIPW norms calculated from whole rock analyses (anhydrous basis) using computer program NEWPET (Clarke, 1991).
 Iron distributed between Fe2O3 and FeO following Irvine and Baragar (1971).

Subsequent prospecting located mineralized basalt outcrops and float north and west of the kill zone. These rocks contain abundant malachite and rare azurite on internal fractures but little or no copper mineralization on external surfaces. Except for the fracture mineralization, the rocks are barren. A 3 m long chip sample across this type of mineralization returned 0.30% copper but low values for all other metals (935919).

A more subtle but larger kill zone was identified about 250 m north of the discovery showing. Soil in this area is quite rusty and prospecting has outlined a number of small outcrops consisting of intensely leached limonite boxwork. This material is lighter in colour than the previously described boxwork and does not contain magnetite. A chip sample and specimen of the limonite assayed 0.37 and 0.32% copper, respectively (935916 and 935917). These samples were distinguished from all other samples by higher precious metal contents, up to 7.6 g/t silver and 1.28 g/t gold.

No sulphide mineralization has been discovered at surface in the vicinity of the Ice Deposit.

PROPERTY GEOCHEMISTRY

Immediately following the discovery, preliminary grid soil sampling was done over a 1100 by 400 m area using a claim line for baseline control. This work produced extremely encouraging results and in July a slope corrected grid was cut so that the area could be systematically explored. The grid consists of a 2000 m long baseline with 1000 m long crosslines every 100 m. A few shorter lines were cut later at 50 m intervals along the baseline near the centre of the grid to assist in drill hole location.

Soil samples were collected from B or B+C Horizon material at 50 m intervals along the crosslines and 100 m intervals on reconnaissance lines peripheral to the grid. Sample locations are marked with 0.5 m wooden lath bearing aluminum tags inscribed with the grid coordinates and sample number. Sample locations are shown on Figure 10.

The samples were placed in pre-numbered kraft bags and sent to Chemex Labs where they were sieved to -80 mesh, digested in nitric-aqua regia and geochemically analyzed for 32 elements using the ICP technique. About half the samples were also analyzed for gold with a fire assay preparation and atomic absorption finish.

Figures 11 to 13 illustrate copper, zinc and cobalt geochemical values, respectively. Results from the cut grid closely resemble those from the preliminary grid. The main target is an area of moderately to extremely anomalous copper response that covers a 1400 m long, up to 500 m wide area extending from the zone of surface mineralization 1000 m down a gully to the southwest and 200 m up a moderately steep slope to the northwest. The southwesterly extension

- 20 -

can be explained by hydromorphic transport in groundwater but the northwesterly extension is unexplained. The anomaly is truncated by glacial till cover to the northeast. Anomalous zinc and cobalt response coincide with copper in the vicinity of the mineralization and uphill to the northwest but does not extend down the gully to the southwest. Peak values are >10,000 ppm copper, 1450 ppm zinc and 200 ppm cobalt.

Three secondary copper anomalies were also outlined on the edges of the grid. The first lies about 500 m west of the mineralized zone and consists of a 350 by 300 m area of moderately to extremely anomalous copper values with little cobalt or zinc support. The second is situated along the ridge crest 600 m north of the mineralized zone. It is limited to a few samples that exhibit moderate to strong copper response. The final anomaly is located 300 m south of the mineralized zone. It is about 400 m long and exhibits moderate to strong copper values with scattered zinc support.

Geochemical response for other metals is generally subdued and shows little direct correlation with the main indicator metals or areas of surface mineralization.

- 21 -

DIAMOND DRILLING

<u>General</u>

Drilling was contracted to E. Caron Diamond Drilling Ltd. and was done with a variety of equipment. All drill sites were built by hand and the moves were made by helicopter. The first four holes were completed with a Craelius drill using BTW equipment. Unfortunately core recovery was inadequate and this drill was replaced with a BBS-15 which routinely used HQ equipment reducing to NQ where necessary. A larger Val D'Or drill was added in September. Both the BBS-15 and Val D'Or were stored on site for the winter.

Water was supplied from a large creek east of the drill area. To insure an adequate supply to the drills and camp a pump station was built immediately below a bedrock canyon about a kilometre southeast of camp. A metal waterline was installed in September to lift the water 130 m vertically from the creek to a relay station near camp where it was pumped in rubber hoses to the drill sites. The farthest drill site was 1750 m from the pump on the creek.

Core recovery and bit wear were serious problems in the highly fractured and deeply weathered rocks found in the vicinity of the surface showings. Although HQ core yielded better recovery than BTW or NQ, it was still unsatisfactory in many mineralized sections. The best recoveries were obtained using split tube HQ equipment. Unoxidized, relatively massive rock produced good recovery (greater than 95%) with all core diameters. Sulphide-rich intervals generally cored better than the wallrocks. Permafrost was not encountered in any of the holes.

- 22 -

A total of 2703.88 m was completed in thirty-four diamond drill holes, the locations of which are shown on Figure 14. Survey details concerning individual holes are summarized on Table 3. The drill program was designed to test for stratiform massive sulphide mineralization beneath mineral showings, soil geochemical anomalies and HLEM conductors. Holes were collared on the cut grid lines and are generally inclined to the northwest approximately perpendicular to bedding and the trace of the main fault in the area. The holes cut bedding at high angles but were subparallel to the dip of the fault. Collar locations have been marked with wooden posts labelled with inscribed metal tags.

Drill core from most of the holes was logged on site and is stored at the camp on the property. Core from some of the earlier holes had been flown to Expatriate's base camp on Finlayson Lake for logging and is temporarily stored at the Mink Creek Airstrip on its way back to the property. Drill hole data was entered into spreadsheets in the field and later transferred to a PC-XPLOR database for plotting vertical sections and plans. Drill logs are contained in Appendix IV while drill sections are illustrated on Figures 15 to 23.

Mineralized intervals and adjacent wallrocks were split and one-half was sent to Chemex Labs where it was crushed, pulverized to -150 mesh using a chrome steel ring mill, digested in nitric-aqua regia and then geochemically analyzed for 32 elements using the ICP technique. Mineralized intervals were later assayed for copper and gold. Selected specimens were also assayed for cobalt and geochemically analyzed for selenium, indium, tin, rhenium and platinum group elements. The elements Al, Ba, Be, Ca, Cr, Ga, La, Mg, K, Sc, Na, Sr, Tl, Ti and W

- 23 -

Hole No.	Grid Lo	cation	UTM Location		Azm	Dip	Depth	Depth	Claim	Start	Finish	Logger	
	E	N	E	N	Z			(m)	(ft)				
IC96-01	10,042.5	10,971.0	376,623	6,862,490	1,259	305	-50	181.66	596	Ice 10	06-Jul-96	11-Jul-96	G. Bell
IC96-02	10,035.0	11,216.7	376,765	6,862,689	1,295	288	-50	116.13	381	Ice 12	12-Jul-96	14-Jul-96	Bell/McDougall
IC96-03	10,097.7	11,198.7	376,805	6,862,638	1,281	316	-50	152.40	500	Ice 12	27-Jul-96	01-Aug-96	G. McDougall
IC96-04	10,028.0	11,150.0	376,717	6,862,642	1,285	308	-50	148.13	486	Ice 12	01-Aug-96	06-Aug-96	G. Bell
IC96-05	10,100.0	11,000.0	376,688	6,862,472	1,247	306	-50	66.45	218	Ice 10	10-Aug-96	14-Aug-96	G. Bell
IC96-06	10,043.5	11,105.5	376,702	6,862,595	1,279	304	-50	92.66	304	Ice 12	15-Aug-96	17-Aug-96	G. Bell
IC96-07	10,101.5	11,099.0	376,747	6,862,558	1,272	320	-50	53.34	175	Ice 12	19-Aug-96	21-Aug-96	G. Bell
IC96-08	9,952.0	11,100.0	376,622	6,862,646	1,285		-90	74.37	244	Ice 11	22-Aug-96	25-Aug-96	G. Bell
IC96-09	9,952.0	11,100.0	376,623	6,862,645	1,285	128	-50	74.37	244	Ice 11	26-Aug-96	30-Aug-96	G. Bell
IC96-10	9,590.0	10,510.0	376,000	6,862,399	1,258	165	-51	83.52	274	Ice 17	31-Aug-96	06-Sep-96	G. Bell
IC96-11	9,848.5	10,700.0	376,305	6,862,399	1,247	300	-51	77.72	255	Ice 9	07-Sep-96	10-Sep-96	G. Bell
IC96-12	9,903.2	11,099.0	376,585	6,862,686	1,304	306	-50	70.41	231	Ice 11	11-Sep-96	13-Sep-96	G. Bell
IC96-13	10,050.0	11,299.5	376,817	6,862,747	1,295	315	-48	98.76	324	Ice 12	12-Sep-96	16-Sep-96	G. Bell
IC96-14	9,998.0	11,100.5	376,662	6,862,617	1,278	308	-50	57.00	187	Ice 11	14-Sep-96	17-Sep-96	A. Burgert
IC96-15	9,981.0	11,215.5	376,723	6,862,728	1,315	308	-50	89.61	294	Ice 11	17-Sep-96	21-Sep-96	A. Burgert
IC96-16	9,949.0	11,100.0	376,620	6,862,648	1,285	308	-50	53.64	176	lce 11	18-Sep-96	20-Sep-96	A. Burgert
IC96-17	9,956.0	11,001.5	376,567	6,862,555	1,268	308	-50	64.62	212	Ice 9	21-Sep-96	23-Sep-96	A. Burgert
IC96-18	9,948.7	11,199.5	376,680	6,862,729	1,302	305	-50	77.42	254	Ice 11	22-Sep-96	25-Sep-96	A. Burgert
IC96-19	9,947.7	10,700.0	376,390	6,862,324	1,199	308	-50	58.83	193	Ice 9	24-Sep-96	26-Sep-96	A. Burgert
IC96-20	9,907.2	11,198.7	376,645	6,862,753	1,317	310	-50	63.70	209	Ice 11	26-Sep-96	30-Sep-96	A Burgert
IC96-21	10,001.5	10,963.0	376,582	6,862,507	1,257	312	-50	46.02	151	Ice 9	27-Sep-96	28-Sep-96	A. Burgert
IC96-22	9,900.0	11,001.0	376,522	6,862,596	1,278	308	-50	44.50	146	Ice 9	29-Sep-96	01-Oct-96	A. Burgert
IC96-23	9,857.7	11,200.0	376,606	6,862,783	1,335	307	-50	104.85	344	Ice 11	01-Oct-96	06-Oct-96	A. Burgert
IC96-24	9,838.5	11,002.5	376,472	6,862,632	1,290	305	-50	78.03	256	Ice 9	02-Oct-96	06-Oct-96	A. Burgert
IC96-25	9,939.5	10,951.0	376,533	6,862,527	1,259		-90	51.82	170	Ice 9	06-Oct-96	08-Oct-96	A Burgert
IC96-26	9,812.0	11,202.0	376,570	6,862,813	1,358	308	-50	56.39	185	Ice 11	08-Oct-96	10-Oct-96	A. Burgert
IC96-27	9,949.2	10,951.0	376,534	6,862,526	1,259	130	-50	46.33	152	Ice 9	09-Oct-96	10-Oct-96	A. Burgert
IC96-28	9,994.5	11,404.0	376,831	6,862,862	1,318	303	-50	85.04	279	Ice 11	11-Oct-96	15-Oct-96	A. Burgert
IC96-29	9,999.7	11,299.5	376,777	6,862,777	1,307	303	-50	65.84	216	Ice 11	12-Oct-96	15-Oct-96	A Burgert
IC96-30	10,075	11,400	376,894	6,862,812	1,291	315	-49	82.30	270	Ice 12	16-Oct-96	18-Oct-96	A. Burgert
IC96-31	9,950	11,299	376,736	6,862,805	1,317	308	-49	61.57	202	Ice 11	17-Oct-96	20-Oct-96	A. Burgert
IC96-32	9,910	11,400	376,762	6,862,920	1,355	296	-50	55.47	182	Ice 11	19-Oct-96	22-Oct-96	A. Burgert
IC96-33	9,905	11,300	376,700	6,862,832	1,335	310	-50	56.08	184	Ice 11	21-Oct-96	24-Oct-96	A. Burgert
IC96-34	10,100	11,300	376,862	6,862,718	1,285	305	-50	114.91	377	Ice 12	23-Oct-96	26-Oct-96	A. Burgert
						L,							
								2,703.88	8,871		<u> </u>		<u> </u>

Table 3. 1996 Drill Survey Data - Ice Property

are often only partially leached by the digestion used for ICP analysis. These elements do not include any of the metals that were the exploration targets for the program. Certificates of Analysis for drill core are in Appendix V.

Several core samples of representative rock types were forwarded to Vancouver Petrographics Ltd. for verification of mineral modes and textures. The reports (Payne, 1996a, b, and c) are included as Appendix VI. Selected core samples were also sent to Chemex Labs for XRF whole rock analysis. Certificates of Analysis for these samples are included in Appendix VII. Results

Two main types of mineralization have been intersected in drill holes on the Ice property. The first type is primary mineralization deposited from hydrothermal solutions as horizons on the seafloor during volcanism or in open spaces sometime after the rocks were formed. The other type is secondary mineralization, all or most of which is relatively young (probably post-glacial) and is the result of oxygenated groundwater interaction with primary mineralization and wallrocks. Table 4 lists all significant intersections from the 1996 drilling with assays and descriptions of the type of mineralization present.

<u>Primary mineralization</u> consists mainly of pyrite and quartz but also includes specular and earthy hematite, magnetite, chalcopyrite, bornite, digenite, sphalerite and calcite. It occurs in narrow discordant veins and veinlets, in the matrix of basalt autobreccias and most importantly in at least two intervolcanic horizons. Although veins and veinlets are widespread, most contain little or no sulphide mineralization and are not of direct economic interest. Autobrecciated basalts

- 24 -

Section	Drill Hole	From (m)	To (m)	interval (m)	Unit	Mineralization Type	Cu (%)
10950N	IC96-27	1.83 **26.82	27.85 27.85	26.02 1.03	BRBS	Secondary	0.23 0.79
	IC96-25	1.22 **18.90	23.47 21.03	22.25 2.13	MSBS/BRBS	Secondary	0.35 0.80
	IC96-21	3.66	24.69	21.03	BRBS/MSCH	Secondary	0.19
	IC96-01	7.62 **19.90	42.06 33.00	34.44 13.10	BRBS/MSCH	Secondary	0.41 0.71
11000N	IC96-22	4.70	6.10	1.40	MSBS	Secondary	0.13
	IC96-17	1.22 **17.07 **22.00	26.52 18.59 23.32	25.30 1.52 1.32	BRBS	Secondary	0.36 0.53 1.61
	IC96-14	2.90 20.12 21.34	20.12 21.34 34.44	17.22 1.22 13.10	BRBS HEMS BRBS	Secondary HEMS/Secondary PYSM/Secondary	0.83 1.76 1.24
11100N	IC96-08	12.30 18.00 24.08	18.00 24.08 26.50	5.70 6.08 2.42	BRBS BRBS BRBS	Secondary HEMS/Secondary Secondary	0.62 2.65 3.00
	IC96-12	23.77	27.43	3.66	FBST	Secondary	0.22
	IC96-16	3.66 20.42 22.10	20.42 22.10 32.00	16.76 1.68 9.90	BRBS PYMS BRBS/FBST	Secondary HEMS/Secondary Secondary	0.21 0.66 1.34
	IC96-09	24.69 29.87 43.50	29.87 43.50 53.04	5.18 13.63 9.54	BRBS PYMS/BRBS PYMS/FBST	Secondary HEMS/Secondary Secondary/HEMS	0.88 1.46 0.88
	IC96-06	2.44 **17.48	27.13 27.13	24.69 9.65	BRBS	Secondary	0.91 1.92
11150N	IC96-04	2.43	34.75	32.32	BRBS/MSBS	Secondary	0.20

Table 4. Significant 1996 Drill Intersections - Ice Property

Composites calculated using length weighting of sample intervals ** High grade interval contained within the larger composite

						······································	
Section	Drill Hole	From (m)	To (m)	Interval (m)	Unit	Mineralization Type	Cu (%)
11200N	IC96-26	11.28	15.54	4.26	FBST	Secondary	0.26
	IC96-23	4.27	14.94	10.67	BRBS	Secondary	0.23
	IC96-20	5.49 48.20	48.20 51.10	42.71 2.90	BRBS/PHBS BRBS	Secondary Primary	0.30 0.40
	IC96-18	16.16 27.03 29.70 30.24	27.03 29.70 30.24 45.42	10.87 2.67 0.54 15.18	BRBS/MSBS BRBS PYMS BRBS/MSBS	Secondary PYSM/Secondary PYMS/Secondary Secondary	0.33 1.13 2.03 0.27
	IC96-15	1.82 24.40 48.46	7.32 27.25 52.05	5.5 2.85 3.59	MSBS MSBS/GGST BRBS	Secondary Secondary PYSM	2.03 0.40 0.26
	IC96-02	15.60 31.70 **43.59	31.70 60.20 54.55	16.1 28.5 10.96	BRBS/GGST FBST/GGST	Secondary HEMS/Seconda ry	1.26 1.72 3.36
	IC96-03	60.35 117.71	62.71 122.85	2.36 5.14	BRBS BRBS	PYSM PYSM	1.25 0.35
11300N	IC96-29	10.21 25.70 26.97	25.7 26.97 33.83	15.49 1.27 6.86	MSBS PYMS BRBS/PHBS	Secondary PYMS/Secondary Secondary	0.36 1.99 0.39
	IC96-13	46.72 48.58 51.28 55.83	48.58 51.28 55.83 57.03	1.86 2.70 4.55 1.20	MSBS HEMS PYMS MSBS	Secondary HEMS/Secondary PYMS Secondary	2.45 2.17 2.25 1.83
	IC96-34	72.10 92.66	92.66 95.71	20.56 3.05	PYMS BRBS	PYMS Primary	5.20 0.30
11400N	IC96-30	53.77	54.00	0.23	PYMS	PYMS	1.69
	IC96-32	30.10	30.50	0.40	HEMS	HEMS	0.45

Table 4. cont'd Significant 1996 Drill Intersections - Ice Property

Composites calculated using length weighting of sample intervals ** High grade interval contained within the larger composite

are often enriched in iron and depleted in titanium when compared to massive basalts. The iron minerals are disseminated throughout the matrix of the breccias and appear as disseminated hematite, magnetite or pyrite. Chalcopyrite is rare and occurs as small discrete grains or intergrown with the iron minerals. Intervolcanic mineralization consists of finely disseminated pyrite and rare chalcopyrite in the 60 m thick ribbon chert horizon and various types of mineralization (including massive sulphide) in one or more horizons further up-section. The massive sulphide mineralization is the main exploration target at the Ice property and is described in detail in the following paragraphs.

The most impressive intersection came from Hole IC 96-34, the last hole of the 1996 program. It cut massive sulphide mineralization (PYMS) which averages 5.20% copper, 0.21% zinc, 0.06% cobalt, 25.1 g/t silver and 0.6 g/t gold over 20.56 m. Copper content is highest in the top half of the interval while zinc increases toward the base. Individual copper assays range up to 12.40% over 1.4 m but most are in the range of 3 to 5% as shown on Table 5. Trace element analysis indicates that the mineralization contains uncommonly low amounts of detrimental metals such as arsenic, antimony, mercury and selenium. Lead content is also low, averaging 48 ppm. Contact angles and bedding attitudes in the area suggest that the intersected interval is nearly true width. The sulphide body appears to be dipping at about 40° toward the southeast which is only 25° steeper than the slope of the overlying hillside.

- 25 -

'From	То	Intvl	Cu	Со	Zn	Ag	Au	SG
(m)	(m)	(m)	(%)	(%)	(ppm)	(ppm)	(ppb)	
72.10	73.50	1.40	1.23	0.08	388	1.5	240	3.61
73.50	74.70	1.20	4.97	0.07	514	4.2	190	3.61
74.70	76.10	1.40	12.40	0.15	470	62.0	480	4.37
76.10	77.42	1.32	8.71	0.13	538	52.4	650	4.01
77.42	78.94	1.52	5.06	0.07	2350	31.0	520	3.97
78.94	80.47	1.53	9.17	0.02	756	49.6	400	3.97
80.47	81.99	1.52	3.45	0.03	430	21.0	540	3.96
81.99	83.52	1.53	3.84	0.07	392	38.0	1000	4.07
83.52	85.04	1.52	3.52	0.05	418	27.1	670	3.51
85.04	86.56	1.52	3.67	0.03	1450	21.0	660	4.06
86.56	88.09	1.53	4.47	0.03	6250	20.1	650	4.10
88.09	89.61	1.52	3.03	0.02	9870	19.4	670	4.04
89.61	91.14	1.53	3.88	0.03	3890	23.1	710	4.03
91.14	92.66	1.52	6.06	0.06	914	35.6	880	4.07
*72.10	92.66	20.56	5.20	0.06	2104	25.1	599	3.96

Table 5: IC 96-34 Individual assay intervals - Ice property

*composite calculated using length weighting of sample intervals

SG - specific gravity

The mineralized interval in Hole IC 96-34 consists of continuous massive sulphides except for a 50 cm thick pyritic basalt flow, dyke or slump block near the middle of the interval. The sulphides are dominated by relatively coarse-grained subhedral to euhedral pyrite intergrown with chalcopyrite, bornite, digenite and sphalerite. No cobalt minerals have been identified and it is likely that the cobalt is in solid solution within the pyrite (Payne, 1996c). There is no mineral banding or replacement textures. The only noteworthy features are clasts and veins which can be used to distinguish three generations of mineralization. The oldest sulphides are in subrounded to subangular, 1 mm to 10 cm in diameter clasts comprised of fine- to coarse-grained pyrite with minor dark grey cherty quartz. The clasts comprise up to 90% of the rock in some sections. A few red hematitic chert clasts up to 1 cm in diameter were also noted. The second phase is copper-rich consisting of pyrite, bornite, chalcopyrite and digenite in a clear quartz and calcite gangue. This phase forms a coarse-grained matrix around the clasts. The youngest sulphides are found in up to 4 mm wide veinlets containing coarse chalcopyrite and bornite often with quartz and calcite. The total guartz content in petrographic samples locally ranges up to 55% and averages about 15%.

The contacts between the sulphides and adjacent wallrocks are sharp and are marked by 5 to 10 cm thick hematitic chert bands which resemble the clasts observed within the massive sulphides. Rocks in the hanging wall are typically homogeneous basalt with occasional narrow veinlets of calcite and quartz. Footwall rocks are similar but contain abundant fractures filled with dark green chlorite and minor earthy hematite. There are no sulphide bearing quartz veins or breccias that could be interpreted as a feeder zone to the massive sulphide horizon.

- 26 -

Thinner intersections of massive sulphide (PYMS) and semi-massive sulphide (PYSM) mineralization was intersected up-dip on Section 11300N and on adjacent sections. The lack of information concerning the direction and magnitude of fault offsets makes correlation between horizons uncertain. The massive sulphides in Hole IC 96-13 closely resemble those in IC 96-34 except that they are partially oxidized and do not contain bornite or digenite. This intersection is only 45 m away and has already thinned to 4.5 m. More distal PYMS and PYSM intersections are even thinner, typically 0.3 to 1.5 m. Most contain coarse subhedral to euhedral pyrite with trace to minor chalcopyrite in a quartz-rich gangue. Cobalt and zinc contents are similar to those in Hole IC 96-34 but precious metal contents are low. Many of the intersections were obtained near surface and are overprinted with secondary mineralization, including chalcocite rimming primary sulphides.

Several drill holes intersected dark reddish grey, fine-grained, noncalcareous, bedded specular hematite containing disseminated euhedral to subhedral pyrite grains with minor chalcopyrite (HEMS). This unit locally ranges up to 2 m in thickness. Pyrite content is variable and the unit is likely a gradational facies equivalent of the sulphide-rich horizons. Petrography on one HEMS sample described specular hematite plates disseminated in a matrix of fine-grained quartz (Payne, 1996a). Locally HEMS contains autobrecciated basalt clasts in a fine-grained, reddish brown hematitic matrix.

Hole IC 96-3 cut a thick section of reddish basalt containing pervasive finely disseminated earthy hematite. This intersection is located beneath the zone of near surface oxidation and is

- 27 -

probably a primary feature. It occurs at approximately the same stratigraphic level as the massive sulphides in Hole IC 96-34 and may be a wallrock diluted facies equivalent.

Secondary mineralization includes minerals precipitated in open fractures and others which have wholly or partially replaced primary sulphide minerals. The most common secondary minerals are limonite, hematite, cuprite, malachite, azurite, black copper oxides, native copper and chalcocite. In some areas primary sulphide mineralization has been oxidized to form secondary minerals in situ. Elsewhere the copper has been leached away in acidic groundwater during oxidation producing copper-depleted limonite boxwork. When the acidic copper bearing groundwater moved away from the source it was gradually neutralized by reaction with calcite in the basalt wallrocks, resulting in precipitation of cuprite, malachite, azurite, black oxides or native copper depending upon chemical conditions at the site of precipitation. Occasionally the copper bearing groundwater encountered primary sulphide horizons and chalcocite was formed on the rims of the sulphide grains. Secondary mineralization is confined to the zone of near surface weathering which typically ranges between 5 and 50 m below surface.

Fracture controlled secondary mineralization occurs in all basalt and chert units. It is often horizontally and vertically zoned with malachite and azurite on the margins and near surface giving way to cuprite and native copper toward the centre and deeper in the system. The secondary copper minerals normally co-exist with orange-brown earthy limonite but toward the base of the zone native copper is found with dark red hematite. Native copper is the most difficult secondary mineral to log because it usually occurs as fine grains which form a black oxide coating within a day of being cored.

- 28 -

Significant secondary mineralization has been intersected in a zone that is 350 m long and up to 150 m wide. Grades for predominantly fracture filling mineralization range between 0.3 and 1.5% copper with relatively low values for all other metals. In areas where the secondary mineralization overprints primary mineralization, grades are slightly higher at 1.5 and 2.5% copper with local enrichments up to 8.2%. Copper appears to be the only metal whose distribution is strongly affected by secondary remobilization.

PROPERTY GEOPHYSICS

Ground geophysical surveys were conducted over the entire cut grid. The HLEM survey was done on three frequencies with 100 m coil separation which theoretically can detect conductors up to 50 m below surface. The lower frequencies outlined two weak to moderate conductors, the strongest of which starts at Line 10950N, cuts through the area of surface mineralization and continues north to Line 11800N (Figure 24). The core of this conductor is on Lines 11200N and 11300N directly above the massive sulphide mineralization in Holes IC 96-02 and -13. The other conductor parallels the first about 250 m to the east and has not yet been drill tested. Although both conductors approximately coincide with recessive topographic linears and may be related to faults, they are more likely caused by sulphides because the faults extend well beyond the conductors. The relatively weak electromagnetic response can be explained by three factors. First, most sulphide horizons intersected near surface are narrow and partially oxidized. Second, the thick section of unoxidized massive sulphides in Hole IC 96-34 is capped by about 70 m of barren basalt which is beneath the depth limitation of the survey. Finally, the massive sulphide horizons contain at least 15% silica which encapsulates sulphide grains, greatly reducing conductivity.

The total magnetic field ground survey produced considerable relief. Areas underlain by basalt are characterized by high magnetic field response while areas underlain by chert and shale are much less responsive. Magnetite and pyrrhotite have not been observed in mineralized horizons intersected to date. However, a float boulder of limonite boxwork found near the discovery showing contained abundant magnetite along with copper. Thus, it is possible that

- 30 -

some magnetic highs without corresponding HLEM conductors could be caused by deeply oxidized, massive sulphide horizons of this type.

The Dighem^v airborne survey showed that "there are many anomalies in the survey block which are typical of massive sulphide responses" (Dighem, 1997). In general serpentinized ultramafics yielded the strongest magnetic response while large areas of chert and shale were least magnetic. Both exhibited relatively low resistivity and numerous strong conductors. Areas underlain by basalt produced a moderate magnetic signature with relatively high resistivity and weak conductors.

The conductor outlined by the HLEM survey directly over the Ice Deposit was also detected by the airborne survey. It coincides with a moderate resistivity low which is part of a zone that extends from the drill area about 4 km along strike to the north. A number of other similar resistivity anomalies are associated with basalt elsewhere on the property. None of these targets has been prospected or tested by geochemistry.

DISCUSSION AND CONCLUSION

The Ice Deposit appears to have significant economic potential both as a stand-alone operation and because of its regional implications. Based on the metal signature and its relationship to the enclosing basaltic wallrocks, the deposit is categorized as Cyprus-type volcanogenic massive sulphide (Franklin, 1996). This type of mineralization forms along fissure zones in active spreading centres and is found where ocean floor has been obducted. The classic type deposits are in the eastern Mediterranean while some of the best Canadian examples are located in Newfoundland. Most are lower grade than the mineralization discovered in Hole IC 96-34 but the Tilt Cove Deposit in Newfoundland produced 8,165,000 tonnes grading about 6.0% copper (Strong and Saunders, 1988; Franklin, 1996).

Mineralization in Cyprus-type deposits can be confined to a single lens but often occurs as a string of lenses along an elongate fissure zone. Volcanism within spreading centres is usually intermittent and fissures are often reactivated, producing mineralized horizons at more than one stratigraphic level. Tectonic activity coupled with volcanism typically results in rapid facies changes. Fortunately rocks in the vicinity of the Ice Deposit are not highly deformed so it should be possible to identify significant depositional features and alteration zones associated with the feeder system. The horizon which hosts the massive sulphide mineralization intersected in Hole IC 96-34 is open along strike and downdip and there are indications of other intervolcanic horizons (notably the ribbon chert horizon) with potential to host additional sulphide lenses. The absence of an underlying feeder zone in Hole IC 96-34 is encouraging because the thickest concentration of sulphides and the highest grade mineralization are usually found directly above the vent.

- 32 -

The grade and nature of sulphide mineralization intersected in Hole IC 96-34 are exceptionally favourable when compared to other VMS deposits. The coarse grain size, presence of high grade copper minerals and absence of detrimental metals should mean that a clean, high value concentrate can be produced. The potential value of by-products such as gold, silver, zinc and cobalt cannot be determined until zoning within the deposit is defined and metallurgical tests are done. The dip of the mineralization relative to the overlying hillside indicates that at least part of the zone is suitable for open pit mining while the thickness of the zone coupled with competent wallrock suggests that relatively low cost underground mining could be conducted if required.

The zone of secondary copper mineralization almost certainly was formed by oxidation of one or more massive sulphide lenses. No area of leached mineralization has been discovered that could have provided the amount of copper contained in the secondary zone. The source probably lies uphill to the northwest or up-ice under glacial till to the northeast. Additional drilling is required to test these hypotheses and to accurately define the size and grade of the secondary zone.

Information available to date suggests that the zone of secondary mineralization is well suited for open pit mining coupled with solvent extraction/electrowinning metallurgy. Although the zone is likely too small and low grade for a stand-alone operation it would certainly be of interest if infrastructure were built to develop a sulphide deposit.

Respectfully submitted,

Archer, Cathro & Associates (1981) Limited

W.D. Eaton, B.A., B.Sc.

L.C. Pigage Ph

SELECTED REFERENCES

Cathro, R.J.

Clarke, D.

1991 NewPet. Shareware computer program. Memorial University of Newfoundland, Department of Earth Sciences.

Columbia Gold Mines Ltd.

1996 News Release, Cobalt Assays Consistent at Fyre Lake, December 2, 1996.

Cominco Exploration

1995 Kudz Ze Kayah Program, Yukon; Information handout from Cordilleran Roundup, Spring 1995.

DIAND

1995 Yukon Minfile, November/95; Exploration Geological Services Division, Indian and Northern Affairs Canada.

Dighem, A Division of CGG Canada Ltd.

1997 DighemV Survey for Expatriate Resources Ltd., Finlayson Lake Area, Yukon flown October 28 to 31, 1996.

DMTS

1961 Finlayson Lake (105G), Airborne Magnetic Map; Department of Mines and Technical Surveys, Geophysical Paper 70006G.

Franklin, J.M.

1996 Volcanic-associated massive sulphide base metals; *in* O.R. Eckstrand, W.D. Sinclair and R.I. Thorpe (ed)., Geology of Canadian Mineral Types, Geological Survey of Canada, Geology of Canada, No. 8, pp.158-183.

Hornbrook, E.H.W. and Friske, P.W.B.

1988 Regional stream sediment and water geochemical data, southeastern Yukon; Geological Survey of Canada Open File 1648 (105G).

Irvine, T.N. and Baragar, W.R.A.

1971 A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, pp.523-548.

¹⁹⁷³ Final Report, Finlayson Joint Venture.

- Johnston, S.T. and Mortensen, J.K.
 - 1994 Regional setting of porphyry Cu-Mo deposits, volcanogenic massive sulphide deposits, and mesothermal gold deposits in the Yukon-Tanana Terrane, Yukon; Yukon Metallogeny: Recent Developments, Canadian-Yukon Economic Development Agreement, pp.30-34.
- Lee, C.C. and Power, M.A.
 - 1996 Ground Total Magnetic Field and HLEM Survey of Properties in the Finlayson Allochthon, Yukon Territory.

Morin, J.A.

1981 Volcanogenic iron and base metal occurrences in Klondike Schist, Yukon Geology and Exploration 1979-80, Department of Indian and Northern Affairs, pp.91-97.

Mortensen, J.K.

1992 Pre-Mid-Mesozoic Tectonic Evolution of the Yukon-Tanana Terrane, Yukon and Alaska; Tectonics, Vol.11, No.4, pp.836-853.

Mortensen, J.K. and Jilson, G.A.

1985 Evolution of the Yukon-Tanana Terrane: evidence from southeastern Yukon Territory; Geology, V.13, pp.806-810.

Payne, J.G.

- 1996a Report #960632, Finlayson Project, Ice Property, Vancouver Petrographics Ltd.
- 1996b Report #960819, Finlayson Project, Ice Property, Vancouver Petrographics Ltd.
- 1996c Report #960714, Finlayson Project, Ice Property, Vancouver Petrographics Ltd.

Plint, H.E. and Gordon, T.M.

1997 The Slide Mountain Terrane and the structural evolution of the Finlayson Lake Fault Zone, southeastern Yukon *in*: Canadian Journal of Earth Sciences 34: pp.105-126 (1997).

Roberts, W.

1997 Abstract, 1997 Cordilleran Roundup, January 28-31, 1997, pp.31-32.

Schultze, H.C.

1996 Summary of the Kudz Ze Kayah Project, volcanic hosted massive sulphide deposit Yukon Territory; *in*: Yukon Exploration and Geology, 1995, Exploration and Geological Services Division, Yukon, Indian and Northern Affairs Canada, pp.29-32.

1

Strong, D.F. and Saunders, C.M.

1988 Geological Setting of Sulphide Mineralization at Tilt Cove, Betts Cover Ophiolite, Newfoundland in Swinden, H. Scott and Kean, Baxter, F. editors, The Volcanogenic Sulphide Districts of central Newfoundland. Mineral Deposits Division, Geological Association of Canada, pp. 54-61.

Tempelman-Kluit, D.J.

- 1977 Quiet Lake (105F) and Finlayson Lake (105G) map areas; Geological Survey of Canada Open File 486.
- 1979 Transported Cataclasite, Ophiolite and Granodiorite in Yukon: Evidence of Arc-Continent Collision. Geological Survey of Canada, Paper 79-14, 27 pages.

Tempelman-Kluit, D.J., Gordey, S.P. and Read, B.C.

1976 Stratigraphic and structural studies in the Pelly Mountains, Yukon Territory; Geological Survey of Canada Paper 76-1A, pp.97-106.

Turner, F.J.

1981 Metamorphic petrology, mineralogical, field and tectonic aspects, 2nd edition. McGraw-Hill Book Company, New York.

Westmin Resources Limited

1996 News Release, Joint Release with Atna Resources Ltd; November 30, 1996, p.2.

Winkler, H.G.F.

1974 Petrogenesis of metamorphic rocks, 3rd edition. Springer-Verlag, New York.

Whiteway, P.

1995 "Fast-Tracking" ABM; in Canadian Mining Journal, June 1995, pp.17-21.

APPENDIX I

AUTHORS' STATEMENTS OF QUALIFICATIONS
STATEMENT OF QUALIFICATIONS

I, W. Douglas Eaton, geologist, with business addresses in Whitehorse, Yukon Territory and Vancouver, British Columbia and residential address in North Vancouver, British Columbia, do hereby declare that:

- I graduated from the University of British Columbia in 1980 with a B.Sc. majoring in Geological Sciences.
- From 1971 to present, I have been actively engaged in mineral exploration in British Columbia and Yukon Territory and on June 1, 1981, I became a partner in Archer, Cathro & Associates (1981) Limited.
- 3. I have personally participated in or supervised the field work reported herein and have interpreted all data resulting from this work.
- I own 407,500 shares of Expatriate Resources Ltd. and have options to purchase 76,500 shares at \$4.14/share until March 26, 2001 and 25,000 shares at \$4.06/share until January 31, 2002.

W. pouglas Eaton, B.A., B.Sc.

STATEMENT OF QUALIFICATIONS

I, Lee C. Pigage, am a resident of the Yukon Territory, living at 2 Rosewood Place, Whitehorse, Yukon Y1A 4X3.

I graduated from the University of Wyoming in 1970 with a B.Sc. in Geological Sciences.

I graduated from the University of British Columbia in 1973 with a M.Sc. in Geological Sciences.

I graduated from the University of British Columbia in 1979 with a Ph.D. in Geological Sciences.

I have worked in economic geology and the mining industry continuously since 1979.

I am a Fellow in the Geological Association of Canada.

I am a Professional Geoscientist (#21130) registered with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (APEGBC).

I personally participated in and supervised the geologic mapping and drilling for the project described in this report.

I do not have any investment interest in any of the quartz claims covered in this report.

Lee C Pigage

Lee C. Pigage, Ph.D., P.Geo May 27, 1997

APPENDIX II

GROUND TOTAL MAGNETIC FIELD AND HLEM SURVEY OF PROPERTIES IN THE FINLAYSON ALLOCHTHON, YUKON TERRITORY BY C.C. LEE AND M.A. POWER, DECEMBER 6, 1996

AMEROK GEOSCIENCES LTD.

EXPATRIATE RESOURCES LTD.

GROUND TOTAL MAGNETIC FIELD AND HLEM SURVEY OF PROPERTIES IN THE FINLAYSON ALLOCHTHON, YUKON TERRITORY

Part I of 3 - Text

M.A. Power M.Sc. P. Geo.

and

C. C. Lee B.Sc.

PROPERTIES

LEAGUE ICE BREAKAWAY REF1 REF2 REF3 BUZZER SLAPSHOT HAT TRICK

Centred at: 61° 30' N 130° 30' W NTS: 105 G / 115 J Mining District: Watson Lake, YT Date: December 6, 1996

SUMMARY

During the period May 31 to August 28, 1996, Amerok Geosciences Ltd. conducted ground horizontal loop electromagnetic (HLEM) and total magnetic field surveys on the following properties held by Expatriate Resources Ltd. in the Finlayson Allochthon:

Property	Surveys performed
League	HLEM / magnetic field
lce	HLEM / magnetic field
Breakaway	HLEM / magnetic field
Ref 2	HLEM / magnetic field
Hat Trick	HLEM / magnetic field
Slapshot	HLEM / magnetic field
Ref 1	magnetic field
Ref 3	magnetic field
Buzzer	magnetic field

On the League Property, the surveys located a wide, high conductance target which is discordant with respect to the strike of local rocks units and follows a magnetic field low for a portion of its length. This conductor appears to be a graphite-bearing fault.

On the Ice Property, the surveys identified two main conductors which appear to be faults. The magnetic field survey was useful in delineating several different rock units. One conductor appears to define the location of oxide mineralization and two anomalous responses along this conductor may arise from current channelling at depth.

On the Breakaway Property, the surveys identified 4 conductors, three of which appear to be faults. Conductor BR-2 is concordant with respect to the local geology, has a high conductance and an associated positive magnetic response. It appears to be a target of merit.

On the Ref 2 Property, the surveys identified a narrow concordant conductor with an associated positive magnetic response. It also appears to be a target of merit.

On the Hat Trick Property, surveys located a conductor coincident with the recessive trend hosting the anomalous geochemical response and the mineralized bedrock. A second conductor occurs to the west in 3 faulted(?) segments and contains an intersection of interest with an associated positive magnetic anomaly.

On the Slapshot Property, no significant anomalies of interest were located.

On the Ref 1 Property, a weak northwest striking positive magnetic anomaly was defined by the magnetic field survey.

On the Buzzer Property, a strong positive magnetic anomaly was located on the extreme northeast corner of the grid.

On the Ref 3 Property, a magnetic field high was located in the west-central portion of the grid.

Detailed discussions of anomalies of interest are included in descriptions of the results from each property.

TABLE OF CONTENTS

•

1.0		1													
2.0	GRIDS AND GRID REGISTRATION 1														
3.0	HLEM THEORY AND INTERPRETATION PROCEDURES														
4.0	MAGNETIC FIELD INTERPRETATION PROCEDURES														
5.0	SURVEY PROCEDURES														
6.0	DATA PRESENTATION AND FORMATS														
7.0	LEAGUE PROPERTY 7.1 Survey specifications 7.2 Data 7.3 Results and interpretation 7.4 Conclusions	9 9 9 10													
8.0	ICE PROPERTY	12 12 13 15													
9.0	BREAKAWAY PROPERTY 9.1 Survey specifications 7 9.2 Data 7 9.3 Results and interpretation 7 9.4 Conclusions 7	16 16 16 19													
10.0	REF2 PROPERTY 10.1 Survey specifications 10.2 Data 10.3 Results and interpretation 10.4 Conclusions 10.4 Conclusions	20 20 20 20 20													
11.0	HAT TRICK PROPERTY 11.1 Survey specifications 11.2 Data 11.3 Results and interpretation 11.4 Conclusions	23 23 23 23 26													

AMEROK GEOSCIENCES LTD.

12.0	SLAPSHOT PROPERTY 12.1 Survey specifications 12.2 Data 12.3 Results and interpretation	27 27 27 27
13.0	REF 1 PROPERTY	28
14.0	BUZZER PROPERTY	28
15.0	REF 3 PROPERTY	28
16.0	CONCLUSION	29
REFE	RENCES CITED	30

- -

•

.

.

1.0 INTRODUCTION

Amerok Geosciences Ltd. was retained by Expatriate Resources Ltd. to conduct ground total magnetic field and horizontal loop electromagnetic field (HLEM) surveys on properties held by the company in the Finlayson Allochthon in the south central Yukon Territory. The surveys were conducted in June through August, 1996 in support of an exploration program for volcanogenic massive sulphide deposits. This report is intended as a summary technical report from which extracts may be taken to incorporate into formal assessment reports for each property described.

The geophysical surveys were performed on the following properties:

Property	Surveys performed
League	HLEM / magnetic field
Ice	HLEM / magnetic field
Breakaway	HLEM / magnetic field
Ref 2	HLEM / magnetic field
Hat Trick	HLEM / magnetic field
Slapshot	HLEM / magnetic field
Ref 1	magnetic field
Ref 3	magnetic field
Buzzer	magnetic field

This report consists of two parts. Sections 2.0 through 6.0 descriptions of the grids and grid registration procedures, HLEM and magnetic field theory, common survey procedures, and a description of the common data formats and presentation layouts. Sections 7.0 through 16.0 are descriptions of the data and results for each property. Appended to the end of this report in pockets are plots of the results for each property, grouped by property.

2.0 GRIDS AND GRID REGISTRATION

The geophysical surveys were conducted over grids centred on favourable geology or promising geochemical or airborne geophysical responses. The grids normally consisted of a cut slope corrected base line and cut, slope chained (not slope

corrected) survey lines. Maxmin surveys were performed on slope chained survey grids while some magnetometer surveys were conducted over slope corrected soil geochemical grids. Most of the grid stations were picketed with tagged and flagged survey lathe and should be recoverable for several years hence.

All geophysical survey data in this report has been registered in Universal Transverse Mercator coordinates to the 1927 North American Datum (NAD27). This geodetic datum was used in the construction of available NTS topographic maps and while it has been superseded by NAD83, it remains the most useful datum for field work in this area of the Yukon. Points on most of the grids were surveyed with Trimble Geo-Explorer differential global positioning system (DGPS) receivers. These receivers record the detailed orbital records of the GPS satellites used in a location determination and correct these records for dithering and propagation delay errors using records from a stationary base station GPS receiver. The manufacturer asserts that horizontal locations can be determined to within ± 3 m using these instruments. On other grids, best estimates of the location of key points were made using nondifferential GPS receivers or using topographic maps.

Three different registration procedures were used depending upon the available survey data. In some cases, only one DGPS location was available and in this case the surveyed location coupled with the measured base line azimuth was used in the registration. In cases where two widely separated points on a base line were DGPS surveyed, these were used to position the base line and to determine it's true azimuth. Lastly, on one grid, a detailed grid map had been prepared showing the relative location of the survey lines and several points were surveyed-in with DGSP. In this situation, the grid was first digitized and then translated and rotated to a position which best-fit the available DGSP data.

The calculation of UTM coordinates was performed using one of two methods. If the available survey data consisted of one DGPS point and a base line azimuth or of two widely separated DGPS points, the following procedure was used. This procedure consists of three steps:

1. Assign the location of the known survey point on the grid as the local origin and express the location of all points on the grid relative to this new local origin:

y'=y-y_o

2. Using the known azimuth of the base line in UTM coordinates (ϕ), rotate the

grid so that the coordinates are correctly oriented with respect to the local origin. The new location of the grid points, rotated relative to the local origin, is $(x^{"}, y^{"})$:

 $x''=x'\cos\phi-y'\sin\phi$

$y''=y'\cos\phi+x'\sin\phi$

3. Finally, translate the grid to the UTM coordinates of the registration point (UTME, UTMN) to determine the UTM coordinates of any point on the grid (x_{UTM} , y_{UTM}):

X_{UTM}=X"+UTME

y_{uтм}=y″+UTMN

In the situation where the grid had been digitized and then best-fit to several DGPS points, the following procedure was used:

1. Determine the location of the end points of each line and the point of intersection between the survey line and the base line by reading off the coordinates from the digitized grid map. These are fixed registration points.

2. Interpolate the location of the stations between the registration points using the UTM coordinates of each of the two registration points at either end of the line segment.

All grid registration was performed using a spread sheet computer program.

3.0 HLEM THEORY AND INTERPRETATION PROCEDURES

The horizontal loop EM method is well described in standard texts such as Telford *et. al.* (1990) and Ketola and Puranen (1967). This section summarizes the key features

of the HLEM method and describes the interpretation algorithms used in this survey program.

The HLEM method involves the use of a pair of separated horizontal coils (Figure 1). Most commonly, the surveys are conducted in the frequency domain. In this method, a sine wave of variable frequency is sent through one of the coils to create a time-varying vertical magnetic dipole source. The second coil is a receiver which detects both the primary signal from the transmitting coil and a secondary signal created by magnetic induction in a conductive target in the earth. There are two variants of the method in the frequency domain are the Slingram or conventional HLEM method and the Genie method.

The Slingram method (normally referred to as HLEM) requires that a sample of the transmitted signal be sent along a wire to the receiver where it is used to synchronize the phase of the receiver with the transmitter. This permits the receiver to remove the effect of the transmitter signal (primary field) and to split the remaining secondary field into two components. One component represents the portion of the secondary field which is synchronized or in-phase with the primary field (in-phase component). The second component is the portion of the secondary field which lags the primary field by one quarter cycle (90°) (quadrature component). The ratio of the in-phase to quadrature components is used to determine the electrical conductance of a target.

HLEM instruments remove the primary field from the signal to leave only the secondary field. By convention, a secondary field in the same direction as the primary field is recorded as positive while a secondary field in the opposite direction to the primary field is recorded as negative. HLEM data is commonly plotted as profiles with the reading plotted at the midpoint between the transmitter and receiver. The reason for this is that the response from a steeply dipping conductor, the most common target of this method, is strongest when the two coils straddle the conductor. Normally, the in-phase response is plotted as a solid line and the quadrature response as a dashed line.

The HLEM response of a flat lying body is shown in Figure 2(a). Magnetic field lines (flux) are directed primarily into the region beneath the transmitter loop. Lenz's Law dictates that the induced secondary field will oppose the primary field. Consequently, at the receiver, both the primary and secondary field will be in the same direction. As a result, the response from a flat lying conductor consists of a positive response over the target. At the edge of the conductor, there is a negative response which occurs when both coils are straddling the edge of the conductor. When either the transmitter or receiver coil is over the edge of the conductor, there is no secondary field and the response is zero. As the depth to the flat lying conductor increases, the strength of the response is attenuated. The effective depth of investigation of the HLEM method for flat lying conductors is approximately 1.5 times the coil spacing.

The HLEM response of a steeply dipping conductor is shown in Figure 2(b). Field lines from the transmitter are horizontal at a point midway between the two coils and in this orientation, cut the conductor at right angles creating the best coupling. Lenz's Law dictates that the secondary field will oppose the primary field and at the receiver coil, the secondary field is in the opposite direction to the primary field. As a result, the response when profiling over a steeply dipping conductor consists of a trough with peak negative value occurring when the coils straddle the conductor. The flanking positive peaks result from induction effects as the pair of coils are close to but not straddling the conductor. When either of the coils is directly over the target, the response is zero because the primary field is not well coupled with the target (ie it is perpendicular to the edge of the conductor) and little secondary field is created.

A dipping tabular conductor can be specified by the dip and dip direction, depth to top, target width and electrical conductance (conductivity thickness product or σt). The effect of varying these parameters is shown in Figure 3 for the case of a response from a single isolated HLEM conductor. Asymmetry in the positive shoulders indicates the dip direction and the ratio of the positive shoulder responses can be used to estimate the dip (Figure 3(a)). The strength of the response is largely determined by the depth to the top of the conductor. Increasing the depth to the top of the conductor decreases the amplitude of the response but does not otherwise change the shape of the response (Figure 3(b)). The effective depth of investigation of the HLEM method for steeply dipping targets is approximately one half the coil spacing. If the conductor is wide, the location of the zero crossovers, normally equal to the coil spacing, will increase. If the width reaches approximately one half the coil spacing, the trough of the response for shallow targets will start to deflect slightly to the positive. If the width of the target approaches that of the coil spacing, the positive return in the trough will be apparent at any depth to target (Figure 3(c)). As noted above, the electrical conductance controls the ratio of the in-phase to guadrature response. Weak targets show only a quadrature response. As the target conductance increases the strength of the in-phase component will increase. Very high conductance targets are characterized by strong in-phase responses and weak to very weak guadrature responses (Figure 3(d)).

Interpretation procedures for HLEM data are dependent upon the model to which the data is to be fitted. In most cases, the characteristic shape of the response will dictate the likely overall geometry of the source and thus the model to which the response should be fitted. Flat lying targets can be directly modelled with computerized calculations of target responses. Dipping tabular body responses on the other hand cannot be numerically modelled and must either be approximated through finite-element models or interpreted using characteristic curves. Characteristic curves for tabular dipping conductors incorporate several key features of the responses described in Figure 3 into simple charts. These responses are derived from model experiments. The ratio of positive shoulders responses and the ratio of in-phase to

Expatriate mag/HLEM report - page 5

quadrature peak negative values are the commonly used features of the response. An example of these charts is shown in Figure 4.

The data contained in this report was interpreted using characteristic curves developed by Ketola and Puranen (1967). The procedure, normally done by hand, has been automated in proprietary software (MMPLOT) developed by Amerok Geosciences Ltd. The characteristics of each response are entered into a computer program which creates a batch plotting file. The data is plotted directly on a CADD diagram with each of the characteristic curves on a different layer. The operator is able to quickly match the data to the curve which best fits the data by selecting different characteristic curves (ie. by changing layers). Where the data falls between two curves, the conductance and depth to top parameters can be interpolated but the dip cannot be reliably interpolated.

4.0 MAGNETIC FIELD INTERPRETATION PROCEDURES

Magnetic field anomaly interpretation was performed with SAKI, a program to forward model the 2.5D response of magnetic bodies of arbitrary prismatic cross section developed by the United States Geological Survey. The program uses semi-automated Marquardt inversion to calculate the anomalies associated with bodies of finite strike length. The program was tested by the one of the authors (M.Power) against analytical solutions to simple anomalies and produced accurate results.

5.0 SURVEY PROCEDURES

The geophysical surveys were performed with the following instruments:

HLEM instruments

Apex Parametrics Maxmin I-9 with attached MMC (datalogger/computer). This instrument operates at 110, 220, 440, 880, 1760, 3520, 7040, 14,080 and 28,160 Hz. Cables at lengths of 50, 100 and 150 m were used in the surveys.

Magnetic field instruments

2 Omni Plus proton precession magnetometers, 1 Omni IV proton precession magnetometer.

and conductance of the target.

Other

P-75 laptop computer, Fujitsu colour printer, Trimble Scout non-differential GPS. All data was processed and plotted in GEOPAK.

The HLEM surveys were performed using the 100 m cable and frequencies of 220. 880 and 3520 Hz on the first pass. Detailed surveys were performed over anomalies of interest using 50 and 150 m coils and the same frequencies. Readings were taken at 25 m stations except on detail surveys with 50 m coils where readings were taken every 12.5 m. The HLEM method requires that the coils be held a constant distance apart and be coplanar. In steep irregular terrain, the coils will frequently be less than the nominal coil spacing (short coiling) and may not be coplanar. These variations in coil geometry produce strong in-phase errors and must be removed from the data before plotting and interpretation. The method used to mitigate these effects requires a slope chained grid and requires the operator to measure the station to station terrain slope in percent with a clinometer. This is normally done by the receiver operator who was in the lead position on most surveys. The correct slope required to maintain the coils coplanar is the arithmetic average of the station to station slopes in the interval between the two coils. The operators hold the coils coplanar during the surveys by holding their coils at this orientation which is calculated and displayed for each reading station by the Maxmin MMC. The effect of short coiling created by irregular topography was removed with Apex Parametrics data processing software (MMCFIX1). The numerical method is described in Varre (1990)(pp All-3-4).

The magnetic field surveys were conducted using a 12.5 m station spacing. The base station magnetometer was synchronized with the field units daily, prior to the surveys and cycled at 15 to 20 s during the surveys. Corrections to the field data for temporal geomagnetic variation during the surveys were performed either by on-board software or, after dumping, by computer software. When a grid was surveyed with the base station in more than 1 location, the data sets were levelled by surveying a common interval, calculating the mean difference between the two data sets and applying the appropriate correction to one data set to level it to the other.

6.0 DATA PRESENTATION AND FORMATS

Digital data is appended to this report in ASCII XYZ format. Each file has a header on the first line showing the data contained in the columns beneath. For the magnetic field data, the common format is:

Line Station UTM_Easting UTM_Northing Corr_mag

Expatriate mag/HLEM report - page 7

For the HLEM data, the common format is:

Line Station UTM_Easting UTM_Northing 220IP 220Q 880IP 880Q 3520IP 3520Q

Corr_mag denote total magnetic field data corrected for diurnal variation. xxxIP and xxxQ denotes in-phase and quadrature components at the prefixing frequency in percent of the vertical primary magnetic field (H₂).

HLEM data is displayed in stacked profile plots showing the survey grid and the inphase and quadrature readings as solid and dashed line profiles. The zero level on each profile is coincident with the survey line and the direction of the positive response is shown by an arrow near the grid and diagrammatically in the legend. Where possible, a scale of 10% H_z per cm was used in the plotting. The locations of the grid lines have been registered to UTM coordinates with the best data available at the time of writing and UTM registration marks are shown on both HLEM and magnetic field plots. Along the grid lines, the small tick marks show the station locations and every 100 m is indicated by a larger tick. On some plots, alternate station ticks were suppressed by the plotting software. The north arrow in each plot indicates grid north. Conductors of interest are indicated with symbols at each intersection. All anomalies were interpreted as thin tabular conductors unless otherwise indicated. The squares indicating an anomaly are filled where required to indicate the calculated target conductance. Calculated depth to the top of the conductor and any excess width in the response which might indicate a wide target are shown numerically on opposite sides of the anomaly symbols. Conductor axes formed by linking similar line-to-line responses are indicated by thick dashed lines.

Total magnetic field data is displayed in colour contoured maps. These show the locations of the grid lines, marked in the same fashion as in the HLEM plots and contoured values of the total magnetic field. Superimposed on this is a full colour contour plot and any HLEM conductor axes.

8.0 ICE PROPERTY

Ground total magnetic field surveys and horizontal loop electromagnetic field surveys were conducted on the Ice Property. The surveys were conducted by C.Lee / B. Spaurel (June 14, 1996), I. Jackisch/ P.Chidgzey (Jul 23,24, 1996), C.Lee / R. Kamnitzer / R.Austin (Aug 5-9, 1996) and M.Power / W. Cuthbertson (Aug 20, 21, 27, 1996).

8.1 Survey specifications

A cut grid consisting of 21.6 line-km with a base line azimuth of 36° was centred over a strong copper geochemical anomaly associated with the Ice Deposit. Survey lines were straight chained (not slope corrected) and picketed with survey lathe. The base line was slope corrected. The magnetic field and HLEM surveys covered 21.5 line-km of this grid. The surveys were conducted using the standard specifications described in section 5.0. No detail surveys were conducted.

8.2 Data

The survey grid location was registered to UTM NAD27 coordinates using the differential GPS location of two widely separated points on the base line.

Copies of the digital data are appended to this report in the standard format. Plots of the data collected are contained in the back pockets of this report in the ICE section. The following figures display the data collected on this property:

Figure	Location	Description
IC-1	Pocket	Total magnetic field colour contour map.
IC-2	Pocket	Maxmin I-9 / 220 Hz -100 m coils stacked profiles
IC-3	Pocket	Maxmin I-9 / 880 Hz - 100 m coils stacked profiles
IC-4	Pocket	Maxmin I-9 / 3520 Hz - 100 m coils stacked profiles
IC-5	Report	Magnetic field source model - Line 11100N

On each of these figures, the location of holes drilled as of the date of this report are shown together with the outline of the area containing oxide copper mineralization. Hole 34 intersected significant massive sulphide mineralization; it is located on line 11300N at 10300E.

The HLEM data shows some frequency invariant responses along lines 10700N and 10600N which may be caused by poor coil control or by nearby magnetic sources. The rest of the HLEM data is relatively quiet with some quadrature noise attributed to conductive overburden. The magnetic field data contains a number of isolated high amplitude, short wavelength "bull's eyes" attributed to magnetic surficial magnetic material, possibly within overburden. In addition, the contouring algorithm has generated several spurious bull's eyes between the survey lines; these are an unavoidable artifact of the splining process used to interpolate the grid values and should be ignored.

8.3 Results and interpretation

The HLEM survey located three anomalies labelled IC-1 to IC-3. These anomalies are in the north half of the grid and, with the exception of IC-3, are orthogonal to the survey lines. Anomaly IC-1 extends from line 10900N to 11800N and defines the axis of the zone of oxide copper mineralization. Anomaly IC-2 is parallel to and 200 m grid east of IC-1. Anomaly IC-3 is a short two line anomaly which would ordinarily not be of interest but for its location near the zone of oxide copper mineralization. These anomalies are discussed in turn.

Anomaly **IC-1** is a 900 m long, north trending HLEM anomaly. The responses changes character moving north along strike from a strong in-phase and quadrature response to a weak quadrature response and appears to terminate at line 11800N. Interpreted conductor parameters for the section between lines 11100N and 11400N are summarized below:

Apex location	Depth to top (m)	Dip / dip direction	Excess width (m)	Conductance (S)
L11100N 9950E	not interpreted	not interpreted	50	0.36
L11200N 9950E	20	not interpreted	50	1.9
L11300N 10000E	20	75-90° grid east	20	1.9
L11400N 10000E	18	vertical	0	<0.36

Conductances were calculated using the 3520 Hz responses. The error in conductance is in the order of 5 S. The thin dipping dike model may be inapplicable

to responses on lines 11100N through 11300N because of the apparent excess width in the responses. The determination of dip and dip direction is complicated by the nearby response on **IC-2**. Along much of their length, the adjacent positive shoulders of the responses interfere with one another, preventing an accurate determination of conductor parameters. The response on line 11200N is anomalously strong and falls of the characteristic curves in two quadrants. This suggests that current gathering and signal enhancement may be occurring in this conductor. If this is the case, the calculated conductance may be two low because of phase shifting associated with current gathering.

Anomaly **IC-2** extends from line 11200N to 11800N, roughly parallelling **IC-1**. The response consists of a weak quadrature response with an associated in-phase response on lines 11300, 11400 and 11800N. Interpreted conductor parameters for intersections on lines 11300N and 11400N are summarized below:

Apex location	Depth to top (m)	Dip / dip direction	Excess width (m)	Conductance (S)
L11300N 10300E	30	30-45° west	45-75	<0.36
L11200N 10300E	20	not interpreted	10-40	<0.36

Conductances were calculated using the 3520 Hz responses. The error in conductance is in the order of 5 S but the very weak in-phase responses suggest that the target has a low conductance (<1 S). The dip estimate on line 11300N is probably invalid because of interfering responses from **IC-1**. Along much of their length, the adjacent positive shoulders of the responses on **IC-1** and **IC-2** appear to interfere with one another, preventing an accurate determination of conductor parameters.

Anomaly **IC-3** consists of a two-line weak quadrature anomaly (3520 Hz) which would ordinarily not be of interest but for the fact that it occurs on the northwest flank of the zone of oxide copper mineralization. This zone is open on this flank and appears to trend towards this anomaly. Since oxide copper mineralization is associated with a similar but stronger anomaly to the southeast (**IC-1**), this anomaly is of interest despite its weak response. The source conductor appears to be steeply dipping with an electrical conductance of less than 1 S.

The magnetic field data shows considerable relief. Regions underlain by ultramafic rocks and basalt are characterized by high magnetic field responses and regions underlain by a chert unit are characterized by a low magnetic field response. The magnetic field data has been interpreted to define, in part, a pair of faults coincident

with HLEM conductors **IC-1** and **IC-2**. The magnetic response on line 11100E was modelled with SAKI and the best-fit forward model is shown in Figure IC-5. While this response is not an especially close match to the field data, it does indicate the source of several features of the response. The model consists of a 100 m wide (perpendicular to section) magnetic slab dipping at a shallow angle with edges at 10000E and 10300E. The magnetic trough on the west end of the slab is caused by induction effects at the edge of the larger body to the west of the magnetic slab. The modelling appears to indicate that a block faulted slab of ultramafic rock with edges coincident with **IC-1** and **IC-2** could be the source of the magnetic anomaly. This suggests that the source conductors for **IC-1** and **IC-2** are possible faults.

Geological data available to the authors indicate that the zone of oxide copper mineralization occurs in a fault-controlled series of fractures centred on **IC-1**. The zone of oxide copper mineralization is described as steeply dipping and flaring out near surface. Twenty metres of primary massive sulphide mineralization dipping at approximately 45° to grid east was encountered at a depth of approximately 40 m in hole 34. The massive sulphide intersection is approximately 60 m grid east of the axis of **IC-1** and 50 m grid east of the indicated edge of the conductor. Responses on line 11200 and 11300E do not completely match those expected of a thin steeply dipping dike model. On line 11200E in particular, the response is anomalously strong. It is possible that **IC-1** indicates the location of the leading edge of a deeper, shallow dipping conductor, at least along 11200E where the response differs significantly from that expected of a thin dipping dike target (eg. a fault).

8.4 Conclusions

Conductor IC-1 is coincident with the zone of oxide copper mineralization outlined to date by drilling. This conductor appears to be a wide, weakly conductive fault zone. The anomalous response on line 11200E may be caused by more than one conductor and does not completely fit the dipping dike model. The increased strength of this response may be due to current channelling. The drill hole data and magnetic models of the source of the anomaly between IC-1 and IC-2 suggest that conductor IC-1 may be a useful marker in locating massive sulphide mineralization at depth. IC-1 may indicate the upper edge of a fault-bounded block of mafic to ultramafic rock containing the massive sulphide mineralization intersected in hole 34. The zone of oxide copper mineralization is open along strike to the northwest and conductor IC-3 may indicate a possible extension of this zone.

AMEROK GEOSCIENCES LTD.

DIAND - YUKON REGION, LIBRARY

DWG #1 0117-81760

TOTAL MAGNETIC FIELD SURVEY

CONTOUR MAP

FIG·IC - 1

200 metres

CONTOUR INTERVAL: 100 nT

58780.00
58730.00
58680.00
58630.00
58580.00
58530.00
58480.00
58430.00
58380.00
58330.00
58280.00
58230.00
58180.00
58130.00
58080.00
58030.00
57980.00

Area of oxide mineralization and drill holes outlined in purple

Depth (m) 20 50

Excess width (m)

(Grid registered to UTM Datum NAD 27)

MAXMIN I-9 SURVEY

093740 DWG #2

AMEROK GEOSCIENCES LTD.

0117 81760

(- GNVIQ)

Area of oxide mineralization and drill holes outlined in purple

Depth (m)

20

Excess width (m)

(Grid registered to UTM Datum NAD 27)

093718

Records a -

AMEROK GEOSCIENCES LTD.

DWG3 DIAND - YUKON REGION, LIBRARY

Area of oxide mineralization and drill holes outlined in purple

Depth (m) 20

Excess width (m)

EXPATRIATE RESOURCES LTD.

(Grid registered to UTM Datum NAD 27)

093718

AMEROK GEOSCIENCES LTD.

DWGY DIAND-YUKON REGION, LIBRARY OIL 7 81760

.

16.0 CONCLUSION

The results of the field work lead to the following general operational conclusions:

a. Ground HLEM and total magnetic field surveys are particularly necessary to screen weak airborne EM anomalies for additional follow-up. The effective depth of investigation of an airborne system is putatively 75 m but this is only under the most ideal of circumstances (ie. flat country with extremely conductive targets in very resistive host bedrock). Conductances derived from weak airborne responses are subject to large errors. Resurveying with a ground HLEM system is the only way of definitively investigating these anomalies.

b. If the ground program is based on helicopter-borne electromagnetic data and it can be demonstrated that the probable targets are not extremely conductive (ie. <40 S), the Genie SE-88 system could be used in place of the Maxmin system. The Genie system does not require a reference cable and can be conducted on lines which are not cut. A major problem with the system is that it produces no response over extremely conductive targets (eg. pyrrhotiteor chalcopyrite-rich targets).

Respectfully submitted AMEROK GEOSCIENCES LTD.

FESSION M. A. POWEREM Sc. P.Geo. Geophysicist

C. Lee B.Sc.

Geologist

Expatriate mag/HLEM report - page 29

REFERENCES CITED

- Telford, W.M., L.P. Geldart and R.E. Sheriff (1990) <u>Applied Geophysics (2nd Edition)</u> New York: Cambridge University Press.
- Ketola, M. and M. Puranen (1967) Type curves for the interpretation of Slingram (horizontal loop) anomalies over tabular bodies. Geological Survey of Finland Report of Investigations No. 1.

Varre, T. (1990) Apex Parametrics Maxmin I-9 manual. Uxbridge: Apex Parametrics.

Expatriate mag/HLEM report - page 30

APPENDIX III

CERTIFICATES OF ANALYSIS SOILS AND SURFACE ROCK SPECIMENS

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er : 1-A Total Harder : 1 Certificate Date: 08-NOV-96 Invoice No. : 19638662 P.O. Number : Account : MPO

.

tart Bichler

Project : ICE Comments:

										CE	RIIFI	CATE		NALY	SIS		49638	662		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg mqq	K %	La ppm	Mg %	Mn ppm	Mo ppm
BB 11441 BB 11442 BB 11443 BB 11444 BB 11444 BB 11445	201 202 201 202 201 202 201 202 201 202 201 202	2 0.2 2 < 0.2 2 0.2 2 < 0.2 2 < 0.2 2 < 0.2	1.29 1.80 1.81 1.77 1.50	< 2 6 < 2 < 2 4	640 310 560 460 420	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.51 0.56 1.26 0.91 0.53	0.5 1.5 0.5 < 0.5 < 0.5	6 17 12 12 9	27 44 41 42 38	48 24 55 48 37	1.82 4.08 2.81 3.10 2.77	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.08 0.14 0.10 0.10	< 10 < 10 10 10 10	0.52 0.97 0.95 0.99 0.72	520 2090 590 545 430	< 1 1 < 1 1 1
BB 11446 BB 11447 BB 11448 BB 11449 BB 11449 BB 11450	201 202 201 202 201 202 201 202 201 202 201 202	2 < 0.2 2 0.2 2 0.2 2 0.2 2 0.2 2 0.2 2 0.2	1.37 1.68 1.67 1.39 1.67	2 < 2 2 4 2	430 560 950 550 490	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.17 1.36 1.36 1.33 1.30	< 0.5 0.5 0.5 0.5 0.5	8 9 8 9	29 32 40 31 34	39 51 74 33 48	2.26 2.41 2.44 2.30 2.73	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.07 0.11 0.11 0.08 0.13	10 10 10 10	0.65 0.68 0.70 0.68 0.84	345 470 755 435 370	< 1 < 1 < 1 1 < 1
BB 11451 BB 11452 BB 11453 BB 11454 BB 11455	201 202 201 202 201 202 201 202 201 202 201 202	2 < 0.2 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2 0.2	1.88 1.99 0.92 1.55 1.57	6 6 < 2 < 2 < 2 < 2	450 530 260 350 490	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.95 1.93 1.07 1.01 1.21	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 16 8 11 8	41 41 20 34 34	53 68 33 36 45	3.81 3.74 2.14 2.82 2.20	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.17 0.06 0.08 0.07	10 10 < 10 10 10	1.10 1.31 0.38 0.76 0.56	760 775 485 515 425	1 1 < 1 < 1 < 1 < 1
BB 11456 BB 11457 BB 11458 BB 11459 BB 11460	201 202 201 202 201 202 201 202 201 202 201 202	$\begin{array}{c} 2 & 0.2 \\ 0.2 \\ 2 & 0.2 \\ 2 & < 0.2 \\ 2 & < 0.2 \\ 2 & < 0.2 \\ 2 & < 0.2 \end{array}$	1.31 1.37 1.77 1.85 2.30	2 2 < 2 < 2 < 2 2	660 610 520 590 470	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.29 1.02 1.06 0.67 0.53	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 7 11 10 15	25 25 39 41 45	38 38 44 47 34	2.19 2.16 2.99 3.16 4.00	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.08 0.10 0.09 0.08 0.06	10 10 10 10 10	0.54 0.53 0.87 0.82 0.95	590 455 555 495 825	1 1 < 1 < 1 < 1
BB 11461	201 202	2 < 0.2	2.49	2	410	< 0.5	< 2	0.95	0.5	30	120	29	5.52	10	< 1	0.06	< 10	1.97	1495	< 1

CERTIFICATION:_

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ∋r :1-B Total Fمرين 1 Certificate Date: 08-NOV-96 Invoice No. : 19638662 P.O. Number :MPO Account

Project :	ICE
Comments:	

-

										CERTIFICATE OF ANALYSIS				A9638662	
SAMPLE	PREP CODE	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
BB 11441 BB 11442 BB 11443 BB 11444 BB 11444 BB 11445	201 202 201 202 201 202 201 202 201 202 201 202	0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	24 29 32 31 23	830 1430 800 510 450	6 14 8 8 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 5 8 7 5	58 24 48 32 23	0.04 0.12 0.08 0.10 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	43 105 72 75 68	< 10 < 10 < 10 < 10 < 10 < 10	82 124 122 94 80	
BB 11446 BB 11447 BB 11448 BB 11448 BB 11449 BB 11450	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	24 29 39 25 30	780 890 730 810 870	6 10 12 8 8	< 2 < 2 < 2 < 2 < 2 < 2	6 7 8 5 7	31 39 44 42 40	0.06 0.05 0.04 0.06 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	58 64 65 64 66	< 10 < 10 < 10 < 10 < 10 < 10	100 116 82 104 116	
BB 11451 BB 11452 BB 11453 BB 11454 BB 11455	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 0.01	34 42 24 26 21	780 900 590 760 700	12 12 8 10 6	< 2 2 < 2 < 2 < 2 < 2	8 8 5 7 8	38 58 25 28 25	0.11 0.09 0.03 0.09 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	90 84 37 72 64	< 10 < 10 < 10 < 10 < 10 < 10	156 132 82 82 66	
BB 11456 BB 11457 BB 11458 BB 11459 BB 11460	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	25 30 27 29 28	1110 970 530 290 180	12 10 8 8 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 4 7 9 6	44 39 28 17 14	0.03 0.03 0.06 0.06 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 53 68 73 104	< 10 < 10 < 10 < 10 < 10 < 10	102 110 68 74 86	
3B 11461	201 202	< 0.01	50	320	12	< 2	8	25	0.29	< 10	< 10	178	< 10	120	

C .

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED
 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Project : FP -/Cé Comments:

CERTIFICATE OF ANALYSIS A9637314 PREP **A1** As Ba Be Bi Ca Cđ Co Ga ĸ Mg Mo λg Cr Cu Fe Ηg La Mn % SAMPLE CODE ppm ppm ppm ppm ppm % ррт ppm ppm ppm % ppm ppm % ppm % ppm ppm BB17232 201 202 < 0.2 0.88 2 260 < 0.5 < 2 0.10 < 0.5 4 10 24 1.49 < 10 < 1 0.05 < 10 0.13 335 1 BB17233 201 202 < 0.2 6 0.05 535 1.02 200 < 0.5 < 2 0.16 < 0.5 10 22 28 3.18 < 10 < 1 10 0.31 1 BB17234 201 202 0.2 3.65 10 480 < 0.5 < 2 0.82 < 0.5 36 55 61 7.44 10 1 0.09 < 10 1.85 1720 1 BB17235 201 202 1.0 1.50 10 560 < 0.5 < 2 0.68 < 0.5 11 30 73 2.76 < 10 < 1 0.07 10 0.50 480 3 0.44 BB17236 201 202 < 0.2 1.83 6 340 < 0.5 < 2 0.22 0.5 16 35 93 5.23 < 10 < 1 0.06 < 10 745 1 BB17237 201 202 < 0.2 2.78 18 650 < 0.5 < 2 0.56 < 0.5 27 60 73 5.33 < 10 < 1 0.07 < 10 1.17 1505 1 BB17238 201 202 < 0.2 0.56 4 130 < 0.5 < 2 0.09 < 0.5 8 12 34 1.99 < 10 < 1 0.06 < 10 0.07 290 1 BB17239 201 202 0.2 1.35 2 290 < 0.5 1.39 29 41 2.26 < 10 565 < 2 < 0.5 12 < 10 < 1 0.06 0.56 < 1 **BB17240** 201 202 0.07 0.2 2.02 16 470 < 0.5 1.00 < 0.5 18 50 63 3.52 < 10 < 1 10 0.93 900 < 1 < 2 201 202 0.6 BB17241 2.47 34 730 < 0.5 < 2 1.04 < 0.5 23 55 77 5.12 < 10 < 1 0.06 < 10 0.84 2060 1 BB17242 201 202 < 0.2 1.92 10 570 < 0.5 0.83 < 0.5 15 58 57 3.27 0.06 685 < 2 < 10 < 1 10 1.11 1 201 202 BB17243 0.2 2.32 8 740 < 0.5 < 2 0.94 < 0.5 18 65 66 3.58 < 10 < 1 0.07 10 1.25 615 < 1 201 202 BB17244 < 0.2 2.51 8 830 < 0.5 < 2 1.11 < 0.5 17 68 80 3.98 < 10 < 1 0.13 20 1.24 810 1 BB17245 201 202 0.2 1.56 8 590 < 0.5 < 2 0.79 < 0.5 12 39 51 2.83 < 10 < 1 0.06 10 0.76 480 1 BB17246 201 202 0.2 1.67 12 620 < 0.5 < 2 0.76 < 0.5 13 42 51 3.26 < 10 < 1 0.08 10 0.83 545 1 201 202 BB17247 < 0.2 2.58 670 < 0.5 1.29 < 0.5 22 8 < 2 52 71 5.25 < 10 0.10 < 10 1.37 920 1 < 1 201 202 **BB17248** < 0.2 2.47 10 680 < 0.5 0.90 < 0.5 < 2 22 55 68 4.82 < 10 < 1 0.09 10 1.27 1050 1 201 202 < 0.2 **BB17249** 2.26 10 550 < 0.5 0.72 < 0.5 17 50 55 3.84 < 10 0.08 10 735 < 2 < 1 1.05 1 < 0.2 BB17250 201 202 6 < 0.5 35 83 1.74 430 < 2 1.03 < 0.5 15 3.00 < 10 < 1 0.07 10 0.79 630 1 BB17251 201 202 < 0.2 2.40 10 560 < 0.5 < 2 1.33 < 0.5 24 52 48 4.67 < 10 < 1 0.07 < 10 1.38 1130 < 1 BB17252 201 202 < 0.2 2.10 6 610 < 0.5 1.10 < 0.5 45 4.14 < 10 0.07 < 10 1.15 840 < 2 19 55 < 1 1 BB17253 201 202 0.2 1.46 8 1000 < 0.5 < 2 0.61 < 0.5 9 37 60 2.31 < 10 0.07 10 0.62 370 < 1 1 BB17254 201 202 0.4 1.83 8 1080 0.5 < 2 0.87 < 0.5 15 49 80 2.94 < 10 < 1 0.06 10 0.81 700 1 BB17255 201 202 0.2 720 < 0.5 < 0.5 1.66 8 < 2 0.67 13 42 51 2.91 < 10 < 1 0.06 10 0.76 610 1 BB17256 201 202 0.2 1.56 8 680 < 0.5 < 2 0.81 < 0.5 12 36 40 2.72 < 10 0.06 10 0.77 960 < 1 < 1 201 202 BB17257 < 0.2 1.73 16 720 < 0.5 < 2 0.77 < 0.5 16 49 40 3.51 < 10 < 1 0.07 10 1.05 740 < 1 BB17258 201 202 < 0.2 1.96 12 650 < 0.5 < 2 0.93 < 0.5 14 54 36 3.53 < 10 0.08 715 < 1 10 1.05 < 1 BB17259 201 202 0.2 1.77 < 2 < 0.5 1.38 0.5 840 < 2 13 46 48 2.69 < 10 0.07 10 0.75 485 < 1 < 1 0.2 BB17260 201 202 1.37 490 < 0.5 0.73 10 6 < 2 0.5 35 39 2.42 < 10 < 1 0.10 10 0.54 665 1 **BB17261** 201 202 < 0.2 1.42 10 < 0.5 0.65 12 0.73 530 < 2 < 0.5 38 36 2.67 < 10 0.07 10 950 < 1 1 1.07 BB17262 201 202 0.2 2.20 6 1040 < 0.5 15 58 70 515 < 2 < 0.5 3.60 < 10 < 1 0.11 10 1.19 1 201 202 **BB17263** < 0.2 1.93 16 560 < 0.5 < 2 0.83 < 0.5 15 56 36 3.67 < 10 < 1 0.09 10 1.19 725 < 1 BB17264 201 202 0.2 2.49 14 1410 < 0.5 1.61 < 0.5 21 3.94 830 < 2 84 54 < 10 < 1 0.09 10 1.31 < 1 BB17265 201 202 < 0.2 1.76 10 330 < 0.5 < 2 0.15 < 0.5 12 52 22 4.67 10 0.48 < 10 < 1 0.06 565 1 BB17266 201 202 < 0.2 1.48 8 630 < 0.5 < 2 0.54 0.5 15 38 40 2.77 < 10 < 1 0.08 10 0.62 1680 1 201 202 BB17267 0.2 1.11 750 < 0.5 1.45 20 57 615 4 < 2 0.5 8 1.64 < 10 < 1 0.05 < 10 0.42 1 201 202 < 10 BB17268 < 0.2 1.56 10 230 < 0.5 < 2 0.20 < 0.5 10 36 17 3.21 < 1 0.05 10 0.56 390 1 201 202 BB17269 < 0.2 2.06 8 360 < 0.5 < 2 0.79 < 0.5 15 56 37 3.51 < 10 < 1 0.05 < 10 1.09 795 < 1 201 202 BB17270 < 0.2 2.15 2 690 < 0.5 < 2 0.69 < 0.5 16 55 48 3.40 < 10 < 1 0.05 10 1.05 750 < 1 BB17271 201 202 < 0.2 2.75 104 580 0.5 0.32 < 0.5 40 79 65 8.46 < 2 < 10 < 1 0.06 < 10 0.97 2150 < 1

CERTIFICATION: HartBuchles

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,
British Columbia, CanadaNorth Vancouver
V7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8 Page er :1-B Total r. Jes :2 Certificate Date: 27-OCT-96 Invoice No. : 19637314 P.O. Number : Account :MPO

Project : FP-*ICE* Comments:

											CE	RTIFI	CATE	OF A	A9637314	
SAMPLE	PRE COD	P E	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
BB17232 BB17233 BB17234 BB17235 BB17236	201 201 201 201 201 201	202 202 202 202 202 202	0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	9 12 30 33 16	300 590 320 780 410	12 10 6 14 10	< 2 < 2 < 2 < 2 2	1 3 11 4 6	9 10 16 25 10	0.01 0.08 0.36 0.01 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	34 79 188 59 156	< 10 < 10 < 10 < 10 < 10 < 10	46 132 134 122 106	
BB17237 BB17238 BB17239 BB17240 BB17241	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 0.01 0.01 < 0.01 < 0.01	35 22 18 33 53	640 520 710 1060 970	10 10 14 12 10	4 2 2 < 2 6	13 < 1 6 11 10	13 7 < 32 33 40	0.11 0.01 0.03 0.06 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	140 39 53 82 120	< 10 < 10 < 10 < 10 < 10 < 10	110 66 66 78 134	
BB17242 BB17243 BB17244 BB17245 BB17246	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	33 38 43 26 31	720 730 830 700 780	10 12 8 4 6	< 2 2 < 2 < 2 2 2	9 12 13 10 10	24 31 31 27 28	0.11 0.11 0.09 0.06 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	81 96 98 72 78	< 10 < 10 < 10 < 10 < 10 < 10	88 84 126 88 102	
BB17247 BB17248 BB17249 BB17250 BB17251	201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	38 39 32 24 33	640 580 630 790 590	8 8 10 6 8	2 < 2 2 < 2 < 2 < 2	17 16 9 18 12	34 24 28 36 29	0.17 0.12 0.12 0.07 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	137 121 103 82 134	< 10 < 10 < 10 < 10 < 10 < 10	130 118 96 88 110	
BB17252 BB17253 BB17254 BB17255 BB17256	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	35 32 45 35 27	430 600 840 820 520	8 10 16 12 8	< 2 2 < 2 2 < 2	12 6 9 8 6	29 21 31 26 26	0.13 0.03 0.04 0.05 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	105 51 63 60 62	< 10 < 10 < 10 < 10 < 10 < 10	104 74 66 88 66	
BB17257 BB17258 BB17259 BB17260 BB17261	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	34 32 31 28 29	560 580 1060 650 540	10 10 8 8 8	< 2 < 2 < 2 2 < 2	8 8 9 7 8	26 34 56 31 26	0.08 0.10 0.05 0.05 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	77 91 65 65 60	< 10 < 10 < 10 < 10 < 10 < 10	78 98 102 134 72	
BB17262 BB17263 BB17264 BB17265 BB17266	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	42 35 51 22 26	670 270 680 440 680	10 10 8 10 12	< 2 6 < 2 < 2 < 2 < 2	13 7 13 6 7	40 22 34 11 20	0.08 0.16 0.15 0.12 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	84 98 101 154 59	< 10 < 10 < 10 < 10 < 10 < 10	90 88 112 92 196	
3B17267 3B17268 3B17269 3B17270 3B17271	201 201 201 201 201 201	202 202 202 202 202 202	0.02 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	23 19 34 36 45	870 280 360 240 480	6 12 10 10 6	< 2 < 2 2 4 2	4 3 5 7 20	38 10 19 23 15 <	0.03 0.05 0.12 0.10 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 67 88 82 162	< 10 < 10 < 10 < 10 < 10 < 10	58 64 68 72 92	

CERTIFICATION:__

HartBuchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

>: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page ər :2-A Total Factors :2 Certificate Date: 27-OCT-96 Invoice No. : 19637314 P.O. Number : Account : MPO

Project : FP - /CE Comments:

---- **.**

											CE	RTIFI	CATE	OF A	NALY	'SIS	4	\9637	314		
SAMPLE	PRE COL	SP DE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррт
BB17272 BB17273 BB17274 BB17275 BB17276	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 0.2 < 0.2 < 0.2	1.91 1.22 2.39 2.51 2.59	12 8 12 8 8	560 510 550 690 4 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.87 1.18 1.20 1.05 0.61	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	15 10 20 22 21	47 26 50 60 53	73 38 63 72 44	3.33 2.16 4.37 4.72 4.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.11 0.07 0.14 0.10 0.08	10 < 10 10 < 10 < 10	1.11 0.55 1.33 1.33 1.13	610 665 940 905 890	< 1 < 1 < 1 < 1 < 1 1
BB17277 BB17278 BB17279 BB17280 BB17281	201 201 201 201 201 201	202 202 202 202 202 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.03 1.37 0.85 1.05 2.22	6 6 2 < 2 8	570 270 120 120 230	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.35 0.19 0.14 0.18 0.43	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	20 13 6 8 17	49 28 16 19 36	74 21 7 29 40	4.10 2.42 1.80 1.92 5.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.07 0.04 0.06 0.03 0.06	< 10 < 10 10 < 10 < 10	1.07 0.42 0.22 0.37 0.95	960 805 545 440 645	1 < 1 < 1 < 1 1 1
8817282 8817283 8817284 8817285	201 201 201 201	202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2	3.40 3.28 1.06 2.66	8 4 2 6	280 340 110 200	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.90 1.19 0.13 0.38	< 0.5 < 0.5 < 0.5 < 0.5	34 37 30 17	47 51 10 37	54 103 16 44	7.12 7.54 2.90 4.34	10 10 < 10 < 10	< 1 < 1 < 1 < 1	0.14 0.06 0.04 0.04	< 10 < 10 < 10 10	1.40 1.69 0.17 0.72	985 1580 2360 490	< 1 < 1 < 1 1
						·															

tart Bichler CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

FO: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page per :2-B Total , s :2 Certificate Date: 27-OCT-96 Invoice No. : 19637314 P.O. Number : Account : MPO

Project : FP -1CE Comments:

r

											CE	RTIFI	CATE	OF A	NALYSIS	A9637314
SAMPLE	PRI COI	ep De	Na %	Ni ppm	p pm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
BB17272 BB17273 BB17274 BB17275 BB17276	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 0.01 < 0.01 < 0.01 < 0.01 < 0.01	40 30 47 42 34	790 880 960 550 300	10 10 10 10 6	< 2 < 2 < 2 2 < 2 < 2	10 5 12 14 8	30 39 40 30 16	0.12 0.04 0.13 0.12 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	80 53 114 118 124	< 10 < 10 < 10 < 10 < 10 < 10	94 86 142 108 92	
BB17277 BB17278 BB17279 BB17280 BB17281	201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 < 0.01 0.04 < 0.01	36 14 7 12 24	750 380 360 360 510	8 8 10 2 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	12 3 1 3 8	33 9 7 6 11	0.12 0.04 0.05 0.08 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	102 66 47 56 137	< 10 < 10 < 10 < 10 < 10 < 10	118 76 54 32 80	
8817282 8817283 8817284 8817285	201 201 201 201	202 202 202 202	< 0.01 < 0.01 0.03 < 0.01	32 39 6 23	480 290 320 260	4 2 8	< 2 2 < 2 < 2	15 24 2 6	17 17 8 12	0.17 0.15 0.07 0.10	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	192 211 69 117	< 10 < 10 < 10 < 10	100 76 66 94	

CERTIFICATION: How to Such Les

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8 Page ∋r :1-A Total Fugues :1 Certificate Date: 06-OCT-96 Invoice No. :19634037 P.O. Number : Account :MPO

Project : ICE Comments:

Г

											CE	RTIFI	CATE	OF A	NALY	'SIS		49634	037		
SAMPLE	PRI COI	ep De	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
BB09684 BB09685 BB09686 BB09687 BB09688	201 201 201 201 201	202 202 202 202 202 202	0.6 < 0.2 < 0.2 0.2 < 0.2	1.93 1.70 1.27 1.62 1.54	4 8 12 12 2	300 420 240 370 340	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.83 0.44 0.82 0.62 0.75	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	13 13 9 11 10	29 32 26 33 30	32 27 11 43 27	2.87 2.65 1.85 2.80 2.35	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.15 0.09 0.08 0.16 0.11	10 10 10 10 10	0.95 0.60 0.45 0.61 0.62	435 295 260 450 270	1 1 1 1 < 1
BB09689 BB09690 BB09691 BB09692 BB09693	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.2 < 0.2 0.2 0.2	1.45 1.27 1.19 1.33 1.47	6 4 2 8 < 2	530 410 370 410 420	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.39 1.16 1.17 1.58 0.85	< 0.5 < 0.5 1.0 0.5 < 0.5	9 10 10 12 12	28 25 24 26 30	15 192 421 142 38	2.36 2.28 2.15 2.59 2.68	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.09 0.08 0.07 0.09	10 10 < 10 10 10	0.41 0.62 0.61 0.64 0.71	315 500 365 1065 430	2 < 1 < 1 1 < 1
																				•	

.

Har & Brenley

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page i r : 1-B Total Pag- : 1 Certificate Date: 06-OCT-96 Invoice No. : 19634037 P.O. Number : Account : MPO

Project :	ICE
Comments:	

CERTIFICATE OF ANALYSIS

A9634037

SAMPLE	PR CO	EP DE	Na %	Ni ppm	Р ррш	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V mgq	W ppm	Zn ppm	
BB09684 BB09685 BB09686 BB09687 BB09688	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 0.01 < 0.01 0.01	25 24 12 27 22	860 590 410 500 390	2 8 6 10 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 3 2 4 4	34 22 26 27 35	0.07 0.06 0.04 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 68 54 66 56	< 10 < 10 < 10 < 10 < 10 < 10	142 80 190 98 70	
BB09689 BB09690 BB09691 BB09692 BB09693	201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	20 24 25 30 29	220 1010 910 510 650	10 10 8 10 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 4 4 5	20 45 42 52 39	0.03 0.03 0.04 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 51 47 49 56	< 10 < 10 < 10 < 10 < 10 < 10	80 158 172 152 90	

CERTIFICATION: Gart Buchler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

Fo: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Pag. Jer :1-A Total Jegs :2 Certificate Date: 23-SEP-96 Invoice No. : I 9631709 P.O. Number : Account : MPO

A9631709

Project : ICE Comments:

* PLEASE NOTE

	-																			
	PREP	λα	A 1	Аз	Ba	Be	Bi	Ca	Cđ	Co	Cr	Cu	Fe	Ga	Ha	ĸ	La	Ma	Mn	Mo
SANPLE	CODE	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ррш	%	ppm	ppm
BB09630	201 202	< 0.2	2.02	< 2	520	< 0.5	< 2	0.45	0.5	28	155	27	4.03	10	< 1	0.05	10	1.77	730	1
BB09631	201 202	< 0.2	3.31	< 2	800	1.0	2	0.52	< 0.5	37	125	77	7.50	10	< 1	0.04	< 10	1.40	1040	< 1
BB09632	201 202	< 0.2	1.71	< 2	870	0.5	< 2	2.27	< 0.5	35	97	64	7.23	< 10	< 1	0.05	< 10	1.44	2070	< 1
BB09633	201 202	< 0.2	2.32	< 2	1780	< 0.5	< 2	0.67	0.5	21	68	32	4.10	< 10	< 1	0.07	10	1.11	935	1
8809634	201 202	< 0.2	2.28	< 2	1050	< 0.5	< 2	0.72	0.5	21	91	52	5.40	< 10	4	0.10	< 10	1.32	695	1
BB09635	201 202	< 0.2	2.02	6	1260	0.5	< 2	2.38	< 0.5	34	76	85	5.11	< 10	2	0.14	< 10	0.84	1665	< 1
BB09636	201 202	< 0.2	2.90	< 2	1440	0.5	< 2	1.07	< 0.5	32	106	62	4.98	10	< 1	0.09	< 10	1.78	1600	< 1
BBU9637	201 202	< 0.2	2.40	< 2	970	0.5	< 2	0.68	< 0.5	30	168	55	4.30	< 10	< 1	0.09	10	1.77	1615	< 1
BB09639	201 202	< 0.2	1.74	< 2	630	< 0.5	< 2	0.80	0.5	46	403	41	4.36	< 10	< 1	0.05	< 10	4.52	1155	< 1
BB09640	201 202	< 0.2	2.75	< 2	560	< 0.5	< 2	0.48	< 0.5	56	467	46	5.97	< 10	< 1	0.07	< 10	6.01	1480	< 1
BB09641	201 202	< 0.2	1.91	< 2	430	< 0.5	< 2	0.68	< 0.5	45	427	22	4.65	< 10	< 1	0.03	< 10	6.51	900	< 1
BB09642	201 202	< 0.2	1.83	< 2	590	< 0.5	< 2	0.78	< 0.5	33	369	28	4.09	< 10	< 1	0.04	< 10	5.58	670	< 1
BB09643	201 202	< 0.2	1.64	< 2	600	< 0.5	< 2	0.51	< 0.5	27	212	24	3.37	< 10	< 1	0.08	10	3.06	520	1
BB09644	201 202	< 0.2	2.62	< 2	160	< 0.5	< 2	0.76	< 0.5	47	179	69	5.24	< 10	< 1	0.06	< 10	2.69	1465	< 1
BB09645	201 202	< 0.2	0.60	< 2	40	< 0.5	Intf*	0.16	< 0.5	82	664	21	3.91	< 10	< 1 <	0.01	< 10	>15.00	880	< 1
BB09646	201 202	< 0.2	1.57	< 2	360	< 0.5	< 2	0.46	< 0.5	60	554	28	4.19	< 10	< 1	0.02	< 10	8.69	880	< 1
BB09647	201 202	< 0.2	1.57	< 2	410	< 0.5	< 2	0.42	< 0.5	54	318	40	3.40	< 10	< 1	0.03	< 10	6.58	1030	1
BB09648	201 202	< 0.2	4.64	< 2	2650	< 0.5	< 2	0.73	< 0.5	42	275	61	6.00	10	< 1	0.04	< 10	5.16	1430	< 1
BB09649	201 202	< 0.2	3.16	< 2	1580	< 0.5	< 2	1.43	< 0.5	50	378	87	4.98	10	1	0.03	< 10	5.10	2500	< 1
BB09650	201 202	< 0.2	2.52	4	1010	0,5	< 2	0.56	< 0.5	29	120	43	4.09	< 10	1	0.09	10	1.77	1085	1
BB09651	201 202	< 0.2	2.56	4	740	0.5	< 2	0.41	< 0.5	25	93	54	4.44	10	< 1	0.09	10	1.53	1140	< 1
BB09652	201 202	< 0.2	2.13	2	670	< 0.5	< 2	0.40	< 0.5	35	266	66	4.82	10	< 1	0.08	10	2.09	1045	< 1
BB09653	201 202	< 0.2	1.80	< 2	80	< 0.5	Intf*	0.13	< 0.5	104	750	17	4.73	< 10	< 1 <	0.01	< 10 :	>15.00	1200	< 1
BB09654	201 202	< 0.2	1.72	< 2	280	< 0.5	< 2	0.37	< 0.5	84	601	20	4.69	< 10	< 1	0.05	< 10	8.70	855	< 1
BB09655	201 202	< 0.2	3.04	< 2	250	< 0.5	< 2	1.20	< 0.5	35	240	52	4.87	10	1	0.05	< 10	3.66	745	< 1
BB09656	201 202	0.6	1.39	< 2	480	< 0.5	< 2	1.30	< 0.5	8	26	62	1.76	< 10	< 1	0.10	10	0.45	265	< 1
BB09657	201 202	< 0.2	1.39	2	450	< 0.5	< 2	0.78	< 0.5	11	29	45	2.50	< 10	< 1	0.13	10	0.62	365	2
BBV9638	201 202	< 0.2	1.48	< 4 6	5/0	0,5		1.01	0.5	10	30	49	2.49	< 10	< 1	0.15	20	0.04	290	4
8809639	201 202	U.4	1.04	•	560	0.5	< <u> </u>	1.07	0.5		4 /	00	4.90	< 10	< 1	0.10	40	0.61	380	
BB09660	201 202	0.2	1.57	< 2	800	0.5	< 2	1.02	< 0.5	12	35	57	2.53	< 10	< 1	0.11	10	0.67	450	1
BB09661	201 202	< 0.2	1.90	6	650	< 0.5	< 2	1.14	< 0.5	15	41	30	2.55	< 10	< 1	0.13	10	0.79	925	1
BB09662	201 202	< 0.2	1.67	< 2	560	0.5	2	1.32	1.0	13	36	49	2.60	< 10	< 1	0.14	10	0.71	680	2
BB09663	201 202	< 0.2	3.21	< 2	510	0.5	< 2	0.35	< 0.5	15	53	28	4.42	10	< 1	0.07	10	0.73	450	1
BB09664	201 202	< 0.2	2.46	< 2	600	< 0.5	< 2	0.84	< 0.5	12	46	17	4.83	10	< 1	0.08	10	0.85	570	< 1
BB09665	201 202	< 0.2	2.16	< 2	420	< 0.5	< 2	0.25	0.5	14	44	62	3.74	< 10	< 1	0.08	10	0.64	455	1
BB09675	201 202	< 0.2	1.24	< 2	220	< 0.5	< 2	0.15	< 0.5	60	667	15	4.36	< 10	< 1	0.05	10	8.32	570	< 1
BB09676	201 202	< 0.2	2.58	< 2	780	0.5	< 2	0.44	< 0.5	40	364	29	5.39	10	< 1	0.08	10	2.37	1320	< 1
BB09677	201 202	< 0.2	2.42	< 2	530	< 0.5	2	0.30	< 0.5	23	294	42	4.07	< 10	< 1	0.05	10	2.69	630	< 1
BB09678	201 202	< 0.2	2.09	< 2	920	< 0.5	< 2	0.28	< 0.5	23	304	17	4.42	< 10	1	0.07	10	1.51	735	< 1

CERTIFICATION: Start Bachler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Го:	EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
	VANCOUVER, BC
	V6B 1L8

CERTIFICATE OF ANALYSIS

Pag. per : 1-B Total ruges :2 Certificate Date: 23-SEP-96 Invoice No. : 19631709 P.O. Number : Account :MPO

A9631709

Project : Comments: ICE

* PLEASE NOTE

[1						•							
	PREP	Na	Ni	р	Pb	Sb	Sc	Sr	Ti	т1	σ	v	W	Zn	
SAMPLE	CODE	*	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
BB09630	201 202	< 0.01	124	380	14	< 2	7	16	0.08	< 10	< 10	86	< 10	62	
BB09631	201 202	< 0.01	54	380	< 2	2	52	9 .	0.01	< 10	< 10	221	< 10	76	
BB09632	201 202	< 0.01	76	730	8	< 2	36	52	0.01	< 10	< 10	194	< 10	88	
BB09633	201 202	< 0.01	39	450	12	< 2	9	21	0.10	< 10	< 10	103	< 10	76	
BB09634	201 202	< 0.01	64	440	2	< 2	20	22	0.04	< 10	< 10	145	< 10	68	
B09635	201 202	0.01	54	680	2	2	39	35	0.01	< 10	< 10	152	< 10	68	
BB09636	201 202	< 0.01	72	440	6	< 2	16	30	0.21	< 10	< 10	134	< 10	74	
3B09637	201 202	< 0.01	118	500	10	< 2	12	25	0.12	< 10	< 10	103	< 10	76	
BBU9638	201 202	< 0.01	92	360	10	< 2	15	32	0.26	< 10	< 10	131	< 10	70	
3809639	201 202	< 0.01	338	940	10	< 4		41	0.08	< 10	< 10	•4	< 10		
3809640	201 202	< 0.01	386	260	< 2	< 2	23	9	0.06	< 10	< 10	141	< 10	66	
3BU9641	201 202	< 0.01	350	310	4	< 2	8	13	0.19	< 10	< 10	98	< 10	64 50	
5509044 5509643	201 202	< 0.01	4/3	£20	12	~ 2	2	20	0.19	2 10	< 10	55	< 10	76	
BB09644	201 202	< 0.01	131	600	6	< 2	19	21	0.18	< 10	< 10	145	< 10	92	
B09645	201 202	< 0.01	1410	Intf*	2	< 2	8	3	0.03	< 10	10	31	< 10	26	
B09646	201 202	< 0.01	671	500	2	< 2	8	11	0.07	< 10	< 10	59	< 10	60	
B09647	201 202	< 0.01	534	640	6	< 2	12	15	0.06	< 10	< 10	72	< 10	50	
B09648	201 202	< 0.01	177	490	< 2	< 2	21	14	0.13	< 10	10	137	< 10	54	
BB09649	201 202	< 0.01	326	180	6	< 2	21	16	0.20	< 10	10	113	< 10	52	
B09650	201 202	< 0.01	101	380	10	< 2	7	24	0.11	< 10	< 10	99	< 10	72	
BB09651	201 202	< 0.01	70	170	12	2	9	21	0.12	< 10	< 10	136	< 10	76	
BB09652	201 202	< 0.01	164	340	12	2	8	22	0.13	< 10	< 10	118	< 10	80	
BB09653	201 202	< 0.01	1310	Intf*	< 2	< 2	13	1	0.05	< 10	10	42	< 10	32	
3R0 39 24	201 202	< 0.01	627	240	4	< 2	10		0.09	< 10	10	84	< 10	24	
B09655	201 202	< 0.01	201	170	< 2	< 2	12	15	0.28	< 10	< 10	135	< 10	62	
B09656	201 202	0.02	28	820	6	< 2	7	35	0.03	< 10	< 10	42	< 10	92	
B09657	201 202	0.01	30	1110	12	< 2	6	35	0.06	< 10	< 10	61	< 10	116	
3BU9658	201 202	< 0.01	31	1120	10	< 2	6	41	0.06	< 10	< 10	54 60	< 10	132	
	201 202	× 0.01	30	/60	14	< 4		<u> </u>	0.04	< 10	< 10		< 10		
B09660	201 202	< 0.01	34	690	10	< 2	8	35	0.07	< 10	< 10	66	< 10	94	
B03001	201 202	< 0.01 0.01	27	370	12	< 2	7	35	0.10	< 10	< 10	15	< 10	104	
3503004 3809663	201 202	× 0.01	33	220	10	< 2	6	30 13	0.14	< 10 < 10	< 10	03 141	< 10	124	
B09664	201 202	< 0.01	21	520	10	< 2	7	16	0.15	< 10	< 10	119	< 10	66	
809665	201 202	0.01	26	390	6	< 2	5	11	0.09	< 10	< 10	107	< 10	160	
B09675	201 202	< 0.01	746	280	8	< 2	11	-7	0.04	< 10	< 10	45	< 10	56	
B09676	201 202	< 0.01	185	460	4	< 2	12	17	0.08	< 10	< 10	120	< 10	124	
B09677	201 202	< 0.01	197	280	12	2	7	13	0.06	< 10	< 10	91	< 10	84	
BB09678	201 202	< 0.01	105	160	6	< 2	5	11	0.06	< 10	< 10	108	< 10	86	
															•
															11. toRell.
													C	EDTIFIC	ATION

CERTIFICATION:_

* INTERFERENCE: Mg on Bi and P

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Pag per Total uges per :2-A :2 Certificate Date: 23-SEP-96 Invoice No. : 19631709 P.O. Number : Account : MPO

A9631709

Project : Comments: ICE

* PLEASE NOTE

SAMPLE	PREP CODE		Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
BB09679	201 2	02	< 0.2	2.17	8	1240	< 0.5	< 2	0.30	0.5	31	289	42	4.59	< 10	< 1	0.07	< 10	3.95	1040	< 1
BB09680	201 2	02	< 0.2	1.82	4	360	< 0.5	< 2	0.23	< 0.5	23	158	29	3.14	< 10	< 1	0.04	< 10	1.42	430	< 1
BB09681	201 2	02	< 0.2	1.54	2	720	< 0.5	< 2	0.15	< 0.5	20	243	18	3.17	< 10	1	0.03	10	1.75	725	< 1
BB09682	201 2	02	< 0.2	1.90	6	560	< 0.5	< 2	0.29	< 0.5	18	90	30	3.70	< 10	< 1	0.05	10	0.93	695	< 1
BR03983	201 2	02	< 0.2	4.30	8	590	< 0.5	< 2	0.42	< 0.5	25	199	38	4.49	< 10	1	0.05	10	1.72	745	< 1
BB09694	201 2	02	< 0.2	1.41	8	360	< 0.5	< 2	0.28	< 0.5	12	32	29	2.69	< 10	< 1	0.10	10	0.59	520	1
BB09695	201 2	02	0.2	1.96	4	660	< 0.5	< 2	0.30	0.5	12	39	26	3.33	< 10	< 1	0.08	10	0.52	410	1
BB09696	201 2	02	< 0.2	1.72	6	610	< 0.5	< 2	0.40	< 0.5	9	40	30	2.67	< 10	< 1	0.11	10	0.66	435	1
BB09697	201 2	02	0.2	1.60	< 2	730	< 0.5	< 2	0.76	< 0.5	9	36	42	2.23	< 10	< 1	0.09	10	0.68	415	< 1
8809698	201 2	02	< 0.2	1.54	12	380	< 0.5	< 2	0.49	0.5	12	38	28	3.22	< 10	< 1	0.10	10	0.67	735	1
BB09699	201 2	02	0.2	1.71	8	410	< 0.5	< 2	0.81	0.5	12	33	35	2.71	< 10	< 1	0.11	10	0.63	745	1
BB09700	201 2	02	0.2	0.88	8	260	< 0.5	< 2	0.80	< 0.5	9	20	74	2.90	< 10	< 1	0.06	< 10	0.28	205	1
BB09701	201 2	02	< 0.2	2.24	< 2	190	0.5	< 2	0.54	< 0.5	12	33	26	2.93	< 10	< 1	0.31	20	1.38	315	< 1
BBU9702	201 2	02	< 0.2	1.80	8	210	0.5	< 2	0.27	< 0.5	7	57	19	2.34	< 10	1	0.23	30	1.04	330	1
BBV9703	201 2	4	< U.2	1.09	•	44U	0.5	< 4	0.14	< 0.5		04	2 0	4.70	< 10	< 1	0.4/	10	1.04	3/5	
BB09704	201 2	02	< 0.2	4.07	< 2	470	2.0	< 2	0.86	< 0.5	27	388	114	4.10	10	< 1	0.80	210	3.90	510	< 1
BB09705	201 2	02	< 0.2	1.75	8	190	0.5	< 2	0.20	< 0.5	7	34	17	2.48	< 10	< 1	0.20	20	0.94	305	1
BB09706	201 2	02	1.0	0.56	16	350	< 0.5	< 2	0.13	< 0.5	3	6	48	2.29	< 10	< 1	0.28	70	0.25	90	6
BB09707	201 2	02	< 0.2	2.09	4	140	0.5	< 2	0.09	< 0.5	5	37	15	2.55	< 10	< 1	0.16	10	0.73	320	1
8809708	XUI X	0 2	< 0.2	∡. 04k	0	150	0.5	< 2	0.24	< 0.5	9	37	63	2.80	< 10	< 1	0.23	10	1.06	255	< 1
BB09709	201 2	02	< 0.2	2.40	4	220	0.5	< 2	0.28	< 0.5	12	37	115	3.50	< 10	< 1	0.32	20	1.21	340	1
					-																
	_ <u>#</u>									·							14		3.ec	hlo.	

* PLEASE NOTE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 11.8 Page ver:2-B Total ver:2 Certificate Date:23-SEP-96 Invoice No. :19631709 P.O. Number: Account :MPO

tart Bichles

CERTIFICATION:

Project : ICE Comments:

- ----

CERTIFICATE OF ANALYSIS

A9631709

	· ·	•]			*											
	PRE	P	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	T1	U	v	W	Zn	
SAMPLE	COL	E	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
BB09679	201	202	0.01	471	440	8	< 2	15	15	0.02	< 10	< 10	93	< 10	78	
BB09680	201	202	< 0.01	91	150	10	< 2	4	10	0.05	< 10	< 10	62 50	< 10	60 72	
BB09682	201	202	< 0.01	80	310	12	< 2	6	13	0.04	< 10	< 10	83	< 10	72	
BB09683	201	202	< 0.01	188	150	8	< 2	19	12	0.06	< 10	< 10	112	< 10	66	
BB09694	201	202	0.01	25	660	12	< 2	3	17	0.03	< 10	< 10	58	< 10	98	
BB09695 BB09696	201	202	0.01	22	390 520	10	< 2	4	13	0.07	< 10 < 10	< 10 < 10	95 68	< 10 < 10	76	
BB09697	201	202	< 0.01	29	650	10	< 2	8	29	0.06	< 10	< 10	58	< 10	82	
BB09698	201	202	< 0.01	. 27	1110	12	< 2	5	26	0.07	< 10	< 10	73	< 10	122	
BB09699	201	202	0.01	24	580	12	< 2	6	23	0.05	< 10	< 10	60	< 10	116	
BB09700 BB09701	201	202	< 0.01	32	1380	14	< 2	6	33 4	0.01	< 10	< 10	34	< 10	70	
BB09702	201	202	< 0.01	25	710	14	< 2	3	19	0.10	< 10	< 10	51	< 10	76	
BB09703	201	202	< 0.01	26	670	16	< 2	4	14	0.11	< 10	< 10	75	< 10	90	
BB09704	201	202	< 0.01	104	700	10	< 2	9	60	0.35	< 10	< 10	116	< 10	78	
BB09705	201	202	< 0.01	24	680 1190	14	< 2	3	16	0.09	< 10	< 10	52	< 10	78	
BB09707	201	202	< 0.01	16	570	18	< 2	2	10	0.09	< 10	< 10	58	< 10	58	
BB09708	201	202	< 0.01	20	890	20	< 2	4	14	0.12	< 10	< 10	60	< 10	96	
BB09709	201	202	< 0.01	19	1190	100	< 2	5	17	0.17	< 10	< 10	76	< 10	150	
8809/10	201	202	< 0.01	78	/60	18	< 🖌	8	18	0.25	< 10	< 10	117	< 10	234	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Fo: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pag ວer :1-A Total Jes :2 Certificate Date: 15-SEP-96 Invoice No. : 19631074 P.O. Number 1 Account : MPO

Project : Comments: ICE

			_								CERTIFICATE OF ANALYSIS							A9631	074		
SAMPLE	PRI COI	ep De	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Mn ppm	Mo ppm
BB 06139	201	202	0.2	0.29	< 2	90	< 0.5	< 2	0.17	< 0.5	2	< 1	6	0.42	< 10	< 1	0.04	< 10	0.05	50	< 1
BB 06140	201	202	0.2	1.68	4	550	< 0.5	< 2	1.99	0.5	12	23	708	2.15	< 10	< 1	0.15	10	0.68	270	1
BB 06141	201	202	< 0.2	1.86	2	550	< 0.5	< 2	0.36	< 0.5	11	23	20	2.44	< 10	< 1	0.06	10	0.38	320	1
BB 06142 BB 06143	201	202	0.2	1.80	< <u>1</u> 2	280 580	< 0.5	< 2	0.89	< 0.5	10	28	32	2.31	< 10	< 1	0.12	< 10 10	0.25	390	< 1 2
BB 06144	201	202	< 0.2	1.48	< 2	440	< 0.5	< 2	1.09	< 0.5	10	19	22	2.23	< 10	< 1	0.06	< 10	0.48	565	< 1
BB 06145	201	202	0.2	0.81	4	420	< 0.5	< 2	2.19	0.5	-6	5	63	1.19	< 10	< 1	0.04	< 10	0.29	335	< 1
BB 06146	201	202	0.6	1.87	6	880	0.5	< 2	1.22	0.5	11	28	62	2.71	< 10	< 1	0.14	10	0.53	550	1
BB 06147	201	202	< 0.2	1.42	6	450	< 0.5	< 2	0.51	< 0.5	9	15	26	2.05	< 10	< 1	0.09	10	0.46	380	< 1
BB 06148	201	202	< 0.2	0.85	4	290	< 0.5	< 2	0.33	< 0.5	5	7	9	1.54	< 10	< 1	0.06	< 10	0.22	220	< 1
BB 06149	201	202	0.6	2.30	2	500	< 0.5	< 2	1.01	0.5	18	27	27	4.00	< 10	< 1	0.09	< 10	0.61	920	< 1
BB 06150	201	202	< 0.2	1.35	6	210	< 0.5	< 2	0.22	0.5	9	17	10	2.60	< 10	< 1	0.06	10	0.34	420	1
BB 06151	201	202	< 0.2	1.99	12	680	0.5	< 2	0.63	0.5	11	27	38	3.01	< 10	< 1	0.15	10	0.61	325	1
BB 06152	201	202	0.2	2.85	4	670	0.5	< 2	0.65	0.5	12	40	24	2.94	< 10	< 1	0.11	10	0.86	235	1
BB 06153	201	202	< 0.2	1.96	8	400	< 0.5	< 2	0.38	< 0.5	11	27	6	2.70	< 10	< 1	0.07	10	0.57	440	< 1
BB 06154	201	202	< 0.2	1.03	< 2	170	< 0.5	< 2	0.34	< 0.5	6	4	18	1.38	< 10	< 1	0.04	< 10	0.27	350	1
BB 06155	201	202	< 0.2	1.72	14	520	< 0.5	< 2	0.73	< 0.5	15	33	36	2.99	< 10	< 1	0.19	10	0.67	580	1
BB 06156	201	202	0.2	1.90	6	520	< 0.5	< 2	0.64	< 0.5	11	25	21	2.77	< 10	< 1	0.15	10	0.55	375	1
BB 06157	201	202	0.2	1.50	2	320	< 0.5	< 2	0.38	0.5	7	16	30	2.17	< 10	< 1	0.12	10	0.49	220	3
BB 06158	201	202	1.0	1.87	< 2	590	0.5	< 2	1.71	< 0.5	9	35	92	2.73	< 10	< 1	0.12	10	0.60	475	3
BB 06159	201	202	< 0.2	2.21	6	390	< 0.5	< 2	0.31	0.5	14	35	31	3.90	< 10	< 1	0.12	10	0.77	740	4
BB 06160	201	202	< 0.2	3.23	8	330	< 0.5	< 2	1.34	< 0.5	37	61	60	6.25	10	< 1	0.06	< 10	2.12	1700	1
BB 06161	201	202	< 0.∡	1 55	10	270	< 0.5	~ ~ ~	1 20	< 0.5	10	10	/ 5	1.45	< 10		0.03	< 10	0.20	305	< 1
BB 06163	201	202	< 0.2	0.47	6	140	< 0.5	< 2	1.60	< 0.5	10	< 1	28	0.63	< 10	< 1	0.03	< 10	0.13	155	< 1
BB 06164	201	202	0.2	1 43	8	420	< 0.5	- · · ·	1 94	< 0.5	15	16	49	2 24	< 10	< 1	0.05	< 10	0.54	1900	(1
BB 06165	201	202	< 0.2	1.73	8	400	< 0.5	< 2	1.20	2.0	14	35	33	2.74	< 10	$\overline{\langle 1}$	0.07	10	0.47	630	1
BB 06166	201	202	0.2	1.06	6	420	< 0.5	< 2	2.02	< 0.5	6	14	30	1.47	< 10	< 1	0.06	< 10	0.47	300	< 1
BB 08159	201	202	0.2	3.02	12	820	0.5	< 2	0.30	< 0.5	28	53	461	6.60	< 10	< 1	0.16	10	0.76	430	5
BB 08160	201	202	< 0.2	2.68	2	560	< 0.5	< 2	0.80	0.5	34	30	57	5.79	10	< 1	0.15	< 10	0.89	1585	1
BB 08161	201	202	0.4	1.75	8	490	< 0.5	< 2	1.07	0.5	18	29	118	3.21	< 10	< 1	0.13	10	0.56	1130	1
BB 08162	201	202	0.2	3.11	6	620	0.5	< 2	0.99	2.0	39	54	73	6.38	10	< 1	0.12	< 10	1.39	1630	1
BB 08163	201	202	0.2	2.26	< 2	770	< 0.5	< 2	0.42	0.5	22	38	64	3.85	< 10	< 1	0.12	10	0.52	1260	2
BB 08164	201	202	< 0.2 Not Red 1	2.41 Tot D.4	2 Notod N	630 (abDad 1	< 0.5 Not Ded 1	< 2 Vet Dad 1	0,18 John Dad	< 0.5 Notional 1	10 NotDed 1	6L hatDad	43 NotDađ	3.69	< 10 NotDed	l NetDed I	0.05	10 NotRed 1	0.52	545 NatBed N	1
DD 00103			NULKCA I		MOURCA N		JULRCA I		JOLKCO		MOLKCO I	nordd	MOLKCO	MOCKCO	MOLKCO	MOURCA I	NOURCa	MOURCA		worked I	NOT KCa
BB 08166	201	202	0.2	1.74	< 2	960	< 0.5	< 2	0.26	< 0.5	14	21	87	3.14	< 10	< 1	0.10	10	0.34	1185	1
BB 08167	201	202	0.6	1.82	< 2	960	< 0.5	< 2	0.96	1.0	12	23	120	2.67	< 10	2	0.15	10	0.43	1415	< 1
BB 08168	201	202	< 0.2	1.73	10	720	< 0.5	< 2	0.83	0.5	15	35	1060	3.26	< 10	< 1	0.15	20	0.80	675	1
BB 08107	201	202	< 0.2	2.90	22	540 500	0.5	< 2	0.23	0.5	11	50	30	3.40	< 10	< 1	0.07	20	0.39	250	~ 1
				2.30		200		~ •			**	71			- 10	• •				200	

Hant Beckler CERTIFICATION:___

C

Chemex Labs Ltd. Analytical Chemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Pag, .ber : 1-B Total + ages :2 Certificate Date: 15-SEP-96 Invoice No. : 19631074 P.O. Number : Account : MPO

Project : ICE Comments:

											C	ERTIF	ICAT	E OF /	ANALYS	S A9631074	
SAMPLE	PRE	IP DE	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm		
BB 06139	201	202	0.11	< 1	230	16	< 2	< 1	11	0.01	< 10	< 10	12	< 10	8		
BB 06140	201	202	0.04	25	980	8	< 2	5	61	0.06	< 10	< 10	62	< 10	192		
BB 06141	201	202	0.01	10	240	10	< 2	3	16	0.05	< 10	< 10	78	< 10	84		
BB 06142 BB 06143	201	202	0.07	3 14	380	< <u>2</u> 12	< 2	1 5	49	0.04	< 10	< 10	39 74	< 10	144		
											· ••						
BB 06144	201	202	0.04	11	330	8	< 2	4	26	0.05	< 10	< 10	61	< 10	76		
BB 06145	201	202	0.05	8	610	2	< 2	1	57	0.03	< 10	< 10	33	< 10	62		
BB 06147	201	202	0.03	<u>∡</u> 3 12	430	10	< 2		23	0.01	< 10	< 10	53	< 10	59		
BB 06148	201	202	0.04	15	270	4	< 2	1	14	0.04	< 10	< 10	47	< 10	48		
BB 06149	201	202	0.02	17	650	8	< 2	4	28	0.11	< 10	< 10	121	< 10	188		
BB 06150	201	202	< 0.01	26	450	12	2	Å	27	0.03	~ 10	< 10	84	< 10	134		
BB 06152	201	202	< 0.01	29	420	18	< 2	- 4	26	0.05	< 10	< 10	82	< 10	202		
BB 06153	201	202	0.01	14	330	10	< 2	3	12	0.06	< 10	< 10	82	< 10	122		
BB 06154	201	202	0.07	3	220	6	< 2	1	16	0.07	< 10	< 10	40	< 10	36		
BB 06155	201	202	< 0.01	26	480	10	< 2	7	24	0.06	< 10	< 10	73	< 10	88		
BB 06156	201	202	0.01	19	640	16	< 2	3	32	0.03	< 10	< 10	73	< 10	162		
BB 06157	201	202	0.03	23	380	8	< 2	2	19	0.03	< 10	< 10	61	< 10	116		
BB 06158	201	202	< 0.01	30	870	10	< 2	6	26	0.03	< 10	< 10	110	< 10	126		
BB 06159	201	202	< 0.01	27	540	16	< 2	4	15	0.06	< 10	< 10	108	< 10	120		
BB 06160	201	202	< 0.01	27	360	6	< 2	13	21	0.22	< 10	< 10	201	< 10	80		
BB 06161	201	202	0.07	5	670	4	< 2	3	14	0.03	< 10	< 10	36	< 10	28		
BB 06163	201	202	0.04	∡⊥ < 1	530	6	< 2	< 1	<u>∡o</u> 22	0.01	< 10	< 10	16	< 10	16		
																······	
BB 06164	201	202	0.02	18	950	2	< 2	5	36	0.02	< 10	< 10	51	< 10	70		
BB 06165	201	202	0.01	16	750	5	< 2	2	27	0.05	< 10	< 10	84	< 10	¥08 02		
BB 08150	201	202	< 0.01	20	790	20	< 2	6	20	0.03	< 10	< 10	115	< 10	128		
BB 08160	201	202	0.03	19	620	4	4	7	29	0.16	< 10	< 10	169	< 10	210		
BB 08161	201	202	0.01	20	800	12	< 2	5	22	0.05	< 10	< 10	72	< 10	158	· · · · · · · · · · · · · · · · · · ·	
BB 08162	201	202	0.01	26	560	8	6	15	21	0.18	< 10	< 10	211	< 10	330		
BB 08163	201	202	< 0.01	33	680	16	< 2	-4	22	0.07	< 10	< 10	93	< 10	418		
BB 08164	201	202	< 0.01	15	320	18	< 2	3	10	0.06	< 10	< 10	96	< 10	92		
BB 08165			NotRcđ	NotRcd	NotRcd 1	NotRcd	NotRed	NotRcđ	NotRed	NotRed	NotRcđ	NotRed	NotRed	NotRed	NotRcd		
BB 08166	201	202	0.01	33	490	16	< 2	3	16	0.01	< 10	< 10	55	< 10	200	·····	
BB 08167	201	202	0.04	27	600	12	2	5	23	0.03	< 10	< 10	60	< 10	242		
BB 08168	201	202	< 0.01	39	1090	18	< 2	8	38	0.07	< 10	< 10	80	< 10	126		
BB 08169	201	202	< 0.01	18	320	10	6	4	12	0.06	< 10	< 10	97	< 10	112		
PP 081/0	401	4V4	< 0.01	49	310	10	< 4	4	10	0.07	< 10	< 10	118	< 10	TTR		

tart Bichler CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pa ber :2-A Tota. ...ges :2 Certificate Date: 15-SEP-96 Invoice No. P.O. Number : 19631074 : :MPO Account

Project : ICE Comments:

Γ

	<u></u>											CE	RTIF	CATE	OF A	NALY	SIS		49631	074		
	SAMPLE	PR	EP DE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
89 88 88 88 88	08171 08172 08173 08174 08174	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.8 0.2 0.2 0.6	2.51 3.05 1.35 1.73 2.34	2 2 6 4 2	410 1330 480 630 1170	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.19 0.44 1.13 0.42 0.76	< 0.5 < 0.5 0.5 0.5 0.5	12 13 6 8 11	45 50 24 33 42	20 432 162 16 40	3.17 3.54 1.78 2.41 2.73	10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.15 0.10 0.10 0.19	20 10 10 10 10	0.60 0.69 0.33 0.55 0.70	365 420 250 375 510	1 3 1 1 2
88 88 88 88 88	08176 08177 08178 08179 09591	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.61 1.40 1.96 2.51 3.32	4 < 2 < 2 < 2 < 2 < 2	510 750 670 980 440	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 2	0.31 0.50 0.19 0.56 0.40	2.0 < 0.5 < 0.5 0.5 < 0.5	22 13 9 16 15	58 24 34 52 57	32 210 23 766 50	4.41 2.37 2.85 3.92 4.27	10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.15 0.07 0.08 0.09	10 20 10 10 10	0.83 0.41 0.55 0.73 0.88	1135 695 430 530 465	3 1 1 3 2
88 88 88 88 88	09592 09593 09594 09595 09595	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 0.4 0.2 < 0.2	2.71 1.96 2.28 2.38 2.51	< 2 2 6 < 2	430 480 650 690 700	0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 10 < 2	0.55 0.95 1.14 1.69 1.45	< 0.5 < 0.5 < 0.5 0.5 0.5	22 17 14 19 21	55 48 56 58 55	40 63 48 70 72	5.48 3.94 3.90 4.21 4.55	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.09 0.09 0.17 0.13	10 10 10 10 10	1.40 1.17 1.00 1.47 1.49	1305 670 680 855 995	1 1 1 1
BB BB BB BB	09597 09598 09599 09600 09601	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.70 2.58 2.80 2.75 1.91	6 2 < 2 8 8	690 950 1000 680 490	0.5 0.5 0.5 0.5 0.5	2 6 < 2 < 2 < 2	2.40 1.48 1.60 0.22 0.29	0.5 0.5 0.5 0.5 < 0.5	23 17 17 12 15	59 57 63 61 46	79 86 142 37 42	4.76 4.16 4.28 3.75 3.12	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.11 0.11 0.20 0.12	< 10 10 10 10 10	1.83 1.23 1.49 0.84 0.77	1005 730 515 600 925	1 1 1 2 1
BB BB BB BB BB	09602 09603 09604 09605 09606	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.57 2.33 1.74 1.96 1.53	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1190 750 480 800 180	0.5 0.5 < 0.5 0.5 < 0.5	2 4 2 2 < 2	0.44 0.27 0.12 0.22 0.06	0.5 < 0.5 0.5 0.5 < 0.5	13 16 10 14 14	56 55 40 41 27	62 39 24 36 66	3.82 3.71 3.48 3.18 3.39	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.15 0.12 0.09 0.11 0.06	10 10 10 10 < 10	0.99 0.98 0.55 0.72 0.49	700 800 595 820 600	1 1 1 1
BB BB BB	09607 09608 09609 09610	201 201 201 201	202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.08 2.44 2.94 1.38	< 2 < 2 < 2 < 2 < 2	420 930 2730 720	0.5 0.5 0.5 < 0.5	< 2 2 4 2	0.15 0.24 0.50 0.18	< 0.5 0.5 1.0 < 0.5	11 14 21 11	38 53 45 28	42 58 44 26	3.31 3.62 4.97 2.67	< 10 < 10 10 < 10	< 1 < 1 < 1 < 1	0.13 0.15 0.11 0.16	10 10 < 10 30	0.59 0.76 1.69 0.50	655 745 845 970	1 1 1 1
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	09595 09596 09597 09598 09599 09600 09601 09602 09603 09604 09605 09606 09606 09607 09608 09609 09610	201 201 201 201 201 201 201 201 201 201	202 202 202 202 202 202 202 202 202 202	0.2 < 0.	2.38 2.51 2.70 2.58 2.80 2.75 1.91 2.57 2.33 1.74 1.96 1.53 2.08 2.44 2.94 1.38	6 2 6 2 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2	690 700 690 950 1000 680 490 1190 750 480 800 180 420 930 2730 720	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	10 < 2 6 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1.69 1.45 2.40 1.45 1.60 0.22 0.29 0.44 0.27 0.12 0.22 0.22 0.22 0.15 0.24 0.50 0.18	<pre> 0.5</pre>	19 21 23 17 17 17 12 15 13 16 10 14 14 14 11	58 55 59 57 63 61 46 55 40 41 27 38 53 45 28	70 72 79 86 142 37 42 62 39 24 36 66 66 42 58 44 26	4.21 4.55 4.76 4.16 4.28 3.75 3.12 3.82 3.71 3.48 3.39 3.31 3.62 4.97 2.67	10 10 10 10 10 10 10 <10 <10 <10 <10 <10	<pre><1 <1 <</pre>	0.17 0.13 0.14 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12	-	10 10 10 10 10 10 10 10 10 10 10 10 30	10 1.47 10 1.49 < 10 1.83 10 1.23 10 1.49 10 0.84 10 0.77 10 0.99 10 0.98 10 0.55 10 0.72 < 10 0.49 10 0.59 10 0.76 < 10 1.69 30 0.50	10 1.47 855 10 1.47 855 10 1.47 855 10 1.23 730 10 1.23 730 10 1.49 515 10 0.84 600 10 0.77 925 10 0.99 700 10 0.98 800 10 0.55 595 10 0.72 820 <10

tart Bichle CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 Fo: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page per :2-B Total rages :2 Certificate Date: 15-SEP-9 Invoice No. : 19631074 P.O. Number : Account : MPO

Project :	ICE
Comments:	

CERTIFICATE OF ANALYSIS

A9631074

Ì
-

CERTIFICATION: Jart Buchles

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ver :1-A Total + ___es :5 Certificate Date: 29-AUG-96 Invoice No. P.O. Number :19628881 MPO Account

Project : ICE Comments:

CERTIFICATE OF ANALYSIS A9628881

•	DI		0F		
	۲L	EA	SE	NO	16

SAMPLE	PREP CODE	Ag ppm	л1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Min ppm	Мо ррш
BB06001 BB06002 BB06003 BB06004 BB06005	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.98 2.63 2.75 2.05 1.93	10 14 6 8	400 450 400 340 360	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.43 0.50 1.33 0.63 0.39	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 30 23 33 17	73 150 195 361 83	25 32 85 26 30	3.78 4.54 4.14 4.09 5.04	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.03 0.04 0.05 0.05	< 10 < 10 10 < 10 10	0.71 1.37 2.26 4.73 0.93	475 855 595 625 790	1 < 1 < 1 < 1 1
BB06006 BB06101 BB06102 BB06103 BB06104	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.93 1.55 0.61 1.78 1.22	10 12 < 2 6 < 2	690 550 190 300 180	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.57 1.57 0.13 0.68 0.50	< 0.5 1.5 < 0.5 < 0.5 < 0.5	13 19 4 23 8	114 28 7 12 4	30 1115 9 49 24	3.05 2.48 1.19 3.79 1.68	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.15 0.03 0.12 0.04	10 10 < 10 < 10 < 10	1.93 0.66 0.14 0.48 0.21	515 475 140 1485 850	< 1 1 < 1 < 1 < 1 < 1
BB06105 BB06106 BB06107 BB06108 BB06109	201 202 201 202 201 202 201 202 201 202 201 202	0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	0.97 0.82 2.52 1.43 1.49	< 2 < 2 4 6 8	180 160 300 290 460	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 2.30 0.54 1.29 1.33	0.5 < 0.5 0.5 < 0.5 1.0	11 7 18 12 22	13 9 36 25 27	16 201 50 273 866	1.78 1.08 3.95 2.65 2.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.05 0.10 0.08 0.12	< 10 < 10 10 < 10 10	0.17 0.42 0.65 0.44 0.62	540 600 995 655 475	< 1 < 1 1 1 1
BB06110 BB06111 BB06112 BB06113 BB06114	201 202 201 202 201 202 201 202 201 202 201 202	0.2 0.2 0.4 0.2 < 0.2	0.46 0.37 0.36 0.18 0.31	< 2 < 2 < 2 < 2 < 2 < 2 < 2	250 420 550 130 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2.22 3.44 2.94 0.67 0.19	< 0.5 < 0.5 1.5 < 0.5 < 0.5	2 1 3 1 1	6 4 1 4	54 29 21 4 9	0.51 0.31 0.56 0.29 0.48	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.03 0.11 0.04 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.21 0.19 0.10 0.06 0.07	125 235 1275 185 80	1 1 < 1 < 1
BB06115 BB06116 BB06117 BB06118 BB06119	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.25 0.20 1.75 0.98 1.62	< 2 < 2 8 4 6	70 170 370 420 530	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.21 0.21 0.45 0.33 1.56	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	2 1 14 8 15	4 2 33 21 30	4 8 18 25 878	0.42 0.37 3.38 1.84 2.62	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.11 0.10 0.14	< 10 < 10 10 10 10	0.07 0.05 0.58 0.31 0.71	250 215 320 620 545	< 1 < 1 1 1 1
BB06120 BB06121 BB06122 BB06123 BB06124	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	1.48 2.05 0.74 2.04 2.28	8 6 < 2 4 8	350 190 280 280 240	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.59 0.88 0.12 0.35 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 23 6 12 20	25 38 11 39 34	35 49 9 70 66	2.66 3.52 1.07 3.59 4.54	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.08 0.06 0.05 0.08	< 10 < 10 < 10 10 10	0.45 0.68 0.13 0.49 0.65	265 1025 695 275 555	1
BB06125 BB06126 BB06127 BB06128 BB06129	201 202 201 202 201 202 201 202 201 202 201 202	0.2 < 0.2 0.2 < 0.2 < 0.2	1.67 2.04 1.48 1.20 0.50	8 2 6 2 < 2	380 340 370 230 240	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.17 0.58 2.09 0.81 0.56	< 0.5 < 0.5 0.5 0.5 < 0.5	11 13 9 8 4	32 38 28 22 5	70 47 119 15 9	2.65 3.23 2.34 2.21 0.61	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.07 0.09 0.03	< 10 10 < 10 < 10 < 10 < 10	0.56 0.65 0.69 0.39 0.08	660 430 370 320 440	1 < 1 1 1
BB06130 BB06131 BB06132 BB06133 BB06134	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 0.2 0.2	1.20 2.12 1.46 1.65 1.06	< 2 10 6 8 2	150 440 310 450 430	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.52 0.36 0.45 1.29 1.75	0.5 < 0.5 < 0.5 0.5 < 0.5	5 21 7 10 5	24 41 34 32 15	7 20 13 25 62	2.34 3.66 2.09 2.43 1.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.14 0.10 0.13 0.07	10 10 10 10 < 10	0.34 0.62 0.63 0.68 0.34	135 1365 210 405 415	1 1 1 1
L														EBTIEIC		14	sant	ns.	chle	 22

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Page Jer :1-B Total Jes :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : Account : MPO

A9628881

Project : ICE Comments:

PLEASE NOTE

	PREP	ſ	Na	Ni	P	Pb	Sb	Sc	Sr	Tİ	T1	υ	v	W	Zn	
SAMPLE	CODE		%	maa	DDB	nom	nnm	nnm	שממ	*	nnm	ກກຫ	שממ	הממ	ກກສ	
		_			-24							P.P.m.			P. P.	
BB06001	201 20	2	< 0.01	34	440	8	< 2	4	19	0.13	< 10	< 10	107	< 10	88	
BB06002	201 20	2	< 0.01	98	330	10	< 2	6	15	0.14	< 10	< 10	117	< 10	124	
BB06003	201 20	2	< 0.01	176	580	4	2	12	17	0.14	< 10	< 10	113	< 10	92	
BB06004	201 20	2	< 0.01	306	370	6	< 2	8	13	0.13	< 10	< 10	92	< 10	60	
BB06005	201 20	2	< 0.01	43	600	6	< 2	5	18	0.16	< 10	< 10	140	< 10	60	
BB06006	201 20	5	< 0.01	102	400		1 2	E	26	0.00	< 10	< 10	75	< 10	E 7	
BB06101	201 20	52	0.01	30	1110	10	2 2	5	40	0.05	~ 10	< 10	50	< 10	216	
BB06102	201 20	2	0.06	4	110	2	22	× 1		0.04	< 10	< 10	45	< 10	30	,
BB06103	201 20	2	0.05	12	510	2	< 2	11	25	0.11	< 10	< 10	102	2 10	120	
BB06104	201 20	2	0.08	-5	530	< 2	< 2	-6	18	0.04	< 10	< 10	47	< 10	46	
		_								·						
BB06105	201 20	2	0.05	8	330	6	< 2	1	9	0.04	< 10	< 10	47	< 10	104	
BB06106	201 20	2	0.06	8	1030	< 2	< 2	8	40	0.01	< 10	< 10	28	< 10	44	
BB06107	201 20	2	0.01	26	330	14	< 2	4	22	0.05	< 10	< 10	109	< 10	140	
BB06108	201 20	2	0.04	16	490	4	< 2	9	32	0.03	< 10	< 10	82	< 10	102	
BB06109	201 20	2	0.01	25	1000	10	2	6	42	0.03	< 10	< 10	54	< 10	212	
BB06110	201 20	2	0.03	9	730	< 2	< 2	1	57 <	0.01	< 10	< 10	12	< 10	24	
BB06111	201 20	2	0.01	6	680	< 2	< 2	< 1	79 <	0.01	< 10	< 10	8	< 10	10	
BB06112	201 20	2	0.05	6	1300	< 2	< 2	1	47	0.01	< 10	< 10	13	< 10	244	
BB06113	201 20	2	0.08	1	300	< 2	< 2	< 1	17	0.01	< 10	< 10	10	< 10	6	
BB06114	201 20	2	0.08	2	130	< 2	< 2	< 1	9	0.02	< 10	< 10	14	< 10	8	
BB06115	201 20	2	0.08	2	280	< 2	< 2	< 1	10	0.01	< 10	< 10	14	< 10	12	
BB06116	201 20	2	0.09	3	250	< 2	< 2	< 1	Ĩõ	0.01	< 10	< 10	12	< 10	Å0	
BB06117	201 20	2	0.02	21	500	8	< 2	3	19	0.08	< 10	< 10	103	< 10	84	
BB06118	201 20	2	0.04	14	450	10	< 2	2	15	0.04	< 10	< 10	49	< 10	90	
BB06119	201 20	2	0.01	28	1010	10	2	6	50	0.07	< 10	< 10	72	< 10	146	
0000100	201 20		0.01	47	24.0											
BBU0120	201 20	4	0.01	1/	210	8	< 2	3	18	0.06	< 10	< 10	82	< 10	58	
0000141	201 20	1	0.03	44	330	4		8	40	0.07	< 10	< 10	108	< 10	66	
DDV0122	201 20	1	< 0.04	16	690	4	~ 1	1	10	0.03	< 10	< 10	31	< 10	40	
BB00123	201 20	5		22	420	0	2.5	3	17	0.10	< 10	< 10	127	< 10	104	
			. 0.01	43		0	` ^	•	17	0.11	× 10	× 10	147	< 10	1/4	
BB06125	201 20	2	0.02	19	250	6	< 2	5	22	0.08	< 10	< 10	83	< 10	64	
BB06126	201 20	2	0.01	23	290	8	2	4	14	0.10	< 10	< 10	97	< 10	92	
BB06127	201 20.	2	0.03	19	710	2	< 2	7	38	0.09	< 10	< 10	79	< 10	78	
BB06128	201 20	2	0.02	13	470	8	< 2	2	16	0.05	< 10	< 10	62	< 10	104	
BB06129	201 20	2	0.07	5	650	< 2	< 2	< 1	22	0.01	< 10	< 10	16	< 10	12	
RR06130	201 20	2	< 0.01	15	450	8	< 2	1	15	0.05	< 10	< 10	81	< 10		
BB06131	201 20	2	< 0.01	25	1100	12	2	Â	15	0.04	< 10	< 10	98	< 10	140	
BB06132	201 20	2	< 0.01	19	450		< 2	3	18	0.06	< 10	< 10	74	< 10	112	
BB06133	201 20	2	0.02	29	490	10	< 2	5	40	0.04	< 10	< 10	58	< 10	124	
BB06134	201 20	2	0.05	18	560	-4	< 2	3	39	0.02	< 10	< 10	36	< 10	46	
						-	• -	-			• =•	• ••	••			

Hant Bichler CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

0: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pag€ Jer :2-A Total Jes :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number MPO Account

Project : ICE Comments:

CERTIFICATE OF ANALYSIS A9628881

* PLEASE NOTE

SAMPLE	PREP	Ag pom	A1 %	As ppm	Ba	Be DDM	Bi	Ca %	Cđ maa	Co	Cr	Cu maa	Fe %	Ga	Hg	K %	La	Mg	Mn	Mo
														**		-		-		
BBU0135	201 20		1.34	< 2	560	< 0.5	< 2	1.17	1.0	7	23	40	1.37	< 10	< 1	0.06	< 10	0.52	340	1
BB00130	201 20		1 57	4	300 4	< 0.5	< 4 2 3	0.31	< 0.5	0	14	18	1.40	< 10	< 1	0.07	< 10	0.22	395	1
BB06138	201 20		1.46	A	410	< 0.5	2.2	0.35	< 0.5	0	22	22	2 22	< 10		0.07	10	0.34	190	< 1
BB01401	201 20	0.2	1.65	10	610	< 0.5	< 2	1.31	1.0	38	29	2670	2.63	< 10	< 1	0.14	10	0.56	410	< 1
BB01402	201 20	0.6	2.23	8	530	< 0.5	< 2	1.19	2.0	97	38	6720	4.52	< 10	< 1	0.11	10	0.59	590	2
BB01403	201 20:	0.8	2.23	< 2	580 -	< 0.5	< 2	1.39	1.5	110	33	4330	3.27	< 10	< 1	0.12	< 10	0.51	690	2
BB01404	201 202	1.0	1.97	< 2	990 🖣	< 0.5	Intf*	1.18	2.5	292	30 :	10000	2.76	< 10	< 1	0.11	< 10	0.48	1525	2
BB01405	201 202	2 < 0.2	1.52	2	280	< 0.5	< 2	0.36	< 0.5	16	26	61	3.61	< 10	< 1	0.11	< 10	0.72	1915	< 1
BB01406	201 203	< 0.2	0.29	< 2	60 4	< 0.5	< 2	0.74	< 0.5	< 1	2	12	0.26	< 10	< 1	0.03	< 10	0.07	45	< 1
BB01407	201 202	0.2	0.52	< 2	140	< 0.5	< 2	1.42	< 0.5	1	4	35	0.54	< 10	< 1	0.03	< 10	0.10	85	< 1
BB01408	201 202	0.2	1.58	6	330 <	< 0.5	< 2	1.53	< 0.5	10	24	56	2.59	< 10	< 1	0.07	10	0.56	290	< 1
BBU1409	201 202	< 0.2	0.38	< 2	80 4	< 0.5	< 2	0.16	< 0.5	2		7	0.52	< 10	< 1	0.05	< 10	0.09	115	< 1
BB01411	201 202	< 0.2	1.15	ő	240 <	< 0.5	< 2	0.11	< 0.5	5	21	19	1.93	< 10	< 1	0.13	< 10 20	0.43	1155	1
	201 207		1 15		240	. 0 E	<u> </u>	0.47	4 0 F					. 10					450	
BB05229	201 202	0.2	2 15	2	440	0.5		0.41/	< 0.5	11	27	70	2 02	< 10	< 1	0.11	10	0.44	450	< 1
BB05230	201 202	< 0.2	2.40	< 2	570	0.5	22	0.83	0.5	12	43	A1	3 40	~ 10	~ 1	0.11	10	0.54	/30	
BB05231	201 202	< 0.2	2.16	< 2	460 <	< 0.5	< 2	0.59	0.5	19	45	43	4.01	< 10	< 1	0.09	10	0.09	895	
BB05232	201 202	< 0.2	2.24	12	410 <	< 0.5	< 2	0.25	< 0.5	13	48	31	4.06	< 10	< 1	0.07	10	0.76	445	i
BB05233	201 202	< 0.2	1.77	8	460 <	< 0.5	< 2	0.83	< 0.5	11	40	29	3.09	< 10	< 1	0.07	10	0.77	430	1
BB05234	201 202	< 0.2	3.06	2	520 <	< 0.5	< 2	0.44	< 0.5	19	66	43	5.63	< 10	< 1	0.08	10	1.01	960	< 1
BB05235	201 202	< 0.2	2.11	6	640 <	< 0.5	< 2	0.73	< 0.5	10	37	28	2.69	< 10	< 1	0.07	10	0.71	535	< 1
BB05236		< 0.2	1.71	6	410 <	< 0.5	< 2	0.35	< 0.5	11	36	33	2.77	< 10	< 1	0.10	10	0.59	520	1
BRARISO	201 202	< 0.2	1.69	12	420 <	< 0.5	< 2	0.50	< 0.5	10	32	205	2.78	< 10	< 1	0.12	10	0.66	320	1
BB08181	201 202	0.6	1.87	12	480 <	0.5	< 2	1.01	0.5	19	44	640	3.68	< 10	< 1	0.08	10	0.66	630	3
00/0102	201 202	× 0.2	2.34	10	650 <	(U.)	< 4	0.40	< 0.5	22	39	65	4.14	< 10	< 1	0.05	10	1.06	690	1
BB08184	201 202		2 20	-	320	0.5		0.94	2 0 5 .	39	49	93	1.38	10		0.08	< 10	1.07	1800	2
BB08185	201 202	< 0.2	2.59	6	360 <	0.5	< 2	0.11	< 0.5	8	40	58	3.40	< 10	< 1	0.05	10	0.49	375	1
BB08186	201 202	< 0.2	1.36	8	620 <	0.5	< 2	0.15	0.5	13	18	65	3.54	< 10	< 1	0.10	10	0.22	1415	1
BB08187	201 202	< 0.2	0.88	6	440 <	0.5	< 2	0.13	< 0.5	7	17	48	2.16	< 10	< 1	0.08	20	0.23	310	i
BB08188	201 202	0.2	1.73	6	780 <	0.5	< 2	0.67	1.5	26	37	1100	4.96	< 10	< 1	0.07	10	0.38	575	2
BB08189	201 202	0.4	1.88	12	1510	0.5	< 2	1.01	1.5	30	35	770	2.82	< 10	< 1	0.21	10	0.71	450	2
BB08190	201 202	< 0.2	1.78	6	470 <	0.5	< 2	0.35	< 0.5	8	32	26	2.62	< 10	< 1	0.08	10	0.67	245	1
BB08191	201 202	< 0.2	2.53	20	300 <	0.5	< 2	0.20	< 0.5	10	43	35	3.49	< 10	< 1	0.06	10	0.60	275	1
BB08192	201 202	< 0.2	1.71	24	220 <	0.5	< 2	0.24	< 0.5	12	35	30	3.35	< 10	< 1	0.09	10	0.56	460	< 1
BBUB193	201 202	< 0.2	1.45	14	570 <	: 0.5	< 2	0.52	< 0.5	9	32	277	2.54	< 10	< 1	0.07	10	0.67	345	1
88V81 94 8808195	201 202	0.6	2.04	8	980	0.5	< 2	0.60	1.0	15	43	166	2.84	< 10	< 1	0.15	20	0.60	1260	2
BBV0133		< 0.2	4.30	5	370 <	. 0.5	< 4	U.38	< 0.5	19	47	61	4.70	< 10	< 1	0.08	< 10	0.99	870	1
																			-	,

CERTIFICATION:

tart Bichler

* PLEASE NOTE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

fo: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Pag Jer :2-B Total ages :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : Account : MPO

Project : ICE Comments:

CERTIFICATE OF ANALYSIS

A9628881

		1													
	PREP	Na	Nİ	₽	Pb	Sb	Sc	Sr	Tİ	т1	υ	v	W	Zn	
SAMPLE	CODE	%	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	
BB06135	201 202	0.03	19	450	6	< 2	3	30	0.03	< 10	< 10	36	< 10	146	
BB06136	201 202	0.04	12	350	6	< 2	1	18	0.03	< 10	< 10	42	< 10	66	
BB06137	201 202	0.01	13	460	6	< 2	1	17	0.04	< 10	< 10	73	< 10	96	
BB06138	201 202	0.02	20	180	10	< 2	3	14	0.03	< 10	< 10	59	< 10	56	
BB01401	201 202	0.01	28	810	8	2	8	42	0.03	< 10	< 10	55	< 10	216	
BB01402	201 202	0.01	29	950	6	< 2	14	34	0.05	< 10	< 10	79	< 10	272	
BB01403	201 202	0.02	26	1020	8	< 2	15	36	0.02	< 10	< 10	60	< 10	240	
BB01404	201 202	0.03	22	Intf*	2	< 2	10	46	0.03	< 10	< 10	53	< 10	78	
BB01405	201 202	0.02	17	400	4	< 2	7	11	0.07	< 10	< 10	104	< 10	60	
8801406	201 202	0.11	1	380	< 2	< 2	1	11	0.01	< 10	< 10	9	< 10	4	
BB01407	201 202	0.07	5	760	< 2	< 2	< 1	21	0.01	< 10	< 10	12	< 10	12	
BB01408	201 202	0.02	26	760	8	2	6	27	0.03	< 10	< 10	70	< 10	78	
BB01405	201 202	0.08	25	900	14	× 4 × 2	< 1 ¢	32	0.01	< 10	< 10	18	< 10	14	
BB01411	201 202	0.01	17	270	10	2 2	1	12	0.03	~ 10	< 10	42	< 10	314	
						<u> </u>	-	**		· 10	× 10		< 10 	•••	
BB01412	201 202	0.03	16	190	2	< 2	3	14	0.02	< 10	< 10	51	< 10	64	
BB05229	201 202	0.03	28	460	12	< 2	9	18	0.03	< 10	< 10	80	< 10	78	
BB05230	201 202	< 0.01	25	290	12	2	6	19	0.05	< 10	< 10	100	< 10	82	
BB05231	201 202	< 0.01	26	370	8	< 2	6	15	0.11	< 10	< 10	127	< 10	234	
8805434	201 202	< 0.01		340	8	< 2	5	11	0.08	< 10	< 10	112	< 10	72	
BB05233	201 202	< 0.01	23	320	10	< 2	6	17	0.08	< 10	< 10	90	< 10	58	
BB05234	201 202	< 0.01	30	290	10	< 2	8	13	0.15	< 10	< 10	163	< 10	132	
BB05235	201 202	0.01	24	240	10	< 2	6	14	0.05	< 10	< 10	74	< 10	70	
8805236	201 202	0.01	28	350	10	< 2	5	13	0.04	< 10	< 10	66	< 10	82	
8808180	201 202	< 0.01	28	580	10	< 2	4	24	0.06	< 10	< 10	68	< 10	84	
BB08181	201 202	0.02	28	570	8	< 2	11	29	0.06	< 10	< 10	97	< 10	142	
BB08182	201 202	< 0.01	29	160	10	< 2	6	14	0.07	< 10	< 10	98	< 10	78	
BB08183	201 202		34	470	8	< 4	15	23	0.16	< 10	< 10	179	< 10	172	
BB08185	201 202	< 0.01	22	410	12	2	3	ŝ	0.11	< 10	< 10	138	< 10	144	
						-	-			<u> </u>	<u> </u>		< 10		
BB08186	201 202	0.01	31	1280	8	< 2	2	12	0.01	< 10	< 10	42	< 10	202	
BB08187	201 202	< 0.01	23	390	10	< 2	1	12	0.01	< 10	< 10	31	< 10	108	
BB08188	201 202	0.01	21	630	16	< 2	5	23	0.06	< 10	< 10	109	< 10	342	
8808189	201 202	0.01	35	810	14	< 2	1	46	0.04	< 10	< 10	70	< 10	216	
BBV8130	401 403	< 0.01	4 5	390	10	< 2	3	16	0.06	< 10	< 10	69	< 10	70	
BB08191	201 202	< 0.01	22	260	18	< 2	4	10	0.06	< 10	< 10	99	< 10	84	
BB08192	201 202	< 0.01	23	430	14	< 2	4	9	0.07	< 10	< 10	81	< 10	74	
BB08193	201 202	0.01	33	440	10	< 2	6	21	0.06	< 10	< 10	55	< 10	92	
BB08194	201 202	0.01	43	730	16	< 2	10	26	0.03	< 10	< 10	79	< 10	226	
88091 3 2	401 202	< 0.01	32	420	8	< 2	9	14	0.17	< 10	< 10	135	< 10	90	

Hart Brichler **CERTIFICATION:**

-

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

io: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Page Jer : 3-A Total Jes : 5 Certificate Date: 29-AUG-96 Invoice No. P.O. Number :19628881 :MPO Account

A9628881

Project : Comments: ICE

* PLEASE NOTE

	PRE	8P	λα	A)	λs	Ba	Be	Bj	Ca	Cđ	Co	Cr	Cu	Fe	Ga	Ha	x	Га	Ма	Mn	м
SAMPLE	COL)E	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	*	ppm	ppm 9	*	ppm	~~g %	ppm	pp
BB08196	201	202	< 0.2	2.12	12	430	< 0.5	< 2	0.32	< 0.5	9	38	21	3.46	< 10	< 1	0.05	10	0.58	315	
B08197	201	202	< 0.2	2.06	2	320	< 0.5	< 2	0.33	< 0.5	11	32	23	3.82	< 10	< 1	0.06	10	0.59	380	<
B08198	201	202	< 0.2	1.38	2	440	< 0.5	< 2	0.34	< 0.5	11	29	25	1.89	< 10	< 1	0.05	10	0.61	790	<
B08085	201	202	< 0.2	3.22	14	640	0.5	< 2	0.08	< 0.5	10	53	30	3.59	< 10	< 1	0.10	10	0.55	230	
B08086	201	202	< 0.2	2.44	8	610	0.5	< 2	0.11	< 0.5	13	51	68	3.48	< 10	< 1	0.07	< 10	0.72	455	<
B08087	201	202	< 0.2	2.01	12	540	< 0.5	< 2	0.08	< 0.5	9	36	35	3.05	< 10	< 1	0.06	10	0.46	355	
B08088	201	202	< 0.2	2.60	14	380	0.5	< 2	0.27	< 0.5	16	25	31	5.88	10	< 1	0.03	< 10	0.65	720	
B08090	201	202	< 0.2	2.78 4.97	16	1380	< 0.5	< 2	0.21	< 0.5	33	134	103	4.07 9.01	< 10 10	< 1 < 1	0.07	< 10 < 10	2.78	1180	<
B08091	201	202	< 0.2	3.81	4	300	< 0.5	< 2	0.51	< 0.5	32	159	84	6.99	10	< 1	0.01	< 10	1.38	950	<
B08092	201	202	< 0.2	3.62	6	410	< 0.5	< 2	0.41	< 0.5	19	89	53	5.91	10	< 1	0.03	< 10	1.60	685	<
B08093	201	202	< 0.2	2.53	20	410	< 0.5	< 2	0.31	< 0.5	11	57	37	3.54	< 10	< 1	0.05	10	0.80	330	<
3B08094 3B09501	201	202	< 0.2 < 0.2	2.58	12	530 290	0.5	< 2	0.14	< 0.5	9	46 21	28 17	3.37	< 10 < 10	< 1	0.10	10 30	0.63	410	< <
200500						100	- 0 F				F				. 10						
BU95U2	201	202	< 0.2	1 30	10	400	< 0.5	< 2	0.06	< 0.5	37	24	70	2.56	< 10	< 1	0.04	10	0.29	475	
B09504	201	202	< 0.2	1.09	4	220	< 0.5	< 2	0.04	< 0.5	7	27	30	2.41	< 10	21	0.05	10	0.31	560	
B09505	201	202	< 0.2	1.64	8	350	< 0.5	< 2	0.09	< 0.5	6	37	30	2.48	< 10	< 1	0.05	10	0.44	355	
B09506	201	202	< 0.2	1.13	2	530	< 0.5	< 2	0.06	< 0.5	17	36	56	2.58	< 10	< 1	0.06	10	0.34	2870	
B09507	201	202	< 0.2	1.35	8	870	< 0.5	< 2	0.11	< 0.5	6	37	49	2.71	< 10	< 1	0.08	10	0.25	830	<
B09508	201	202	< 0.2	2.85	12	1860	0.5	< 2	0.21	< 0.5	7	87	96	4.18	< 10	< 1	0.11	30	0.44	455	·
1809509	201	202	< 0.2	1.42	10	330	< 0.5	< 2	0.11	< 0.5	12	20	25	2.79	< 10	< 1	0.06	10	0.62	345	<
B09511	201	202	< 0.2	2.29	< 2	530	< 0.5	< 2	0.34	< 0.5	13	26	119	2.70	< 10	< 1	0.05	20	1.13	2180	<
B09512	201	202	< 0.2	1.22	8	520	< 0.5	< 2	0.22	< 0.5	7	51	36	2.11	< 10	< 1	0.07	30	0.41	175	
B09513	201	202	< 0.2	1.67	10	740	< 0.5	< 2	0.41	< 0.5	17	238	26	3.42	< 10	< 1	0.05	10	1.85	425	:
B09514	201	202	< 0.2	1.51	12	350	< 0.5	< 2	0.49	< 0.5	23	267	30	2.93	< 10	< 1	0.03	10	2.64	615	< 1
B09515 B09516	201	202 202	< 0.2 < 0.2	2.14 1.99	6 10	620 630	< 0.5 < 0.5	< 2 < 2	1.11 0.82	< 0.5 < 0.5	19 31	153 236	41 52	3.03 3.38	< 10 < 10	< 1 < 1	0.03 0.05	< 10 < 10	1.79 1.78	485 665	<
809517	201	202	< 0.2	2.28	< 2	450	< 0.5	< 2	0.68	< 0.5	25	234	42	3.13	< 10	< 1	0.03	< 10	2.16	555	<
B09518	201	202	< 0.2	2.11	2	390	< 0.5	< 2	0.68	< 0.5	40	484	60	3.97	< 10	< 1	0.05	< 10	3.97	615	<
B09519	201	202	< 0.2	2.11	2	500	< 0.5	< 2	1.21	< 0.5	30	229	52	2.97	< 10	< 1	0.05	< 10	2.49	495	<
B09520	201	202	< 0.2	1.84	2	180	< 0.5	< 2	0.30	< 0.5	66	881	37	4.38	< 10	< 1	0.04	< 10	9.72	775	<
B09521	201	202	< 0.2	1.04	< 2	140	< 0.5	< 2	0.36	< 0.5	64	1080	26	4.05	< 10	< 1	0.03	< 10	11.35	580	< :
B09522	201	202	< 0.2	1.80	6	210	< 0.5	< 2	0.86	< 0.5	24	275	12	3.21	< 10	< 1	0.02	< 10	2.57	465	<
B09524	201	202	< 0.2	1.83	2	360	< 0.5	< 2	0.45	< 0.5	36	460	18	3.40	< 10	21	0.04	10	J. 11	977 525	
B09525	201	202	< 0.2	1.36	10	190	< 0.5	< 2	0.38	< 0.5	55	648	20	3.63	< 10	< 1	0.06	< 10	7.00	765	रे
B09526	201	202	< 0.2	1.14	4	180	< 0.5	< 2	0.29	< 0.5	57	618	21	3.72	< 10	< 1	0.05	10	6.27	645	<
							-													<u> </u>	

CERTIFICATION:_

• PLEASE NOTE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Pag ber :3-B Total, Jes :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : Account :MPO

Project : ICE Comments:

CERTIFICATE OF ANALYSIS

A9628881

		T								· · ·					
				_				_						_	
	PREP	Na	Ní	P	Pb	Sþ	Sc	Sr	Ti	T 1	υ	V	W	Zn	
SAMPLE	CODE	*	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
BB09196	201 202	< 0.01	22	24.0	12	~ 2	2	0	0.07	< 10	< 10	00	< 10	0.7	
BB08197	201 202	< 0.01	18	210	12	22	Ă	8	0.06	< 10	< 10	101	< 10	62	
BB08198	201 202	< 0.01	19	290	8	< 2	5	10	0.04	< 10	< 10	45	< 10	114	
BB08084	201 202	0.01	23	270	10	< 2	3	10	0.02	< 10	< 10	63	< 10	78	
BB08085	201 202	< 0.01	34	340	16	2	4	11	0.01	< 10	< 10	100	< 10	116	
8808086	201 202	< 0.01	34	170	10	< 2	5	8	0.04	< 10	< 10	0.0	< 10	360	
8808087	201 202	< 0.01	25	170	10	2	5	7	0.02	< 10	< 10	88	< 10	88	
BB08088	201 202	< 0.01	20	430	10	< 2	8	14	0.30	< 10	< 10	201	< 10	106	
BB08089	201 202	< 0.01	25	330	10	< 2	6	27	0.04	< 10	< 10	111	< 10	86	
BB08090	201 202	< 0.01	50	310	2	< 2	16	23	0.28	< 10	< 10	293	< 10	118	
BB08091	201 202	0.01	49	150	2	< 2	36	35 -	< 0.01	< 10	< 10	190	< 10	54	
BB08092	201 202	< 0.01	38	210	8	< 2	8	13	0.17	< 10	< 10	178	< 10	94	
BB08093	201 202	< 0.01	27	210	10	< 2	5	15	0.09	< 10	< 10	106	< 10	72	
BB08094	201 202	< 0.01	25	210	12	2	5	12	0.05	< 10	< 10	107	< 10	90	
BB09501	201 202	0.01	15	540	40	< 2	1	9	0.01	< 10	< 10	27	< 10	70	
BB09502	201 202	< 0.01	16	280	18	< 2	1	7	0.01	< 10	< 10	32	< 10	56	
BB09503	201 202	< 0.01	28	350	8	< 2	1	6	0.01	< 10	< 10	30	< 10	60	
BB09504	201 202	< 0.01	24	410	8	< 2	1	7	0.01	< 10	< 10	33	< 10	56	
BB09505	201 202	< 0.01	25	350	10	< 2	1	8	0.01	< 10	< 10	39	< 10	52	
8809506	201 202	0.01	25	930	10	< 2	< 1	7	0.01	< 10	< 10	40	< 10	72	
BB09507	201 202	0.01	23	860	12	< 2	1	13 <	0.01	< 10	< 10	31	< 10	104	
BB09508	201 202	0.01	45	1990	14	< 2	3	23 <	: 0.01	< 10	< 10	73	< 10	122	
BB09509	201 202	< 0.01	40	470	12	< 2	1		0.01	< 10	< 10	48	< 10	72	
BB09510	201 202	< 0.01	42	1060	12	< 2	5	33	0.04	< 10	< 10	73	< 10	82	
8809311	201 202	< 0.01	30	//0	10	< 4	4	33	0.06	< 10	< 10	23	< 10	12	
BB09512	201 202	< 0.01	35	590	12	< 2	1	35 <	0.01	< 10	< 10	29	< 10	64	
BB09513	201 202	< 0.01	135	370	10	< 2	4	15	0.06	< 10	< 10	74	< 10	80	
BB09514	201 202	< 0.01	162	570	6	< 2	3	16	0.06	< 10	< 10	51	< 10	62	
BB09515	201 202	0.01	90	330	10	< 2	6	147	0.14	< 10	< 10	75	< 10	62	
8809516	201 202	< 0.01	X 91	740	10	< 4	8	44	0.07	< 10	< 10	/8	< 10	86	
BB09517	201 202	< 0.01	156	100	8	< 2	5	14	0.16	< 10	< 10	76	< 10	58	
BB09518	201 202	< 0.01	683	800	6	< 2	9	22	0.05	< 10	< 10	79	< 10	78	
BB09519	201 202	< 0.01	609	790	8	< 2	6	37	0.05	< 10	< 10	64	< 10	66	
BB09520	201 202	< 0.01	929	380	2	< 2	1	11	0.03	< 10	< 10	66	< 10	100	
BDJJJ41	401 402	< 0.01	1203	300	< <u> </u>	< 4	/	/	0.04	< 10	< T0	30	< 10	48	
BB09522	201 202	< 0.01	152	140	6	< 2	5	14	0.19	< 10	< 10	84	< 10	54	
BB09523	201 202	< 0.01	211	280	6	< 2	6	11	0.14	< 10	< 10	75	< 10	82	
BB09524	201 202	< 0.01	283	220	6	< 2	6	11	0.09	< 10	< 10	69	< 10	62	
BBU3343	201 202	0.01	281	430	8	< 2	5	14	0.04	< 10	< 10	50	< 10	64	
0003340		< 0.01	910	3/0	0	s 🖌	0	10	0.03	K 10	× 10	6 U	< TO	14	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 IO: EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

CERTIFICATE OF ANALYSIS

Page per :4-A Total - ges :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : Account :MPO

A9628881

Project : ICE Comments:

* PLEASE NOTE

		1	· ,												<u> </u>					
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
BB09527	201 202	< 0.2	0.83	2	60	< 0.5	< 2	0.19	< 0.5	83	1020	15	3.68	< 10	< 1	0.01	< 10	12.60	825	< 1
BB09528	201 202	< 0.2	1.40	< 2	40	< 0.5	< 2	0.25	< 0.5	90	945	28	3.68	< 10	< 1 -	< 0.01	< 10	11.85	720	< 1
BB09529	201 202	< 0.2	2.01	4	30	< 0.5	< 2	0.78	< 0.5	70	852	46	3.09	< 10	< 1 -	< 0.01	< 10	12.00	590	< 1
BB09530	201 202	< 0.2	3.01	10	650	< 0.5	< 2	1.48	< 0.5	55	280	128	6.66	< 10	< 1	0.04	< 10	2.58	1615	< 1
BB09531	201 202	< 0.2	3.34	0	100	< 0.5	< 4	0.17	< 0.5		926	5/	4.92	< 10	< 1 •	< 0.01	< 10	10.70	1420	< 1
BB09532	201 202	< 0.2	0.84	2	50	< 0.5	< 2	0.32	< 0.5	66	923	24	3.83	< 10	< 1	0.02	< 10	13.65	570	< 1
BB09533	201 202	< 0.2	3.41	2	140	< 0.5	< 2	2.29	< 0.5	34	313	28	3.26	< 10	< 1	0.02	< 10	5.16	465	< 1
8809334 8809334	201 202	< 0.2	1.33	0	170	< 0.5	< 2	0.68	< 0.5	48	641	24	3.36	< 10	< 1	0.04	< 10	8.54	520	< 1
BB09535 BB09536	201 202		1.71	2	280	< 0.5	× 4 × 2	0.04	< 0.5	37	369	∡ / 22	3.44	< 10	< 1	0.04	< 10	5.25	540	< 1
													3.04	· 10	<u> </u>	0.05	< 10	5.00	490	<u> </u>
BB09537	201 202	< 0.2	1.45	2	60	< 0.5	< 2	0.46	< 0.5	16	104	40	1.94	< 10	< 1	0.03	< 10	1.57	250	< 1
BB09538	201 202	< 0.2	1.61	2	260	< 0.5	< 2	0.62	< 0.5	39	511	28	3.31	< 10	< 1	0.05	< 10	4.90	605	< 1
BB09539	201 202	< 0.2	2.06	8	510	< 0.5	< 2	0.60	0.5	35	365	38	3.67	< 10	1	0.11	< 10	2.95	895	< 1
BB09540 RRA9541	201 202		1.39	2	30	< 0.5	22	0.49	< 0.5	44	1070	10	3.10	< 10		0.05	10	12 05	385	< 1
				-			•				1070		J./I	× 10		. 0.01	< 10	13.95	040	< I
BB09542	201 202	< 0.2	2.16	4	200	< 0.5	< 2	0.64	< 0.5	59	847	24	4.42	< 10	< 1	0.05	< 10	8.19	640	< 1
BB09543	201 202	< 0.2	1.80	8	210	< 0.5	< 2	0.40	< 0.5	27	437	12	3.96	< 10	< 1	0.04	< 10	3.13	405	< 1
BBU9544	201 202	< 0.2	1.78	8	320	< 0.5	< 2	0.35	< 0.5	46	584	20	3.81	< 10	< 1	0.05	10	4.58	625	< 1
BB09545 BB09546	201 202		1 47	< <u>4</u>	280	< 0.5	~ 2	0.34	< 0.5	37	986	12	3.79	< 10	< 1	0.02	< 10	12.50	760	< 1
			1.1/	•	100	· ···	<u> </u>		< 0.5		431	14	3.74	× 10	× 1	0.05	< 10	9.40	000	< T
BB09547	201 202	< 0.2	1.81	2	220	< 0.5	< 2	0.83	< 0.5	48	655	73	3.53	< 10	< 1	0.04	< 10	7.13	535	< 1
BB09548	201 202	< 0.2	1.40	6	580	< 0.5	< 2	0.62	< 0.5	16	247	17	2.55	< 10	< 1	0.04	< 10	2.55	365	< 1
BB09549	201 202	0.2	1.50	18	650	< 0.5	< 2	1.30	< 0.5	37	443	54	3.40	< 10	< 1	0.05	< 10	3.97	535	< 1
BB09330 BB09550	201 202		1.8/	12	44U 500	< 0.5	< 2	0.66	< 0.5	32	475	41	3.45	< 10	< 1	0.05	< 10	5.36	525	< 1
	201 202	× 0.2	4.40		500	< 0.5	<u> </u>	0.09	< 0.5	40	494	50	3.34	< 10	< 1	0.06	10	3.06	735	< 1
BB09552	201 202	< 0.2	2.54	6	490	< 0.5	< 2	0.65	< 0.5	30	293	51	3.60	< 10	< 1	0.08	10	3.02	730	< 1
DD09555	201 202	0.2	1 02	12	340	< 0.5	~ 2	1 24	< 0.5	15	4/	73	2.30	< 10		0.09	10	0.90	665	1
B09555	201 202	< 0.2	1.55	12	420	< 0.5	< 2	0.50	< 0.5	10	48	24	2.42	< 10	21	0.11	20	1.4/	700	1
BB09556	201 202	< 0.2	4.11	< 2	290	< 0.5	< 2	1.54	< 0.5	29	155	91	5.13	< 10	< 1	0.11	< 10	2.64	800	< 1
B09557	201 202	< 0.2	1.57	10	570	< 0.5	< 2	0.21	< 0.5	11	57	42	2 45	< 10	< 1	0.07	20	0.77	240	
B09558	201 202	0.2	1.38	12	630	< 0.5	< 2	0.82	< 0.5	10	54	31	2.29	< 10	< 1	0.08	10	0.75	355	1
3809559	201 202	< 0.2	1.35	14	480	< 0.5	< 2	0.44	< 0.5	11	63	40	2.47	< 10	< 1	0.08	10	0.89	345	1
BB09560	201 202	0.2	2.00	14	350	< 0.5	< 2	0.81	< 0.5	16	61	30	3.21	< 10	< 1	0.09	< 10	1.07	515	ī
BB09561	201 202	< 0.2	1.82	8	830	0.5	< 2	0.30	< 0.5	11	46	27	3.08	< 10	< 1	0.09	10	0.62	445	1
3809562	201 202	< 0.2	1.73	< 2	270	< 0.5	< 2	0.49	< 0.5	13	43	34	2.54	< 10	< 1	0.10	10	0.78	395	< 1
B09563	201 202	< 0.2	1.50	10	550	0.5	< 2	0.30	< 0.5	11	49	28	2.73	< 10	< 1	0.19	10	0.52	360	2
3809564	201 202	< 0.2	1.56	10	660	0.5	< 2	0.37	< 0.5	11	36	45	2.80	< 10	< 1	0.18	20	0.48	495	2
3B09565	201 202	< 0.2	1.35	8	350	0.5	< 2	0.38	< 0.5	10	23	34	2.92	< 10	< 1	0.21	40	0.46	325	1
880 326 6	201 202	< 0.2	1.51	10	640	0.5	< 2	0.36	< 0.5	12	25	29	2.76	< 10	< 1	0.17	30	0.44	660	2

Ha in Bichles **CERTIFICATION:**

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Pag iber :4-B Totai Jes :5 Certificate Date: 29-AUG-96 Invoice No. P.O. Number :19628881 MPO Account

A9628881

Project :	ICE
Comments:	

.....

• PLEASE NOTE

	PREP	Na	Nİ	P	Pb	Sb	Sc	Sr	Ti	Tl	υ	v	W	Zn	
SAMPLE	CODE	۶.	ກກຫ	maa	וותממ	000	າວກາກ	nnm	~	100	DD	ກກຫ	DD		
	0000				77 Y					P.P.W.	PPm	руш.	₽₽ <u>₩</u>	P. P. P. P. P. P. P. P. P. P. P. P. P. P	
BB09527	201 20	2 0.01	1275	150	< 2	< 2	6	5 <	0.01	< 10	< 10	28	< 10	52	
8809528	201 20	2 < 0.01	1390	120	2	< 2	Ř	4	0.01	< 10	< 10	38	< 10	38	
8809529	201 20	2 0.01	1245	120	× 2		7	5	0 01	2 10	~ 10	32	~ 10	30	
BB09530	201 20	2 0.01	158	410	2	< 2	40	26	0.03	< 10	< 10	156	< 10	69	
8809531	201 20	2 < 0.01	887	170	< 2	< 2	17	4	0.07	< 10	< 10	103	2 10	50	
				2/0				-		• • •		103	• 10		
BB09532	201 20	2 < 0.01	1400	90	< 2	< 2	6	3	0.01	< 10	< 10	29	< 10	34	
BB09533	201 20	2 < 0.01	495	310	< 2	< 2	11	16	0.10	< 10	< 10	63	< 10	36	
BB09534	201 20	2 < 0.01	798	410	2	< 2	6	15	0.06	< 10	< 10	49	< 10	62	
BB09535	201 20:	2 < 0.01	538	370	6	< 2	7	14	0.10	< 10	< 10	60	< 10	52	
BB09536	201 20	2 < 0.01	290	230	6	< 2	6	14	0.16	< 10	< 10	68	< 10	50	
000527	201 20	0.00	1 5 1	570	<i>.</i> . .			17	0.07			47			
DDV3337	201 20		131	570	× 4	< <u>4</u>	-	1/	0.07	< 10	< 10	4/	< 10	34	
0000000	201 20		313	490		< 4	<u>'</u>	10	0.10	< 10	< 10	62	< 10	58	
BB03333	201 20		34/	970	10	< 2		19	0.08	< 10	< 10	84	< 10	90	
8809540	201 20		430	400	10	< 2	5	17	0.10	< 10	< 10	73	< 10	76	
8803241	201 20.	4 < 0.01	1285	80	< 2	< 2	/	1 <	0.01	< 10	< 10	30	< 10	36	
BB09542	201 20	2 < 0.01	539	150	8	2	10	12	0.07	< 10	< 10	68	< 10	50	
BB09543	201 202	2 < 0.01	174	240	8	< 2	4	15	0.11	< 10	< 10	83	< 10	82	
BB09544	201 202	2 < 0.01	482	390	8	< 2	9	14	0.06	< 10	< 10	62	< 10	60	
BB09545	201 202	2 < 0.01	1080	140	2	< 2	9	7	0.03	< 10	< 10	42	< 10	38	
BB09546	201 20	2 < 0.01	256	310	10	< 2	5	13	0.06	< 10	< 10	64	< 10	136	
BB00547	201 20	0.02	703	600			10	24			. 10				· · · · · · · · · · · · · · · · · · ·
000726/	201 20		175	300	4	< <u>4</u>	10	31	0.05	< 10	< 10	66	< 10	70	
0009340	201 20		113	340				17	0.00	< 10	< 10	21	< 10	40	
DD07397	201 20		207	1110		< <u>4</u>	ő	37	0.03	< 10	< 10	00	< 10	114	
00005550	201 202		39/	10U 530	4	< <u>4</u>	7	1/	0.05	< 10	< 10	71	< 10	80	
BR03221	201 202	V 0.01	141	220	•	4	'	2 0	0.10	< 10	< 10	/9	< 10	12	
BB09552	201 202	2 < 0.01	239	390	6	< 2	6	20	0.12	< 10	< 10	85	< 10	70	
BB09553	201 202	0.01	37	930	8	< 2	10	35	0.09	< 10	< 10	77	< 10	86	
BB09554	201 202	≷ < 0.01	57	560	10	< 2	7	38	0.14	< 10	< 10	86	< 10	86	
BB09555	201 202	< 0.01	29	200	10	< 2	4	21	0.07	< 10	< 10	59	< 10	60	
BB09556	201 202	< 0.01	82	120	2	< 2	15	20	0.09	< 10	< 10	111	< 10	66	
BB00557	201 207		E 2	200	10			10	0.00	. 10	. 10		. 10		·······
BBV333/ BBAG550	201 202	× 0.01	23	400	10	< <u>4</u>	5	24	0.04	< 10	< 10	40	< 10	28	
0005550	201 202		54	500	10	4		30	0.04	< 10	< 10	43	< 10	14	
DD099999	201 202	× 0.01	63	350	10	4	2	43	0.04	< 10	< 10	50	< 10	/6	
BB03300 BB00561	201 202	0.01	40	300	10			30	0.08	< 10	< 10	84	< 10	82	
DDV7301		\$ 0.01	3/	340	10	< 4	•	10	0.01	< 10	< 10	53	< 10	68	
BB09562	201 202	0.03	30	420	4	< 2	5	20	0.05	< 10	< 10	60	< 10	62	
BB09563	201 202	< 0.01	49	360	10	< 2	5	20	0.01	< 10	< 10	54	< 10	94	
BB09564	201 202	0.01	49	450	10	< 2	5	24 <	0.01	< 10	< 10	59	< 10	130	
BB09565	201 202	< 0.01	35	840	18	< 2	4	27 <	0.01	< 10	< 10	28	< 10	98	
BB09566	201 202	0.01	33	660	20	< 2	4	24 <	0.01	< 10	< 10	43	< 10	146	
		1													

CERTIFICATION:

tart Bichle

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Pag. ber :5-A Total : ges :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : Account : MPO

A9628881

Project : ICE Comments:

....

• PLEASE NOTE

SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Ng %	Mn ppm	Mo ppm
8809567	201 20	2 . 0 2	2 01	1 2	840	0.5	1 2	0 14	< 0.5	•	42	20	2 42	< 10	. 1	0.15	20	0.35	200	
BB09568	201 20	2 < 0.2	2.08	6	480	< 0.5	< 2	0.28	< 0.5	ů,	38	6	2.43	< 10	< 1	0.09	20	0.35	220	1
BB09569	201 20	2 < 0.2	2.25	< 2	650	0.5	2	0.11	0.5	10	36	19	3.12	< 10	<u>2</u> 1	0.06	10	0.72	245	2
BB09570	201 20	2 < 0.2	3.31	12	510	0.5	2	0.32	< 0.5	11	54	23	3.83	10	x 1	0.05	20	0.58	310	1
BB09571	201 20	2 < 0.2	2.15	4	200	< 0.5	2	0.19	< 0.5	-9	40	6	3.21	< 10	< 1	0.04	10	0.41	265	< 1
BB09572	201 20	2 < 0.2	2.16	16	350	< 0.5	< 2	0.12	< 0.5	8	38	12	3.25	< 10	< 1	0.05	10	0.51	215	2
BB09573	201 20	2 < 0.2	3.05	6	740	1.5	2	0.44	< 0.5	15	65	96	4.30	< 10	< 1	0.10	20	1.42	275	8
BB09574	201 20	2 < 0.2	2.32	2	740	< 0.5	< 2	0.31	< 0.5	12	51	15	3.01	< 10	1	0.04	10	0.72	315	< 1
BB09575	201 20	2 < 0.2	1.92	< 2	430	< 0.5	< 2	0.36	< 0.5	13	32	24	3.01	< 10	< 1	0.06	10	0.76	335	1
BB09576	201 20	2 < 0.2	2.04	< 2	450	< 0.5	2	0.26	< 0.5	9	35	10	2.63	< 10	< 1	0.05	10	0.54	275	< 1
BB09577	201 20	2 0.2	3.28	2	220	0.5	2	0.25	< 0.5	14	49	33	4.91	< 10	< 1	0.08	10	0.86	315	5
BB09578	201 20	2 < 0.2	2.30	6	320	< 0.5	< 2	0.18	< 0.5	8	39	17	2.43	< 10	< 1	0.05	10	0.38	160	2
BB09579	201 20	2 < 0.2	2.88	< 2	230	< 0.5	2	1.22	< 0.5	27	68	44	4.54	< 10	< 1	0.06	< 10	0.98	935	< 1
8809380	201 20		2.90	< 2	290	< 0.5	2	0.56	0.5	17	50	29	4.89	10	< 1	0.06	< 10	0.96	555	1
DB09361	201 20.	< U.Z	3.38	< 4	470	0.5	<u> </u>	0.44	< 0.5	12		40	3.59	< 10	< 1	0.09	10	0.84	350	< 1
BB09582	201 203	2 < 0.2	3.47	2	340	0.5	< 2	0.42	< 0.5	16	62	46	4.01	< 10	< 1	0.08	10	0.96	555	< 1
BB09583	201 20:	2 < 0.2	3.03	< 2	190	< 0.5	2	0.53	< 0.5	21	71	45	4.90	< 10	< 1	0.03	< 10	1.12	415	< 1
BB09584	201 202	2 < 0.2	3.33	10	310	< 0.5	< 2	0.57	< 0.5	28	58	86	6.06	10	< 1	0.06	< 10	1.75	1375	< 1
BB09585	201 202	< 0.2	2.01	2	300	< 0.5	< 2	0.13	< 0.5	9	31	19	2.91	< 10	< 1	0.06	10	0.53	330	1
BB09586	201 202	< 0.2	3.36	4	390	0.5	2	0.67	< 0.5	35	25	37	8.38	10	< 1	0.05	< 10	1.50	1310	< 1
BB09587	201 202	< 0.2	3.61	< 2	550	0.5	2	0.93	< 0.5	29	48	41	8.05	10	< 1	0.06	10	1.71	990	1
BB09588	201 202	2 < 0.2	2.71	10	270	< 0.5	< 2	0.22	< 0.5	11	49	25	3.82	< 10	< 1	0.06	10	0.63	310	1
BB09589	201 202	8 < 0.2	3.70	< 2	950	0.5	2	0.30	< 0.5	26	110	48	5.10	< 10	< 1	0.06	< 10	1.27	1365	< 1
BB09590	201 202	< 0.2	3.70	< 2	670	0.5	< 2	0.41	< 0.5	20	86	68	4.91	10	< 1	0.06	10	1.36	940	< 1
BB12680	201 202	< 0.2	1.66	< 2	470	< 0.5	< 2	0.52	< 0.5	11	30	26	2.64	< 10	< 1	0.07	10	0.62	500	< 1
BB12681	201 202	< 0.2	1.88	< 2	520	< 0.5	< 2	1.27	< 0.5	9	33	77	2.38	< 10	< 1	0.10	10	0.57	490	1
BB12682	201 202	< 0.2	1.21	< 2	170	< 0.5	< 2	0.21	< 0.5	8	23	23	2.41	< 10	< 1	0.07	< 10	0.23	355	< 1
BB12683 DD12684	201 202	0.4	1.43	< 2	470	< 0.5	< 2	1.04	< 0.5	6	26	42	1.86	< 10	< 1	0.09	10	0.36	410	< 1
BB12685	201 202	< 0.2	1.20	< 2	450	< 0.5	< 2	1.05	< 0.5	6	23	43	1.73	< 10 < 10	< 1	0.08	10	0.44	295 400	< 1
BB1 2686	201 203	0.2	1 50		960	< 0.5	<i>(</i>)	1 17	< 0.5	10	35	20	2 62	< 10	<u> </u>	0.09	10	0.66	EAE	
BB12687	201 202	< 0.2	1.11	2	570	< 0.5	< 2	0.81	< 0.5	4. Q	26	27	4.03	< 10	~ 1	0.08	10	0.00	282	1
BB12688	201 202	0.2	1.21	2	530	< 0.5	< 2	0.37	0.5	ő	28	22	2.35	< 10	21	0.05	10	0.37	343	· · ·
BB12689	201 202	< 0.2	1.59	< 2	860	< 0.5	< 2	0.70	0.5	11	47	31	2.24	< 10	< 1	0.04	< 10	0.55	585	~ 1
BB12690	201 202	< 0.2	1.24	4	310	< 0.5	< 2	0.11	< 0.5		26	14	2.28	< 10	< 1	0.06	10	0.37	450	1
BB12691	201 202	< 0.2	0.92	< 2	320	< 0.5	< 2	0.48	< 0.5	9	21	23	1.97	< 10	< 1	0.08	< 10	0.26	575	< 1
BB12692	201 202	< 0.2	1.49	6	270	< 0.5	< 2	0.29	< 0.5	12	33	23	3.15	< 10	< 1	0.08	10	0.51	510	1
BB12693	201 202	< 0.2	1.44	< 2	520	< 0.5	< 2	0.54	< 0.5	9	27	21	2.43	< 10	< ī	0.07	10	0.66	330	< 1
																				-
		J																	•	

CERTIFICATION:_ Hart Buchler

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Pag iber Totai Jges iber :5-B :5 Certificate Date: 29-AUG-96 Invoice No. I 9628881 P.O. Number : MPO Account

A9628881

Project : ICE Comments:

* PLEASE NOTE

·····															
						_			<u>.</u>					_	
	PREP	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	T 1	σ	v	W	Zn	
SAMPLE	CODE	*	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	bbw	ppm	
BB09567	201 202	< 0.01	25	740	10	4	4	13	0.01	< 10	< 10	84	< 10	110	
BB09568	201 202	< 0.01	30	260	14	4	3	10	0.03	< 10	< 10	78	< 10	86	
BB09569	201 202	< 0.01	27	230	14	6	3	11	0.01	< 10	< 10	106	< 10	88	
BB09570	201 202	< 0.01	24	220	16	6	6	14	0.04	< 10	< 10	114	< 10	116	
BB09571	201 202	< 0.01	16	230	0	2	3	1	0.05	< 10	< 10	32	< 10	114	
BB09572	201 202	< 0.01	22	190	14	2	3	13	0.03	< 10	< 10	74	< 10	70	
BB09573	201 202	< 0.01	75	370	12	4	6	30	0.07	< 10	< 10	176	< 10	178	
BB09574	201 202	< 0.01	26	240	ç	4	4	24	0.07	< 10	< 10	80	< 10	74	
BBU9575 BB09576	201 202		10	150	6	< 2	2	13	0.06	< 10	< 10	79	< 10	92	
8803370		<u> </u>							0.00	<u> </u>	· • •	,,,	<u> </u>		
BB09577	201 202	< 0.01	32	330	4	< 2	6	16	0.12	< 10	< 10	174	< 10	162	
BB09578	201 202		19	150	2	< 2	3	12	0.05	< 10	< 10	88	< 10	76	
BB032/2	201 202		21	400	× 4 × 2	~ 2	9	41 14	0.17	< 10	< 10	160	< 10	146	
BB09581	201 202	< 0.01	27	150	Ì B	2	6	15	0.07	< 1.0	< 10	107	< 10	86	
											·····				
BB09582	201 202	< 0.01	30	150	6	2	6	23	0.13	< 10	< 10	118	< 10	68	
BB09583	201 202	< 0.01	32	230	< 2	2	8	43	0.12	< 10	< 10	142	< 10	86	
BB09384	201 202		21	260	< <u>4</u>	2 2	11	10	0.11	< 10	< 10	197	< 10	74	
BB09586	201 202	< 0.01	22	580	4	< 2	8	16	0.31	< 10	< 10	229	< 10	142	
8809587	201 202	× 0.01	30	530	< 2	6	10	26	0.30	< 10	< 10	263	< 10	126	
BB09588	201 202	< 0.01	24	190	8	< 2	4	15	0.08	< 10	< 10	98	< 10	102	
BB09589	201 202	0.01	46	350	2	4	9	14	0.01	< 10	< 10	128	< 10	112	
BB09590	201 202	< 0.01	42	100	6	4	8	17	0.09	< 10	< 10	125	< 10	76	
BB12680	201 202	< 0.01	25	320	8	6	4	13	0.01	< 10	< 10	43	< 10	80	
BB12681	201 202	0.02	25	740	2	< 2	11	23	0.03	< 10	< 10	70	< 10	62	
BB12682	201 202	0.03	12	230	4	4	3	7	0.06	< 10	< 10	73	< 10	42	
BB12683	201 202	0.01	18	530	8	< 2	3	23	0.01	< 10	< 10	46	< 10	80	
BB12684	201 202	< 0.01	17	340	4	< 2	4	11	0.03	< 10	< 10	48	< 10	70	
BB12685	201 202	0.01	19	610	4	< 2	4	18	0.02	< 10	< 10	66	< 10	68	
BB12686	201 202	< 0.01	32	630	12	< 2	5	36	0.03	< 10	< 10	52	< 10	80	
BB12687	201 202	< 0.01	24	810	4	< 2	3	28	0.04	< 10	< 10	42	< 10	70	
BB12688	201 202	< 0.01	19	450	10	< 2	2	15	0.03	< 10	< 10	55	< 10	118	
BB12690	201 202	< 0.01	16	210	ŝ	< 2	2	6	0.02	< 10	< 10	42	< 10	74	
			±v		·		-			·	• ±•		· ••		·
BB12691	201 202	< 0.01	23	760	6	4	1	15	0.01	< 10	< 10	29	< 10	82	
BB12692	201 202		24	340	10	< 2	3	4.2	0.04	< 10	< 10	69	< 10	12	
BB14693	201 202	< 0.01	19	130	10	< 4	•	14	0.00	< T0	< 10	90	< 10	34	
	1														
															•
															11 12.20-
													C	ERTIFIC	ATION: Stant Jacaner

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er:1-A Total H ____ds :1 Certificate Date: 12-AUG-96 Invoice No. :19626574 P.O. Number : MPO Account

Project : Comments: ICE

CERTIFICATE OF ANALYSIS A9626574

SAMPLE	PREP CODE	Ag ppr	JA1 n %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мс ррл
BB08020	201 20	2 1.	5 1.90	< 2	390	< 0.5	2	0.35	< 0.5	22	71	684	4.81	< 10	< 1	0.06	< 10	0.44	460	1
BB08021	201 20	2 0.0	5 3.70	10	620	< 0.5	< 2	1.09	< 0.5	36	86	813	6.51	10	< 1	0.14	10	1.59	755	< 1
BB08022	201 20	2 0.2	3.80	8	530	0.5	2	0.85	1.5	131	84	561	6.38	10	< 1	0.19	10	1.30	1665	< 1
BB08023	201 20	2 < 0.2	2 3.53	6	950	0.5	4	0.66	< 0.5	36	73	165	5.66	10	< 1	0.19	10	1.03	1975	1
BB08024	201 20	2 < 0.2	3.37	2	400	< 0.5	2	0.50	0.5	23	39	32	6.19	10	< 1	0.05	10	0.66	930	1
BB08025	201 20	2 < 0.2	1.89	8	160	< 0.5	2	0.29	< 0.5	22	15	26	3.36	< 10	< 1	0.04	< 10	0.33	1105	1
BB08026	201 20	2 < 0.2	2 2.60	< 2	490	< 0.5	< 2	1.05	0.5	31	35	69	4.87	< 10	< 1	0.17	< 10	0.66	2220	< 1
BB08027	201 20	2 < 0.	3.87	2	1100	< 0.5	2	0.74	0.5	86	92	350	5.87	10	< 1	0.20	< 10	1.40	1460	< 1
BB08029	201 20	2 0.2	4.19	2	460	< 0.5	< 2	1.00	0.5	60	112	1525	7.57	10	< 1	0.08	< 10	2.15	700	< 1
BB08030	201 20	2 < 0.2	2.47	10	430	< 0.5	< 2	0.28	< 0.5	28	55	525	4.66	< 10	< 1	0.06	< 10	0.97	590	< 1
BB08031	201 20	2 < 0.2	2.33	4	770	< 0.5	< 2	0.30	0.5	12	36	25	3.05	< 10	< 1	0.06	10	0.50	540	1
BB08032	201 20	2 0.2	1.43	12	280	< 0.5	2	0.33	1.5	13	29	86	3.52	< 10	< 1	0.09	< 10	0.39	490	2
BB08033	201 20	2 < 0.2	2.45	10	560	< 0.5	< 2	0.25	< 0.5	9	42	18	3.18	< 10	< 1	0.05	10	0.67	250	< 1
BB08034	201 20	2 0.2	1.98	6	420	< 0.5	< 2	0.72	0.5	17	46	38	3.76	< 10	< 1	0.12	10	0.86	1045	1
BB08035	201 20	2 < 0.2	3.42	10	1080	< 0.5	< 2	0.33	< 0.5	21	61	47	4.53	10	< 1	0.06	10	1.34	625	< 1
BB08036	201 20	2 < 0.2	2.50	40	540	< 0.5	4	0.45	< 0.5	22	56	219	6.24	< 10	< 1	0.06	< 10	0.69	835	3
BB08037	201 20	2 < 0.2	3.58	14	840	< 0.5	2	0.49	< 0.5	24	54	43	5.36	10		0.07	10	0.93	565	1
8808038	201 20			8	500	< 0.5	~ 2	1 10	2 0.5	36		538	6 34	10	21	0.14	10	1 29	1710	1
		· · · · ·		•	500										• •	0.41	10			
BB08040	201 20	2 < 0.2	3.20	6	320	< 0.5	2	0.82	< 0.5	28	53	71	5.89	10	< 1	0.09	10	1.23	575	< 1
BB08041	201 20	2 < 0.2	3.20	12	340	< 0.5	< 2	0.49	< 0.5	21	56	39	5.33	10	< 1	0.06	10	1.21	670	< 1
BB08042	201 20	2 < 0.2	4.18	14	390	< 0.5	< 2	1.06	< 0.5	32	72	58	7.03	10	< 1	0.05	< 10	1.13	1200	1
BB08043 BB08044	201 20	2 < 0.2	3.51	8	1820	< 0.5	< 2	0.51	< 0.5	34	67	130	5.56	10	< 1	0.13	10	1.14	1200	1
	201 20			10	040	0 E		1 66	4 0 E	10	EE	63	4 24	< 10	- 1	0 12	10	1 02	1155	
BBUBUES m12673	201 20		i 3.∡3) 2.1∡	10	460	< 0.5	22	0.31	< 0.5	11	41	22	3.08	< 10	< 1	0.05	10	0.68	350	1
T12674	201 20	2 < 0.2	3.83	10	510	< 0.5	< 2	0.86	< 0.5	27	98	59	5.77	10	< 1	0.03	< 10	1.32	380	1
T12675	201 20	2 < 0.2	1.67	10	730	< 0.5	< 2	0.26	< 0.5	11	33	21	2.54	< 10	< 1	0.09	10	0.53	385	1
T12676	201 20	2 < 0.2	1.59	4	420	< 0.5	< 2	0.54	0.5	11	36	14	2.61	< 10	< 1	0.12	10	0.55	435	< 1
T12677	201 202	2 0.2	2.85	8	740	< 0.5	< 2	0.49	< 0.5	10	48	29	2.97	< 10	< 1	0.06	10	0.71	405	< 1
T12678	201 203	2 < 0.2	2.58	20	400	< 0.5	< 2	0.38	0.5	15	52	26	4.64	< 10	< 1	0.09	10	0.75	455	3
T 12679	201 203	2 < 0.2	1.49	8	330	< 0.5	< 2	1.20	< 0.5	7	30	62	2.31	< 10	< 1	0.07	10	0.45	275	< 1
										2										

tart Bichles

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Page er : 1-B Total ۲ سی عند : 1 Certificate Date: 12-AUG-96 Invoice No. : 19626574 P.O. Number : Account : MPO

A9626574

Project : ICE Comments:

Chemex Labs Ltd.

North Vancouver

V7J 2C1

Analytical Chemists * Geochemists * Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave.,

British Columbia, Canada

C

SAMPLE	PRE COD	P E	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
	0.04			4.0	220	6		6	4 6	0.07	. 10	< 10	113	< 10	109	
BB08020	201	202	0.03	18	320	10	< 4	22	15	0.07	< 10	< 10	113	< 10	108	
DDVOUA1	201	202	< 0.01	55	380	10	~ 2	16	24	0.11	~ 10	< 10	103	< 10	610	
	201	202		27	670 510	10	`	15	20	0.14	~ 10	< 10	167	< 10	200	
	201	202		21	670	10 6	~ 2	15	17	0.20	2 10	< 10	223	2 10	199	
	201		× 0.01	* *			` •				· 10	~ 10				
BB08025	201	202	0.03	12	890	4	< 2	4	12	0.10	< 10	< 10	113	< 10	68	
BB08026	201	202	0.01	20	1010	4	< 2	11	39	0.12	< 10	< 10	154	< 10	142	
BB08027	201	202	0.01	43	590	2	4	14	20	0.05	< 10	< 10	207	< 10	382	
BB08028	201	202	0.01	50	630	2	6	17	27	0.12	< 10	< 10	177	< 10	564	
BB08029	201	202	< 0.01	44	560	2	2	22	19	0.14	< 10	< 10	211	< 10	482	
BB08030	201	202	0.01	26	510	2	< 2	6	9	0.15	< 10	< 10	128	< 10	254	
BB08031	201	202	< 0.01	15	330	10	< 2	3	11	0.05	< 10	< 10	118	< 10	114	
BB08032	201	202	< 0.01	23	1290	10	< 2	2	16	0.04	< 10	< 10	92	< 10	108	
BB08033	201	202	< 0.01	19	230	8	2	3	12	0.06	< 10	< 10	108	< 10	72	
BB08034	201	202	< 0.01	27	650	12	< 2	4	31	0.11	< 10	< 10	133	< 10	108	
BB08035	201	202	< 0.01	29	450	2	< 2	10	14	0.06	< 10	< 10	158	< 10	70	
BB08036	201	202	< 0.01	32	800	2	6	13	6	0.01	< 10	< 10	198	< 10	84	
3B08037	201	202	< 0.01	30	240	6	4	9	23	0.04	< 10	< 10	174	< 10	132	
3B08038	201	202	< 0.01	28	470	10	4	4	16	0.06	< 10	< 10	110	< 10	132	
BB08039	201	202	< 0.01	45	500	10	2	14	21	0.10	< 10	< 10	204	< 10	826	
B08040	201	202	< 0.01	34	730	8	2	11	20	0.13	< 10	< 10	191	< 10	132	
BB08041	201	202	< 0.01	28	260	8	8	7	16	0.12	< 10	< 10	179	< 10	78	
BB08042	201	202	< 0.01	30	620	6	4	10	24	0.25	< 10	< 10	254	< 10	154	
BB08043	201	202	< 0.01	38	510	12	2	8	20	0.10	< 10	< 10	181	< 10	142	
BB08044	201	202	< 0.01	34	520	8	< 2	7	15	0.10	< 10	< 10	176	< 10	258	
BB08045	201	202	< 0.01	31	610	12	6	14	30	0.09	< 10	< 10	143	< 10	92	
12673	201 2	202	< 0.01	21	180	10	< 2	3	12	0.06	< 10	< 10	91	< 10	62	
12674	201	202	< 0.01	51	210	< 2	4	20	22 <	0.01	< 10	< 10	181	< 10	70	
12675	201	202	< 0.01	22	410	14	2	3	15	0.03	< 10	< 10	69	< 10	98	
12676	201	202	< 0.01	17	610	8	< 2	3	20	0.05	< 10	< 10	69	< 10	222	
12677	201 2	202	< 0.01	20	240	10	8	4	21	0.09	< 10	< 10	119	< 10	90	······
12678	201 2	202	< 0.01	29	9 70	14	< 2	4	14	0.07	< 10	< 10	135	< 10	94	
12679	201	202	0.01	25	620	10	6	5	19	0.03	< 10	< 10	54	< 10	76	

CERTIFICATION:

Hant Bichler

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er :1 Total Hands :5 Certificate Date: 08-AUG-96 Invoice No. : 19626226 P.O. Number :MPO Account

Project :	ICE
Comments:	

Г

				CERTIFICATE OF ANALYS				S A9626226			
SAMPLE	PREP CODE	Au ppb FA+AA									
BB4689 BB4690 BB5050 BB5051 BB5052	244 244 244 244 244	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
BB5053 BB5054 BB5055 BB5056 BB5057	244 244 244 244 244	<pre></pre>									
BB5058 BB5059 BB5060 BB5061 BB5062	244 244 244 244 244	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5									
BB5063 BB5064 BB5065 BB5066 BB5067	244 244 244 244 244	 									
BB5068 BB5069 BB5070 BB5272 BB5273	244 244 244 244 244	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5									
BB5274 BB5275 BB5276 BB5277 BB5278	244 244 244 244 244	55555 7775 777									
BB5279 BB5280 BB5281 BB5282 BB5283	244 244 244 244 244	555 5555 555 555 555 555 555 555 5555 5555									
BB5284 BB5285 BB5286 BB5287 BB5288	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre> 5 5 5 5 < 5 <</pre>									

CERTIFICATION:_

that Vmh

EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Page er :2 Invoice No. : 19626226 P.O. Number : MPO Account

VODI	LO
Project : Comments:	ICE

Chemex Labs Ltd.

North Vancouver V7J 2C1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

roject :	ICE
comments:	

Γ

			CERTIFICA	TE OF ANALYSIS	A9626226	
SAMPLE	PREP CODE	Au ppb FA+AA				
BB5289 BB5290 BB5291 BB5301 BB5302	244 244 244 244 244	<pre> 5 5 5 5 5 5 5 7 < 7 5 5 5 5 5 5 5 5 5 5</pre>				
BB5303 BB5304 BB5305 BB5306 BB5307	244 244 244 244 244	<pre>< 5 < >				
BB5310 BB5311 BB5312 BB5313 BB5314	244 244 244 244 244	<pre>< 5 < 5</pre>				
BB5315 BB5316 BB5317 BB5318 BB5319	244 244 244 244 244	<pre>< 5 < 5</pre>				
BB5320 BB5321 BB5322 BB5323 BB5324	244 244 244 244 244	<pre>< 5 < 5 5 5 < < 5 5 < < 5 5 </pre>				
BB5325 BB5326 BB5327 BB5328 BB5329	244 244 244 244 244	<pre></pre>				
BB5330 BB5331 BB5332 BB5333 BB5334	244 244 244 244 244	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
BB5335 BB5336 BB5337 BB5338 BB5339	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 5 < 5 < 5 < 5 < 5 < 5 < 5				
	I]	 l	CERTIFICATION	That V	mh

CERTIFICATION:

>: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er :3 Total F. J.s :5 Certificate Date: 08-AUG-96 Invoice No. :19626226 P.O. Number : Account :MPO

Project :	ICE
Comments:	

Chemex Labs Ltd.

North Vancouver

V7J 2C1

Analytical Chemists * Geochemists * Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave., British Columbia, Canada_

C

		_						A96	26226	
SAMPLE	PREP CODE	Au ppb FA+AA								
BB5340 BB5341 BB5342 BB5343 BB5344	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>								
BB5345 BB5346 BB5347 BB5451 BB5452	244 244 244 244 244	<pre>< 5 < >								
BB5455 BB5456 BB5457 BB5461 BB5462	244 244 244 244 244 244	<pre>< 5 < 5</pre>								
BB5463 BB5464 BB5465 BB5466 BB5468	244 244 244 244 244	<pre>< 5 < 5</pre>								
BB5469 BB5470 BB5471 BB5472 BB5473	244 244 244 244 244	<pre>< 5 < 5</pre>								
BB5475 BB5476 BB5477 BB5478 BB5479	244 244 244 244 244	<pre>< 5 < 5</pre>								
BB5480 BB5481 BB5482 BB5483 BB5484	244 244 244 244 244	<pre>< 5 < 4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5</pre>		•						
BB5485 BB5486 BB6820 BB6821 BB6822	244 244 244 244 244 244	<pre>< 5 < < 5 </pre>								

CERTIFICATION:_

that Vmh

EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Page er :4 Page er :4 Total F....s :5 Certificate Date: 08-AUG-96 Invoice No. : 19626226 P.O. Number : MPO Account

					CERTIFIC	ATE OF A	NALYSIS	A96	626226
SAMPLE	PREP CODE	Au ppb FA+AA							
BB6823	244	< 5			1				
BB6824	244	< 5							
BB6825	244	< 5							
BB6826	244	< 5							
BB6827	244	< 5							
BB6828	244	< 5							
BB6829	244	< 5							1
BB6830	244	< 5					1		
BB6831	244	< 5		1					
BB6832	244	< 5							
BB6833	244	< 5							
BB6834	244	< 5	1						
BB6835	244	< 5							
BB6836	244	< 5							
BB6837	244	< 5							
BB6838	244	< 5							
BB6839	244	< 5							
BB6859	244	< 5							
BB6860	244	< 5							
BB6861	244	< 5							
BB6862	244	< 5							
BB6863	244	< 5							
BB6864	244	< 5							
BB6865	244	< 5							
BB6866	244	< 5							
BB6867	244	< 5							
BB6868	244	< 5							
BB6869	244	< 5							
BB6870	244	< 5							
BB6871	244	< 5							
BB6872	244	< 5	 	1					
BB6873	244	< 5							1
BB6874	244	< 5				1			
BB6875	244	< 5							

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

< 5

< 5 < 5

< 5 < 5 < 5 < 5

_ _

--

--

244

244

244

244

244 ---

244

BB6876

BB6877

BB6878

BB6879

BB6880

BB6881

212 Brooksbank Ave.,

North Vancouver

That Voh'

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page юr:5 Total Huges :5 Certificate Date: 08-AUG-96 Invoice No. : 19626226 P.O. Number : : MPO Account

Project :	ICE
Comments:	

				CERTIFIC	ATE OF A	NALYSIS	A96	26226	
SAMPLE	PREP CODE	Au ppb FA+AA							
BB6882 BB6883 BB6884 BB6885 BB6886	244 244 244 244 244	5 5 5 5 5 5 5 5 5 5 5 5							
BB6887 BB6888 BB6889 BB6890 BB6891	244 244 244 244 244	<pre>< 5 < >							
BB6892 BB6893	244 244	< 5 < 5							
					x				
	I	I	 				X	nh l	Imh/

Г

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er :1-A Total Fages :5 Certificate Date: 01-AUG-96 Invoice No. :19625249 P.O. Number : Account :MPO

Project : ICE Comments:

	SAMPLE CODE						<u>.</u>				CE	RTIF	CATE	E OF A		SIS		A9625	249		
SAMPLE	PR	ep De	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
BB4689	201	202	0.2	1.36	12	530	0.5	< 2	1.75	1.0	9	27	417	2.24	< 10	< 1	0.13	< 10	0.64	355	1
BB4690	201	202	< 0.2	1.57	10	210	< 0.5	< 2	0.17	< 0.5	7	27	11	2.45	< 10	< 1	0.04	10	0.38	225	1
BB5050	201	202	< 0.2	1.70	14	560	0.5	< 2	0.53	< 0.5	13	34	44	3.03	< 10	< 1	0.11	10	0.77	530	1
BB5051	201	202	< 0.2	3.28	14	370	0.5	< 2	0.72	< 0.5	23	36	61	6.51	< 10	< 1	0.02	< 10	1.57	845	1
BB5052	201	202	0.2	1.69	8	490	0.5	< 2	0.90	0.5	11	32	49	2.63	< 10	< 1	0.05	< 10	0.53	750	< 1
BB5053	201	202	< 0.2	1.31	10	270	< 0.5	< 2	0.15	< 0.5	7	23	16	2.58	< 10	< 1	0.04	< 10	0.38	285	1
BB5054	201	202	< 0.2	0.89	6	270	< 0.5	< 2	0.16	0.5	7	17	21	2.04	< 10	< 1	0.08	< 10	0.25	550	1
BB5055	201	202	0.4	1.62	12	360	< 0.5	< 2	0.44	1.0	14	51	38	3.47	< 10	< 1	0.11	< 10	0.77	530	2
BB5056	201	202	0.6	2.53	16	790	0.5	4	1.12	< 0.5	37	65	2820	6.69	< 10	< 1	0.07	< 10	0.86	365	1
885057	201	202	< 0.2	2.70	14	290	< 0.5	< 2	0.96	< 0.5	40	68	258	5.13	< 10	< 1	0.10	< 10	1.81	1010	< 1
BB5058	201	202	0.2	3.64	24	680	0.5	< 2	0.57	< 0.5	25	71	158	5.67	< 10	< 1	0.28	10	1.01	945	1
BB5059	201	202	< 0.2	3.26	16	430	0.5	< 2	0.70	< 0.5	33	47	56	7.06	< 10	< 1	0.07	< 10	1.29	1885	1
BB5060	201	202	< 0.2	3.56	16	310	0.5	< 2	1.13	0.5	31	65	77	8.00	< 10	< 1	0.04	< 10	2.04	1650	1
BB3V61	201	202		4.34	40	#30 660	< 0.5		0.25	< 0.5	31	144	¥040	14.13	< 10		0.07	< 10	0.89	165	2
883062	401	404	< 0.2	4.10	10	330	< 0.5	× 4	0.35	< 0.5	10	4.3	223	3.77	< 10	< 1	0.06	< 10	0.72	403	4
BB5063	201	202	< 0.2	1.48	4	510	0.5	< 2	1.26	0.5	24	29	1760	2.41	< 10	< 1	0.08	< 10	0.60	690	1
BB5064	201	202	< 0.2	1.51	12	340	< 0.5	< 2	0.13	< 0.5	9	30	26	3.26	< 10	< 1	0.08	10	0.45	265	1
BB5065	201	202	< 0.2	1.78	10	720	< 0.5	< 2	0.47	< 0.5	9	33	20	2.73	< 10	< 1	0.04	< 10	0.58	435	1
BB5066	201	202	0.2	3.67	22	540	0.5	2	0.57	1.0	117	95	2690	9.45	< 10	< 1	0.05	< 10	2.39	1030	1
BB5067	201	202	< 0.2	2.23	14	470	< 0.5	< 2	0.58	0.5	49	46	201	5.07	< 10	< 1	0.10	< 10	0.85	1025	1
BB5068	201	202	< 0.2	2.34	16	440	0.5	< 2	0.60	< 0.5	30	44	65	5.37	< 10	1	0.15	< 10	1.22	1470	2
BB5069	201	202	< 0.2	2.71	20	230	0.5	< 2	0.84	< 0.5	31	42	98	5.86	< 10	< 1	0.11	< 10	1.16	1105	1
BB5070	201	202	0.4	2.87	14	500	< 0.5	< 2	0.74	0.5	30	57	54	6.24	< 10	< 1	0.14	< 10	1.46	1225	1
BB5272	201	202	< 0.2	1.70	14	520	< 0.5	< 2	0.44	0.5	11	32	31	2.74	< 10	< 1	0.14	10	0.59	340	2
BB5273	201	202	< 0.2	1.48	8	410	< 0.5	< 2	0.22	< 0.5	7	18	23	1.72	< 10	< 1	0.10	< 10	0.26	200	2
BB5274	201	202	< 0.2	2.43	16	900	0.5	< 2	0.65	< 0.5	20	56	83	4.39	< 10	< 1	0.22	10	1.15	930	1
BB5275	201	202	0.2	1.64	12	660	< 0.5	< 2	0.27	< 0.5	14	30	71	3.27	< 10	< 1	0.13	< 10	0.41	815	1
BB5276	201	202	< 0.2	1.59	12	310	< 0.5	< 2	0.31	< 0.5	11	28	55	2.97	< 10	< 1	0.08	10	0.49	450	1
BB5277	201	202	< 0.2	2.00	10	1010	0.5	< 2	3.85	< 0.5	36	35	71	7.46	< 10	< 1	0.04	< 10	0.75	1685	< 1
BB5278	201	202	< 0.2	3.20	18	310	< 0.5	< 2	0.78	< 0.5	17	46	31	5.64	< 10	< 1	0.06	< 10	1.14	640	2
BB5279	201	202	< 0.2	1.76	12	870	< 0.5	< 2	0.25	0.5	16	27	60	3.34	< 10	< 1	0.12	10	0.40	1580	2
BB5280	201	202	< 0.2	1.89	12	1000	< 0.5	< 2	0.23	0.5	21	27	69	3.14	< 10	< 1	0.10	10	0.38	1635	1
BB5281	201	202	0.6	1.66	12	1490	< 0.5	< 2	0.44	1.5	25	33	71	4.44	< 10	< 1	0.11	< 10	0.49	2610	1
883282	201	202	< 0.2	1.32	14	490	< 0.5	< 2	0.70	0.5	13	33	616	2.74	< 10	< 1	0.12	10	0.67	630	2
557483	201	404	< 0.2	4.17	18	670	0.5	< 4	0./1	< 0.5	19	40	139	3.94	< 10	< 1	0.09	< 10	0.97	810	1
BB5284	201	202	< 0.2	1.53	14	190	< 0.5	< 2	0.23	0.5	15	29	32	3.85	< 10	< 1	0.05	< 10	0.57	530	1
BB5285	201	202	< 0.2	1.85	20	300	< 0.5	< 2	0.19	< 0.5	10	37	51	3.31	< 10	< 1	0.05	10	0.59	280	1
BB5286	201	202	< 0.2	1.64	16	310	< 0.5	< 2	0.42	< 0.5	17	33	93	2.86	< 10	< 1	0.06	10	0.66	445	1
BB5287	201	202	0.6	2.21	18	610	0.5	< 2	1.00	0.5	14	45	112	2.74	< 10	< 1	0.17	< 10	0.80	980	2
882388	201	202	< 0.2	2.27	22	590	0.5	< 2	0.83	< 0.5	15	52	51	3.63	< 10	< 1	0.18	10	0.93	525	1

CERTIFICATION:

tart Bichler

C

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 >: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er :1-B Total Payes :5 Certificate Date: 01-AUG-96 Invoice No. :19625249 P.O. Number : Account :MPO

Project : ICE Comments:

										CE	RTIFI	CATE	OF A	NALYSIS	A9625249
SAMPLE	PREP CODE	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
BB4689	201 202	0.01	28	970	10	2	5	61	0.04	< 10	< 10	49	< 10	166	
BB4690	201 202	0.01	14	110	12	< 2	2	8	0.04	< 10	< 10	70	< 10	54	
BB5050	201 202	< 0.01	31	340	14	2	6	24	0.04	< 10	< 10	64	< 10	88	
BB5051	201 202	< 0.01	23	300	2	2	18	16 •	< 0.01	< 10	< 10	173	< 10	76	
BB5052	201 202	0.01	26	370	12	2	6	15	0.03	< 10	< 10	64	< 10	104	
BB5053	201 202	< 0.01	17	350	10	2	2	7	0.04	< 10	< 10	56	< 10	68	
885054	201 202	0.04	16	340	10	2	1	11	0.03	< 10	< 10	39	< 10	88	
BB5055	201 202	0.01	49	590	18	2	10	10	0.09	< 10	< 10	84	< 10	88	
BB5050	201 202		38	320	9 9	2	12	21	0.18	< 10	< 10	131	< 10	176	
					`					· 10	<u> </u>		· 10	1/0	
BB5058	201 202	< 0.01	43	620	12	2	12	21	0.08	< 10	< 10	154	< 10	200	
BB5059	201 202	< 0.01	27	750	8	2	10	22	0.26	< 10	< 10	212	< 10	196	
BB5060	201 202	< 0.01	28	720	6	4	13	19	0.26	< 10	< 10	244	< 10	420	
BB5061	201 202	< 0.01	19	640	< 2	4	26	13	0.04	< 10	< 10	386	< 10	238	
BB5062	201 202	< 0.01	24	230	0	< 2	5	15	0.05	< 10	< 10	105	< 10	136	
BB5063	201 202	0.01	30	660	10	< 2	9	26	0.03	< 10	< 10	51	< 10	188	······································
BB5064	201 202	< 0.01	22	390	14	2	2	8	0.03	< 10	< 10	63	< 10	110	
BB5065	201 202	< 0.01	20	240	12	2	4	21	0.05	< 10	< 10	65	< 10	94	
BB5066	201 202	< 0.01	46	420	6	4	20	19	0.14	< 10	< 10	217	< 10	1450	
882067	201 202	0.02	40	040		4	10	10	0.11	< 10	< 10	104	< 10	200	
BB5068	201 202	0.01	29	670	8	4	11	21	0.12	< 10	< 10	125	< 10	170	
BB5069	201 202	< 0.01	27	630	4	2	11	20	0.18	< 10	< 10	162	< 10	110	
BB5070	201 202	< 0.01	28	430	8	4	12	21	0.14	< 10	< 10	167	< 10	204	
BB34/4	201 202		12	200	14	2	2	15	0.03	< 10	< 10	68 54	< 10	59	
	-01 -01	0.00								< 10	< 10 	51	<u> </u>		
BB5274	201 202	< 0.01	40	370	16	2	14	23	0.12	< 10	< 10	104	< 10	104	
BB5275	201 202	0.03	20	890	14	< 2	3	17	0.05	< 10	< 10	61	< 10	250	
885276	201 202	< 0.01	22	930	10	2		13	0.08	< 10	< 10	75	< 10	178	
BB34//	201 202		22	200	12	× 4	33	20	0.01	< 10	< 10	170	< 10	70 96	
		< 0.01				.				<u> </u>	< 10		· 10		
BB5279	201 202	0.03	24	500	16	2	3	18	0.04	< 10	< 10	60	< 10	180	
BB5280	201 202	0.03	49	760	20	2	3	21	0.03	< 10	< 10	54	< 10	498	
BB5281	201 202	< 0.01	28	910	14	< 2	4	18	0.06	< 10	< 10	82	< 10	400	
885282	201 202	0.01	32	800	14	2	87	27	0.05	< 10	< 10	57	< 10	118	
BB7463	201 204	< 0.01	33	430	T0	4	· · ·	73	0.11	× 10	< 10	33	< 10	110	
BB5284	201 202	0.01	16	400	10	2	3	10	0.07	< 10	< 10	96	< 10	268	
BB5285	201 202	< 0.01	23	260	16	< 2	3	9	0.05	< 10	< 10	66	< 10	90	
BB5286	201 202	< 0.01	22	260	12	2	5	14	0.07	< 10	< 10	66	< 10	80	
885288	201 202	0.03	30	300	14	2	å	21	0.03	< 10	< 10	01 01	< 10	106	
				330	7.4	-	-	71	V. VJ		. 10	24	• 10	744	
L		<u> </u>													· · · · · · · · · · · · · · · · · · ·

CERTIFICATION:

tart Brehler

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC

CERTIFICATE OF ANALYSIS

Page er :2-A Total Pages :5 er :2-A Certificate Date: 01-AUG-96 Invoice No. 19625249 P.O. Number : Account :MPO

A9625249

Project : Comments: ICE

V6B 1L8

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

		_																		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
BB5289	201 202	< 0.2	1.99	4	350	< 0.5	< 2	0.27	0.5	17	30	41	4.30	< 10	< 1	0.07	< 10	0.71	590	1
BB5290	201 202	< 0.2	2.26	2	460	< 0.5	< 2	0.24	< 0.5	10	38	35	2.97	< 10	< 1	0.09	10	0.77	350	1
BB5291	201 202	< 0.2	1.80	< 2	630	< 0.5	< 2	0.31	< 0.5	9	37	22	2.45	< 10	< 1	0.06	10	0.74	1370	< 1
BB5301	201 202	< 0.2	1.80	4	620	0.5	< 2	0.38	0.5	13	35	43	2.64	< 10	< 1	0.13	10	0.57	520	1
BB5302	201 202	< 0.2	1.39	28	440	< 0.5	< 2	0.22	< 0.5	8	22	21	2.41	< 10	< 1	0.15	10	0.49	205	2
BB5303	201 202	< 0.2	2.11	< 2	390	< 0.5	< 2	0.58	< 0.5	16	42	18	3.32	< 10	< 1	0.08	< 10	0.69	355	< 1
BB5304	201 202	< 0.2	1.88	< 2	310	< 0.5	< 2	0.36	< 0.5	11	35	21	2.75	< 10	< 1	0.06	< 10	0.58	435	< 1
BB5305	201 202	< 0.2	1.91	< 2	280	< 0.5	< 2	0.23	< 0.5	10	37	24	2.63	< 10	< 1	0.06	10	0.57	200	< 1
BB5306	201 202	< 0.2	1.53	< 2	510	< 0.5	< 2	0.48	0.5	7	24	14	2.17	< 10	< 1	0.05	10	0.41	165	1
882307	201 202	0.2	1.70	8	510	< 0.5	< 2	1.26	0.5	12	29	30	2.58	< 10	< 1	0.14	10	0.75	325	1
BB5310	201 202	< 0.2	1.47	4	450	< 0.5	< 2	0.76	0.5	11	32	32	2.39	< 10	< 1	0.12	10	0.69	385	1
BB5311	201 202	< 0.2	1.87	8	300	< 0.5	< 2	0.26	0.5	12	35	25	4.53	< 10	< 1	0.07	10	0.54	375	1
BB3312	201 202	< 0.2	1.98	2	350	< 0.5	< 2	0.33	< 0.5	10	34	16	2.89	< 10	< 1	0.07	10	0.60	220	< 1
887313 885314	201 202		2 12	ŝ	390	< 0.5	~ 2	0.34	2.0	11	31	43 25	2.69	< 10		0.10	10	0.70	385	1
BBJJ11			*• * *	· · · · · · · · · · · · · · · · · · ·	330	< 0.5	<u> </u>			15		A J	3.43	< 10		0.11		0.54	000	4
BB5315	201 202	< 0.2	1.46	2	200	< 0.5	< 2	0.27	0.5	9	32	15	3.03	< 10	1	0.09	10	0.51	200	1
BB5316	201 202	< 0.2	1.27	< 2	380	< 0.5	< 2	0.32	< 0.5	8	23	11	2.06	< 10	< 1	0.07	10	0.47	305	1
BB5317	201 202	0.6	1.26	2	540	< 0.5	< 2	0.98	1.5	10	26	31	1.79	< 10	< 1	0.09	< 10	0.45	950	1
885318 885318	201 202		2.92	< 2	400	< 0.5	< 2	0.83	0.5	23	61	35	4.83	< 10	< 1	0.11	< 10	1.15	715	< 1
885319	201 202	< 0.2	3.38	< 4	420	< 0.5	< 4	0.49	0.5	20	4/	34	4.56	10	< 1	0.11	10	1.27	570	1
BB5320	201 202	< 0.2	1.34	10	350	< 0.5	< 2	0.68	0.5	12	25	35	2.70	< 10	< 1	0.11	< 10	0.68	350	1
BB5321	201 202	< 0.2	2.31	8	430	< 0.5	< 2	0.53	0.5	17	51	42	4.41	< 10	< 1	0.08	< 10	0.89	365	2
553344 55333	201 202		1.58	6	620	U.5	< 2	1.10	1.5	11	29	74	2.64	< 10	< 1	0.11	10	0.55	635	1
BB5324	201 202	< 0.2	2.03	14	440	< 0.5	22	0.36	0.5	12	33	21	3.15	< 10	< 1	0.14	10	0.5/	400	2
			A .03			· •				15	37	A 1	3.35	< 10 	<u> </u>	0.14	10	0.79	400	1
BB5325	201 202	0.2	1.72	< 2	400	< 0.5	< 2	0.42	0.5	17	36	24	2.89	< 10	< 1	0.12	10	0.76	730	1
3B5326	201 202	< 0.2	1.99	6	500	< 0.5	< 2	0.49	0.5	16	34	72	3.41	< 10	< 1	0.06	10	0.75	475	1
385327	201 202	< 0.2	3.36	2	300	< 0.5	< 2	0.77	1.5	39	85	1800	7.42	10	< 1	0.08	< 10	1.28	620	1
383328	201 202	< 0.2	1.99	8 2	590	< 0.5	< 2	0.32	0.5	22	47	320	4.58	< 10	< 1	0.10	< 10	0.63	655	1
	201 202		4.34		540	< 0.5	× 4	0.71	0.5	32	21	21	0.91	< 10	< 1	0.11	< 10	0.99	940	1
BB5330	201 202	< 0.2	1.30	< 2	140	< 0.5	< 2	0.50	< 0.5	16	23	29	3.27	< 10	< 1	0.06	< 10	0.55	725	< 1
BB5331	201 202	< 0.2	1.91	< 2	140	< 0.5	< 2	0.34	< 0.5	12	28	23	4.70	< 10	< 1	0.03	< 10	0.54	490	1
BB5332	201 202	< 0.2	2.19	< 2	210	0.5	< 2	0.66	0.5	35	14	51	7.35	10	< 1	0.05	< 10	0.44	1640	1
885333	201 202	0.2	2.39	< 2	250	0.5	< 2	0.94	0.5	43	31	148	5.83	< 10	< 1	0.07	< 10	0.88	1745	1
	201 202	< 0.∡	1.33		340	< 0.5	< 2	0.29	< 0.5	15	20	24	3.68	< 10	< 1	0.08	< 10	0.46	605	< 1
385335	201 202	< 0.2	1.87	2	210	< 0.5	< 2	0.85	0.5	25	17	70	4.62	< 10	< 1	0.15	< 10	1.14	1260	1
585336	201 202	0.2	1.81	12	380	< 0.5	< 2	0.64	0.5	17	38	50	3.63	< 10	< 1	0.20	10	0.64	550	< 1
55557	201 202		1.65	8	470	< 0.5	< 2	0.47	0.5	12	37	19	3.07	< 10	< 1	0.13	10	0.78	340	1
185338 185119	201 202		1.72	<u>م</u>	300	< 0.5	< 2	0.72	1 0	30	7∡ 21	31 27	41.05 3.34	< 10	< 1	0.12	< 10	0.91	1200	< 1
		0.4	±•/0	~ •	230	- 0.9	~ 4	0.13	1.0	20	31	31	3.32	× 10	× 1	0.17	< 10	0.65	1460	< 1
						······													•	
															ATION	[.	tr. :	<u>kB</u> -	ichl	0.
													(CHILLIC	ATION:		VICA	10 -		~~ <

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

CERTIFICATE OF ANALYSIS

Page er :2-B Total Pages :5 Certificate Date: 01-AUG-96 Invoice No. : 19625249 P.O. Number : Account : MPO

A9625249

Project : ICE Comments:

SAMPLE	PRE	P E	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
BB5289	201	202	0.01	22	350	10	< 2	5	15	0.09	< 10	< 10	111	< 10	94	
BB5290	201	202	0.02	28	330	10	< 2	4	15	0.07	< 10	< 10	83	< 10	76	
BB5291	201	202	< 0.01	24	160	12	< 2	4	19	0.06	< 10	< 10	59	< 10	68	
BB5301	201	202	0.01	29	420	16	< 2	6	18	0.04	< 10	< 10	60	< 10	154	
BB5302	201	202	0.01	25	450	14	< 2	3	19	0.01	< 10	< 10	49	< 10	98	
BB5303	201	202	< 0.01	26	200	10	< 2	4	14	0.08	< 10	< 10	92	< 10	68	
BB5304	201	202	0.03	22	360	10	< 2	3	13	0.05	< 10	< 10	66	< 10	72	
BB5305	201	202	0.01	23	220	10	< 2	3	8	0.04	< 10	< 10	61	< 10	70	
BB5306	201	202	0.01	12	180	12	< 2	3	19	0.04	< 10	< 10	62	< 10	104	
885307	201	202	0.01	25	580	14	< 2	5	46	0.05	< 10	< 10	62	< 10	106	
BB5310	201	202	0.01	29	370	10	< 2	5	32	0.04	< 10	< 10	51	< 10	96	
BB5311	201	202	0.01	20	460	10	< 2	4	12	0.09	< 10	< 10	90	< 10	102	
BB5312	201	202	< 0.01	20	190	12	< 2	3	13	0.07	< 10	< 10	80	< 10	58	
BB5313	201	202	0.01	23	460	16	< 2	4	21	0.07	< 10	< 10	69	< 10	76	
BB5314	201	202	0.01	21	230	12	< 2	4	18	0.07	< 10	< 10	91	< 10	340	
BB5315	201	202	0.01	23	400	8	< 2	2	11	0.06	< 10	< 10	72	< 10	66	
BB5316	201	202	0.01	15	240	10	< 2	2	13	0.04	< 10	< 10	51	< 10	70	
BB5317	201	202	0.02	17	610	14	< 2	4	26	0.06	< 10	< 10	51	< 10	184	
BB5318	201	202	< 0.01	29	330	10	< 2	6	22	0.16	< 10	< 10	127	< 10	188	
BB5319	201	202	0.01	34	580	10	< 2	8	18	0.13	< 10	< 10	142	< 10	112	
BB5320	201	202	0.01	32	990	16	< 2	5	33	0.01	< 10	< 10	48	< 10	140	
BB5321	201 2	202	< 0.01	31	400	12	< 2	5	13	0.11	< 10	< 10	108	< 10	126	
BB5322	201	202	0.02	29	580	12	< 2	5	38	0.02	< 10	< 10	61	< 10	156	
BB5323	201	202	0.01	27	360	14	< 2	5	22	0.04	< 10	< 10	66	< 10	112	
BB5324	201	202	< 0.01	31	500	14	< 2	4	14	0.05	< 10	< 10	70	< 10	108	
BB5325	201 2	202	0.01	25	410	12	< 2	5	13	0.06	< 10	< 10	70	< 10	132	
BB5326	201 2	202	< 0.01	27	250	12	< 2	4	14	0.11	< 10	< 10	93	< 10	104	
BB5327	201	202	< 0.01	34	310	12	< 2	12	21	0.11	< 10	< 10	156	< 10	324	
BB5328	201 2	202	0.01	24	520	14	< 2	5	12	0.07	< 10	< 10	100	< 10	132	
BB5329	201 2	202	0.01	28	360	10	< 2	8	19	0.13	< 10	< 10	179	< 10	170	
BB5330	201 2	202	0.06	13	520	6	< 2	7	12	0.10	< 10	< 10	90	< 10	80	
BB5331	201 2	202	0.01	19	420	8	< 2	3	9	0.15	< 10	< 10	136	< 10	120	
BB5332	201 2	202	0.01	11	890	6	< 2	11	25	0.20	< 10	< 10	180	< 10	140	
BB5333	201	202	< 0.01	26	610	10	< 2	12	22	0.20	< 10	< 10	140	< 10	158	
BB5334	201	202	0.03	14	350	8	< 2	4	11	0.07	< 10	< 10	97	< 10	66	
BB5335	201	202	0.04	18	450	4	< 2	10	27	0.08	< 10	< 10	106	< 10	88	
BB5336	201	202	0.01	28	350	12	< 2	8	19	0.09	< 10	< 10	86	< 10	98	
BB5337	201	202	< 0.01	26	590	12	< 2	4	17	0.07	< 10	< 10	72	< 10	136	
BB5338	201 2	202	< 0.01	34	330	8	< 2	1	19	0.15	< 10	< 10	116	< 10	102	
BB5339	201	202	0.04	27	610	8	< 2	6	21	0.08	< 10	< 10	/3	< 10	154	
L																

CERTIFICATION:____

tart Bichler

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC

Page er :3-A Total Pages :5 Certificate Date: 01-AUG-96 Invoice No. 19625249 P.O. Number 1 Account :MPO

ICE

V6B 1L8

			· · · · · · ·								CE	RTIF	CATE	OF /	NAL	/SIS		A9625	5249		
SAMPLE	PRI	SP DE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %	Mn ppm	Mo ppm
BB5340 BB5341 BB5342 BB5343 BB5344	201 201 201 201 201 201	202 202 202 202 202 202	0.8 < 0.2 < 0.2 0.6 < 0.2	2.63 1.75 2.02 1.40 1.22	< 2 4 8 4 6	520 340 540 600 290	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.73 0.33 0.46 0.68 0.35	2.5 < 0.5 0.5 0.5 1.0	48 11 15 8 14	47 33 42 28 28	172 32 15 54 25	5.58 2.82 3.55 2.11 2.97	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.17 0.07 0.12 0.09 0.11	< 10 < 10 10 10 10	1.34 0.63 0.68 0.51 0.51	1995 490 755 600 790	< 1 < 1 1 2
BB5345 BB5346 BB5347 BB5451 BB5452	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	1.75 1.59 1.77 1.70 1.55	6 10 10 2 12	470 310 590 400 440	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.37 0.22 0.48 0.33 1.49	< 0.5 < 0.5 < 0.5 0.5 0.5	9 8 9 10 16	34 29 34 30 36	20 17 34 11 38	2.68 2.82 2.64 2.44 3.36	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.07 0.07 0.08 0.06	10 10 10 10 < 10	0.53 0.48 0.68 0.41 0.71	265 350 345 275 1265	1 1 1 < 1 1
BB5455 BB5456 BB5457 BB5461 BB5462	201 201 201 201 201 201	202 202 202 202 202 202	0.2 0.2 0.2 0.6 0.2	1.35 1.45 0.85 2.00 1.50	6 2 2 8 12	440 440 340 900 680	< 0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.91 1.94 2.15 1.63 0.77	0.5 1.5 0.5 1.5 1.5	10 11 6 17 13	30 29 16 39 29	28 521 405 102 56	2.67 2.54 1.37 3.20 3.33	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.14 0.07 0.18 0.19	10 < 10 < 10 10 10	0.73 0.77 0.51 0.81 0.77	445 395 380 1545 510	1 < 1 < 1 1 2
BB5463 BB5464 BB5465 BB5466 BB5468	201 201 201 201 201 201	202 202 202 202 202 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.05 2.35 1.65 2.54 2.85	< 2 < 2 < 2 8 < 2	750 250 440 660 520	0.5 < 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.32 0.36 0.35 0.73 0.50	1.5 0.5 < 0.5 2.0 0.5	12 10 7 26 13	36 38 27 51 45	66 16 10 32 19	2.51 3.30 2.20 4.91 3.26	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.05 0.08 0.18 0.14	< 10 10 10 10 10	0.69 0.54 0.44 0.76 0.96	325 230 180 1250 320	< 1 < 1 1 1
BB5469 BB5470 BB5471 BB5472 BB5473	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 1.2 < 0.2 < 0.2 0.2	1.44 3.19 2.72 2.67 2.58	4 < 2 < 2 < 2 12	320 1340 410 390 560	< 0.5 0.5 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.40 1.98 1.03 0.42 0.73	0.5 2.0 1.0 0.5 0.5	12 20 25 14 19	32 58 58 45 49	21 309 38 46 108	2.79 4.31 5.05 4.09 4.35	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.12 0.16 0.15 0.08 0.17	10 10 < 10 10 20	0.61 0.73 0.96 0.73 0.87	435 910 890 365 1230	1 1 < 1 < 1 1 1
BB5475 BB5476 BB5477 BB5478 BB5479	201 201 201 201 201 201	202 202 202 202 202 202	0.2 0.2 < 0.2 < 0.2 < 0.2	1.73 2.39 1.14 2.65 2.45	< 2 8 < 2 8 4	450 740 340 450 520	< 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.20 0.40 2.91 0.89 0.72	1.0 1.5 < 0.5 0.5 1.5	10 15 6 27 22	30 43 13 45 41	132 42 490 78 568	2.34 3.47 1.19 5.18 5.53	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.17 0.05 0.11 0.05	10 10 < 10 < 10 < 10 < 10	0.59 0.55 0.32 0.84 0.84	390 425 415 890 550	1 2 < 1 < 1 1 1
BB5480 BB5481 BB5482 BB5483 BB5484	201 201 201 201 201 201	202 202 202 202 202 202	0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	2.79 3.47 3.65 2.66 2.71	6 2 < 2 18 6	560 510 200 270 380	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.87 0.97 1.28 0.48 0.86	0.5 0.5 0.5 0.5 0.5	26 32 43 33 27	36 43 17 63 51	183 101 118 2010 547	6.22 5.43 8.99 7.47 6.52	10 < 10 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.15 0.12 0.15 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10	0.86 1.29 1.60 0.82 1.04	765 1575 2960 620 680	1 < 1 < 1 3 2
885485 885486 886820 886821 886822	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.2 < 0.2 < 0.2 < 0.2 0.2	2.78 2.43 2.33 3.40 3.73	4 2 6 < 2 < 2	250 800 300 490 300	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.45 1.04 0.30 0.99 1.08	0.5 1.5 < 0.5 1.0 0.5	27 28 12 37 31	33 48 49 59 60	122 1310 37 61 115	6.47 5.11 3.74 7.41 7.71	< 10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.10 0.06 0.12 0.06	< 10 < 10 10 < 10 < 10	0.64 0.77 0.90 1.73 2.30	880 1000 360 1735 895	< 1 1 < 1 < 1 < 1 < 1

Hant Bichler CERTIFICATION:

Project : Comments:

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Page er :3-B Total Fuges :5 Certificate Date: 01-AUG-96 Invoice No. : 19625249 P.O. Number : Account :MPO

A9625249

Project : ICE Comments:

):

Chemex Labs Ltd.

North Vancouver V7J 2C1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

SAMPLE	PREI	P	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
BB5340	201	202	0.02	38	1360	12	< 2	12	33	0.16	< 10	< 10	90	< 10	442	
BB5341	201 2	202	0.02	28	370	14	< 2	4	12	0.04	< 10	< 10	70	< 10	116	
BB3344 BB5343	201	202	0.03	27	630	8	< 2	5	26	0.04	< 10	< 10	46	< 10	140	
BB5344	201	202	0.01	23	770	12	< 2	2	14	0.05	< 10	< 10	69	< 10	150	
BB5345	201	202	0.02	23	280	8	< 2	4	12	0.07	< 10	< 10	74	< 10	64	
BB5345	201	202	0.01	19	230	12	~ ~	4	16	0.05	< 10	< 10	61	< 10	58	
BB5451	201	202	0.01	18	110	10	< 2	2	12	0.04	< 10	< 10	73	< 10	76	
BB5452	201	202	0.03	22	440	10	< 2	5	32	0.09	< 10	< 10	85	< 10	162	
BB5455	201	202	0.01	28	950	12	< 2	5	41	0.06	< 10	< 10	57	< 10	102	
BB5456	201 2	202	0.02	29	1110	10	< 2	5	53	0.05	< 10	< 10	53	< 10	136	
885461	201	202	0.01	37	1030	18	< 2	7	57	0.02	< 10	< 10	70	< 10	180	
BB5462	201	202	0.01	45	1230	18	< 2	5	41	0.02	< 10	< 10	59	< 10	192	
BB5463	201	202	0.03	34	460	18	< 2	5	32	0.05	< 10	< 10	60	< 10	174	
BB5464	201 2	202	0.01	20	190	10	< 2	3	11	0.06	< 10	< 10	82	< 10	118	
BB3403 BB5466	201	202	< 0.01	29	690	20	< 2	7	25	0.12	< 10	< 10	126	< 10	228	
BB5468	201	202	0.01	33	390	8	< 2	5	19	0.10	< 10	< 10	87	< 10	128	
BB5469	201 2	202	< 0.01	22	260	10	< 2	4	14	0.07	< 10	< 10	63	< 10	144	
BB5470	201 2	202	0.02	56	590	16	< 2	16	40	0.04	< 10	< 10	13/	< 10	132	
BB36/1 BB5472	201	202	< 0.01	25	310	10	< 2	4	12	0.12	< 10	< 10	131	< 10	128	
BB5473	201	202	0.01	40	610	16	< 2	14	19	0.05	< 10	< 10	94	< 10	180	
BB5475	201 2	202	0.03	22	500	14	< 2	4	28	0.04	< 10	< 10	70	< 10	284	
BB5476	201 2	202	0.01	29	430	18	< 2	6 5	53	0.04	< 10	< 10	32	< 10	34	
BB5477	201 2	202	< 0.01	27	290	14	< 2	5	20	0.16	< 10	< 10	148	< 10	186	
BB5479	201	202	< 0.01	23	590	10	< 2	6	14	0.17	< 10	< 10	136	< 10	132	
BB5480	201 2	202	< 0.01	25	480	10	< 2	8	23	0.20	< 10	< 10	165	< 10	166	
BB5481	201 2	202	< 0.01	33	790	12	< 2	10	2/	0.21	< 10	< 10	141	< 10	114	
887404 RR5483	201	202	< 0.01	31	530	18	< 2	10	16	0.10	< 10	< 10	137	< 10	174	
BB5484	201	202	< 0.01	25	530	8	< 2	8	20	0.14	< 10	< 10	158	< 10	148	
BB5485	201 2	202	0.01	24	350	12	< 2	7	18	0.06	< 10	< 10	145	< 10	206	
BB5486	201 2	202	0.01	33	490	12	< 2	11	35	0.09	< 10	< 10	116	< 10	202	
BB6820 BB6821	201 2	∡∪2 202	< 0.01	28	∡40 650	10	< 2	۰ 14	20	0.16	< 10 < 10	< 10	93	< 10	5∡ 194	
BB6822	201	202	< 0.01	33	370	6	< 2	16	22	0.22	< 10	< 10	203	< 10	152	

CERTIFICATION:

tart Bichler

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er :4-A Total Payes :5 Certificate Date: 01-AUG-96 Invoice No. : 19625249 P.O. Number : MPO Account

Project : ICE Comments:

):

Chemex Labs Ltd.

North Vancouver

V7J 2C1

Analytical Chemists * Geochemists * Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave., British Columbia, Canada

C

											CE	RTIF	CATE	OF /	NAL	/SIS		A9625	249		
SAMPLE	PR CO	ep De	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Ng %	Mn ppm	Mo ppm
BB6823 BB6824 BB6825 BB6826 BB6827	201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 0.2 < 0.2 < 0.2	4.51 2.50 3.50 2.05 1.67	< 2 8 < 2 8 4	230 360 630 290 480	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.46 0.68 0.85 0.40 0.41	0.5 < 0.5 0.5 < 0.5 < 0.5	36 21 32 16 9	53 57 73 42 36	67 57 117 294 29	8.58 4.93 6.43 3.68 2.91	10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.04 0.09 0.31 0.09 0.11	< 10 < 10 < 10 10 10	1.37 1.14 1.18 0.78 0.66	1355 720 2110 455 445	< 1 1 < 1 1 1
BB6828 BB6829 BB6830 BB6831 BB6832	201 201 201 201 201 201	202 202 202 202 202 202	0.6 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.45 1.43 0.98 1.64 1.39	4 8 2 6 8	620 320 460 440 470	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.12 0.21 0.54 0.76 0.49	1.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 11 7 12 9	49 34 27 35 33	92 19 20 29 33	3.99 3.08 1.92 2.87 2.79	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.11 0.05 0.06 0.06	< 10 10 < 10 < 10 < 10 < 10	0.66 0.44 0.51 0.86 0.69	1635 350 275 435 390	2 1 1 1 1
BB6833 BB6834 BB6835 BB6836 BB6837	201 201 201 201 201 201	202 202 202 202 202 202	0.2 0.2 < 0.2 0.4 < 0.2	1.23 1.34 1.78 2.01 1.52	8 12 8 2 2	540 520 220 630 350	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.12 0.80 0.63 0.82 0.58	0.5 1.0 2.0 < 0.5 < 0.5	11 11 19 9 12	26 27 41 35 35	44 44 28 45 24	3.03 2.76 4.34 2.82 2.58	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.12 0.08 0.12 0.11	< 10 10 < 10 10 10	0.60 0.70 0.77 0.69 0.68	420 445 605 420 600	1 2 1 1 1
BB6838 BB6839 BB6859 BB6860 BB6861	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.62 2.17 1.09 2.09 1.64	8 6 4 14 4	410 600 330 450 640	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.61 0.79 0.39 0.86 0.63	< 0.5 0.5 < 0.5 3.0 < 0.5	14 16 6 21 9	49 40 25 58 33	40 29 25 36 89	4.20 3.63 1.75 4.47 2.61	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.15 0.07 0.04 0.08 0.09	10 < 10 < 10 < 10 < 10 10	0.81 0.93 0.45 1.09 0.70	580 630 225 950 270	2 1 < 1 2 1
BB6862 BB6863 BB6864 BB6865 BB6866	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.2 < 0.2 < 0.2 < 0.2 0.4	1.93 1.85 1.21 1.57 1.61	4 2 8 2 < 2	600 390 260 390 470	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.64 1.26 0.21 1.00 1.20	0.5 0.5 1.5 0.5 0.5	12 13 12 11 9	34 39 25 34 29	38 28 25 48 57	2.93 2.60 3.27 2.82 2.28	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.14 0.08 0.08 0.08	10 10 10 < 10 < 10	0.74 0.89 0.33 0.71 0.58	500 570 650 410 385	1 1 2 < 1 1
BB6867 BB6868 BB6869 BB6870 BB6871	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 0.4 0.2	1.21 1.21 1.42 1.43 1.49	< 2 < 2 6 < 2 10	330 330 610 820 640	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.40 0.46 0.80 1.17 0.79	< 0.5 0.5 < 0.5 0.5 0.5	9 8 10 7 11	25 24 37 31 30	20 19 32 36 44	2.17 2.15 2.44 2.29 2.63	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.08 0.07 0.07 0.14	10 10 < 10 10 10	0.50 0.43 0.63 0.68 0.68	465 640 460 235 460	< 1 1 1 < 1 1
BB6872 BB6873 BB6874 BB6875 BB6876	201 201 201 201 201 201	202 202 202 202 202 202	0.2 0.6 < 0.2 < 0.2 0.2	1.65 2.13 1.41 1.53 2.13	2 6 8 < 2 6	580 1020 600 600 350	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1.12 1.45 0.43 0.48 0.10	0.5 1.0 0.5 0.5 0.5	9 13 8 10 6	34 40 35 32 39	48 81 19 20 15	2.53 3.20 2.53 2.29 3.30	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.20 0.08 0.08 0.08	< 10 10 10 10 10	0.77 0.84 0.54 0.56 0.52	360 490 360 920 300	< 1 1 1 < 1 1
BB6877 BB6878 BB6879 BB6880 BB6881	201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 0.2 0.2 < 0.2 < 0.2	1.08 1.49 1.83 2.30 2.59	2 6 4 < 2 12	270 440 560 270 310	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.25 0.52 0.94 0.26 0.94	< 0.5 < 0.5 < 0.5 0.5 1.0	6 7 13 30 37	23 34 44 46 86	32 19 124 51 102	2.00 2.54 3.39 6.95 7.80	< 10 < 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.07 0.07 0.14 0.06	10 10 < 10 < 10 < 10	0.34 0.70 0.89 1.48 1.14	255 290 560 1860 1580	1 < 1 1 < 1 < 1
	L														EBTIEIC			Ja	5R	ich	Ler.

CERTIFICATION:
C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

S: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ar :4-B Total Pages :5 Certificate Date: 01-AUG-96 Invoice No. : 19625249 P.O. Number MPO Account

Project : ICE Comments:

											CE	RTIF	CATE	OF A		A9625249
SAMPLE	PREP CODE		Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W	Zn ppm	
BB6823 BB6824 BB6825 BB6826 BB6827	201 20 201 20 201 20 201 20 201 20 201 20	02 02 < 02 < 02 <	0.02 0.01 0.01 0.01 0.01 0.01	35 33 43 26 32	360 450 650 210 370	2 8 12 10 16	< 2 < 2 < 2 < 2 < 2 < 2	24 9 19 5 4	16 < 14 18 12 17	0.01 0.14 0.13 0.08 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	266 132 176 91 59	< 10 < 10 < 10 < 10 < 10 < 10	104 100 192 76 80	
BB6828 BB6829 BB6830 BB6831 BB6832	201 20 201 20 201 20 201 20 201 20 201 20	02 02 < 02 < 02 < 02 <	0.02 0.01 0.01 0.01 0.01	39 22 25 30 32	980 880 1010 790 500	12 12 8 10 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	9 3 4 4	28 13 26 30 20	0.06 0.04 0.03 0.08 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	95 71 43 60 57	< 10 < 10 < 10 < 10 < 10 < 10	156 102 66 82 96	
BB6833 BB6834 BB6835 BB6836 BB6837	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02 < 02 < 02	0.01 0.01 0.01 0.01 0.01	30 35 32 29 24	1060 1150 660 510 560	14 16 14 12 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 5 5 7 5	39 37 15 23 18	0.03 0.04 0.11 0.03 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 59 100 67 62	< 10 < 10 < 10 < 10 < 10 < 10	112 150 160 106 160	
BB6838 BB6839 BB6859 BB6860 BB6861	201 20 201 20 201 20 201 20 201 20	02 < 02 < 02 < 02 < 02 <	0.01 0.01 0.01 0.01 0.01	30 28 21 35 34	360 190 680 970 370	12 12 8 14 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 6 3 6 7	18 16 17 24 23	0.09 0.14 0.04 0.18 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	118 103 43 122 54	< 10 < 10 < 10 < 10 < 10 < 10	90 84 60 162 92	
BB6862 BB6863 BB6864 BB6865 BB6866	201 20 201 20 201 20 201 20 201 20 201 20	02 < 02 02 < 02 < 02	0.01 0.01 0.01 0.01 0.03	29 27 18 26 27	680 1210 600 430 740	14 10 10 8 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 9 3 11 8	28 32 10 15 27	0.07 0.06 0.06 0.06 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 67 79 69 51	< 10 < 10 < 10 < 10 < 10 < 10	78 132 104 70 60	
BB6867 BB6868 BB6869 BB6870 BB6871	201 20 201 20 201 20 201 20 201 20	02 02 02 02 02 02 <	0.01 0.01 0.01 0.01 0.01	19 19 29 24 29	310 260 860 760 940	12 12 10 12 12	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 5 5 6	12 12 18 32 35	0.03 0.03 0.03 0.05 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 48 54 51 56	< 10 < 10 < 10 < 10 < 10 < 10	70 144 96 82 100	
BB6872 BB6873 BB6874 BB6875 BB6876	201 20 201 20 201 20 201 20 201 20	02 02 02 < 02 < 02 <	0.03 0.02 0.01 0.01 0.01	31 44 22 20 23	950 790 380 470 310	10 16 10 10 14	< 2 < 2 < 2 < 2 < 2 < 2 < 2	7 9 4 5 3	44 43 14 15 12	0.07 0.05 0.04 0.04 0.02	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 75 66 58 70	< 10 < 10 < 10 < 10 < 10 < 10	128 116 98 112 66	
BB6877 BB6878 BB6879 BB6880 BB6881	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02 02 02 02 02	0.01 0.01 0.01 0.01 0.01	21 23 36 26 44	480 280 390 450 310	10 12 12 8 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 4 12 11 33	9 < 13 14 10 14 <	0.01 0.03 0.07 0.35 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	32 47 82 151 150	< 10 < 10 < 10 < 10 < 10 < 10	62 64 76 124 134	
														 C		Sart Bichles

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page i er :5-A Total Pages :5 Certificate Date: 01-AUG-96 Invoice No. : 19625249 P.O. Number : MPO Account

Project : Comments: ICE

	r									CE	RTIFI	CATE	OF A	NAL	SIS		49625	249		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
BB6882 BB6883 BB6884 BB6885 BB6886	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.2 0.2 0.2	1.60 1.53 3.59 1.63 2.72	8 6 < 2 2	360 320 510 380 720	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.41 0.73 0.38 0.47 0.73	< 0.5 < 0.5 1.0 2.5 1.5	9 14 26 36 43	34 37 77 32 48	22 30 1565 148 417	3.11 3.16 7.04 4.15 5.62	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.08 0.05 0.10 0.11	10 10 < 10 < 10 < 10	0.68 0.71 0.89 0.51 0.81	330 620 350 665 1420	1 1 4 1 1
BB6887 BB6888 BB6889 BB6890 BB6891	201202201202201202201202201202	< 0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	2.15 2.17 1.94 2.55 1.47	8 4 < 2 6 2	390 660 660 460 270	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.58 0.26 0.17 0.58 0.14	0.5 1.0 0.5 2.5 < 0.5	21 18 15 17 6	45 40 32 50 27	135 105 50 73 11	4.06 4.80 3.75 5.07 2.26	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.16 0.09 0.07 0.04	10 < 10 10 < 10 10	0.88 0.42 0.34 0.90 0.44	690 1995 775 445 310	1 1 1 1 1
386892 386893	201 202 201 202	< 0.2	3.38 1.54	6 14	3450 570	< 0.5	< 2 < 2	0.41 0.49	1.0 0.5	15 11	44 30	53 32	4.16 2.77	< 10 < 10	< 1 < 1	0.05 0.11	< 10 10	1.62 0.62	1385 475	1
													Ċ	ERTIFIC	ATION:	I	tai	жß	ch	en

CERTIFICATION:

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC V6B 1L8

Page er :5-B Total کمی عند :5 Certificate Date: 01-AUG-96 Invoice No. : 19625249 P.O. Number . MPO Account

Project : Comments: ICE

r

	_										CE	RTIFI	CATE	OFA	NALYSIS	A9625249
SAMPLE	PR CO	EP DE	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	M Mada	Zn ppm	
3B6882 3B6883 3B6884 3B6885 3B6886	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 < 0.01 0.01 < 0.01 < 0.01	22 26 31 17 30	170 280 370 350 580	10 12 16 10 14	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 6 11 5 11	10 15 21 13 25	0.06 0.08 0.09 0.08 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 71 178 90 141	< 10 < 10 < 10 < 10 < 10 < 10	66 74 270 548 440	
986887 986888 986889 986899 986890 986891	201 201 201 201 201 201	202 202 202 202 202 202	< 0.01 0.01 0.01 < 0.01 < 0.01 < 0.01	34 40 34 32 16	510 760 430 630 170	12 18 16 14 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2	8 6 4 5 2	16 13 12 14 6	0.09 0.06 0.04 0.15 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	95 97 71 133 61	< 10 < 10 < 10 < 10 < 10 < 10	154 268 162 132 64	
B6892 B6893	201 201	202 202	0.01 < 0.01	25 30	250 570	12 16	< 2 < 2	8 5	28 23	0.03 0.03	< 10 < 10	< 10 < 10	114 51	< 10 < 10	116 102	
																•
<u></u>			<u> </u>			,								C	ERTIFICATION	Harri Brichler

D: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Page er :1-A Total Pages :1 Certificate Date: 31-JUL-96 Invoice No. :19625244 P.O. Number : Account :MPO

A9625244

Project : ICE Comments:

	-													<u> </u>							
SAMPLE	PRE COD	ip IE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca. %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
BB06805 BB06806 BB06807 BB06808	201 201 201 201	202 202 202 202 202	< 5 < 5 < 5 < 5	< 0.2 0.2 < 0.2 < 0.2	2.48 3.02 1.79 1.97	10 6 12 12	520 560 340 670	< 0.5 0.5 < 0.5 < 0.5	< 2 6 < 2 < 2	0.84 0.76 0.36 0.38	< 0.5 < 0.5 < 0.5 1.5	18 24 15 14	49 39 41 39	103 57 64 25	4.39 5.98 3.31 3.41	< 10 10 < 10 < 10	< 1 < 1 < 1 < 1	0.08 0.06 0.14 0.12	10 10 10 10	1.01 0.56 0.68 0.64	850 2100 960 810
BB06809 BB06810 BB06811 BB06812 BB06813	201 201 201 201	202 202 202 202 202	< 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 0.4	1.85 1.36 2.51 1.67	12 6 12 12	570 440 730 260	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.74	0.5 < 0.5 < 0.5 < 0.5	13 9 15 5	45 31 64 29	39 37 34 32	3.08 2.07 3.84 2.84	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.19 0.11 0.12 0.07	10 10 10 10	0.76	830 660 755 265
BB06814 BB06815 BB06816	201 201	202	< 5	< 0.2	2.36	10	520	0.5	< 2	0.68	< 0.5	9 16	44	38 104	4.58	< 10	< 1 < 1 < 1	0.11	< 10 10 10	0.70	285 340 845
BB06817 BB06818 BB06819	201 201 201 201	202 202 202	<pre></pre>	< 0.2 < 0.2 < 0.2 < 0.2	2.26 2.67 3.15	6 10 4	400 500 440	< 0.5 0.5 < 0.5 < 0.5	< 2 2 4	0.77 0.61 0.88	< 0.5 < 0.5 < 0.5 < 0.5	16 22 36	45 57 81	39 50 100	3.94 3.95 4.59 6.60	< 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1	0.13 0.10 0.11 0.13	10 < 10 < 10 < 10	1.13 0.80 0.98 1.56	530 835 1240 2310
BB06840 BB06841 BB06842 BB06843 BB06844	201 201 201 201 201	202 202 202 202 202 202	< 5 < 5 < 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.00 3.53 2.70 3.31 2.72	6 8 6 10	600 730 700 1010 480	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2	0.75 0.72 0.19 1.32 0.65	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 27 10 25 17	48 92 57 81 64	59 62 37 423 39	3.29 6.06 3.23 5.14 4.45	< 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.07 0.09 0.08 0.07 0.11	< 10 < 10 10 < 10 < 10	1.03 1.38 0.75 1.55 1.18	730 1545 350 1890 610
BB06845 BB06846 BB06847 BB06848 BB06848 BB06849	201 201 201 201 201 201	202 202 202 202 202 202	5 30 < 5 < 5 < 5 < 5	< 0.2 < 0.2 0.6 < 0.2 < 0.2	2.11 2.41 1.71 1.99 2.27	6 6 12 6 14	790 490 450 420 520	0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.61 0.31 0.67 0.60 0.40	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	9 12 9 13 15	40 45 26 39 49	35 39 39 31 49	2.78 3.42 2.76 3.81 4.33	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.12 0.13 0.13 0.11 0.11	10 10 10 10 10	0.70 0.65 0.63 0.81 1.14	405 685 360 485 725
BB06850 BB06851 BB06852 BB06853 BB06854	201 201 201 201 201 201	202 202 202 202 202 202	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.07 2.91 2.75 4.09 2.96	12 14 6 10 10	690 300 450 750 710	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 4 2 2	0.45 0.47 0.55 0.94 0.68	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 15 17 29 16	36 49 54 92 59	19 41 37 66 36	3.00 5.54 5.65 6.39 4.51	< 10 < 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.05 0.09 0.06 0.08	10 < 10 < 10 < 10 < 10 10	0.68 0.74 0.95 1.66 1.12	285 560 780 1070 655
3B06855 8B06856 8B06857 3B06858	201 201 201 201 201	202 202 202 202 202	< 5 < 5 < 5 < 5	< 0.2 < 0.2 0.6 < 0.2	2.69 2.09 1.92 2.50	8 10 8 6	1070 420 510 720	< 0.5 < 0.5 0.5 < 0.5	2 < 2 < 2 < 2 < 2	0.63 0.44 1.19 0.59	< 0.5 < 0.5 < 0.5 < 0.5	18 14 12 14	54 44 36 52	46 35 61 32	4.91 3.63 3.17 4.62	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.13 0.16 0.11 0.10	10 10 10 10	1.07 0.74 0.75 1.05	1015 615 530 530

CERTIFICATION:___

Hant Buchler

-

Chemex Labs Ltd.

North Vancouver

Analytical Chemists * Geochemists * Registered Assayers

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave.,

C

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page i عت : 1-B Total Pages : 1 Certificate Date: 31-JUL-96 Invoice No. : 19625244 P.O. Number : Account : MPO

Project : ICE Comments:

......

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

CERTIFICATE OF ANALYSIS

A9625244

	DDE	מי	Mo	No	NÍ	D	Ph	Sp	8c	Sr	πi	ጥነ	TT	v	W	Zn	
CINOT P		שנ	20	110	222		50	200	50	DD2					n nnm	2011	
SARPLE	COL		ppm	~	ррш	ррш	ррш	ppm	ррш	ЪЪш	~	ppm	ррш	ըրա	ррш	ЪЪш	
8806805	201	202	1 4	0.01	28	360	6	< 2	14	19	0.11	< 10	< 10	129	< 10	116	
BB06806	201	202	2	0.01	17	610	12	< 2	8	27	0.19	< 10	< 10	188	< 10	104	
BB06807	201	202	2 <	0.01	35	480	10	< 2	5	16	0.06	< 10	< 10	81	< 10	114	
BB06808	201	202	3 <	0.01	24	720	12	< 2	4	18	0.07	< 10	< 10	89	< 10	132	
BB06809	201	202	3 <	0.01	34	750	16	< 2	9	28	0.05	< 10	< 10	69	< 10	164	
BB06810	201	202	1	0.03	22	670	10	< 2	5	25	0.05	< 10	< 10	53	< 10	136	
BB06811	201	202	3 <	0.01	33	550	12	< 2	7	17	0.08	< 10	< 10	99	< 10	106	
BB06812	201	202	2 <	0.01	18	270	12	< 2	3	9	0.04	< 10	< 10	71	< 10	92	
BB06813	201	202	1 <	0.01	21	710	8	< 2	5	28	0.09	< 10	< 10	90	< 10	244	
BB06814	201	202	3 <	0.01	36	810	10	< 2	6	27	0.05	< 10	< 10	61	< 10	102	
BB06815	201	202	2 <	0.01	30	700	8	< 2	21	27	0.01	< 10	< 10	129	< 10	80	
BB06816	201	202	3 <	0.01	40	330	14	< 2	7	13	0.05	< 10	< 10	104	< 10	102	
BB06817	201	202	1 <	0.01	26	410	10	< 2	10	16	0.07	< 10	< 10	112	< 10	102	
BB06818	201	202	1 <	0.01	31	390	12	< 2	8	17	0.12	< 10	< 10	120	< 10	162	
BB06819	201	202	2 <	0.01	35	1210	6	< 2	16	20	0.19	< 10	< 10	159	< 10	204	
BB06840	201	202	1 <	0.01	33	320	10	< 2	12	15	0.08	< 10	< 10	86	< 10	100	
BB06841	201	202	1 <	0.01	37	560	8	< 2	12	15	0.15	< 10	< 10	167	< 10	162	
BB06842	201	202	3 <	0.01	36	280	12	< 2	5	15	0.01	< 10	< 10	69	< 10	86	
BB06843	201	202	1	0.01	49	610	2	< 2	38	13	0.11	< 10	< 10	144	< 10	80	
BB06844	201	202	1 <	0.01	34	200	12	< 2	7	14	0.11	< 10	< 10	117	< 10	74	
BB06845	201	202	1 <	0.01	30	480	12	< 2	7	21	0.01	< 10	< 10	65	< 10	78	
BB06846	201	202	2 <	0.01	28	460	10	< 2	6	14	0.04	< 10	< 10	83	< 10	98	
BB06847	201	202	6	0.01	34	690	12	< 2	4	24	0.03	< 10	< 10	78	< 10	122	
BB06848	201	202	4 <	0.01	30	470	8	< 2	11	16	0.03	< 10	< 10	106	< 10	98	
BB06849	201	202	3 <	0.01	33	550	8	< 2	8	13	0.08	< 10	< 10	106	< 10	98	
BB06850	201	202	4 <	0.01	22	300	12	< 2	4	17	0.03	< 10	< 10	75	< 10	112	
BB06851	201	202	3 <	0.01	25	570	12	< 2	7	15	0.09	< 10	< 10	134	< 10	126	1
BB06852	201	202	1 <	0.01	25	340	8	< 2	1	14	0.18	< 10	< 10	170	< 10	134	
BB06853	201	202	1 <	0.01	40	250	8	< 2	14	25	0.15	< 10	< 10	186	< 10	132	
BB06854	201	202	1 <	0.01	31	220	12	< 2	1	17	0.13	< 10	< 10	125	< 10	92	
BB06855	201	202	1 <	0.01	31	340	12	< 2	11	15	0.11	< 10	< 10	135	< 10	120	
BB06856	201	202	3 <	0.01	28	520	14	< 2	6	15	0.04	< 10	< 10	95	< 10	116	
BB06857	201	202	4	0.01	33	620	8	< 2	9	24	0.03	< 10	< 10	88	< 10	98	
BB06858	201	202	1 <	0.01	26	310	10	< 2	8	18	0.09	< 10	< 10	117	< 10	86	
																	• • · · · · · · · · · · · · · · ·

tart Bichler CERTIFICATION:

 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 VARCHER, 11.6

Page or :1-A Total Fungues :1 Certificate Date: 06-JUL-96 Invoice No. :19622578 P.O. Number : Account :MPO

~

v	68	118
roject		ICE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

Project : ICE Comments:

											CE	RTIFIC	CATE	OF A	NALY	'SIS		49622	578	·	
SAMPLE	PRE	P E	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Min ppm	Mo ppm
BB13505 BB13506 BB13507 BB13508 BB13509	202 202 202 202 202 202	202 202 202 202 202 202	< 0.2 < 0.2 0.2 < 0.2 < 0.2	2.26 2.42 1.61 0.92 1.58	20 10 < 2 < 2 8	420 400 1070 550 650	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.50 0.48 1.44 1.51 0.50	0.5 0.5 0.5 < 0.5 < 0.5	20 16 9 3 8	69 63 35 14 42	40 39 57 33 35	4.98 4.09 2.50 0.76 2.63	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.07 0.06 0.05 0.09	< 10 10 < 10 < 10 10	0.91 1.11 0.58 0.28 0.64	585 710 1285 465 345	< 1 1 1 1 1
3813510	202	202	< 0.2	1.83	5	690	< 0.5	< 2	0.68	< 0.5	12	51	47	3.14	< 10	1	0.10	50	0.79	555	1

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page i ir :1-B Total Pagues :1 Certificate Date: 06-JUL-96 Invoice No. :19622578 P.O. Number : Account :MPO

.

Project : ICE Comments:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

											CE	RTIFI	CATE	OF A	NALYSIS	A9622578
SAMPLE	PRE COD	PE	Na %	Ni ppm	р ррт	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	M M	Zn ppm	
BB13505 BB13506 BB13507 BB13508 BB13509	202 202 202 202 202 202	202 202 202 202 202 202	< 0.01 < 0.01 0.04 0.04 0.01	36 38 24 10 21	430 420 900 1150 470	8 10 6 < 2 8	< 2 2 < 2 < 2 < 2 < 2	15 5 6 1 5	13 17 42 33 18	0.01 0.10 0.05 0.01 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	127 100 56 21 78	< 10 < 10 < 10 < 10 < 10 < 10	90 86 76 26 64	
3813510	202	202	< 0.01	26	480	10	< 2	7	20	0.04	< 10	< 10	79	< 10	80	

Sain Sienlar

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. Page ər :1-A Total F. = :1 Certificate Date: 03-JUL-96 Invoice No. : 19622044 P.O. Number : Account : MPO

C

BB00638

BB00639 BB00640 BB00641

BB00642

BB00643 BB00644

BB00645

BB00646 BB00647

BB00648 BB00649

BB00650

BB13591

BB13592

BB13593 BB13915

BB13916

BB13917

BB13918

BB13919

BB13920 BB13921

BB13922

BB13923

BB13925

BB13926

BB13927

BB13928

BB13929

201 202

201 202

201 202

201 202

201 202

201 202

< 0.2

< 0.2

< 0.2

< 0.2

< 0.2

< 0.2

3.34

1.84

2.00

2.08

1.51

1.49

8

2

8

8

6

12

520 < 0.5

240

590

290

610

300

< 0.5

< 0.5

< 0.5

< 0.5

< 0.5

0.43

0.32

0.98

0.14

0.42

0.22

< 2

< 2

< 2

< 2

< 2

< 2

< 0.5

1.0

0.5

0.5

0.5

0.5

15

11

11

7

8

7

59

38

41

31

31

30

43

154

43

22

33

17

4.66

3.68

3.08

3.22

2.68

2.94

< 10

< 10

< 10

< 10

< 10

< 10

< 1

< 1

< 1

< 1

< 1

< 1

0.08

0.09

0.12

0.04

0.11

0.07

10

10

10

10

10

10

0.98

0.46

0.67

0.46

0.56

0.48

485

240

595

275

395

290

1

1

1

1

1

1

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

Project : ICE Comments:

V6B 1L8

VANCOUVER, BC

							<u> </u>			CE	RTIF		E OF A	NAL	/SIS	1	A9622	2044		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
i38 i39	201 202 201 202	0.2 < 0.2	1.87	6 8	1000 430	< 0.5 < 0.5	< 2 < 2	1.11 0.47	1.0	11 20	31 94	209 2760	3.03	< 10 < 10	< 1 < 1	0.14	< 10 < 10	0.47	360 350	1
540 541	201 202	< 0.2	1.70	6 12	250 450	< 0.5	< 2	0.17	0.5	12 14	34	231	3.83	< 10 < 10	< 1	0.09	10 10	0.34	230 495	1
42	201 202	< 0.2	2.77	8	400	< 0.5	< 2	0.80	0.5	31	17	74	6.49	< 10	< 1	0.10	< 10	0.78	2230	< 1
43	201 202	0.2	2.75	10	570	< 0.5	< 2	0.57	< 0.5	39	67	921	8.30	< 10	< 1	0.08	< 10	0.93	735	4
44	201 202	< 0.2	2.19	10	330	< 0.5	< 2	0.58	< 0.5	23	44	908	4.63	< 10	< 1	0.13	< 10	0.72	725	1
45	201 202	< 0.2	2.31	10	390	< 0.5	< 2	0.32	0.5	25	47	496	4.85	< 10	< 1	0.11	10	0.59	1085	1
46	201 202	< 0.2	3.42	8	360	< 0.5	< 2	1.12	< 0.5	23	66	142	4.96	< 10	< 1	0.17	10	1.16	1045	< 1
647	201 202	< 0.2	3.27	12	320	< 0.5	< 2	0.44	< 0.5	16	55	48	5.61	< 10	< 1	0.15	10	0.80	520	< 1
48	201 202	< 0.2	3.18	12	160	< 0.5	< 2	0.68	< 0.5	27	53	95	6.16	< 10	< 1	0.09	10	1.13	675	1
i 4 9	201 202	< 0.2	3.60	10	440	< 0.5	< 2	0.97	< 0.5	24	62	54	6.20	< 10	< 1	0.10	10	1.11	765	< 1
50	201 202	< 0.2	1.88	6	270	< 0.5	< 2	0.78	0.5	12	30	34	3.48	< 10	< 1	0.09	10	0.64	435	< 1
91	201 202	< 0.2	1.70	< 2	210	< 0.5	< 2	0.35	< 0.5	12	29	18	3.41	< 10	< 1	0.07	< 10	0.54	495	< 1
92	201 202	< 0.2	1.80	< 2	390	< 0.5	< 2	0.57	< 0.5	14	32	24	3.84	< 10	< 1	0.09	10	0.60	1105	1
93	201 202	< 0.2	2.46	< 2	330	< 0.5	< 2	0.56	< 0.5	14	42	38	4.87	< 10	< 1	0.05	< 10	0.86	355	< 1
15	201 202	< 0.2	1.56	8	280	< 0.5	< 2	0.39	2.0	11	39	14	3.01	< 10	< 1	0.15	10	0.54	485	1
16	201 202	< 0.2	1.04	8	210	< 0.5	< 2	0.23	0.5	5	24	15	2.47	< 10	< 1	0.13	10	0.27	185	1
17	201 202	< 0.2	1.87	6	420	< 0.5	< 2	0.83	< 0.5	9	41	50	2.96	< 10	< 1	0.10	10	0.64	455	< 1
18	201 202	< 0.2	2.54	12	460	< 0.5	< 2	1.00	< 0.5	12	55	53	3.99	< 10	< 1	0.13	10	0.97	560	1
19	201 202	< 0.2	3.70	8	370	0.5	< 2	0.28	< 0.5	15	76	53	4.38	< 10	< 1	0.13	10	1.04	555	< 1
20	201 202	< 0.2	4.07	8	710	< 0.5	< 2	0.68	< 0.5	21	94	58	5.62	< 10	< 1	0.11	< 10	1.43	735	< 1
21	201 202	< 0.2	4.66	2	870	< 0.5	< 2	0.93	< 0.5	28	109	70	6.22	< 10	< 1	0.13	< 10	2.03	950	< 1
22	201 202	< 0.2	3.54	6	680	< 0.5	< 2	0.34	< 0.5	15	90	38	4.88	< 10	< 1	0.07	10	1.07	435	< 1

CERTIFICATION: Hard Brachler

): E)

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ; ir : 1-B Total Page : 1 Certificate Date: 03-JUL-96 Invoice No. : 19622044 P.O. Number : Account : MPO

Project :	ICE
Comments:	

-

CERTIFICATE OF ANALYSIS

A9622044

tart Bichler

CERTIFICATION:

													• • •			
	PREP		Na	Nİ	P	Pb	Sb	Sc	Sr	Tİ	T1	υ	v	W	Zn	
SAMPLE	CODE		*	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
BB00638	201 20	2	0.04	24	740	10	< 2	5	48	0.03	< 10	< 10	76	< 10	108	
BB00639	201 20	2 <	< 0.01	27	920	12	< 2	14	20	0.10	< 10	< 10	195	< 10	230	
BB00640	201 20	2	0.02	15	380	8	< 2	3	11	0.06	< 10	< 10	96	< 10	172	
BB00641	201 20	2 <	0.01	18	340 590	14	< 2	15	30	0.07	< 10	< 10	241	< 10	198	
		-														
BB00643	201 20	2	0.01	29	420	14	< 2	9	17	0.15	< 10	< 10	160	< 10	162	
BB00644	201 20	2	0.02	26	440	10	< 2	11	19	0.12	< 10	< 10	118	< 10	130	
BB00645	201 20	2	0.03	36	570	14 8	< 2	16	32	0.14	< 10	< 10	144	< 10	80	
BB00647	201 20	2 <	< 0.01	27	810	10	< 2	5	18	0.19	< 10	< 10	189	< 10	148	
BB00648	201 20	2 <	0.01	31	340	6	< 2	14	17	0.23	< 10	< 10	200	< 10	110	
BB00649	201 20	2 <	0.01	33	400	6	< 2	13	22	0.13	< 10	< 10	210	10	112	
BB00650	201 20	2	0.01	17	220	8	< 2	5	20	0.09	< 10	< 10	116	< 10	60	
BB13591	201 20	2	0.03	15	490	2	< 2	4	12	0.07	< 10	< 10	106	< 10	58	
BB13592	201 20	2 <	< 0.01	17	370	10	< 2	5	13	0.12	< 10	< 10	117	< 10	82	
BB13593	201 20	2 <	0.01	20	350	4	2	5	15	0.23	< 10	< 10	172	< 10	74	
BB13915	201 20	2 <	< 0.01	21	780	14	< 2	3	17	0.07	< 10	< 10	81	< 10	414	
BB13916	201 20	2 <	0.01	13	530	8	< 2	2	12	0.06	< 10	< 10	81	< 10	86	
8813917 RB13918	201 20		(0.01	29	400	8	< 2	11	18	0.04	< 10	< 10	121	< 10	80	
BB13919	201 20	2 <	0.01	42	190	12	< 2	7	14	0.05	< 10	< 10	126	< 10	98	
BB13920	201 20	2 <	0.01	41	210	8	< 2	10	16	0.13	< 10	< 10	178	< 10	88	
8813921	201 20		0.01	40	210	0		11	17	0.45	< 10	< 10	159	< 10	90	
BB13923	201 20	2	0.01	29	210	8	< 2	7	17	0.14	< 10	< 10	172	< 10	108	
BB13925	201 20	2 <	0.01	17	660	8	< 2	3	11	0.09	< 10	< 10	124	< 10	270	
BB13976	201 20	4 2	0.01	10	3/0	14	~ ~	2	19	0.05	< 10	< 10	97	< 10	90	
BB1374/ BB13928	201 20	2	0.01	27	640	10	< 2		22	0.03	< 10	< 10	62	< 10	100	
BB13929	201 20	2 <	0.01	16	370	-8	< 2	2	9	0.07	< 10	< 10	89	< 10	66	

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page I r : 1-A Total P. :3 Certificate Date: 23-JUN-96 Invoice No. : 19620849 P.O. Number : Account : MPO

Project : F.P. ICE Comments:

											CE	RTIF	CATE	OF A	ANAL	YSIS		A9620	849		
SAMPLE	PRE COD	:P)E	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
76057 76058 76059 76060 76061	201 201 201 201 201 201	202 202 202 202 202 202	0.6 < 0.2 < 0.2 < 0.2 < 0.2	2.55 3.76 1.74 2.50 1.99	2 10 14 < 2 < 2	520 390 580 370 410	< 0.5 < 0.5 0.5 < 0.5 < 0.5	4 2 < 2 < 2 < 2 < 2	0.50 0.73 0.60 0.80 0.88	1.0 1.5 0.5 < 0.5 < 0.5	26 31 13 24 11	78 82 32 32 39	6330 2070 68 83 42	6.82 7.20 3.21 4.93 2.76	10 10 < 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.08 0.07 0.23 0.07 0.08	< 10 < 10 10 10 10	0.94 1.27 0.69 0.85 0.63	540 525 540 1265 470	5 4 3 1 1
76063 76064 76065 76066	201 201 201 201 201	202 202 202 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.66 1.75 1.89 1.37	< 2 < 2 2 4	450 450 530 340	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.08 0.63 0.31 0.63	< 0.5 0.5 < 0.5 < 0.5	7 9 8 8	32 37 34 26	59 62 29 30	2.18 2.67 2.39 1.94	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.12 0.14 0.12 0.09	10 10 10 10	0.54 0.54 0.38 0.43	375 560 515 365	2 2 1 1
T6067 T6068 T6069 T6070 T6071	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.2 < 0.2 0.2 < 0.2	0.19 1.15 2.06 1.58 1.64	< 2 < 2 12 12 2	280 330 750 500 420	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	3.53 1.10 1.15 0.53 0.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 5 13 12 10	2 18 48 34 30	18 28 67 45 31	0.18 1.31 3.05 2.68 2.52	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.03 0.09 0.08 0.17 0.08	< 10 < 10 10 20 10	0.29 0.33 0.75 0.59 0.57	165 220 920 440 390	1 1 2 1
T6072 T6073 T6074 T6075 T6076	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.28 2.16 2.17 3.05 1.89	< 2 2 8 4 4	480 170 150 430 270	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.21 0.34 0.24 0.58 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 27 11 28 22	25 27 34 17 26	13 32 37 34 34	1.85 5.98 6.48 7.52 5.03	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.04 0.03 0.15 0.06	10 < 10 < 10 < 10 < 10 < 10	0.39 0.61 0.45 0.92 0.43	265 1265 335 1070 1230	< 1 1 3 < 1 2
T6077 T6078 T6079 T6080 T6081	201 201 201 201 201 201	202 202 202 202 202 202	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.32 2.28 2.33 1.67 1.46	6 10 10 8 < 2	450 640 200 270 330	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27 1.18 0.55 0.67 0.39	< 0.5 0.5 < 0.5 < 0.5 0.5	14 24 14 16 22	40 57 51 39 13	49 78 42 41 43	5.31 4.64 5.38 3.36 3.96	10 10 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.05 0.12 0.04 0.08 0.05	< 10 10 < 10 < 10 < 10 < 10	0.59 1.20 0.75 0.80 0.29	685 1275 555 630 2000	2 2 1 2 1
T6082 T6083 T16545 T16546 T16547	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 0.6 0.2 < 0.2	1.47 1.39 1.49 1.47 2.13	2 6 < 2 < 2 4	120 910 480 300 430	< 0.5 0.5 0.5 < 0.5 < 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	0.24 0.27 2.37 1.64 0.33	< 0.5 0.5 0.5 0.5 < 0.5	13 17 8 7 12	23 26 27 26 41	50 45 83 58 40	3.28 2.36 1.83 1.92 3.38	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.05 0.07 0.09 0.11	< 10 10 10 < 10 10	0.24 0.30 0.46 0.50 0.54	900 1295 540 425 590	1 1 2 3
T16548 T16549 T16550 T16551 T16552	201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.16 0.66 2.53 2.85 1.75	< 2 < 2 < 2 < 2 < 2 2 2	550 110 530 470 490	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.85 0.14 0.43 0.71 0.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 2 21 19 10	34 11 64 67 37	152 14 46 83 21	2.41 0.80 4.68 5.28 2.60	< 10 < 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.10 0.11 0.06 0.10 0.08	10 < 10 < 10 < 10 10	0.42 0.13 1.22 1.00 0.73	795 90 1050 1020 4 35	1 < 1 2 2
T16553 T16554 T16555 T16556 T16557	201 201 201 201 201 201	202 202 202 202 202 202	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	1.28 1.39 1.95 1.31 1.44	2 8 < 2 2 < 2 < 2	260 420 460 230 300	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.30 0.43 0.53 0.15 0.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 8 5 8	29 26 38 27 30	21 37 49 19 20	2.01 1.83 2.37 1.95 2.19	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.07 0.08 0.12 0.09	10 < 10 10 10 10	0.49 0.29 0.44 0.36 0.53	295 235 515 245 375	2 1 1 2 1

CERTIFICATION: Hart Bichler

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page 1 r : 1-B Total P. : 3 Certificate Date: 23-JUN-96 Invoice No. : 19620849 P.O. Number : Account : MPO

Project :	F.P. ICE
Comments:	

.

CERTIFICATE OF ANALYSIS

A9620849

SAMPLE	PRE COD	P E	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
T6057	201	202	0.01	26	760	16	2	22	23	0.10	< 10	< 10	159	< 10	290	
T6058	201	202	0.01	24	500	12	4	16	22	0.13	< 10	< 10	205	< 10	324	
T6059	201	202	0.01	44	560	14	6	6	31	0.02	< 10	< 10	71	< 10	160	
r 6060	201	202	0.01	24	440	4	< 2	16	18	0.11	< 10	< 10	145	< 10	148	
T6061	201	202	0.01	27	370	6	2	10	14	0.05	< 10	< 10	71	< 10	74	
T6062	201	202	0.04	22	600	6	< 2	3	19	0.03	< 10	< 10	49	< 10	92	
T6063	201	202	0.02	27	600	6	< 2	6	22	0.03	< 10	< 10	59	< 10	82	
T6064	201	202	0.03	29	640	8	2	7	20	0.03	< 10	< 10	62	< 10	84	
T6065	201	202	0.03	22	360	8	2	5	12	0.01	< 10	< 10	51	< 10	86	
T6066	201	202	0.03	20	380	6	< 2	5	16	0.03	< 10	< 10	54	< 10	62	
T6067	201	202	0.01	3	600	< 2	< 2	< 1	62 •	0.01	< 10	< 10	4	< 10	80	
T6068	201	202	0.04	13	700	< 2	< 2	4	30	0.02	< 10	< 10	37	< 10	38	
T6069	201	202	0.01	32	960	6	< 2	12	31	0.05	< 10	< 10	74	< 10	64	
T6070	201	202	0.01	37	510	12	< 2	7	27	0.04	< 10	< 10	57	< 10	106	
T6071	201	202	< 0.01	26	420	8	2	3	14	0.05	< 10	< 10	56	< 10	66	
T6072	201	202	0.01	12	200	6	2	3	11	0.03	< 10	< 10	52	< 10	64	
T 6073	201	202	< 0.01	21	810	< 2	2	5	9	0.14	< 10	< 10	179	< 10	118	
T6074	201	202	0.01	16	450	6	2	4	7	0.17	< 10	< 10	191	< 10	98	
T6075	201	202	0.01	20	350	< 2	2	15	22	0.08	< 10	< 10	230	< 10	122	
T6076	201	202	0.01	15	280	4	2	5	10	0.12	< 10	< 10	145	< 10	130	
T6077	201	202	0.01	22	300	8	2	7	10	0.14	< 10	< 10	162	< 10	154	
r6078	201	202	0.01	45	620	2	< 2	16	25	0.12	< 10	< 10	112	< 10	138	
T6079	201	202	0.01	21	560	2	4	6	12	0.17	< 10	< 10	150	< 10	102	
T6080	201	202	< 0.01	26	440	6	2	11	17	0.10	< 10	< 10	87	< 10	90	
T6081	201	202	0.04	12	530	4	< 2	4	19	0.10	< 10	< 10	97	< 10	108	
T6082	201	202	0.03	13	640	4	< 2	4	9	0.08	< 10	< 10	86	< 10	120	
T6083	201	202	0.01	21	680	12	< 2	4	12	0.01	< 10	< 10	46	< 10	154	
T16545	201	202	0.01	28	900	6	2	5	37	0.03	< 10	< 10	56	< 10	68	
T16546	201	202	0.03	21	850	4	< 2	6	28	0.03	< 10	< 10	49	< 10	130	
T16547	201	202	0.01	23	270	10	< 2	5	12	0.05	< 10	< 10	82	< 10	98	
T16548	201	202	0.03	32	930	6	< 2	14	19	0.04	< 10	< 10	73	< 10	84	
T16549	201	202	0.06	6	470	2	< 2	< 1	7	0.02	< 10	< 10	26	< 10	28	
T16550	201	202	0.01	26	390	6	< 2	8	10	0.16	< 10	< 10	127	< 10	140	
T 16551	201	202	0.01	37	450	4	2	21	15	0.01	< 10	< 10	155	< 10	116	
T16552	201	202	0.01	21	140	10	< 2	4	13	0.08	< 10	< 10	67	< 10	64	
T16553	201	202	0.01	20	120	6	2	3	10	0.04	< 10	< 10	50	< 10	70	
T16554	201	202	0.04	17	300	6	< 2	4	14	0.03	< 10	< 10	48	< 10	64	
T16555	201	202	0.03	27	540	8	< 2	7	14	0.03	< 10	< 10	58	< 10	74	
T16556	201	202	0.02	17	160	8	< 2	3	9	0.04	< 10	< 10	49	< 10	64	
T16557	201	202	0.02	19	150	8	< 2	4	14	0.06	< 10	< 10	56	< 10	88	
L																

CERTIFICATION: Hart Brahler

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page, Jr :2-A Total Person :3 Certificate Date: 23-JUN-96 Invoice No. : 19620849 P.O. Number : Account :MPO

Project : F.P. ICE Comments:

:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

	-										CE	RTIF	ICATE	EOF /	NAL	YSIS		A9620	849		
SAMPLE	PRI	EP D E	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
T16558	201	202	0.6	1.93	< 2	810	1.5	< 2	0.81	< 0.5	9	32	98	2.30	< 10	< 1	0.06	20	0.37	565	3
T16559	201	202	< 0.2	1.52	< 2	340	< 0.5	< 2	0.83	< 0.5	9	35	58	2.09	< 10	< 1	0.06	< 10	0.51	710	1
T16560	201	202	< 0.2	1.19	< 2	350	< 0.5	< 2	1.31	< 0.5	4	20	39	1.42	< 10	< 1	0.07	< 10	0.34	360	1
T16586	201	202	< 0.2	1.56	12	320	< 0.5	< 2	0.25	0.5	12	32	126	3.17	< 10	< 1	0.06	10	0.54	420	2
T16587	201	202	< 0.2	2.78	< 2	470	< 0.5	< 2	0.65	2.0	49	84	935	8.12	10	< 1	0.03	< 10	0.94	355	1
T16588	201	202	< 0.2	2.50	2	380	0.5	< 2	0.59	0.5	36	42	260	5.46	10	< 1	0.13	< 10	0.90	1465	1
T16589	201	202	< 0.2	2.62	4	340	0.5	< 2	0.67	< 0.5	28	42	70	5.22	10	< 1	0.11	10	1.00	945	3
T16590	201	202	< 0.2	3.39	4	340	< 0.5	< 2	0.67	0.5	33	72	164	6.28	10	< 1	0.14	10	1.55	1995	1
T16591 m16500	201	202	0.2	2.13	10	490	< 0.5	< 2	0.67	0.5	21	44	113	3.79	< 10	< 1	0.15	10	0.66	1410	1
11922	201	202	0.2	1.45	10	540	< 0.5	< 4	0.19	0.5	13	<u> </u>	82	4.38	< 10	< 1	0.12	< 10	0.25	1925	4
T16593	201	202	< 0.2	3.60	< 2	330	0.5	< 2	1.18	< 0.5	50	47	119	7.71	10	< 1	0.13	< 10	1.23	3110	3
T16594	201	202	< 0.2	2.34	6	300	< 0.5	< 2	0.71	< 0.5	26	45	106	5.06	10	1	0.17	< 10	0.99	1320	1
T16595	201	202	< 0.2	3.30	< 2	570	< 0.5	< 2	0.91	0.5	33	78	108	5.66	10	< 1	0.18	10	1.36	1730	2
T16596	201	202	< 0.2	3.11	2	420	< 0.5	< 2	0.73	1.5	200	101	880	6.45	10	< 1	0.09	< 10	1.09	2300	2
110331	201	202	< 0.2	4.8/	8	540	0.5	< 4	0.58	0.5	141	104	951	4.28	< 10	< 1	0.12	10	0.83	1140	2
r16598	201	202	0.2	4.03	< 2	450	0.5	2	0.79	1.5	72	80	5070	9.83	10	< 1	0.10	< 10	1.56	795	3
T16599	201	202	0.6	1.33	< 2	420	< 0.5	< 2	0.56	0.5	10	28	493	2.83	< 10	< 1	0.07	< 10	0.38	415	2
T16600	201	202	< 0.2	1.76	2	400	< 0.5	< 2	0.29	< 0.5	24	27	52	3.90	< 10	1	0.06	< 10	0.63	1515	2
T16601	201	202	< 0.2	2.01	10	150	< 0.5	< 2	0.10	< 0.5	9	23	38	5.63	< 10	< 1	0.05	10	0.33	390	2
T16602	201	202	< 0.2	2.33	< 2	380	< 0.5	< 2	0.28	< 0.5	20	47	149	4.32	10	< 1	0.05	< 10	0.89	995	2
T16603	201	202	< 0.2	1.47	< 2	180	< 0.5	< 2	0.18	< 0.5	6	24	58	2.02	< 10	< 1	0.06	10	0.30	215	1
T16604	201	202	1.0	1.79	< 2	240	< 0.5	< 2	0.28	0.5	15	38	356	3.62	< 10	< 1	0.08	10	0.61	340	3
T16605	201	202	0.8	2.41	6	430	< 0.5	< 2	0.63	0.5	22	84	2770	7.63	10	< 1	0.10	< 10	0.89	560	5
T16606	201	202	2.4	1.88	< 2	280	< 0.5	2	0.54	0.5	19	48	1095	4.26	< 10	1	0.09	< 10	0.45	425	3
T16607	201	202	< 0.2	3.26	< 2	480	< 0.5	< 2	0.96	0.5	29	62	75	5.82	10	< 1	0.14	< 10	1.39	1630	3
T16608	201	202	< 0.2	2.39	6	340	< 0.5	2	0.53	0.5	66	59	478	4.30	< 10	< 1	0.11	10	0.94	975	2
T16609	201	202	< 0.2	2.56	6	420	< 0.5	< 2	0.54	< 0.5	27	66	196	4.18	< 1Ò	< 1	0.15	< 10	0.87	850	1
T16610	201	202	< 0.2	2.09	6	300	< 0.5	< 2	0.39	< 0.5	32	46	66	3.71	< 10	< 1	0.14	10	0.75	900	1
T16611	201	202	< 0.2	3.98	< 2	3270	< 0.5	< 2	1.28	< 0.5	36	85	83	6.05	10	< 1	0.07	< 10	1.69	2110	1
T16612	201	202	0.2	2.07	< 2	300	0.5	< 2	0.76	< 0.5	17	46	89	3.78	< 10	< 1	0.07	< 10	0.44	900	1
T16613	201	202	< 0.2	2.11	2	310	< 0.5	< 2	0.39	< 0.5	15	45	40	3.46	< 10	< 1	0.09	10	0.72	500	1
T16614	201	202	< 0.2	2.67	2	570	< 0.5	< 2	0.81	< 0.5	22	59	49	4.81	10	< 1	0.25	< 10	1.02	1550	2
T16615	201	202	< 0.2	2.86	6	1660	< 0.5	< 2	0.89	< 0.5	22	99	546	4.17	10	1	0.10	< 10	1.16	940	2
T16616	201	202	< 0.2	2.69	< 2	390	< 0.5	< 2	0.99	0.5	21	38	48	4.93	10	< 1	0.17	< 10	0.97	1055	< 1
T16617	201	202	< 0.2	1.90	2	410	< 0.5	< 2	0.65	< 0.5	13	38	36	3.51	< 10	< 1	0.13	10	0.58	580	2
T16618	201	202	< 0.2	2.27	< 2	270	< 0.5	< 2	0.23	< 0.5	9	30	18	3.41	< 10	< 1	0.05	10	0.46	255	1
T16619	201	202	< 0.2	3.54	< 2	580	0.5	< 2	1.24	1.5	55	68	89	6.32	10	< 1	0.14	< 10	1.49	6760	3
T16621	201	202	< 0.2	1.72	8	650	0.5	< 2	0.34	< 0.5	10	31	47	2.58	< 10	< 1	0.18	20	0.50	495	3
T10044	201	202	< 0.2	1.97	8	640	< U.5	< 2	0.80	0.5	18	39	2680	3.43	< 10	< 1	0.15	10	0.86	495	3
110043	1 101	404	₹ 0.4	4 .U 4	0	-10	< U.5	× 4	0.13	× 0.5	У	30	38	4.0/	< 10	< 1	0.07	10	0.51	325	2

CERTIFICATION: HartBuchler

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Page, r :2-B Total P. :3 Certificate Date: 23-JUN-96 Invoice No. : 19620849 P.O. Number : Account : MPO

A9620849

Project : F.P. ICE Comments:

Chemex Labs Ltd.

North Vancouver V7J 2C1

Analytical Chemists * Geochemists * Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave., British Columbia, Canada

C

										L						
SAMPLE	PREP CODE		Na %	Ni ppm	P PPm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U mqq	V ppm	W mqq	Zn ppm	
T16558	201 20	02	0.01	43	930	10	< 2	6	29	0.01	< 10	< 10	51	< 10	104	
T16559	201 20	02	0.03	21	430	2	< 2	8	19	0.04	< 10	< 10	56	< 10	56	
r16560	201 20	02	0.02	17	480	2	< 2	5	25	0.01	< 10	< 10	33	< 10	48	
r16586	201 20	02	< 0.01	25	210	8	< 2	4	10	0.05	< 10	< 10	66	< 10	122	
F16587	201 20	02	0.01	34	430	< 2	2	15	16	0.17	< 10	< 10	165	< 10	1120	
f16588	201 20	02	0.01	28	600	6	4	16	19	0.16	< 10	< 10	143	< 10	252	
r16589	201 20	02	0.01	27	400	2	< 2	12	28	0.18	< 10	< 10	147	< 10	134	
T16590	201 20	02	0.01	39	690	2	4	44	14	0.19	< 10	< 10	192	< 10	208	
T16591 M16502	201 20	22	0.01	33	580	8	< 2	10	15	0.09	< 10	< 10	90	< 10	1/4	
r10392	201 20	1	< 0.01	40	450		4			0.04	< 10	< 10		< 10	190	······································
r16593	201 20	02	0.02	33	760	< 2	6	36	29	0.30	< 10	< 10	213	< 10	148	
r16594	201 20	02	0.03	24	950	2	2	10	20	0.14	< 10	< 10	122	< 10	156	
r16595	201 20	02	0.01	41	840	4	< 2	19	18	0.19	< 10	< 10	132	< 10	390	
F16596	201 20	22	0.02	53	570	2	4	21	18	0.14	< 10	< 10	145	< 10	1050	
F16597	201 20	2	0.01	48	590	6	4	15	18	0.10	< 10	< 10	113	< 10	424	
16598	201 20	22	0.01	49	830	2	2	47	22	0.11	< 10	< 10	245	< 10	960	
r16599	201 20	22	0.03	16	360	4	< 2	5	15	0.06	< 10	< 10	61	< 10	150	
r166 00	201 20	22	0.03	17	280	< 2	< 2	5	13	0.09	< 10	< 10	98	< 10	96	
F16601	201 20	2	0.01	11	540	2	< 2	5	7	0.13	< 10	< 10	142	< 10	104	
F16602	201 20	2	0.01	22	370	6	< 2	4	12	0.17	< 10	< 10	112	< 10	120	
r16603	201 20	2	0.01	10	250	2	< 2	3	9	0.07	< 10	< 10	59	< 10	214	
r16604	201 20	22	0.01	23	210	14	< 2	5	14	0.11	< 10	< 10	82	< 10	208	
16605	201 20	22	0.01	27	280	10	2	14	16	0.10	< 10	< 10	130	< 10	278	
516606	201 20	3	0.03	25	340	16	6	10	15	0.00	< 10	< 10	91	< 10	256	
.10001	201 20	1	0.01	34	230	4		13	15	0.17	< 10	< 10	160	< 10	168	
16608	201 20	2	0.01	37	380	8	2	11	17	0.11	< 10	< 10	104	< 10	286	
16609	201 20	2	0.01	36	380	8	2	9	21	0.10	< 10	< 10	106	< 10	150	
16610	201 20	2	0.01	28	420	8	2	7	14	0.11	< 10	< 10	90	< 10	148	
16611	201 20	22	0.01	35	350	< 2	2	17	152	0.26	< 10	< 10	176	< 10	100	
16612	201 20	2	0.03	27	1450	8	< 2	11	21	0.06	< 10	< 10	88	< 10	108	
16613	201 20)2	0.01	27	320	8	< 2	6	12	0.10	< 10	< 10	91	< 10	92	
16614	201 20	2	0.01	31	490	6	2	14	18	0.13	< 10	< 10	128	< 10	138	
16615	201 20	2	0.01	40	300	4	2	13	18	0.11	< 10	< 10	111	< 10	194	
16616	201 20	2	0.02	23	340	6	2	9	21	0.13	< 10	< 10	128	< 10	150	
16617	201 20	2	0.01	23	280	8	< 2	5	17	0.10	< 10	< 10	93	< 10	90	
16618	201 20)2	0.01	16	210	4	< 2	3	11	0.10	< 10	< 10	99	< 10	82	
16619	201 20	2	< 0.01	38	340	6	4	18	27	0.17	< 10	< 10	166	< 10	114	
16621	201 20	2	< 0.01	36	590	14	2	6	26	0.02	< 10	< 10	56	< 10	134	
16622	201 20	2	0.01	37	700	4	< 2	11	35	0.10	< 10	< 10	81	< 10	404	
16623	201 20	2	< 0.01	25	120	10	< 2	4	9	0.04	< 10	< 10	69	< 10	76	

CERTIFICATION:___

Sant Broklen

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page , Total P. r :3-A :3 Certificate Date: 23-JUN-96 Invoice No. : 19620849 P.O. Number MPO Account

Project : F.P. ICE Comments:

										CE	RTIFI	CATE	E OF A	NALY	/SIS		49620	849		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
r16624 r16625 r16626 r16627 r16628	201 20 201 20 201 20 201 20 201 20 201 20	2 0.2 2 < 0.2 2 < 0.2 2 < 0.2 0.2 0.2	2.37 2.15 2.88 1.71 1.93	2 6 2 2 < 2	340 880 1000 730 520	< 0.5 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.39 0.86 1.15 0.41 0.48	0.5 < 0.5 0.5 1.5 0.5	67 14 102 17 20	80 50 33 21 37	4760 177 127 57 248	11.25 3.47 6.50 2.77 3.73	< 10 < 10 10 < 10 < 10	1 < 1 < 1 < 1 < 1	0.08 0.14 0.24 0.16 0.11	< 10 10 < 10 10 10	0.52 0.94 1.29 0.24 0.49	405 665 2080 3080 880	< 1 1 2 3
16629 16630 16631 16632 16633	201 20 201 20 201 20 201 20 201 20 201 20	2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2	0.78 0.89 1.48 0.62 1.47	10 4 < 2 6 6	190 320 960 190 370	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.09 0.15 0.20 0.14 0.29	< 0.5 < 0.5 0.5 0.5 < 0.5	4 5 8 5 7	13 18 19 14 30	111 30 35 40 23	2.33 1.86 2.28 1.81 2.14	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.11 0.11 0.10 0.08	10 20 10 10 10	0.17 0.20 0.26 0.08 0.46	135 185 940 300 250	3 3 1 1 1
16634 16635 16636 16637 16638	201 20 201 20 201 20 201 20 201 20 201 20	2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2	1.90 1.49 1.80 1.51 2.17	10 < 2 2 4 10	670 440 280 300 270	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.73 0.40 0.24 0.18 0.22	1.0 0.5 1.0 < 0.5 < 0.5	15 11 10 7 11	44 35 34 27 37	587 1405 27 26 42	3.16 2.76 2.50 1.91 2.98	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.27 0.09 0.08 0.06 0.06	10 10 10 10 10	0.78 0.51 0.46 0.46 0.46	700 295 320 205 300	4 3 2 1 2
16639 16640 16641 16642 16643	201 203 201 203 201 203 201 203 201 203 201 203	2 0.2 2 1.0 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2	1.78 1.23 1.48 1.95 1.93	8 2 12 22 14	730 630 450 260 300	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.29 0.76 0.45 0.14 0.20	0.5 0.5 < 0.5 < 0.5 < 0.5	15 9 11 9 8	37 22 28 40 30	221 1025 142 27 18	3.64 2.00 2.41 3.34 2.84	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.08 0.11 0.11 0.07 0.04	10 < 10 20 10 10	0.56 0.27 0.54 0.65 0.39	815 240 425 240 255	3 2 1 2 1
*16644 *16645 *16646 *16647 *16648	201 202 201 202 201 202 201 202 201 202 201 202	2 < 0.2	1.51 1.77 1.26 1.84 2.35	8 12 8 8 10	280 260 180 550 520	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.09 0.23 0.26 0.56 0.71	< 0.5 < 0.5 < 0.5 0.5 0.5	9 8 15 24	31 36 25 36 49	37 19 12 66 225	3.01 3.75 3.07 3.39 4.62	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.08 0.08 0.08	10 10 10 < 10 < 10	0.42 0.55 0.38 0.80 0.92	265 255 290 465 675	2 1 < 1 1 1
16649 16650 18634 18635 18636	201 202 201 202 201 202 201 202 201 202 201 202	2 < 0.2 2 < 0.2 2 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2	1.99 1.99 1.97 3.74 1.75	12 12 2 2 12	420 390 300 630 640	< 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.44 0.23 0.38 0.90 0.24	< 0.5 0.5 < 0.5 < 0.5 < 0.5	18 17 11 39 17	43 30 36 65 37	804 131 38 96 78	3.49 5.62 3.32 7.98 3.66	< 10 < 10 < 10 10 < 10	< 1 < 1 1 1 < 1	0.07 0.06 0.03 0.14 0.11	10 10 < 10 < 10 10	0.80 0.59 0.56 1.77 0.56	525 490 455 4480 965	1 < 1 < 1 2
18637 18638 18639 18640 18674	201 202 201 202 201 202 201 202 201 202 201 202	2 0.2 2 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 < 0.2 2 2 22.4	1.69 1.41 1.65 1.61 0.24	8 8 8 14 8	800 700 360 220 370	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.20 1.37 0.15 0.28 0.01	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 15 6 9 1	27 30 37 34 11	47 1090 20 29 221	3.55 2.53 2.21 3.05 1.52	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.17 0.14 0.08 0.08 0.01	20 10 10 10 < 10	0.50 0.58 0.41 0.53 0.03	800 435 155 310 20	1 1 1 1 6
18675 18676	201 202 201 202	2 0.2 2 < 0.2	1.67 1.33	8 8	440 600	< 0.5 < 0.5	< 2 < 2	1.23 0.86	1.0 0.5	13 12	35 37	56 36	2.98 2.49	< 10 < 10	< 1 < 1	0.21 0.12	10 10	0.94 0.80	540 630	1 1
		4														4	sail	No	chle	~

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page । Total Pఓ r :3-B :3 Certificate Date: 23-JUN-96 Invoice No. P.O. Number : 19620849 MPO Account

Project : Comments: F.P. ICE

CERTIFICATE OF ANALYSIS

A9620849

	PREP	Na	Ni	₽	Pb	Sb	Sc	Sr	Tİ	T1	υ	v	W	Zn	
SAMPLE	CODE	*	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
T16624	201 202	< 0.01	29	530	4	< 2	21	15	0.01	< 10	10	106	< 10	1135	
F16625	201 202	0.01	35	340	6	< 2	10	19	0.10	< 10	< 10	79	< 10	122	
T16626	201 202	0.03	24	420	< 2	2	29	43	0.26	< 10	< 10	178	< 10	272	
r 16627	201 202	0.03	27	9 70	14	< 2	4	19	0.01	< 10	< 10	44	< 10	252	
T16628	201 202	0.02	28	530	8	< 2	6	21	0.07	< 10	< 10	80	< 10	174	
T16629	201 202	0.01	27	400	10	< 2	2	11	0.01	< 10	< 10	29	< 10	100	
T1663 0	201 202	0.01	13	330	10	< 2	1	12	0.03	< 10	< 10	38	< 10	144	
T16631	201 202	0.01	17	520	18	< 2	1	25	0.01	< 10	< 10	36	< 10	340	
T16632	201 202	0.03	18	380	6	< 2	1	9	0.03	< 10	< 10	49	< 10	92	
T16633	201 202	< 0.01	20	330	8	< 2	3	13	0.06	< 10	< 10	59	< 10	72	
T16634	201 202	0.01	55	910	14	2	9	41	0.07	< 10	< 10	72	< 10	160	
T16635	201 202	0.03	22	550	6	< 2	7	23	0.04	< 10	< 10	59	< 10	130	
T16636	201 202	0.01	21	240	6	< 2	3	13	0.06	< 10	< 10	63	< 10	152	
T16637	201 202	0.01	17	240	6	2	3	11	0.05	< 10	< 10	49	< 10	82	
T16638	201 202	< 0.01	19	290	12	< 2	4	11	0.09	< 10	< 10	81	< 10	128	
T16639	201 202	< 0.01	32	430	10	< 2	6	18	0.06	< 10	< 10	76	< 10	184	
T1664 0	201 202	0.04	20	470	2	< 2	5	23	0.02	< 10	< 10	42	< 10	110	
T16641	201 202	0.01	28	420	12	2	5	25	0.04	< 10	< 10	45	< 10	102	
T16642	201 202	< 0.01	22	260	8	4	4	10	0.07	< 10	< 10	89	< 10	178	
T16643	201 202	< 0.01	13	190	12	< 2	3	11	0.06	< 10	< 10	83	< 10	80	
T16644	201 202	< 0.01	29	350	12	< 2	2	12	0.01	< 10	< 10	51	< 10	78	
T16645	201 202	< 0.01	17	200	10	< 2	3	9	0.08	< 10	< 10	121	< 10	56	
T16646	201 202	< 0.01	15	380	10	< 2	1	9	0.07	< 10	< 10	85	< 10	58	
T16647	201 202	< 0.01	24	390	8	< 2	5	17	0.11	< 10	< 10	95	< 10	90	
T16648	201 202	< 0.01	35	720	12	< 2	7	25	0.14	< 10	< 10	125	< 10	138	
T16649	201 202	< 0.01	31	370	10	< 2	6	15	0.07	< 10	< 10	84	< 10	144	
T16650	201 202	< 0.01	19	350	8	< 2	4	14	0.09	< 10	< 10	138	< 10	158	
T1863 4	201 202	0.03	17	1060	< 2	< 2	6	15	0.01	< 10	< 10	100	< 10	90	
T18635	201 202	< 0.01	43	600	< 2	< 2	42	20	0.06	< 10	< 10	194	< 10	108	
T18636	201 202	< 0.01	30	560	16	< 2	4	13	0.05	< 10	< 10	79	< 10	138	
T18637	201 202	0.01	31	890	20	< 2	2	29	0.01	< 10	< 10	49	< 10	246	
T18638	201 202	0.03	30	670	8	< 2	6	45	0.04	< 10	< 10	57	< 10	114	
T18639	201 202	< 0.01	21	190	8	< 2	2	11	0.05	< 10	< 10	65	< 10	54	
T18640	201 202	< 0.01	18	200	12	< 2	3	11	0.08	< 10	< 10	87	< 10	60	
T18674	201 202	< 0.01	3	120	12	< 2	< 1	4	0.01	< 10	< 10	21	< 10	36	
T18675	201 202	< 0.01	34	1100	14	< 2	6	54	0.08	< 10	< 10	73	< 10	154	
T18676	201 202	< 0.01	34	1110	12	< 2	5	43	0.08	< 10	< 10	66	< 10	106	
.								<u> </u>							
													~	EDTIELO	ATION: Start Sichler

CERTIFICATION:

C

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page N r :1-A Total Pages :1 Certificate Date: 17-JUN-96 Invoice No. :19620788 P.O. Number : :MPO Account

~

Project : FP-ICE Comments:

Г

											CE	RTIFI	CATE	E OF A	NAL	YSIS		A9620	788		····
SAMPLE	PE CO	EP DE	Au g/t FA/AA R	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi pp m	Ca %	Cđ pp m	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K %	Mg %	Mn ppm	Mo pp m	Na %
935919	258	295	< 0.005	< 1	4.62	10	160	< 5	10	3.53	5	40	200	3020	6.43	< 10	0.24	2.97	1190	< 5	0.19
								<u> </u>												•	
														(CERTIFIC		6	rant	7Br	chle	2

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATION:

Page I, r : 1-B Total Page : 1 Certificate Date: 17-JUN-96 Invoice No. : 19620788 P.O. Number : Account : MPO

Project : Comments: FP-ICE

	- -										CE	RTIFI		OF ANALYSIS	A9620788
SAMPLE	PREI CODI	P E	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U PPm	V ppm	W ppm	Zn ppm	
5919	258	295	75	800	15	< 10	15	25	0.41	< 20	< 20	160	< 20	835	· · · · · · · · · · · · · · · · · · ·
	1														
							<u> </u>								

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Project : Comments: FP-ICE Page N r : 1-A Total Pages : 1 Certificate Date: 15-JUN-96 Invoice No. : 19620787 P.O. Number MPO Account

										CE	RTIFI	CATE	E OF A	NAL	YSIS		A962()787		
SAMPLE	PREP CODE	Au ppb RUSH	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Ng %	Mn ppm
935916 935917 935918	258 295 258 295 258 295	35 1280 50	0.6 7.6 2.6	0.35 0.33 0.84	18 36 4 66	230 80 60	< 0.5 < 0.5 < 0.5	6 < 2 38	0.04 0.02 0.04	0.5 0.5 1.5	7 9 32	82 78 190	4170 > 3740 > 3230 >	15.00 15.00 15.00	10 < 10 10	< 1 1 3	0.02 0.01 0.06	< 10 < 10 < 10	0.03 0.03 0.02	40 50 85
										at A			·							
							,										7.)	JSL		

CERTIFICATION:_

6

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page N 7 :1-B Total Pag 7 :1 Certificate Date: 15-JUN-96 Invoice No. : 19620787 P.O. Number : MPO Account

Project : FP-ICE Comments:

										CE	RTIF	CATE	OF A	NALY	SIS	A9620787
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W mqq	Zn ppm	
935916 935917 935918	258 295 258 295 258 295	18 23 434	0.01 0.01 0.01	3 3 5	420 140 820	12 14 140	< 2 < 2 8	2 1 7	8 6 < 23	0.03 0.01 0.01	< 10 < 10 < 10	< 10 < 10 < 10	87 32 252	< 10 < 10 < 10	172 140 568	
				3									1	, ,		
						·							<u> </u>		·	tax Robo

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CEDTICICATE OF ANALVEIS

Page , Total Pa r :1-A :1 Certificate Date: 18-JUN-96 Invoice No. P.O. Number :19620786 : : MPO Account

A0620706

Sant Broklen

CERTIFICATION:

Project : Comments: FP-ICE

" PLEASE NOTE			_									AL 1 313	· · · · · ·	.902070		
SAMPLE	P C	REP ODE	Aug/t FA/AA R	Ag ppm AAS	A1 % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cuppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)
935914 935915	258 258	295 295	< 0.005 < 0.005	< 1.0 < 1.0	2.05 7.65	300 400	< 10 < 10	Intf• < 20	0.15 7.95	< 10 < 10	140 40	80 190	>100000 6850	23.8 8.00	0.1 < 0.1	0.55 3.55
								-								
							:	\$								
			[
			1												.	

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page I : 1-B Total Pas : 1 Certificate Date: 18-JUN-96 Invoice No. : 19620786 P.O. Number Account MPO

~

Project : FP-ICE Comments:

_

CERTIFICATE OF ANALYSIS

A9620786

* PLEASE NOTE	·	-		- 1			L	CERTI	FICATE	OF AN	ALYSIS	; /	4962078	86	1
SAMPLE	PREP CODE	Mn ppm (ICP)	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	Pb % AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	Zn ppm (ICP)	Cu %				
935914 935915	258 295 258 295	280 1050	< 10 < 10	0.40 2.30	50 60	0.001 0.003	10 40	0.20 0.75	110 320	2760 180	11.30 0.68				
				:											
														-	
							-								
					4					1		5			
-															
		_	1		· .	4 ₁₄₁		•		CEF	TIFICATIO	N: 4	art	sicht	er

APPENDIX IV

DRILL LOGS

SYNOP	TIC LO	G		Hole:	IC 96-01		Property:	ICE		_	Section:	10950N				Page 1	of 2
FINLAY	SON P	ROJE	ст			_				-				Depth	Azimuth	Dip	Method
EXPATRIA	ATE RESO	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	y:	Greg Bell		-	0	305°	-50°	Brunton
an an antoi inina air-airis ininair			a na mana na katala a ang katala na mana	376623	6862490	1259	181.66		Drilling Da	ates:	July 06 to1	1, 1996		181.66		-57°	Acid
	Τ.	Internel	l lania	Τ	Commonte			L Erom	To	Interval	Sample	DEC		C.0	75	Aa	Δ.,
(m)	10 (m)	(m)	Unit		Comments	i		(m)	(m)	(m)	No.	KEC		(mag)	(ppm)	(ppm)	(dad)
0.00	7.62	7.62	CSDH	Casing				+	0.0					WF			
7.62	14 10	6.48	BPBS	Breccia has	alt		.,										
7.02	14.10	0.40	DIGO	-trace PY in	n matrix			7.62	9.14	1.52	N110802	79	0.25%	21	686	0.2	<5
				-extensive of	orange-brow	n LI coatino	FR	9.14	10.67	1.53	N110803	71	0.13%	19	646	0.4	<5
								10.67	12.80	2.13	N110804	96	0.16%	22	558	0.2	<5
								12.80	14.10	1.30	N110805	84	0.08%	20	208	0.2	<5
14.10	18.59	4.49	MSBS	Massive ba	salt	·				1							
				-orange-bro	wn Ll on Ff	र		14.10	15.54	1.44	N110806	96	0.16%	21	160	<0.2	<5
				-trace mala	chite with 0.	5cm rusty o	quartz vein	15.54	16.76	1.22	N110807	99	0.19%	33	282	<0.2	<5
								16.76	18.59	1.83	N110808	95	0.28%	25	130	<0.2	<5
18.59	23.50	4.91	BRBS	Breccia bas	salt												
				-minor PY i	n matrix			18.59	19.90	1.31	N110809	93	0.28%	36	282	<0.2	<5
				-orange-bro	wn Ll on FF	र	_	19.90	21.34	1.44	N110810	91	1.05%	85	802	0.6	<5
				-malachite,	cuprite on F	R		21.34	23.50	2.16	N110811	98	1.11%	86	676	<0.2	<5
23.50	24.75	1.25	CBMS	Mudstone i	nterbedded v	with basalt											
				-some oran	ge-brown Ll	on FR		23.50	24.75	1.25	N110812	98	0.98 %	100	904	0.2	<5
24.75	29.90	5.15	MSCH	Dark grey c	hert												
				-patchy brow	wn to orang	e LI on FR		24.75	26.67	1.92	N110813	93	0.32%	16	162	<0.2	<5
				-cuprite on	some FR	,		26.67	28.18	1.51	N110814	85	0.54%	11	108	<0.2	<5
	······							28.18	29.90	1.72	N110815	90	0.50%	60	838	0.2	<5
29.90	33.00	3.10	CBMS	Weakly silic	eous muds	ione											
				-very patch	y orange-bro	wn Ll on F	<u>R</u>	29.90	31.40	1.50	N110816	94	0.56%	18	220	<0.2	20
	05.05	00.05	Magu	-red cuprite	noted on FI	۲		31.40	33.00	1.60	N110817	68	0.63%	85	1030	0.2	2
33.00	65.95	32.95	MSCH	Ribbon-bed	ded carbona	deceous cher	<u>τ</u>	22.00	24.44	1 44	NI440949		0.249/		200	<0.2	~E
				-minor prov		down to 42	meters	33.00	34.44	1,44	N110010	<u> </u>	0.24%	44	300	<0.2	10
				-no Li Delov	v 42 meters			34.44	30.00	1 47	N110820	20	0.20%	4J 52	420	-0.2	-5
								38.05	30.00	1.47	N110821	29	0.20%	36	340	0.2	-5
}								39.62	40.50	0.88	N110822	65	0.32 /0	38	364	<0.2	<5
			· · · · · · ·					40.50	42.06	1 56	N110823	26	0.39%	36	368	<0.2	<5
								42.06	43.40	1.34	N110824	88	736	34	286	0.2	

.

<u>patente de la companya de</u>		<u> </u>			r		1	1						<u></u>
From	То	Interval	Unit	Comments	From	To	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
				Ribbon-bedded carbonaceous chert, cont'd	43.40	45.11	1.71	N111075	53	334	17	162	0.2	
					45.11	47.15	2.04	N111076	29	337	20	228	<0.2	
[65.23	65.95	0.72	N110898	86	60	7	78	0.2	
65.95	92.04	26.09	MSCH	Ribbon-bedded grey chert										
				-no LI on FR	65.95	67.36	1.41	N110899	110	58	10	56	<0.2	
					67.36	69.49	2.13	N110900	70	61	7	84	<0.2	
					69.49	71.07	1.58	N110901	86	62	7	66	0.2	
					71.07	72.54	1.47	N110902	86	86	9	74	0.2	
					84,40	85.34	0.94	N110903	36	73	13	108	0.2	
92.04	100.68	8.64	MSBS	Massive basalt										
100.68	112.00	11.32	MSBS	Weakly porphyritic basalt										
112.00	120.20	8.20	MSBS	Basalt with minor brecciation										
120.20	181.66	61.46	MSBS	Massive basalt										
				EOH										
														[
														[
														-
			·····											
			· · · ·											

IC96-01

Resistivity (rho) = (volts * crossectional area (m2)) / (amps * length (m))

	BTW
Core Diameter (m)	0.042
Core Radius	0.021
Cross-sectional Area (Pi * R2) (m2)	0.0013847

DDH	ROCK TYPE	DEPTH	LENGTH (m)	VOLTS	AMPS	RESISTIVITY
IC 96-0	1 Ribbon-bedded carbonaceous chert	48.90	0.05	91.2	2.500	1.06
IC 96-0	1 Ribbon-bedded carbonaceous chert	51.00	0.04	91.1	3.200	0.99
IC 96-0	1 Ribbon-bedded carbonaceous chert	58.50	0.04	89.6	27.400	0.11
IC 96-0	1 Ribbon-bedded carbonaceous chert	59.40	0.07	91.2	2.800	0.69
IC 96-0	1 Ribbon-bedded carbonaceous chert	63.00	0.13	91.2	1.936	0.52
IC 96-0	1 Ribbon-bedded carbonaceous chert	63.50	0.06	90.6	9.300	0.22
IC 96-0	1 Ribbon-bedded carbonaceous chert	64.50	0.06	91.0	4.500	0.51
IC 96-0	1 Ribbon-bedded carbonaceous chert	64.67	0.09	91.0	4.100	0.34
IC 96-0)1 Lithic sandstone	74.99	0.13	90.3	0.945	1.06
IC 96-0	01 Lithic sandstone	75.10	0.11	90.5	0.779	1.46
IC 96-0	1 Ribbon-bedded grey chert	88.15	0.13	89.8	1.453	0.66
IC 96-0	11 Ribbon-bedded grey chert	88.32	0.16	89.8	1.420	0.55
IC 96-0	01 Ribbon-bedded grey chert	88.76	0.23	89.6	1.573	0.34
IC 96-0	1 Ribbon-bedded grey chert	88.98	0.17	89.5	1.674	0.44
IC 96-0	1 Ribbon-bedded grey chert	89.14	0.18	89.4	1.835	0.37
IC 96-0	1 Ribbon-bedded grey chert	89.86	0.10	89.5	1.317	0.94
IC 96-0	1 Ribbon-bedded grey chert	91.21	0.13	89.3	1.823	0.52
IC 96-0	01 Ribbon-bedded grey chert	91.56	0.17	89.8	1.373	0.55
IC 96-0	01 Weakly porphyritic basalt	107.82	0.15	89.6	1.589	0.52
IC 96-0	01 Weakly porphyritic basalt	109.93	0.13	89.5	1.736	0.57
IC 96-0	01 Breccia basalt	115.39	0.13	91.3	0.950	1.06
IC 96-0	01 Breccia basalt	115.93	0.21	90.3	1.058	0.56
IC 96-0	01 Breccia basalt	118.81	0.12	89.7	1.490	0.72
IC 96-0	01 Breccia basalt	119.00	0.26	90.3	0.940	0.51
IC 96-0	01 Breccia basalt	120.00	0.12	89.6	1.642	0.63
IC 96-0	01 Massive basalt	134.98	0.16	89.9	1.320	0.61
IC 96-0	01 Massive basalt	135.28	0.18	89.5	1.640	0.42
IC 96-0	01 Massive basalt	137.34	0.14	90.0	1.240	0.74
IC 96-0	01 Massive basalt	138.33	0.18	89.9	1.291	0.54
IC 96-0	01 Massive basalt	139.63	0.14	90.2	1.050	0.88
IC 96-0	01 Massive basait	143.58	0.15	90.1	1.102	0.75
IC 96-0	01 Massive basalt	144.58	0.18	90.3	0.975	0.71
IC 96-0	01 Massive basalt	152.00	0.13	89.9	1.305	0.73

SYNOP	TIC LO	G		Hole:	IC 96-02	_	Property:	ICE			Section:	11200	1			Page '	l of 4
FINLAY	SON P	ROJE	СТ			_				-			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RES	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	y:	G. Bell/G.	McDoug	all	0.00	288°	-49°	Silva
	6 a c c c			376765	6862689	1294.7	116.28		Drilling Da	ates:	July 12 to	15, 1996	<u>i</u>	No acid	test done	•	
Erom	т.	Interiol	11-14	T	0			l	+-		0	050			_		
(m)	(m)	(m)	Unit		Comments	i		rom (m)	(m)	(m)	No.	REC %	(ppm)	(ppm)	Zn (ppm)	Ag (ppm)	Au (daa)
0.00	1.83	1.83	CSDH	Casing					(11)			1	WFF	G P ··· 7	411.17	(FF-17)	GF=7
1.83	4.30	2.47	LCDH	Missing cor	······								[·····				
4.30	5.50	1.20	MSBS	Massive ba	salt												
				-LI coating	and/or Mn o	xides on FR	!	4.30	5.50	1.20	N110825	90	56	28	92	<0.2	5
5.50	6.70	1.20	MSBS	Calcite vein	ed massive	basalt					-						
				-LI coated F	R			5,50	6.70	1.20	N110826	97	72	47	256	<0.2	<5
				-patches ea	rthy Ll in thi	ck CV											
6.70	14.82	8.12	MSBS	Massive bas	salt												
				-rusty LI and	d Mn oxides	on FR		6.70	7.92	1.22	N110827	97	68	26	98	<0.2	5
								7.92	9.45	1.53	N110828	100	66	26	98	<0.2	10
					·····			9.45	10.97	1.52	N110829	98	66	34	134	<0.2	<5
								10.97	12.80	1.83	N110830	98	70	43	246	<0.2	<5
ļ ļ								12.80	14.82	2.02	N110831	94	62	42	158	<0.2	<5
14.82	19.00	4.18	QTVN	Brecciated,	quartz and o	calcite veine	ed basalt										
				-Li and Mn o	oxide coated	FR in clast	ts	14.82	15.60	0.78	N110832	100	68	68	204	<0.2	<5
-				-limonitic br	eccia matrix	<u> </u>	·	15.60	17.07	1.47	N110833	82	0.18 %	47	438	<0.2	<5
								17.07	19.00	1.93	N110834	88	0.29 %	127	1755	<0.2	<5
19.00	24.99	5.99	GGST	Fault gouge													
				-LI in hairlin	e FR in brec	cia clasts		19.00	20.73	1.73	N110835	37	0.38 %	104	1250	<0.2	5
				-very minor	LI in clay go	ouge		20.73	21.89	1.16	N110836	77	0.02 %	42	110	<0.2	5
								21.89	23.32	1.43	N110837	66	<0.01%	30	116	<0.2	<5
24.00	29.75	2.70	FROT	FH bi				23.32	24.99	1.67	N110838	/4	0.25 %	152	1615	<0.2	10
24.99	20.15	3.70	FDSI	Pault Diecci	a with quart	z-pyrite-chai	ico veining	24.00	20.70	4 77	N440000	50	4 00 00	000	0500	.0.0	
				CD + DV in				24.99	20.70	1.77	N110839	59	1.02 %	223	6520	<0.2	20
				matrix	DIOCCIA			20.70	20.75	1.99	NT10040		4.10 %	301	1390	1	- 30
28 75	31 70	2 95	BRBS	Brecciated b	nasalt												
20.70	01.70	2.00	01100	-I I filling FR	/breccia ma	triv		28.75	30 17	1 42	N110841	92	4 72 %		478	<0.2	
				-patchy deve	alooment of	CC with LL		30.17	31 70	1 52	N110842	<u> 2</u> 02	1 13 %	43 07	2000	<0.2	~5
				-late hairline	FR with CT	specks C		00.17		1.00	11110042		1.15 //		2000		
				-very minor l	MA staining	CT											

Property: ICE

.....

			1					1	199999999999	100000000000000000000000000000000000000				
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
31.70	34.50	2.80	FBST	Basalt fault breccia with some specular HE										
				matrix	31.70	32.92	1.22	N110843	60	1.93 %	82	1150	<0.2	<5
				-FR surfaces coated with CC and brown LI	32.92	34.44	1.52	N110844	57	0.93 %	142	2760	<0.2	<5
			_	-minor streaks of CT (or bright red HE)										
				on FR with specks of CU										
34.50	37.40	2.90	GGST	Fault gouge										
				-red to brown HE and patchy rusty brown	34.44	37.40	2.96	N110845	59	0.56 %	271	4230	1	15
				LI in clay gouge										l.
				-minor streaks bright red possible CT										
37.40	39.00	1.60	HEMS	Specular HE cemented basalt breccia										
				-disseminated PY in HE	37.40	39.01	1.61	N110846	63	0.02 %	155	2320	<0.2	<5
39.00	42.06	3.06	BRBS	Basalt breccia to fault gouge										
				-minor red HE on slickensided surfaces	39.01	40.54	1.53	N110847	55	0.39 %	92	2030	<0.2	<5
				-possibly minor CC?	40.54	42.06	1.52	N110848	100	0.46 %	122	2660	<0.2	5
42.06	43.59	1.53	GGST	Fault gouge										
				-minor orange limonitic patches in clay gouge	42.06	43.59	1.53	N110849	100	0.99 %	116	3500	<0.2	<5
43.59	45.55	1.96	HEMS	Specular hematite cemented basalt breccia										
				-rusty orange LI coated breccia fragments	43.59	45.55	1.96	N110850	62	2.97 %	328	638	<0.2	20
				-minor PY and possible CC with										
				HE matrix										
45.55	46.00	0.45	FBST	Fault breccia to gouge with basalt fragments										
				-gouge completely orangey LI stained	45.55	46.63	1.08	N110885	90	5.03 %	156	1110	<0.2	15
				-black to steel grey possible CC in										
				breccia matrix										
46.00	48.16	2.16	GGST	Fault gouge with minor breccia fragments										
				-dark brown to red HE gouge	46.63	48.16	1.53	N110886	100	7.13 %	476	814	<0.2	<5
				-patches strong LI staining										
				-very bright red earthy material, ?CT along										
				hairline FR			-							
48.16	49.35	1.19	GGST	Clay fault gouge with rare breccia clasts										
				-all earthy bright orange LI clays	48.16	49.35	1.19	N110887	42	8.29 %	349	8160	<0.2	10
				-CC as fine network in LI										

	1				r		T						<u> Alberta an an an an an an an an an an an an an</u>	1999999999999
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)	ļ		(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
49.35	56.00	6.65	FBST	Fault breccia with clay gouge					ļ					
				-matrix generally LI stained	49.35	50.57	1.22	N110888	99	1.49%	226	1930	2	95
				-minor specular to red HE matrix	50.57	53.08	2.51	N110889	45	1.20%	150	4260	2	90
				-variable disseminated PY in clasts	53.08	54.55	1.47	N110890	90	0.59%	161	1805	1	10
				and adjacent matrix										
56.00	56.50	0.50	QTVN	Quartz vein, fractured										
				-rusty brown LI filling FR in quartz	54.55	56.62	2.07	N110891	80	0.86%	137	4830	<0.2	<5
				-minor dark red HE coating FR										
				-rare specks CU on LI coated FR										
				surfaces										
56.50	62.79	6.29	MSBS	Massive basalt										
				-minor brown to yellow LI on FR	56.62	58.24	1.62	N110892	84	0.45%	107	3850	<0.2	<5
					58.24	60.20	1.96	N110893	49	0.28%	86	2930	<0.2	<5
					60.20	61.82	1.62	N110894	83	266	50	874	<0.2	<5
					61.82	63.37	1.55	N110895	81	202	39	338	<0.2	<5
62.79	67.97	5.18	MSBS	Massive basalt										
				-rare dark brown LI on FR	63.37	65.07	1.70	N110896	79	523	42	490	<0.2	<5
				-minor patches orange LI as matrix to	65.07	66.60	1.53	N110897	88	1965	52	1040	<0.2	<5
				fractured rock	66.60	67.97	1.37	N111101	18	1765	77	1575	<0.2	
67.97	71.80	3 83	FBST	Fault breccia with chloritic gouge zones										
				-red HE in late ER in basalt clasts	67 97	69 49	1 52	N111102	33	71	55	948	<0.2	
					01.01	00.40							-0.2	
			<u></u>		69.49	71.02	1 53	N111103	30	95	63	426	<0.2	
					00.40	71.02	1.55	14111100				420	-0.2	
71.80	74 14	2 34	MORO	Massivo basatt	·									
71.00	74.14	2.04		-rare red HE in late ER with and without calcite										
74 14	75 30	1 16	EBOT	Fault braceis with oblaritic gauge zones										
75.20	79.09	2 79	PDDC	Pault Directia with chlorhic gouge zones										
75.50	70.00	2.70	DRDS	discominated DV in the matrix 44.9/	75.00	70.04	4 54	N144404		057		4 4 9 9	0.0	
				ruisseminated Pri in the mathx, <1 %	75.30	70.01	1.51	N111104	20	35/	63	1460	0.6	
70.00	00.77				/6.81	78.08	1.27	N111105	64	310	50	15/5	0.4	
/8.08	80.77	2.69	BKBS	Pyrite matrixed voicaniciastic basait breccia		70 57								
				-semi-massive PY /9.30 to /9.42 m, but	78.08	/9.55	1.47	N111106	93	458	44	/10	0.8	
				only about 2 % of total interval	79.55	80.77	1.22	N111107	93	78	31	476	<0.2	
									1		1			

11 11 11 11 11 11 11 11 11 11 11 11 11														
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Aa	Au
(m)	(m)	(m)	•••••		(m)	(m)	(m)	No.	%	(ppm)	(mgg)	(mag)	(mpm)	(dqq)
80.77	85.23	4.46	BRBS	Basait breccia, volcaniclastic										
					80.77	82.60	1.83	N111108	100	63	27	370	<0.2	
85.23	116.28	31.05	MSBS	Massive basalt										
				FOH										
				······										
														-
· · · • • •														
														-
			-											

SYNOP	TIC LO	G		Hole:	IC96-03	_	Property:	lce		_	Section:	11200N			_	Page	1 of 5
FINLAY	SON P	ROJE	СТ			_								Depth	Azimuth	Dip	Method
EXPATRIA	TE RESC	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	y:	G. McDoug	jall		0	316°	-49°	Brunton
			ALLAND A CODO & CODO	376805	6862638	1281	152.40		Drilling Da	ates:	July 28 to /	August 1	1996	137.16		-48°	Acid
C	<u>т.</u>	Interval	linit		Commonte			Erom	Та	Interval	Sampla	PEC			75	٨٥	A.,
(m)	(m)	(m)	Onit		Comments	i		(m)	(m)	(m)	No.	%	(pom)	(nom)	(ppm)	(maa)	(pob)
0.00	1.83	1.83	CSDH	Caeing									wr	wr	G P - 7	wr	<u></u>
1.83	3.28	1.05	MSBS	Massive ha	ealt			-									
1.00	0.20	1.40	MOBO	-dark brown	h I I and blac	k Mn oxide		1.83	3 28	1 45	N110935	100	66	32	80	<0.2	<5
				stains a				1				1					
3.28	3.66	0.38	MSBS	Massive ba	salt												
				-dark browr	LI and blac	k Mn oxide		3.28	3.66	0.38	N110936	79	82	40	100	<0.2	<5
				stains a	ll FR												
3.66	4.95	1.29	MSCH	Massive rec	d chert												
								3.66	4.95	1.29	N110937	48	79	8	18	<0.2	<5
4.95	10.95	6.00	MSBS	Massive ba	salt												
				-many FR/t	oreaks with l	l coatings		4.95	6.52	1.57	N110938	100	56	36	104	<0.2	<5
				-LI decreas	es downwar	d		6.52	8.00	1.48	N110939	74	69	29	92	<0.2	<5
								8.00	9.75	1.75	N110940	86	66	35	108	<0.2	<5
								9.75	10.95	1.20	N110941	86	63	35	102	<0.2	<5
10.95	11.12	0.17	FFBS	Basaltic tuf	f			·									
				-minor LI w	ith calcite or	h broken sur	faces	10.95	11.12	0.17	N110942	88	29	8	14	<0.2	<5
11.12	16.50	5.38	MSBS	Massive ba	sait								<u> </u>				
				-LI on only a	a few of FR			11.12	12.80	1.68	N110943	100	61	34	78	<0.2	<5
				-patchy HE	(red) stainin	g		12.80	14.33	1.53	N110944	98	69	34	82	<0.2	<5
	47.07	0.57			14			14.33	16.50	2.17	N110945	92	/6	31	86	<0.2	<5
16.50	17.07	0.57	MSBS	Massive ba		ment ED		16 50	17.07	0.57	N110046	70	EC	25	70	-0.2	-5
17.07	22.42	E 26	Mere	-prown Li si	aning along	mostrk		10.50	17.07	0.57	11110940	/0	50	25	12	<u> </u>	5
17.07	22.42	5.55	NISDS	orange bro	wo Lletaini	og whore re		17.07	19.00	1 82	N110047	74	63	20	74	<0.2	-5
				fractured				18.90	20.65	1.05	N110948	60	67	30	78	<0.2	<5
				-minor red b	HE staining			20.65	20.00	1.70	N110949	68	68	30	82	<0.2	<5
22 42	23.52	1 10	BRBS	Basalt, fault	/shear brec	cia		20.00		1.77	11110040						
				-minor red l	HE staining			22.42	23.52	1.10	N110950	78	53	27	64	<0.2	<5

From	To	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
23.52	27.37	3.85	MSBS	Massive basalt										
				-rare red HE staining on FR	23.52	24.99	1.47	N111001	65	69	32	82	<0.2	<5
					24.99	26.37	1.38	N111002	87	63	28	76	<0.2	<5
					26.37	27.37	1.00	N111003	80	72	26	68	<0.2	<5
27.37	27.48	0.11	MSAR	Mudstone or argillite										
27.48	32.00	4.52	MSBS	Massive basalt										
[[-rare red HE staining on FR	27.48	29.05	1.57	N111004	83	57	25	84	<0.2	<5
					29.05	30.48	1.43	N111005	67	54	25	76	<0.2	<5
					30.48	32.00	1.52	N111006	79	44	25	74	<0.2	<5
32.00	32.18	0.18	BRBS	Basalt, shear/fault zone										
					32.00	32.18	0.18	N111007	100	37	27	78	<0.2	<5
32.18	37.95	5.77	MSBS	Massive basalt										
				-rare red HE staining on FR with slickensides	32.18	34.14	1.96	N111008	57	44	25	76	<0.2	<5
			•		34.14	36.00	1.86	N111009	91	57	28	90	<0.2	<5
					36.00	37.95	1.95	N111010	100	53	27	84	<0.2	<5
37.95	38.27	0.32	BRBS	Basalt, brecciated to sheared										
				-minor red HE staining on FR with slickensides	37.95	38.27	0.32	N111011	68	59	32	96	<0.2	<5
38.27	42.06	3.79	MSBS	Massive basalt										[
				-rare HE in calcite veinlets and on FR	38.27	40.23	1.96	N111012	75	57	28	90	<0.2	<5
					40.23	42.06	1.83	N111013	72	55	25	84	<0.2	<5
42.06	42.48	0.42	BRBS	Basalt, brecciated										
				-minor red HE on slickensided surfaces	42.06	42.48	0.42	N111014	83	53	30	92	<0.2	<5
42.48	47.30	4.82	MSBS	Massive basalt										
					42.48	44.08	1.60	N111015	43	57	27	86	<0.2	<5
					44.08	45.72	1.64	N111016	32	59	29	86	<0.2	<5
					45.72	47.30	1.58	N111017	45	59	25	78	<0.2	<5
47.30	47.43	0.13	PHBSp	Porphyritic basalt										
47.43	47.92	0.49	FFBS	Basaltic tuff										
					47.43	47.92	0.49	N111018	55	58	21	78	<0.2	<5
														Ĺ
														Ĺ

IC96-03 Hole:

266000000000000000000

From	То	Interval	Linit	Commosto	Erom	To		Comple	DEC.	<u> </u>	Co	7-	A	A
(m)	(m)	(m)	Unit	Comments	(m)	(m)	(m)	No	KEC		(ppm)		(nnm)	Au (ppb)
47.92	58.22	10.30	PHBSn	Pornhyritic basalt			(,			(PP.1.)	(PP)	(PP)	(PPIII)	(PP#)
47.02	00.22	10.00	Тпрор	-CU on ER surfaces 57 00 to 58 22 m	47 92	49.53	1.61	N111019	35	82	24	56	<02	<5
				-rare MA staining	49.53	51 36	1.01	N111020	70	79	25	54	<0.2	<5
					51 36	53.11	1.00	N111020	82	73	23	50	<0.2	-5
					53 11	54 71	1.70	N111022	68	82	25	54	<0.2	<5
				· · · · · · · · · · · · · · · · · · ·	54 71	56.39	1.68	N111023	64	77	26	56	<0.2	<5
			-		56.39	58.22	1.83	N111024	45	96	27	58	<0.2	<5
58.22	60.35	2.13	BRBS	Brecciated porphyritic basalt	00.00	00.22	1.00	1111024					-0.2	
	······································			-many FR surfaces coated with patchy CU	58.22	60.35	2.13	N111025	32	534	35	120	<0.2	<5
				-minor bright red CT ? with CU										
60.35	62.71	2.36	BRBS	Brecciated basalt cut by quartz-pyrite-										
				chalcopyrite veins	60.35	61.57	1.22	N111026	67	1.32%	140	366	2.2	40
				-minor red HE along hairline veinlets and	61.57	62.71	1.14	N111027	81	1.18%	112	854	1.6	50
				disseminated in basalt										
62.71	63.20	0.49	BRBS	Basalt, fault breccia and gouge										
				-specular HE with quartz or chert as clasts	62.71	63.20	0.49	N111028	78	0.05%	109	152	<0.2	15
63.20	66.65	3.45	HEMS	Breccia with massive specular HE matrix										
				-CP with HE and quartz in breccia clasts	63.20	64.77	1.57	N111029	52	0.09%	82	134	0.2	10
				-minor possible CT along FR	64.77	66.65	1.88	N111030	30	0.03%	73	72	<0.2	10
66.65	67.00	0.35	MSBS	Massive basalt										
					66.65	67.00	0.35	N111031	43	0.01%	104	94	<0.2	<5
67.00	67.80	0.80	HEMS	Breccia with massive HE matrix										L
				-CP in QV cutting matrix and clasts	67.00	67.80	0.80	N111032	56	0.12%	111	86	0.4	10
67.80	70.20	2.40	HEMS	Breccia with massive specular HE matrix										
				-earthy red HE along FR	67.80	68.88	1.08	N111033	100	0.01%	88	74	<0.2	5
					68.88	70.20	1.32	N111034	60	0.02%	75	908	0.2	60
70.20	71.60	1.40	BRBS	Basalt fault breccia										
					70.20	71.60	1.40	N111035	36	22	88	192	<0.2	10
71.60	72.69	1.09	BRBS	Basalt breccia, volcaniclastic										
				-red HE replacing PY in quartz veins	71.60	72.69	1.09	N111036	100	315	106	980	0.6	20

From	То	Interval	Unit	Comments	From	то	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
72.69	74.37	1.68	BRBS	Basalt breccia, volcaniclastic										
				-patchy specular HE in matrix	72.69	74.37	1.68	N111037	71	240	110	4780	0.2	30
				-red HE associated with PY in quartz veins										
				-CP with PY in quartz veins										
74.37	78.38	4.01	BRBS	Coarse basalt breccia, volcaniclastic										
				-HE patches and staining in quartz veins	74.37	75.74	1.37	N111038	93	122	69	2040	<0.2	45
					75.74	77.05	1.31	N111039	47	570	62	538	0.2	15
					77.05	78.38	1.33	N111040	59	397	50	584	<0.2	10
78.38	78.54	0.16	QTVN	Quartz vein with abundant altered wallrock										
				fragments	78.38	78.54	0.16	N111041	100	251	37	228	<0.2	10
78.54	85.63	7.09	MSBS	Massive basalt										
				-minor red HE along FR and veinlets	78.54	80.47	1.93	N111042	49	183	34	288	<0.2	<5
					80.47	82.30	1.83	N111043	75	142	33	328	<0.2	<5
					82.30	84.12	1.82	N111044	59	105	31	154	<0.2	<5
					84.12	85.63	1.51	N111045	95	101	32	312	<0.2	<5
85.63	86.41	0.78	BRBS	Fault breccia in basait										
				-patchy HE in gouge and along FR	85.63	86.41	0.78	N111046	60	228	57	288	<0.2	<5
86.41	88.70	2.29	BRBS	Basalt, brecciated and veined										
				-red, earthy HE as FR coatings and vein-fillings	86.41	87.55	1.14	N111047	80	390	58	242	<0.2	<5
				-red HE in gouge	87.55	88.70	1.15	N111048	60	886	73	852	0.2	30
				-minor CP in QV and hairline FR in										
				basalt adjacent to veins										
88.70	105.16	16.46	BRBS	Volcaniclastic basalt breccia										
				-strong HE alteration	88.70	90.75	2.05	N111049	79	17	39	80	<0.2	<5
				-red HE matrix	90.75	9 2.81	2.06	N111050	93	35	29	56	<0.2	<5
					92.81	94.86	2.05	N111051	94	65	24	54	<0.2	<5
					94.86	96.91	2.05	N111052	98	65	22	48	<0.2	<5
					96.91	98.97	2.06	N111053	93	72	25	54	<0.2	<5
					98.97	101.04	2.07	N111054	95	54	25	54	<0.2	<5
					101.04	103.00	1.96	N111055	100	59	25	54	<0.2	<5
					103.00	105.16	2.16	N111056	80	89	28	78	<0.2	<5

Hole: IC96-03

3

Property: Ice

EXPATRIATE RESOURCES LTD.

From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Aa	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
105.16	117.01	11.85	BRBS	Volcaniclastic basalt breccia										
				-patchy HE alteration as seen in unit above	105.16	106.23	1.07	N111057	86	69	26	70	<0,2	<5
					106.23	108.12	1.89	N111058	96	65	29	84	<0.2	<5
					108.12	109.26	1.14	N111059	97	68	30	94	<0,2	<5
					109.26	110.40	1.14	N111060	92	68	27	92	<0.2	<5
					110.40	111.90	1.50	N111061	82	57	31	148	<0.2	<5
					111.90	113.39	1.49	N111062	83	53	29	100	<0,2	<5
					113.39	115.00	1.61	N111063	100	112	32	1310	<0.2	<5
					115.00	116.43	1.43	N111064	87	50	29	86	<0.2	<5
					116.43	117.01	0.58	N111065	100	91	30	186	<0.2	<5
117.01	117.71	0.70	BRBS	Volcaniclastic basalt breccia										
				-rare HE staining of matrix	117.01	117.71	0.70	N111066	96	94	34	206	<0,2	<5
				-possible CU (or HE) coating some FR										
				-minor CP with PY in matrix										
117.71	122.85	5.14	PYSM	Sulphide bands and matrix in volcaniclastic										
				basalt breccia	_117.71	118.81	1.10	N111067	47	0.30%	97	214	1.0	<5
				-very minor HE coating late FR	118.81	120.40	1.59	N111068	44	0.35%	106	482	0.2	<5
				-CP with PY in quartz veins	120.40	121.92	1.52	N111069	83	0.33%	130	226	0.2	10
					121.92	122.85	0.93	N111070	68	0.45%	117	422	0.2	15
122.85	135.96	13.11	BRBS	Volcaniclastic basalt breccia										
					122.85	124.84	1.99	N111071	100	118	30	228	<0.2	<5
					124.84	126.82	1.98	N111072	90	109	30	94	0.2	<5
					126.82	128.63	1.81	N111073	93	86	32	138	<0.2	<5
					128.63	130.76	2.13	N111074	85	107	26	118	<0.2	<5
135.96	137.69	1.73	MSBS	Massive epidote-altered basalt										
137.69	141.76	4.07	MSBS	Massive basait										
141.76	142.95	1.1 9	MSBS	Massive epidote-altered basalt										
142.95	152.40	9.45	MSBS	Massive basalt										
				EOH										

.

SYNOP	TIC LO	G		Hole:	IC 96-04		Property:	lce			Section:	11150N				Page 1	of 3
FINLAY	SON P	ROJE	т			-				-				Depth	Azimuth	Dip	Method
EXPATRIA	TE RESO	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	r.	G.Bell			0	308°	-50°	Set
						148.29	7	Drilling Da	ates:	August 1 to	6, 1996	5	No acid	test done)		
		l de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l I						T	_						_		
From	То	Interval	Unit		Comments	5		From	То	Interval	Sample	REC	Cu	Co	Zn (nnm)	Ag	Au
(m)	(m)	(m)						(m)	(m)	(m)	NO.	70	(ppm)	(ppm)	(ppm)	(ppm)	(pbp)
0.00	1.83	1.83	CSDH	Casing													
1.83	3.35	1.52	MSBS	mix breccia													
				-trace MA	on FR			1.83	2.43	0.60	N111078	61	0.09%	24	94	<0.2	<5
	±0.12= 1/12							2.43	3.35	0.92	N111079	45	0.18%	23	106	<0.2	<5
3.35	9.42	6.07	BRBS	fine grained breccia basalt				_		ļ							
			-moderate	HE on FR			3.35	5.00	1.65	N111080	83	0.15%	33	138	<0.2	<5	
				-LI on FR				5.00	6.40	1.40	N111081	83	0.17%	34	180	<0.2	<5
								6.40	7.62	1.22	N111082	52	0.28%	37	202	<0.2	<5
								7.62	9.42	1.80	N111083	78	0.15%	33	162	<0.2	<5
9.42	15.48	6.06	MSBS	fractured b	asalt												
				- LI on FR				9.42	10.97	1.55	N111084	66	0.12%	25	124	<0.2	<5
				- HE stainii	ng on FR			10.97	12.65	1.68	N111085	81	0.21%	32	206	<0.2	<5
				-trace spec	ular HE			12.65	14.02	1.37	N111086	87	0.21%	31	102	<0.2	<5
								14.02	15.48	1.46	N111087	76	0.24%	30	114	<0.2	<5
15.48	18.90	3.42	MSBS	fractured b	asalt												
				-minor LI s	taining on F	R		15.48	17.07	1.59	N111088	56	0.34%	35	150	<0.2	<5
				-minor HE	staining on I	FR		17.07	17.98	0.91	N111089	40	0.32%	26	158	<0.2	5
				-trace MA	on FR			17.98	18.90	0.92	N111090	39	0.21%	21	104	<0.2	<5
18.90	22.56	3.66	MSBS	fractured b	asalt w <1%	native CU											
				-minor LI o	n FR			18.90	20.27	1.37	N111091	25	0.39%	26	114	<0.2	<5
				-trace HE o	n FR			20.27	21.34	1.07	N111092	24	0.08%	30	270	<0.2	<5
				-<1% CU o	n FR			21.34	22.56	1.22	N111093	32	0.09%	42	842	4.8	<5
22.56	23.62	1.06	BRBS	breccia bas	salt w 2% na	tive CU											
				-strong LI s	staining			22.56	23.62	1.06	N111094	19	1.02%	507	>10000	<0.2	<5
				-2% CU		·····							-				
23.62	30 18	6.56	BRBS	breccia bas	alt w 1% na	tive CU											
			2	-LI altered	clasts			23.62	25.00	1.38	N111095	71	0.20%	96	1975	<0.2	<5
				-HE rime of	n clasts			25.00	26.52	1.52	N111096	62	0.25%	63	1100	0.6	<5
				-trace CU o	on FR 1%			26.52	28.04	1.52	N111097	94	0.46%	89	1420	<0.2	<5
				-nossible C	C in matrix			28.04	29.11	1.07	N111098	90	0.46%	94	1350	<0.2	<5
 								29.11	30.18	1.07	N111099	100	0.39%	140	2690	<0.2	<5

From	То	Interval	Linit	Comments	From	Το	Interval	Sample	RFC	Cu	Co	Zn	Aa	Au
(m)	(m)	(m)	Offic	Commenta	(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
20.18	31.00	0.01	EBST	sheared braccia basalt			<u>`</u>			<u></u>				
30.10	31.09	0.31	PDST		30.18	31.09	0.91	N111100	- 99	0.48%	431	6600	<0.2	<5
21.00	33 15	2.06	MCBC	fractured basalt		01.00								
31.03	35.15	2.00	NICLO		31.09	32.46	1.37	N111151	97	0.16%	120	2960	<0.2	<5
					32.46	33 15	0.69	N111152	100	0.33%	144	3110	<0.2	15
33.15	37 19	4 04	FRST	breccia basalt w fault gouge	02.10	00.10	0.00							
33.13	57.15	4.04	1001	minor I I in gouge	33 15	34 75	1.60	N111153	48	0.31%	172	3430	<0.2	<5
				minor HE and CT staining in gouge	34.75	36 27	1.52	N111154	78	0.05%	185	4870	<0.2	<5
					36.27	37 19	0.92	N111155	95	0.1%	131	3770	<0.2	<5
37 10	40.23	3.04	RPRS	limonite stained breccia basalt	00.21									
	40.25	3.04	DADO	-strong 1	37 19	38.56	1 37	N111156	97	0.11%	145	3790	<0.2	<5
			<i>,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		38.56	40.23	1 67	N111157	80	0.47%	353	10000	<0.2	<5
40.23	46.90	6 67	MSBS	fractured massive hasalt	00.00	40.20	1.07							
40.23	40.30	0.07	141000	-rare 11 on ER	40.23	41.00	0 77	N111158	56	0.09%	63	1500	<0.2	<5
	- /				41.00	42 52	1.52	N111159	100	106	49	552	<0.2	<5
				· · · · · · · · · · · · · · · · · · ·	42 52	43.28	0.76	N111160	100	144	38	202	<0.2	<5
					43.28	44.81	1.53	N111161	100	105	31	86	<0.2	<5
					44.81	45.57	0.76	N111162	100	116	29	116	<0.2	<5
					45.57	46.90	1 33	N111163	100	81	24	76	<0.2	<5
46.90	48 35	1 45	BRBS	hreccia hasalt	40.01									
40.00	40.00	1.45	DICDO	-rare I I on ER	46.90	48 35	1 45	N111164	100	63	29	62	<0.2	<5
48 35	58 10	9.75	MSBS	fractured massive basalt										
58 10	62 70	4 60	MSBS	massive basalt										
62 70	65 75	3.05	BRBS	breccia basalt										
65.75	72 90	7 15	BRBS	calcite/otz flooded breccia basalt										
72.90	75.60	2 70	BRBS	mix of calcite breccia + basalt breccia w weak l	1									
75.60	78 10	2.70	MSBS	fractured basalt w interstitial PY (3%)	•									
13.00	70.10	2.00	MODO		75.60	76.81	1 21	N111165	91	80	33	92	<0.2	<5
					76.81	78.10	1.29	N111166	97	76	26	176	<0.2	<5
78 10	81.00	2 90	BRBS	breccia basalt w interstitial PY up to 20%										
	01.00	2.00			78.10	79.60	1.50	N111167	86	823	36	1875	0.8	30
<u> </u>					79.60	81.00	1.40	N111168	90	122	41	600	<0.2	15
├───														
					11								States and the states	Sector restored
--------	--------	------------------	------	---	--------	--------	----------	---------	-----	-------	-------	-------	-----------------------	-----------------
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			_(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
82.91	96.01	13.10	MSBS	faulted fractured basalt										
				-trace HE staining on FR	91.14	92.81	1.67	N111169	53	267	30	496	0.2	<5
					92.81	93.73	0.92	N111170	85	363	30	170	<0.2	<5
96.01	100.00	3.9 9	BRBS	tectonic breccia basalt										
100.00	104.85	4.85	MSBS	massive basalt mix w breccia basalt										
					103.17	104.85	1.68	N111171	86	61	23	64	<0.2	<5
104.85	121.90	17.05	BRBS	mix of 'hydrothermal' and tectonic breccia BS										
121.90	132.20	10.30	MSBS	fractured massive basalt										
132.20	148.29	16.09	BRBS	breccia basalt										
				-very rare HE stain along veins										
				EOH										
													l	
													1	
													I	

SYNOP	TIC LO	G		Hole:	IC96-05	_	Property:	ice		_	Section:	11000N				Page 1	of 2
FINLAY	'SON P	ROJE	СТ			_				-			-	Depth	Azimuth	Dip	Method
EXPATRIA	ATE RESO	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	y:	G. Bell		-	0	306°	-50°	Brunton
							66.45		Drilling Da	ates:	Aug 10-14	1996	an an in the state of the second	66.45		-51°	Acid
From	То	Interval	Linit		Commente			From	То	Interval	Sample	DEC	Г. с.,		70	40	Δ.,
(m)	(m)	(m)	Offic		Commerika			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	Casing								<u> </u>					
1.83	2.15	0.32	OBDH	Basalt		<u>.</u>									ř		 i
				-minor HE a	and LI staini	ng		1.83	2.15	0.32	N111172	64	286	26	136	<0.2	
2.15	7.60	5.45	MSBS	Massive ba	salt												
				-LI on FR				2.15	3.10	0.95	N111173	65	450	45	170	<0.2	<5
				-HE on FR				3.10	4.88	1.78	N111174	86	575	65	160	<0.2	<5
				-CU on Fr a	and possibly	dissem, <1	%	4.88	6.10	1.22	N111175	93	585	40	135	<0.2	<5
				-end of disti	nct rust zon	e @ EOI		6.10	7.60	1.50	N111176	97	445	35	185	<0.2	<5
7.60	8.25	0.65	QTVN	white qtz ve	in with epide	ote										[
				-minor HE a	and LI on FF	<u> </u>		7.60	8.25	0.65	N111177	100	286	14	136	<0.2	
8.25	17.05	8.80	MSBS	fractured m	assive basa	lt	·····										
ļļ				-rare LI on I	FR			8.25	9.60	1.35	N111178	89	100	34	144	<0.2	
								9.60	10.36	0.76	N111179	100	64	32	116	<0.2	
								10.36	11.89	1.53	N111180	89	71	32	134	<0.2	
}								11.89	13.41	1.52	N111181	100	66	43	278	<0.2	
			· · ·					13.41	14.94	1.53	N111182	95	71	63	816	<0.2	
								14.94	16.10	1.16	N111183	87	68	42	334	<0.2	
17.05	34.00	47.05	MORC					16.10	17.05	0.95	N111184	84	89	44	304	<0.2	
17.05	34.90	17.65	MSBS	massive bas	sart	- <u>-</u>										┟┦	
34.90	40.40	13.50	MODO	na rueting	san			24.00	26.27	1 37	N111195	01	67	41	190	<0.2	
				-1% dissem	PY			36.27	37 34	1.07	N111186	96	74	39	180	<0.2	
					••	- <u>.</u>		37.34	38.86	1.52	N111187	97	60	80	800	<0.2	
								38.86	40.23	1.37	N111188	73	94	78	664	<0.2	
								40.23	41.15	0.92	N111189	55	59	42	178	<0.2	
								41.15	42.06	0.91	N111190	100	56	55	336	<0.2	
								42.06	42.67	0.61	N111191	100	59	42	152	<0.2	
								42.67	43.89	1.22	N111192	95	48	61	394	<0.2	
48.46	55.30	6.84	BRBS	breccia basa	alt												
				-rare LI on F	R			54.61	55.89	1.28	N111193	100	108	33	142	<0.2	
	-			- trace PY													

5

Property: Ice

<u> </u>			I											
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
55.30	58.97	3.67	BRBS	breccia basalt with qtz and calcite										
				- trace LI on FR	55.89	56.45	0.56	N111194	89	177	31	404	<0.2	
				-up to 10% locally interstitial PY	56.45	58.00	1.55	N111195	88	214	37	144	0.2	
1					58.00	58.77	0.77	N111196	100	260	34	126	<0.2	
58.97	61.20	2.23	BRBS	breccia basalt with qtz and calcite										
				-rare LI on FR	58.97	60.05	1.08	N111197	77	52	25	70	0.2	
				-up to 5% PY in matrix	60.05	61.20	1.15	N111198	91	66	32	246	0.2	
61.20	64.20	3.00	BRBS	breccia basalt										
64.20	65.00	0.80	MSCH	massive dark grey chert										
65.00	66.45	1.45	CBMS	mudstone										
				EOH										

SYNOP	TIC LO	G		Hole:	IC96-06	_	Property:	Ice		_	Section:	11100N				Page 1	of 2
FINLAY	SON P	ROJEC	т											Depth	Azimuth	Dip	Method
EXPATRIA	TE RESC	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>r</i> :	G. Bell		-	0	304°	-50°	Brunton
anna ann an ann an ann an an an an an an			****	376708	6862589	1279	92.66	*****	Drilling Da	ites:	August 15-	17, 199	5 Received and the second	92.66		-53°	acid
From	То	Interval	Linit		Comments			From	To	Interval	Sample	REC	Cu	Co	7 n	nA	Au
(m)	(m)	(m)	Onic		Commente	, ,		(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	2.44	2.44	CSDH	casing													
2.44	8.21	5.77	BRBS	mix of breck	cia and mas	sive basalt											
				-strong LI s	taining on F	R		2.44	3.85	1.41	N111199	50	0.15 %	27	132	<0.2	
				-weak to me	od HE staini	ng on FR		3.85	5.33	1.48	N111200	46	0.16 %	36	200	<0.2	
				-trace MA o	n FR			5.33	6.10	0.77	N111251	100	0.24 %	43	278	<0.2	
								6.10	7.32	1.22	N111252	86	0.23 %	35	286	0.2	
	-							7.32	8.21	0.89	N111253	100	0.25 %	46	308	<0.2	
8.21	11.25	3.04	BRBS	breccia bas	alt												
ļ				-weak LI on	FR			8.21	9.34	1.13	N111254	88	0.39 %	45	436	0.2	
			10 4.1 20	-mod HE st	aining on FF	۲		9.34	10.36	1.02	N111255	72	0.30 %	59	458	0.2	
				-rare MA				10.36	11.25	0.89	N111256	100	0.22 %	43	282	<0.2	
11.25	12.69	1.44	BRBS	breccia bas	alt with fault	gouge											
				-LI rusted g	ouge materi	al		11.25	12.69	1.44	N111257	85	0.39 %	48	422	0.2	
				-minor HE s	staining on p	ebbles								<u>.</u>			
12.69	17.48	4.79	BRBS	qtz altered t	preccia basa	lt											
				-LI on FR				12.69	13.85	1.16	N111258	100	0.17 %	24	116	0.2	
				-minor HE s	staining			13.85	14.94	1.09	N111259	94	0.18 %	26	134	<0.2	
				-trace MA o	n FR			14.94	16.46	1.52	N111260	93	0.28 %	29	124	<0.2	
47.49	40.54	2.02	MORO	function of me		14		16.46	17.48	1.02	N111261	86	0,38 %	28	160	0.2	
17.40	19.51	2.03	MSBS	fractured m		<u>IL</u>		17 49	19 50	1.02	N111262	01	0.60.9/		120	0.2	
				trace CT or				18.50	10.50	1.02	N111262	100	0.03 %	22	214	<0.2	
				-mod MA or				10.50	13.51	1.01	1111200	100	0.01 /0			-0.2	
19.51	22.00	2 49	BRBS	breccia bas	alt with Cu o	vides											
, 5.5 1				-mod LI on I	FR			19.51	20.50	0.99	N111264	88	2.92 %	32	310	<0.2	
				-weak HE o	n FR			20.50	21.34	0.84	N111265	95	2.98 %	24	294	<0.2	
				-mod CTsta	ining and cr	vstals on FF	र	21.34	22.00	0.66	N111266	96	1.07 %	16	172	<0.2	
				-mod to stro	ng MA on F	R											
22.00	24.60	2.60	MSBS	fractured ba	salt with nat	tive CU											
				-minor LI on	FR			22.00	22.60	0.60	N111267	100	2.47 %	33	214	0,2	
				-CTstaining	and trace C	T crystals		22.60	23.77	1.17	N111268	90	1.37 %	35	190	0.2	

FINLATSON FROJECT

							ALL AND A PROPERTY AND				1			a and the second second
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
				-1% CU on FR	23.77	24.60	0.83	N111269	91	1.14 %	40	262	<0.2	
24.60	25.45	0.85	BRBS	breccia basalt										
				-mod-strong LI on FR	24.60	25.45	0.85	N111270	95	1.78 %	40	336	<0.2	
				-mod CT staining on FR										
				-<1% CU on FR										
25.45	26.40	0. 9 5	GGST	limonite stained fault gouge										
				-strong LI staining	25.45	26.40	0.95	N111271	69	5.15 %	209	5480	<0.2	
				-2% native CU										
				-minor CTstaining										
26.40	28.30	1.90	MSBS	fractured massive basalt										
				-trace LI on FR	26.40	27.13	0.73	N111272	95	0.40 %	70	1420	<0.2	
				-up to 3% CU on FR	27.13	28.30	1.17	N111273	79	159	57	906	<0.2	
28.30	41.10	12.80	MSBS	fractured massive basalt										
					28.30	28.96	0.66	N111274	100	127	42	286	0.2	
					28.96	30.48	1.52	N111275	100	78	32	164	0.2	
					30.48	31.70	1.22	N111276	83	93	32	164	<0.2	
					31.70	32.92	1.22	N111277	85	83	29	114	<0.2	
41.10	43.38	2.28	MSBS	massive basalt										
43.38	66.56	23.18	MSBS	MSBS mixed with BRBS										
66.56	72.53	5.97	PHBS	porphyritic basalt										
72.53	80.87	8.34	MSBS	fractured massive basalt		-								
					72.53	73.96	1.43	N111278	85	n/a	28	72	0.2	
					75.90	77.42	1.52	N111279	86	n/a	25	72	<0.2	
80.87	92.66	11.7 9	MSBS	massive basalt										
			· · · · · ·	ЕОН										

SYNOP	TIC LO	G		Hole:	IC96-07		Property:	ice			Section:	11100N				Page 1	of 1
FINLAY	SON P	ROJE	СТ			_				-				Depth	Azimuth	Dip	Method
EXPATRI	ATE RES	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>ı</i> :	G. Bell			0.00	320°	-50°	Brunton
to all following a statements with	n an an an an an an an an an an an an an			376749	6862558	1272	53.34		Drilling Da	ntes:	Aug 19-21,	1996	-	45.72	320°	-49°	acid
From	То	Interval	Linit	I	Comments			From	То	Interval	Sample	REC	Cu	Co	Zn	Δa	Δ
(m)	(m)	(m)			Commenta			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing					(,								
1.83	6.40	4.57	BCDH	broken bas	alt												
				-rare LI on	FR			1.83	3.66	1.83	N111280	5	76	24	70	<0.2	
-				-rare HE or	n FR			3.66	5.49	1.83	N111281	5	78	25	58	<0.2	
								5.49	6.40	0.91	N111282	17	64	25	66	<0.2	
6.40	12.10	5.70	BRBS	breccia bas	salt											ļ	
				-trace LI on	FR			6.40	7.77	1.37	N111283	60	72	27	72	<0.2	
								7.77	9.14	1.37	N111284	25	59	28	70	<0.2	
								9.14	10.36	1.22	N111285	85	77	33	82	<0.2	
								10.36	11.89	1.53	N111286	84	74	31	74	<0.2	
12.10	14.65	2.55	BRBS	breccia bas	alt												
14.65	18.90	4.25	BRBS	breccia bas	alt												<u> </u>
18.90	30.70	11.80	MSBS	massive ba	salt												
	40.00			-trace LI on	<u>FR</u>			29.53	30.70	1.17	<u>N111287</u>	91	49	30	80	<0.2	
30.70	40.00	9.30	BRBS	breccia bas													
40.00	53.34	15.34	MSBS	massive ba	Sall		······	40.84	42 37	1 53	N111298	05	60	28	74	<0.2	
				-very late n				52 43	42.37 53 34	0.91	N111280	100	77	20	80	<0.2	
						. <u></u>	<u></u>	52.40	00.04	0.01	1111200	100		20		-0.2	
				EOH							ŀ						<u> </u>
							······										
		-															
ļ																I	
									······								
								_									

SYNOP	TIC LO	G		Hole:	IC96-08		Property:	lce			Section:	111001	1			Page	of 2
FINLAY	SON P	ROJE	СТ			-				-			-	Depth	Azimuth	Dip	Method
EXPATRIA	TE RESC	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	y :	G. Bell			0.00		90°	
				376622	6862646	1285	74.37		Drilling Da	ates:	Aug 22-25	1996	-	73.15		-89°	acid
	T-			1	0			1_	-	1			_		_		
From (m)	10	Interval (m)	Unit		Comments	i		From		Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(11)	(11)	(11)						(m)	(m)		INO.	70	(ppm)	(ppm)	(ppm)	(ppm)	(ppp)
0.00	3.00	3.00	CSDH	casing													
3.00	4.50	0.84	ORDH	overburden	-41			+									
4.50	40.00	7.00	DODU	-trace LI co	ating on per	DIES											
4.50	12.30	7.80	BCDH	Droken core	e, basan			1 1 50	0.50	0.00			055				
			·· · ·					4.50	6.50	2.00	N111299	10	355	30	160	<0.2	<5
								6.50	8.20	1.70	N111300	12	910	40	330	<0.2	<5
								8.20	10.00	1.80	N110951	6	800	35	215	<0.2	<5
12 20	14.04	264	PDPC	runted bree	aia haaalt			10.00	12.30	2.30	N110952	12	870	30	185	<0.2	<5
12.30	14.54	2.04	DKDS	L steining	cia Dasali		ih danéh	12.20	42.44		1440052	67	0.05%	55	010	-0.0	.5
					mod and ind	creasing wit	in depth	12.30	13.41	1.11	N110953	62	0.25%	55	910	<0.2	<5
14.04	16.02	1.09	COST	-strong ric	staining on I	FR	·	13.41	14.94	1.53	N110954	98	0.42%	60	950	<0.2	<5
14.94	10.92	1.90	6631		aun gouge			1 44.04	40.00	4.00	1440055		-	055			
				-strong LI si	taining			14.94	16.92	1.98	NT10955	28	.39%	355	235	<0.2	20
				Put up to 20	uaining vez								·				
16.02	18.00	1 09	BDBC	basalt with		· · · · · · · · · · · · · · · · · · ·											
10,32	10.00	1.00	DIGOS		n EP			16.02	19.00	1 09	N110056	65	1 70%	450	105	<0.2	
			· · · ·	weak HE o				10.52	10.00	1.00	14110950	05	1.70%	430	195	NU.2	20
				-Cc in veinle	ate			+									
18.00	20.30	2 30	BRBS	breccia has	alt with chai	lcocite											
		2.00	0.00	-trace on	FR			18.00	19.02	1 02	N110057	100	2 06%	775	145	<0.2	20
				-trace HE or	n FR			19.02	20.30	1.02	N110958	85	1 00%	725	35	<0.2	20
				-iarosite on	FR			10.02	20.00	1.20	11110000		4.55 %	125		-0.2	
				-20% Cc													
				-30% Pv				1									
20.30	21.80	1.50	BRBS	breccia basa	alt						-						
				-HE and LI o	on FR			20.30	21.80	1 50	N110959	85	2 35%	210	190	<0.2	10
21.80	24.08	2.28	PYMS	massive pyr	ite with hem	atite	·····						2.00 %		130	-0.2	
				-brown LI st	aing			21.80	22.90	1.10	N110960	84	1.99%	385	200	<0.2	30
				-HE staining	@			22.90	24.08	1.18	N110961	85	1.63%	640	105	<0.2	25
				-Cc along Fi	R and veins	••											

1.000 (1.000 (1.00					() () () () () () () () () () () () () (10000 00 000 000 000	194633333353555
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	NO.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppp)
24.08	26.50	2.42	BRBS	breccia basalt										
				-Li alteration in clasts	24.08	25.60	1.52	N110962	95	2.63%	60	405	<0.2	10
				-weak HE staing	25.60	26.50	0.90	N110963	85	2.75%	55	500	<0.2	<5
				-trace Ct on FR										
26.50	32.62	6.12	MSBS	fractured and faulted basalt										
				-trace LI on FR	26.50	27.80	1.30	N110964	81	0.60%	100	2990	<0.2	<5
				-trace Cu and Ct on FR near top of interval	27.80	28.65	0.85	N110965	89	575	130	3530	<0.2	<5
					28.65	31.09	2.44	N110966	33	110	65	1105	<0.2	<5
					31.09	32.62	1.53	N110967	69	80	60	205	<0.2	<5
32.62	46.93	14.31	BRBS	breccia basalt										
46.93	74.37	27.44	MSBS	massive basalt										
				-very rare HE associated with qtz veins										
				ЕОН										
	·													
		-												

SYNOPTIC LOG FINLAYSON PROJECT				Hole:	IC96-09		Property:	lce			Section:	11100	1			Page 1	of 2
FINLAY	SON P	ROJE	СТ					<u> </u>		-			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RESO	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	<i>I</i> :	G. Bell		_	0.00	128°	-50°	na
		******		376623	6862645	1285	74.37		Drilling Da	ates:	Aug 26-30	1996		73.15	128°	-50°	acid
From	Та	Interval	llait	T	Commonto			Erom	То	Interval	Comple	DEC	<u> </u>	C-	7-	A	A
(m)	(m)	(m)	Unit		Comments	1		From	10	(m)	No	KEC	(npm)	(npm)	(ppm)	Ag (nom)	Au (opb)
	2.43	2.43	CSDH	opeing				<u>(m)</u>	(m)	(,			(PP.1.)	(pp)	(ppm)	(pp://	(ppu)
2.43	<u> </u>	2.43		overburden	eand			-				ł	<u> </u>				
2.43	0.45	3.00	OBDIT					2 43	5.40	3.06	N110251	10	762	40	286	0.0	
5 49	20.73	15.24		overburden	an may			2.45	3,43	3.00	11110231		102		200	0.0	
5.45	20.75	13.24	Obbin	-trace Li sta	ining on pel	hles		5.49	7 31	1.82	N110252	14	72	23	82	<0.2	
					annig on por			7.31	10.36	3.05	N110253	7	71	20	76	<0.2	
								10.36	20.73	10.37	N110254	2	1410	22	214	0.2	
20.73	24.69	3.96	OBDH	overburden	broken cor	 e		10.00				- -					
				-Li on FR				20.73	24.69	3.96	N110255	9	0.89%	28	354	<0.2	<5
				-trace native	e Cu							<u> </u>					
				-trace MA o	n FR			1									
24.69	27.83	3.14	BRBS	breccia bas	alt	•											
				-LI on FR				24.69	25.95	1.26	N110256	94	1.82%	50	585	<0.2	<5
				-HE on FR	n FR				27.83	1.88	N110257	73	0.58%	40	535	<0.2	15
				-trace MA o	n FR												
27.83	29.87	2.04	BRBS	breccia bas	alt with fault												
				-LI on FR				27.83	28.65	0.82	N110258	100	0.70%	40	520	<0.2	<5
				-HE on FR				28.65	29.87	1.22	N110259	100	0.50%	40	350	<0.2	<5
				-mod Ct on	FR												
29.87	32.35	2.48	PYMS	massive pyr	ite and chal	cocite with	qtz					ļ					
				-LI on FR				29.87	30.95	1.08	N110260	80	0.99%	320	365	1.0	100
				-weak HE st	taining throu	ighout		30.95	32.35	1.40	N110261	74	1.72%	690	290	1.0	25
				-massive (4	0%) Py												
				-15% Cc		. <u>.</u>	······································										
				-minor jaros	ite staining	on FR											
32.35	39.55	7.20	BRBS	breccia basa	alt												
				-trace LI on	ce LI on FR				33.22	0.87	N110262	90	0.83 %	82	316	<0.2	
				-rare HE	HE				34.75	1.53	N110263	90	1.22 %	68	244	<0.2	
 									36.27	1.52	N110264	83	1.41 %	69	206	0.2	
 								36.27	37.79	1.52	N110265	93	1.52 %	84	208	0,4	
								37.79	39.55	1.76	N110266	81	1.18 %	90	176	0.2	

CONTRACTOR OF THE R					1		T	1	T	1	1		1	1
From	То	Interval	Unit	Comments	From	То	interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
39.55	43.50	3.95	PYMS	pyrite and chalcocite with breccia basalt										
				-minor LI on FR	39.55	40.84	1.29	N110267	81	1.64%	1015	335	1.0	70
				-weak HE on FR and dissem	40.84	42.00	1.16	N110268	87	1.69%	535	390	<0.2	30
				-rare native Cu	42.00	43.50	1.50	N110276	82	2.18%	645	180	1.0	40
				-10% Cc										
				-minor Ct on FR										
				-30-40% Py										
43.50	54.50	11.00	FBST	faulted breccia basalt										
				-trace LI on FR	43.50	45.42	1.92	N110269	73	0.71%	35	890	<0.2	<5
				-trace HE on FR	45.42	46.94	1.52	N110270	90	1.05%	85	610	<0.2	25
				-minor Ct on FR and in gouge	46.94	48.00	1.06	N110271	84	10000	71	688	1.2	25
				-rare native Cu	48.00	49.23	1.23	N110272	63	10000	70	900	1.2	30
					49.23	50.90	1.67	N110273	70	10000	67	3740	0.4	25
					50.90	53.04	2.14	N110274	43	0.39%	64	2750	0.2	<5
					53.04	54.50	1.46	N110275	91	0.02%	215	180	<0.2	<5
54.50	57.91	3.41	BRBS	breccia basalt										
				-rare HE in qtz veins	54.50	55.93	1.43	N110277	85	257	136	3040	0.2	
					55.93	57.91	1.98	N110278	68	319	137	2710	<0.2	
57.91	65.23	7.32	BRBS	breccia basalt										
65.23	74.37	9.14	MSBS	massive basalt										
				EOH										
										_				
														-

SYNOF	SYNOPTIC LOG FINLAYSON PROJECT			Hole:	IC96-10		Property:	lce			Section:	10500N				Page 1	of 1
FINLA	SON P	ROJE	СТ			•				-			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RES	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>r</i> :	G. Bell		_	0.00	165°	-51°	Brunton
	6 m march 1 a da 1 a da 1 a da 1 a da 1 a da 1 a da 1 da 1 da 1 da 1 da 1 da 1 da 1 da 1 da 1 da 1 da 1 da 1 d		******	376000	6862399	1258	83.52		Drilling Da	ites:	Aug31-Sep	t6, 1996		83.52	165°	-47°	acid
From	То	Interval	Linit		Commente			From	То	Interval	Samole	REC	Cu	Co	Zn	۸a	Διι
(m)	(m)	(m)	Onic		Commenta			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	82.32	82.32	MSBS	massive ba	salt					, <i>í</i>		1		<u> </u>		<u></u>	<u> </u>
0.00								3.66	4.42	0.76	N110279	83	80	21	46	<0.2	
								4.42	6.90	2.48	N110280	44	75	22	44	<0.2	
								6.90	8.53	1.63	N110281	85	66	24	70	<0.2	
								8.53	10.21	1.68	N110282	91	65	23	74	<0.2	
82.32	83.52	1.20	FBST	massive ba	salt in fault z	one											
																	ļ
				EOH													
						<u></u>								ļ	l		
															ji		
				[
																	<u> </u>
					<u></u>												
								-									
			••••														
																	r
			· · · · · · · · · · · · · · · · · · ·														ĺ
											· · · · · · · · · · · · · · · · · · ·						ļ
							<u></u>										

SYNOP	TIC LO	G		Hole:	IC96-11		Property:	Ice			Section:	10700N				Page 1	of 1
FINLAY	'SON P	ROJE	СТ											Depth	Azimuth	Dip	Method
EXPATRIA	ATE RESC	URCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	r:	G. Bell			0.00	300°	-51°	Brunton
				376305	6862399	1247	77.72		Drilling Da	ates:	Sept. 7 - 10), 1996		77.72		-52°	acid
From	То	Interval	Unit		Comments			From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)						(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	3.02	3.02	OBDH	overburden		1											
3.02	8.00	4.98	MSBS	massive ba	salt												
								3.66	5.18	1.52	N110295	68	65	25	72	<0.2	
								5.18	6.71	1.53	N110296	86	68	26	76	<0.2	
								6.71	8.00	1.29	N110297	93	72	27	76	<0.2	
8.00	10.47	2.47	MSBS	massive ba	salt												
10.47	20.79	10.32	MSBS	massive ba	salt	4											
20.79	33.22	12.43	DHRSn	nornhotic h	assive Dasa												
<u> </u>	72 85	28.45	PHBSp	porphrytic t	asalt			-									
			· · · · · · · · · · · · · · · · · · ·	P P 7				60.66	62.18	1.52	N110298	91	31	33	116	<0.2	
								62.18	63.70	1.52	N110299	89	14	28	104	<0.2	
72.85	77.72	4.87	PHBSp	porphrytic t	asalt												
				EOH													
						·						·					
						·····											
										· · · ·							
				1				1									

SYNOP	TIC LO	G		Hole:	IC96-12		Property:	lce		_	Section:	11100N	-			Page 1	of 1
FINLAY	SON P	ROJE	СТ			-				-				Depth	Azimuth	Dip	Method
EXPATRIA	TE RESO	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i> </i> :	G. Bell			0.00	306°	-50°	Brunton
				376585	6862686	1304	70.41		Drilling Da	ates:	Sept. 11 - 1	3, 1996		70.41		-50°	acid
	_				0				т	Interval	Cample	DEC	Cu	Co	75	۸a	Δ
From	To (m)	Interval	Unit		Comments			From	10	(m)	No	KEC %	(npm)	(ppm)	(ppm)	(ppm)	(ppb)
(m)	(m)	(11)						- (m)	(m)				(pp:)	(PP)	(PP)	(PP7	(PP-)
0.00	9.14	9.14	CSDH	casing		14											
9.14	20.65	11.51	MSR2	fractured in	assive basa		gouge	0.14	10.67	1 53	N110300	81	664	101	2600	<0.2	
								10.67	11.80	1.33	N111354	57	100	00	2190	<0.2	
								11.80	13.72	1.22	N111355	100	272	89	1260	<0.2	
								13.72	14.94	1.00	N111356	100 02	70	46	214	<0.2	
								14.94	15.85	0.91	N111357	85	74	38	150	<0.2	
								15.85	17.07	1 22	N111358	75	61	122	1235	<0.2	
								17.07	18.59	1.52	N111359	78	76	41	276	<0.2	
								18.59	20.65	2.06	N111360	82	79	38	142	<0.2	
20.65	32.00	12.25	EBST	faulted bas	alt			10.00	20.00	2.00							
20.05	32.50	12.25	FDST	laulled bas	ai.			20.65	22.25	1 60	N111361	43	103	39	112	<0.2	
								22.00	23.77	1.52	N111362	7	399	74	768	<0.2	
								23.77	24.99	1.02	N111363	22	0.15%	107	1630	<0.2	<5
								24.99	26.06	1.07	N111364	43	0.15%	165	1525	<0.2	<5
								26.06	27.43	1.37	N111365	40	0.35%	109	1030	<0.2	<5
								27.43	29.57	2.14	N111366	30	793	61	330	<0.2	
								29.57	30.79	1.22	N111367	61	180	41	122	<0.2	
32.90	40 70	7.80	MSBS	massive ba	salt												
40.70	42.80	2.10	MSBS	massive ba	salt	<u></u>											
42.80	52.00	9.20	MSBS	fractured m	assive basal	t											
52.00	70.41	18.41	BRBS	breccia bas	ait												
				EOH													

SYNOP	TIC LO	G		Hole:	IC96-13		Property:	lce			Section:	11300N	I			Page	1 of 2
FINLAY	SON P	ROJE	ст							-			-	Depth	Azimuth	Dip	Method
EXPATRIA	TE RESO	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>I</i> :	G. Bell		_	0.00	315	-48	Brunton
				376817	6862747	1295	98.76		Drilling Da	ates:	Sept. 12 - 1	16, 1996	Dobubočku sounn	98.76		-51	acid
F rom	Te	late	11	T	Commonto			T	То		Samela	DEC			75	Δ.α.	A
(m)	(m)	(m)	Offic		Comments			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.22	1.22	CSDH	casing													
1.22	6.27	5.05	MSBS	massive ba	salt								[
				-minor HE d	on FR			4.27	5.79	1.52	N111368	66	73	30	88	<0.2	
				-minor LI or	n FR												
6.27	8.34	2.07	MSBS	silicified bas	salt												
				-rare LI on I	FR			7.32	8.34	1.02	N111369	68	25	3	10	<0.2	
				-moderate I	IE aiteration	l										L	
8.34	10.20	1.86	MSBS	massive ba	salt												
10.20	13.49	3.29	FBST	limonite sta	ined fault zo	ne							<u> </u>				
ļ				-stong LI all	teration			10.20	11.88	1.68	N111370	62	61	29	82	<0.2	
				-HE coating	on FR			11.88	13.49	1.61	N111371	61	58	33	96	<0.2	ļ
13.49	17.05	3.56	MSBS	massive bas	salt												
				-trace LI on	FR			13.49	14.94	1.45	N111372	73	69	36	94	<0.2	
				-moderate H	IE on FR			14.94	16.46	1.52	N111373	84	73	37	98	<0.2	<u> </u>
				<u> </u>				16.46	17.05	0.59	N111374	100	74	38	98	<0.2	
17.05	19.90	2.85	FBST	fault zone													
19.90	25.24	5.34	MSBS	massive bas	salt - D	· <u> </u>			05.04					40			
25.24	30.02	4 78	BDBC	-rare Li on i	-K			24.08	25.24	1.10	N111375	91	/9	40	110	<0.2	
20.24	30.02	4.70	ERGT	faulted quar	an tz and caloit	e vein											
30.02	33.10	3,00	1001	-weak I i sta		e vent		30.02	31 70	1.68	N111376	68	7	19	144	<0.2	
39.10	46.72	7.62	MSBS	massive bas	salt			00.02	01.10								
				-trace LI on	FR			39.93	42.37	2.44	N111377	98	87	32	92	<0.2	
				-trace Cu or	ייייים דר איז איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז ד זי דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר איז דר א			42.37	43.89	1.52	N111378	84	109	69	1125	<0.2	
								43.89	45.42	1.53	N111379	81	0.12%	90	1025	<1	<5
								45.42	46.72	1.30	N111380	100	0.02%	85	1115	<1	<5
46.72	48.58	1.86	MSBS	fractured ma	assive basal	t											
				-weak LI on	FR			46.72	47.40	0.68	N111381	88	0.43%	70	1325	<1	<5
				-weak HE o	n FR			47.40	48.58	1.18	N111382	78	3.61%	50	705	<1	<5
				-moderate C	t on FR											-	
				-Cu on FR		-											

				T T					2036039999999999999999999999999999999999					
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
48.58	51.28	2.70	HEMS	massive hematite										
L				-trace LI	48.58	49.99	1.41	N111383	72	2.90%	45	940	<1	30
				-veins of Py and arsenopyrite	49.99	51.28	1.29	N111384	77	1.37%	30	400	5	70
51.28	55.83	4.55	PYMS	massive Py with chalcocite										
				-minor LI on FR	51.28	53.04	1.76	N111385	76	1.27%	145	890	9	270
				-veins of massive HE	53.04	54.56	1.52	N111386	86	1.64%	430	1125	8	380
				-minor Cc (5%)	54.56	<u>55</u> .83	1.27	N111387	75	4.35%	805	520	12	425
				-trace jarosite										
55.83	57.03	1.20	MSBS	massive basalt										
				-trace LI on FR	55.83	57.03	1.20	N111388	88	1.83%	45	660	1	40
				-moderate Ct on FR										
				-trace Cu on FR										
57.03	74.52	17.49	BRBS	breccia basalt										
				-minor HE	57.03	59.13	2.10	N111389	86	1915	116	3350	<0.2	
					59.13	60.66	1.53	N111390	85	1355	131	4230	<0.2	
					60.66	62,18	1.52	N111391	74	273	131	2600	<0.2	
					62.18	63.70	1.52	N111392	84	188	78	736	<0.2	
74.52	98.76	24.24	MSBS	massive basalt										
				-trace HE with Py	89.61	91.14	1.53	N111393	69	583	38	3340	1.4	
				ЕОН										
					-									
				· · · · · · · · · · · · · · · · · · ·										

SYNOP	TIC LO	G		Hole:	IC96-14	_	Property:	lce			Section:	11100N		_		Page 1	of 2
FINLAY	SON P	ROJEC	т			-								Depth	Azimuth	Dip	Method
EXPATRIA	TE RESC	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	<i>r</i> :	A. Burgert			0.00	308°	-50°	brunton
				376662	6862617	1278	57.00		Drilling Da	ates:	Sept. 14 -	17, 1996		57.00		-48°	acid
	_									1	01-	DEC	<u> </u>	<u></u>	7-	A -	Δ.,
From	То	Interval	Unit		Comments			From		(m)	Sample	REC		(0000)	Zn (ppm)	(ppm)	Au (ppb)
(m)	(m)	(m)						(m)	(m)	(11)		~	(ppm)	(ppm)	(ppiii)	(ppm)	(PPD)
0.00	2.90	2.90	OBDH	overburden					0.00		1144004		0.00.00		474	0.4	10
				- LI + HE or	n fractures			0.00	2.90	2.90	N111394	8	0.20 %	29	1/4	0.4	10
2.90	8.20	5.30	BRBS	breccia bas	alt				4.57				0.50.00		246	24	20
				- LI strong a	along fractur	es		2.90	4.57	1.67	N111395	32	0.56 %	84	345	2.4	30
				- minor HE				4.57	5.33	0.76	N111396	/1	0.26 %	45	372	1.0	5
				- minor pyri	te and epido	te in matrix		5.33	6.71	1.38	N111397	68	0.94 %	121	384	1.2	15
								6.71	8.20	1.49	N111398	78	0.23 %	144	458	0.2	15
8.20	9.75	1.55	BRBS	breccia bas	alt			 									
				- Li commo	n on fracture	2 8		8.20	9.75	1.55	N111399	26	0.40 %	89	510	0.4	5
				- HE locally	strong			8.83	9.75	0.92	N111400	64	0.41 %	62	454	0.2	<5
9.75	20.12	10.37	FBST	fault breccia	<u> </u>												
				- LI and jaro	osite commo	n on fractur	es	9.75	10.97	1.22	N111401	45	0.09 %	40	526	<0.2	<5
								10.97	12.19	1.22	N111402	57	0.91 %	42	440	0.2	<5
					<u></u>			12.19	14.17	1.98	N111403	35	0.57 %	24	232	<0.2	<5
								14.17	16.15	1.98	N111404	33	0.42 %	31	370	0.2	35
ļļ								16.15	17.37	1.22	N111405	47	2.04 %	41	692	<0.2	<5
ļ								17.37	18.90	1.53	N111406	53	2.23 %	42	750	<0.2	<5
ļ								18.90	20.12	1.22	N111407	42	1.69 %	39	286	0.2	<5
20.12	21.05	0.93	HEMS	massive ma	gnetite+pyri	te											
				- massive H	IE + magnet	ite + pyrite		20.12	21.05	0.93	N111408	79	1.15 %	94	186	0.2	55
21.05	21.34	0.29	PYMS	massive pyr	rite												
								21.05	21.34	0.29	N111409	69	3.72 %	518	2010	23.4	330
21.34	24.50	3.16	BRBS	chloritized b	oreccia basal	It						ļ					
				- dissemina	ted pyrite			21.34	23.16	1.82	N111410	52	1.93 %	137	798	5.0	40
								23.16	24.15	0.99	N111411	64	1.07 %	189	574	0.2	25
								24.15	24.50	0.84	N111412	48	1.37 %	289	388	<0.2	10
24.50	26.30	1.80	BRBS	pyritic basal	t breccia							ļ					
				- dissemina	ted pyrite			24.50	26.30	1.31	N111413	77	3.43 %	386	820	0.2	45
				- minor jaro	site staining							L					
26.30	28.96	2.66	BRBS	pyritic basal	t breccia							L				ļ	
				- dissemina	ted pyrite			26.30	28.96	2.66	N111414	46	0.73 %	438	246	0.8	20
				- minor cha	lcocite veinir	ng											
28.96	34.44	5.48	BRBS	chloritized b	oreccia basal	lt						L				L	

	an the second			CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A									1811231888 SW	
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
				- minor LI on fractures	28.96	29.65	0.69	N111415	100	1.08 %	41	872	0.2	<5
					29.65	31.09	1.44	N111416	56	0.53 %	45	780	<0.2	<5
					31.09	32.61	1.52	N111417	26	0 79 %	42	700	02	<5
					32.61	34 44	1.83	N111418	42	0.82 %	41	814	<0.2	<5
24.44	40.40	6.05	MORC	ablaritized braccia baselt	02.01	04.44	1.00	11111410		0.02 /0		014		
34.44	40.49	6.05	MODO		24.44	26 72	2.20	N111410	50	105	30	224	<0.2	
					34.44	30.73	2.29	1111419	30	195	39	324	-0.2	
					30.73	30.00	2.13	N11142U	12	109	40	3/8	<0.2	
					38,86	40.49	1.63	N111421	65	/4	52	218	<0.2	
40.49	43.28	2.79	MSBS	chloritized breccia basait										
					40.49	43.28	2.79	N111422	72	73	30	84	<0.2	
43.28	57.00	13.72	MSBS	massive basalt										
				EOH										
ł														

SYNOF	SYNOPTIC LOG FINLAYSON PROJECT			Hole:	IC96-15		Property:	lce			Section:	11200N	l			Page	1 of 3
FINLAY	SON P	ROJE	СТ			-				-			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RES	OURCES	S LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	y:	A. Burgert		_	0.00	308*	-50°	brunton
5				376723	6862728	1315	89.55		Drilling D	ates:	Sept. 17 - 3	21, 1996		89.55		-47°	acid
	_	1	l					I _							-		
From		(m)	Unit		Comments	5		From	10	Interval (m)	Sample		Cu (nnm)			Ag (nnm)	Au (pph)
(11)	(11)	(11)		+	·····			(m)	(m)	(11)	NO.	<i>7</i> 0	(ppin)	(ppin)			(ppb)
0.00	1.82	1.82	CSDH	casing				+		<u> </u>							+
1.82	7.32	7.32	MSBS	weathered		ta _		4.00	7 22	E 50	N444400	45	2.029/	40	E94		
				- abundant	Li and jaros	πθ		1.02	1.32	5.50	N111423	CI CI	2.0370	42	304	0.4	
7 32	10.26	3.04	Mene	- occasiona	a malachile			+	+		·····					1	
1.52	10.30	3.04	WODO		430 11			7 32	8.84	1 52	N111474	82	309	44	270	0.2	
					,			8 84	10.36	1.52	N111425	81	125	42	218	<0.2	+
10.36	13.07	2.71	BRBS	chloritized	basalt brecci	a			10.00								
				- minor LI c	on fractures			10.36	11.89	1.53	N111426	5	131	40	130	<0.2	1
				- minor HE	blotches			11.89	13.07	1.18	N111427	65	152	47	136	<0.2	
				- dissemina	ated pyrite			1				ļ				L	
13.07	14.84	1.77	MSBS	chloritized	basalt					L						L	
								13.07	14.84	1.77	N111428	93	530	44	144	<0.2	<u> </u>
14.84	19.00	4.16	FBST	chloritized (fault breccia												
								14.84	16.46	1.62	N111429	82	235	56	190	<0.2	
								16.46	17.98	1.52	N111430	68	241	91	350	<0.2	+
								17.98	19.00	1.02	N111431	78	339	68	202	<0.2	
19.00	21.30	2.30	MSBS	chloritized I	basalt			10.00	04.00				074		0.40		
24.20	22.25	1.05	EBOT	h ann atitia fa	with the second s			19.00	21.30	2.30	N111432	90	2/4	63	242	<0.2	
21.30	23.25	1.95	- FBOI		iuit preccia	and voine		21.30	22.56	1 26	N111/33	64	277	92	712	<0.2	
					1011 45 1114017			22.56	23.25	0.69	N111434	72	117	62	220	<0.2	
23 25	26.90	3 65	MSBS	fractured ba				22.00	20.20	0.00				UL.		-0.2	1
		0.00					1	23.25	24.40	1.15	N111435	100	561	59	308	<0.2	
								24.40	26.90	2.50	N111436	56	0.42%	92	582	0.2	<5
26.90	27.25	0.35	GGST	chloritized f	ault gouge												
								26.90	27.25	0.35	N111437	63	0.28%	131	640	0.6	35
27.25	28.65	1.40	MSBS	fractured ba	asalt												
								27.25	28.65	1.40	N111438	40	559	118	568	<0.2	
28.65	30.28	1.63	BRBS	chloritized l	pasalt brecci	a		ļ								 	<u> </u>
				- HE matrix		~		28.65	30.28	1.63	N111439	66	188	77	728	<0.2	ļ
30.28	31.70	1.42	EPVN	epidote veir	1												
								30.28	31.70	1.42	N111440	77	141	59	340	<0.2	
31.70	45.67	13.97	BRBS	chioritized b	basalt breccia	a											

	Service and the service of the servi							100000000000000000000000000000000000000	a sold a ball of the ball of the	ALLER STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, S	99992559999999999	00000000000000000000000000000000000000	11111111111111111111111111111111111111	1.97.966.999.999.99
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
				- minor calcite veining	31.70	33.22	1.52	N111441	90	156	42	190	<0.2	
					33.22	34.75	1.53	N111442	88	145	45	198	0.2	
					34.75	36.27	1.52	N111443	76	220	53	330	<0.2	
					36.27	37.80	1.53	N111444	99	120	38	356	<0.2	
					37.80	39.32	1.52	N111445	89	205	40	406	<0.2	
					39.32	40.84	1.52	N111446	80	116	43	132	<0.2	
					40.84	42.37	1.53	N111447	95	81	38	114	<0.2	
					42.37	43.89	1.52	N111448	90	99	42	118	<0.2	
					43.89	45.67	1.78	N111449	98	87	43	136	<0.2	
45.67	46.25	0.58	GGST	chloritized fault gouge										
					45.67	46.25	0.58	N111450	90	302	44	208	<0.2	
46.25	47.14	0.89	BRBS	veined basalt breccia										
				- quartz and calcite veins	46.25	47.14	0.89	N111451	94	116	31	996	<0.2	
47.14	52.05	4.91	BRBS	pyritic basalt breccia										
				- matrix of semi-massive pyrite	47.14	48.46	1.32	N111452	70	0.10%	63	1035	0.2	<5
					48.46	49.99	1.53	N111453	84	0.30%	156	976	0.8	10
					49.99	52.05	2.06	N111454	89	0.23%	57	872	2.6	80
52.05	58.30	6.25	BRBS	chloritized basalt breccia										
					52.05	54.10	2.05	N111455	71	0.11%	53	718	<0.2	<5
					54.10	55.47	1.37	N111456	90	589	51	726	<0.2	
					55.47	57.00	1.53	N111457	82	125	33	258	<0.2	
					57.00	58.30	1.30	N111458	87	48	32	166	0.2	
58.30	59.70	1.40	FBST	chloritized fault breccia										
					58.30	59.70	1.40	N111459	64	406	51	898	0.6	
59.70	62.55	2.85	BRBS	chloritized basalt breccia										
					59.70	61.57	1.87	N111460	96	158	36	248	<0.2	
					61.57	62.55	0.98	N111461	90	509	53	502	<0.2	
62.55	63.28	0.73	BRBS	veined basalt breccia										
					62.55	63.28	0.73	N111462	89	47	23	86	<0.2	
63.28	68.28	5.00	MSBS	dark green massive basalt										
			. . .		63.28	66.14	2.86	N111463	87	77	40	98	<0.2	
					66.14	68.28	2.14	N111464	94	75	42	108	<0.2	
68.28	88.19	19.91	MSBS	chloritized basalt										-

From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
				- base of weathering at 77.4m	68.28	69.80	1.52	N111465	93	89	41	88	<0.2	
					69.80	71.32	1.52	N111466	95	76	39	88	<0.2	
					71.32	74.37	3.05	N111467	92	83	34	84	<0.2	
					86.56	88.29	1.73	N111468	81	84	33	84	<0.2	
88.29	89.55	1.36	BRBS	chloritized basalt										
					88.29	89.55	1.26	N111469	92	77	36	98	<0.2	
				EOH										
						<u> </u>								
														
														ļ
														ļ
}														
														[

SYNOP	TIC LO	G		Hole:	IC96-16	_	Property:	lce			Section:	11100N				Page 1	of 2
FINLAY	SON P	ROJEC	т											Depth	Azimuth	Dip	Method
EXPATRIA	TE RESC	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	<i>/</i> :	A. Burgert			0.00	308°	-50°	brunton
and the second second second second second second second second second second second second second second second				376620	6862648	1285	53.64		Drilling Da	ates:	Sept. 18 - 2	20, 1996	A DESCRIPTION OF THE OWNER	53.80	SUSTERACTOR OF STREET	-50°	acid
From	To	Interval	Unit		Comments			From	То	Interval	Sample	REC	Cu	Co	Zn	Aq	Au
(m)	(m)	(m)	e					(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing													
1.83	3.66	1.83	OBDH	sand													
3.66	5.64	1.98	BCDH	broken rubl	ble												
				- jarosite ar	nd HE comm	ion		3.66	5.64	1.98	N111470	30	0.09%	31	204	<0.2	
5.64	18.15	12.51	BRBS	chloritized b	oreccia basa	It											
				- minor mal	achite and L	.I		5.64	6.40	0.76	N111471	88	0.10%	26	180	<0.2	
				- rare azurit	e			6.40	8.84	2.44	N111472	79	0.20%	39	340	<0.2	
								8.84	10.67	1.83	N111473	78	0.24%	38	410	<0.2	
								10,67	12.50	1.83	N111474	86	0.22%	39	490	<0.2	
								12.50	13.72	1.22	N111475	100	0.36%	35	392	<0.2	
								13.72	15.85	2.13	N111476	93	0.37%	32	250	<0.2	
								15.85	18.15	2.30	N111477	84	0.43%	33	346	<0.2	<5
18.15	20.42	2.27	BRBS	limonitic bre	eccia basalt											<u> </u>	
				- LI commo	<u>n</u>			18.15	20.42	2.27	N111478	44	0.25%	129	358	0.4	35
20.42	22.10	1.68	PYMS	massive py	rite												
				- minor cha	Icocite veini	ng		20.42	22.10	1.68	N111479	97	0.66%	336	400	1.4	130
22.10	30.75	8.65	FBST	rubbly fault	breccia												
				- LI on fract	tures			22.10	23.77	1.67	N111480	59	0.81%	199	530	0.2	50
	······							23.77	26.21	2.44	N111481	87	2.12%	154	290	0.4	30
								26.21	27.58	1.37	N111482	91	2.40%	113	386	0.4	20
								27.58	28.96	1.38	N111483	93	1.95%	92	2300	<0.2	
								28.96	30.75	1.79	N111484	80	U.20%	200	6370	<u> <0.2</u>	
30.75	42.75	12.00	BRBS	chloritized t	preccia basa	π		20.75	22.00	4.05	N44440E		0.20%	110	1220	<0.2	
				- intense M	n oxide on fr	actures		30.75	32.00	1.25	N111400	33	0.20%	- 119	732	<0.2	
								32.00	33.07	1.07	N111400	09	140		132	<0.2	
								33.07	34.14	1.07	N111097	09	70	29	0 <u>2</u> 74	<u> </u>	
								34.14	35.51	1.57	N111590	95	73	20	74	<0.2	
								33.51	37.03	1.52	N111600	20	73	20	69	<0.2	
									30.00	1.03	N111601	33	/ 3 65	20	74	<0.2	
								30.00	40.84	0.01	N111602	70	68	30	78	0.2	
								40.84	42.75	1.91	N111603	66	72	27	76	0.2	

From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Сц	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
42.75	45.60	2.85	BRBS	veined breccia basalt										
				- quartz + calcite veins	42.75	43.65	0.90	N111604	100	69	27	70	<0.2	
45.60	53.64	8.04	MSBS	chloritized massive basalt										
				- occasional Mn oxide veins										
				EOH										
						.								

SYNOP	TIC LO	G		Hole:	IC96-17		Property:	lce			Section:	11000N				Page 1	of 1
FINLAY	'SON P	ROJE	СТ			-				-			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RES	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	r.	A. Burgert			0.00	308°	-50°	brunton
				376567	6862555	1268	64.62		Drilling Da	ites:	Sept. 21 - 2	23, 1996	ficensiisesiise	64.62	CONSIGNATION OF STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,	-48°	acid
From	То	Interval	Unit		Comments			From	То	Interval	Sample	REC	Cu	Co	Zn	Aq	Au
(m)	(m)	(m)			•••••••			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.22	1.22	CSDH	casing													
1.22	12.00	10.78	BRBS	chloritic bre	eccia basalt												
				- LI + HE a	ommon on fr	actures		1.22	3.51	2.29	N111487	82	0.21%	32	204	<0.2	<5
				- MA comm	ion on fractu	res		3.51	5.79	2.28	N111488	100	0.24%	34	186	<0.2	<5
								5.79	8.23	2.44	N111489	92	0.42%	49	436	<0.2	<5
								8.23	9.75	1.52	N111490	99	0.35%	45	294	<0.2	<5
								9.75	12.00	2.25	N111491	99	0.21%	33	148	<0.2	<5
12.00	22.00	10.00	BRBS	chloritic bre	ccia basalt		<u> </u>										
				- LI + HE ci	ommon on fr	actures	· · · · · · · · · · · · · · · · · · ·	12.00	14.48	2.48	N111492	92	0.35%	53	358	<0.2	<5
				- MA comm	ion on fractu	res		14.48	17.07	2.59	N111493	70	0.21%	36	212	<0.2	<5
								17.07	18.59	1.52	N111494	88	0.53%	48	440	<0.2	<5
			·····					18.59	20.12	1.53	N111495	99	0.34%	50	562	<0.2	<5
		4.20		6				20.12	22.00	1.88	N111496	100	0.28%	91	1325	<0.2	<5
22.00	23.32	1.32	GGST	taun gouge				22.00	22.20	1 22	NI4 4 4 407	64	4 64 0/	455	2220	0.0	-E
23.32	29.57	8 25	BPBS	- Informac				22.00	23.32	1.52	1111497	04	1.0170	155	3330	0.2	
23.52	23.51	0.20	DIGO	- minor HF	on fractures			23.32	24.99	1 67	N111498	87	0 19%	113	1630	<0.2	<5
					Unnuolareo			24.99	26 52	1.53	N111499	94	0.17%	91	714	<0.2	<5
					-			26.52	28.04	1.52	N111500	93	83	62	276	<0.2	
								28.04	29.57	1.53	N111501	94	70	67	516	0.2	
29.57	44.20	<u>14.6</u> 3	BRBS	coarse chlo	ritic breccia l	basalt											
44.20	46.15	1.95	MSBS	chloritic ma	ssive basalt												
46.15	59.45	13.30	BRBS	chloritic bre	ccia basalt												
59.45	64.62	5.17	MSBS	chloritic bas	salt												
				EOH													
					<u> </u>												
┝───+			<u></u>														
├								+									
	}							1									

SYNOP	TIC LO	G		Hole:	IC96-18	_	Property:	lce			Section:	11200	i i			Page 1	of 2
FINLAY	SON P	ROJE	СТ			-				-			-	Depth	Azimuth	Dip	Method
EXPATRIA	TE RESC	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	y:	A. Burgert		_	0.00	305°	-50°	brunton
an an an an an an an an an an an an an a	and a state of the			376680	6862729	1302	77.42		Drilling Da	ates:	Sept. 22 - 2	25, 199 6	Beitraustatun isintenen isi	77.42		-50°	acid
Erom	То	Interval	Unit		Commonto			Erom	T o	Interval	Samala	PEC	CU		75		A
(m)	(m)	(m)	Unit		Comments			(m)	(m)	(m)	No.	KEC	(ppm)	(ppm)	(ppm)	rg (ppm)	(ppb)
0.00	4.88	4.88	CSDH	casing													
4.88	16.16	11.28	BRBS	breccia bas	alt rubble			1					1				
				- HE and LI	l common or	fractures		0.00	9.45	9.45	N111502	8	776	31	212	1.2	
								9.45	14.02	4.57	N111503	11	0.14%	31	550	0.6	<5
								14.02	16.16	2.14	N111504	56	0.13%	28	652	0.2	15
16.16	21.22	5.06	BRBS	hematitic br	reccia basalt												
				- occasiona	I pyrite grain	s and Ll		16.16	17.98	1.82	N111505	80	0.14%	36	864	0.2	15
				ļ				17.98	19.51	1.53	N111506	84	0.65%	55	458	2.8	40
								19.51	21.22	1.71	N111507	80	0.28%	44	622	1.0	25
21.22	24.22	3.00	BRBS	chloritic bre	ccia basalt											j	
								21.22	22.56	1.34	N111508	96	0.40%	42	538	0.8	60
								22.56	24.22	1.66	N111509	100	0.36%	37	494	0.6	30
24.22	27.03	2.81	MSBS	chloritic ma	ssive basalt												
				- occasiona	I HE veins			24.22	25.60	1.38	N111510	99	0.27%	40	822	0.2	15
							· · · · ·	25.60	27.03	1.43	N111511	98	0.25%	41	1010	<0.2	10
27.03	29.70	2.67	BRBS	pyritic brecc	cia basalt				-								
				matrix of ch	lorite and py	rite ± HE		27.03	28.65	1.62	N111512	100	1.18%	58	946	1.6	90
	00.04	0.54	5)(140		14			28.65	29.70	1.05	N111513	100	1.05%	58	530	1.4	80
29.70	30.24	0.54	PYMS	massive pyr	rite			00.70	00.04	0.54	1444544		0.000	477			100
30.24	24 75	4.51	MORO	fractured of	loritio massi	vo bacalt		29.70	30.24	0,54	N111514	01	2.03%	177	202	4.4	160
30.24	34.75	4.51	MODO		i weak HF	ve basali		30.24	32 31	2 07	N111515	89	0 19%	<u></u>	610	0.2	<5
				- occasional	l cuprite on f	ractures		32.31	34 75	2.07	N111516	47	0.10%	42	518	0.2	<5
34.75	36.27	1.52	BRBS	pyritic brecc	ia basalt								0.1070				
				- disseminat	ted ovrite			34.75	36 27	1.52	N111517	100	1 00%	190	790	10	15
36.27	43.10	6.83	BRBS	chloritic bre	ccia basalt												
				- minor wea	k HE stainin	g		36.27	37.80	1.53	N111518	82	0.19%	70	788	<0.2	<5
								37.80	39.32	1.52	N111519	92	0.20%	71	1125	<0.2	<5
								39.32	40.84	1.52	N111520	97	0.09%	60	730	0.2	<5
								40.84	43.10	2.26	N111521	81	0.23%	64	1265	1.6	25
43.10	54.56	11.46	BRBS	chloritic bree	ccia basalt												
				- pyrite disse	eminations c	ommon		43.10	45.42	2.32	N111522	86	0.27%	88	1275	<0.2	<5

SYNOPTIC LOG

FINLAYSON PROJECT

From	то	Interval	Linit	Comments	From		Interval	Sample	REC	Сп	Co	7n	۸a	Δ.,
(m)	(m)	(m)	Unit	Comments	(m)	(m)	(m)	No.	%	(mag)	(ppm)	(ppm)	(DDM)	(pob)
	(,				45.42	46.94	1.52	N111523	90	0.09%	43	804	0.6	10
					46.94	48 46	1.52	N111524	100	0.14%	49	826	0.0	10
				······································	48.46	49.99	1.53	N111525	98	0.10%	63	874	0.4	<5
					49.99	51.51	1.52	N111526	97	0.29%	94	738	0.6	10
					51.51	53.04	1.53	N110223	93	105	34	370	<0.2	
					53.04	54.56	1.52	N110224	98	148	41	388	<0.2	
54.56	58.85	4.29	MSBS	fractured basalt										
				- base of weathering at 55.04m	54.56	56.08	1.52	N110225	99	84	27	102	<0.2	
					56.08	58.85	2.77	N110226	91	72	26	130	<0.2	
58.85	61.87	3.02	BRBS	chloritic breccia basalt										
					58.85	60.35	1.50	N110227	93	154	27	228	<0.2	
					60.35	61.87	1.52	N110228	94	80	30	86	<0.2	
61.87	62.60	0.73	EPVN	epidote vein										
					61.87	64.92	3.05	N110229	98	71	30	110	<0.2	
62.60	68.37	3.77	BRBS	chloritic breccia basalt										
					64.92	66.45	1,53	N110230	99	107	34	112	<0.2	
					66.45	68.37	1.92	N110231	82	79	31	156	<0.2	
68.37	69.90	3.53	FBST	fault breccia										
					68.37	69.90	1.53	N110232	99	79	77	642	<0.2	
69.90	73.50	3.60	BRBS	chloritic breccia basalt										
					69.90	71.32	1.42	N110233	100	79	35	102	<0.2	
					71.32	73.50	2.18	N110234	92	81	29	76	<0.2	
73.50	77.42	3.92	FBST	veined fault breccia										
				- quartz + calcite veins	73.50	74.37	0.87	N110235	80	28	19	54	<0.2	
				EOH										
			<u>_</u> .											

Property: Ice

Page 2 of 2

Hole: IC96-18

SYNOP	TIC LO	G		Hole:	IC96-19		Property:	lce		_	Section:	10700N				Page 1	of 1
FINLAY	'SON P	ROJE	ст			-				-				Depth	Azimuth	Dip	Method
EXPATRI	ATE RESC	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	<i>r</i> :	A. Burgert			0.00	308°	-50°	brunton
			anali na disari ina kata kata	376390	6862324	1199	58.83		Drilling Da	ates:	Sept. 24 - 2	26, 1996		58.83		-49°	acid
From	То	Interval	Unit		Comments			From	То	Interval	Sample	RFC	Сц	Co	Zn	Ag	Au
(m)	(m)	(m)	Onic		Commente			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing													
1.83	5.18	3.35	OBDH	sand													
				- no recove	ry												
5.18	14.94	9.76	BCDH	overburden	and rubble												
								5.18	12.80	7.62	N111527	12	95	14	118	<0.2	
							· · · · · · · · · · · · · · · · · · ·	12.80	14.94	2.14	N111528	49	133	30	104	<0.2	
14.94	58.83	43.89	MSBS	massive ba	salt												
								14.94	16.76	1.82	N111529	81	75	29	72	<0.2	
								16.76	19.05	2.29	N111530	77	77	32	80	<0.2	
								19.05	21.95	2.90	N111531	71	61	35	102	<0.2	
								21.95	23.73	1.78	N111532	84	45	31	82	<0.2	
				EOH													
								-									
																ļ	
			. <u> </u>														
			· · · · · · · ·				÷										
	1																

SYNOP	TIC LO	G		Hole:	IC96-20		Property:	lce			Section:	11200N				Page 1	of 2
FINLAY	SON P	ROJE	СТ											Depth	Azimuth	Dip	Method
EXPATRIA	TE RESC	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>r</i> :	A. Burgert			0.00	310°	-50°	brunton
		-		376645	6862753	1317	63.70		Drilling Da	ates:	Sept. 26 - 3	30, 1996	The second second second second second second second second second second second second second second second s	63.70	AN 100 100 100 100 100 100	-51°	acid
From	To	Interval	Unit	1	Comments			From	То	Interval	Sample	REC	Cu	Co	Zn	Aa	Au
(m)	(m)	(m)						(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.22	1.22	CSDH	casing													
1.22	7.30	6.08	PHBSm	porphyritic	basalt												
				- HE + LI OI	n all fracture	s		0.00	5.49	5.49	N111533	26	609	29	266	<0.2	
				- occasiona	MA on frac	tures		5.49	7.30	1.81	N111534	69	0.15%	29	428	<0.2	<5
7.30	10.36	3.06	BRBS	chloritized t	preccia basal	lt											
				- HE + LI +	Mn oxide on	all fracture	S	7.30	8.23	0.93	N111535	100	0.21%	31	426	<0.2	5
				- occasiona	I MA on frac	tures		8.23	10.36	2.13	N111536	44	0.28%	66	1050	<0.2	<5
10.36	15.80	5.44	FBST	fault breccia	a												
				- Ll commo	n as matrix a	and fracture	coating	10.36	13.41	3.05	N111537	55	0.39%	97	1830	<0.2	<5
								13.41	15.80	2.39	N111538	72	0.62%	71	1830	<0.2	<5
15.80	24.08	8.28	BRBS	chloritized b	oreccia basal	t											
				- rare MA o	n fractures			15.80	17.37	1.57	N111539	100	0.37%	61	1190	<0.2	<5
				- HE + LI o	n fractures			17.37	19.96	2.59	N111540	24	0.47%	59	878	<0.2	20
					·			19.96	21.96	2.00	N111541	64	0.46%	59	836	<0.2	<5
								21.96	24.08	2.12	N111542	83	0.17%	82	1535	<0.2	<5
24.08	37.50	13.42	BRBS	pyritic breco	cia basalt												
				- matrix of p	oyrite + chlori	ite		24.08	27.13	3.05	N111543	63	0.58%	35	778	1.6	30
				- HE + Ll oi	n fractures			27.13	30.18	3.05	N111544	59	0.36%	102	550	0.6	10
								30.18	33.22	3.04	N111545	88	0.29%	80	420	0.6	15
								33.22	36.27	3.05	N111546	85	0.10%	48	514	<0.2	<5
								36.27	37.50	1.23	N111547	81	0.13%	60	494	<0.2	5
37.50	41.45	3.95	FBST	cuprous fau	It breccia												
				- HE + LI o	n fractures			37.50	39.32	1.82	N111548	56	0.34%	54	1415	0.2	<5
ļ				-rare cuprite	e on fracture	s		39.32	41.45	2.13	N111549	86	0.28%	77	1430	0.2	<5
41.45	48.20	6.75	BRBS	chloritized t	preccia basal	<u>t</u>											
								41.45	43.13	1.68	N111550	83	0.04%	43	682	<0.2	<5
								43.13	45.42	2.29	N110215	95	0.02%	28	454	0.4	<5
								45.42	48.20	2.78	N110216	38	0.22%	59	1535	3.8	100
48.20	51.10	2.90	BRBS	pyritic breco	cia basalt		<u> </u>						L				
				- pyrite com	mon as diss	eminations	and bands	48.20	49.99	1.79	N110217	93	0.45%	215	1465	1.0	25
				- locally up	to 2% chalco	pyrite		49.99	51.10	1.11	N110218	90	0.32%	104	1260	0.6	20
51.10	54.95	3.85	BRBS	mottled bre	ccia basalt												

-20

Property: Ice

From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Aa	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
					51.10	52.73	1.63	N110219	100	128	38	194	<0.2	
					52.73	54.95	2.22	N110220	99	106	26	100	<0.2	
54.95	63.70	8.75	MSBS	fractured chloritized basalt										
					54.95	56.82	1.87	N110221	70	87	27	98	<0.2	
					56.82	58.52	1.70	N110222	76	72	25	78	<0.2	
				EOH										
			<u></u>											
											_			
											_			

SYNOF	TIC LO	G		Hole:	IC96-21		Property:	lce			Section:	109501	1			Page	1 of 1
FINLA	SON P	ROJE	СТ			-				-			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RESO	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	/ :	A. Burgert		_	0.00	312°	-50°	brunton
and the order states in the same		a a constant a constant a constant a constant a constant a constant a constant a constant a constant a constant		376582	6862507	1257	46.33		Drilling Da	ates:	Sept. 27 - 2	28, 1996	Rada anto e como são e tran	46.33		-49°	acid
From	То	Interval	Unit		Comments			From	То	Interval	Sample	REC	Cu	Co	Zn	40	Διι
(m)	(m)	(m)			••••••••			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(dqq)
0.00	2.44	2.44	CSDH	casing													
2.44	3.66	1.22	OBDH	gravel													
3.66	12.00	8.34	BRBS	limonitic br	reccia basalt												
				- HE, LI, M	In oxide on al	Il fractures		3.66	6.25	2.59	N111551	76	0.26%	18	150	<0.2	<5
								6.25	7.92	1.67	N111552	64	0.27%	20	154	<0.2	<5
								7.92	9.75	1.83	N111553	82	0.43%	29	162	<0.2	<5
								9.75	12.00	2.25	N111554	96	0.16%	27	170	<0.2	<5
12.00	14.32	2.32	FBST	limonitic fa	ult breccia												
				- strong HE	E + LI stainin	g		12.00	14.32	2.32	N111555	76	0.15%	7	66	<0.2	<5
14.32	15.85	1.53	MSCH	black chert	<u> </u>		· ···-										
15.95	21.00	E 45	BROU	- HE, LI ON	fractures			14.32	15.85	1.53	N111556	43	0.14%	8	150	<0.2	<5
15.65	21.00	5.15	вксп		fractures			45.05	40.40	E 45	1444557		0.4494				
					lactures			19.40	18.49	0.10	N111557	28	0.11%	4	54	<0.2	<5
21.00	23.01	2.01	FRST	black fault l	hreccia	· · · · · · · · · · · · · · · · · · ·		10.49	21.00	2.91	966111N		0.07%	12	128	<0.2	<5
	20.01	2.01	1 001	- minor 11 c	on fractures			21.00	23.01	2 01	N111550	46	0.08%		122	0.2	~E
23.01	27.84	4.83	BRCH	grav chert l	breccia			21.00	20.01	2.01	1111000		0.00 %		142	0.2	
				- minor LI c	on fractures	······		23.01	24.69	1.68	N111560	68	0.20%	6	78	<0.2	<5
				- rare cupri	te on fracture			24.69	25.60	0.91	N111561	74	376	4	68	<0.2	
								25.60	27.84	2.24	N111562	57	687	5	106	<0.2	
27.84	31.40	3.56	FBST	black fault l	breccia												
								27.84	31.40	3.56	N111563	30	881	9	176	<0.2	
31.40	35.50	4.10	MSCH	massive gra	ay chert	····											
			· ·														
35.50	46.30	10.80	MSCH	massive bla	ack chert		·										
							· · · · · · · · · · · · · · · · · · ·										
				EOH				 									
								┨────┤									
<u> </u>								łł									

SYNOP	TIC LO	G		Hole:	IC96-22		Property:	lce			Section:	11000N				Page	l of 1
FINLAY	SON P	ROJE	СТ			_				-				Depth	Azimuth	Dip	Method
EXPATRI/	ATE RESC	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>/</i> :	A. Burgert			0.00	308	-50°	brunton
		and a state of the second		376522	6862596	1278	44.50		Drilling Da	ates:	Sept. 29 - 0	Oct. 1, 1	9 96	44.50		-47°	acid
From	То	Interval	Unit		Comments			From	То	Interval	Sample	REC	Сц	Co	Zn	Aa	Αιι
(m)	(m)	(m)						(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.22	1.22	CSDH	casing							1						
1.22	6.10	4.88	MSBS	massive ba	salt												
				- weak LI o	n fractures			4.60	4.70	0.10	N111564	100	177	5	94	<0.2	
								4.70	6.10	1.40	N111565	44	1310	47	318	<0.2	
6.10	7.77	1.67	GGST	fault gouge		. <u>.</u>											
				- weak LI st	aining			6.10	7.77	1.67	N111566	56	520	123	476	<0.2	
7.77	8.23	0.46	EPVN	epidote veir	<u>1</u>		· · · · · · · · · · · · · · · · · · ·										
						·····		7.77	8.23	0.46	N111567	80	62	48	216	<0.2	
8.23	19.60	11.37	FBST	fault brecch				- 0.00	40.00	4.00	1444500	400	400			-0.0	
				- weak Li a		cures		10.06	10.06	1.83	N111568	100	199	64	250	<0.2	
		· · ·						12.50	12.50	2.44	N111570	- 02 59	102	41	159	<0.2	
	·							15.54	17.68	2 14	N111571	92	66	40	92	<0.2	
								17.68	19.60	1.92	N111572	90	59	28	84	<0.2	
19.60	28.50	8.90	BRBS	breccia bas	alt												
				- weak HE :	staining			19.60	21.64	2.04	N111573	34	70	39	116	<0.2	
					-			24.50	24.99	0.49	N111574	98	69	25	114	<0.2	
28.50	38.70	10.20	BRBS	breccia bas	alt												
38.70	44.50	8.85	MSBS	massive ba	salt			_									
				EOH													
		·····		h		····											
				·													

SYNOP	TIC LO	G		Hole:	IC96-23		Property:	lce			Section:	11200N				Page '	1 of 1
FINLAY	SON P	ROJE	СТ			-				-			•	Depth	Azimuth	Dip	Method
EXPATRI	ATE RESC	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	y:	A. Burgert			0.00	307	-50°	brunton
				376606	6862783	1335	104.85		Drilling Da	ates:	<u>Oct. 1 - 6,</u>	1996	Sectore and the sector of the	104.85		51°	acid
From	То	Interval	Unit	T	Comments			From	то	Interval	Sample	REC	<u></u>		70	Ad	Διι
(m)	(m)	(m)			Commento			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(mag)	(dad)
0.00	1.83	1.83	CSDH	casing													
1.83	19.00	17.17	BRBS	chloritic bre	eccia basalt												
								0.00	4.27	4.27	N111575	30	0.14%	36	524	0.2	<5
								4.27	5.79	1.52	N111576	92	0.12%	48	396	0.2	<5
								5.79	7.32	1.53	N111577	99	0.11%	45	292	0.2	<5
				 				7.32	8.84	1.52	N111578	98	0.13%	50	306	0.2	<5
								8.84	10.97	2.13	N111579	47	0.25%	55	518	0.6	10
								10.97	12.95	1.98	N111580	57	0.37%	43	602	1.4	25
								12.95	14.94	1.99	N111581	68	0.33%	49	886	0.4	10
								14.94	17.37	2.43	N111582	75	464	47	392	<0.2	
10.00	22.60	3 60	PDPC	oblaritia bra				17.37	19.00	1.63	N111583	94	90	35	118	<0.2	
19.00	22.00	3.00	DRDS	chioritic bre	CCIA Dasait			19.00	20.73	1 73	N111584	04	80	34	00	-02	
						·		20.73	20.75	1.73	N111585	100	84	34	116	<0.2	<u> </u>
22.60	33.22	10.62	FBST	chloritic fau	It breccia										110	-0.2	
								22.60	25.91	3.31	N111586	92	74	39	118	<0.2	
33.22	45.72	12.50	BRBS	chloritic bre	ccia basalt												
45.72	76.50	30.78	MSBS	massive ba	salt												
76.50	84.75	8.25	BRBS	chloritic bre	ccia basalt												
84.75	104.85	20.10	MSBS	massive ba	salt												
ļ				ļ				 									
				EOH				 							-		
											·						
													·				
					· · · · · · · · · · · · · · · · · · ·												

SYNOP	TIC LO	G		Hole:	IC96-24		Property:	lce			Section:	11000N				Page	of 1
FINLAY	SON P	ROJE	ст			_				•••			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RESC	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>ı</i> :	A. Burgert			0.00	305°	-50°	brunton
		una de la constante de la constante		376472	6862632	1290	78.03		Drilling Da	ates:	Oct. 2 - 6,	1996		78.03		-49°	acid
From	То	Interval	Unit		Comments			From	Το	Interval	Sample	RFC	Cu	Co	Zn	An	Δ.,
(m)	(m)	(m)	Onic		Commente	•		(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.22	1.22	CSDH	casing													
1.22	18.70	17.48	MSBS	massive ba	salt							1			[
				- HE + LI o	n fractures			0.00	2.13	2.13	N111587	80	62	28	82	0.2	
								2.13	4.42	2.29	N111588	86	57	25	82	0.2	
								4.42	6.71	2.29	N111589	82	58	25	80	<0.2	
								6.71	9.14	2.43	N111590	63	58	25	80	0.2	
								9.14	11.43	2.29	N111591	93	61	25	88	0.2	
								11.43	13.41	1.98	N111592	96	61	26	86	<0.2	
								13.41	<u>15.54</u>	2.13	N111593	69	74	25	84	<0.2	
							,	15.54	16.76	1.22	N111594	96	118	27	160	0.2	
								16.76	18.70	1.94	N111595	89	84	28	150	<0.2	
18.70	26.21	7.51	MSBS	massive ba	salt												
				- HE on fra	ctures			18.70	21.03	2.33	N111596	58	170	26	634	0.2	
26.21	45.44	19.23	MSBS	massive ba	salt												
45.44	54.05	8.61	BRCH	dark gray bi	recciated ch	ert				····						<u></u>	
54.05	54.16	0.11	SLSI	siltstone													
54.15	73.45	19.29	BRCH	dark gray bi	recclated ch	en											
73.45	79.02	2.09	MSCH	gray chert	ort		·····										
74.03	/ 0.03	3.90	MISCH	grapinue en			·										
				FOH													
								1									
							<u> </u>										

٠

SYNOP	TIC LC	G		Hole:	IC96-25		Property:	lce			Section:	10950N	I			Page '	l of 1
FINLAY	TINLAYSON PROJECT									-			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RES	OURCES	S LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	y:	A. Burgert		_	0.00		-90°	brunton
*******	100.0000.00000000000000000000000000000			376533	6862527	1259	51.82		Drilling Da	ates:	<u>Oct. 6 - 8,</u>	1996		51.82		-89°	acid
From	То	Interval	Unit		Comments			From	То	Interval	Sample	REC	Cu		70	Δα	Δ
(m)	(m)	(m)			••••••••			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.22	1.22	CSDH	casing													
1.22	15.24	14.02	MSBS	fractured ba	asalt												
				- LI + HE or	n fractures			1.22	7.62	6.40	N111605	8	0.13%	32	284	0.2	<5
								7.62	9.75	2.13	N111606	77	0.33%	88	898	<0.2	<5
								9.75	11.58	1.83	N111607	76	0.34%	72	750	0.2	<5
								11.58	15.24	3.66	N111608	20	0.35%	56	642	<0.2	<5
15.24	16.78	1.54	GGST	limonitic fau	It gouge												
				- strong ora	nge Ll			15.24	16.78	1.54	N111609	26	0.38%	100	982	<0.2	<5
16.78	18.90	2.12	LCDH	no recovery								<u> </u>		ļ	ļ]		
18.90	32.26	13.36	BRBS	chloritic bre	ccia basalt						····.					ļ	
				- weak LI +	HE on fractu	ires	·····	18.90	21.03	4.25	N111610	42	0.80%	93	1075	<0.2	<5
				- occasiona	I minor MA o	n fractures		21.03	23.47	2.44	N111611	84	0.12%	131	944	<0.2	<5
				- rare cuprit	e on fracture	<u>}</u>		23.47	25.60	2.13	N111612	88	326	61	498	<0.2	
								25.60	27.43	1.83	N111613	9/	122	48	374	<0.2	
+								27,43	29.50	2.13	N111614	88	11/	38	398	<0.2	
32.26	41 15	8 89	FRST	fault breccia				29.00	32.20	2.70	MIIIDID	9/	0/	30	- 304	<0.2	
		0.00		- HE on frac	tures			32.26	34 75	2 49	N111616	100	77	45	186	<0.2	
								34.75	38 56	3.81	N111617	80	131	49	408	<0.2	
								38.56	41.15	2.59	N111618	80	60	20	116	<0.2	
41.15	44.20	3.05	BRCH	brecciated o	hert:												
				- rare disser	minated pyrite	e		41.15	42.06	0.91	N111619	99	51	13	100	<0.2	
								42.06	44.20	2.14	N111620	72	63	14	66	<0.2	
44.20	45.72	1.52	LCDH	fault													
45.72	51.82	6.10	MSCH	massive bla	ck chert												
					·			45.72	47.24	3.04	N111621	9 5	46	6	44	<0.2	
								47.24	48.77	1.53	N111622	95	61	6	24	<0.2	
				EOH													
						·····		 									

SYNOP	TIC LO	G		Hole:	IC96-26		Property:	Ice			Section:	11200N				Page 1	of 1
FINLAY	SON P	ROJEC	т			-				-				Depth	Azimuth	Dip	Method
EXPATRIA	TE RESC	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	r.	A. Burgert			0.00	308°	-50°	brunton
	and the second second second second second second second second second second second second second second second			376570	6862813	1358	56.39		Drilling Da	ates:	Oct. 8 - 10	, 19 9 6		56.39		-49°	acid
From	To	Interval	Unit		Comments			From	То	Interval	Sample	REC	Cu	Со	Zn	Ag	Au
(m)	(m)	(m)	onix					(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing													
1.83	11.28	9.45	MSBS	chloritic ma	ssive basalt												
				- weak LI o	n some fract	tures		0.00	5.49	5.49	N111623	36	72	20	66	<0.2	
								5.49	9.45	3.96	N111624	39	69	22	68	<0.2	
								9.45	11.28	1.83	N111625	95	354	35	132	<0.2	
11.28	15.54	4.26	FBST	fault brecci	a												
				- strong Li	alteration			11.28	13.40	2.12	N111626	90	0.32%	57	448	1.8	40
				- HE on fra	ctures			13.40	15.54	2.14	N111627	91	0.21%	48	586	0.8	20
15.54	20.72	5.18	MSBS	chloritic ma	ssive basalt												
				- LI + HE o	n fractures			15.54	17.98	2.44	N111628	98	212	27	244	0.2	
								17.98	20.72	2.74	N111629	92	92	24	180	<0.2	
20.72	36.42	15.70	BRBS	chloritic bre	eccia basalt												
ļ				- weak LI +	HE on fract	ures		20.72	22.86	2.14	N111630	83	76	25	92	0.2	
								22.86	24.99	2.13	N111631	94	/6	26	55	<0.2	
								24.99	26.52	1.53	N111632	78	70	20	52	<0.2	
				<u> </u>				20.52	28.04	1.52	N111634	99	63	25	42	<0.2	
	EC 20	40.07	NOPO	a ha la viti a ma				20.04	29.57	1.55	N111034	51		21		-0.2	
30.42	00.39	19.97	MSDS	chionaic ma	SSIVE DASAIL					[
				FOH													
				2011													
													_				
							. <u>.</u>										ļ

SYNOP	TIC LO	G		Hole:	IC96-27	-	Property:	Ice		_	Section:	10950N	l			Page	of 1
FINLAY	SON P	ROJE	СТ											Depth	Azimuth	Dip	Method
EXPATRI	ATE RES	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	-	Logged by	y :	A. Burgert		-	0.00	310	-50°	brunton
				376534	6862526	1259	46.33		Drilling Da	ates:	Oct. 9 - 10	<u>, 1996</u>	10000000000000000000000000000000000000	46.33		50°	acid
From	То	Interval	Unit		Comments	anagan an tangan ang ang ang ang ang ang ang ang an		From	То	Interval	Sample	REC	Cu	Со	Zn	Ag	Au
(m)	(m)	(m)						(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing													
1.83	23.25	21.42	BRBS	chloritic bre	ccia basalt												
				- strong LI +	HE on frac	tures		1.83	3.96	2.13	N111635	65	0.13%	30	362	0.2	<5
				- occasional	MA on frac	tures		3.96	5.49	1.53	N111636	58	0.10%	19	368	0.8	<5
				- occasional	cuprite on f	ractures		5.49	9.75	4.26	N111637	30	0.18%	30	386	0.2	<5
						·		9.75	11.58	1.83	N111638	91	0.38%	40	308	<0.2	<5
				-				11.58	14.33	2.75	N111639	55	0.14%	25	154	<0.2	<5
								14.33	15.85	1.52	N111640	63	0.17%	30	162	<0.2	<5
								15.85	18.90	3.05	N111641	86	0.25%	34	244	<0.2	<5
								18.90	21.34	2.44	N111642	90	0.20%	34	202	<0.2	<5
23.25	27.85	4 60	ERST	fault breccia				21.34	23.23	1.91	N111045	94	0.15%	64	494	<0.2	<5
20,20	27.00	4.00	1 001	- strong +	HE on fract			23.25	24.84	1 50	N111644	07	0.22%	60	409	-0.2	-5
				- occasional	MA on fract	ures		20.20	26.82	1.05	N111645	9/	0.2270	67	490 542	<0.2	-5
								26.82	27.85	1.03	N111646	78	0.79%	474	5240	<0.2	<5
27.85	32.40	4.55	BRBS	chloritic bred	ccia basalt								0.10 /0			-0.2	
				- weak LI + I	HE on fractu	res	• • • • • • • • • • • • • • • • • • • •	27.85	29.57	1.72	N111647	69	114	90	632	<0.2	
								29.57	30.94	1.37	N111648	94	71	38	152	<0.2	
[]								30.94	32.46	1.52	N111649	100	93	63	448	<0.2	
32.40	45.00	12.60	FBST	fault breccia	+ gouge												
								32.46	33.53	1.07	N111650	97	86	141	1260	<0.2	
								33.53	35.36	1.83	N111651	98	51	73	486	<0.2	
-								35.36	37.19	1.83	N111652	95	54	56	66	<0.2	
								37.19	38.71	1.52	N111653	91	68	47	106	<0.2	
								38.71	40.84	2.13	N111654	87	63	36	150	<0.2	
								40.84	43.89	3.05	N111655	50	62	21	104	<0.2	
45.00	46.33	1.33	вксн	graphitic bre	cciated cher	1											
				FOU													
				EUH	.		· · · · · · · · · · · · · · · · · · ·										
								i									
				L													

SYNOP	TIC LC	G		Hole:	IC96-28	_	Property:	lce			Section:	11400N				Page 1	of 1
FINLAY	SON P	ROJE	СТ							-			-	Depth	Azimuth	Dip	Method
EXPATRI/	ATE RES	OURCES	S LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>j</i> :	A. Burgert		_	0.00	303	-50°	brunton
				376831	6862862	1318	85.04		Drilling Da	ates:	Oct. 11 - 1	5, 1996	ana ang ang ang ang ang ang ang ang ang		100000000000000000000000000000000000000		
From	То	Interval	Unit		Comments			From	То	Interval	Sample	REC	Cu	Co	Zn	Δn	Αιι
(m)	(m)	(m)						(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.22	1.22	CSDH	casing													
1.22	5.18	3.96	MSBS	chloritic ma	ssive basalt												
				- weak HE o	on fractures			1.22	3.05	1.83	N111656	95	62	34	94	<0.2	
								3.05	5.18	2.13	N111657	95	59	39	118	<0.2	
5.18	8.45	3.27	FBST	magnetic fa	ult breccia +	gouge											
							/	5.18	8.45	3.27	N111658	71	42	16	48	<0.2	
8.45	16.60	8.15	MSBS	chloritic ma	ssive basalt												
				- weak LI +	HE on fractu	ires		8.45	11.28	2.83	N111659	85	70	33	102	<0.2	
								11.28	12.80	1.52	N111660	98	74	37	94	<0.2	
			<u> </u>					12.80	14.33	1.53	N111661	100	/1	35	98	<0.2	
16.60	18.90	230	BRBS	hematitic ha	salt breccia		······	14.33	10.00	2.21	N111002	89	//	32	92	<0.2	
10.00	10.00	2.00	0100	- strong LLs	taining			16.60	18.90	230	N111663	01	03	10	74	<0.2	
18.90	57.00	38.10	MSBS	chloritic mas	ssive basalt			10.00	10.00	2.50	1111000		- 35			-0.2	
								18.90	20.42	1.52	N111664	99	64	33	106	<0.2	
								20.42	21.95	1.53	N111665	97	55	29	94	<0.2	
								21.95	23.47	1.52	N111666	93	62	28	88	<0.2	
57.00	66.45	9.45	BRBS	chloritic brea	ccia basalt												
66.45	69.45	3.00	FBST	chloritic faul	t breccia + g	ouge											
69.45	85.04	15.59	BRBS	chloritic brea	cia basalt												
				EOH			· · · · · · · · · · · · · · · · · · ·										
		····															
<u>├</u> ────┼																	
-								<u></u>									
SYNOP	TIC LO	G		Hole:	IC96-29	_	Property:	lce		_	Section:	11300N				Page 1	of 2
---------	----------	----------	-------	---------------	--------------	------------	--	-------	-------------	------------	-------------	---------	---------	----------	---------	--------	---------
FINLAY	SON P	ROJE	СТ			-				-			-	Depth	Azimuth	Dip	Method
EXPATRI	ATE RESC	URCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	/ :	A. Burgert		_	0.00	303°	-50°	brunton
				376777	6862777	1307	65.84		Drilling Da	ates:	Oct. 12 - 1	5, 1996		65.84		-51°	acid
Erom	Te	Interval	Unit	1	Commonte			Erom	Та	Intoneol	Sample	PEC	Cu	<u> </u>	70	Δα	Διι
(m)	(m)	(m)	Unit		Commenta			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing	•					<u> </u>			<u></u>	<u></u>			
1.83	3.50	1.67	MSBS	chloritic ma	ssive basalt												
				- HE on fra	ctures			1.83	3.50	1.67	N111667	66	76	28	90	<0.2	
3.50	5.33	1.83	FBST	fault brecci	a + gouge												
				- HE + LI O	n fractures			3.50	5.33	1.83	N111668	87	50	28	74	<0.2	
5.33	8.22	2.89	MSBS	chloritic ma	ssive basalt												
				- HE + LI o	n fractures			5.33	7.01	1.68	N111669	86	66	29	82	<0.2	
								7.01	8.22	1.21	N111670	76	67	26	78	<0.2	
8.22	15.85	7.63	FBST	fault brecci	a + gouge											ļ	
				- strong HE	+ LI stainin	g		8.22	10.21	1.99	N111671	90	78	26	94	<0.2	
								10.21	13.11	2.90	N111672	62	0.19%	66	978	<0.2	<5
								13.11	15.85	2.74	N111673	93	0.40%	70	1145	<0.2	<5
15.85	24.38	8.53	MSBS	fractured ba	asalt											i	
				- HE + LI o	n fractures			15.85	17.75	1.90	N111674	97	0.17%	58	1030	<0.2	<5
				- cuprite on	fractures			17.75	19.20	1.45	N111675	79	0.05%	37	354	<0.2	<5
				- rare native	e Cu on frac	ures		19.20	20.73	1.53	N111676	86	0.30%	43	446	<0.2	<5
								20.73	21.95	1.22	N111677	82	0.95%	57	1240	<0.2	<5
								21.95	23.16	1.21	N111678	92	0.20%	29	272	<0.2	<5
		1.00						23.16	24.38	1.22	N111679	72	0.30%	36	514	<0.2	<5
24.38	25.70	1.32	FBST	fault brecci	a + gouge			04.00	25.70	4.00	N444000		4.04%		949	4.0	100
25.70	26.07	1 27	DVMC	- LI ON ITACI	ures	••	······································	24.30	25.70	1.32	N11100U		1.04%	09	040	1.0	100
25.70	20.97	1.27	PTMO		fractures			25.70	26.97	1 27	N111681	85	1 99%	437	768	84	570
26.97	28 15	1 18	BRBS	chloritic bre	rcia hasalt			23.70	20.57	1.21	1111001		1.55 %	- 457		0.4	5/0
20.01	20.10		DIADO	- HE + I LO	n fractures			26.97	28 15	1 18	N111682	56	0.89%	35	572	<0.2	10
28.15	44,75	16.60	PHBSm	chloritic por	phyrytic bas	alt											
				- HE + LI or	n fractures			28.15	29.41	1.26	N111683	102	0.46%	70	1905	<0.2	<5
				- cuprite on	fractures			29.41	30.94	1.53	N111684	93	0.09%	63	1380	<0.2	<5
								30.94	32.31	1.37	N111685	93	0.20%	54	788	<0.2	<5
								32.31	33.83	1.52	N111686	93	0.42%	60	860	<0.2	<5
								33.83	35.51	1.68	N111687	101	0.06%	36	270	<0.2	<5

SYNOPTIC LOG Hole: FINLAYSON PROJECT

le: IC96-29

ł.

Property: Ice

													<u>Anna an</u> na anna anna anna anna anna anna	19.25.25.25
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
					35.51	37.03	1.52	N111688	98	0.03%	33	140	<0.2	<5
					37.03	38.56	1.53	N111689	97	0.06%	39	260	<0.2	<5
					38.56	40.69	2.13	N111690	61	0.09%	46	528	<0.2	<5
					40.69	42.37	1.68	N111691	91	73	27	212	<0.2	
					42.37	44.75	2.38	N111692	92	79	34	276	<0.2	
44.75	53.00	8.25	BRBS	chloritic breccia basalt										
				- HE + LI on fractures	44.75	46.33	1.58	N111693	84	122	91	1845	<0.2	
					46.33	47.40	1.07	N111694	79	122	69	1155	<0.2	
					47.40	48.92	1.52	N111695	89	134	62	1390	<0.2	
					48.92	50.44	1.52	N111696	99	90	24	92	<0.2	<u> </u>
					50.44	53.00	2.56	N111697	92	368	36	168	<0.2	
53.00	65.84	12.84	BRBS	magnetic breccia basalt										
					53.00	55.17	2.17	N111698	97	84	23	152	<0.2	
					55.17	56.85	1.68	N111699	93	80	22	212	<0.2	
					56.85	58.52	1.67	N111700	92	84	22	322	<0.2	
					58.52	60.05	1.53	N111701	101	384	33	1025	0.8	
				EOH										
					:									

SYNOF	TIC LO	G		Hole:	IC96-30		Property:	lce			Section:	11400N				Page 1	l of 2
FINLA	YSON P	ROJE	СТ			-				-				Depth	Azimuth	Dip	Method
EXPATRI	ATE RESC	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:	_	Logged by	y:	A. Burgert			0.00	315°	-49°	brunton
an an to mo us antain	eteriori contractori con			376894	6862812	1291	82.30		Drilling Da	ates:	Oct. 16 - 1	9, 1996		82.30	315°	-51°	acid
From	То	Interval	Linit		Commonte			Erom		Interval	Samole	PEC		6	Zn	40	Δ
(m)	(m)	(m)	Unit		Comments			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing													
				- bedrock re	ecovered			0.00	2.13	2.13	N111702	53	52	19	64	<0.2	
1.83	11.28	9.45	MSBS	massive ch	loritic basait												
				-LI + HE on	fractures			2.13	3.66	1.53	N111703	68	52	22	80	<0.2	
								3.66	5.18	1.52	N111704	63	70	28	140	<0.2	
								5.18	7.01	1.83	N111705	85	35	17	58	<0.2	
								7.01	9.14	2.13	N111706	79	58	27	172	<0.2	
								9.14	11.28	2.14	N111707	80	58	26	200	<0.2	
11.28	12.19	0.91	GGST	fault gouge													
				- strong LI s	staining			11.28	12.19	0.91	N111708	84	64	30	112	<0.2	+
12.19	32.61	20.42	MSBS	massive ch	loritic basalt												
				- LI + HE or	n fractures to	depth of 2	21.50m	12.19	14.33	2.14	N111709	91	46	24	88	<0.2	ļ
				ļ				14.33	17.37	3.04	N111710	46	53	26	88	<0.2	
								17.37	18.90	1.53	N111711	94	57	22	78	<0.2	Ļ
								18.90	20.42	1.52	N111712	98	62	23	74	<0.2	
								20.42	21.95	1.53	N111713	97	57	24	76	<0.2	ļ
								21.95	23.47	1.52	N111714	93	62	26	106	<0.2	
								23.47	24.99	1.52	N111715	94	61	28	108	<0.2	
							<u> </u>	24.99	26.52	1.53	N111/16	96	62	26	104	<0.2	
								20.52	28.04	1.52	N111/1/	99	59	2/	100	<0.2	
								20.04	29.57	1.53	N111710	 	64	24	00	<0.2	
								29.57	37.09	1.52	NI111720	32	67	23	120	<0.2	
32.61	39.70	7 00	FBST	chloritic faul	t breccia			51.05	32.01	1.JZ	1111/20	- 33		- 54	120	-0.2	
52.01	33.10	1.00	1 001	- local strop	a I I staining			32.61	34 14	1 52	N111721	90	71	34	132	<0.2	
					a ni stanni 19	· · · •		34 14	35.66	1.53	N111722	87	16	16	88	<0.2	<u> </u>
						· ·		35.66	37.19	1.52	N111723	86	40	23	116	<0.2	
				1				37.19	39.70	2.51	N111724	92	31	23	106	<0.2	
39,70	46,10	6.40	MSBS	massive chl	oritic basalt												
				- HE on frac	tures			39.70	42.06	2.36	N111725	92	60	28	92	<0.2	
				- rare cuprite	e on fracture	s		42.06	44.20	2.14	N111726	84	59	30	96	<0.2	

		1				100.00000000000000000000000000000000000	100.00 100.000.000	and the second second second second second second second second second second second second second second second	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL				Contraction and the	
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
					44.20	46.10	1.90	N111727	100	57	33	106	<0.2	1
46.10	53.77	7.67	FBST	chloritic fault breccia + gouge										
					46.10	47.09	0.99	N111728	99	46	19	56	<0.2	
					47.09	48.16	1.07	N111729	87	64	35	104	<0.2	
					48.16	49.38	1.22	N111730	98	65	39	110	<0.2	
					49.38	51.05	1.67	N111731	91	60	31	84	<0.2	
					51.05	52.73	1.68	N111732	83	74	26	70	<0.2	
					52.73	53.77	1.04	N111733	99	0.04%	40	178	<0.2	<5
53.77	54.00	0.23	PYMS	massive pyrite + hematite										
					53.77	54.00	0.23	N111734	96	1.69%	496	1225	11.8	600
54.00	82.30	28.30	BRBS	magnetic breccia basalt										
			-		54.00	55.66	1.66	N111735	99	0.02%	31	84	<0.2	<5
					55.66	57.45	1.79	N111736	84	83	31	82	<0.2	
					57.45	59.74	2.29	N111737	96	76	29	72	<0.2	
					59.74	61.57	3.35	N111738	56	88	25	72	<0.2	
					61.57	63.09	1.52	N111739	75	71	25	72	<0.2	
					63.09	64.62	1.53	N111740	91	77	27	72	<0.2	
				EOH										
											-			
											+			
									+					
											+			

SYNOP	TIC LO	G		Hole:	IC96-31		Property:	Ice			Section:	11300N				Page 1	of 2
FINLAY	SON P	ROJEC	т			-		, i . , i						Depth	Azimuth	Dip	Method
EXPATRIA	ATE RESC	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>r</i> :	A. Burgert			0.00	308°	-49°	brunton
				376736	6862805	1317	61.57		Drilling Da	ates:	Oct. 16 - 18	8, 1996	anna ann ann ann ann ann ann ann ann an	61.57		-51°	acid
F armer			Linit		Commonte			From	То	Interval	Sample	REC	Cu	Co	Zn	ρΑ	Αυ
(m)	(m)	(m)	Unit		Comments			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing													
								1.83	6.90	5.07	N111741	6	590	16	232	5.8	
1.83	4.57	2.74	BCDH	rounded ru	bbie												
4.57	6.71	2.14	LCDH	no recovery	1												
6.71	7.01	0.30	BCDH	redrilled rul	oble												
				- LI, HE on	fractures			6.90	7.01	0.11	N111742	91	68	1	28	6.0	
7.01	28.04	21.03	PHBSm	massive po	rphyrytic bas	salt										L	
				- LI, HE on	fractures			7.01	9.75	2.74	N111743	55	1405	37	572	<0.2	
								9.75	12.04	2.29	N111744	100	1470	52	756	<0.2	
								12.04	14.33	2.29	N111745	93	1925	38	316	<0.2	
								14.33	17.37	3.04	N111746	87	136	26	70	<0.2	ļ
								17.37	19.81	2.44	N111747	99	84	29	64	<0.2	ļ
								19.81	21.64	1.83	N111748	96	90	27	62	<0.2	ļ
								21.64	24.08	2.44	N111749	88	55	27	66	<0.2	
							·	24.08	25.76	1.68	N111750	97	111	30	112	<0.2	
								25.76	28.04	2.28	N111751	97.	203	33	132	<0.2	
28.04	29.56	1.52	BRBS	magnetic b	reccia basalt												
				- LI, HE on	fractures			28.04	29.56	1.52	N111752	95	89	42	274	<0.2	
29.56	31.70	2.14	FBST	fault brecci	a + gouge												
				- strong LI	+ HE stainin	g		29.56	31.70	2.14	N111753	85	2100	87	1255	<0.2	
31.70	40.23	8.53	BRBS	magnetic b	reccia basalt												
				- LI, HE on	fractures			31.70	32.92	1.22	N111754	90	2110	67	1050	<0.2	
				- rare cupri	te on fractur	es		32.92	34.14	1.22	N111/55	97	115	33	102	<0.2	
				- rare disse	minated pyri	te on fractu	ires	34.14	35.66	1.52	N111/56	98	/5	27	/8	<0.2	
								35.66	37.19	1.53	N111/5/	100	70	29	78	<0.2	
								37.19	38.71	1.52	N111/58	100	/9	33	82	<0.2	
10.00	45 75		Non		analis have	L		38.71	40.23	1.52	111759	99	93	32	/4		
40.23	45.75	5.52	MSBS	magnetic m	assive Dasa	11		40.22	41.76	1 52	N111760	07	145	37	114	<0.2	
							<u> </u>	40.23	41.70	1.55	N111761	97	65	28	80	<0.2	
								43,28	45.75	2.47	N111762	91	72	27	70	<0.2	

AND COLORED OF							1	1		1				
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
45.75	60.05	14.30	BRBS	magnetic breccia basalt										
				- minor HE veining	45.75	47.40	1.65	N111763	94	82	42	128	<0.2	
					47.40	48.92	1.52	N111764	95	100	49	186	<0.2	
					48.92	50.75	1.83	N111765	84	83	52	352	<0.2	
					50.75	52.27	1.52	N111766	99	83	38	82	<0.2	
					52.27	53.95	1.68	N111767	90	55	36	104	<0.2	
					53.95	55.17	1.22	N111768	92	60	34	76	<0.2	
					55.17	56.39	1.22	N111769	98	80	35	80	<0.2	
					56.39	57.91	1.52	N111770	99	64	37	90	<0.2	
					57.91	60.05	2.14	N111771	71	71	38	82	<0.2	
60.05	61.57	1.52	FBST	chloritic fault breccia										
					60.05	61.57	1.52	N111772	72	86	36	72	<0.2	
				EOH										
				· · · · · · · · · · · · · · · · · · ·										
	1													

SYNOP	TIC LO	G		Hole:	IC96-32		Property:	lce		_	Section:	114001	N			Page	1 of 2
FINLAY	SON P	ROJE	CT							-			-	Depth	Azimuth	Dip	Method
EXPATRI	TE RESO	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	y:	A. Burgert		-	0.00	296°	-50°	brunton
				376762	6862920	1355	55.47		Drilling Da	ates:	Oct. 19 - 2	2, 1996		55.47		-48°	acid
From	То	Interval	Unit		Comments	anojaan soo soo soo soo soo soo	CHARGE CONTRACTOR OF CONTRACTOR	From	То	Interval	Sample	REC	Cu	Со	Zn	Ag	Au
(m)	(m)	(m)						(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing													
1.83	17.37	15.54	MSBS	weathered	chloritic basa	alt		_		ļ							
	, ,			- LI + HE o	n fractures			1.83	3.66	1.83	N111773	97	89	42	96	<0.2	
				- cuprite on	fractures	· · "		3.66	5.49	1.83	N111774	98	82	42	94	<0.2	
								5.49	8.23	2.74	N111775	95	70	36	78	<0.2	ļ
								8.23	9.75	1.52	N111776	100	70	32	78	<0.2	ļ
								9.75	12.80	3.05	N111777	48	0.01%	32	94	<0.2	<5
								12.80	14.33	1.53	N111778	189	0.01%	30	86	<0.2	<5
								14.33	15.85	1.52	N111779	71	0.01%	32	96	<0.2	<5
47.07	24.00	7.00						15.85	17.37	1.52	N111780	100	0.01%	34	94	<0.2	<5
17.37	24.99	7.62	MSBS		ssive dasait	•		47.07	40.00	4.50	1444704						
					ures			17.37	18.90	1.53	N111781	98	/1	34	96	<0.2	
								10.90	19.90	1.00	N111782	98	69	40	104	<0.2	
								21 40	21.49	1.03	N111703	90	66	4/	110	<0.2	
								21.43	23.47	1.50	N111785	100	83	30	90	<0.2	
24.99	27.30	2.31	BRBS	chloritic bre	ccia basalt			20.41	24.00	1.02	11111100	100				-0.2	
				- HE + cupr	ite on fractur	es		24.99	27.30	2.31	N111786	99	228	43	98	<0.2	
27.30	30.10	2.80	MSBS	chloritic ma	ssive basalt												
				- HE + cupr	ite on fractur	es		27.30	28.70	1.40	N111787	93	0.02%	31	94	<0.2	<5
								28.70	30.10	1.40	N111788	95	0.02%	46	686	<0.2	<5
30.10	30.50	0.40	HEMS	massive he	matite												
				- cuprite on	fractures			30.10	30.50	0.40	N111789	95	0.45%	89	546	3.8	365
30.50	40.23	9.73	BRBS	chloritic bre	ccia basalt												
								30.50	32.61	2.11	N111790	98	261	38	124	<0.2	
								32.61	35.66	3.05	N111791	94	80	33	88	<0.2	
							····	35.66	37.95	2.29	N111792	94	103	36	80	<0.2	
								37.95	40.23	2.28	N111793	85	89	35	80	<0.2	
40.23	41.76	1.53	FBST	chloritic faul	t breccia												
								40.23	41.76	1.53	N111794	89	85	36	74	<0.2	
41.76	55.47	13.71	BRBS	chloritic bre	ccia basalt						1						

							100111100000.0000					10000000000000000000000000000000000000	1001000	
From	То	Interval	Unit	Comments	From	То	Interval	Sample	REC	Cu	Co	Zn	Ag	Au
(m)	(m)	(m)			(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
		1		- HE on fractures	41.76	44.00	2.24	N111795	88	105	35	80	<0.2	
					44.00	46.33	2.33	N111796	94	90	30	68	<0.2	
					46.33	49.38	3.05	N111797	92	66	29	70	<0.2	
					49.38	52 43	3.05	N111798	94	72	28	68	<0.2	
					52 43	53 95	1 52	N111799	94	54	25	68	<0.2	
					53.95	55 47	1.52	N111800	97	78	31	74	1.0	
				EOH										

SYNOF	TIC LC	G		Hole:	IC96-33		Property:	lce			Section:	11300N				Page 1	of 1
FINLA	SON P	ROJE	СТ			-				-			•	Depth	Azimuth	Dip	Method
EXPATRI	ATE RES	OURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	<i>I</i> :	A. Burgert			0.00	-310°	-50°	brunton
				376700	6862832	1335	56.08		Drilling Da	ites:	Oct. 23 - 2	5, 1996		56.08		-50°	acid
Erom	То	Interval	Unit		Commente			From	То	Interval	Sample	PEC	Cu	C 0	70	۸a	Δ
(m)	(m)	(m)			Comments			(m)	(m)	(m)	No.	8	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)
0.00	1.83	1.83	CSDH	casing													
								1.83	3.66	1.83	N111801	81	72	25	78	<0.2	
1.83	22.50	20.67	MSBS	chloritic ma	ssive basalt												
				- HE + LI oi	n fractures			3.66	5.18	1.52	N111802	91	71	25	76	0.2	
				- rare chalc	ocite			5,18	7.62	2.44	N111803	72	77	24	78	<0.2	
								7.62	8.53	0.91	N111804	98	69	24	78	<0.2	
								8.53	10.97	2.44	N111805	94	70	23	74	<0.2	
								10.97	13.26	2.29	N111806	72	69	24	94	<0.2	
								13.26	14.78	1.52	N111807	86	57	26	90	<0.2	
ļ								14.78	15.85	1.07	N111808	83	120	29	148	<0.2	
								15.85	16.50	0.65	N111809	69	2230	75	960	<0.2	
								16.50	17.37	0.87	N111810	80	480	37	298	<0.2	
								17.37	18.90	1.53	N111811	98	132	29	126	<0.2	
								18.90	20.42	1.52	N111812	99	81	28	124	<0.2	
								20.42	22.50	2.08	N111813	90	205	37	280	<0.2	
22.50	22.60	11 10	DURSm	ablaritia por			<u> </u>	22.50	24.99	2.49	N111814	100	67	24	64	<0.2	
22.30	33.00	11.10	FIDSII		fractures			24.99	26 52	1 53	N111815	98	140	30	172	<0.2	
					111000103			26.52	28.04	1.50	N111816	99	93	26	74	<0.2	
								28.04	29.57	1.53	N111817	98	108	30	240	<0.2	
								29.57	30.78	1.21	N111818	91	77	22	50	0.4	
33.60	50.80	17.20	BRBS	magnetic br	eccia basalt												
				- HE + Ll or	n fractures												
50.80	56.08	5.28	FBST	chloritic fau	lt breccia + g	ouge											
				EOH													
																I	

SYNOP	TIC LO	G		Hole:	IC96-34		Property:	lce			Section:	11300N				Page 1	l of 2
FINLAY	SON P	ROJE	СТ			-				-				Depth	Azimuth	Dip	Method
EXPATRI/	ATE RESO	DURCES	LTD.	Easting:	Northing:	Elevation:	Depth:		Logged by	y:	A. Burgert		_	0.00	305°	-50°	brunton
60060 5060 Lat. 6056	o to da l'Adda da data		*****	376862	6862718	1285	114.91		Drilling Da	ates:	Oct. 23 - 2	6, 1996	Reisenande	114.91		-48°	acid
From	То	Interval	Unit		Commente			Erom	то	Interval	Sample	PEC	<u></u>	6	70	Δa	Δ.,
(m)	(m)	(m)	Unit		Comments			(m)	(m)	(m)	No.	%	(ppm)	(mag)	(ppm)	ny (ppm)	(daa)
0.00	1.83	1.83	CSDH	casing											,		~~~~~
1.83	8.53	6.70	MSBS	chloritic ma	assive basalt												
1.00	0.00	0.70	11020	-LI +HE on	fractures			1.83	4.27	2.44	N111851	98	85	37	88	<0.2	
								4.27	5.79	1.52	N111852	96	76	35	88	<0.2	
			· · · ·				·	5.79	8.53	2.74	N111853	97	86	39	92	<0.2	
8.53	16.15	7.62	MSBS	hematitic m	nassive basa	lt				1							
				-LI on fract	ures			8.53	13.41	4.88	N111854	28	24	12	24	<0.2	
				-massive H	E patches			13.41	16.15	2.74	N111855	79	77	26	66	<0.2	
16.15	72.10	55. 9 5	MSBS	chloritic ma	ssive basalt												
				-minor diss	eminated py	rite		63.70	65.23	1.53	N111856	98	78	32	76	<0.2	
								65.23	66.75	1.52	N111857	99	79	33	86	<0.2	
					· · · · · · · · · · · · · · · · · · ·			66.75	68.25	1.50	N111858	100	84	32	82	<0.2	
								68.25	69.80	1.55	N111859	95	82	32	92	<0.2	
								69.80	72.10	2.30	N111860	56	74	36	106	<0.2	
72.10	92.66	20.56	PYMS	massive su	lphides												
				-massive py	vrite, bornite,	, chalcopyri	te with	72.10	73.50	1.40	N111861	89	1.23%	0.08%	388	1.5	240
				sphalerite	and chalcoc	ite		73.50	74.70	1.20	N111862	100	4.97%	0.07%	514	4.2	190
								74.70	76.10	1.40	N111863	88	12.40%	0.15%	470	62.0	480
								76.10	77.42	1.32	N111864	100	8.71%	0.13%	538	52.4	650
								77.42	78.94	1.52	N111865	95	5.06%	0.07%	2350	31.0	520
				 				78.94	80.47	1.53	N111866	96	9.17%	0.02%	756	49.6	400
								80.47	81.99	1.52	N111867	98	3.45%	0.03%	430	21.0	540
						· · · · · · · · · · · · · · · · · · ·		81.99	83.52	1.53	N111868	98	3.84%	0.07%	392	38.0	1000
						· · · · · · · · · ·		83.52	85.04	1.52	N111869	99	3.52%	0.05%	418	27.1	670
								85.04	86.56	1.52	N111870	100	3.67%	0.03%	1450	21.0	660
								86.56	88.09	1.53	N1118/1	99	4.4/%	0.03%	6250	20.1	650
								80.09	89.61	1.52	N1118/2	100	3.03%	0.02%	9870	19.4	5/0
								09.01	91.14	1.53	N111073	9/	3.00%	0.03%	3690	23.1	200
92.65	114 01	22.25	BDBC	magnetic br	reccia hasalt			91.14	32,00	1.52	1111074	30	0.00%	0.00%	914	33.6	000
52.00	114.31		0100	magnetic Di	Socia Daodil			92.66	94.18	1.52	N111875	99	2270	o	244	<0.2	

From	То	Interval	Linit	Commente	From	То	Interval	Samole	PEC	Cu	<u> </u>	Zn	Δa	Δι
(m)	(m)	(m)	Orm	Commenta	(m)	(m)	(m)	No.	%	(ppm)	(ppm)	(ppm)	(maa)	(ppb)
					94.18	95.71	1.53	N111876	- 99	3810	72	442	1.6	
					95.71	97.23	1.52	N111877	97	340	42	232	<0.2	
					97.23	98.76	1.53	N111878	98	139	26	120	<0.2	
					98.76	100.89	2.13	N111879	85	149	30	156	<0.2	
				ЕОН				h						
														ļ
														ļ
														<u> </u>
														ļ
				· · · · · · · · · · · · · · · · · · ·										Í
														<u> </u>
							· · · ·							<u> </u>
					····									
									-					
			·											

APPENDIX V

CERTIFICATES OF ANALYSIS DRILL CORE

ł.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

ro: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATION:_

Invoice No. : 19714388 P.O. Number Account : MPO

Project : ICE IC96-34 Comments:

					NALYSIS	A9714388			
SAMPLE	PREP CODE	Au g/t	Pt g/t	Pđ g/t	Rh g/t	Se ppm	Sn ppm	In ppm	
N111863 N111864 N111873	244 287 244 287 244 287	0.45 0.63 0.63	< 0.21 < 0.21 < 0.21	< 0.21 < 0.21 < 0.21	< 0.09 < 0.09 < 0.09	18.0 10.0 22.0	10 10 15	< 10 < 10 < 10	
									the thereft.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX; 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

.

Page .per : 1 Total Pages : 1 Certificate Date: 30-DE Invoice No. : 196444 P.O. Number : MPO Account MPO

Project : Comments: ICE IC96-34

	r		 		AIE OF A	VIVAL 1515	A91	544436	
SAMPLE	PREP CODE	Spec Gr S.G.							
N111856 N111857 N111858 N111858 N111859 N111860	244 244 244 244 244	2.95 2.95 2.93 2.94 2.90							
N111875 N111876 N111877 N111878 N111879	244 244 244 244 244 244	2.89 2.86 2.76 2.88 2.88 2.88							
									× 1

Analytical Chemists * Geochemists **Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page per :1 Total ruges :1 Certificate Date: 19-NOV-96 Invoice No. : 19639360 P.O. Number • :MPO Account

Project : ICE IC96-34 Comments:

r

					CERTIFICATE OF ANALYSIS A9639360	
SAMPLE	PREP CODE	Ag g/t	Co %	Spec Gr S.G.		
N111861 N111862 N111863 N111864 N111865	244 244 244 244 244	1.5 4.2 62.0 52.4 31.0	0.079 0.074 0.145 0.133 0.071	3.61 3.61 4.37 4.01 3.97		
N111866 N111867 N111868 N111869 N111870	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	49.6 21.0 38.0 27.1 21.0	0.018 0.034 0.066 0.052 0.029	3.97 3.96 4.07 3.51 4.06		
N111871 N111872 N111873 N111874	244 244 244 244	20.1 19.4 23.1 35.6	0.027 0.024 0.027 0.060	4.10 4.04 4.03 4.07		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

6: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page | er :1-A Total Payes :1 Certificate Date: 11-NOV-96 Invoice No. : 19638668 P.O. Number Account MPO

Project : Comments: ICE IC96-32

	<u></u>										CE	RTIFI	CATE	OF /	ANALY	'SIS	/	49638	668		
SAMPLE	PR CO	EP DE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
N111777 N111778 N111779 N111780 N111787	208 208 208 208 208 208	294 294 294 294 294 294	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5<</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.84 3.08 3.32 3.20 3.19	< 2 < 2 < 2 < 2 < 2 < 2 10	210 830 370 540 870	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 2 < 2 < 2	5.18 5.41 3.38 3.17 3.32	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	32 30 32 34 31	59 36 44 45 50	55 54 62 62 77	7.58 6.79 7.07 6.81 6.95	10 10 10 10 10	< 1 6 < 1 < 1 < 1 < 1	0.05 0.05 0.07 0.04 0.11	< 10 < 10 < 10 < 10 < 10 < 10	2.19 2.13 2.39 2.44 2.48	1650 1470 1020 1185 1065
N111788 N111789	208	294	< 5 365	< 0.2 3.8	2.83 2.24	< 2 14	140 90	< 0.5 < 0.5	< 2 14	2.46 1.08	0.5 < 0.5	46 89	41 99	76 4330	7.75	10 10	< 1 3	0.22 0.03	< 10 < 10	2.26 1.32	1090 735
	L							· · · · · · · · · · · · · · · · · · ·									99	int	Bre	hle	\sim

 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

_ _ _

Page er : 1-B Total ges : 1 Certificate Date: 11-NOV-96 Invoice No. : 19638668 P.O. Number : Account : MPO

- - - - -

Project : ICE IC96-32 Comments:

Г

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

	-													ÇE	RTIF	CATE		NAL	/SIS		A9638668	
SAMPLE	PR CO	ep de	Mo ppm		Na %	ן ני נ	Ni pm	P ppm	P) ppi	2	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Zn ppm	Cu %		
N111777 N111778 N111779 N111780 N111787	208 208 208 208 208 208	294 294 294 294 294	< 1 < 1 < 1 < 1 < 1	< 0 < 0 < 0 < 0 < 0	.01 .01 .01 .01 .01		32 25 28 26 27	540 620 670 630 610	<		< 2 < 2 4 < 2 < 2	25 22 25 21 22	49 45 71 70 73	0.23 0.39 0.67 0.61 0.72	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 10 10 10	270 254 265 226 260	< 10 < 10 10 10 < 10	94 86 96 94 94	0.01 0.01 0.01 0.01 0.02		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
N111788 N111789	208	294	< 1 4	< 0	.01		80	680 1650	4		< 2 < 2	23 2	19 73	0.77	< 10 < 10 < 10	10 < 10	259 242	< 10 < 10	686 546	0.02		

CERTIFICATION:

tart Bichler

D: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED Page Page er :1-A Total Hages :1 Certificate Date: 07-NOV-96 er :1-A Invoice No. : 19638667 P.O. Number :MPO Account

Project : ICE IC96-32 Comments:

Chemex Labs Ltd.

North Vancouver

V7J 2C1

Analytical Chemists * Geochemists * Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave.,

British Columbia, Canada

											CE	RTIFI	CATE	E OF A	NAL	YSIS		A9638	8667		
SAMPLE	PR CO	ep De	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
N111773	205	294	< 0.2	3.86	< 2	540	< 0.5	2	2.39	< 0.5	42	61	89	7.73	10	< 1	0.05	< 10	2.16	1035	< 1
N111774	205	294	< 0.2	4.46	< 2	600	< 0.5	6	3.29	< 0.5	42	103	82	7.90	10	< 1	0.04	< 10	2.37	1245	< 1
N111775	205	294	< 0.2	4.07	< 2	640	< 0.5	< 2	4.56	< 0.5	36	98	70	6.78	10	< 1	0.08	< 10	2.45	1675	< 1
N111776	205	294	< 0.2	3.60	< 2	360	< 0.5	2	3.79	< 0.5	32	77	70	6.15	10	< 1	0.07	< 10	2.12	1045	< 1
N111781	205	294	< 0.2	3.44	< 2	1030	< 0.5	< 2	3.34	< 0.5	34	40	71	7.41	10	< 1	0.09	< 10	2.57	1190	< 1
N111782	205	294	< 0.2	3.35	< 2	150	< 0.5	2	2.82	< 0.5	40	38	69	7.99	10	< 1	0.13	< 10	2.14	1170	< 1
N111783	205	294	< 0.2	3.81	< 2	230	< 0.5	2	4.61	< 0.5	47	54	64	8.79	10	< 1	0.11	< 10	2.13	1660	< 1
N111784	205	294	< 0.2	2.64	< 2	110	< 0.5	< 2	1.87	< 0.5	30	16	66	6.17	10	< 1	0.15	< 10	1.65	840	< 1
N111785	205	294	< 0.2	2.76	< 2	90	< 0.5	< 2	2.22	0.5	33	22	83	5.76	10	< 1	0.07	< 10	2.23	900	< 1
N111786	205	294	< 0.2	4.44	< 2	2230	< 0.5	< 2	2.33	0.5	43	169	228	7.24	10	1	0.07	< 10	3.87	1335	< 1
N111790	205	294	< 0.2	3.42	2	250	< 0.5	< 2	2.46	< 0.5	38	64	261	6.59	10	2	0.01	< 10	3.21	1195	< 1
N111791	205	294	< 0.2	3.69	< 2	140	< 0.5	< 2	2.89	< 0.5	33	66	80	6.37	10	< 1	0.03	< 10	2.98	1015	< 1
N111792	205	294	< 0.2	3.59	< 2	180	< 0.5	2	3.43	< 0.5	36	108	103	5.33	10	< 1	0.06	< 10	3.55	1140	< 1
N111793	205	294	< 0.2	3.66	4	330	< 0.5	< 2	2.26	< 0.5	35	94	89	5.80	10	< 1	0.09	< 10	3.86	1035	< 1
N111794	205	294	< 0.2	3.53	< 2	240	< 0.5	< 2	2.69	< 0.5	36	102	85	5.48	10	< 1	0.05	< 10	3.43	980	< 1
N111795	205	294	< 0.2	3.62	< 2	120	< 0.5	2	2.75	< 0.5	35	113	105	5.66	10	< 1	0.04	< 10	3.50	980	< 1
N111796	205	294	< 0.2	3.48	< 2	130	< 0.5	2	2.94	< 0.5	30	88	90	4.98	10	< 1	0.07	< 10	3.05	860	< 1
N111797	205	294	< 0.2	3.24	< 2	60	< 0.5	< 2	3.23	< 0.5	29	62	66	5.36	10	< 1	0.05	< 10	2.73	920	< 1
N111798	205	294	< 0.2	3.20	2	100	< 0.5	2	3.31	0.5	28	63	72	5.31	10	1	0.08	< 10	2.37	900	< 1
N111799	205	294	< 0.2	2.91	< 2	50	< 0.5	2	4.10	< 0.5	25	69	54	4.72	10	< 1	0.04	< 10	2.58	980	< 1
N111800	205	294	< 0.2	4.01	< 2	50	< 0.5	2	3.69	< 0.5	31	71	78	5.65	10	4	0.01	< 10	2.83	940	< 1

CERTIFICATION: Hart Buchler

1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

C

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED
 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Page per :1-B Total ger :1 Certificate Date: 07-NOV-96 Invoice No. :19638667 P.O. Number : Account :MPO

Project : ICE IC96-32 Comments:

											CE	RTIF	CATE	OF A	NALYSIS	A9638667
SAMPLE	PR CO	ep De	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V mqq	W ppm	Zn ppm	
N111773 N111774 N111775 N111776 N111781	205 205 205 205 205 205	294 294 294 294 294 294	0.01 0.01 0.01 0.01 < 0.01	40 47 43 40 30	580 530 460 460 620	6 < 2 < 2 < 2 < 2	< 2 < 2 < 2 8 < 2	31 34 26 23 24	28 34 40 29 54	0.15 0.11 0.14 0.18 0.41	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 10	292 278 244 225 256	10 < 10 < 10 < 10 < 10 < 10	96 94 78 78 96	
N111782 N111783 N111784 N111785 N111786	205 205 205 205 205	294 294 294 294 294	< 0.01 0.01 < 0.01 < 0.01 0.02	31 46 26 27 60	670 660 660 590 300	4 2 < 2 < 2 < 2 < 2	< 2 8 < 2 8 < 2	21 32 9 11 26	42 59 40 32 33	0.35 0.08 0.54 0.60 0.31	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 10 10 < 10	252 299 181 182 213	< 10 < 10 < 10 < 10 < 10 < 10	104 110 90 84 98	
N111790 N111791 N111792 N111793 N111794	205 205 205 205 205 205	294 294 294 294 294	0.01 0.01 0.01 < 0.01 0.02	51 42 50 49 52	400 400 310 280 280	2 < 2 < 2 < 2 < 2 4	< 2 < 2 < 2 < 2 < 2 < 2	18 15 18 18 16	35 24 26 16 14	0.48 0.47 0.44 0.38 0.36	< 10 < 10 < 10 < 10 < 10 < 10	10 < 10 10 < 10 < 10	192 195 151 148 155	< 10 < 10 < 10 < 10 < 10 < 10	124 88 80 80 74	
N111795 N111796 N111797 N111798 N111799	205 205 205 205 205	294 294 294 294 294	0.01 0.01 0.01 0.01 < 0.01	48 42 36 34 31	290 240 350 360 310	< 2 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	15 13 15 15 16	17 15 14 16 30	0.38 0.33 0.35 0.38 0.36	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	150 142 170 166 160	< 10 < 10 < 10 < 10 < 10 < 10	80 68 70 68 68	
N111800	205	294	0.01	36	360	2	< 2	16	12	0.40	< 10	< 10	197	< 10	74	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. o: C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page .er :1-A Total Huges :1 Certificate Date: 07-NOV-96 Invoice No. : 19638666 P.O. Number : Account MPO

Project : ICE IC96-31 Comments:

	·										CE	RTIF	CATE	OF /	NALY	SIS		49638	666		
SAMPLE	PR CO	ep De	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
N111741	205	294	5.8	1.83	6	210	< 0.5	2	0.60	0.5	16	207	590	3.61	< 10	< 1	0.04	< 10	0.96	295	< 1
N111742	205	294	6.0	0.17	10	280	< 0.5	< 2	0.12	< 0.5	1	39	68	0.38	< 10	1	0.01	< 10	0.12	40	5
N111743	205	294	< 0.2	3.67	< 2	170	< 0.5	< 2	1.62	4.0	37	152	1405	5.82	< 10	2	0.09	< 10	2.72	805	< 1
N111744	205	294	< 0.2	3.66	2	140	< 0.5	< 2	2.79	4.0	52	108	1470	4.82	< 10	< 1	0.09	< 10	2.25	1505	< 1
N111745	205	294	< 0.2	4.82	< 2	120	< 0.5	2	4.22	1.5	38	114	1925	4.95	10	< 1	0.08	< 10	2.59	1095	1
N111746	205	294	< 0.2	4.07	< 2	120	< 0.5	< 2	4.63	< 0.5	26	111	136	3.91	10	< 1	0.06	< 10	2.18	930	< 1
N111747	205	294	< 0.2	4.34	2	390	< 0.5	2	5.23	< 0.5	29	141	84	4.30	10	< 1	0.06	< 10	2.53	1095	< 1
N111/48	205	294		4.15		100	< 0.5	< 2	4.52	< 0.5	27	124	90	4.00	10	< 1	0.05	< 10	2.19	990	< 1
N111749	205	294	< 0.2	4.39	< <u>1</u>	90	< 0.5	< 2	3.55	0.5	30	93 64	111	4.47	< 10	< 1	0.03	< 10	2.25	1040	< 1
N111751	205	204	< 0.2	2 01	< 2	160	< 0.5	1 2	3 21	0.5	22	70	203	3 00	10	< 1	0.07	< 10	2 12	905	< 1
N111752	205	294		2 70	2 2	270	< 0.5	< 2	3.21	0.5	42	77	203	5 91	10	$\frac{1}{\sqrt{1}}$	0.07	< 10	2 31	1175	~ 1
N111753	205	294	< 0.2	3.73	1	530	< 0.5	2	1.35	2.0	87	152	2100	7.54	10	< 1	0.07	< 10	3.07	1085	3
N111754	205	294	< 0.2	3.56	< 2	140	< 0.5	6	1.85	2.0	67	97	2110	8.03	10	< 1	0.04	< 10	2.93	1095	< 1
N111755	205	294	< 0.2	3.04	< 2	130	< 0.5	< 2	3.11	< 0.5	33	87	115	6.03	10	< 1	0.04	< 10	3.24	1410	< 1
N111756	205	294	< 0.2	3.00	< 2	80	< 0.5	< 2	5.07	< 0.5	27	42	75	4.92	10	< 1	0.04	< 10	2.33	1280	< 1
N111757	205	294	< 0.2	3.19	< 2	140	< 0.5	2	2.02	< 0.5	29	60	77	5.49	10	< 1	0.04	< 10	2.89	1080	< 1
N111758	205	294	< 0.2	3.23	2	80	< 0.5	< 2	2.08	< 0.5	33	80	79	5.50	10	< 1	0.03	< 10	3.18	925	< 1
N111759	205	294	< 0.2	2.84	< 2	60	< 0.5	2	2.12	< 0.5	32	97	93	4.74	10	< 1	0.03	< 10	2.79	825	< 1
N111760	205	294	< 0.2	3.74	< 2	90	< 0.5	4	3.54	< 0.5	37	83	145	6.03	10	< 1	0.07	< 10	2.68	1085	< 1
N111761	205	294	< 0.2	2.77	< 2	100	< 0.5	2	3.44	< 0.5	28	47	65	5.67	10	< 1	0.10	< 10	1.71	925	< 1
N111762	205	294	< 0.2	3.06	12	80	< 0.5	2	2.86	< 0.5	27	42	72	5.30	10	< 1	0.06	< 10	1.81	810	< 1
N111763	205	294	< 0.2	3.39	< 2	50	< 0.5	< 2	4.97	< 0.5	42	129	82	6.72	10	< 1	0.07	< 10	3.43	1545	< 1
N111764	205	294	< 0.2	3.76	< 2	120	< 0.5	4	1.85	< 0.5	49	96	100	6.81	10	< 1	0.09	< 10	3.70	1215	1
N111765	205	294	< 0.2	2.84	< 2	1160	< 0.5	2	5.56	0.5	52	136	83	5.49	10	< 1	0.14	< 10	2.86	1430	< 1
N111766	205	294	< 0.2	3.46	< 2	90	< 0.5	2	3.36	< 0.5	38	125	83	6.09	10	< 1	0.12	< 10	3.39	1095	< 1
N111767	205	294	< 0.2	3.87	6	120	< 0.5	< 2	2.93	< 0.5	36	129	55	6.80	10	< 1	0.21	< 10	3.26	1150	< 1
N111768	205	294	< 0.2	3.01	< 2	290	< 0.5	2	3.69	< 0.5	34	117	60	5.97	10	< 1	0.17	< 10	2.76	1410	< 1
N111769	205	294	< 0.2	2.79	< 2	190	< 0.5	. 2	2.32	< 0.5	35	126	80	6.24	10	< 1	0.27	< 10	2.47	1230	< 1
NIII//U	205	294	< 0.2	3.49	< 1	250	< 0.5	< 4	3.55	< 0.5	37	136	64	7.20	10	< 1	0.16	< 10	2.69	1235	< 1
N111771 N111772	205 205	294 294	< 0.2 < 0.2	3.25 3.90	< 2 < 2	500 1190	< 0.5 < 0.5	< 2 < 2	3.86 4.15	< 0.5 < 0.5	38 36	124 161	71 86	6.46 5.92	10 10	< 1 < 1	0.16 0.09	< 10 < 10	2.89 4.03	1265 1200	< 1 < 1
																	1 1	J	R.	20-]
														C	CERTIFIC	ATION:	- q	zr N	12	ul	~

C

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 ic: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Page er :1-B Total Houses :1 Certificate Date: 07-NOV-96 Invoice No. :19638666 P.O. Number : Account :MPO

A9638666

Project : ICE IC96-31 Comments:

. . . .

	PR	EP	Na	Ni	P	Pb	Sb	Sc	Sr	Ti	T1	υ	v	W	Zn	
SAMPLE	CO	DE	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	
		<u>,</u>		·····												
N111741	205	294	0.03	24	210	10	< 2	6	11	0.13	< 10	< 10	72	< 10	232	
N111742	205	294	0.01	3	20	12	< 2	1	3	0.03	< 10	< 10	9	< 10	28	
N111743	205	294	0.04	64	220	< 2	< 2	13	25	0.22	< 10	< 10	115	< 10	572	
N111744	205	294	0.03	63	230	2	< 2	9	13	0.24	< 10	< 10	89	< 10	756	
NIII/45	405	494	0.03	07	220	4	< 4	,	15	0.44	< 10	< 10	103	× 10	310	
N111746	205	294	0.04	59	270	< 2	< 2	9	14	0.24	< 10	< 10	106	< 10	70	
N111747	205	294	0.04	63	280	2	< 2	13	18	0.24	< 10	< 10	122	< 10	64	
N111748	205	294	0.05	59	260	< 2	< 2	12	16	0.22	< 10	< 10	120	< 10	62	
N111749	205	294	0.03	58	250	< 2	2	11	10	0.26	< 10	< 10	118	< 10	66	
N111750	205	294	0.03	64	260	< 2	< 2	10	9	0,29	< 10	< 10	117	< 10	112	
N111751	205	294	0.04	60	210	< 2	< 2	7	11	0.24	< 10	< 10	100	< 10	132	
N111752	205	294	0.02	41	350	4	< 2	22	25	0.30	< 10	< 10	203	< 10	274	
N111753	205	294	0.02	65	320	< 2	< 2	29	19	0.08	< 10	< 10	201	< 10	1255	
N111754	205	294	0.02	50	360	4	< 2	26	9	0.38	< 10	10	226	< 10	1050	
N111755	205	294	0.02	40	370	< 2	8	18	25	0.40	< 10	< 10	164	< 10	102	
N111756	205	204	0.03	34	450	4	< 2	8	19	0.34	< 10	< 10	132	< 10	78	······································
N111757	205	294	0.03	22	370	1	Ì ĝ	10	15	0.40	< 10	< 10	164	< 10	78	
N111758	205	294	0.04	38	360	2	< 2	14	11	0.43	< 10	< 10	193	< 10	82	
N111759	205	294	0.04	39	300	< 2	< 2	10	36	0.36	< 10	< 10	130	< 10	74	
N111760	205	294	0.03	40	350	< 2	< 2	17	12	0.42	< 10	< 10	201	< 10	114	
N111761	205	294	0.03	31	350	2	2	11	10	0.34	< 10	< 10	155	< 10	80	
N111762	205	294	0.03	32	340	2	< 2		- 8	0.34	< 10	< 10	149	< 10	70	
N111763	205	294	0.01	48	340	6	6	30	25	0.27	< 10	< 10	232	< 10	128	
N111764	205	294	0.01	47	300	6	< 2	23	13	0.39	< 10	< 10	184	< 10	186	
N111765	205	294	0.03	48	240	< 2	< 2	23	43	0.03	< 10	< 10	167	< 10	352	
N111766	205	294	0.02	47	310	2	< 2	26	16	0.37	< 10	< 10	195	< 10	82	
N111767	205	294	0.01	48	390	6	< 2	30	15	0.18	< 10	< 10	219	< 10	104	
N111768	205	294	0.02	46	350	< 2	< 2	24	20	0.10	< 10	< 10	187	< 10	76	
N111769	205	294	0.03	47	410	< 2	< 2	26	14	0.04	< 10	< 10	203	< 10	80	
N111770	205	294	0.01	47	450	< 2	< 2	35	21	0.29	< 10	< 10	262	< 10	90	
N111771	205	294	0.01	46	380	< 2	< 2	31	23	0.30	< 10	< 10	229	< 10	82	
N111772	205	294	0.02	50	320	6	4	26	32	0.32	< 10	< 10	205	< 10	72	

CERTIFICATION:

tart Bichler

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATION:

Page Jer : 1-A Total Payes : 1 Certificate Date: 08-NOV-96 Invoice No. : 19638664 P.O. Number MPO Account

Project : ICE Comments:

.---

ſ

r											CE	RTIFI	CATE	E OF A	NAL	(SIS		A9638	8664		
SAMPLE	PR CC	IEP DE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
N110411 N110412	205	226	< 0.2 < 0.2	2.53	< 2 < 2	10 100	< 0.5 < 0.5	< 2 < 2	1.46	< 0.5 < 0.5	15 23	48 27	67 54	4.41	10 10	< 1 < 1	< 0.01 0.05	< 10 < 10	2.04	720 670	< 1 < 1
																	-14	ant was	Buc	fle	

SAMPLE

N110411 N110412

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave., British Columbia, Canada_ V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er : 1-B Total Huges : 1 Certificate Date: 08-NOV-96 Invoice No. :19638664 P.O. Number MPO Account

Project :	ICE
Comments:	

~~~

|            |            |                |           |            |            |            |           |           |              | CE           | RTIFI        | CATE       | OF A         | NALYSIS     | S A96 | 38664 |         | _ |
|------------|------------|----------------|-----------|------------|------------|------------|-----------|-----------|--------------|--------------|--------------|------------|--------------|-------------|-------|-------|---------|---|
| PR<br>CO   | ep<br>De   | Na<br>%        | Ni<br>ppm | P<br>ppm   | Pb<br>ppm  | Sb<br>ppm  | Sc<br>ppm | Sr<br>ppm | Ti<br>%      | T1<br>ppm    | U<br>ppm     | V<br>ppm   | W<br>mqq     | Zn<br>ppm   |       |       |         |   |
| 205<br>205 | 226<br>226 | 0.02<br>< 0.01 | 20<br>21  | 570<br>670 | < 2<br>< 2 | < 2<br>< 2 | 3<br>6    | 19<br>23  | 0.47<br>0.60 | < 10<br>< 10 | < 10<br>< 10 | 137<br>214 | < 10<br>< 10 | 84<br>94    |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
| 1          |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       |         |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            |              |             |       |       | <u></u> |   |
|            |            |                |           |            |            |            |           |           |              |              |              |            | с            | ERTIFICATIO | N: da | it Ba | chler   |   |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver V7J 2C1

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er : 1-A Total Payes : 1 Certificate Date: 08-NOV-96 Invoice No. :19638663 P.O. Number : MPO Account

Project : **ICE IC96-33** Comments:

\_

Г

|                                                          | -                                                              |                                                                                                                                                |                                      |                                                      |                                 |                                                    |                                        |                                      |                                                    | CE                         | RTIFI                      | CATE                           | OF A                                 | NAL                            | (SIS                                   | /                                      | 19638                                        | 663                                  |                                   |                                        |
|----------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|----------------------------|--------------------------------|--------------------------------------|--------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------|
| SAMPLE                                                   | PREP<br>CODE                                                   | Ag<br>ppm                                                                                                                                      | A1<br>%                              | As<br>ppm                                            | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                              | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                  | Cu<br>ppm                      | Fe<br>%                              | Ga<br>ppm                      | Hg<br>ppm                              | K<br>%                                 | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                         | Mo<br>ppm                              |
| N 111801<br>N 111802<br>N 111803<br>N 111804<br>N 111805 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 5 < 0.2<br>6 0.2<br>5 < 0.2<br>5 < 0.2<br>5 < 0.2<br>5 < 0.2                                                                                   | 3.21<br>3.40<br>2.95<br>2.99<br>2.84 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 180<br>100<br>260<br>190<br>270 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 2.73<br>2.55<br>1.91<br>2.60<br>2.66 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 25<br>25<br>24<br>24<br>23 | 24<br>19<br>20<br>21<br>17 | 72<br>71<br>77<br>69<br>70     | 5.46<br>5.65<br>5.44<br>5.51<br>5.43 | 10<br>10<br>10<br>10<br>10     | < 1<br>1<br>< 1<br>1<br>< 1            | 0.01<br>0.01<br>0.01<br>< 0.01<br>0.03 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 1.64<br>1.55<br>1.61<br>1.65<br>1.60 | 675<br>645<br>605<br>800<br>755   | < 1<br>< 1<br>< 1<br>< 1<br>< 1        |
| N 111806<br>N 111807<br>N 111808<br>N 111809<br>N 111810 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | 5 < 0.2<br>5 < 0.2<br>5 < 0.2<br>5 < 0.2<br>5 < 0.2<br>5 < 0.2                                                                                 | 2.58<br>2.51<br>2.44<br>2.91<br>2.83 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 270<br>280<br>490<br>370<br>580 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.69<br>2.43<br>2.38<br>2.15<br>2.33 | < 0.5<br>< 0.5<br>0.5<br>1.5<br>0.5                | 24<br>26<br>29<br>75<br>37 | 15<br>12<br>10<br>16<br>11 | 69<br>57<br>120<br>2230<br>480 | 6.10<br>6.00<br>6.50<br>7.95<br>7.45 | < 10<br>< 10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.04<br>0.07<br>0.07<br>< 0.01<br>0.02 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.67<br>1.50<br>1.56<br>2.05<br>1.74 | 835<br>685<br>860<br>1130<br>1010 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N 111811<br>N 111812<br>N 111813<br>N 111814<br>N 111815 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | <pre>     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2 </pre> | 2.92<br>2.84<br>2.89<br>4.31<br>4.37 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 230<br>280<br>300<br>90<br>300  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.86<br>1.96<br>2.36<br>4.15<br>4.64 | < 0.5<br>< 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5   | 29<br>28<br>37<br>24<br>30 | 12<br>10<br>30<br>99<br>86 | 132<br>81<br>205<br>67<br>140  | 6.43<br>6.49<br>6.22<br>4.53<br>4.47 | 10<br>10<br>10<br>10<br>< 10   | < 1<br>< 1<br>< 1<br>1<br>< 1          | 0.05<br>0.08<br>0.05<br>0.02<br>0.06   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.68<br>1.63<br>1.95<br>2.33<br>2.23 | 990<br>765<br>970<br>940<br>1165  | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N 111816<br>N 111817<br>N 111818                         | 205 226                                                        | < 0.2<br>< 0.2<br>0.4                                                                                                                          | 3.32<br>3.82<br>3.47                 | < 2<br>< 2<br>< 2                                    | 120<br>180<br>100               | < 0.5<br>< 0.5<br>< 0.5                            | < 2<br>< 2<br>< 2                      | 2.99<br>3.06<br>2.87                 | < 0.5<br>< 0.5<br>< 0.5                            | 26<br>30<br>22             | /7<br>113<br>134           | 93<br>108<br>77                | 4.58<br>4.41<br>3.89                 | < 10<br>< 10<br>< 10           | < 1<br>< 1<br>< 1                      | 0.09                                   | < 10<br>< 10<br>< 10                         | 2.59<br>2.47<br>2.52                 | 915<br>900<br>780                 | < 1<br>< 1<br>< 1                      |
|                                                          |                                                                |                                                                                                                                                |                                      |                                                      |                                 |                                                    |                                        |                                      |                                                    |                            |                            |                                | С                                    | ERTIFIC                        | ATION:                                 | 4                                      | tur                                          | Bi                                   | chle                              | <b>^</b>                               |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er :1-B Total Fuges :1 Certificate Date: 08-NOV-96 Invoice No. :19638663 P.O. Number : Account :MPO

Project : ICE IC96-33 Comments:

.....

|                                                                      |                                                                |                                                          |                            |                                 |                                               |                                        |                            |                            |                                      | CE                                           | RTIFI                                        | CATE                            | OF A                                         | NALYSIS                          | A9638663 |
|----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------|---------------------------------|-----------------------------------------------|----------------------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|----------------------------------|----------|
| SAMPLE                                                               | PREP<br>CODE                                                   | Na<br>%                                                  | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                                     | Sb<br>ppm                              | Sc<br>ppm                  | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>Mqq                                     | Zn<br>ppm                        |          |
| N 111801<br>N 111802<br>N 111803<br>N 111804<br>N 111805             | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | 32<br>31<br>30<br>29<br>29 | 480<br>510<br>500<br>490<br>490 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 7<br>6<br>8<br>10<br>9     | 23<br>15<br>10<br>9<br>17  | 0.44<br>0.40<br>0.39<br>0.41<br>0.42 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 163<br>164<br>163<br>169<br>162 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 78<br>76<br>78<br>78<br>78<br>74 |          |
| N 111806<br>N 111807<br>N 111808<br>N 111808<br>N 111809<br>N 111810 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 22<br>21<br>23<br>26<br>23 | 640<br>680<br>650<br>760<br>780 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 11<br>11<br>13<br>20<br>13 | 25<br>33<br>26<br>32<br>16 | 0.46<br>0.45<br>0.50<br>0.62<br>0.65 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 178<br>177<br>200<br>259<br>251 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 94<br>90<br>148<br>960<br>298    |          |
| N 111811<br>N 111812<br>N 111813<br>N 111814<br>N 111815             | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | 24<br>24<br>30<br>65<br>62 | 680<br>710<br>590<br>240<br>230 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 11<br>9<br>13<br>10<br>12  | 34<br>32<br>36<br>12<br>11 | 0.56<br>0.54<br>0.50<br>0.26<br>0.25 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 214<br>203<br>190<br>118<br>127 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 126<br>124<br>280<br>64<br>172   |          |
| 7 111816<br>7 111817<br>7 111818                                     | 205 226<br>205 226<br>205 226                                  | < 0.01<br>< 0.01<br>< 0.01                               | 64<br>61<br>61             | 250<br>240<br>200               | < 2<br>< 2<br>< 2                             | < 2<br>< 2<br>< 2                      | 10<br>11<br>9              | 12<br>9<br>9               | 0.26<br>0.24<br>0.20                 | < 10<br>< 10<br>< 10                         | < 10<br>< 10<br>< 10                         | 110<br>120<br>104               | < 10<br>< 10<br>< 10                         | 74<br>240<br>50                  |          |
|                                                                      |                                                                |                                                          |                            |                                 |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                  |          |

CERTIFICATION:\_\_\_

tart Brahler



### Chemex Labs Ltd. Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page ər :1-A Total جنوع :1 Certificate Date: 05-NOV-96 Invoice No. : 19638655 P.O. Number : Account :MPO

A9638655

Project : ICE IC96-34 Comments:

|                                                     |                                                          |                                                                                                                |                                      |                                          |                            |                                              |                                                    |                                           |                                      |                                  |                                   |                            |                                                |                                                |                                              |                                  | ten la culturation                                 |                                              |                                                                   |                         |
|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------|----------------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|----------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|-------------------------|
| SAMPLE                                              | PREP<br>CODE                                             | Au ppb<br>RUSH                                                                                                 | Ag<br>ppm                            | A1<br>%                                  | As<br>ppm                  | Ba<br>ppm                                    | Be<br>ppm                                          | Bi<br>ppm                                 | Ca<br>%                              | Cđ<br>ppm                        | Со<br>ррт                         | Cr<br>ppm                  | Cu<br>ppm                                      | Fe<br>%                                        | Ga<br>ppm                                    | Hg<br>ppm                        | K<br>%                                             | La<br>ppm                                    | Mg<br>%                                                           | Mi<br>ppi               |
| N111861<br>N111862<br>N111863<br>N111864<br>N111865 | 258 29<br>258 29<br>258 29<br>258 29<br>258 29<br>258 29 | 3 240<br>3 190<br>3 480<br>3 650<br>3 520                                                                      | 1.0<br>3.8<br>54.8<br>44.8<br>25.8   | 0.23<br>0.15<br>0.10<br>0.02<br>0.51     | 12<br>6<br>4<br>36<br>16   | 30<br>< 10<br>10<br>< 10<br>10               | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | Intf*<br>Intf*<br>Intf*<br>Intf*<br>Intf* | 2.55<br>0.14<br>0.16<br>0.03<br>0.48 | 1.0<br>3.0<br>3.5<br>9.0<br>23.0 | 827<br>840<br>1400<br>1330<br>742 | 44<br>48<br>30<br>29<br>55 | >10000<br>>10000<br>>10000<br>>10000<br>>10000 | >15.00<br>>15.00<br>>15.00<br>>15.00<br>>15.00 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2<br>< 1<br>< 1<br>< 1<br>< 1    | 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>0.02         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 0.16<br>0.09<br>0.09<br>0.04<br>0.28                              | 38<br>9<br>6<br>4<br>22 |
| N111866<br>N111867<br>N111868<br>N111869<br>N111870 | 258 29<br>258 29<br>258 29<br>258 29<br>258 29<br>258 29 | 3         400           3         540           3         1000           3         670           3         660 | 42.8<br>18.8<br>33.4<br>23.8<br>17.8 | 0.91<br>0.03<br>0.10<br>< 0.01<br>< 0.01 | 46<br>24<br>30<br>26<br>18 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | Intf*<br>Intf*<br>Intf*<br>Intf*<br>Intf* | 0.23<br>0.76<br>0.25<br>0.05<br>0.03 | 3.5<br>1.5<br>3.0<br>2.5<br>7.5  | 185<br>357<br>688<br>556<br>299   | 70<br>52<br>37<br>78<br>29 | >10000<br>>10000<br>>10000<br>>10000<br>>10000 | >15.00<br>>15.00<br>>15.00<br>>15.00<br>>15.00 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1  | 0.02<br>0.01<br>0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.56<br>0.03<br>0.06<br>< 0.01<br>< 0.01                          | 30)<br>7)<br>3)<br>4)   |
| N111871<br>N111872<br>N111873<br>N111874            | 258 29<br>258 29<br>258 29<br>258 29<br>258 29           | 3 650<br>3 670<br>3 710<br>3 880                                                                               | 17.0<br>15.6<br>19.2<br>30.8         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01     | 14<br>20<br>22<br>26       | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5                   | Intf*<br>Intf*<br>Intf*<br>Intf*          | 0.13<br>0.03<br>0.61<br>0.61         | 33.5<br>52.0<br>17.5<br>5.0      | 270<br>246<br>281<br>598          | 34<br>25<br>41<br>37       | >10000<br>>10000<br>>10000<br>>10000           | >15.00<br>>15.00<br>>15.00<br>>15.00<br>>15.00 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 1 <<br>< 1 <<br>< 1 <<br>< 1 < | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01               | < 10 <<br>< 10 <<br>< 10 <<br>< 10 <         | <pre>&lt; 0.01 &lt; 0.01 &lt; 0.01 0.01 &lt; 0.01 &lt; 0.01</pre> | 4(<br>3)<br>7!<br>8)    |
|                                                     |                                                          |                                                                                                                |                                      |                                          |                            |                                              |                                                    |                                           |                                      |                                  |                                   |                            |                                                |                                                |                                              |                                  |                                                    |                                              |                                                                   |                         |
|                                                     |                                                          |                                                                                                                |                                      |                                          |                            |                                              |                                                    |                                           |                                      |                                  |                                   |                            |                                                |                                                |                                              |                                  |                                                    |                                              |                                                                   |                         |
|                                                     |                                                          |                                                                                                                |                                      |                                          |                            |                                              |                                                    |                                           |                                      |                                  |                                   |                            |                                                |                                                |                                              |                                  |                                                    |                                              |                                                                   |                         |
|                                                     |                                                          |                                                                                                                |                                      |                                          |                            |                                              |                                                    |                                           |                                      |                                  |                                   |                            |                                                |                                                |                                              |                                  |                                                    |                                              |                                                                   |                         |
|                                                     |                                                          |                                                                                                                |                                      |                                          |                            |                                              |                                                    |                                           |                                      |                                  |                                   |                            |                                                |                                                |                                              |                                  |                                                    |                                              |                                                                   |                         |

\*PLEASE NOTE:

CERTIFICATION:\_\_\_

tart Brehler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page er :1-B Total Fugues :1 Certificate Date: 05-NOV-96 Invoice No. :19638655 P.O. Number : Account :MPO

A9638655

Project : ICE IC96-34 Comments:

#### \*PLEASE NOTE:

| GANDI P                                                        | PRE                                    | P                                      | Мо                         |                                 | Na                                     | Ni                      | P                                                  | Pb                         | Sb                                            | Sc                                     | Sr                                                 | Ti<br>%                                      | T1                                                                              | U                              | V                        | W                                          | Zn                               | Cu<br>%                               |      |  |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------|---------------------------------|----------------------------------------|-------------------------|----------------------------------------------------|----------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|--------------------------|--------------------------------------------|----------------------------------|---------------------------------------|------|--|
| N111861<br>N111862<br>N111863<br>N111864<br>N111865            | 258<br>258<br>258<br>258<br>258<br>258 | 293<br>293<br>293<br>293<br>293<br>293 | 31<br>37<br>56<br>51<br>31 | < 0<br>< 0<br>< 0<br>< 0<br>< 0 | .01<br>.01<br>.01<br>.01<br>.01<br>.01 | 7<br>4<br>7<br>1<br>11  | Intf*<br>Intf*<br>Intf*<br>Intf*<br>Intf*<br>Intf* | 16<br>14<br>16<br>38<br>40 | <pre></pre>                                   | <pre></pre>                            | 8 <<br>< 1 <<br>< 1 <<br>< 1 <<br>< 1 <<br>< 1 <   | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | <pre>&gt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt;</pre> | <pre></pre>                    | 46<br>28<br>8<br>8<br>51 | 20<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 388<br>514<br>470<br>538<br>2350 | 1.23<br>4.97<br>12.40<br>8.71<br>5.06 | <br> |  |
| N111866<br>N111867<br>N111868<br>N111868<br>N111869<br>N111870 | 258<br>258<br>258<br>258<br>258<br>258 | 293<br>293<br>293<br>293<br>293<br>293 | 41<br>29<br>47<br>39<br>24 | < 0<br>< 0<br>< 0<br>< 0<br>< 0 | .01<br>.01<br>.01<br>.01<br>.01        | 9<br>5<br>< 1<br>1<br>3 | Intf*<br>Intf*<br>Intf*<br>Intf*<br>Intf*          | 34<br>78<br>56<br>46<br>66 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | < 1 <<br>< 1 <<br>< 1 <<br>< 1 <<br>< 1 <<br>< 1 < | 0.01<br>0.01<br>0.01<br>0.01<br>0.01         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10                                    | 10<br>10<br>10<br>< 10<br>< 10 | 89<br>58<br>20<br>8<br>3 | < 10<br>10<br>10<br>10<br>< 10             | 756<br>430<br>392<br>418<br>1450 | 9.17<br>3.45<br>3.84<br>3.52<br>3.67  |      |  |
| N111871<br>N111872<br>N111873<br>N111874                       | 258<br>258<br>258<br>258               | 293<br>293<br>293<br>293               | 27<br>24<br>22<br>31       | < 0<br>< 0<br>< 0<br>< 0        | .01<br>.01<br>.01<br>.01               | 1<br>3<br>5<br>< 1      | Intf*<br>Intf*<br>Intf*<br>Intf*                   | 64<br>66<br>60<br>68       | < 2<br>< 2<br>< 2<br>< 2                      | < 1<br>< 1<br>< 1<br>< 1               | < 1 <<br>< 1 <<br>< 1 <<br>< 1 <                   | 0.01<br>0.01<br>0.01<br>0.01                 | < 10<br>< 10<br>< 10<br>< 10                                                    | < 10<br>10<br>10<br>10         | < 1<br>< 1<br>24<br>66   | 10<br>10<br>10<br>10                       | 6250<br>9870<br>3890<br>914      | 4.47<br>3.03<br>3.88<br>6.06          |      |  |
|                                                                |                                        |                                        |                            |                                 |                                        |                         |                                                    |                            |                                               |                                        |                                                    |                                              |                                                                                 |                                |                          |                                            |                                  |                                       |      |  |
|                                                                |                                        |                                        |                            |                                 |                                        |                         |                                                    |                            |                                               |                                        |                                                    |                                              |                                                                                 |                                |                          |                                            |                                  |                                       |      |  |
|                                                                |                                        |                                        |                            |                                 |                                        |                         |                                                    |                            |                                               |                                        |                                                    |                                              |                                                                                 |                                |                          |                                            |                                  |                                       |      |  |
|                                                                |                                        |                                        |                            |                                 |                                        |                         |                                                    |                            |                                               |                                        |                                                    |                                              |                                                                                 |                                | ·                        |                                            |                                  |                                       |      |  |

CERTIFICATION: Contractor

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC
 VANCOUVER, BC Page :: 1-A Total F : خرين : 1 Certificate Date: 04-NOV-96 Invoice No. : 19638654 P.O. Number : Account : MPO

V6B 1L8 Project : I

Chemex Labs Ltd.

North Vancouver

V7J 2C1

Analytical Chemists \* Geochemists \* Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave.,

British Columbia, Canada

0

Project : ICE IC96-34 Comments:

#### **CERTIFICATE OF ANALYSIS** A9638654 Cr Ca Cđ Co Cu Fe ĸ Mg Mn Mo PREP Al As Ba Be Bi Ga Ħg La Ag SAMPLE CODE ppm 8 ppm ppm ppm ppm 8 ppm ppm ppm ppm 8 ppm pp∎ 8 ppm 8 pp∎ pp∎ N111851 255 293 < 0.2 3.12 < 2 210 < 0.5 2 3.54 < 0.5 37 35 85 7.03 10 < 1 0.01 < 10 2.32 1125 < 1 35 24 76 6.57 10 < 1 < 0.01 < 10 2.32 1095 < 1 N111852 255 293 < 0.2 3.26 < 2 50 < 0.5 < 2 2.64 < 0.5 N111853 255 293 < 0.2 4.19 < 2 110 < 0.5 2 2.09 < 0.5 39 46 86 7.75 10 < 1 0.01 < 10 3.62 1500 < 1 770 < 10 < 1 < 0.01 < 10 N111854 255 293 < 0.2 1.55 < 2 450 < 0.5 < 2 2.69 < 0.5 12 132 24 3.70 1.36 < 1 1050 5.29 0,06 < 10 1.85 < 1 N111855 255 293 < 0.2 2.51 < 2 130 < 0.5 2 2.33 < 0.5 26 39 77 10 < 1 32 1.88 900 < 1 < 0.2 < 2 < 0.5 2.40 < 0.5 21 78 5.96 10 < 1 0.03 < 10 N111856 255 293 3.23 80 < 2 6.44 2 < 0.01 < 10 2.18 1000 < 1 N111857 255 293 < 0.2 3.51 < 2 80 < 0.5 < 2 2.46 < 0.5 33 22 79 10 975 N111858 255 293 < 0.2 3.10 < 2 130 < 0.5 2.31 < 0.5 32 28 84 6.32 10 1 < 0.01 < 10 2.49 < 1 4 < 0.5 2.65 < 0.5 32 26 82 6.44 10 < 1 < 0.01 < 10 2.37 1105 < 1 N111859 255 293 < 0.2 3.94 < 2 50 4 74 7.70 10 < 1 < 0.01 < 10 3.30 1465 < 1 N111860 255 293 < 0.2 4.71 < 2 50 < 0.5 2 2.78 < 0.5 36 46 255 293 2.94 < 0.5 2.84 < 0.5 59 116 2270 6.71 10 0.08 < 10 2.92 680 < 1 N111875 < 0.2 < 2 70 4 < 1 N111876 255 293 1.6 3.16 2 280 < 0.5 < 2 2.82 < 0.5 72 124 3810 8.03 10 < 1 0.08 < 10 3.12 860 < 1 3.73 990 N111877 255 293 < 0.2 < 2 1430 < 0.5 6 4.29 < 0.5 42 179 340 5.83 10 < 1 0.10 < 10 2.68 < 1 785 N111878 255 293 < 0.2 4.12 < 2 70 < 0.5 2 3.90 < 0.5 26 110 139 4.67 10 1 0.04 < 10 2.32 < 1 N111879 255 293 < 0.2 < 2 90 < 0.5 3.69 < 0.5 30 161 149 6.22 10 < 1 0.06 < 10 3.23 960 < 1 4.84 < 2

CERTIFICATION: B. Cam



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page t r :1-B Total P. :1 Certificate Date: 04-NOV-96 Invoice No. :19638654 P.O. Number : Account :MPO

Project : ICE IC96-34 Comments:

|                                                |                                                                    |                                  |                                                          |                            |                                   |                                                                                  |                                                                             |                         |                            |                                      | CE                                                                         | RTIFI                                                                      | CATE                            | OF A                                                                       | NALYS                           | S | A9638654 | <br> |
|------------------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------------------------------------------------|----------------------------|-----------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|----------------------------|--------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|---------------------------------|---|----------|------|
| SAMPLE                                         | PREP<br>CODE                                                       |                                  | Na<br>%                                                  | Ni<br>ppm                  | P<br>PPm                          | Pb<br>ppm                                                                        | Sb<br>ppm                                                                   | Sc<br>pp <b>n</b>       | Sr<br>ppm                  | Ti<br>%                              | Tl<br>ppm                                                                  | U<br>PPm                                                                   | V<br>ppm                        | W<br>ppm                                                                   | Zn<br>ppm                       |   |          |      |
| 111851<br>111852<br>111853<br>111854<br>111855 | 255 29<br>255 29<br>255 29<br>255 29<br>255 29<br>255 29<br>255 29 | )3<br>)3<br>)3<br>)3<br>)3       | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 25<br>32<br>36<br>28<br>25 | 680<br>650<br>720<br>1510<br>1110 | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | <pre>&lt; 2 &lt; 2 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>        | 8<br>5<br>11<br>5<br>5  | 20<br>14<br>14<br>17<br>19 | 0.66<br>0.64<br>0.48<br>0.11<br>0.36 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 10<br>10<br>10<br>< 10<br>< 10                                             | 236<br>212<br>219<br>113<br>149 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10                               | 88<br>88<br>92<br>24<br>66      |   |          |      |
| 111856<br>111857<br>111858<br>111859<br>111860 | 255 29<br>255 29<br>255 29<br>255 29<br>255 29<br>255 29           | )3<br>)3<br>)3<br>)3<br>)3       | 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01   | 34<br>30<br>31<br>31<br>36 | 510<br>570<br>480<br>510<br>550   | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 2</pre>                    | <pre></pre>                                                                 | 7<br>7<br>8<br>6<br>12  | 18<br>11<br>15<br>6<br>12  | 0.44<br>0.59<br>0.49<br>0.52<br>0.55 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | < 10<br>10<br>< 10<br>< 10<br>10                                           | 172<br>208<br>150<br>186<br>223 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10                               | 76<br>86<br>82<br>92<br>106     |   |          |      |
| 111875<br>111876<br>111877<br>111878<br>111878 | 255 29<br>255 29<br>255 29<br>255 29<br>255 29<br>255 29           | )3<br>)3<br>)3<br>)3<br>)3<br>)3 | 0.02<br>0.03<br>0.02<br>0.04<br>0.03                     | 40<br>51<br>57<br>51<br>53 | 280<br>390<br>250<br>270<br>280   | <pre></pre>                                                                      | <pre> &lt; 2 &lt; 2 &lt; 4 &lt; 2 &lt; 4 &lt; 2 &lt; 2 &lt; 2 &lt; 2 </pre> | 3<br>8<br>17<br>8<br>14 | 62<br>29<br>30<br>27<br>55 | 0.17<br>0.19<br>0.20<br>0.26<br>0.28 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 137<br>154<br>143<br>118<br>159 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 244<br>442<br>232<br>120<br>156 |   |          |      |
|                                                |                                                                    |                                  |                                                          |                            |                                   |                                                                                  |                                                                             |                         |                            |                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |   |          |      |
|                                                |                                                                    |                                  |                                                          |                            |                                   |                                                                                  |                                                                             |                         |                            |                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |   |          |      |
|                                                |                                                                    |                                  |                                                          |                            |                                   |                                                                                  |                                                                             |                         |                            |                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |   |          |      |
|                                                |                                                                    |                                  |                                                          |                            |                                   |                                                                                  |                                                                             |                         |                            |                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |   |          |      |
|                                                |                                                                    |                                  |                                                          |                            |                                   |                                                                                  |                                                                             |                         |                            |                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |   |          |      |
|                                                |                                                                    |                                  |                                                          |                            |                                   |                                                                                  |                                                                             |                         |                            |                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |   |          |      |

CERTIFICATION:\_



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page I r : 1 Total P. : 1 Certificate Date: 05-NOV-96 Invoice No. : 19638560 P.O. Number : Account : MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

|                                                     |                                 | _               |                                      | CERTIFICATE OF ANALYSIS | A9638560    |
|-----------------------------------------------------|---------------------------------|-----------------|--------------------------------------|-------------------------|-------------|
| SAMPLE                                              | PREP<br>CODE                    | Au ppb<br>FA+AA | Cu<br>%                              |                         |             |
| N111575<br>N111576<br>N111577<br>N111578<br>N111579 | 244<br>244<br>244<br>244<br>244 | <pre></pre>     | 0.14<br>0.12<br>0.11<br>0.13<br>0.25 |                         |             |
| N111580<br>N111581                                  | 244<br>244                      | 25<br>10        | 0.37<br>0.33                         |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
|                                                     |                                 |                 |                                      |                         |             |
| L                                                   |                                 |                 |                                      |                         | Rom (Ping d |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 ): EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

| Project : | ICE |
|-----------|-----|
| Comments: |     |

| SAMPLE PREP Au ppb Cu<br>CODE FA+AA % |  |
|---------------------------------------|--|
|                                       |  |
| N111620<br>N111627 244 20 0.21        |  |
|                                       |  |



Ņ.

### **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

**0: EXPATRIATE RESOURCES LTD.** C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATION:\_

Page Total er :1 s :1 Certificate Date: 05-NOV-96 Invoice No. : 19638555 P.O. Number : Account :MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

|                                                     |                                 |                                                                        |                                      | CERTIFICATE OF ANALYSIS | A9638555    |
|-----------------------------------------------------|---------------------------------|------------------------------------------------------------------------|--------------------------------------|-------------------------|-------------|
| SAMPLE                                              | PREP<br>CODE                    | Au ppb<br>FA+AA                                                        | Cu<br>%                              |                         |             |
| N111605<br>N111606<br>N111607<br>N111608<br>N111609 | 244<br>244<br>244<br>244<br>244 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5&lt;</pre> | 0.13<br>0.33<br>0.34<br>0.35<br>0.38 |                         |             |
| N111610<br>N111611                                  | 244<br>244                      | < 5<br>< 5                                                             | 0.80<br>0.12                         |                         |             |
|                                                     |                                 |                                                                        |                                      |                         |             |
|                                                     |                                 |                                                                        |                                      |                         |             |
|                                                     |                                 |                                                                        |                                      |                         |             |
|                                                     |                                 |                                                                        |                                      |                         |             |
|                                                     |                                 |                                                                        |                                      |                         |             |
|                                                     |                                 |                                                                        |                                      |                         |             |
|                                                     |                                 |                                                                        |                                      |                         |             |
|                                                     |                                 |                                                                        |                                      |                         | Saro / EINA |



• PLEASE NOTE

## **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page 1 3r :1-A Total F :1 Certificate Date: 05-NOV-96 Invoice No. :19638240 P.O. Number : Account :MPO

Jant Brahlen

Project : ICE Comments:

#### CERTIFICATE OF ANALYSIS A9638240

CERTIFICATION:

|                            | the second second second second second second second second second second second second second second second s |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|----------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|------------------------|----------------------|------------------|-------------------|-------------------------|---------------------|----------------------|------------------------|-----------------|----------------|---------------------|------------------------|-------------------|-------------------|----------------------|----------------------|----------------------|
| SAMPLE                     | PREP<br>CODE                                                                                                   | Au ppb<br>FA+AA              | Cu<br>%              | Ag<br>ppm              | Al<br>%              | As<br>ppm        | Ba<br>ppm         | Be<br>ppm               | Bi<br>ppm           | Ca<br>%              | Cđ<br>ppm              | Co<br>ppm       | Cr<br>ppm      | Cu<br>ppm           | Fe<br>%                | Ga<br>p <b>pm</b> | Hg<br>ppm         | K<br>%               | La<br>ppm            | Mg<br>%              |
| L11733<br>L11734<br>L11735 | 208 294<br>208 294<br>208 294                                                                                  | <pre>&lt; 5 600 &lt; 5</pre> | 0.04<br>1.69<br>0.02 | < 0.2<br>11.8<br>< 0.2 | 3.63<br>0.48<br>3.42 | < 2<br>28<br>< 2 | 70<br>< 10<br>320 | < 0.5<br>< 0.5<br>< 0.5 | < 2<br>Intf*<br>< 2 | 4.32<br>2.45<br>3.50 | < 0.5<br>10.0<br>< 0.5 | 40<br>496<br>31 | 69<br>39<br>79 | 332<br>>10000<br>82 | 8.22<br>>15.00<br>5.79 | 10<br>10<br>10    | < 1<br>5 <<br>< 1 | 0.06<br>0.01<br>0.03 | < 10<br>< 10<br>< 10 | 2.46<br>0.39<br>2.58 |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |
|                            |                                                                                                                |                              |                      |                        |                      |                  |                   |                         |                     |                      |                        |                 |                |                     |                        |                   |                   |                      |                      |                      |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er:1-Totali s:1 er :1-B Certificate Date: 05-NOV-96 Invoice No. : 19638240 P.O. Number : :MPO Account

Project : ICE Comments:

| PLEASE NO                    | TE                            |                    |                                                                       |                      |                |                     |                |                   |               | CE             | RTIF                     |                      | OF A               | NAL              | YSIS                 | A                 | 9638240 |  |
|------------------------------|-------------------------------|--------------------|-----------------------------------------------------------------------|----------------------|----------------|---------------------|----------------|-------------------|---------------|----------------|--------------------------|----------------------|--------------------|------------------|----------------------|-------------------|---------|--|
| SAMPLE                       | PREP<br>CODE                  | Mn<br>ppm          | Mo<br>ppm                                                             | Na<br>%              | Ni<br>ppm      | P<br>P <b>pm</b>    | Pb<br>ppm      | Sb<br>ppm         | Sc<br>ppm     | Sr<br>ppm      | Ti<br>%                  | Tl<br>ppm            | U<br>ppm           | V<br>ppm         | W<br>ppm             | Zn<br>ppm         |         |  |
| 111733<br>1111734<br>1111735 | 208 294<br>208 294<br>208 294 | 1240<br>545<br>990 | <pre>&lt; 1 &lt;    14    11 &lt;         &lt;         1   &lt;</pre> | 0.01<br>0.01<br>0.01 | 42<br>27<br>41 | 530<br>Intf*<br>340 | 2<br>80<br>< 2 | < 2<br>< 2<br>< 2 | 25<br>1<br>20 | 59<br>20<br>83 | < 0.01<br>< 0.01<br>0.30 | < 10<br>< 10<br>< 10 | < 10<br>10<br>< 10 | 203<br>84<br>177 | < 10<br>< 10<br>< 10 | 178<br>1225<br>84 |         |  |
|                              |                               |                    |                                                                       |                      |                |                     |                |                   |               |                |                          |                      |                    |                  |                      |                   |         |  |
|                              |                               |                    |                                                                       |                      |                |                     |                |                   |               |                |                          |                      |                    |                  |                      |                   |         |  |
|                              |                               |                    |                                                                       |                      | ·              |                     |                |                   |               |                |                          |                      |                    |                  |                      |                   |         |  |
|                              |                               |                    |                                                                       |                      |                |                     |                |                   |               |                |                          |                      |                    |                  |                      |                   |         |  |



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED VANCOUVER, BC V6B 1L8

Page 1 er : 1-A Total Page 1 : 1 Certificate Date: 04-NOV-96 Invoice No. : 19638239 P.O. Number MPO Account

Project : ICE Comments:

:

|                    |              |          |                |             |                   |            |                |            |              |                | CERTIFICATE OF ANALYSIS A9638239 |           |           |              |            |                |                  |              |              |              |                   |
|--------------------|--------------|----------|----------------|-------------|-------------------|------------|----------------|------------|--------------|----------------|----------------------------------|-----------|-----------|--------------|------------|----------------|------------------|--------------|--------------|--------------|-------------------|
| SAMPLE             | PREP<br>CODE |          | Ag<br>ppm      | A1<br>%     | As<br>ppm         | Ba<br>ppm  | Be<br>ppm      | Bi<br>ppm  | Ca<br>%      | Cđ<br>ppm      | Co<br>ppm                        | Cr<br>ppm | Cu<br>ppm | Fe<br>%      | Ga<br>ppm  | Hg<br>ppm      | K<br>%           | La<br>ppm    | Mg<br>%      | Mn<br>ppm    | Min Mo<br>ppm ppm |
| N111702            | 205 2        | 94       | < 0.2          | 2.44        | 2                 | 410        | < 0.5          | < 2        | 2.06         | < 0.5          | 19                               | 54        | 52        | 4.95         | 10         | < 1            | 0.02             | < 10         | 1.53         | 880          | < 1               |
| N111703            | 205 2        | 94       | < 0.2          | 2.71        | < 2               | 130        | < 0.5          | < 2        | 2.27         | < 0.5          | 22                               | 46        | 52        | 5.59         | 10         | < 1 •          | < 0.01           | < 10         | 2.01         | 1060         | < 1               |
| N111704            | 205 2        | 94       | < 0.2          | 3.33        | < 2               | 200        | < 0.5          | < 2        | 2.34         | < 0.5          | 28                               | 41        | 70        | 6.53         | 10         | < 1 •          | < 0.01           | < 10         | 2.42         | 1060         | < 1               |
| N111705<br>N111706 | 205 2        | 94<br>94 | < 0.2<br>< 0.2 | 2.01 3.34   | < 2<br>< 2        | 230<br>110 | < 0.5<br>< 0.5 | < 2<br>< 2 | 1.90         | < 0.5          | 17<br>27                         | 64<br>16  | 35<br>58  | 4.76         | < 10<br>10 | < 1 <<br>< 1 < | < 0.01<br>< 0.01 | < 10<br>< 10 | 1.44         | 790<br>1180  | < 1<br>< 1        |
| N111707            | 205 2        | 94       | < 0.2          | 3.15        | < 2               | 160        | < 0.5          | < 2        | 3.54         | < 0.5          | 26                               | 19        | 58        | 6.19         | 10         | 1              | 0.01             | < 10         | 1.93         | 1225         | < 1               |
| N111708            | 205 2        | 94       | < 0.2          | 3.19        | 2                 | 240        | < 0.5          | < 2        | 5.32         | < 0.5          | 30                               | 33        | 64        | 6.51         | 10         | < 1            | 0.16             | < 10         | 1.32         | 820          | < 1               |
| N111709            | 205 2        | 94       | < 0.2          | 2.46        | 2                 | 360        | < 0.5          | < 2        | 2.23         | < 0.5          | 24                               | 42        | 46        | 5.91         | 10         | < 1            | 0.05             | < 10         | 1.47         | 840          | < 1               |
| N111711            | 205 2        | 94       | < 0.2          | 3.08        | < 2               | 70         | < 0.5          | < 2        | 2.96         | < 0.5          | 22                               | 27        | 53        | 5.49         | 10         | < 1 <          | < 0.03           | < 10         | 1.67         | 930          | < 1               |
| N111712            | 205 2        | 94       | < 0.2          | 2.93        | < 2               | 60         | < 0.5          | < 2        | 2.32         | < 0.5          | 23                               | 33        | 62        | 5.50         | 10         | < 1 •          | < 0.01           | < 10         | 1.74         | 810          | < 1               |
| N111713            | 205 2        | 94       | < 0.2          | 3.03        | < 2               | 110        | < 0.5          | < 2        | 2.50         | < 0.5          | 24                               | 35        | 57        | 5.74         | 10         | < 1            | 0.04             | < 10         | 1.76         | 910          | < 1               |
| N111714            | 205 2        | 94       | < 0.2          | 2.74        | < 2               | 380        | < 0.5          | < 2        | 2.52         | < 0.5          | 26                               | 14        | 62        | 6.96         | 10         | < 1            | 0.04             | < 10         | 1.42         | 1050         | < 1               |
| N111715<br>N111716 | 205 2        | 94<br>94 | < 0.2<br>< 0.2 | 3.02        | < <u>4</u><br>< 2 | 610<br>430 | < 0.5<br>< 0.5 | < 2<br>< 2 | 2.38<br>2.36 | < 0.5<br>< 0.5 | 28<br>26                         | 9<br>11   | 61<br>62  | 7.17<br>6.89 | 10<br>10   | < 1            | < 0.01<br>0.03   | < 10<br>< 10 | 1.65<br>1.55 | 1355<br>1170 | < 1<br>< 1        |
| N111717            | 205 2        | 94       | < 0.2          | 2.48        | 2                 | 750        | < 0.5          | < 2        | 2.16         | < 0.5          | 27                               | 16        | 59        | 6.56         | 10         | 1              | 0.05             | < 10         | 1.25         | 915          | < 1               |
| N111718            | 205 2        | 94       | < 0.2          | 2.62        | < 2               | 370        | < 0.5          | < 2        | 2.17         | < 0.5          | 24                               | 11        | 61        | 6.11         | 10         | < 1            | 0.01             | < 10         | 1.22         | 775          | < 1               |
| N111719            | 205 29       | 94       | < 0.2          | 3.12        | < 2               | 190        | < 0.5          | < 2        | 2.57         | < 0.5          | 25                               | 11        | 64        | 6.34         | 10         | < 1 •          | 0.01             | < 10         | 1.40         | 920          | < 1               |
| N111720<br>N111721 | 205 2        | 94<br>94 | < 0.2          | 2.95        | 12                | 90         | < 0.5          | < 2        | 4.75         | < 0.5          | 34                               | 28        | 67<br>71  | 6.03         | 10         | < 1<br>< 1     | 0.09             | < 10<br>< 10 | 1.//<br>2.80 | 835<br>640   | < 1<br>< 1        |
| N111722            | 205 29       | 94       | < 0.2          | 0.93        | 8                 | 180        | < 0.5          | < 2        | 12.50        | < 0.5          | 16                               | 9         | 16        | 3.95         | < 10       | < 1            | 0.06             | < 10         | 5.51         | 1160         | < 1               |
| N111723            | 205 29       | 94       | < 0.2          | 1.66        | < 2               | 80         | < 0.5          | < 2        | 9.35         | < 0.5          | 23                               | 27        | 40        | 5.46         | < 10       | < 1            | 0.06             | < 10         | 4.14         | 1140         | < 1               |
| N111724            | 205 29       | 94       | < 0.2          | 1.65        | < 2               | 190        | < 0.5          | < 2        | 11.35        | < 0.5          | 23                               | 20        | 31        | 5.76         | < 10       | < 1            | 0.03             | < 10         | 4.29         | 1330         | < 1               |
| N111726            | 205 29       | 94       | < 0.2          | 3.29        | 2                 | 150        | < 0.5          | < 2        | 3.42         | < 0.5          | 28<br>30                         | 35        | 59        | 6.78         | 10         | < 1 <          | 0.01             | < 10<br>< 10 | 2.40         | 1380         | < 1<br>< 1        |
| 111727             | 205 29       | 94       | < 0.2          | 3.76        | 20                | 220        | < 0.5          | < 2        | 2.83         | < 0.5          | 33                               | 36        | 57        | 7.82         | 10         | < 1 <          | 0.01             | < 10         | 2.87         | 1595         | < 1               |
| 1111728            | 205 29       | 94       | < 0.2          | 1.05        | < 2               | 90         | < 0.5          | < 2        | 9.49         | < 0.5          | 19                               | 54        | 46        | 5.00         | < 10       | < 1 <          | 0.01             | < 10         | 2.63         | 2080         | < 1               |
| N111729            | 205 29       | 94       | < 0.2          | 3.05        | 6                 | 140        | < 0.5          | < 2        | 4.42         | < 0.5          | 35                               | 13        | 64        | 7.76         | 10         | < 1            | 0.04             | < 10         | 2.49         | 1570         | < 1               |
| 111731             | 205 29       | 94       | < 0.2          | 2.85        | 2                 | 100        | < 0.5          | < 2        | 1.23         | < 0.5          | 39                               | 39        | 60        | 8.46         | 10         | < 1            | 0.08             | < 10<br>< 10 | 1.66         | 585          | < 1<br>< 1        |
| 111732             | 205 29       | 94       | < 0.2          | 2.94        | < 2               | 70         | < 0.5          | < 2        | 3.22         | < 0.5          | 26                               | 66        | 74        | 5.83         | 10         | < 1            | 0.09             | < 10         | 2.32         | 745          | < 1               |
| 1111736            | 205 29       | 94       | < 0.2          | 3.54        | < 2               | 160        | < 0.5          | < 2        | 4.02         | < 0.5          | 31                               | 89        | 83        | 5.97         | 10         | < 1            | 0.01             | < 10         | 2.97         | 1085         | < 1               |
| 111737             | 205 29       | 4        | < 0.2          | 3.47        | < 2               | 110        | < 0.5          | < 2        | 2.50         | < 0.5          | 29                               | 82        | 76        | 5.40         | 10         | < 1            | 0.03             | < 10         | 3.19         | 815          | < 1               |
| 111739             | 205 29       | 94       | < 0.2          | 3.35        | < 2               | 60         | < 0.5          | < 2        | 2.60         | < 0.5          | 25                               | 58        | 71        | 5.04         | 10         | < 1            | 0.01             | < 10<br>< 10 | 2.41         | 730          | < 1               |
| 111740             | 205 29       | 94       | < 0.2          | 3.23        | < 2               | 100        | < 0.5          | < 2        | 2.84         | < 0.5          | 27                               | 67        | 77        | 5.31         | 10         | < 1            | 0.01             | < 10         | 2.66         | 715          | < 1               |
|                    |              |          |                | <del></del> |                   |            |                |            |              |                |                                  |           |           |              | FRTIFIC    |                | 14               | aut          | ·Pr          | chle         | <u>~</u>          |

CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 >: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er : 1-B Total F s : 1 Certificate Date: 04-NOV-96 Invoice No. : 19638239 P.O. Number : Account : MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

Г

|                    |          |            |         |           |          |            |            |                  |           |         | CERTIFICATE OF ANALYSIS |          |                    |      |           | A9638239 |
|--------------------|----------|------------|---------|-----------|----------|------------|------------|------------------|-----------|---------|-------------------------|----------|--------------------|------|-----------|----------|
| SAMPLE             | PR<br>CO | EP<br>DE   | Na<br>% | Ni<br>ppm | P<br>ppm | Pb<br>ppm  | Sb<br>ppm  | Sc<br>ppm        | Sr<br>ppm | Ti<br>% | T1<br>ppm               | U<br>ppm | V<br>ppm           | W    | Zn<br>ppm |          |
| N111702            | 205      | 294        | < 0.01  | 26        | 570      | 2          | < 2        | 4                | 38        | 0.36    | < 10                    | < 10     | 137                | < 10 | 64        |          |
| N111703            | 205      | 294        | < 0.01  | 23        | 620      | 2          | < 2        | 7                | 18        | 0.51    | < 10                    | < 10     | 194                | < 10 | 80        |          |
| N111704            | 205      | 294        | < 0.01  | 30        | 570      | < 2        | < 2        | 10               | 17        | 0.53    | < 10                    | < 10     | 207                | < 10 | 140       |          |
| N111705            | 205      | 294        | < 0.01  | 23        | 650      | 2          | < 2        | 6                | 23        | 0.33    | < 10                    | < 10     | 136                | < 10 | 58        |          |
| N111706            | 205      | 294        | < 0.01  | 23        | 770      | < 2        | < 2        | 10               | 34        | 0.61    | < 10                    | < 10     | 201                | < 10 | 172       |          |
| N111707            | 205      | 294        | < 0.01  | 24        | 730      | 2          | < 2        | 15               | 31        | 0.48    | < 10                    | < 10     | 197                | < 10 | 200       |          |
| N111708            | 205      | 294        | 0.01    | 34        | 780      | 4          | < 2        | 30               | 27 <      | 0.01    | < 10                    | < 10     | 223                | < 10 | 112       |          |
| N111709            | 205      | 294        | < 0.01  | 25        | 710      | 2          | < 2        | 10               | 44        | 0.44    | < 10                    | < 10     | 189                | < 10 | 88        |          |
| N111710            | 205      | 294        | < 0.01  | 25        | 680      | 2          | < 2        | 5                | 16        | 0.36    | < 10                    | < 10     | 15/                | < 10 | 88        |          |
| N111/11            | 205      | 294        | < 0.01  | 29        | 630      | 4          | < 🖌        | 4                | 14        | 0.45    | < 10                    | < 10     | 1/4                | < 10 | /8        |          |
| N111712            | 205      | 294        | < 0.01  | 29        | 520      | 2          | < 2        | 7                | 12        | 0.47    | < 10                    | < 10     | 176                | < 10 | 74        |          |
| N111713            | 205      | 294        | < 0.01  | 35        | 630      | < 2        | < 2        | 7                | 20        | 0.46    | < 10                    | < 10     | 169                | < 10 | 76        |          |
| N111714            | 205      | 294        | < 0.01  | 16        | 770      | 2          | < 2        | 7                | 22        | 0.69    | < 10                    | < 10     | 241                | < 10 | 106       |          |
| N111715            | 205      | 294        | < 0.01  | 17        | 780      | 2          | < 2        | 8                | 15        | 0.68    | < 10                    | < 10     | 260                | < 10 | 108       |          |
| N111716            | 205      | 294        | < 0.01  | 17        | 770      | 4          | < 2        | 6                | 16        | 0.69    | < 10                    | < 10     | 246                | < 10 | 104       |          |
| N111717            | 205      | 294        | < 0.01  | 17        | 740      | 4          | < 2        | 5                | 30        | 0.60    | < 10                    | < 10     | 214                | < 10 | 100       |          |
| N111718            | 205      | 294        | < 0.01  | 15        | 660      | 2          | < 2        | 5                | 16        | 0.56    | < 10                    | < 10     | 194                | < 10 | 88        |          |
| N111719            | 205      | 294        | < 0.01  | 16        | 680      | < 2        | < 2        | 6                | 13        | 0.55    | < 10                    | < 10     | 194                | < 10 | 96        |          |
| N111720            | 205      | 294        | < 0.01  | 24        | 750      | 2          | < 2        | 17               | 28        | 0.31    | < 10                    | < 10     | 193                | < 10 | 120       |          |
| N111721            | 205      | 294        | < 0.01  | 31        | 840      | 2          | < 2        | 28               | 46 <      | 0.01    | < 10                    | < 10     | 158                | < 10 | 132       |          |
| N111722            | 205      | 294        | < 0.01  | 17        | 250      | < 2        | < 2        | 9                | 184 <     | 0.01    | < 10                    | < 10     | 72                 | < 10 | 88        |          |
| N111723            | 205      | 294        | < 0.01  | 27        | 420      | < 2        | < 2        | 17               | 87 <      | 0.01    | < 10                    | < 10     | 129                | < 10 | 116       |          |
| N111724            | 205      | 294        | < 0.01  | 21        | 370      | < 2        | < 2        | 15               | 112       | 0.03    | < 10                    | < 10     | 131                | < 10 | 106       |          |
| N111725            | 205      | 294        | < 0.01  | 23        | 600      | < 2        | < 2        | 15               | 30        | 0.52    | < 10                    | < 10     | 226                | < 10 | 92        |          |
| N111/26            | 205      | 294        | < 0.01  | 32        | 630      | 2          | < 2        | 17               | 70        | 0.50    | < 10                    | < 10     | 238                | < 10 | 90        |          |
| N111727            | 205      | 294        | < 0.01  | 27        | 680      | 2          | < 2        | 22               | 38        | 0.47    | < 10                    | < 10     | 262                | < 10 | 106       |          |
| 111728             | 205      | 294        | < 0.01  | 21        | 540      | 2          | < 2        | 6                | 86 <      | 0.01    | < 10                    | < 10     | 100                | < 10 | 56        |          |
| N111729            | 205      | 294        | < 0.01  | 23        | 670      | 2          | < 2        | 25               | 53        | 0.28    | < 10                    | < 10     | 237                | < 10 | 104       |          |
| N111/30            | 205      | 294        |         | 34        | 700      | < A<br>2 3 | < 2        | <b>⊿</b> /<br>22 | 30        | 0.07    | < 10                    | < 10     | <u>∡4</u> /<br>102 | < 10 | 110       |          |
| NIII/JI            | 205      | 474        | < 0.01  | 31        | 720      | × 4        | × 4        | <b>4</b> 3       | <u> </u>  |         | < 10<br>                | < 10     | 193                | < 10 | 01        |          |
| 111732             | 205      | 294        | 0.01    | 31        | 520      | < 2        | < 2        | 25               | 44 <      | 0.01    | < 10                    | < 10     | 163                | < 10 | 70        |          |
| 111736             | 205      | 294        | < 0.01  | 38        | 310      | 4          | < 2        | 19               | 37        | 0.35    | < 10                    | < 10     | 178                | < 10 | 82        |          |
| N111/3/<br>1111720 | 205      | 494<br>204 | < 0.01  | 30        | 300      | < 2<br>2 0 | < 2<br>2 0 | 10               | 1.5       | 0.33    | < 10                    | < 10     | 149                | < 10 | 72        |          |
| 111730<br>111770   | 205      | 204        |         | 3∡<br>31  | 330      | × 4        | 2 2        | 10               | 13        | 0.34    | < 10                    | < 10     | 146                | < 10 | 74        |          |
|                    | 405      | 474        | × 0.01  |           |          | × 4        | × 4        | 7                | +3        | 0.34    | ~ 10                    | <u> </u> | 140                | × 10 | · •       | <u> </u> |
| 111740             | 205      | 294        | 0.01    | 33        | 320      | < 2        | < 2        | 13               | 16        | 0.35    | < 10                    | < 10     | 167                | < 10 | 72        |          |
|                    |          |            |         |           |          |            |            |                  |           |         |                         |          |                    |      |           |          |
|                    |          |            |         |           |          |            |            |                  |           |         |                         |          |                    |      |           |          |
|                    |          |            |         |           |          |            |            |                  |           |         |                         |          |                    |      |           |          |
|                    | 1        |            |         |           |          |            |            |                  |           |         |                         |          |                    |      |           | -        |

CERTIFICATION: Hart Buchler


Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page t :r :1-A Total P. :1 Certificate Date: 05-NOV-96 Invoice No. : 19638238 P.O. Number : Account :MPO

Project : ICE Comments:

#### CERTIFICATE OF ANALYSIS A9638238 \* PLEASE NOTE PREP Cu **A1** As Ba Be Bi Ca Cđ Со Cr Cu Fe Ga Hg ĸ La Mg Au ppb Ag SAMPLE CODE FA+AA 8 ppm 8 ppm ppm ppm ppm 8 ppm ppm ppm ppm 8 ppm ppm 8 pp \* 208 294 N111672 < 5 0.19 < 0.2 3.64 < 2 990 < 0.5 < 2 2.00 2.0 66 84 1755 7.15 10 < 1 0.04 < 10 2.60 N111673 208 294 < 5 0.40 < 0.2 3.72 < 2 520 < 0.5 < 2 1.23 3.5 70 77 3710 9.99 10 1 0.03 < 10 2.52 N111674 208 294 < 5 0.17 < 0.2 3.40 < 2 250 < 0.5 < 2 1.03 1.5 58 42 1505 9.25 10 < 1 0.02 < 10 1.84 N111675 208 294 < 5 0.05 < 0.2 2.84 < 2 80 < 0.5 < 2 1.68 0.5 37 21 331 6.40 10 < 1 0.04 < 10 1.65 208 294 < 5 0.30 < 0.2 2.70 80 < 2 1.50 43 35 2770 7.21 40 < 10 1.94 N111676 8 < 0.5 1.5 1 0.07 < 0.5 208 294 < 5 0.95 < 0.2 3.16 < 2 < 2 1.43 3.0 57 49 9010 8.54 10 < 1 0.05 < 10 1.75 N111677 100 N111678 < 0.2 2.31 < 0.5 1.38 208 294 < 5 0.20 < 2 80 < 2 29 17 1740 6.10 10 < 1 0.10 < 10 1.38 1.5 N111679 208 294 < 5 0.30 < 0.2 2.67 < 2 70 < 0.5 < 2 1.68 3.0 36 19 2820 6.84 10 1 0.10 < 10 1.60 N111680 208 294 100 1.04 1.6 4.66 < 2 60 < 0.5 < 2 0.32 1.0 69 146 9480 9.55 < 10 1 0.05 < 10 1.13 N111681 208 294 570 1.99 8.4 0.34 30 < 10 < 0.5 Intf\* 0.06 1.0 437 66 10000 >15.00 10 < 1 < 0.01 < 10 0.04 N111682 208 294 < 2 135 8110 6.85 < 1 0.05 < 10 2.51 10 0.89 < 0.2 3.97 60 < 0.5 < 2 1.76 4.5 35 10 208 294 < 0.2 70 187 4090 6.99 N111683 < 5 0.46 3.64 12 70 < 0.5 < 2 1.68 12.0 10 1 0.03 < 10 2.67 N111684 208 294 < 5 < 0.2 4.07 < 2 300 < 0.5 < 2 2.89 7.0 63 154 618 6.04 10 < 1 0.03 < 10 2.68 0.09 208 294 0.20 < 0.2 < 0.5 2.67 0.04 2.96 N111685 < 5 3.72 < 2 410 < 2 4.0 54 150 1630 5.43 10 < 1 < 10 N111686 208 294 < 5 0.42 < 0.2 3.68 < 2 110 < 0.5 < 2 2.73 3.5 60 175 3560 5.66 < 10 < 1 0.02 < 10 3.16 N111687 208 294 0.06 < 0.2 4.24 < 2 < 0.5 < 2 3.88 1.5 36 136 574 4.73 10 < 1 0.03 < 10 3.05 < 5 60 208 294 N111688 < 5 0.03 < 0.2 4.38 < 2 50 < 0.5 < 2 4.01 < 0.5 33 163 277 4.70 10 < 1 < 0.01 < 10 3.63 N111689 208 294 < 5 4.18 50 0.06 < 0.2 < 2 < 0.5 < 2 1.99 0.5 39 174 576 4.90 < 10 1 0.04 < 10 3.76 208 294 N111690 < 5 0.09 < 0.2 4.52 170 < 0.5 46 198 905 5.41 < 1 < 0.01 3,98 < 2 < 2 2.57 3.0 10 < 10

**CERTIFICATION:** 

Hart Brokles



**CERTIFICATE OF ANALYSIS** 

Page er :1-B Total s :1 Certificate Date: 05-NOV-96 Invoice No. :19638238 P.O. Number : Account :MPO

A9638238

V6B 1L8 Project : ICE Comments:

VANCOUVER, BC

#### \* PLEASE NOTE

Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

|                                                                | PREP                                                     |                            | Mn                                  | Мо                                                                                                    | Na                                           | Ni                         | P                                 | Pb                                 | Sb                                                                                | Sc                         | Sr                          | Ti                                   | Tl                                                                         | U                                                                          | v                               | W                                                                          | Zn                                |      |       |    |
|----------------------------------------------------------------|----------------------------------------------------------|----------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|-----------------------------------|------------------------------------|-----------------------------------------------------------------------------------|----------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|-----------------------------------|------|-------|----|
| SAMPLE                                                         | CODE                                                     |                            | ppm                                 | ppm                                                                                                   | *                                            | ppm                        | ppm                               | ppm                                | ppm                                                                               | ppm                        | ppm                         | *                                    | ppm                                                                        | ppm                                                                        | ppm                             | ppm                                                                        | ppm                               |      |       |    |
| N111672<br>N111673<br>N111674                                  | 208 2<br>208 2<br>208 2                                  | 94<br>94<br>94             | 1145<br>965<br>785                  | < 1 <<br>< 1 <<br>< 1 <                                                                               | 0.01<br>0.01<br>0.01                         | 38<br>40<br>33             | 420<br>600<br>730                 | 2<br>2<br>2                        | < 2<br>< 2<br>< 2                                                                 | 19<br>25<br>25             | 52<br>24<br>20              | 0.39<br>0.23<br>0.28                 | < 10<br>< 10<br>< 10                                                       | < 10<br>< 10<br>< 10                                                       | 221<br>285<br>292               | < 10<br>< 10<br>< 10                                                       | 978<br>1145<br>1030               |      |       |    |
| N111675<br>N111676                                             | 208 29<br>208 29                                         | 94<br>94                   | 800<br>710                          | < 1 <<br>< 1 <                                                                                        | 0.01<br>0.01                                 | 26<br>25                   | 680<br>740                        | 2<br>4                             | < 2<br>< 2                                                                        | 8<br>16                    | 35<br>43                    | 0.52<br>0.51                         | < 10<br>< 10                                                               | < 10<br>< 10                                                               | 193<br>220                      | < 10<br>< 10                                                               | 354<br>446                        |      |       |    |
| N111677<br>N111678<br>N111679<br>N111680<br>N111681            | 208 29<br>208 29<br>208 29<br>208 29<br>208 29<br>208 29 | 94<br>94<br>94<br>94<br>94 | 730<br>780<br>1015<br>545<br>40     | <pre>&lt; 1 &lt; &lt; 1 &lt; &lt; 1 &lt; &lt; 1 &lt; &lt; 1 &lt; 1 &lt; 1 &lt; 11 &lt;</pre>          | 0.01<br>0.01<br>0.01<br>0.01<br>0.01         | 28<br>23<br>26<br>36<br>15 | 690<br>700<br>670<br>510<br>Intf* | 2<br>2<br>24<br>56                 | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>  | 21<br>6<br>11<br>17<br>2   | 42<br>25<br>19<br>14<br>3 < | 0.39<br>0.50<br>0.53<br>0.08<br>0.01 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>10                                 | 255<br>176<br>210<br>232<br>153 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 1240<br>272<br>514<br>848<br>768  |      |       |    |
| N111682<br>N111683<br>N111684<br>N111685<br>N111685<br>N111686 | 208 29<br>208 29<br>208 29<br>208 29<br>208 29<br>208 29 | 94<br>94<br>94<br>94<br>94 | 870<br>1055<br>1055<br>1105<br>1210 | <pre>&lt; 1 &lt;     </pre> < 1 <  < 1 <  < 1 <  < 1 <  < 1 <  < 1 < < 1 <                            | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 53<br>67<br>61<br>63<br>64 | 270<br>260<br>230<br>230<br>240   | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>2 | <pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 12<br>15<br>12<br>12<br>16 | 17<br>29<br>12<br>12<br>9   | 0.21<br>0.23<br>0.24<br>0.25<br>0.25 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 126<br>151<br>147<br>133<br>144 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 572<br>1905<br>1380<br>788<br>860 |      |       |    |
| N111687<br>N111688<br>N111689<br>N111690                       | 208 29<br>208 29<br>208 29<br>208 29                     | 94<br>94<br>94<br>94       | 1100<br>1015<br>855<br>925          | <pre>&lt; 1 &lt; 1 &lt; &lt; 1 &lt; &lt; 1 &lt; &lt; 1 &lt; &lt; 1 &lt; &lt; 1 &lt; &lt; 1 &lt;</pre> | 0.01<br>0.01<br>0.01<br>0.01                 | 65<br>63<br>63<br>67       | 240<br>240<br>220<br>220          | 2<br>< 2<br>< 2<br>< 2<br>< 2      | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>                       | 11<br>11<br>10<br>16       | 10<br>11<br>5<br>9          | 0.23<br>0.26<br>0.25<br>0.26         | < 10<br>< 10<br>< 10<br>< 10<br>< 10                                       | < 10<br>< 10<br>< 10<br>< 10<br>< 10                                       | 123<br>141<br>126<br>153        | < 10<br>< 10<br>< 10<br>< 10                                               | 270<br>140<br>260<br>528          |      |       |    |
|                                                                |                                                          |                            |                                     |                                                                                                       |                                              |                            |                                   |                                    |                                                                                   |                            |                             |                                      |                                                                            |                                                                            |                                 |                                                                            |                                   |      |       |    |
|                                                                |                                                          |                            |                                     |                                                                                                       |                                              |                            |                                   |                                    |                                                                                   |                            |                             |                                      |                                                                            |                                                                            |                                 |                                                                            |                                   |      |       |    |
|                                                                |                                                          |                            |                                     |                                                                                                       |                                              |                            |                                   |                                    |                                                                                   |                            |                             |                                      |                                                                            |                                                                            |                                 |                                                                            |                                   |      |       |    |
|                                                                |                                                          |                            |                                     |                                                                                                       |                                              |                            |                                   |                                    |                                                                                   |                            |                             |                                      |                                                                            |                                                                            |                                 |                                                                            |                                   |      |       |    |
|                                                                |                                                          |                            |                                     |                                                                                                       |                                              |                            |                                   |                                    |                                                                                   |                            |                             |                                      |                                                                            |                                                                            |                                 |                                                                            |                                   |      |       | ĺ  |
|                                                                |                                                          |                            |                                     |                                                                                                       |                                              |                            |                                   |                                    |                                                                                   |                            |                             |                                      |                                                                            |                                                                            |                                 |                                                                            |                                   |      |       |    |
|                                                                |                                                          |                            |                                     |                                                                                                       |                                              |                            |                                   |                                    |                                                                                   |                            |                             |                                      |                                                                            |                                                                            |                                 |                                                                            |                                   |      | •     |    |
|                                                                |                                                          |                            |                                     |                                                                                                       |                                              |                            |                                   |                                    |                                                                                   |                            |                             |                                      |                                                                            |                                                                            |                                 |                                                                            |                                   | tart | sicht | 20 |

CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

>: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ər : 1-A Total ۲هـرجة : 1 Certificate Date: 04-NOV-96 Invoice No. : 19638237 P.O. Number : MPO Account

ICE Project : Comments:

| <u></u>                                                        |                                                                           |                                                             |                                              |                                               |                                 |                                                    |                                               |                                              |                                                    | CE                               | RTIFI                            | CATE                             | OF A                                         | NALY                               | 'SIS                                                                                                                                          | A9638                                                                      | 3237                                         |                                           |                                                      |
|----------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|---------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------------|
| SAMPLE                                                         | PREP<br>CODE                                                              | Ag<br>ppm                                                   | A1<br>%                                      | As<br>ppm                                     | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                                     | Ca<br>%                                      | Cđ<br>ppm                                          | Co<br>ppm                        | Cr<br>ppm                        | Cu<br>ppm                        | Fe<br>%                                      | Ga<br>ppm                          | Hg )<br>ppm 9                                                                                                                                 | La<br>ppm                                                                  | Mg<br>%                                      | Mn<br>ppm                                 | Mo<br>ppm                                            |
| N111667<br>N111668<br>N111669<br>N111670<br>N111671<br>N111691 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.45<br>3.52<br>3.61<br>3.23<br>3.17<br>3.97 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 320<br>390<br>420<br>250<br>580 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 3.57<br>3.93<br>4.03<br>3.26<br>2.99<br>2.74 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 28<br>28<br>29<br>26<br>26<br>26 | 32<br>63<br>51<br>34<br>29<br>95 | 76<br>50<br>66<br>67<br>78<br>73 | 6.52<br>5.96<br>6.21<br>5.32<br>5.50<br>3.86 | 10<br>10<br>10<br>10<br>10<br>< 10 | <pre>&lt; 1 &lt; 0.0<br/>&lt; 1 &lt; 0.0<br/>&lt; 1 &lt; 0.0<br/>1 &lt; 0.0<br/>&lt; 1 &lt; 0.0<br/>&lt; 1 &lt; 0.0<br/>&lt; 1 &lt; 0.0</pre> | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 2.50<br>2.57<br>2.12<br>1.85<br>2.00<br>2.84 | 1355<br>1100<br>1140<br>940<br>910<br>895 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111692<br>N111693<br>N111694<br>N111695                       | 205 294<br>205 294<br>205 294<br>205 294                                  | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2                            | 4.42<br>4.64<br>3.92<br>3.72                 | < 2<br>2<br>< 2<br>< 2<br>< 2                 | 150<br>540<br>510<br>550        | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5                   | < 2<br>< 2<br>< 2<br>< 2                      | 4.10<br>3.33<br>2.39<br>2.33                 | < 0.5<br>3.0<br>4.0<br>3.0                         | 34<br>91<br>69<br>62             | 141<br>180<br>146<br>113         | 79<br>122<br>122<br>134          | 4.39<br>7.05<br>6.61<br>6.10                 | 10<br>10<br>10<br>10               | < 1 0.04<br>< 1 0.05<br>< 1 0.05<br>< 1 < 0.05                                                                                                | < 10<br>< 10<br>< 10<br>< 10<br>< 10                                       | 2.80<br>3.12<br>3.07<br>2.98                 | 1400<br>1895<br>1255<br>1090              | < 1<br>< 1<br>< 1<br>< 1                             |
| N111696<br>N111697<br>N111698<br>N111699<br>N111700            | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294            | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 3.76<br>4.47<br>3.21<br>3.07<br>3.39         | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 50<br>950<br>30<br>60<br>50     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 3,50<br>4,06<br>2,77<br>2,29<br>2,15         | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 24<br>36<br>23<br>22<br>22       | 104<br>151<br>57<br>80<br>93     | 90<br>368<br>84<br>80<br>84      | 4.39<br>5.48<br>5.37<br>4.97<br>6.02         | 10<br>10<br>10<br>10<br>10         | <pre>&lt; 1 0.04 &lt; 1 0.03 &lt; 1 &lt; 0.03 &lt; 1 &lt; 0.03 &lt; 1 &lt; 0.03 &lt; 1 &lt; 0.03 </pre>                                       | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 2.40<br>3.19<br>2.01<br>2.44<br>2.63         | 1255<br>1495<br>645<br>665<br>650         | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1               |
| W111701                                                        | 205 294                                                                   | 0.8                                                         | 3.93                                         | < 2                                           | 40                              | < 0.5                                              | < 2                                           | 2.28                                         | 2.0                                                | 33                               |                                  | 384                              | 7.65                                         | 10                                 | < 1 0.04                                                                                                                                      | . < 10                                                                     | 3.17                                         | 795                                       | < 1                                                  |

Hart Brokles CERTIFICATION:\_



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page i ar : 1-B Total Page i 1 Certificate Date: 04-NOV-96 Invoice No. : 19638237 P.O. Number : Account : MPO

Project : ICE Comments:

Г

|                                                                |                                                    |                                 |                                                          |                            |                                 |                                        |                                        |                            |                            | 1                                    | CE                                           | RTIF                                         | CATE                            | OF A                                         | NALYSIS                            | A9638237 |
|----------------------------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------------|----------------------------|---------------------------------|----------------------------------------|----------------------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|------------------------------------|----------|
| SAMPLE                                                         | PREP<br>CODE                                       | ,<br>;                          | Na<br>%                                                  | Ni<br>ppm                  | p<br>ppm                        | Pb<br>ppm                              | Sb<br>ppm                              | Sc<br>ppm                  | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                          |          |
| N111667<br>N111668<br>N111669<br>N111670<br>N111671            | 205 2<br>205 2<br>205 2<br>205 2<br>205 2<br>205 2 | 94<br>94<br>94<br>94<br>94      | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 30<br>34<br>37<br>35<br>33 | 510<br>440<br>480<br>480<br>460 | 2<br>< 2<br>2<br>2<br>2                | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 19<br>21<br>19<br>13<br>12 | 14<br>35<br>22<br>30<br>33 | 0.47<br>0.36<br>0.37<br>0.40<br>0.41 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 192<br>189<br>205<br>172<br>177 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 90<br>74<br>82<br>78<br>94         |          |
| N111691<br>N111692<br>N111693<br>N111694<br>N111695            | 205 2<br>205 2<br>205 2<br>205 2<br>205 2<br>205 2 | 94<br>94<br>94<br>94<br>94      | < 0.01<br>0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01   | 63<br>66<br>86<br>63<br>60 | 220<br>230<br>270<br>320<br>240 | < 2<br>< 2<br>< 2<br>2<br>2<br>2       | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 7<br>10<br>17<br>15<br>12  | 9<br>12<br>11<br>53<br>47  | 0.22<br>0.21<br>0.24<br>0.30<br>0.27 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 88<br>103<br>140<br>152<br>126  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 212<br>276<br>1845<br>1155<br>1390 |          |
| N111696<br>N111697<br>N111698<br>N111699<br>N111699<br>N111700 | 205 2<br>205 2<br>205 2<br>205 2<br>205 2<br>205 2 | 194<br>194<br>194<br>194<br>194 | 0.01<br>< 0.01<br>< 0.01<br>0.01<br>0.01                 | 62<br>72<br>30<br>34<br>35 | 250<br>340<br>360<br>350<br>360 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 9<br>12<br>6<br>6<br>7     | 49<br>21<br>7<br>10<br>8   | 0.22<br>0.20<br>0.29<br>0.31<br>0.28 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 111<br>133<br>156<br>132<br>139 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 92<br>168<br>152<br>212<br>322     |          |
| ¥111701                                                        | 205 2                                              | 94                              | < 0.01                                                   | 47                         | 360                             | 10                                     | < 2                                    | 12                         | 12                         | 0.35                                 | < 10                                         | < 10                                         | 169                             | < 10                                         | 1025                               | •        |

CERTIFICATION: JantBuchler



Page er:1-A Total Funds 1 Certificate Date: 04-NOV-96 Invoice No. : 19638236 P.O. Number : MPO Account

Project : ICE Comments:

|                                                     |                                        |                                        |                                                    |                                      |                                       |                                |                                                    |                                                      |                                      |                                                    | CE                         | RTIFI                      | CATE                       | OF A                                 | NALY                       | SIS                                    | /                                      | 49638                                        | 236                                  |                                      | <u> </u>                               |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|---------------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|
| SAMPLE                                              | PRI<br>COI                             | ep<br>De                               | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                             | Ba<br>ppm                      | Be<br>ppm                                          | Bi<br>ppm                                            | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                  | Cu<br>ppm                  | Fe<br>%                              | Ga<br>ppm                  | Hg<br>ppm                              | K<br>%                                 | La<br>ppm                                    | Mg<br>%                              | Min<br>ppm                           | No<br>ppm                              |
| N111656<br>N111657<br>N111658<br>N111659<br>N111660 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294        | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.96<br>4.71<br>2.29<br>3.73<br>4.11 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>12 | 360<br>100<br>360<br>300<br>90 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 5.29<br>2.45<br>7.43<br>4.06<br>2.90 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 34<br>39<br>16<br>33<br>37 | 64<br>42<br>71<br>64<br>86 | 62<br>59<br>42<br>70<br>74 | 7.23<br>9.03<br>4.73<br>7.01<br>7.12 | 10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.02<br>0.04<br>0.06<br>0.07<br>0.07   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.68<br>2.90<br>1.26<br>2.27<br>2.65 | 1655<br>1580<br>1700<br>1625<br>1280 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        |
| N111661<br>N111662<br>N111663<br>N111664<br>N111665 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.94<br>3.48<br>2.23<br>3.65<br>2.90 | 6<br>< 2<br>2<br>< 2<br>< 2<br>< 2    | 80<br>60<br>90<br>80<br>60     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 4.62<br>5.09<br>4.90<br>3.73<br>2.39 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 35<br>32<br>19<br>33<br>29 | 85<br>78<br>73<br>18<br>21 | 71<br>77<br>93<br>64<br>55 | 7.29<br>6.89<br>5.71<br>7.64<br>6.47 | 10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.03<br>0.05<br>0.03<br>0.01<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.45<br>2.43<br>1.13<br>2.34<br>1.95 | 1580<br>1380<br>1060<br>1570<br>1130 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111666                                             | 208                                    | 294                                    | < 0.2                                              | 2.87                                 | < 2                                   | 260                            | < 0.5                                              | < 2                                                  | 3.12                                 | < 0.5                                              | 28                         | 20                         | 62                         | 6.15                                 | 10                         | < 1 <                                  | < 0.01                                 | < 10                                         | 2.07                                 | 1125                                 | < 1                                    |
|                                                     |                                        |                                        |                                                    |                                      |                                       |                                |                                                    |                                                      |                                      |                                                    |                            |                            |                            |                                      |                            |                                        |                                        |                                              |                                      |                                      |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                       |                                |                                                    |                                                      |                                      |                                                    |                            |                            |                            |                                      |                            |                                        |                                        |                                              |                                      |                                      |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                       |                                |                                                    |                                                      |                                      |                                                    |                            |                            |                            |                                      |                            |                                        |                                        |                                              |                                      |                                      |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                       |                                |                                                    |                                                      |                                      |                                                    |                            |                            |                            |                                      |                            |                                        |                                        |                                              |                                      |                                      |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                       |                                |                                                    |                                                      |                                      |                                                    |                            |                            |                            |                                      |                            |                                        |                                        |                                              |                                      |                                      |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                       |                                |                                                    |                                                      |                                      |                                                    |                            | ·                          |                            |                                      |                            |                                        |                                        |                                              | e                                    |                                      |                                        |

CERTIFICATION: HartBuchler



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page I r : 1-B Total Pages : 1 Certificate Date: 04-NOV-96 Invoice No. : 19638236 P.O. Number • Account : MPO

Project : Comments: ICE

Г

|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             | · · · · · · · · · · · · · · · · · · · |                            |                                              | CE                                           | RTIFI                                                | CATE                            | OF A                                                 | NALYSIS                      | A9638236     |
|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|----------------------------|----------------------------------|-----------------------------------------------------|-------------------------------------------------------------|---------------------------------------|----------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------|---------------------------------|------------------------------------------------------|------------------------------|--------------|
| SAMPLE                                    | PRE<br>COD                             | P<br>E                                 | Na<br>%                          | Ni<br>ppm                  | P<br>ppm                         | Pb<br>ppm                                           | Sb<br>ppm                                                   | Sc<br>ppm                             | Sr<br>ppm                  | Tİ<br>%                                      | T1<br>ppm                                    | U<br>ppm                                             | V<br>ppm                        | W<br>ppm                                             | Zn<br>ppm                    |              |
| 11656<br>11657<br>11658<br>11659<br>11660 | 208<br>208<br>208<br>208<br>208        | 294<br>294<br>294<br>294<br>294        | < 0.01<br>< 0.01<br>0.01<br>0.01 | 38<br>31<br>23<br>40       | 630<br>820<br>860<br>760         | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2              | < 2<br>< 2<br>< 2<br>< 2<br>< 2                             | 18<br>22<br>10<br>21<br>25            | 20<br>11<br>38<br>31<br>25 | 0.11<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10                 | 224<br>276<br>130<br>212<br>213 | < 10<br>< 10<br>< 10<br>< 10<br>< 10                 | 94<br>118<br>48<br>102<br>94 |              |
| 11661<br>11662<br>11663<br>11664<br>11665 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294<br>294 | <pre></pre>                      | 47<br>42<br>24<br>22<br>17 | 600<br>640<br>1110<br>700<br>640 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 26<br>21<br>11<br>22<br>11            | 51<br>39<br>17<br>49<br>37 | 0.27<br>0.34<br>0.16<br>0.33<br>0.47         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 243<br>239<br>177<br>265<br>188 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 98<br>92<br>74<br>106<br>94  |              |
| 1666                                      | 208                                    | 294                                    | < 0.01                           | 23                         | 630                              | 2                                                   | < 2                                                         | 10                                    | 37                         | 0.50                                         | < 10                                         | < 10                                                 | 175                             | < 10                                                 | 88                           |              |
|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              |              |
|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              |              |
|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              |              |
|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              |              |
|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              |              |
|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              |              |
|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              |              |
|                                           |                                        |                                        |                                  |                            |                                  |                                                     |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              |              |
|                                           |                                        |                                        |                                  |                            |                                  | <u>.</u>                                            |                                                             |                                       |                            |                                              |                                              |                                                      |                                 |                                                      |                              | tr. J. Bull. |

CERTIFICATION:\_



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 **J: EXPATRIATE RESOURCES LTD.** C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er : 1-A Total Fagues : 1 Certificate Date: 04-NOV-96 Invoice No. : 19638232 P.O. Number : : MPO Account

ICE Project : Comments:

|                                                     | _                                      |                                        |                                                    |                                      |                                               |                                 |                                                    |                                                      |                                      |                                                  | CE                         | RTIFI                        | CATE                          | OF A                                 | NALY                       | 'SIS                                   | /                                      | 49638                                        | 232                                  | - <u> </u>                         |                                               |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------|----------------------------------------------------|------------------------------------------------------|--------------------------------------|--------------------------------------------------|----------------------------|------------------------------|-------------------------------|--------------------------------------|----------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------|-----------------------------------------------|
| SAMPLE                                              | PRI<br>CO                              | ep<br>D <b>e</b>                       | Åg<br>ppm                                          | A1<br>%                              | As<br>ppm                                     | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                                            | Ca<br>%                              | Cđ<br>ppm                                        | Co<br>ppm                  | Cr<br>ppm                    | Cu<br>ppm                     | Fe<br>%                              | Ga<br>ppm                  | Hg<br>ppm                              | K<br>%                                 | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                          | Mo<br>ppm                                     |
| N110223<br>N110224<br>N110225<br>N110226<br>N110227 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 4.17<br>3.73<br>3.96<br>3.72<br>3.40 | < 2<br>2<br>< 2<br>< 2<br>< 2<br>< 2          | 50<br>320<br>140<br>410<br>460  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 1.83<br>1.75<br>3.59<br>2.02<br>2.15 | 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 34<br>41<br>27<br>26<br>27 | 76<br>89<br>96<br>60<br>66   | 105<br>148<br>84<br>72<br>154 | 6.81<br>6.57<br>5.54<br>5.41<br>5.57 | 10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.01<br>< 0.01<br>0.04<br>0.08<br>0.03 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.66<br>3.56<br>2.63<br>3.16<br>2.83 | 950<br>1060<br>820<br>905<br>1110  | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N110228<br>N110229<br>N110230<br>N110231<br>N110232 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.56<br>3.38<br>3.42<br>3.47<br>4.08 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 170<br>120<br>110<br>150<br>980 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.66<br>2.54<br>2.74<br>2.79<br>3.56 | < 0.5<br>< 0.5<br>< 0.5<br>0.5<br>4.5            | 30<br>30<br>34<br>31<br>77 | 82<br>64<br>100<br>75<br>109 | 80<br>71<br>107<br>79<br>79   | 5.38<br>5.65<br>5.95<br>4.73<br>7.14 | 10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.04<br>0.04<br>0.05<br>0.09<br>0.04   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.06<br>2.55<br>3.02<br>2.50<br>3.30 | 1050<br>915<br>1050<br>825<br>1305 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        |
| N110233<br>N110234<br>N110235                       | 208                                    | 294<br>294<br>294                      | < 0.2<br>< 0.2<br>< 0.2                            | 3.76<br>4.04<br>1.38                 | < 2<br>< 2<br>< 2                             | 140<br>150<br>300               | < 0.5<br>< 0.5<br>< 0.5                            | < 2 < 2 < 2 < 2                                      | 3.77<br>3.90<br>13.95                | < 0.5<br>< 0.5<br>< 0.5                          | 35<br>29<br>19             | 77<br>133<br>39              | 79<br>81<br>28                | 6.41<br>4.24<br>3.58                 | 10<br>< 10<br>< 10         | < 1<br>< 1<br>< 1                      | 0.01<br>0.12<br>0.08                   | < 10<br>< 10<br>< 10                         | 2.83<br>2.51<br>3.37                 | 1100<br>915<br>2450                | < 1 < 1 < 1 < 1                               |

**CERTIFICATION:** 

tart Buchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ⇒er ∶1-B Total Huges 1 Certificate Date: 04-NOV-96 Invoice No. P.O. Number :19638232 • : MPO Account

Project : Comments: ICE

|                                                     |                                        |                                 |                                                |                            |                                 |                                    |                                               |                           |                            |                                      | CE                                           | RTIF                                         | CATE                            | OF A                                         | NALYSIS                         | A9638232 |
|-----------------------------------------------------|----------------------------------------|---------------------------------|------------------------------------------------|----------------------------|---------------------------------|------------------------------------|-----------------------------------------------|---------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------|----------|
| SAMPLE                                              | PR<br>CO                               | EP<br>DE                        | Na<br>%                                        | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                          | Sb<br>ppm                                     | Sc<br>ppm                 | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                       |          |
| N110223<br>N110224<br>N110225<br>N110226<br>N110227 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 33<br>39<br>42<br>35<br>39 | 350<br>320<br>320<br>340<br>320 | 2<br>2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 14<br>14<br>10<br>9<br>8  | 11<br>19<br>15<br>24<br>29 | 0.39<br>0.37<br>0.29<br>0.35<br>0.31 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 204<br>180<br>129<br>171<br>144 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 370<br>388<br>102<br>130<br>228 |          |
| N110228<br>N110229<br>N110230<br>N110231<br>N110232 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 41<br>37<br>51<br>58<br>53 | 320<br>380<br>390<br>310<br>360 | 2<br>2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 11<br>10<br>20<br>8<br>24 | 35<br>14<br>38<br>26<br>33 | 0.41<br>0.37<br>0.28<br>0.30<br>0.28 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 157<br>167<br>187<br>129<br>216 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 86<br>110<br>112<br>156<br>642  |          |
| N110233<br>N110234<br>N110235                       | 208<br>208<br>208                      | 294<br>294<br>294               | < 0.01<br>0.01<br>0.01                         | 42<br>73<br>24             | 380<br>240<br>140               | 2<br>< 2<br>< 2                    | < 2<br>< 2<br>< 2                             | 20<br>10<br>12            | 30<br>24<br>108 <          | 0.36<br>0.17<br>0.01                 | < 10<br>< 10<br>< 10                         | < 10<br>< 10<br>< 10                         | 194<br>108<br>84                | < 10<br>< 10<br>< 10                         | 102<br>76<br>54                 |          |
|                                                     |                                        |                                 |                                                |                            |                                 |                                    |                                               |                           |                            |                                      |                                              |                                              |                                 |                                              |                                 |          |
|                                                     | :<br>:<br>:                            |                                 |                                                |                            |                                 |                                    |                                               |                           |                            |                                      |                                              |                                              |                                 |                                              |                                 |          |
|                                                     |                                        |                                 |                                                |                            |                                 |                                    |                                               |                           |                            |                                      |                                              |                                              |                                 |                                              |                                 |          |
|                                                     |                                        |                                 |                                                |                            |                                 |                                    |                                               |                           |                            |                                      |                                              |                                              |                                 |                                              |                                 |          |
|                                                     |                                        |                                 |                                                |                            |                                 |                                    |                                               |                           |                            |                                      |                                              |                                              |                                 |                                              |                                 |          |
|                                                     |                                        |                                 |                                                |                            |                                 |                                    |                                               |                           |                            |                                      |                                              |                                              |                                 |                                              |                                 |          |

Jait Bichler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8 Page er :1 Total F. J.-s :1 Certificate Date: 30-OCT-96 Invoice No. :19638033 P.O. Number : Account :MPO

Project : ICE Comments:

E

|                                                     |                                                      |                                                                    |                                      |  | CERTIFIC | ATE OF / | ANALYSIS | A96   | 38033  |   |
|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|--|----------|----------|----------|-------|--------|---|
| SAMPLE                                              | PREP<br>CODE                                         | Au ppb<br>FA+AA                                                    | Cu<br>%                              |  |          |          |          |       |        | - |
| N110215<br>N110216<br>N110217<br>N110218<br>N111534 | 244<br>244<br>244<br>244<br>244                      | < 5<br>100<br>25<br>20<br>< 5                                      | 0.02<br>0.22<br>0.45<br>0.32<br>0.15 |  |          |          |          |       |        |   |
| N111535<br>N111536<br>N111537<br>N111538<br>N111539 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 0.21<br>0.28<br>0.39<br>0.62<br>0.37 |  |          |          |          |       |        |   |
| N111540<br>N111541<br>N111542<br>N111543<br>N111544 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 20<br>< 5<br>< 5<br>30<br>10                                       | 0.47<br>0.46<br>0.17<br>0.58<br>0.36 |  |          |          |          |       |        |   |
| N111545<br>N111546<br>N111547<br>N111548<br>N111549 | 244<br>244<br>244<br>244<br>244                      | 15<br>< 5<br>5<br>< 5<br>< 5                                       | 0.29<br>0.10<br>0.13<br>0.34<br>0.28 |  |          |          |          |       |        |   |
| N111550                                             | 244                                                  | < 5                                                                | 0.04                                 |  |          |          |          |       |        |   |
|                                                     |                                                      |                                                                    |                                      |  |          |          |          |       |        |   |
|                                                     |                                                      |                                                                    |                                      |  |          |          |          |       |        |   |
|                                                     |                                                      |                                                                    |                                      |  |          |          |          |       |        |   |
|                                                     |                                                      |                                                                    |                                      |  |          |          |          | - Sar | A Cein | a |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Invoice No. P.O. Number :19638031 : Account : MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

|                                                     |                                        |            |                                                             |                                      | C | ERTIFIC | ATE OF A | NALYSIS | A96                   | 38031 |     |
|-----------------------------------------------------|----------------------------------------|------------|-------------------------------------------------------------|--------------------------------------|---|---------|----------|---------|-----------------------|-------|-----|
| SAMPLE                                              | P<br>C                                 | REP<br>ODE | Au ppb<br>FA+AA                                             | Cu<br>%                              |   |         |          |         |                       |       |     |
| N111551<br>N111552<br>N111553<br>N111554<br>N111555 | 244<br>244<br>244<br>244<br>244        |            | <br><br><br><br><br><br><br><br>                            | 0.26<br>0.27<br>0.43<br>0.16<br>0.15 |   |         |          |         |                       |       |     |
| N111556<br>N111557<br>N111558<br>N111559<br>N111560 | 244<br>244<br>244<br>244<br>244<br>244 |            | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | 0.14<br>0.11<br>0.07<br>0.08<br>0.20 |   |         |          |         |                       |       |     |
|                                                     |                                        |            |                                                             |                                      |   |         |          |         |                       |       |     |
|                                                     |                                        |            |                                                             |                                      |   |         |          |         |                       |       |     |
|                                                     |                                        |            |                                                             |                                      |   |         |          |         |                       |       |     |
|                                                     |                                        |            |                                                             |                                      |   |         |          |         |                       |       |     |
|                                                     |                                        |            |                                                             |                                      |   |         |          |         |                       |       |     |
|                                                     |                                        |            |                                                             |                                      |   |         |          |         |                       |       |     |
|                                                     |                                        |            |                                                             |                                      |   |         |          |         | -                     | 1-1-  |     |
|                                                     |                                        |            |                                                             |                                      |   |         | c        |         | $_{t}$ $\Delta a_{t}$ | O Lel | ngP |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC V6B 1L8 Page er : 1 Total Fages : 1 Certificate Date: 28-OCT-96 Invoice No. : 19637500 P.O. Number : Account : MPO

Project : ICE Comments:

|                                                     |                                 |                                                                     |                                      | С | ERTIFIC | ATE OF A | NALYSIS | A96 | 37500 |  |
|-----------------------------------------------------|---------------------------------|---------------------------------------------------------------------|--------------------------------------|---|---------|----------|---------|-----|-------|--|
| SAMPLE                                              | PREP<br>CODE                    | Au ppb<br>FA+AA                                                     | Cu<br>%                              |   |         |          |         |     |       |  |
| N111487<br>N111488<br>N111489<br>N111490<br>N111491 | 244<br>244<br>244<br>244<br>244 | <pre></pre>                                                         | 0.21<br>0.24<br>0.42<br>0.35<br>0.21 |   |         |          |         |     |       |  |
| N111492<br>N111493<br>N111494<br>N111495<br>N111496 | 244<br>244<br>244<br>244<br>244 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre> | 0.35<br>0.21<br>0.53<br>0.34<br>0.28 |   |         |          |         |     |       |  |
| N111497<br>N111498<br>N111499                       | 244<br>244<br>244               | 5<br>5<br>5<br>5                                                    | 1.61<br>0.19<br>0.17                 |   |         |          |         |     | ł     |  |

Oard Leingt



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er :1 Total Fugas 1 Certificate Date: 28-OCT-96 Invoice No. : 19637499 P.O. Number • : MPO Account

ICE Project : Comments:

|                                                     |                                        |                                                         |                                      | CE | RTIFIC | ATE OF A | NALYSIS      | A96 | 37499 |      |
|-----------------------------------------------------|----------------------------------------|---------------------------------------------------------|--------------------------------------|----|--------|----------|--------------|-----|-------|------|
| SAMPLE                                              | PREP<br>CODE                           | Au ppb<br>FA+AA                                         | Cu<br>%                              |    |        |          |              |     |       |      |
| N111503<br>N111504<br>N111505<br>N111506<br>N111507 | 244<br>244<br>244<br>244<br>244        | < 5<br>15<br>15<br>40<br>25                             | 0.14<br>0.13<br>0.14<br>0.65<br>0.28 |    |        |          |              |     |       |      |
| N111508<br>N111509<br>N111510<br>N111511<br>N111512 | 244<br>244<br>244<br>244<br>244<br>244 | 60<br>30<br>15<br>10<br>90                              | 0.40<br>0.36<br>0.27<br>0.25<br>1.18 |    |        |          |              |     |       |      |
| N111515<br>N111516<br>N111517<br>N111518<br>N111519 | 244<br>244<br>244<br>244<br>244        | <pre>&lt; 5 &lt; 5 15 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | 0.19<br>0.10<br>1.00<br>0.19<br>0.20 |    |        |          |              |     |       |      |
| N111520<br>N111521<br>N111522<br>N111523<br>N111524 | 244<br>244<br>244<br>244<br>244        | <pre>&lt; 5 25 &lt; 5 10 10</pre>                       | 0.09<br>0.23<br>0.27<br>0.09<br>0.14 |    |        |          |              |     |       |      |
| N111525<br>N111526<br>N111527<br>N111528            | 244<br>244<br>244<br>244               | < 5<br>10<br>< 5<br>< 5                                 | 0.10<br>0.29<br>0.01<br>0.01         |    |        |          |              |     |       |      |
|                                                     |                                        |                                                         |                                      |    |        |          |              |     |       |      |
|                                                     |                                        |                                                         |                                      |    |        | C        | ERTIFICATION |     | rd le | 1190 |

\_



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada\_ North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Invoice No. :19637434 P.O. Number : : MPO Account

ICE Project : Comments:

.....

#### **CERTIFICATE OF ANALYSIS** A9637434

| SAMPLE                                              | PREP<br>CODE                                        | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                  | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                       | Ca<br>%                              | Cđ<br>ppm                           | Co<br>ppm                   | Cr<br>ppm                   | Cu<br>ppm                   | Fe<br>%                              | Ga<br>ppm                    | Hg<br>ppm                       | K<br>%                                 | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                           | Mo<br>ppm                                     |
|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------|---------------------------------|----------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------|------------------------------|---------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------|
| N111647<br>N111648<br>N111649<br>N111650<br>N111651 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.53<br>2.91<br>2.94<br>3.36<br>1.87 | 16<br>10<br>12<br>24<br>26 | 100<br>260<br>260<br>270<br>200 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 2<br>2<br>2<br>2<br>< 2         | 1.63<br>1.93<br>1.87<br>1.88<br>7.05 | 1.0<br>< 0.5<br>0.5<br>6.5<br>< 0.5 | 90<br>38<br>63<br>141<br>73 | 107<br>46<br>61<br>83<br>49 | 114<br>71<br>93<br>86<br>51 | 7.16<br>5.56<br>6.48<br>8.97<br>6.35 | 10<br>10<br>10<br>10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.01<br>0.01<br>0.01<br>< 0.01<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.67<br>2.19<br>2.17<br>2.45<br>3.08 | 1210<br>805<br>1015<br>1435<br>1905 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111652<br>N111653<br>N111654<br>N111655            | 205 294<br>205 294<br>205 294<br>205 294            | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2                   | 2.03<br>3.23<br>2.59<br>1.57         | 16<br>10<br>22<br>16       | 170<br>200<br>220<br>310        | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5                   | < 2<br>< 2<br>< 2<br>< 2<br>< 2 | 6.90<br>2.34<br>5.89<br>5.22         | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5    | 56<br>47<br>36<br>21        | 32<br>62<br>58<br>55        | 54<br>68<br>63<br>62        | 5.74<br>8.32<br>7.17<br>4.11         | < 10<br>10<br>10<br>< 10     | < 1<br>< 1<br>< 1<br>< 1        | 0.08<br>0.08<br>0.06<br>0.08           | < 10<br>< 10<br>< 10<br>< 10                 | 2.78<br>2.11<br>3.03<br>2.48         | 1760<br>745<br>1265<br>1025         | < 1<br>< 1<br>< 1<br>< 1                      |
|                                                     |                                                     |                                                    |                                      |                            |                                 |                                                    |                                 |                                      |                                     |                             |                             |                             |                                      |                              |                                 |                                        |                                              |                                      |                                     |                                               |
|                                                     |                                                     |                                                    |                                      |                            |                                 |                                                    |                                 |                                      |                                     |                             |                             |                             |                                      |                              |                                 |                                        |                                              |                                      |                                     |                                               |



Analytical Chemists \* Geochemists \* Registered Assayers

| 212 Brooksbank Ave.,    | North Vancouver   |
|-------------------------|-------------------|
| British Columbia, Canad | la V7J2C1         |
| PHONE: 604-984-0221     | FAX: 604-984-0218 |

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page per : 1-B Total page : 1 Certificate Date: 29-OCT-96 Invoice No. P.O. Number :19637434 : MPO Account

| Project : | ICE |
|-----------|-----|
| Comments: |     |

### **CERTIFICATE OF ANALYSIS**

A9637434

| SAMPLE                                              | PREP                                                           | Na<br>%                                | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                            | Sb<br>ppm                                     | Sc<br>ppm                  | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>Pom                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                        |      |     |      |   |     |
|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------|----------------------------|---------------------------------|--------------------------------------|-----------------------------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|----------------------------------|------|-----|------|---|-----|
| N111647<br>N111648<br>N111649<br>N111650<br>N111651 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | 0.01<br>0.01<br>0.01<br>< 0.01<br>0.01 | 52<br>33<br>39<br>46<br>38 | 360<br>410<br>510<br>500<br>350 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 25<br>13<br>20<br>32<br>20 | 20<br>25<br>21<br>12<br>79 | 0.25<br>0.35<br>0.29<br>0.38<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 171<br>146<br>178<br>243<br>119 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 632<br>152<br>448<br>1260<br>486 |      |     |      |   |     |
| N111652<br>N111653<br>N111654<br>N111655            | 205 294<br>205 294<br>205 294<br>205 294                       | 0.01<br>0.01<br>0.01                   | 68<br>44<br>37<br>32       | 430<br>730<br>520<br>280        | < 2<br>< 2<br>< 2<br>2               | < 2<br>< 2<br>6<br>< 2                        | 21<br>29<br>22<br>11       | 68 <<br>30<br>76<br>74 <   | 0.01<br>0.03<br>0.03                 | < 10<br>< 10<br>< 10<br>< 10                 | < 10<br>< 10<br>< 10<br>< 10                 | 122<br>240<br>172<br>75         | < 10<br>< 10<br>< 10<br>< 10                 | 66<br>106<br>150<br>104          |      |     |      |   |     |
|                                                     |                                                                |                                        |                            |                                 |                                      |                                               |                            |                            |                                      |                                              |                                              |                                 |                                              |                                  | 1011 | Ita | J.L. | · | فمر |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Page Jer : 1-A Total المربعة : 1 Certificate Date: 30-OCT-96 Invoice No. : 19637433 P.O. Number : Account : MPO

Project : ICE Comments:

.....

Г

|                                                                |                                                    |                            |                                                             |                                      |                                                    |                                      |                            |                                |                                                    | CERTIFICATE OF ANALYS                       |                                      |                                 |                            |                            |                                      |                                      | A                            | 19637                                  | 433                                  |                                              |                                      |
|----------------------------------------------------------------|----------------------------------------------------|----------------------------|-------------------------------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------|--------------------------------|----------------------------------------------------|---------------------------------------------|--------------------------------------|---------------------------------|----------------------------|----------------------------|--------------------------------------|--------------------------------------|------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|
| SAMPLE                                                         | PREP<br>CODE                                       | ,<br>;                     | Au ppb<br>FA+AA                                             | Cu<br>%                              | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                  | Ba<br>ppm                      | Be<br>ppm                                          | Bi<br>ppm                                   | Ca<br>%                              | Cđ<br>ppm                       | Co<br>ppm                  | Cr<br>ppm                  | Cu<br>ppm                            | Fe<br>%                              | Ga<br>ppm                    | Hg<br>ppm                              | R<br>%                               | La<br>ppm                                    | Ng<br>%                              |
| N111635<br>N111636<br>N111637<br>N111638<br>N111638<br>N111639 | 205 2<br>205 2<br>205 2<br>205 2<br>205 2<br>205 2 | 94<br>94<br>94<br>94<br>94 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 </pre>              | 0.13<br>0.10<br>0.18<br>0.38<br>0.14 | 0.2<br>0.8<br>0.2<br>< 0.2<br>< 0.2                | 3.56<br>3.11<br>3.61<br>3.09<br>2.56 | 22<br>20<br>20<br>18<br>16 | 180<br>90<br>210<br>100<br>100 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2      | 1.21<br>1.28<br>1.24<br>1.29<br>1.63 | 1.0<br>1.5<br>2.0<br>6.5<br>4.0 | 30<br>19<br>30<br>40<br>25 | 80<br>87<br>87<br>89<br>42 | 1250<br>925<br>1760<br>3690<br>1275  | 5.92<br>5.84<br>6.15<br>6.33<br>4.41 | 10<br>10<br>10<br>10<br>< 10 | < 1<br>< 1<br>1<br>< 1<br>< 1<br>< 1   | 0.05<br>0.07<br>0.04<br>0.10<br>0.13 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.56<br>2.19<br>2.63<br>2.37<br>1.51 |
| N111640<br>N111641<br>N111642<br>N111643<br>N111644            | 205 2<br>205 2<br>205 2<br>205 2<br>205 2<br>205 2 | 94<br>94<br>94<br>94<br>94 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | 0.17<br>0.25<br>0.20<br>0.15<br>0.22 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.66<br>3.15<br>3.16<br>2.72<br>2.57 | 16<br>20<br>12<br>22<br>10 | 80<br>130<br>160<br>550<br>170 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>2<br>< 2<br>< 2 | 2.56<br>1.69<br>1.93<br>1.55<br>1.28 | 5.5<br>3.0<br>2.0<br>1.5<br>2.0 | 30<br>34<br>34<br>64<br>60 | 85<br>89<br>74<br>69<br>52 | 1625<br>2350<br>1865<br>1375<br>2090 | 5.23<br>5.35<br>4.98<br>5.49<br>6.19 | 10<br>10<br>10<br>10<br>10   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.03<br>0.11<br>0.03<br>0.17<br>0.14 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.05<br>1.93<br>2.06<br>1.61<br>1.83 |
| N111645<br>N111646                                             | 205 2                                              | 94                         | < 5<br>< 5                                                  | 0.38                                 | < 0.2<br>< 0.2                                     | 2.90<br>1.51                         | 16 50                      | 80<br>70                       | < 0.5<br>< 0.5                                     | < 2 < 2                                     | 0.80<br>0.18                         | 2.0<br>7.0                      | 67<br>474                  | 105<br>50                  | 3390                                 | 7.15                                 | 10 10                        | 1 < 1                                  | 0.05                                 | < 10<br>< 10                                 | 2.16<br>0.48                         |

CERTIFICATION: Jourt Buchler



Analytical Chemists \* Geochemists \* Registered Assayers

| British Columbia, Canada V7J 20      |    |
|--------------------------------------|----|
| DUONE and and shart East and and     | :1 |
| PHONE: 604-984-0221 FAX: 604-984-021 | 8  |

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er :1-B Total F....s :1 Certificate Date: 30-OCT-96 Invoice No. :19637433 P.O. Number : Account :MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

#### CERTIFICATE OF ANALYSIS

A9637433

| 1                 |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|-------------------|---------|------|------------|----------------|----------|-----|------------|------------|------------|----------|----------------|-----------|------|-----|------|-------|------|
|                   | DDBD    | V-   | Ma         | 27-            |          |     | 54         | <b>7</b> 1 | <b>a</b> - | <b>6</b> | m i            | <b>m1</b> |      | 17  | N    |       |      |
|                   | PREP    | Mn   | MO         | Na             | NI       | 2   | PD         | SD         | SC         | sr       | Tl             | TI        | U    | V   | W    | Zn    |      |
| SAMPLE            | CODE    | ppm  | ppm        | %              | ppm      | ppm | ppm        | ppm        | ppm        | ppm      | *              | ppm       | ppm  | ppm | ppm  | ppm   |      |
|                   |         |      |            |                |          |     |            | -          |            |          |                |           |      |     |      |       |      |
| N111635           | 205 294 | 825  | < 1        | 0.01           | 35       | 300 | 4          | 2          | 19         | 11       | 0.33           | < 10      | < 10 | 167 | < 10 | 362   |      |
| N111030           | 205 294 | 045  | < 1        | 0.01           | 41       | 280 |            | < 2        | 18         | 9        | 0.35           | < 10      | < 10 | 159 | < 10 | 368   |      |
| N11163/           | 205 294 | 715  | < 1        | 0.01           | 30       | 320 |            | < 1        | 18         | 11       | 0.29           | < 10      | < 10 | 104 | < 10 | 386   |      |
| N111630           | 205 294 | 405  | ~ 1        | 0.01           | 4.7      | 440 | ~ 4        | ~ 4        | 44         | 9        | 0.20           | < 10      | < 10 | 100 | < 10 | 154   | 1    |
| W111035           | 203 234 | -05  | <b>`</b> 1 | 0.01           | 34       | 400 |            | ` ^        | 9          | 9        | 0.23           | × 10      | × 10 | 100 | < 10 | 134   |      |
| N111640           | 205 294 | 530  | < 1        | 0.03           | 43       | 380 | < 2        | < 2        | 15         | 12       | 0.32           | < 10      | < 10 | 140 | < 10 | 162   |      |
| N111641           | 205 294 | 505  | < 1        | 0.02           | 39       | 390 | < 2        | < 2        | 14         | 19       | 0.24           | < 10      | < 10 | 135 | < 10 | 244   |      |
| N111642           | 205 294 | 570  | < 1        | 0.02           | 38       | 310 | < 2        | < 2        | 11         | 18       | 0.29           | < 10      | < 10 | 129 | < 10 | 202   |      |
| N111643           | 205 294 | 820  | < 1        | 0.02           | 40       | 430 | 2          | < 2        | 14         | 18       | 0.23           | < 10      | < 10 | 129 | < 10 | 494   |      |
| N111644           | 205 294 | 765  | < 1        | 0.03           | 34       | 370 | 2          | < 2        | 13         | 14       | 0.29           | < 10      | < 10 | 141 | < 10 | 498   |      |
| 1111 <i>C</i> / F | 205 204 | 600  |            | 0.01           | 47       | 420 |            |            |            | 1 6      | 0 17           | . 10      | - 10 | 450 | - 10 | E 4 3 | <br> |
| N111646           | 205 294 | 1970 | < 1        | 0.01<br>( 0.01 | 4/<br>73 | 430 | < <u>4</u> | < 2        | 20<br>18   | 15       | 0.1/<br>c 0.01 | < 10      | < 10 | 154 | < 10 | 5240  |      |
|                   |         |      | • •        |                |          |     | -          | ••         | 10         | -        |                | • ••      | · •  |     | 10   |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       | 1    |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |
|                   |         |      |            |                |          |     |            |            |            |          |                |           |      |     |      |       |      |

CERTIFICATION: Hart Bichles



N111587

N111588

N111589

N111590

N111591

N111592

N111593

N111594

N111595

N111596

### Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 FO: EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8 Pag∈ ber :1-A Total, Jes :1 Certificate Date: 27-OCT-96 Invoice No. :19637313 P.O. Number : Account :MPO

Project : ICE Comments:

-----

#### **CERTIFICATE OF ANALYSIS** A9637313 PREP **A1** Ag λs Ba Be Bi Ca Cđ Co Cr Cu Fe Ga Ηg K Mg Mn Mo La SAMPLE CODE ppm % ppm ppm ppm ppm % ppm ppm % % % ppm ppm ppm ppm ppm ppm ppm 205 294 0.2 3.42 8 790 < 0.5 2 2.46 < 0.5 28 17 62 6.40 10 < 1 0.05 < 10 1.36 705 < 1 205 294 0.2 3.28 2 1030 < 0.5 < 2 2.48 < 0.5 25 16 57 6.22 10 1 0.06 < 10 1.24 695 < 1 205 294 < 0.2 3.35 < 2 670 < 0.5 < 2 2.65 < 0.5 25 15 58 6.28 10 < 1 0.03 < 10 1.46 725 < 1 205 294 0.2 3.45 < 2 630 < 0.5 2 2.49 < 0.5 25 14 58 6.29 10 < 1 0.03 < 10 1.38 690 < 1 205 294 12 690 < 0.5 25 61 0.2 3.24 6 2 2.67 < 0.5 6.22 10 < 1 0.05 < 10 1.26 725 < 1 205 294 3.05 < 0.2 6 590 < 0.5 < 2 2.31 < 0.5 26 12 61 6.19 10 < 1 0.04 < 10 1.31 830 < 1 205 294 < 0.2 3.08 10 280 < 0.5 2 2.21 < 0.5 25 35 74 5.80 10 < 1 0.01 < 10 2.11 885 < 1 205 294 0.2 3.66 4 240 < 0.5 < 2 2.37 < 0.5 27 63 118 5.89 10 < 1 < 0.01 2.33 920 < 10 < 1 205 294 < 0.2 3.76 < 0.5 8 440 2 3.34 < 0.5 28 54 84 5.76 10 0.02 1065 < 1 < 10 1.89 < 1 205 294 0.2 3.44 6 290 < 0.5 1.63 0.5 26 84 170 6.90 10 0.01 1065 < 2 < 1 < 10 2.40 < 1

CERTIFICATION: HartBuchlen

C

### **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page per :1-E Total ges :1 ber ∶1-B Certificate Date: 27-OCT-96 Invoice No. : 19637313 P.O. Number : Account MPO

Project : Comments: ICE

| r                                                   |                                        |                                 |                                                    |                            |                                 |                                      |                                      |                       |                            |                                      | CE                                           | RTIF                                         | CATE                            | OF A                                         | NALYSIS                       | A9637313 |
|-----------------------------------------------------|----------------------------------------|---------------------------------|----------------------------------------------------|----------------------------|---------------------------------|--------------------------------------|--------------------------------------|-----------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------|----------|
| SAMPLE                                              | PRI<br>COI                             | EP<br>DE                        | Na<br>%                                            | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                            | Sb<br>ppm                            | Sc<br>ppm             | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>mqq                                     | Zn<br>ppm                     |          |
| N111587<br>N111588<br>N111589<br>N111590<br>N111591 | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294 | < 0.01<br>0.01<br>< 0.01<br>0.01<br>0.01           | 24<br>22<br>23<br>23<br>23 | 640<br>630<br>640<br>660<br>650 | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>2<br>< 2<br>< 2<br>< 2 | 7<br>6<br>7<br>7<br>7 | 16<br>15<br>23<br>24<br>28 | 0.56<br>0.47<br>0.52<br>0.54<br>0.59 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 220<br>200<br>204<br>206<br>210 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 82<br>82<br>80<br>80<br>88    |          |
| N111592<br>N111593<br>N111594<br>N111595<br>N111596 | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294 | < 0.01<br>0.01<br>0.01<br>0.01<br>< 0.01<br>< 0.01 | 23<br>31<br>35<br>33<br>37 | 670<br>700<br>400<br>430<br>420 | < 2<br>2<br>< 2<br>2<br>4            | 2<br>< 2<br>< 2<br>4<br>< 2          | 8<br>8<br>9<br>17     | 18<br>12<br>11<br>14<br>7  | 0.59<br>0.48<br>0.41<br>0.42<br>0.47 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 208<br>188<br>169<br>194<br>201 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 86<br>84<br>160<br>150<br>634 |          |
|                                                     |                                        |                                 |                                                    |                            |                                 |                                      |                                      |                       |                            |                                      |                                              |                                              |                                 |                                              |                               |          |
|                                                     |                                        |                                 |                                                    |                            |                                 |                                      |                                      |                       |                            |                                      |                                              |                                              |                                 |                                              |                               |          |
|                                                     |                                        |                                 |                                                    |                            |                                 |                                      |                                      |                       |                            |                                      |                                              |                                              |                                 |                                              |                               |          |
|                                                     |                                        |                                 |                                                    |                            |                                 |                                      |                                      |                       |                            |                                      |                                              |                                              |                                 |                                              |                               |          |
|                                                     |                                        |                                 |                                                    |                            |                                 |                                      |                                      |                       |                            |                                      |                                              |                                              |                                 |                                              |                               |          |
|                                                     |                                        |                                 |                                                    |                            |                                 |                                      |                                      |                       |                            |                                      |                                              |                                              |                                 |                                              |                               |          |
|                                                     |                                        |                                 |                                                    |                            |                                 |                                      |                                      |                       |                            |                                      |                                              |                                              |                                 |                                              |                               | •        |

Sant Brokler



Analytical Chemists \* Geochemists \* Registered Assayers

| 212 Brooksbank Ave.,    | North Vancouver   |
|-------------------------|-------------------|
| British Columbia, Canad | a V7J2C1          |
| PHONE: 604-984-0221     | FAX: 604-984-0218 |

 O: EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8 Page per :1-A Total s:1 Certificate Date: 27-OCT-96 Invoice No. :19637312 P.O. Number : Account :MPO

Project : ICE Comments:

### CERTIFICATE OF ANALYSIS

A9637312

| SAMPLE                                                                    | PREP<br>CODE                                             |                                  | Ag<br>ppm                             | A1<br>%                              | As<br>ppm                    | Ba<br>ppm                      | Be<br>ppm                                                   | Bi<br>ppm                                            | Ca<br>%                                      | Cđ<br>ppm                                      | Co<br>ppm                        | Cr<br>ppm                     | Cu<br>ppm                       | Fe<br>%                                 | Ga<br>ppm                        | Hg<br>ppm                                            | K<br>%                               | La<br>ppm                                            | Mg<br>%                                      | Mn<br>ppm                        | Mo<br>ppm                                 |
|---------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|---------------------------------------|--------------------------------------|------------------------------|--------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------|-------------------------------|---------------------------------|-----------------------------------------|----------------------------------|------------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------|-------------------------------------------|
| N111575<br>N111576<br>N111577<br>N111578<br>N111578                       | 205 2<br>205 2<br>205 2<br>205 2<br>205 2                | 94<br>94<br>94<br>94             | 0.2<br>0.2<br>0.2<br>0.2              | 4.45<br>4.42<br>4.77<br>4.89         | < 2<br>4<br>6<br>< 2         | 320<br>120<br>230<br>80        | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5                            | 2<br>2<br>< 2<br>2                                   | 1.26<br>0.94<br>0.79<br>0.85                 | 1.0<br>< 0.5<br>< 0.5<br>< 0.5                 | 36<br>48<br>45<br>50             | 110<br>142<br>138<br>140      | 1350<br>1090<br>943<br>1135     | 8.00<br>8.54<br>8.56<br>7.71            | 10<br>10<br>10<br>10             | 1<br>< 1<br>< 1<br>< 1                               | 0.04<br>0.01<br>0.02<br>0.05         | < 10<br>< 10<br>< 10<br>< 10<br>< 10                 | 3.42<br>3.86<br>4.34<br>4.84                 | 1005<br>1070<br>990<br>865       | < 1<br>< 1<br>< 1<br>< 1<br>< 1           |
| N111579<br>N111580<br>N111581<br>N111582<br>N111583<br>N111583<br>N111584 | 205 29<br>205 29<br>205 29<br>205 29<br>205 29<br>205 29 | 94<br>94<br>94<br>94<br>94<br>94 | 1.4<br>0.4<br>< 0.2<br>< 0.2<br>< 0.2 | 3.88<br>5.24<br>3.71<br>3.71<br>3.89 | 12<br>10<br>6<br>2<br>6<br>6 | 200<br>260<br>120<br>70<br>430 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.81<br>0.45<br>1.35<br>2.33<br>2.72<br>3.51 | < 0.5<br>< 0.5<br>1.0<br>0.5<br>< 0.5<br>< 0.5 | 55<br>43<br>49<br>47<br>35<br>34 | 127<br>121<br>97<br>69<br>146 | 3600<br>3430<br>464<br>90<br>80 | >15.00<br>12.00<br>5.99<br>5.41<br>4.75 | 10<br>10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.04<br>0.03<br>0.02<br>0.04<br>0.08 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.72<br>1.50<br>3.04<br>2.83<br>2.54<br>3.23 | 200<br>585<br>760<br>855<br>1050 | < 1<br>4<br>1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111585<br>N111586 ·                                                      | 205 29<br>205 29                                         | 94<br>94                         | < 0.2<br>< 0.2                        | 4.19<br>4.06                         | 4<br>< 2                     | 130<br>80                      | < 0.5<br>< 0.5                                              | < 2                                                  | 4.55<br>3.72                                 | < 0.5<br>< 0.5                                 | 33<br>39                         | 150<br>156                    | 84<br>74                        | 4.02<br>5.39                            | < 10<br>10                       | < 1<br>< 1                                           | 0.07<br>0.04                         | < 10<br>< 10                                         | 2.76<br>3.83                                 | 1020<br>1015                     | < 1<br>< 1                                |
|                                                                           |                                                          |                                  |                                       |                                      |                              |                                |                                                             |                                                      |                                              |                                                |                                  |                               |                                 |                                         |                                  |                                                      |                                      |                                                      |                                              |                                  |                                           |
|                                                                           |                                                          |                                  |                                       |                                      |                              |                                |                                                             |                                                      |                                              |                                                |                                  |                               |                                 |                                         |                                  |                                                      |                                      |                                                      |                                              |                                  |                                           |
|                                                                           |                                                          |                                  |                                       |                                      |                              |                                |                                                             |                                                      |                                              |                                                |                                  |                               |                                 |                                         |                                  |                                                      |                                      |                                                      |                                              |                                  |                                           |
|                                                                           |                                                          |                                  |                                       |                                      |                              |                                |                                                             |                                                      |                                              |                                                |                                  |                               |                                 |                                         |                                  |                                                      |                                      |                                                      |                                              |                                  |                                           |
|                                                                           |                                                          |                                  |                                       |                                      |                              |                                |                                                             |                                                      |                                              |                                                |                                  |                               |                                 |                                         |                                  |                                                      |                                      |                                                      |                                              |                                  |                                           |
|                                                                           |                                                          |                                  |                                       | ,                                    |                              |                                |                                                             |                                                      |                                              |                                                |                                  |                               |                                 |                                         |                                  |                                                      |                                      |                                                      | •                                            |                                  |                                           |

CERTIFICATION: Hart Buchler



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pag⊾ Der :1-B Total ruges :1 Certificate Date: 27-OCT-96 Invoice No. : 19637312 P.O. Number : : MPO Account

ICE Project : Comments:

-

#### **CERTIFICATE OF ANALYSIS** A9637312

CERTIFICATION:

| SAMPLE                                                         | PREP<br>CODE                                                   | Na<br>%                                        | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                            | Sb<br>ppm                          | Sc<br>ppm                  | Sr<br>ppm                 | Ti<br>%                              | T1<br>ppm                                    | U<br>mqq                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                       |      |    |      |   |
|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|----------------------------|---------------------------------|--------------------------------------|------------------------------------|----------------------------|---------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------|------|----|------|---|
| N111575<br>N111576<br>N111577<br>N111578<br>N111578<br>N111579 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 45<br>52<br>49<br>52<br>40 | 340<br>270<br>310<br>290<br>230 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>2 | 4<br>2<br>2<br>< 2<br>2            | 28<br>19<br>19<br>22<br>23 | 9<br>11<br>11<br>15<br>11 | 0.33<br>0.34<br>0.33<br>0.36<br>0.20 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 221<br>223<br>232<br>215<br>203 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 524<br>396<br>292<br>306<br>518 |      |    |      |   |
| N111580<br>N111581<br>N111582<br>N111583<br>N111583<br>N111584 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.01<br>< 0.01<br>0.01<br>0.01<br>0.01       | 21<br>46<br>41<br>33<br>71 | 190<br>200<br>290<br>270<br>240 | 10<br>4<br>< 2<br>< 2<br>< 2<br>< 2  | 8<br>8<br>< 2<br>< 2<br>< 2<br>< 2 | 16<br>21<br>16<br>12<br>15 | 6<br>11<br>9<br>8<br>15   | 0.04<br>0.16<br>0.31<br>0.26<br>0.26 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 178<br>202<br>181<br>152<br>136 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 602<br>886<br>392<br>118<br>90  | <br> |    |      |   |
| N111585<br>N111586                                             | 205 294<br>205 294                                             | 0.01<br>< 0.01                                 | 78<br>62                   | 220<br>290                      | < 2<br>< 2                           | 4<br>< 2                           | 11<br>21                   | 10<br>15                  | 0.24<br>0.32                         | < 10<br>< 10                                 | < 10<br>< 10                                 | 113<br>182                      | < 10<br>< 10                                 | 116<br>118                      |      |    |      |   |
|                                                                |                                                                |                                                |                            |                                 |                                      |                                    |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |    |      |   |
|                                                                |                                                                |                                                |                            |                                 |                                      |                                    |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |    |      |   |
|                                                                |                                                                |                                                |                            |                                 |                                      |                                    |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |    |      |   |
|                                                                |                                                                |                                                |                            |                                 | ·                                    |                                    |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |    |      |   |
|                                                                |                                                                |                                                |                            |                                 |                                      |                                    |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |    |      |   |
| <u></u>                                                        |                                                                |                                                |                            | <del></del>                     |                                      |                                    |                            |                           | <u></u>                              |                                              |                                              |                                 |                                              | EDTIEICA                        | ta   | HB | ichl | ] |

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

OCOTICIOATE OF ANALVOIC

Page er :1-A Total Karges :1 Certificate Date: 27-OCT-96 Invoice No. :19637311 P.O. Number : Account :MPO

A0007044

Project : ICE Comments:

|                                                     |                                        |                                        |                                                |                                      |                         |                             |                                                    |                                        |                                      |                                                    |                            | KIIFI                         | CAIL                            |                                       | INAL                           | 515                                    |                                      | 49637                                        | 311                                  |                                  |                                        |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------|--------------------------------------|-------------------------|-----------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|-------------------------------|---------------------------------|---------------------------------------|--------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|----------------------------------------|
| SAMPLE                                              | PRI<br>CO                              | ep<br>De                               | Ag<br>ppm                                      | A1<br>%                              | As<br>ppm               | Ba<br>ppm                   | Be<br>ppm                                          | Bi<br>ppm                              | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                     | Cu<br>ppm                       | Fe<br>%                               | Ga<br>ppm                      | Hg<br>ppm                              | K<br>%                               | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                        | Mo<br>ppm                              |
| H111623<br>H111624<br>H111625<br>H111626<br>H111627 | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294        | < 0.2<br>< 0.2<br>< 0.2<br>1.8<br>0.8          | 2.72<br>2.94<br>3.65<br>4.11<br>4.30 | < 2<br>2<br>6<br>8      | 60<br>60<br>220<br>180      | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>2<br>< 2<br>2<br>2       | 2.20<br>2.44<br>3.10<br>0.40<br>0.77 | < 0.5<br>< 0.5<br>0.5<br>< 0.5<br>< 0.5            | 20<br>22<br>35<br>57<br>48 | 114<br>56<br>83<br>187<br>187 | 72<br>69<br>354<br>3000<br>1925 | 3.93<br>4.81<br>4.97<br>14.60<br>9.01 | < 10<br>< 10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.07<br>0.07<br>0.05<br>0.01<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 1.77<br>1.81<br>1.95<br>2.44<br>3.07 | 550<br>650<br>630<br>355<br>485  | 1<br>< 1<br>< 1<br>1<br>< 1            |
| 1111628<br>1111629<br>1111630<br>1111631<br>1111632 | 205<br>205<br>205<br>205<br>205        | 294<br>294<br>294<br>294<br>294<br>294 | 0.2<br>< 0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 4.16<br>3.96<br>3.75<br>4.08<br>4.12 | 2<br>8<br>6<br>< 2<br>6 | 90<br>80<br>70<br>70<br>120 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 3.18<br>3.67<br>3.13<br>4.10<br>3.95 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 27<br>24<br>25<br>26<br>25 | 61<br>52<br>75<br>78<br>142   | 212<br>92<br>76<br>76<br>78     | 4.73<br>4.25<br>5.41<br>5.41<br>4.00  | < 10<br>< 10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.16<br>0.21<br>0.02<br>0.03<br>0.09 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.28<br>1.88<br>2.53<br>2.60<br>2.56 | 800<br>795<br>860<br>1000<br>890 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| 111633<br>111163 <b>4</b>                           | 205<br>205                             | 294<br>294                             | < 0.2<br>< 0.2                                 | 4.56<br>3.61                         | < 2<br>8                | 90<br>120                   | < 0.5<br>< 0.5                                     | < 2<br>< 2                             | 4.25<br>5.46                         | < 0.5<br>< 0.5                                     | 25<br>21                   | 174<br>148                    | 79<br>63                        | 4.23<br>3.50                          | 10<br>< 10                     | 1<br>< 1                               | 0.05<br>0.07                         | < 10<br>< 10                                 | 2.57<br>2.22                         | 870<br>790                       | < 1<br>< 1                             |
|                                                     |                                        |                                        |                                                |                                      |                         |                             |                                                    |                                        |                                      |                                                    |                            |                               |                                 |                                       |                                |                                        |                                      |                                              |                                      |                                  |                                        |
|                                                     |                                        |                                        |                                                |                                      |                         |                             |                                                    |                                        |                                      |                                                    |                            |                               |                                 |                                       |                                |                                        |                                      |                                              |                                      |                                  |                                        |
|                                                     |                                        |                                        |                                                |                                      |                         |                             |                                                    |                                        |                                      |                                                    |                            |                               |                                 |                                       |                                |                                        |                                      |                                              |                                      |                                  |                                        |
|                                                     |                                        |                                        |                                                |                                      |                         |                             |                                                    |                                        |                                      |                                                    |                            |                               |                                 |                                       |                                |                                        |                                      |                                              |                                      |                                  |                                        |
|                                                     |                                        |                                        |                                                |                                      |                         |                             |                                                    |                                        |                                      |                                                    |                            |                               |                                 |                                       |                                |                                        |                                      |                                              |                                      |                                  |                                        |
|                                                     |                                        |                                        |                                                |                                      |                         |                             |                                                    |                                        |                                      |                                                    |                            |                               |                                 |                                       |                                |                                        |                                      |                                              |                                      |                                  |                                        |
|                                                     |                                        |                                        |                                                |                                      |                         |                             |                                                    |                                        |                                      |                                                    |                            |                               |                                 |                                       |                                |                                        |                                      |                                              | •                                    |                                  |                                        |

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

**Chemex Labs Ltd.** 



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

.°o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pag∈ ber ∶1-B Total r \_\_yes 1 Certificate Date: 27-OCT-96 Invoice No. P.O. Number : 19637311 Account : MPO

Project : Comments: ICE

Г

|                                                     |                                        |                                        |                                          |                            |                                 |                                      |                         |                          |                            |                                      | CE                                           | RTIF                                         | CATE                            | OF A                                         | NALYSIS                       | A9637311 |  |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------------|---------------------------------|--------------------------------------|-------------------------|--------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------|----------|--|
| SAMPLE                                              | PRI                                    | ep<br>De                               | Na<br>%                                  | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                            | Sb<br>ppm               | Sc<br>ppm                | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>Mgq                                     | Zn<br>ppm                     |          |  |
| N111623<br>N111624<br>N111625<br>N111626<br>N111627 | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | 0.04<br>0.02<br>0.03<br>< 0.01<br>< 0.01 | 40<br>32<br>39<br>27<br>42 | 300<br>390<br>330<br>130<br>180 | 4<br>< 2<br>< 2<br>2<br>2            | 2<br>< 2<br>2<br>2<br>4 | 7<br>6<br>10<br>21<br>24 | 8<br>7<br>8<br>5<br>10     | 0.29<br>0.34<br>0.34<br>0.11<br>0.19 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 118<br>139<br>156<br>172<br>169 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 66<br>68<br>132<br>448<br>586 |          |  |
| N111628<br>N111629<br>N111630<br>N111631<br>N111632 | 205<br>205<br>205<br>205<br>205        | 294<br>294<br>294<br>294<br>294        | < 0.01<br>< 0.01<br>0.02<br>0.01<br>0.02 | 66<br>62<br>36<br>40<br>77 | 240<br>270<br>320<br>310<br>220 | < 2<br>< 2<br>4<br>< 2<br>< 2<br>< 2 | < 2<br>6<br>2<br>2<br>2 | 10<br>8<br>10<br>9<br>7  | 11<br>13<br>12<br>18<br>15 | 0.31<br>0.29<br>0.39<br>0.38<br>0.25 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 126<br>112<br>176<br>169<br>106 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 244<br>180<br>92<br>66<br>52  |          |  |
| ¥111633<br>¥111634                                  | 205                                    | 294<br>294                             | 0.03<br>0.01                             | 74<br>64                   | 220<br>210                      | < 2<br>< 2                           | < 2 2                   | 9<br>10                  | 14 22                      | 0.25<br>0.20                         | < 10<br>< 10                                 | < 10<br>< 10                                 | 120 95                          | < 10<br>< 10                                 | 56<br>42                      |          |  |

CERTIFICATION: Hart Buchler

C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page per :1-A Total Jes :1 Certificate Date: 27-OCT-96 Invoice No. :19637310 P.O. Number : MPO Account

### **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

| 212 Brooksbank Ave.,    | North Vancouver   |
|-------------------------|-------------------|
| British Columbia, Canad | a V7J2C1          |
| PHONE: 604-984-0221     | FAX: 604-984-0218 |
|                         |                   |

Proj Corr

.....

| ect :   | ICE |  |
|---------|-----|--|
| nments: |     |  |
|         |     |  |

| e                                                   | ··· _                                          |                            |                                                  |                                      |                          |                             |                                                    |                                    |                                      |                                                    | CE                         | RTIFI                       | CATE                       | OF A                                 | NALY                       | 'SIS                                   | /                                            | <b>49637</b>                                 | 310                                  |                                 |                                               |
|-----------------------------------------------------|------------------------------------------------|----------------------------|--------------------------------------------------|--------------------------------------|--------------------------|-----------------------------|----------------------------------------------------|------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|-----------------------------|----------------------------|--------------------------------------|----------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------------|
| SAMPLE                                              | PREP<br>CODE                                   |                            | Ag<br>ppm                                        | A1<br>%                              | As<br>ppm                | Ba<br>ppm                   | Be<br>ppm                                          | Bi<br>ppm                          | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                   | Cu<br>ppm                  | Fe<br>%                              | Ga<br>ppm                  | Hg<br>ppm                              | K<br>%                                       | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                       | Mo<br>ppm                                     |
| N111597<br>N111598<br>N111599<br>N111600<br>N111601 | 205 29<br>205 29<br>205 29<br>205 29<br>205 29 | 94<br>94<br>94<br>94<br>94 | < 0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 4.21<br>3.61<br>3.35<br>3.72<br>3.66 | 10<br>8<br>6<br>2<br>< 2 | 70<br>60<br>40<br>40<br>100 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>2<br>2<br>< 2<br>< 2<br>< 2 | 3.86<br>3.08<br>3.08<br>3.32<br>3.81 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 29<br>26<br>28<br>26<br>27 | 120<br>36<br>40<br>28<br>39 | 76<br>71<br>73<br>73<br>65 | 4.68<br>5.74<br>5.91<br>5.69<br>5.94 | 10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.04<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.61<br>2.11<br>2.19<br>1.88<br>2.16 | 875<br>810<br>805<br>780<br>860 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111602<br>N111603<br>N111604                       | 205 29<br>205 29<br>205 29                     | 94<br>94<br>94             | 0.2<br>0.2<br>< 0.2                              | 3.94<br>3.49<br>3.46                 | 2<br>< 2<br>< 2          | 290<br>100<br>50            | < 0.5<br>< 0.5<br>< 0.5                            | < 2<br>< 2<br>< 2                  | 3.84<br>3.20<br>2.97                 | < 0.5<br>< 0.5<br>< 0.5                            | 30<br>27<br>27             | 55<br>30<br>31              | 68<br>72<br>69             | 6.58<br>5.98<br>5.76                 | 10<br>10<br>10             | < 1<br>< 1<br>< 1                      | < 0.01<br>0.04<br>0.02                       | < 10<br>< 10<br>< 10                         | 2.36<br>1.80<br>1.83                 | 990<br>820<br>755               | < 1<br>< 1<br>< 1                             |
|                                                     |                                                |                            |                                                  |                                      |                          |                             |                                                    |                                    |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                              |                                              |                                      |                                 |                                               |
|                                                     |                                                |                            |                                                  |                                      |                          |                             |                                                    |                                    |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                              |                                              |                                      |                                 |                                               |
|                                                     |                                                |                            |                                                  |                                      |                          |                             |                                                    |                                    |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                              |                                              |                                      |                                 |                                               |

tart Bichles CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pag ມer:1-B Invoice No. :19637310 P.O. Number : MPO Account

---

| Project : | ICE |
|-----------|-----|
| Comments: |     |

.....

### **CERTIFICATE OF ANALYSIS** A9637310

| SAMPLE                                              | PREP<br>CODE                                                   | Na<br>%                                              | Ni<br>ppm                        | P<br>ppm                               | Pb<br>ppm                                   | Sb<br>ppm                     | Sc<br>ppm                 | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>PPM                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                  |                      |
|-----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------|----------------------------------------|---------------------------------------------|-------------------------------|---------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|----------------------------|----------------------|
| N111597<br>N111598<br>N111599<br>N111600<br>N111601 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | 0.02<br>< 0.01<br>0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 61<br>32<br>35<br>35<br>35<br>33 | 290<br>480<br>480<br>480<br>480<br>430 | < 2<br>2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>4<br>< 2 | 12<br>11<br>14<br>9<br>12 | 23<br>15<br>17<br>12<br>19 | 0.35<br>0.51<br>0.54<br>0.49<br>0.51 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 154<br>197<br>216<br>200<br>206 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 82<br>74<br>74<br>68<br>74 |                      |
| N111602<br>N111603<br>N111604                       | 205 294<br>205 294<br>205 294                                  | < 0.01<br>0.01<br>0.01                               | 38<br>35<br>34                   | 460<br>490<br>470                      | < 2<br>4<br>< 2                             | 2 2 < 2                       | 18<br>11<br>11            | 18<br>19<br>21             | 0.51<br>0.41<br>0.42                 | < 10<br>< 10<br>< 10                         | < 10<br>< 10<br>< 10                         | 232<br>189<br>189               | < 10<br>< 10<br>< 10                         | 78<br>76<br>70             |                      |
|                                                     |                                                                |                                                      |                                  |                                        |                                             |                               |                           |                            |                                      |                                              |                                              |                                 |                                              |                            | •                    |
|                                                     |                                                                |                                                      |                                  |                                        |                                             |                               |                           |                            |                                      |                                              |                                              |                                 | c                                            | ERTIFIC                    | ATION: SouthBrichler |



Analytical Chemists \* Geochemists \* Registered Assayers

| 212 Brooksbank Ave.,     | North Vancouver   |
|--------------------------|-------------------|
| British Columbia, Canada | a V7J2C1          |
| PHONE: 604-984-0221      | FAX: 604-984-0218 |

FO: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page per : 1-A Total , jes : 1 Certificate Date: 27-OCT-96 Invoice No. : 19637279 P.O. Number : Account : MPO

Project : ICE Comments:

......

|                                                     |                                                    |                            |                                                    |                                      |                             |                                 |                                                    |                                               |                                      |                                           | CE                          | RTIFI                         | CATE                                 | E OF A                                 | NALY                           | SIS                                           |                                      | 49637                                        | 279                                  |                                      |                                               |
|-----------------------------------------------------|----------------------------------------------------|----------------------------|----------------------------------------------------|--------------------------------------|-----------------------------|---------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------|-------------------------------|--------------------------------------|----------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------------|
| SAMPLE                                              | PREP<br>CODE                                       |                            | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                   | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                                     | Ca<br>%                              | Cđ<br>ppm                                 | Co<br>ppm                   | Cr<br>ppm                     | Cu<br>ppm                            | Fe<br>%                                | Ga<br>ppm                      | Hg<br>ppm                                     | K<br>%                               | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                            | Mo<br>ppm                                     |
| N111605<br>N111606<br>N111607<br>N111608<br>N111609 | 205 2<br>205 2<br>205 2<br>205 2<br>205 2<br>205 2 | 94<br>94<br>94<br>94<br>94 | 0.2<br>< 0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2     | 3.92<br>4.38<br>3.80<br>4.44<br>2.77 | 8<br>4<br>2<br>2            | 160<br>160<br>120<br>150<br>110 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 2<br>< 2<br>< 2<br>< 2<br>< 2                 | 2.20<br>0.76<br>1.80<br>1.80<br>0.49 | 1.5<br>0.5<br>2.5<br>2.5<br>< 0.5         | 32<br>88<br>72<br>56<br>100 | 62<br>159<br>105<br>131<br>61 | 1275<br>3140<br>3040<br>3560<br>3910 | 6.16<br>10.10<br>8.79<br>9.38<br>11.45 | 10<br>10<br>10<br>10<br>< 10   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.01<br>0.10<br>0.07<br>0.06<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.73<br>3.03<br>2.74<br>2.86<br>1.00 | 815<br>845<br>660<br>690<br>420      | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        |
| N111610<br>N111611<br>N111612<br>N111613<br>N111614 | 205 2<br>205 2<br>205 2<br>205 2<br>205 2<br>205 2 | 94<br>94<br>94<br>94<br>94 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.84<br>3.96<br>3.65<br>3.71<br>3.64 | < 2<br>8<br>< 2<br>< 2<br>2 | 230<br>70<br>120<br>150<br>300  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 1.27<br>0.46<br>2.32<br>2.18<br>2.60 | 4.0<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5   | 93<br>131<br>61<br>48<br>38 | 97<br>114<br>96<br>91<br>87   | 8190<br>1125<br>326<br>122<br>117    | 10.30<br>9.48<br>8.25<br>7.85<br>7.18  | 10<br>10<br>10<br>10<br>10     | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.03<br>0.03<br>0.01<br>0.01<br>0.02 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.18<br>2.02<br>2.72<br>2.63<br>2.31 | 705<br>1245<br>1515<br>1260<br>1385  | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111615<br>N111616<br>N111617<br>N111618<br>N111619 | 205 2<br>205 2<br>205 2<br>205 2<br>205 2<br>205 2 | 94<br>94<br>94<br>94<br>94 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.77<br>3.50<br>3.87<br>1.75<br>0.53 | 10<br>< 2<br>2<br>10<br>8   | 110<br>130<br>60<br>330<br>260  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 2.38<br>4.10<br>1.87<br>1.95<br>2.24 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 36<br>45<br>49<br>20<br>13  | 75<br>64<br>85<br>34<br>19    | 87<br>77<br>131<br>60<br>51          | 7.24<br>7.43<br>7.59<br>4.05<br>2.90   | 10<br>10<br>10<br>< 10<br>< 10 | < 1<br>< 1<br>1<br>< 1<br>< 1<br>< 1          | 0.02<br>0.04<br>0.03<br>0.32<br>0.28 | < 10<br>< 10<br>< 10<br>10<br>10             | 2.69<br>2.89<br>2.55<br>1.32<br>0.88 | 1210<br>1670<br>1660<br>1500<br>1955 | < 1<br>< 1<br>< 1<br>< 1<br>1                 |
| N111620<br>N111621<br>N111622                       | 205 2<br>205 2<br>205 2                            | 94<br>94<br>94             | < 0.2<br>< 0.2<br>< 0.2                            | 0.90<br>0.70<br>0.50                 | 824                         | 280<br>330<br>220               | < 0.5<br>< 0.5<br>< 0.5                            | < 2<br>< 2<br>< 2                             | 2.52<br>1.65<br>0.36                 | < 0.5<br>< 0.5<br>< 0.5                   | 14<br>6<br>6                | 47<br>30<br>16                | 63<br>46<br>61                       | 3.66<br>1.59<br>1.16                   | < 10<br>< 10<br>< 10           | < 1<br>< 1<br>< 1                             | 0.20<br>0.22<br>0.15                 | < 10<br>< 10<br>< 10                         | 1.01<br>0.71<br>0.24                 | 2580<br>950<br>365                   | 1<br>< 1<br>< 1                               |

CERTIFICATION: Hart Buchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 FO: EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Project : ICE Comments:

### CERTIFICATE OF ANALYSIS

A9637279

|          |       |     |        |     | · · · · · · · · · · · · · · · · · · · |     |     |           |      |                                         |      |      |     |      |      |      |       |
|----------|-------|-----|--------|-----|---------------------------------------|-----|-----|-----------|------|-----------------------------------------|------|------|-----|------|------|------|-------|
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          | DDE   | מי  | No     | Ni  | D                                     | Dh  | ۹ħ  | 80        | Sr   | ሞት                                      | ጥ1   | 77   | v   | w    | 7.n  |      |       |
|          | - The |     | 110    |     |                                       | =   |     |           | DI   |                                         |      |      |     |      |      |      |       |
| SAMPLIS  | COL   | 20  | %      | ppm | ррш                                   | ppm | ppm | ррш       | ррш  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ррш  | ppm  | ррш | ppm  | ррш  |      |       |
| 111605   | 205   | 204 | 0 01   | 34  | 320                                   | A   | 2   | 20        | ٩    | 0 47                                    | < 10 | < 10 | 209 | < 10 | 284  |      |       |
| N111606  | 205   | 204 | 0 02   | 59  | 350                                   | 2   | 12  | 33        | ź    | 0 00                                    | < 10 | < 10 | 258 | < 10 | 898  |      |       |
| N1111607 | 205   | 204 | < 0.01 | 46  | 260                                   | 2.2 | 2   | 28        | ó    | 0 37                                    | < 10 | < 10 | 229 | < 10 | 750  |      |       |
| N111609  | 205   | 204 | 0.01   | 40  | 200                                   | 5   | 2   | 30        | 12   | 0.34                                    | < 10 | ~ 10 | 249 | 2 10 | 642  |      |       |
| 1111000  | 205   | 204 | 0.01   | 47  | 560                                   | 2   | 7   | 21        | 19 × | 0.01                                    | ~ 10 | < 10 | 156 | < 10 | 982  |      |       |
|          | 203   | 474 | 0.01   | */  | 560                                   | 4   | *   | <b>41</b> | • `  | 0.01                                    | × 10 | < 10 | 150 | × 10 | 302  |      |       |
| N111610  | 205   | 294 | 0.01   | 63  | 360                                   | < 2 | < 2 | 34        | 10   | 0.27                                    | < 10 | < 10 | 261 | < 10 | 1075 |      |       |
| N111611  | 205   | 294 | 0.02   | 69  | 390                                   | < 2 | 4   | 33        | 8 <  | 0.01                                    | < 10 | < 10 | 243 | < 10 | 944  |      |       |
| N111612  | 205   | 294 | 0.01   | 47  | 340                                   | < 2 | 2   | 26        | 24   | 0.22                                    | < 10 | < 10 | 201 | < 10 | 498  |      |       |
| N111613  | 205   | 294 | 0.03   | 44  | 400                                   | < 2 | 2   | 24        | 16   | 0.27                                    | < 10 | < 10 | 237 | < 10 | 374  |      |       |
| N111614  | 205   | 294 | 0.03   | 45  | 400                                   | < 2 | < 2 | 24        | 21   | 0.22                                    | < 10 | < 10 | 231 | < 10 | 398  |      |       |
| N111615  | 205   | 294 | 0.03   | 43  | 430                                   | < 2 | < 2 | 21        | 16   | 0.28                                    | < 10 | < 10 | 211 | < 10 | 364  | <br> | <br>- |
| N111616  | 205   | 294 | 0.02   | 41  | 390                                   | < 2 | < 2 | 26        | 45   | 0.02                                    | < 10 | < 10 | 191 | < 10 | 186  |      |       |
| N111617  | 205   | 294 | 0.03   | 42  | 500                                   | 2   | 2   | 28        | 17 < | 0.01                                    | < 10 | < 10 | 231 | < 10 | 408  |      | 1     |
| N111618  | 205   | 294 | < 0.01 | 32  | 720                                   | ŝ   | 2   | -0        | 23 < | 0.01                                    | < 10 | < 10 | 78  | < 10 | 116  |      |       |
| N111619  | 205   | 204 | < 0.01 | 28  | 770                                   | 10  | < 2 | Ă         | 24 < | 0.01                                    | < 10 | < 10 | 29  | < 10 | 100  |      |       |
|          |       |     |        |     |                                       |     |     | -         |      |                                         |      |      |     |      |      | <br> | <br>  |
| N111620  | 205   | 294 | < 0.01 | 27  | 370                                   | 6   | < 2 | 5         | 25 < | 0.01                                    | < 10 | < 10 | 57  | < 10 | 66   |      |       |
| N111621  | 205   | 294 | < 0.01 | 19  | 130                                   | 8   | < 2 | 2         | 20 < | 0.01                                    | < 10 | < 10 | 20  | < 10 | 44   |      |       |
| N111622  | 205   | 294 | < 0.01 | 20  | 110                                   | 6   | < 2 | 1         | 5 <  | 0.01                                    | < 10 | < 10 | 11  | < 10 | 24   |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          | 1     |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       | 1   |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      | 1     |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
| 1        |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          | 1 1   |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      | ł     |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          | 1     |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       | - 1 |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
| 1        |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      |      |       |
|          |       |     |        |     |                                       |     |     |           |      |                                         |      |      |     |      |      | <br> |       |

CERTIFICATION: tartBuchlen



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page per : 1 Total عدر : 1 Certificate Date: 24-OCT-96 Invoice No. : 19637157 P.O. Number : Account : MPO

Project : ICE-16 Comments:

.....

|                                                     |                                                      |                                   |                                      | C | ERTIFIC | ATE OF A | NALYSIS      | A96    | 37157  |   |
|-----------------------------------------------------|------------------------------------------------------|-----------------------------------|--------------------------------------|---|---------|----------|--------------|--------|--------|---|
| SAMPLE                                              | PREP<br>CODE                                         | Au ppb<br>FA+AA                   | Cu<br>%                              |   |         |          |              |        |        |   |
| N111470<br>N111471<br>N111472<br>N111473<br>N111474 | 244<br>244<br>244<br>244<br>244                      | <pre></pre>                       | 0.09<br>0.10<br>0.23<br>0.24<br>0.22 |   |         |          |              |        |        |   |
| N111475<br>N111476<br>N111480<br>N111481<br>N111482 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | <pre>&lt; 5 &lt; 5 50 30 20</pre> | 0.36<br>0.37<br>0.81<br>2.12<br>2.40 |   |         |          |              |        |        |   |
| N111483<br>N111484<br>N111485                       | 244<br>244<br>244                                    | < 5<br>< 5<br>< 5                 | 1.95<br>0.26<br>0.20                 |   |         |          |              |        |        |   |
|                                                     |                                                      |                                   |                                      |   |         |          |              |        |        |   |
|                                                     |                                                      |                                   |                                      |   |         | c        | ERTIFICATION | - Sato | X Cein | 1 |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page per : 1 Total, jes : 1 Certificate Date: 28-OCT-96 Invoice No. : 19637156 P.O. Number : MPO Account

Project : ICE-15 Comments:

1

|                                                     |                                 |            |                                       |                                      | CE | ERTIFIC | ATE OF A | NALYSIS       | A96    | 37156 |     |
|-----------------------------------------------------|---------------------------------|------------|---------------------------------------|--------------------------------------|----|---------|----------|---------------|--------|-------|-----|
| SAMPLE                                              | PC                              | REP<br>ODE | Au ppb<br>FA+AA                       | Cu<br>%                              |    |         |          |               |        |       |     |
| N111423<br>N111436<br>N111437<br>N111452<br>N111453 | 244<br>244<br>244<br>244<br>244 |            | <pre>&lt; 5 &lt; 5 35 &lt; 5 10</pre> | 2.03<br>0.42<br>0.28<br>0.10<br>0.30 |    |         |          |               |        |       |     |
| N111454<br>N111455                                  | 244<br>244                      |            | 80<br>< 5                             | 0.23<br>0.11                         |    |         |          |               |        |       |     |
|                                                     |                                 |            |                                       |                                      |    |         |          |               | 8      |       |     |
|                                                     |                                 |            | -                                     |                                      |    |         | (        | CERTIFICATION | 1: Sai | d let | ngd |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ⊬er ∶1 Total Faces :1 Certificate Date: 28-OCT-96 Invoice No. P.O. Number :19637155 : MPO Account

Project : ICE-14 Comments:

------

|                                                     |                                                      |                                        |                                      |  | CERTIFIC | ATE OF A | NALYSIS      | A96  | 37155 |      |
|-----------------------------------------------------|------------------------------------------------------|----------------------------------------|--------------------------------------|--|----------|----------|--------------|------|-------|------|
| SAMPLE                                              | PREP<br>CODE                                         | Au ppb<br>FA+AA                        | Cu<br>%                              |  |          |          |              |      |       |      |
| N111394<br>N111395<br>N111396<br>N111397<br>N111398 | 244<br>244<br>244<br>244<br>244                      | 10<br>30<br>5<br>15<br>10              | 0.26<br>0.56<br>0.26<br>0.94<br>0.23 |  |          |          |              |      |       |      |
| N111399<br>N111400<br>N111401<br>N111402<br>N111403 | 244<br>244<br>244<br>244<br>244                      | 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5   | 0.40<br>0.41<br>0.09<br>0.91<br>0.57 |  |          |          |              |      |       |      |
| N111404<br>N111405<br>N111406<br>N111407<br>N111407 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 35<br>< 5<br>< 5<br>< 5<br>40          | 0.42<br>2.04<br>2.23<br>1.69<br>1.93 |  |          |          |              |      |       |      |
| N111411<br>N111412<br>N111413<br>N111414<br>N111414 | 244<br>244<br>244<br>244<br>244                      | 25<br>10<br>45<br>20<br>< 5            | 1.07<br>1.37<br>3.43<br>0.73<br>1.08 |  |          |          |              |      |       |      |
| N111416<br>N111417<br>N111418                       | 244<br>244<br>244                                    | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | 0.53<br>0.79<br>0.82                 |  |          |          |              |      |       |      |
|                                                     |                                                      |                                        |                                      |  |          |          |              |      |       |      |
|                                                     |                                                      |                                        |                                      |  |          |          |              |      |       |      |
|                                                     |                                                      |                                        |                                      |  |          |          |              |      | 17    | ·    |
|                                                     |                                                      |                                        |                                      |  |          | c        | ERTIFICATION | -Sar | d let | iq d |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8 Page per :1 Total reages :1 Certificate Date: 28-OCT-96 Invoice No. : [9637154 P.O. Number : Account :MPO

Project : ICE Comments:

Г

|                               |                   |                   |                      | CERTIFICATE OF ANALYSIS | A9637154     |
|-------------------------------|-------------------|-------------------|----------------------|-------------------------|--------------|
| SAMPLE                        | PREP<br>CODE      | Au ppb<br>FA+AA   | Cu<br>%              |                         |              |
| N111363<br>N111364<br>N111365 | 244<br>244<br>244 | < 5<br>< 5<br>< 5 | 0.15<br>0.15<br>0.35 |                         |              |
|                               |                   |                   |                      |                         |              |
|                               |                   |                   |                      | CERTIFICATION:          | Saro Cernado |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er : 1 Total : \_s : 1 Certificate Date: 28-OCT-96 Invoice No. : 19637153 P.O. Number : :MPO Account

| Project : | ICE |
|-----------|-----|
| Comments: |     |

|                                                     |                                                      |                                                  |                  | C           | ERTIFIC | ATE OF A | A96          | 37153 |        |      |
|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------|------------------|-------------|---------|----------|--------------|-------|--------|------|
| SAMPLE                                              | PREP<br>CODE                                         | Au ppb<br>FA+AA                                  | Cu<br>%          |             |         |          |              |       |        |      |
| N110255<br>N110262<br>N110263<br>N110264<br>N110265 | 244<br>244<br>244<br>244<br>244                      | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 15</pre> | 0.89<br>0.83<br> |             |         |          |              |       |        |      |
| N110266<br>N110271<br>N110272<br>N110273<br>N110274 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 10<br>25<br>30<br>25<br>< 5                      | 0.39             |             |         |          |              |       |        |      |
|                                                     |                                                      |                                                  |                  |             |         |          |              |       |        |      |
|                                                     |                                                      |                                                  |                  |             |         |          |              |       |        |      |
|                                                     |                                                      |                                                  |                  |             |         |          |              |       |        |      |
|                                                     |                                                      |                                                  |                  | -<br>-<br>- |         |          |              |       |        |      |
|                                                     |                                                      |                                                  |                  |             |         |          |              |       |        |      |
|                                                     |                                                      |                                                  |                  |             |         |          |              |       |        |      |
|                                                     |                                                      |                                                  |                  |             |         |          | ERTIFICATION | Sar   | A Ceri | iq d |



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Fo: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATION:\_

Pag ber :1 Tota Jes :1 Certificate Date: 27-OCT-96 Invoice No. : 19637152 P.O. Number : Account MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

.....

|                               |                   |                  |                      | CERTIFIC | CATE OF AN | ALYSIS | A9637 | 152     |
|-------------------------------|-------------------|------------------|----------------------|----------|------------|--------|-------|---------|
| SAMPLE                        | PREP<br>CODE      | Au ppb<br>FA+AA  | Cu<br>%              |          |            |        |       |         |
| N110953<br>N110954<br>N110955 | 244<br>244<br>244 | < 5<br>< 5<br>20 | 0.25<br>0.42<br>0.39 |          |            |        |       |         |
|                               |                   |                  |                      |          |            |        |       |         |
|                               |                   |                  |                      |          |            |        |       |         |
|                               |                   |                  |                      |          |            |        |       |         |
|                               |                   |                  |                      | <br>     |            |        | Sard  | (EINA P |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 ic: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page Jer : 1 Total Js :1 Certificate Date: 24-OCT-96 Invoice No. : 19637151 P.O. Number : Account : MPO

Project : ICE

Comments: FAX:EXPATRIATE RES WHITEHORSE FAX: EXPATRIATE RES.VAN

CERTIFICATION:

ഹ

#### **CERTIFICATE OF ANALYSIS** A9637151 PREP Cu SAMPLE CODE % N110833 244 0.18 ---N110834 244 0.29 N110835 244 ---0.38 N110836 244 --0.02 N110837 244 --< 0.01 N110838 244 --0.25 N110890 0.59 244 ---N110891 244 0.86 --N110892 244 --0.45 N110893 244 0.28 ---



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Pag: ber :1 Total \_.es :1 Certificate Date: 27-OCT-96 Invoice No. :19637150 P.O. Number : Account :MPO

| Project : | <b>ICE</b> |
|-----------|------------|
| Comments: |            |

|                                                     |                                        |                                                                        |                                      |  | CERTIFIC | ATE OF A | NALYSIS | A96 | 37150  |  |
|-----------------------------------------------------|----------------------------------------|------------------------------------------------------------------------|--------------------------------------|--|----------|----------|---------|-----|--------|--|
| SAMPLE                                              | PREP<br>CODE                           | Au ppb<br>FA+AA                                                        | Cu<br>%                              |  |          |          |         |     |        |  |
| N110802<br>N110803<br>N110804<br>N110805<br>N110806 | 244<br>244<br>244<br>244<br>244        | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt;</pre>              | 0.25<br>0.13<br>0.16<br>0.08<br>0.16 |  |          |          |         | ı   |        |  |
| N110807<br>N110808<br>N110809<br>N110810<br>N110811 | 244<br>244<br>244<br>244<br>244<br>244 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5&lt;</pre> | 0.19<br>0.28<br>0.28<br>             |  |          |          |         |     |        |  |
| N110812<br>N110813<br>N110814<br>N110815<br>N110816 | 244<br>244<br>244<br>244<br>244        | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 20</pre>                  | 0.32<br>0.54<br>0.50<br>0.56         |  |          |          |         |     |        |  |
| N110817<br>N110818<br>N110819<br>N110820<br>N110821 | 244<br>244<br>244<br>244<br>244        | 5<br>5<br>10<br>5<br>5<br>5                                            | 0.63<br>0.24<br>0.20<br>0.20<br>0.32 |  |          |          |         |     |        |  |
| N110822<br>N110823                                  | 244<br>244                             | < 5<br>< 5                                                             | 0.27<br>0.39                         |  |          |          |         |     |        |  |
|                                                     |                                        |                                                                        |                                      |  |          |          |         | Sam | 1/eine |  |

\_

# **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC V6B 1L8

Page, ar :1-A Total Payes :1 Certificate Date: 23-OCT-96 Invoice No. : I 9636582 P.O. Number : Account : MPO

ICE Project : Comments:

| ·····                                                          |                                        |                                        |                                                    |                                      |                                        |                                   |                                                    |                                        |                                      |                                                    | CE                        | RTIFI                          | CATE                                 | OF A                                  | NALY                                         | <b>SIS</b>                             |                                            | 49636                                        | 582                                  |                                 |                                        |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------------|---------------------------|--------------------------------|--------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------|----------------------------------------|
| SAMPLE                                                         | PREI                                   | P<br>E                                 | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                              | Ba<br>ppm                         | Be<br>ppm                                          | Bi<br>ppm                              | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                 | Cr<br>ppm                      | Cu<br>ppm                            | Fe<br>%                               | Ga<br>ppm                                    | Hg<br>ppm                              | K<br>%                                     | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                       | Mo<br>ppm                              |
| N111551<br>N111552<br>N111553<br>N111554<br>N111555            | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 4.26<br>3.45<br>3.76<br>5.81<br>1.41 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 110<br>1250<br>510<br>1110<br>270 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.61<br>0.65<br>0.43<br>0.24<br>0.10 | < 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5   | 18<br>20<br>29<br>27<br>7 | 127<br>110<br>143<br>125<br>82 | 2490<br>2610<br>4130<br>1575<br>1440 | 8.34<br>7.34<br>10.80<br>8.56<br>7.58 | 10<br>10<br>10<br>10<br>< 10                 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | < 0.01<br>< 0.01<br>< 0.01<br>0.05<br>0.11 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.75<br>1.73<br>1.88<br>2.97<br>0.31 | 405<br>425<br>530<br>1025<br>75 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111556<br>N111557<br>N111558<br>N111559<br>N111559<br>N111560 | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 1.93<br>0.71<br>0.43<br>0.99<br>1.00 | 12<br>2<br>2<br>6<br>4                 | 490<br>330<br>390<br>420<br>380   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.09<br>0.05<br>0.03<br>0.06<br>0.05 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 8<br>4<br>12<br>4<br>6    | 48<br>65<br>75<br>66<br>117    | 1330<br>1130<br>694<br>841<br>2120   | 5.11<br>4.10<br>2.37<br>2.73<br>1.92  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.28<br>0.11<br>0.10<br>0.14<br>0.09       | 10<br>< 10<br>10<br>10<br>< 10               | 0.51<br>0.12<br>0.07<br>0.19<br>0.07 | 235<br>45<br>55<br>90<br>45     | < 1<br>< 1<br>< 1<br>2<br>3            |
| N111561<br>N111562<br>N111563                                  | 205 205 2                              | 294<br>294<br>294                      | < 0.2<br>< 0.2<br>< 0.2                            | 0.82<br>0.95<br>0.94                 | 466                                    | 420 440 370                       | < 0.5<br>< 0.5<br>< 0.5                            | < 2<br>< 2<br>< 2                      | 0.03<br>0.04<br>0.06                 | < 0.5<br>< 0.5<br>< 0.5                            | 4<br>5<br>9               | 93<br>92<br>92                 | 376<br>687<br>881                    | 1.90<br>2.39<br>2.27                  | < 10<br>< 10<br>< 10                         | < 1<br>< 1<br>< 1                      | 0.11<br>0.13<br>0.14                       | < 10<br>10<br>10                             | 0.28<br>0.33<br>0.35                 | 200<br>250<br>390               | 8<br>3<br>1                            |
|                                                                |                                        |                                        |                                                    |                                      |                                        |                                   |                                                    |                                        |                                      |                                                    |                           |                                |                                      |                                       |                                              | 4TION:-                                |                                            | -<br>Taut                                    | ·Psa                                 | chlo                            |                                        |

CERTIFICATION:

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Invoice No. : 19636582 P.O. Number Account : MPO

#### Project : ICE Comments:

|                                                     |                                                                |                                                          |                           |                                 |                         |                                        |                            |                                  |                                               | CE                                           | RTIFI                                        | CATE                            | OF A                                         | NALYSIS                        | A9636582      |
|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------------------|---------------------------------|-------------------------|----------------------------------------|----------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|--------------------------------|---------------|
| SAMPLE                                              | PREP<br>CODE                                                   | Na<br>%                                                  | Ni<br>ppm                 | P<br>ppm                        | Pb<br>ppm               | Sb<br>ppm                              | Sc<br>ppm                  | Sr<br>ppm                        | Ti<br>%                                       | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                      |               |
| 1111551<br>1111552<br>1111553<br>1111554<br>1111555 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | 25<br>22<br>25<br>34<br>8 | 230<br>280<br>370<br>420<br>310 | < 2<br>< 2<br>< 2<br>4  | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 36<br>32<br>27<br>41<br>10 | 21<br>23<br>15<br>20 <<br>3 <    | 0.16<br>0.20<br>0.15<br>0.01<br>0.01          | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 208<br>196<br>275<br>263<br>101 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 150<br>154<br>162<br>170<br>66 |               |
| 1111556<br>1111557<br>1111558<br>1111559<br>1111560 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 27<br>8<br>9<br>11<br>11  | 890<br>220<br>130<br>180<br>140 | 18<br>6<br>4<br>12<br>8 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 25<br>4<br>2<br>6<br>3     | 22 <<br>2 <<br>2 <<br>5 <<br>3 < | <pre>0.01 0.01 0.01 0.01 0.01 0.01 0.01</pre> | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 54<br>33<br>14<br>20<br>23      | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 150<br>54<br>128<br>122<br>78  |               |
| 1111561<br>1111562<br>1111563                       | 205 294<br>205 294<br>205 294                                  | < 0.01<br>< 0.01<br>< 0.01                               | 12<br>13<br>23            | 110<br>180<br>140               | 6<br>6<br>12            | < 2<br>< 2<br>< 2                      | 1<br>2<br>1                | 4 <<br>4 <<br>5 <                | 0.01<br>0.01<br>0.01                          | < 10<br>< 10<br>< 10                         | < 10<br>< 10<br>< 10                         | 25<br>29<br>19                  | < 10<br>< 10<br>< 10                         | 68<br>106<br>176               |               |
|                                                     |                                                                |                                                          |                           |                                 |                         |                                        |                            |                                  |                                               |                                              |                                              |                                 |                                              |                                |               |
|                                                     |                                                                |                                                          |                           |                                 |                         |                                        |                            |                                  |                                               |                                              |                                              |                                 |                                              |                                |               |
|                                                     |                                                                |                                                          |                           |                                 |                         |                                        |                            |                                  |                                               |                                              |                                              |                                 |                                              |                                |               |
|                                                     |                                                                |                                                          |                           |                                 |                         |                                        |                            |                                  |                                               |                                              |                                              |                                 |                                              |                                |               |
|                                                     |                                                                |                                                          |                           |                                 |                         |                                        |                            |                                  |                                               |                                              |                                              |                                 |                                              |                                |               |
|                                                     |                                                                |                                                          |                           |                                 |                         |                                        |                            |                                  |                                               |                                              |                                              |                                 |                                              |                                |               |
|                                                     |                                                                |                                                          |                           |                                 |                         |                                        |                            |                                  |                                               |                                              |                                              |                                 | <u> </u>                                     |                                | tanti sichler |

**Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

CERTIFICATION:


Page i r :1-A Total Pa Certificate Date: 23-OCT-96 Invoice No. : 19636581 P.O. Number :MPO Account

Mn

60

865

1825

1440

1760

1465

2010

1245

1930

1320

1205

ppm

Mo

ppm

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

< 1

A9636581

La

ppm

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

< 10

Mg

0.01

2.37

2.49

1.47

3.31

2.70

2.39

2.71

2.50

2.45

2.15

%

Project : ICE Comments:

| PREP         Ag         Al         As         Ba         Be         Bi         C           SAMPLE         CODE         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm | a Cd<br>5 ppm<br>4 < 0.5<br>9 0.5                                                                                    | CC<br>Co<br>ppm<br>5<br>47 | Cr<br>ppm<br>162            | CATE<br>Cu<br>ppm           | Fe %                                 | Ga<br>ppm                    | (SIS<br>Eg<br>ppm                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------|-----------------------------|--------------------------------------|------------------------------|----------------------------------------------------------------------------------|
| PREP         Ag         Al         As         Ba         Be         Bi         C           SAMPLE         CODE         ppm         %         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm | a Cd<br>5 ppm<br>4 < 0.5<br>9 0.5                                                                                    | Co<br>ppm<br>5<br>47       | Cr<br>ppm<br>162            | Cu<br>ppm                   | Fe<br>%                              | Ga<br>ppm                    | Hg<br>ppm                                                                        |
| N111564         205         294         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>4 &lt; 0.5 9 0.5 9 0.5</pre>                                                                                    | 5<br>47                    | 162                         | 177                         |                                      |                              |                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5<br>0.5                                                                                                           | 123<br>48<br>64            | 56<br>66<br>147<br>110      | 1310<br>520<br>62<br>199    | 6.61<br>7.77<br>7.69<br>5.87<br>7.79 | < 10<br>10<br>10<br>10<br>10 | < 1 < 0.<br>< 1 0.<br>< 1 < 0.<br>< 1 0.<br>< 1 0.<br>< 1 0.                     |
| N111569       205       294       < 0.2       3.41       < 2       130       < 0.5       < 2       3.3         N111570       205       294       < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>     &lt; 0.5     &lt; 0.5     &lt; 0.5     &lt; 0.5     &lt; 0.5     &lt; 0.5     &lt; 0.5     &lt; 0.5 </pre> | 41<br>45<br>35<br>28<br>39 | 92<br>88<br>74<br>72<br>112 | 89<br>102<br>66<br>59<br>70 | 6.32<br>6.71<br>7.18<br>6.10<br>8.95 | 10<br>10<br>10<br>10<br>10   | <pre>&lt; 1 &lt; 0. &lt; 1 0. &lt; 1 0. 1 0. &lt; 1 0. &lt; 1 0. 1 0. 1 0.</pre> |
| N111574 205 294 < 0.2 3.73 < 2 230 < 0.5 < 2 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 < 0.5                                                                                                              | 25                         | 61                          | 69                          | 5.97                                 | 10                           | < 1 0.                                                                           |

**Chemex Labs Ltd.** 

North Vancouver

V7J 2C1

Analytical Chemists \* Geochemists \* Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave.,

British Columbia, Canada

Ć

CERTIFICATION:\_

Sant Buchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver V7J 2C1

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page I r :1-B To Ce Inv Ρ.0 Ac

CERTIFICATION:

| Project : | ICE |
|-----------|-----|
| Comments: |     |

#### **CERTIFICATE OF ANALYSIS**

A9636581

| otal Pa         | :1           |
|-----------------|--------------|
| ertificate Date | e: 23-OCT-96 |
| voice No.       | : 19636581   |
| O. Number       | :            |
| count           | : MPO        |
|                 |              |

| SAMPLE                                              | PREP<br>CODE                                                   | Na<br>%                                                  | Ni<br>ppm                  | p<br>ppm                        | Pb<br>ppm                                     | Sb<br>ppm                                     | Sc<br>ppm                  | Sr<br>ppm                    | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                      |       |     |                   |   | ·   |
|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------|---------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------|------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|--------------------------------|-------|-----|-------------------|---|-----|
| N111564<br>N111565<br>N111566<br>N111567<br>N111568 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | 6<br>44<br>44<br>44<br>56  | 110<br>620<br>590<br>460<br>440 | 14<br>2<br>< 2<br>< 2<br>2<br>2               | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 1<br>20<br>30<br>28<br>29  | 7 <<br>57<br>91<br>351<br>23 | 0.01<br>0.30<br>0.58<br>0.03<br>0.32 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 103<br>248<br>244<br>184<br>209 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 94<br>318<br>476<br>216<br>250 |       |     |                   |   |     |
| N111569<br>N111570<br>N111571<br>N111572<br>N111573 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 47<br>45<br>38<br>35<br>49 | 400<br>300<br>430<br>290<br>410 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 24<br>27<br>30<br>25<br>38 | 38<br>66<br>62<br>70<br>31   | 0.42<br>0.08<br>0.32<br>0.07<br>0.17 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 201<br>202<br>246<br>181<br>263 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 136<br>158<br>92<br>84<br>116  |       |     |                   |   |     |
| N111574                                             | 205 294                                                        | < 0.01                                                   | 31                         | 570                             | < 2                                           | < 2                                           | 20                         | 88 <                         | 0.01                                 | < 10                                         | < 10                                         | 113                             | < 10                                         | 114                            |       |     |                   |   |     |
|                                                     |                                                                |                                                          |                            |                                 |                                               |                                               |                            |                              |                                      |                                              |                                              |                                 |                                              |                                |       |     |                   |   |     |
|                                                     |                                                                | -                                                        |                            |                                 |                                               |                                               |                            |                              |                                      |                                              |                                              |                                 |                                              |                                |       |     |                   |   |     |
|                                                     |                                                                |                                                          |                            |                                 |                                               |                                               |                            |                              |                                      |                                              |                                              |                                 |                                              |                                |       |     |                   |   |     |
|                                                     |                                                                |                                                          |                            |                                 |                                               |                                               |                            |                              |                                      |                                              |                                              |                                 |                                              |                                |       |     |                   |   |     |
|                                                     |                                                                |                                                          |                            |                                 |                                               |                                               |                            |                              |                                      |                                              |                                              |                                 |                                              |                                |       |     |                   |   |     |
|                                                     |                                                                |                                                          |                            |                                 |                                               |                                               |                            |                              |                                      |                                              |                                              |                                 |                                              |                                |       | 11  | the second        | · | ter |
|                                                     |                                                                |                                                          |                            |                                 |                                               |                                               |                            |                              |                                      |                                              |                                              |                                 | ~                                            |                                | ATION | 100 | $\mathcal{A}^{N}$ |   |     |



Analytical Chemists \* Geochemists \* Registered Assayers

| 212 Brooksbank Ave.,    | North Vancouver   |
|-------------------------|-------------------|
| British Columbia, Canad | a V7J2C1          |
| PHONE: 604-984-0221     | FAX: 604-984-0218 |

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page, r :1-A Total P. :1 Certificate Date: 27-OCT-96 Invoice No. : 19636579 P.O. Number : Account :MPO

| Project : IC<br>Comments: | Έ |
|---------------------------|---|
|---------------------------|---|

Г

| r                                                              | <b></b>                         |                                                    |                                                             |                                      |                             |                                 |                                                    |                                        |                                      | CERTIFICATE OF ANALYSI                |                              |                                 |                                      |                                         |                                |                                               | /                                          |                                              |                                      |                                   |                                               |
|----------------------------------------------------------------|---------------------------------|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------|-----------------------------|---------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------|------------------------------|---------------------------------|--------------------------------------|-----------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------|-----------------------------------------------|
| SAMPLE                                                         | PF                              | REP<br>DDE                                         | Ag<br>ppm                                                   | A1<br>%                              | As<br>ppm                   | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                              | Ca<br>%                              | Cđ<br>ppm                             | Co<br>ppm                    | Cr<br>ppm                       | Cu<br>ppm                            | Fe<br>%                                 | Ga<br>ppm                      | Hg<br>ppm                                     | K<br>%                                     | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                         | Mo<br>ppm                                     |
| N110215<br>N110216<br>N110217<br>N110217<br>N110218<br>N110219 | 205<br>205<br>205<br>205<br>205 | 5 294<br>5 294<br>5 294<br>5 294<br>5 294          | 0.4<br>3.8<br>1.0<br>0.6<br>< 0.2                           | 4.54<br>4.41<br>4.20<br>4.81<br>4.73 | 10<br>2<br>4<br>8<br>< 2    | 60<br>100<br>10<br>20<br>80     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 4.39<br>1.17<br>0.59<br>0.49<br>2.98 | < 0.5<br>3.0<br>3.0<br>5.5<br>0.5     | 28<br>59<br>215<br>104<br>38 | 104<br>133<br>107<br>88<br>104  | 171<br>1950<br>4390<br>2950<br>128   | 8.01<br>9.74<br>13.95<br>12.50<br>6.32  | < 10<br>10<br>10<br>10<br>10   | < 1 <<br>< 1 <<br>< 1<br>< 1<br>< 1<br>< 1    | : 0.01<br>: 0.01<br>0.07<br>0.05<br>: 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 4.35<br>4.09<br>3.67<br>4.20<br>3.57 | 1110<br>675<br>540<br>600<br>1060 | < 1<br>1<br>4<br>2<br>< 1                     |
| N110220<br>N110221<br>N110222<br>N111533<br>N111534            | 205<br>205<br>205<br>205<br>205 | 5 294<br>5 294<br>5 294<br>5 294<br>5 294<br>5 294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.59<br>3.57<br>2.93<br>4.05<br>3.76 | 6<br>6<br>2<br>< 2<br>2     | 80<br>50<br>60<br>140<br>240    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>8<br>< 2<br>< 2<br>< 2          | 2.75<br>3.98<br>2.87<br>2.78<br>2.47 | < 0.5<br>< 0.5<br>< 0.5<br>1.0<br>2.0 | 26<br>27<br>25<br>29<br>29   | 78<br>40<br>31<br>123<br>124    | 106<br>87<br>72<br>609<br>1300       | 4.81<br>5.56<br>4.89<br>4.27<br>4.29    | 10<br>10<br>10<br>10<br>< 10   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.05<br>0.01<br>0.08<br>0.07<br>0.11       | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.41<br>2.12<br>1.82<br>2.93<br>2.74 | 775<br>910<br>800<br>720<br>665   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111535<br>N111536<br>N111537<br>N111538<br>N111539            | 205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294             | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 4.20<br>3.72<br>4.03<br>3.99<br>4.55 | 8<br>8<br>6<br>< 2<br>6     | 330<br>150<br>660<br>970<br>220 | < 0.5<br>< 0.5<br>< 0.5<br>0.5<br>< 0.5            | 2<br>< 2<br>2<br>4<br>< 2              | 2.04<br>1.63<br>1.20<br>1.57<br>2.40 | 2.0<br>2.5<br>2.0<br>5.0<br>6.5       | 31<br>66<br>97<br>71<br>61   | 102<br>85<br>132<br>174<br>178  | 1935<br>2470<br>3590<br>5770<br>3530 | 6.29<br>6.68<br>9.77<br>10.30<br>7.75   | < 10<br>10<br>10<br>10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1               | 0.01<br>0.02<br>0.03<br>0.04<br>0.09       | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 4.17<br>3.72<br>3.05<br>2.73<br>3.36 | 820<br>1045<br>785<br>655<br>1025 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        |
| N111540<br>N111541<br>N111542<br>N111543<br>N111544            | 205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294                    | < 0.2<br>< 0.2<br>< 0.2<br>1.6<br>0.6                       | 4.16<br>3.97<br>3.44<br>4.18<br>4.36 | < 2<br>4<br>8<br>< 2<br>6   | 200<br>1300<br>1470<br>80<br>40 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.48<br>1.39<br>2.14<br>0.75<br>0.69 | 5.0<br>3.5<br>4.5<br>0.5<br>< 0.5     | 59<br>59<br>82<br>35<br>102  | 184<br>173<br>127<br>170<br>175 | 4570<br>4130<br>1575<br>5280<br>3430 | 6.83<br>8.43<br>7.72<br>11.35<br>12.70  | 10<br>< 10<br>10<br>10<br>10   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.06<br>0.03<br>0.05<br>0.01<br>0.01       | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.89<br>3.71<br>2.96<br>3.63<br>3.66 | 955<br>880<br>875<br>725<br>645   | 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1          |
| N111545<br>N111546<br>N111547<br>N111548<br>N111549            | 205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294             | 0.6<br>< 0.2<br>< 0.2<br>0.2<br>0.2<br>0.2                  | 4.88<br>4.60<br>4.80<br>3.93<br>4.60 | < 2<br>2<br>6<br>< 2<br>< 2 | 90<br>40<br>30<br>120<br>70     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.68<br>0.91<br>0.86<br>1.14<br>1.09 | < 0.5<br>< 0.5<br>< 0.5<br>2.5<br>5.0 | 80<br>48<br>60<br>54<br>77   | 176<br>162<br>148<br>142<br>138 | 2910<br>958<br>1220<br>3470<br>2800  | 12.50<br>9.96<br>12.05<br>9.98<br>11.15 | < 10<br>< 10<br>10<br>10<br>10 | < 1<br>< 1 <<br>< 1 <<br>< 1<br>< 1<br>< 1    | 0.01<br>0.01<br>0.02<br>0.03               | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 4.37<br>4.59<br>4.50<br>3.69<br>4.16 | 765<br>930<br>905<br>875<br>1050  | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        |
| N111550                                                        | 205                             | 294                                                | < 0.2                                                       | 3.70                                 | 4                           | 100                             | < 0.5                                              | < 2                                    | 1.50                                 | 2.0                                   | 43                           | 92                              | 417                                  | 7.63                                    | 10                             | < 1                                           | 0.01                                       | < 10                                         | 3.67                                 | 775                               | < 1                                           |
|                                                                |                                 |                                                    |                                                             |                                      |                             |                                 |                                                    |                                        |                                      |                                       |                              |                                 |                                      |                                         |                                |                                               |                                            |                                              |                                      |                                   |                                               |
|                                                                |                                 |                                                    |                                                             |                                      |                             |                                 |                                                    |                                        |                                      |                                       |                              |                                 |                                      |                                         |                                |                                               |                                            |                                              |                                      |                                   |                                               |

CERTIFICATION: Stant Brokley

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED VANCOUVER, BC V6B 1L8

Page r :1-E Total F :1 ⇒r :1-B Certificate Date: 27-OCT-96 Invoice No. : 19636579 P.O. Number :MPO Account

Project : Comments: ICE

**Chemex Labs Ltd.** 

North Vancouver

V7J 2C1

Analytical Chemists \* Geochemists \* Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave., British Columbia, Canada

C

**CERTIFICATE OF ANALYSIS** 

A9636579

|          | 1      | 7        |            |      |            |     |     |     |      | <u> </u>    |      |      |      |      |                                       |    |
|----------|--------|----------|------------|------|------------|-----|-----|-----|------|-------------|------|------|------|------|---------------------------------------|----|
|          | PREP   | Na       | Ni         | P    | Pb         | Sb  | Sc  | Sr  | тi   | ጥ1          | U    | v    | W    | Zn   |                                       |    |
| SAMPLE   | CODE   | %        | ppm        | ppm  | ppm        | ppm | ppm | ppm | %    | ppm         | ppm  | ppn  | ppm  | ppm  |                                       |    |
| N110215  | 205 29 | 4 < 0.01 | <u>4</u> 1 | 470  | 4          | 6   | 15  | 26  | 0.37 | < 10        | < 10 | 14.8 | < 10 | 454  |                                       |    |
| N110216  | 205 29 | 4 < 0.01 | 52         | 390  | 18         | ž   | 23  | 12  | 0.46 | < 10        | < 10 | 258  | < 10 | 1535 |                                       |    |
| N110217  | 205 29 | 4 < 0.01 | 39         | 170  | 10         | 4   | 16  | 11  | 0.29 | < 10        | < 10 | 154  | < 10 | 1465 |                                       |    |
| N110218  | 205 29 | 4 < 0.01 | 38         | 190  | 10         | 6   | 21  | 24  | 0.33 | < 10        | < 10 | 188  | < 10 | 1260 |                                       |    |
| N110219  | 205 29 | 4 < 0.01 | 43         | 310  | < 2        | 6   | 14  | 46  | 0.42 | < 10        | < 10 | 186  | < 10 | 194  |                                       |    |
| N110220  | 205 29 | 4 0.03   | 46         | 320  | 2          | 4   | 7   | 14  | 0.36 | < 10        | < 10 | 141  | < 10 | 100  |                                       |    |
| N110221  | 205 29 | 4 0.02   | 33         | 450  | < 2        | 2   | 10  | 14  | 0.48 | < 10        | < 10 | 179  | < 10 | 98   |                                       |    |
| N110222  | 205 29 | 4 0.01   | 29         | 450  | < 2        | 2   | 9   | 21  | 0.52 | < 10        | < 10 | 161  | < 10 | 78   |                                       |    |
| N111533  | 205 29 | 4 0.03   | 61         | 170  | 2          | 2   | 10  | 12  | 0.26 | < 10        | < 10 | 111  | < 10 | 266  |                                       |    |
| D#111334 | 205 29 | e 0.02   | 24         | 190  | < <b>4</b> | < 4 | 14  | 1.8 | 0.20 | < 10        | < 10 |      | < 10 | 418  |                                       |    |
| N111535  | 205 29 | 4 0.02   | 43         | 350  | 4          | 6   | 21  | 22  | 0.47 | < 10        | < 10 | 215  | < 10 | 426  |                                       |    |
| N111530  | 205 29 |          | 40         | 460  | 4          | 4   | 20  | 18  | 0.22 | < 10        | < 10 | 189  | < 10 | 1050 |                                       |    |
| N111538  | 205 29 | 4 < 0.01 | 66         | 190  | 6          | 4   | 22  | 20  | 0.17 | < 10        | < 10 | 138  | < 10 | 1830 |                                       |    |
| N111539  | 205 29 | 4 < 0.01 | 58         | 230  | 6          | 6   | 19  | 13  | 0.27 | < 10        | < 10 | 150  | < 10 | 1190 |                                       |    |
| N111540  | 205 29 | 4 0.01   | 60         | 210  | 2          | 2   | 20  | 12  | 0.29 | < 10        | < 10 | 152  | < 10 | 878  | · · · · · · · · · · · · · · · · · · · |    |
| N111541  | 205 29 | 4 < 0.01 | 51         | 270  | 2          | 2   | 25  | 67  | 0.39 | < 10        | < 10 | 186  | < 10 | 836  |                                       |    |
| N111542  | 205 29 | 4 < 0.01 | 51         | 290  | 2          | 4   | 19  | 52  | 0.34 | < 10        | < 10 | 165  | < 10 | 1535 |                                       |    |
| N111543  | 205 29 | 4 < 0.01 | 46         | 230  | 10         | 6   | 21  | 21  | 0.29 | < 10        | < 10 | 228  | < 10 | 778  |                                       |    |
| N111544  | 205 29 | 4 < 0.01 | 51         | 260  | 6          | 6   | 23  | 16  | 0.31 | < 10        | < 10 | 218  | < 10 | 550  |                                       |    |
| N111545  | 205 29 | 4 < 0.01 | 50         | 290  | 2          | 4   | 24  | 14  | 0.42 | < 10        | < 10 | 251  | < 10 | 420  |                                       |    |
| N111546  | 205 29 | 0.01     | 50         | 370  | 2          | 6   | 19  | 25  | 0.50 | < 10        | < 10 | 189  | < 10 | 514  |                                       |    |
| N111547  | 205 29 | < 0.01   | 47         | 460  | 2          | 6   | 26  | 14  | 0.47 | < 10        | < 10 | 220  | < 10 | 494  |                                       |    |
| N111549  | 205 29 | 4 < 0.01 | 49         | 290  | 4          | 6   | 26  | 16  | 0.45 | < 10        | < 10 | 265  | < 10 | 1415 |                                       |    |
| N111550  | 205 29 | 4 0.01   | 39         | 420  | 2          |     | 15  | 16  | 0.44 | < 10        | < 10 | 163  | < 10 | 692  |                                       |    |
| 4111990  |        | 0.01     |            | **** | •          | •   | 13  | 10  | 0.44 | <b>×</b> 10 | < 10 | 103  | < 10 | 004  |                                       |    |
|          |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
| ]        |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        | 1        |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        | 1        |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        | 1        |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
| 1        |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
|          |        |          |            |      |            |     |     |     |      |             |      |      |      |      |                                       |    |
| L        |        | <b>.</b> |            |      |            |     |     |     |      |             |      | -,   |      |      |                                       |    |
|          |        |          |            |      |            |     |     |     |      |             |      |      |      |      | TION: Start Sichl                     | en |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page Ir :1-A Total F :1 Certificate Date: 17-OCT-96 Invoice No. :19635694 P.O. Number : Account :MPO

Project : ICE Comments:

\_

|                                                     |                                                                |                                                    |                                      |                          |                                 |                                                    |                                        |                                      | CERTIFICATE OF ANAL                              |                            |                            |                             |                                      |                                |                             | /                                    | 49635                                        |                                      |                                  |                                      |
|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------|---------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------------------|----------------------------|----------------------------|-----------------------------|--------------------------------------|--------------------------------|-----------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|
| SAMPLE                                              | PREP<br>CODE                                                   | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                              | Ca<br>%                              | Cđ<br>ppm                                        | Co<br>ppm                  | Cr<br>ppm                  | Cu<br>ppm                   | Fe<br>%                              | Ga<br>ppm                      | Hg<br>ppm                   | K<br>%                               | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                        | Mo<br>ppm                            |
| N111527<br>N111528<br>V111529<br>V111530<br>V111531 | 205 276<br>205 276<br>205 276<br>205 276<br>205 276<br>205 276 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 1.97<br>2.59<br>3.03<br>3.21<br>3.39 | 20<br>2<br>< 2<br>2<br>2 | 620<br>420<br>150<br>210<br>230 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.92<br>2.21<br>2.01<br>2.38<br>2.96 | 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 14<br>30<br>29<br>32<br>35 | 88<br>65<br>33<br>40<br>27 | 95<br>133<br>75<br>77<br>61 | 3.37<br>4.86<br>5.68<br>6.53<br>7.68 | < 10<br>< 10<br>10<br>10<br>10 | < 1<br>< 1<br>1<br>1<br>< 1 | 0.15<br>0.07<br>0.05<br>0.03<br>0.02 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.36<br>1.57<br>1.66<br>2.01<br>2.47 | 845<br>750<br>665<br>885<br>1045 | 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| 111532                                              | 205 276                                                        | < 0.2                                              | 3.25                                 | < 2                      | 130                             | < 0.5                                              | 2                                      | 2.78                                 | < 0.5                                            | 31                         | 22                         | 45                          | 7.10                                 | 10                             | < 1                         | 0.02                                 | < 10                                         | 2.63                                 | 905                              | < 1                                  |
|                                                     |                                                                |                                                    |                                      |                          |                                 |                                                    |                                        |                                      |                                                  |                            |                            |                             |                                      |                                |                             |                                      |                                              |                                      |                                  |                                      |
|                                                     |                                                                |                                                    |                                      |                          |                                 |                                                    |                                        |                                      |                                                  |                            |                            |                             |                                      |                                |                             |                                      |                                              |                                      |                                  |                                      |
|                                                     |                                                                |                                                    |                                      |                          |                                 |                                                    |                                        |                                      |                                                  |                            |                            |                             |                                      |                                |                             |                                      |                                              |                                      |                                  |                                      |
|                                                     |                                                                |                                                    |                                      |                          |                                 |                                                    |                                        |                                      |                                                  |                            |                            |                             |                                      |                                |                             |                                      |                                              |                                      |                                  |                                      |
|                                                     |                                                                |                                                    |                                      |                          |                                 |                                                    |                                        |                                      |                                                  |                            |                            |                             |                                      |                                |                             |                                      |                                              |                                      |                                  |                                      |
|                                                     |                                                                |                                                    |                                      |                          |                                 |                                                    |                                        |                                      |                                                  |                            |                            |                             |                                      |                                |                             |                                      |                                              |                                      |                                  |                                      |
|                                                     |                                                                |                                                    |                                      |                          |                                 |                                                    |                                        |                                      |                                                  |                            |                            |                             |                                      |                                |                             |                                      |                                              | •                                    |                                  |                                      |

CERTIFICATION: HartBuchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Page er :1-B Total s:1 Certificate Date: 17-OCT-96 Invoice No. : 19635694 P.O. Number : Account : MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

#### CERTIFICATE OF ANALYSIS A9

A9635694

| SAMPLE                                              | PRI                                    | ep<br>De                               | Na<br>%                                      | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                           | Sb<br>ppm                                     | Sc<br>ppm                | Sr<br>ppm                  | Tİ<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                       | W                                            | Zn<br>ppm                     |  |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|----------------------------|---------------------------------|-------------------------------------|-----------------------------------------------|--------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------|-------------------------------|--|
| N111527<br>N111528<br>N111529<br>N111530<br>N111531 | 205<br>205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | 0.03<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 29<br>32<br>30<br>34<br>25 | 880<br>530<br>600<br>600<br>680 | 20<br>2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 6<br>7<br>10<br>16<br>21 | 97<br>43<br>70<br>58<br>52 | 0.10<br>0.39<br>0.51<br>0.47<br>0.45 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 89<br>154<br>199<br>219<br>262 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 118<br>104<br>72<br>80<br>102 |  |
| N111532                                             | 205                                    | 276                                    | < 0.01                                       | 23                         | 700                             | < 2                                 | < 2                                           | 21                       | 46                         | 0.44                                 | < 10                                         | < 10                                         | 249                            | < 10                                         | 82                            |  |
|                                                     |                                        |                                        |                                              |                            |                                 |                                     |                                               |                          |                            |                                      |                                              |                                              |                                |                                              |                               |  |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

CERTIFICATION:

Page ber :1-A Total ⊿s :1 Certificate Date: 17-OCT-96 Invoice No. P.O. Number 19635690 MPO Account

A9635690

Project : ICE Comments:

#### \*PLEASE NOTE:

| 11513       205       276       0.08       1.4       5.12       < 2       30       < 0.5       Intf*       0.08       < 0.5       59       190       >10000       >15.00       20       2       0.12       < 10       2.03         11513       205       276       0.16       2.03       4.4       1.01       < 2       < 10       < 0.5       Intf*       0.06       1.5       177       61       >10000       >15.00       < 10       1       0.28       < 10       0.33         11514       205       276       0.16       2.03       4.4       1.01       < 2       < 10       < 0.5       Intf*       0.06       1.5       177       61       >10000       >15.00       < 10       1       0.28       < 10       0.33         11514       10       10       2       10       < 0.5       Intf*       0.06       1.5       177       61       >10000       >15.00       < 10       1       0.28       < 10       0.33         11514       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 | SAMPLE                   | PR<br>CO   | ep<br>De   | Au<br>g/t    | Cu<br>%      | Ag<br>ppm  | A1<br>%      | As<br>ppm  | Ba<br>ppm  | Be<br>ppm      | Bi             | Ca<br>%      | Cđ<br>ppm    | Со<br>ррт | Cr<br>ppm | Cu<br>ppm        | Fe<br>%          | Ga<br>ppm  | Hg<br>ppm | К<br>%       | La<br>ppm    | Mg<br>%      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|------------|--------------|--------------|------------|--------------|------------|------------|----------------|----------------|--------------|--------------|-----------|-----------|------------------|------------------|------------|-----------|--------------|--------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111513<br>11151 <b>4</b> | 205<br>205 | 276<br>276 | 0.08<br>0.16 | 1.05<br>2.03 | 1.4<br>4.4 | 5.12<br>1.01 | < 2<br>< 2 | 30<br>< 10 | < 0.5<br>< 0.5 | Intf*<br>Intf* | 0.08<br>0.06 | < 0.5<br>1.0 | 58<br>177 | 180<br>61 | >10000<br>>10000 | >15.00<br>>15.00 | 20<br>< 10 | 2<br>1    | 0.13<br>0.28 | < 10<br>< 10 | 2.01<br>0.15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |            |              |              |            |              |            |            |                |                |              |              |           |           |                  |                  |            |           | •••••        | <u> </u>     |              |

\*INTERFERENCE: Cu ON Bi AND P.



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 COMPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8 Page er :1-B Total s :1 Certificate Date: 17-OCT-96 Invoice No. :19635690 P.O. Number : Account :MPO

Project : ICE Comments:

| Mn Mo<br>ppm ppm | Na               |             |                |                      |                        | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                              |                                  |                                       |                                            |                                                 |                                                   |                                                         |                                                                      |                                                                                        |
|------------------|------------------|-------------|----------------|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|---------------------------------------|--------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                  | %                | Ni<br>ppm   | P<br>ppm       | Pb<br>ppm            | Sb<br>ppm              | Sc<br>ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sr<br>ppm                    | Ti<br>%                          | T1<br>ppm                             | U<br>ppm                                   | V<br>ppm                                        | W                                                 | Zn<br>ppm                                               |                                                                      |                                                                                        |
| 395 < 1<br>30 3  | < 0.01<br>< 0.01 | 57<br>53    | Intf*<br>Intf* | 28                   | 2<br>< 2               | 13<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 < 5 <                      | 0.01                             | < 10<br>< 10                          | < 10<br>< 10                               | 143<br>41                                       | < 10<br>< 10                                      | 530<br>202                                              |                                                                      |                                                                                        |
|                  |                  |             |                |                      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                  |                                       |                                            |                                                 |                                                   |                                                         |                                                                      |                                                                                        |
|                  | 30 3             | 30 3 < 0.01 | 30 3 < 0.01 53 | 30 3 < 0.01 53 Intf* | 30 3 < 0.01 53 Intf* 8 | 30 3 < 0.01 53 Intf* 8 < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 3 < 0.01 53 Intf* 8 < 2 6 | 30 3 < 0.01 53 Intf* 8 < 2 6 5 < | 30 3 < 0.01 53 Intf* 8 < 2 6 5 < 0.01 | 30 3 < 0.01 53 Intf* 8 < 2 6 5 < 0.01 < 10 | 30 3 < 0.01 53 Intr- 8 < 2 6 5 < 0.01 < 10 < 10 | 30 3 < 0.01 53 Int2 8 < 2 6 5 < 0.01 < 10 < 10 41 | 30 3 < 0.01 53 Intr- 8 < 2 5 5 < 0.01 < 10 < 10 41 < 10 | 30 3 COUL ST THEF. 8 C 2 5 5 COUL COUL COUL COUL COUL COUL COUL COUL | 30     1     0.01     35     1     2     6     5     0.01     10     41     10     202 |

CERTIFICATION:\_

Sant Buchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

SEXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page ع: :1-A Total ۲ میریند: :1 Certificate Date: 17-OCT-96 Invoice No. : 19635692 P.O. Number : Account :MPO

Project : ICE Comments:

#### CERTIFICATE OF ANALYSIS A9635692

Account

HartBichles

CERTIFICATION:

#### \*PLEASE NOTE:

| SAMPLE                                                         | PRE                                    | PE                                     | Ag<br>ppm                           | A1<br>%                              | As<br>ppm                                            | Ba<br>ppm                     | Be<br>ppm                                          | Bi                                                   | Ca<br>%                              | Cđ<br>ppm                        | Co<br>ppm                   | Cr<br>ppm                       | Cu<br>ppm                                | Fe<br>%                                   | Ga<br>ppm                  | Hg                                     | K<br>%                               | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                         | Mo<br>ppm                              |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------|------------------------------------------------------|-------------------------------|----------------------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------|-----------------------------|---------------------------------|------------------------------------------|-------------------------------------------|----------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------|
| N111502<br>N111503<br>N111504<br>N111505<br>N111506            | 205<br>205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | 1.2<br>0.6<br>0.2<br>0.2<br>2.8     | 3.39<br>4.07<br>3.98<br>4.60<br>4.00 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 260<br>120<br>120<br>50<br>40 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.08<br>1.67<br>0.97<br>1.71<br>0.70 | 1.0<br>2.0<br>2.5<br>3.5<br>1.5  | 31<br>31<br>28<br>36<br>55  | 76<br>121<br>199<br>174<br>179  | 776<br>1455<br>1410<br>1510<br>6440      | 6.33<br>8.18<br>10.90<br>11.55<br>11.55   | 10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.04<br>0.04<br>0.02<br>0.01<br>0.03 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.98<br>2.10<br>2.31<br>2.36<br>2.47 | 870<br>600<br>625<br>635<br>660   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111507<br>N111508<br>N111509<br>N111510<br>N111511            | 205<br>205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | 1.0<br>0.8<br>0.6<br>0.2<br>< 0.2   | 4.60<br>4.71<br>6.10<br>4.75<br>5.16 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 50<br>80<br>40<br>40<br>30    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 0.51<br>0.32<br>0.42<br>0.67<br>0.46 | 2.5<br>2.5<br>1.5<br>4.0<br>3.0  | 44<br>42<br>37<br>40<br>41  | 205<br>213<br>216<br>199<br>223 | 2980<br>4350<br>4230<br>2810<br>2550     | 11.50<br>13.25<br>13.90<br>10.00<br>10.95 | 10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.07<br>0.04<br>0.05<br>0.08<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.77<br>2.45<br>3.34<br>3.26<br>3.42 | 685<br>635<br>800<br>695<br>780   | < 1<br>1<br>< 1<br>< 1<br>< 1          |
| N111512<br>N111515<br>N111516<br>N111517<br>N111518            | 205<br>205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | 1.6<br>0.2<br>0.6<br>1.0<br>< 0.2   | 6.45<br>4.03<br>4.22<br>5.41<br>3.98 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 60<br>90<br>80<br>20<br>140   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | Intf*<br>2<br>< 2<br>Intf*<br>< 2                    | 0.12<br>2.07<br>2.53<br>0.20<br>2.98 | 1.5<br>5.5<br>2.0<br>11.5<br>4.0 | 58<br>41<br>42<br>190<br>70 | 222<br>139<br>126<br>204<br>100 | >10000<br>2020<br>1085<br>>10000<br>2030 | >15.00<br>5.18<br>5.94<br>15.00<br>8.09   | 20<br>10<br>10<br>10<br>10 | < 1<br>2<br>< 1<br>1<br>< 1            | 0.06<br>0.03<br>0.05<br>0.06<br>0.03 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.74<br>2.64<br>2.81<br>4.32<br>3.16 | 630<br>865<br>925<br>880<br>870   | < 1<br>< 1<br>< 1<br>3<br>< 1          |
| N111519<br>N111520<br>N111521<br>N111522<br>N111522<br>N111523 | 205<br>205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | < 0.2<br>0.2<br>1.6<br>< 0.2<br>0.6 | 3.86<br>4.43<br>5.10<br>3.70<br>3.46 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 70<br>390<br>210<br>120<br>50 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 2.19<br>2.02<br>0.79<br>1.29<br>1.02 | 5.5<br>3.5<br>3.5<br>4.0<br>0.5  | 71<br>60<br>64<br>88<br>43  | 81<br>94<br>126<br>125<br>86    | 2130<br>1045<br>2450<br>2700<br>801      | 7.34<br>7.26<br>9.38<br>7.00<br>7.29      | 10<br>10<br>10<br>10<br>10 | < 1<br>1<br>< 1<br>< 1<br>1<br>1       | 0.02<br>0.02<br>0.01<br>0.03<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.04<br>4.57<br>5.46<br>3.49<br>3.26 | 910<br>970<br>1080<br>1045<br>900 | < 1<br>< 1<br>1<br>< 1<br>< 1          |
| N111524<br>N111525<br>N111526                                  | 205<br>205<br>205                      | 276<br>276<br>276                      | 0.8<br>0.4<br>0.6                   | 3.54<br>3.76<br>4.86                 | < 2<br>< 2<br>< 2                                    | 70<br>130<br>50               | < 0.5<br>< 0.5<br>< 0.5                            | < 2<br>< 2<br>2                                      | 1.05<br>1.93<br>1.41                 | 1.5<br>3.0<br>4.0                | 49<br>63<br>94              | 156<br>104<br>82                | 1625<br>1105<br>3230                     | 7.31<br>7.10<br>10.35                     | 10<br>10<br>10             | < 1<br>< 1<br>< 1                      | 0.02<br>0.01<br>0.05                 | < 10<br>< 10<br>< 10                         | 3.02<br>2.97<br>3.58                 | 770<br>800<br>915                 | < 1<br>< 1<br>< 1                      |
|                                                                |                                        |                                        |                                     |                                      |                                                      |                               |                                                    |                                                      |                                      |                                  |                             |                                 |                                          |                                           |                            |                                        |                                      |                                              |                                      |                                   |                                        |
|                                                                |                                        |                                        |                                     |                                      |                                                      |                               |                                                    |                                                      |                                      |                                  |                             |                                 |                                          |                                           |                            |                                        |                                      |                                              |                                      |                                   |                                        |
|                                                                |                                        |                                        |                                     |                                      |                                                      |                               |                                                    |                                                      |                                      |                                  |                             |                                 |                                          |                                           |                            |                                        |                                      |                                              |                                      |                                   |                                        |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| o: | EXPATRIATE RESOURCES LTD.                      |
|----|------------------------------------------------|
|    | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|    | 1016 - 510 W. HASTINGS ST.                     |
|    | VANCOUVER, BC                                  |
|    | V6B 1L8                                        |

**CERTIFICATE OF ANALYSIS** 

Page per :1-B Total Pages :1 Certificate Date: 17-OCT-96 Invoice No. :19635692 P.O. Number : Account :MPO

----

A9635692

Project : ICE Comments:

#### \*PLEASE NOTE:

|                                                     | The second second second second second second second second second second second second second second second se | -                                       |                                              |                            |                                     |                                                      |                                         |                            |                           |                                              |                                              |                                              |                                 |                                              |                                    |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------|-------------------------------------|------------------------------------------------------|-----------------------------------------|----------------------------|---------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|------------------------------------|--|
|                                                     | PREP                                                                                                            |                                         | Na                                           | Ni                         | P                                   | Pb                                                   | Sb                                      | Sc                         | Sr                        | Ti                                           | <b>T1</b>                                    | υ                                            | v                               | W                                            | Zn                                 |  |
| SAMPLE                                              | CODE                                                                                                            |                                         | *                                            | ppm                        | ppm                                 | ppm                                                  | ppm                                     | ppm                        | ppm                       | %                                            | ppm                                          | ppm                                          | ppm                             | ppm                                          | ppm                                |  |
| N111502<br>N111503<br>N111504<br>N111505<br>N111506 | 205 27<br>205 27<br>205 27<br>205 27<br>205 27<br>205 27                                                        | 6 <<br>6 <<br>6 <<br>6 <                | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 40<br>58<br>69<br>74<br>59 | 400<br>230<br>170<br>240<br>150     | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>2<br>< 2           | 13<br>14<br>15<br>15<br>9  | 16<br>15<br>15<br>9<br>15 | 0.33<br>0.27<br>0.21<br>0.21<br>0.21<br>0.17 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 172<br>136<br>135<br>157<br>135 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 212<br>550<br>652<br>864<br>458    |  |
| N111507<br>N111508<br>N111509<br>N111510<br>N111511 | 205 27<br>205 27<br>205 27<br>205 27<br>205 27<br>205 27                                                        | 6 < 1<br>6 < 1<br>6 < 1<br>6 < 1        | 0.01<br>0.01<br>0.01<br>0.01<br>0.01         | 64<br>60<br>63<br>68<br>73 | 140<br>140<br>170<br>170<br>170     | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | < 2<br>2<br>< 2<br>< 2<br>< 2<br>< 2    | 13<br>15<br>16<br>16<br>17 | 13<br>11<br>8<br>6<br>4   | 0.16<br>0.16<br>0.14<br>0.18<br>0.10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 159<br>168<br>155<br>142<br>150 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 622<br>538<br>494<br>822<br>1010   |  |
| N111512<br>N111515<br>N111516<br>N111517<br>N111518 | 205 27<br>205 27<br>205 27<br>205 27<br>205 27<br>205 27                                                        | 6 < 6<br>6 < 6<br>6 < 6                 | 0.01<br>0.01<br>0.01<br>0.01<br>0.01         | 68<br>65<br>71<br>72<br>66 | Intf*<br>220<br>240<br>Intf•<br>550 | 4<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2          | 6<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2    | 14<br>9<br>9<br>10<br>15   | 4 <<br>7<br>8<br>14<br>21 | 0.01<br>0.16<br>0.17<br>0.01<br>0.20         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 195<br>103<br>112<br>151<br>157 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 946<br>610<br>518<br>790<br>788    |  |
| N111519<br>N111520<br>N111521<br>N111522<br>N111523 | 205 27<br>205 27<br>205 27<br>205 27<br>205 27<br>205 27                                                        | 6 < 6 < 6 < 6 < 6 < 7 < 7 < 7 < 7 < 7 < | 0.01<br>0.01<br>0.01<br>0.01<br>0.01         | 52<br>51<br>54<br>63<br>44 | 430<br>380<br>330<br>290<br>360     | < 2<br>< 2<br>4<br>< 2<br>2                          | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>2<br>2 | 15<br>15<br>18<br>16<br>9  | 12<br>36<br>8<br>9<br>24  | 0.32<br>0.35<br>0.35<br>0.28<br>0.34         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 171<br>171<br>244<br>167<br>177 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1125<br>730<br>1265<br>1275<br>804 |  |
| N111524<br>N111525<br>N111526                       | 205 27<br>205 27<br>205 27                                                                                      | 5 < (<br>5 (<br>5 < (                   | 0.01<br>0.01<br>0.01                         | 57<br>46<br>39             | 290<br>290<br>280                   | < 2<br>< 2<br>4                                      | < 2<br>2<br>< 2                         | 11<br>14<br>15             | 31<br>8<br>11             | 0.36<br>0.34<br>0.38                         | < 10<br>< 10<br>< 10                         | < 10<br>< 10<br>< 10                         | 173<br>194<br>209               | < 10<br>< 10<br>< 10                         | 826<br>874<br>738                  |  |
|                                                     |                                                                                                                 |                                         |                                              |                            |                                     |                                                      |                                         |                            |                           |                                              |                                              |                                              |                                 |                                              |                                    |  |

Hart Bichles CERTIFICATION:\_



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page r :1-A Total Pe :1 Certificate Date: 17-OCT-96 Invoice No. :19635693 P.O. Number : Account :MPO

A9635693

Project : ICE Comments:

#### PLEASE NOTE

| SAMPLE                                              | PRI<br>COI                             | 2P<br>DE                               | λg<br>ppm                                          | A1<br>%                              | As<br>ppm                                     | Ba<br>ppm                      | Be<br>ppm                                          | Bi<br>ppm                          | Ca<br>%                              | Cđ<br>ppm                         | Co<br>ppm                    | Cr<br>ppm                       | Cu<br>ppm                            | Fe<br>%                               | Ga<br>ppm                      | Hg<br>ppm                            | K<br>%                               | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppn                           | Mo<br>ppm                              |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------|----------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------|------------------------------|---------------------------------|--------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------|
| N111487<br>N111488<br>N111489<br>N111490<br>N111491 | 205<br>205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 3.27<br>3.67<br>3.36<br>3.73<br>3.62 | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2          | 100<br>90<br>90<br>100<br>150  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>2<br>< 2<br>2<br>< 2<br>< 2 | 2.11<br>2.47<br>1.78<br>2.36<br>2.71 | 4.0<br>2.5<br>2.0<br>3.0<br>2.0   | 32<br>34<br>49<br>45<br>33   | 41<br>45<br>90<br>102<br>103    | 2170<br>2610<br>4380<br>3660<br>2120 | 6.64<br>6.60<br>7.68<br>6.71<br>5.15  | 10<br>10<br>10<br>10           | 1<br>< 1<br>< 1<br>< 1<br>2          | 0.03<br>0.05<br>0.08<br>0.11<br>0.11 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 2.04<br>2.23<br>2.32<br>2.14<br>2.07 | 695<br>795<br>805<br>760<br>675     | < 1<br>< 1<br>< 1<br>1<br>< 1          |
| N111492<br>N111493<br>N111494<br>N111495<br>N111496 | 205<br>205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.69<br>3.90<br>3.82<br>4.37<br>4.41 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 160<br>100<br>160<br>80<br>170 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>10<br>< 2<br>2<br>< 2       | 1.51<br>2.20<br>2.21<br>3.06<br>2.56 | 2.5<br>4.0<br>4.0<br>3.5<br>5.0   | 53<br>36<br>48<br>50<br>91   | 143<br>118<br>88<br>139<br>175  | 3620<br>2310<br>5650<br>3610<br>2920 | 7.09<br>6.40<br>7.18<br>5.06<br>6.62  | 10<br>10<br>10<br>< 10<br>10   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>1 | 0.11<br>0.05<br>0.06<br>0.10<br>0.14 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.69<br>2.69<br>2.80<br>2.55<br>2.61 | 720<br>705<br>775<br>755<br>910     | < 1<br>< 1<br>< 1<br>1<br>< 1          |
| N111497<br>N111498<br>N111499<br>N111500<br>N111501 | 205<br>205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2            | 2.82<br>4.18<br>4.21<br>3.13<br>3.73 | 6<br>< 2<br>< 2<br>2<br>< 2                   | 200<br>70<br>80<br>80<br>70    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | Intf*<br>6<br>< 2<br>< 2<br>2<br>2 | 0.90<br>2.80<br>3.06<br>2.10<br>2.61 | 3.5<br>2.5<br>1.5<br>< 0.5<br>0.5 | 155<br>113<br>91<br>62<br>67 | 123 :<br>151<br>171<br>83<br>56 | >10000<br>1970<br>1800<br>83<br>70   | 14.90<br>8.24<br>6.74<br>6.17<br>8.00 | < 10<br>10<br>10<br>< 10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1      | 0.11<br>0.08<br>0.08<br>0.08<br>0.04 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.49<br>2.55<br>2.56<br>2.16<br>2.37 | 695<br>1060<br>1210<br>1240<br>1475 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
|                                                     |                                        |                                        | ele alle non ele Ver - en di                       |                                      |                                               |                                |                                                    |                                    |                                      |                                   |                              |                                 |                                      |                                       |                                |                                      |                                      |                                              | · · · · ·                            |                                     |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                               |                                |                                                    |                                    |                                      |                                   |                              |                                 |                                      |                                       |                                |                                      |                                      |                                              |                                      |                                     |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                               |                                |                                                    |                                    |                                      |                                   |                              |                                 |                                      |                                       |                                |                                      |                                      |                                              |                                      |                                     |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                               |                                |                                                    |                                    |                                      |                                   |                              |                                 |                                      |                                       |                                |                                      |                                      |                                              |                                      |                                     |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                               |                                |                                                    |                                    |                                      |                                   |                              |                                 |                                      |                                       |                                |                                      |                                      |                                              |                                      |                                     |                                        |
|                                                     |                                        |                                        |                                                    |                                      |                                               |                                |                                                    |                                    |                                      |                                   |                              |                                 |                                      |                                       |                                |                                      |                                      |                                              | •                                    |                                     |                                        |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

2: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page , عr : 1-B Total Pهی : 1 Certificate Date: 17-OCT-96 Invoice No. : 19635693 P.O. Number : Account : MPO

A9635693

Project : ICE Comments:

----

#### \* PLEASE NOTE

| SAMPLE                                                         | PR<br>CO                        | ep<br>De                               | Na<br>%                                  | Ni<br>ppm                  | P<br>ppm                          | Pb<br>ppm                                     | Sb<br>ppm                              | Sc<br>ppm                  | Sr<br>ppm                  | Tİ<br>%                              | T1<br>ppm                                    | U<br>mqq                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                         |  |
|----------------------------------------------------------------|---------------------------------|----------------------------------------|------------------------------------------|----------------------------|-----------------------------------|-----------------------------------------------|----------------------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-----------------------------------|--|
| N111487<br>N111488<br>N111489<br>N111490<br>N111491            | 205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | 0.02<br>0.03<br>0.01<br>0.02<br>0.01     | 26<br>31<br>40<br>47<br>46 | 590<br>480<br>280<br>290<br>260   | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 14<br>11<br>17<br>15<br>11 | 20<br>18<br>27<br>40<br>36 | 0.38<br>0.39<br>0.37<br>0.31<br>0.32 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 158<br>155<br>153<br>152<br>127 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 204<br>186<br>436<br>294<br>148   |  |
| N111492<br>N111493<br>N111494<br>N111495<br>N111495<br>N111496 | 205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | 0.01<br>0.02<br>0.02<br>0.02<br>0.02     | 54<br>46<br>50<br>85<br>94 | 150<br>240<br>280<br>140<br>220   | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 19<br>16<br>18<br>9<br>15  | 36<br>9<br>13<br>7<br>12   | 0.29<br>0.33<br>0.38<br>0.20<br>0.17 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 139<br>160<br>182<br>100<br>127 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 358<br>212<br>440<br>562<br>1325  |  |
| N111497<br>N111498<br>N111499<br>N111500<br>N111501            | 205<br>205<br>205<br>205<br>205 | 276<br>276<br>276<br>276<br>276<br>276 | < 0.01<br>0.01<br>0.02<br>0.01<br>< 0.01 | 71<br>77<br>90<br>57<br>37 | Intf*<br>220<br>220<br>390<br>560 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 6<br>2<br>< 2<br>< 2<br>< 2            | 13<br>17<br>11<br>8<br>13  | 8<br>15<br>12<br>40<br>54  | 0.05<br>0.30<br>0.25<br>0.44<br>0.60 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 91<br>165<br>127<br>146<br>238  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3330<br>1630<br>714<br>276<br>516 |  |
|                                                                |                                 |                                        |                                          |                            |                                   |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                   |  |
|                                                                |                                 |                                        |                                          |                            |                                   |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                   |  |
|                                                                |                                 |                                        |                                          |                            |                                   |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                   |  |
|                                                                |                                 |                                        |                                          |                            |                                   |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                   |  |
|                                                                |                                 |                                        |                                          |                            |                                   |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                   |  |
|                                                                |                                 |                                        |                                          |                            |                                   |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                   |  |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er :1-A Total ۲مریحه :1 Certificate Date: 17-OCT-96 Invoice No. :19635036 P.O. Number : Account :MPO

Project : ICE-16 Comments:

#### CERTIFICATE OF ANALYSIS A9635036

-----

| SAMPLE                        | PR<br>CO          | ep<br>De          | Au ppb<br>FA+AA  | Cu<br>%              | Ag<br>ppm           | A1<br>%              | As<br>ppm   | Ba<br>ppm        | Be<br>ppm               | Bi<br>ppm      | Ca<br>%              | Cđ<br>ppm             | Со<br>ррт        | Cr<br>ppm        | Cu<br>ppm            | Fe<br>%                 | Ga<br>ppm        | Hg<br>ppm       | K<br>%               | La<br>ppm            | Ng<br>%              |
|-------------------------------|-------------------|-------------------|------------------|----------------------|---------------------|----------------------|-------------|------------------|-------------------------|----------------|----------------------|-----------------------|------------------|------------------|----------------------|-------------------------|------------------|-----------------|----------------------|----------------------|----------------------|
| N111477<br>N111478<br>N111479 | 208<br>208<br>208 | 294<br>294<br>294 | < 5<br>35<br>130 | 0.43<br>0.25<br>0.66 | < 0.2<br>0.4<br>1.4 | 4.75<br>5.65<br>1.51 | 2<br>6<br>2 | 90<br>30<br>< 10 | < 0.5<br>< 0.5<br>< 0.5 | 6<br>< 2<br>16 | 2.71<br>0.08<br>0.04 | 9.0<br>< 0.5<br>< 0.5 | 33<br>129<br>336 | 149<br>220<br>68 | 4570<br>2820<br>7140 | 6.22<br>14.20<br>>15.00 | 10<br>10<br>< 10 | 1<br>< 1<br>< 1 | 0.01<br>0.05<br>0.02 | < 10<br>< 10<br>< 10 | 2.09<br>1.31<br>0.51 |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   | 1<br>2<br>-      |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 |                      |                      |                      |
|                               |                   |                   |                  |                      |                     |                      |             |                  |                         |                |                      |                       |                  |                  |                      |                         |                  |                 | •                    |                      |                      |

CERTIFICATION: Hart Buchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ər : 1-B Total Payes : 1 Certificate Date: 17-OCT-96 Invoice No. : 19635036 P.O. Number : :MPO Account

Project : ICE-16 Comments:

.

|                               |                   |                   |                  |            |                          |               |                  |               |                   |                 | CE                | RTIF                 | ICATE                |                      | NAL              | YSIS             | <u> </u>          | A9635036 |      |  |
|-------------------------------|-------------------|-------------------|------------------|------------|--------------------------|---------------|------------------|---------------|-------------------|-----------------|-------------------|----------------------|----------------------|----------------------|------------------|------------------|-------------------|----------|------|--|
| SAMPLE                        | PR<br>CO          | ep<br>De          | Mn<br>ppm        | Mo<br>ppm  | Na<br>%                  | Ni<br>ppm     | P<br>ppm         | Pb<br>ppm     | Sb<br>ppm         | Sc<br>ppm       | Sr<br>ppm         | Ti<br>%              | T1<br>ppm            | D<br>D               | V<br>ppm         | W<br>ppm         | Zn<br>ppm         |          |      |  |
| N111477<br>N111478<br>N111479 | 208<br>208<br>208 | 294<br>294<br>294 | 855<br>455<br>75 | < 1<br>2 5 | 0.02<br>< 0.01<br>< 0.01 | 42<br>27<br>6 | 190<br>310<br>50 | 6<br>10<br>46 | < 2<br>< 2<br>< 2 | 22<br>19<br>< 1 | 6<br>< 1<br>< 1 · | 0.16<br>0.08<br>0.01 | < 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10 | 147<br>231<br>51 | < 10<br>10<br>10 | 346<br>358<br>400 |          |      |  |
|                               |                   |                   |                  |            |                          |               |                  |               |                   |                 |                   |                      |                      |                      |                  |                  |                   |          |      |  |
|                               |                   |                   |                  |            |                          |               |                  |               |                   |                 |                   |                      |                      |                      |                  |                  |                   |          |      |  |
|                               |                   |                   |                  |            |                          |               |                  |               |                   |                 |                   |                      |                      |                      | ERTIFIC          |                  | 140               | utPre    | fler |  |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page 1 ar : 1-A Total Pages : 1 Certificate Date: 14-OCT-96 Invoice No. : 19635035 P.O. Number : Account : MPO

Project : ICE-16 Comments:

| * PLEASE NO                                                    | TE                              |                                        |                                                    |                                      |                                                                                   |                              |                                                         |                                                                                   |                                      |                                     | CE                            | RTIF                            | ICATE                                    | E OF A                                    | NAL                          | (SIS                                                                      | /                                    | 49635                                                                      | 035                                  |                                   |                                                      |
|----------------------------------------------------------------|---------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------------------|---------------------------------|------------------------------------------|-------------------------------------------|------------------------------|---------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-----------------------------------|------------------------------------------------------|
| SAMPLE                                                         | PB<br>CO                        | REP<br>DDE                             | Ag<br>ppm                                          | Al<br>%                              | As<br>ppm                                                                         | Ba<br>ppm                    | Be<br>ppm                                               | Bi<br>ppm                                                                         | Ca<br>%                              | Cd<br>ppm                           | Co<br>ppm                     | Cr<br>ppm                       | Cu<br>ppm                                | Fe<br>%                                   | Ga<br>pp <b>m</b>            | Hg<br>ppm                                                                 | K<br>%                               | La<br>ppm                                                                  | Mg<br>%                              | Mn<br>ppm                         | Mo<br>ppm                                            |
| N111470<br>N111471<br>N111472<br>N111473<br>N111473<br>N111474 | 205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.26<br>3.48<br>3.23<br>3.52<br>3.02 | <pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 180<br>70<br>60<br>90<br>290 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5      | <pre> &lt; 2 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt;</pre> | 2.50<br>3.02<br>1.99<br>2.44<br>2.18 | 2.0<br>2.5<br>4.5<br>4.5<br>4.5     | 31<br>26<br>39<br>38<br>39    | 78<br>81<br>84<br>101<br>114    | 1125<br>1295<br>2560<br>2740<br>2760     | 6.33<br>5.40<br>7.28<br>6.73<br>5.42      | 10<br>10<br>10<br>10<br>< 10 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 0.04<br>0.05<br>0.06<br>0.04<br>0.01 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 2.07<br>1.51<br>2.00<br>2.02<br>1.96 | 735<br>545<br>680<br>650<br>1395  | <pre></pre>                                          |
| N111475<br>N111476<br>N111480<br>N111481<br>N111482            | 205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>0.2<br>0.4<br>0.4                | 4.34<br>4.31<br>4.26<br>4.40<br>5.57 | <pre> &lt; 2 &lt; 2 &lt; 2 8 6 &lt; 2 </pre>                                      | 130<br>90<br>30<br>20<br>30  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5      | <pre></pre>                                                                       | 2.40<br>2.69<br>0.12<br>0.05<br>0.09 | 12.0<br>14.5<br>0.5<br>0.5<br>< 0.5 | 35<br>32<br>199<br>154<br>113 | 141<br>140<br>110<br>138<br>153 | 4280<br>4450<br>9410<br>>10000<br>>10000 | 6.45<br>6.03<br>>15.00<br>>15.00<br>14.40 | 10<br>10<br>10<br>10<br>10   | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 0.03<br>0.03<br>0.05<br>0.07<br>0.08 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 2.78<br>2.79<br>1.27<br>2.05<br>2.72 | 1575<br>1145<br>150<br>255<br>375 | <pre>&lt; 1 &lt; 1 &lt; 1 1 4 &lt; 1</pre>           |
| N111483<br>N111484<br>N111485<br>N111486                       | 205<br>205<br>205               | 294<br>294<br>294<br>294               | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2                   | 5.77<br>3.34<br>5.35<br>4.36         | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 3 </pre>                      | 80<br>180<br>70<br>80        | <pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre> | Intf*                                                                             | 0.38<br>1.52<br>1.08<br>3.00         | 10.5<br>12.5<br>1.5<br>< 0.5        | 92<br>260<br>119<br>66        | 208<br>156<br>152<br>155        | >10000<br>3140<br>2170<br>146            | 9.18<br>14.00<br>12.25<br>6.01            | 10<br>< 10<br>10<br>10       | < 1<br>< 1<br>< 1                                                         | 0.02<br>0.03<br>0.05<br>0.03         | < 10<br>< 10<br>< 10<br>< 10                                               | 3.44<br>3.14<br>4.35<br>2.88         | 850<br>2060<br>1200<br>895        | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> |
|                                                                |                                 |                                        |                                                    |                                      |                                                                                   |                              |                                                         |                                                                                   |                                      |                                     |                               |                                 |                                          |                                           |                              |                                                                           |                                      |                                                                            |                                      |                                   |                                                      |

CERTIFICATION: Hart Buchler



#### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

**D: EXPATRIATE RESOURCES LTD.** C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er:1-B Total F\_\_\_ss :1 Certificate Date: 14-OCT-96 Invoice No. : 19635035 P.O. Number : :MPO Account

Project : ICE-16 Comments:

| * PLEASE NO                                         | TE                                                       |                                                                               |                            |                                     |                                |                                                                                  |                            |                           |                                                      |                                                                            | RTIFI                                                                      | CATE                            | OF A                                                                       |                                 | A9635035     |
|-----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|-------------------------------------|--------------------------------|----------------------------------------------------------------------------------|----------------------------|---------------------------|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|---------------------------------|--------------|
| SAMPLE                                              | PREP<br>CODE                                             | Na<br>%                                                                       | Ni<br>ppm                  | P<br>ppm                            | Pb<br>ppm                      | Sb<br>ppm                                                                        | Sc<br>ppm                  | Sr<br>ppm                 | Ti<br>%                                              | Tl<br>pp <b>n</b>                                                          | U<br>ppm                                                                   | V<br>pp <b>m</b>                | W<br>ppm                                                                   | Zn<br>ppm                       |              |
| N111470<br>N111471<br>N111472<br>N111473<br>N111474 | 205 29<br>205 29<br>205 29<br>205 29<br>205 29<br>205 29 | 4 0.02<br>4 0.05<br>4 0.01<br>4 0.02<br>4 0.03                                | 32<br>36<br>41<br>44<br>43 | 400<br>350<br>370<br>310<br>270     | 2<br>2<br>< 2<br>< 2<br>2<br>2 | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 6</pre>                      | 12<br>8<br>13<br>14<br>9   | 28<br>39<br>22<br>8<br>13 | 0.36<br>0.31<br>0.30<br>0.29<br>0.26                 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 175<br>150<br>156<br>163<br>125 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10                               | 204<br>180<br>340<br>410<br>490 |              |
| N111475<br>N111476<br>N111480<br>N111481<br>N111482 | 205 29<br>205 29<br>205 29<br>205 29<br>205 29<br>205 29 | 4     0.01       4     0.01       4        4        0.01        4        0.01 | 48<br>52<br>19<br>32<br>35 | 210<br>270<br>290<br>Intf*<br>Intf* | 2<br>< 2<br>2<br>4<br>6        | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 17<br>16<br>15<br>11<br>20 | 5<br>5<br>13<br>4<br>12   | 0.25<br>0.27<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 161<br>146<br>203<br>155<br>204 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 392<br>250<br>530<br>290<br>386 |              |
| N111483<br>N111484<br>N111485<br>N111486            | 205 29<br>205 29<br>205 29<br>205 29<br>205 29           | 4     < 0.01                                                                  | 50<br>42<br>46<br>73       | Intf*<br>270<br>300<br>300          | 4<br>< 2<br>2<br>< 2           | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>                      | 28<br>21<br>18<br>12       | 8<br>6<br>4<br>7          | 0.13<br>0.25<br>0.33<br>0.29                         | < 10<br>< 10<br>< 10<br>< 10<br>< 10                                       | < 10<br>< 10<br>< 10<br>< 10<br>< 10                                       | 207<br>176<br>230<br>155        | < 10<br>< 10<br>< 10<br>< 10<br>< 10                                       | 2300<br>6370<br>1320<br>732     |              |
|                                                     |                                                          |                                                                               |                            |                                     |                                |                                                                                  |                            |                           |                                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |              |
|                                                     |                                                          |                                                                               |                            |                                     |                                |                                                                                  |                            |                           |                                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |              |
|                                                     |                                                          |                                                                               |                            |                                     |                                |                                                                                  |                            |                           |                                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |              |
|                                                     |                                                          |                                                                               |                            |                                     |                                |                                                                                  |                            |                           |                                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |              |
|                                                     |                                                          |                                                                               |                            |                                     |                                |                                                                                  |                            |                           |                                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |              |
|                                                     |                                                          |                                                                               |                            |                                     |                                |                                                                                  |                            |                           |                                                      |                                                                            |                                                                            |                                 |                                                                            |                                 |              |
|                                                     |                                                          |                                                                               |                            |                                     |                                |                                                                                  | <u> </u>                   |                           |                                                      |                                                                            | <u></u>                                                                    |                                 |                                                                            |                                 |              |
|                                                     |                                                          |                                                                               |                            |                                     |                                |                                                                                  |                            |                           |                                                      |                                                                            |                                                                            |                                 | C                                                                          | CERTIFICATION:                  | Hantisichler |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ver : 1-A Total , Jus : 1 Certificate Date: 17-OCT-96 Invoice No. :19635033 P.O. Number : Account : MPO

Project : ICE-14 Comments:

\_

ſ

| • PLEASE NC        | TE         |          |                 |              |             |              |           |            |                |                | CE           | RTIFI        | CATE      | OF        | ANAL             | .YSIS            | /            | <b>A963</b> 5 | 5033             |              |              |
|--------------------|------------|----------|-----------------|--------------|-------------|--------------|-----------|------------|----------------|----------------|--------------|--------------|-----------|-----------|------------------|------------------|--------------|---------------|------------------|--------------|--------------|
| SAMPLE             | PR<br>CC   | ep<br>De | Au ppb<br>FA+AA | Cu<br>%      | Ag<br>ppm   | A1<br>%      | As<br>ppm | Ba<br>ppm  | Be<br>ppm      | Bi<br>ppm      | Ca<br>%      | Cđ<br>ppm    | Co<br>ppm | Cr<br>ppm | Cu<br>ppm        | Fe<br>%          | Ga<br>ppm    | Hg<br>ppm     | K<br>%           | La<br>ppm    | Ng<br>%      |
| N111408<br>N111409 | 208<br>208 | 226      | 55<br>330       | 1.15<br>3.72 | 0.2<br>23.4 | 1.20<br>1.43 | 2<br>10   | 10<br>< 10 | < 0.5<br>< 0.5 | Intf*<br>Intf* | 0.02<br>0.01 | < 0.5<br>5.0 | 94<br>518 | 66<br>68  | >10000<br>>10000 | >15.00<br>>15.00 | < 10<br>< 10 | 1<br>< 1      | < 0.01<br>< 0.01 | < 10<br>< 10 | 0.67<br>0.71 |
|                    |            |          |                 |              |             |              |           |            |                |                |              |              |           |           |                  |                  |              |               |                  |              |              |
|                    |            |          |                 |              |             |              |           |            |                |                |              |              |           |           |                  |                  |              |               |                  |              |              |
|                    |            |          |                 |              |             |              |           |            |                |                |              |              |           |           |                  |                  |              |               |                  |              |              |
|                    |            |          |                 |              |             |              |           |            |                |                |              |              |           |           |                  |                  |              |               |                  |              |              |
|                    |            |          |                 |              |             |              |           |            |                |                |              |              |           |           |                  |                  |              |               |                  |              |              |
|                    |            |          |                 |              |             |              |           |            |                |                |              |              |           |           | CERTIF           |                  | 140          | ж             | Sid              | hler         | •            |



Analytical Chemists \* Geochemists \* Registered Assayers North Vancouver

212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pag ber :1-B Total . Jes :1 Certificate Date: 17-OCT-96 Invoice No. : 19635033 P.O. Number MPO Account

Project : ICE-14 Comments:

| * PLEASE NOT       | E   |          |            |           |                  |           |                |           |            |           | CE          | RTIFI   | CATE         | OF A         | NAL      | <b>YSIS</b>  | 4           | 49635033 |
|--------------------|-----|----------|------------|-----------|------------------|-----------|----------------|-----------|------------|-----------|-------------|---------|--------------|--------------|----------|--------------|-------------|----------|
| SAMPLE             | PRI | EP<br>DE | Mn<br>ppm  | Mo<br>ppm | Na<br>%          | Ni<br>ppm | P<br>ppm       | Pb<br>ppm | Sb<br>ppm  | Sc<br>ppm | Sr<br>ppm   | Tİ<br>% | T1<br>ppm    | U<br>ppm     | V<br>ppm | W<br>ppm     | Zn<br>ppm   |          |
| N111408<br>N111409 | 208 | 226      | 125<br>170 | 7 . 14 .  | < 0.01<br>< 0.01 | 6<br>11   | Intf*<br>Intf* | 6<br>76   | < 2<br>< 2 | 42        | < 1 < < 1 < | 0.01    | < 10<br>< 10 | < 10<br>< 10 | 72<br>73 | < 10<br>< 10 | 186<br>2010 |          |
|                    |     |          |            |           |                  |           |                |           |            |           |             |         |              |              |          |              |             |          |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 D: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er :1-A Total : : :1 Certificate Date: 15-OCT-96 Invoice No. : 19635026 P.O. Number : Account :MPO

CERTIFICATION: Haut Suchler

Project : ICE-14

Comments:

| * PLEASE NOF                                                   | E                                      |                                        |                                                           |                                      |                                    |                                |                                                    |                                                                                   |                                      |                                                        | CE                             | RTIF                            |                                              | E OF A                                                 | NALY                                     | SIS                                                                              |                                                      | <b>\9635</b>                                                               | 026                                  |                                 |                            |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------|--------------------------------------|------------------------------------|--------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|--------------------------------|---------------------------------|----------------------------------------------|--------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|---------------------------------|----------------------------|
| SAMPLE                                                         | PR<br>CO                               | EP<br>DE                               | Ag<br>pp <b>m</b>                                         | Al<br>%                              | As<br>pp <b>m</b>                  | Ba<br>ppm                      | Be<br>ppm                                          | Bi<br>ppm                                                                         | Ca<br>%                              | Cd<br>ppm                                              | Co<br>ppm                      | Cr<br>ppm                       | Cu<br>ppm                                    | Fe<br>%                                                | Ga<br>ppm                                | Hg<br>ppm                                                                        | K<br>Z                                               | La<br>ppm                                                                  | Mg<br>%                              | Mn<br>ppm                       | Mo<br>ppm                  |
| N111394<br>N111395<br>N111396<br>N111397<br>N111398            | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | 0.4<br>2.4<br>1.0<br>1.2<br>0.2                           | 1.52<br>1.23<br>4.39<br>3.68<br>4.97 | 78<br>106<br>42<br>34<br>6         | 260<br>50<br>60<br>50<br>40    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre> &lt; 2 10 &lt; 2 Intf* 4</pre>                                              | 0.69<br>0.11<br>0.38<br>0.30<br>0.30 | 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5                  | 29<br>84<br>45<br>121<br>144   | 225<br>206<br>182<br>159<br>159 | 2740<br>6160<br>3110<br>>10000<br>2770       | 10.90<br>>15.00<br>14.05<br>>15.00<br>>15.00           | 20<br>10<br>10<br>10<br>10               | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>               | 0.06<br>0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10                               | 0.69<br>0.46<br>2.24<br>1.69<br>2.52 | 365<br>60<br>190<br>130<br>210  | 46<br>74<br>22<br>40<br>12 |
| N111399<br>N111400<br>N111401<br>N111401<br>N111402<br>N111403 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | 0.4<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2            | 6.06<br>5.98<br>6.83<br>5.83<br>5.34 | <pre></pre>                        | 50<br>70<br>1020<br>710<br>210 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 8<br>8<br>< 2<br>Intf*<br>2                                                       | 0.19<br>0.19<br>0.18<br>0.21<br>0.44 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5              | 89<br>62<br>40<br>42<br>24     | 186<br>169<br>133<br>137<br>112 | 4930<br>4760<br>977<br>>10000<br>6680        | 11.50<br>13.65<br>9.21<br>9.87<br>8.52                 | 10<br>10<br>10<br>10<br>10               | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 0.02<br>0.03<br>0.01<br>0.03<br>0.03                 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10                               | 1.88<br>2.64<br>2.63<br>2.41<br>2.30 | 315<br>560<br>635<br>515<br>730 | 5<br>6<br>1<br>1<br>< 1    |
| N111404<br>N111405<br>N111406<br>N111406<br>N111407<br>N111410 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2<br>5.0              | 4.80<br>5.48<br>5.32<br>5.67<br>4.74 | <pre></pre>                        | 150<br>120<br>70<br>40<br>20   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 14<br>Intf*<br>Intf*<br>Intf*<br>Intf*                                            | 0.21<br>0.21<br>0.25<br>0.14<br>0.32 | <pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 0.5 3.5</pre> | 31<br>41<br>42<br>39<br>137    | 193<br>193<br>181<br>205<br>150 | 4740<br>>10000<br>>10000<br>>10000<br>>10000 | 7.98<br>8.44<br>9.91<br>8.81<br>13.65                  | 10<br>10<br>10<br>10<br>10               | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        | 0.04<br>0.09<br>0.12<br>0.05<br>0.04                 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 2.58<br>3.18<br>3.12<br>2.91<br>2.41 | 540<br>730<br>735<br>585<br>515 | <pre></pre>                |
| N111411<br>N111412<br>N111413<br>N111414<br>N111414<br>N111415 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | 0.2<br>< 0.2<br>0.2<br>0.8<br>0.2                         | 5.36<br>3.01<br>1.90<br>3.72<br>6.28 | <pre></pre>                        | 10<br>10<br>10<br>< 10<br>90   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | Intf*<br>Intf*<br>Intf*<br>2<br>Intf*                                             | 0.02<br>0.02<br>0.03<br>0.04<br>0.22 | 0.5<br>0.5<br>1.0<br>< 0.5<br>1.5                      | 189<br>289<br>386<br>438<br>41 | 108<br>117<br>90<br>137<br>135  | >10000<br>>10000<br>>10000<br>8300<br>>10000 | >15.00<br>>15.00<br>>15.00<br>>15.00<br>>15.00<br>7.65 | 10<br>< 10<br>< 10<br>< 10<br>< 10<br>10 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 0.05<br>0.01<br>0.03<br>0.05<br>0.04                 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10                               | 3.12<br>1.39<br>0.35<br>1.62<br>2.99 | 415<br>130<br>40<br>185<br>530  | < 1<br>6<br>7<br>3<br>< 1  |
| N111416<br>N111417<br>N111418<br>N111418<br>N111419<br>N111420 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | < 0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 6.00<br>5.39<br>5.53<br>4.20<br>3.81 | 2<br>< 2<br>2<br>< 2<br>< 2<br>< 2 | 30<br>20<br>20<br>30<br>60     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 0.21<br>0.15<br>1.14<br>1.96<br>1.83 | 1.0<br>1.5<br>8.0<br>16.0<br>1.0                       | 45<br>42<br>41<br>39<br>46     | 152<br>155<br>127<br>75<br>49   | 6200<br>8940<br>8750<br>195<br>109           | 9.99<br>10.80<br>7.18<br>5.68<br>6.07                  | 10<br>10<br>10<br>10<br>10               | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        | <pre>&lt; 0.01 0.03 0.04 0.04 0.10</pre>             | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 4.24<br>3.63<br>3.62<br>3.45<br>3.17 | 780<br>695<br>750<br>740<br>780 | <pre></pre>                |
| N111421<br>N111422                                             | 205<br>205                             | 226<br>226                             | < 0.2<br>< 0.2                                            | 3.99<br>3.72                         | 2<br>< 2                           | 40<br>60                       | < 0.5<br>< 0.5                                     | < 2<br>< 2                                                                        | 2.35<br>2.68                         | < 0.5<br>< 0.5                                         | 52<br>30                       | 58<br>42                        | 74<br>73                                     | 6.72<br>6.22                                           | 10<br>10                                 | < 1<br>< 1                                                                       | 0.05                                                 | < 10<br>< 10                                                               | 3.51<br>2.73                         | 915<br>855                      | < 1<br>< 1                 |
|                                                                |                                        |                                        |                                                           |                                      |                                    |                                |                                                    |                                                                                   |                                      |                                                        |                                |                                 |                                              |                                                        |                                          |                                                                                  |                                                      |                                                                            |                                      |                                 |                            |
|                                                                |                                        |                                        |                                                           |                                      |                                    |                                |                                                    |                                                                                   |                                      |                                                        |                                |                                 |                                              |                                                        |                                          |                                                                                  |                                                      |                                                                            |                                      |                                 |                            |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Pag∈ per :1-B Total, jes :1 Certificate Date: 15-OCT-96 Invoice No. :19635026 P.O. Number Account :MPO

A9635026

CERTIFICATION: Hart Buchler

Project : ICE-14 Comments:

#### \* PLEASE NORE

|         | r       | 1      |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|---------|---------|--------|-----|-------|-----|-----|-----|---------------------|------|------|------|-----|------|-----|--|
|         |         |        |     |       | _   |     |     |                     |      |      |      |     |      |     |  |
|         | PREP    | Na     | Ni  | P     | Pb  | Sb  | Sc  | Sr                  | Ti   | Tl   | U    | v   | W    | Zn  |  |
| SAMPLE  | CODE    | *      | ppm | ppm   | ppm | ppm | ppm | ppm                 | *    | ppm  | ppm  | ppm | ppm  | ppm |  |
| N111394 | 205 226 | 0.01   | 13  | 610   | 74  | < 2 | 6   | 19                  | 0.15 | < 10 | < 10 | 220 | 20   | 174 |  |
| N111395 | 205 226 | < 0.01 | 2   | 350   | 38  | < 2 | 5   | 4                   | 0.01 | < 10 | < 10 | 206 | 10   | 346 |  |
| N111396 | 205 226 | < 0.01 | 19  | 220   | 18  | < 2 | 12  | 6                   | 0.01 | < 10 | < 10 | 271 | 10   | 372 |  |
| N111397 | 205 226 | < 0.01 | 15  | Intf* | 16  | < 2 | 12  | 5                   | 0.02 | < 10 | < 10 | 288 | 10   | 384 |  |
| N111398 | 205 226 | < 0.01 | 19  | 220   | 6   | < 2 | 14  | 6                   | 0.01 | < 10 | < 10 | 262 | 10   | 458 |  |
| N111399 | 205 226 | 0.01   | 33  | 390   | 8   | < 2 | 21  | 1                   | 0.09 | < 10 | < 10 | 280 | < 10 | 510 |  |
| N111400 | 205 226 | < 0.01 | 33  | 260   | 2   | < 2 | 19  | 5                   | 0.07 | < 10 | < 10 | 287 | 10   | 454 |  |
| N111401 | 205 226 | < 0.01 | 40  | 240   | 2   | < 2 | 37  | 14                  | 0.09 | < 10 | 10   | 231 | < 10 | 526 |  |
| N111402 | 205 226 | 0.01   | 43  | Intf* | 2   | < 2 | 41  | 9                   | 0.03 | < 10 | < 10 | 342 | < 10 | 440 |  |
| N111403 | 205 226 | 0.01   | 35  | 390   | < 2 | < 2 | 41  | 4                   | 0.18 | < 10 | 10   | 286 | < 10 | 232 |  |
| N111404 | 205 226 | 0.02   | 46  | 300   | 6   | < 2 | 34  | 4                   | 0.02 | < 10 | < 10 | 241 | < 10 | 370 |  |
| N111405 | 205 226 | < 0.01 | 64  | Intf* | < 2 | < 2 | 31  | < 1                 | 0.09 | < 10 | < 10 | 179 | < 10 | 692 |  |
| N111406 | 205 226 | < 0.01 | 58  | Intf* | < 2 | < 2 | 26  | < 1                 | 0.02 | < 10 | < 10 | 161 | < 10 | 750 |  |
| N111407 | 205 226 | 0.01   | 53  | Intf* | 6   | < 2 | 28  | 2                   | 0.05 | < 10 | < 10 | 270 | < 10 | 286 |  |
| N111410 | 205 226 | < 0.01 | 34  | Intf* | 10  | < 2 | 21  | < 1                 | 0.13 | < 10 | < 10 | 191 | < 10 | 798 |  |
| N111411 | 205 226 | < 0.01 | 31  | Intf* | 8   | < 2 | 15  | < 1                 | 0.03 | < 10 | < 10 | 216 | < 10 | 574 |  |
| N111412 | 205 226 | < 0.01 | 20  | Intf* | < 2 | < 2 | 9   | 3 <                 | 0.01 | < 10 | < 10 | 126 | 10   | 388 |  |
| N111413 | 205 226 | < 0.01 | 9   | Intf* | 2   | < 2 | 7   | 16 <                | 0.01 | < 10 | < 10 | 82  | < 10 | 820 |  |
| N111414 | 205 226 | < 0.01 | 19  | 70    | < 2 | < 2 | 11  | $\langle 1 \rangle$ | 0.01 | < 10 | < 10 | 126 | 10   | 246 |  |
| N111415 | 205 226 | < 0.01 | 39  | Intf* | 6   | < 2 | 39  | 44                  | 0.15 | < 10 | 10   | 239 | < 10 | 872 |  |
| N111416 | 205 226 | < 0.01 | 50  | 330   | < 2 | < 2 | 33  | 39                  | 0.21 | < 10 | < 10 | 249 | < 10 | 780 |  |
| N111417 | 205 226 | < 0.01 | 42  | 280   | 2   | < 2 | 29  | 14                  | 0.21 | < 10 | < 10 | 230 | < 10 | 700 |  |
| N111418 | 205 226 | < 0.01 | 39  | 310   | 2   | < 2 | 28  | 8                   | 0.20 | < 10 | < 10 | 226 | < 10 | 814 |  |
| N111419 | 205 226 | 0.02   | 36  | 360   | < 2 | < 2 | 9   | 6                   | 0.33 | < 10 | < 10 | 163 | < 10 | 324 |  |
| N111420 | 205 226 | 0.01   | 35  | 400   | < 2 | < 2 | 8   | 16                  | 0.37 | < 10 | < 10 | 166 | < 10 | 378 |  |
| N111421 | 205 226 | 0.01   | 32  | 400   | < 2 | < 2 | 10  | 21                  | 0.40 | < 10 | < 10 | 191 | < 10 | 218 |  |
| N111422 | 205 226 | 0.04   | 27  | 450   | < 2 | < 2 | 8   | 11                  | 0.37 | < 10 | < 10 | 191 | < 10 | 84  |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
| 1       |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |
|         |         |        |     |       |     |     |     |                     |      |      |      |     |      |     |  |



#### **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| ): | EXPATRIATE RESOURCES LTD.                      |
|----|------------------------------------------------|
|    | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|    | 1016 - 510 W. HASTINGS ST.                     |
|    | VANCOUVER, BC                                  |
|    | V6B 1L8                                        |

Page er :1-A Total Payes :2 Certificate Date: 14-OCT-96 Invoice No. : 19635022 P.O. Number ٠ MPO Account

Project : ICE-15 Comments:

| * PLEASE NOT                                                   | E                                      |                                        |                                                             |                                      |                                                                                   |                                  |                                                    |                                                                                   |                                        |                                                    | CE                          | RTIF                            | CATE                               | E OF A                                  | NALY                                             | <b>SIS</b>                                                                       | /                                      | 49635                                        | 022                                  |                                      |                                                                                  |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|-----------------------------|---------------------------------|------------------------------------|-----------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|
| SAMPLE                                                         | PRE<br>COD                             | P<br>)E                                | Ag<br>ppm                                                   | Al<br>%                              | As<br>ppm                                                                         | Ba<br>pp <b>m</b>                | Be<br>ppm                                          | Bi<br>ppm                                                                         | Ca<br>%                                | Cđ<br>ppm                                          | Co<br>ppm                   | Cr<br>ppm                       | Cu<br>ppm                          | Fe<br>%                                 | Ga<br>ppm                                        | Hg<br>ppm                                                                        | K<br>%                                 | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                            | Mo<br>ppm                                                                        |
| N111423<br>N111424<br>N111425<br>N111426<br>N111427            | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | 0.4<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2              | 3.90<br>4.65<br>4.93<br>4.82<br>4.90 | 4<br>< 2<br>< 2<br>6<br>< 2                                                       | 180<br>50<br>60<br>70<br>60      | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | Intf* < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2                                         | 1.09<br>6.67<br>4.86<br>4.15<br>2.25   | 3.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5     | 42<br>44<br>42<br>40<br>47  | 127<br>170<br>155<br>192<br>197 | >10000<br>309<br>125<br>131<br>152 | 8.01<br>5.07<br>4.77<br>5.50<br>6.39    | < 10<br>10<br>10<br>10<br>10                     | <pre>&lt; 1 2 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>                                  | 0.05<br>0.02<br>0.01<br>0.04<br>0.04   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.82<br>3.38<br>3.08<br>3.57<br>3.71 | 505<br>1100<br>930<br>880<br>835     | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        |
| N111428<br>N111429<br>N111430<br>N111431<br>N111431<br>N111432 | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 5.01<br>4.26<br>3.55<br>4.63<br>5.00 | <pre></pre>                                                                       | 160<br>190<br>40<br>70<br>110    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre></pre>                                                                       | 2.93<br>4.80<br>4.75<br>4.34<br>3.27   | < 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5   | 44<br>56<br>91<br>68<br>63  | 228<br>180<br>150<br>194<br>250 | 530<br>235<br>241<br>339<br>274    | 6.21<br>6.19<br>5.98<br>6.95<br>9.13    | 10<br>< 10<br>< 10<br>10<br>10                   | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>               | 0.03<br>0.03<br>0.03<br>0.05<br>0.03   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.77<br>3.01<br>2.36<br>3.00<br>3.33 | 750<br>1255<br>1560<br>1005<br>1070  | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> |
| N111433<br>N111434<br>N111435<br>N111436<br>N111437            | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>0.2<br>0.2<br>0.6                | 2.78<br>3.96<br>4.23<br>5.31<br>4.80 | <pre> &lt; 2 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt;</pre> | 80<br>40<br>40<br>70<br>120      | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre> &lt; 2 2 2 &lt; 2 &lt; 2 2 &lt; 2 2 </pre>                                  | 4.18<br>0.87<br>1.22<br>0.80<br>2.58   | 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5   | 92<br>62<br>59<br>92<br>131 | 163<br>257<br>221<br>233<br>200 | 277<br>117<br>561<br>5000<br>3470  | 8.00<br>8.13<br>11.55<br>12.90<br>10.75 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 10 10</pre> | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        | 0.07<br>0.07<br>0.11<br>0.09<br>0.08   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.79<br>2.34<br>2.45<br>3.89<br>4.43 | 1150<br>725<br>880<br>1535<br>1730   | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        |
| N111438<br>N111439<br>N111440<br>N111441<br>N111442            | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2            | 5.12<br>7.49<br>4.38<br>3.84<br>3.81 | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>  | 240<br>1060<br>500<br>130<br>180 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre></pre>                                                                       | 1.19<br>0.34<br>2.13<br>2.98<br>3.10   | < 0.5<br>0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5     | 118<br>77<br>59<br>42<br>45 | 195<br>164<br>105<br>101<br>104 | 559<br>188<br>141<br>156<br>145    | 10.55<br>14.15<br>8.06<br>8.95<br>9.01  | 10<br>10<br>10<br>10<br>10                       | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        | 0.07<br>0.03<br>0.03<br>0.03<br>0.03   | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 4.94<br>7.71<br>4.32<br>3.18<br>3.11 | 1690<br>1490<br>1335<br>1495<br>1475 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> |
| N111443<br>N111444<br>N111445<br>N111446<br>N111447            | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 3.56<br>3.33<br>4.03<br>3.72<br>4.07 | <pre> &lt; 2     4 &lt; 2 &lt; 4 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 </pre>        | 80<br>1150<br>910<br>440<br>110  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>  | 3.66<br>2.60<br>2.14<br>4.75<br>3.82   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 53<br>38<br>40<br>43<br>38  | 108<br>70<br>146<br>110<br>75   | 220<br>120<br>205<br>116<br>81     | 8.08<br>7.30<br>7.46<br>6.89<br>7.17    | 10<br>10<br>10<br>10<br>10                       | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        | 0.03<br>0.03<br>0.04<br>0.08<br>0.08   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.84<br>2.91<br>3.42<br>3.25<br>2.76 | 1625<br>1235<br>1145<br>1665<br>1305 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> |
| N111448<br>N111449<br>N111450<br>N111451<br>N111452            | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 3.34<br>3.77<br>2.65<br>2.12<br>4.60 | <pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 </pre>            | 110<br>140<br>90<br>80<br>50     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 4.41<br>3.30<br>10.10<br>11.65<br>2.13 | < 0.5<br>< 0.5<br>0.5<br>3.5<br>3.5                | 42<br>43<br>44<br>31<br>63  | 107<br>88<br>71<br>75<br>166    | 99<br>87<br>302<br>116<br>1165     | 6.98<br>7.08<br>4.22<br>6.53<br>10.35   | 10<br>10<br>< 10<br>< 10<br>10                   | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 5</pre>                    | 0.05<br>0.05<br>0.06<br>< 0.01<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.14<br>2.78<br>3.22<br>4.90<br>4.00 | 1695<br>1195<br>2680<br>2440<br>1480 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        |
| N111453<br>N111454<br>N111455<br>N111456<br>N111457            | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | 0.8<br>2.6<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2              | 4.79<br>2.47<br>2.66<br>4.22<br>2.96 | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>  | 10<br>10<br>210<br>270<br>450    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 2<br>< 2<br>< 2<br>2<br>< 2<br>< 2<br>< 2                                         | 0.72<br>2.06<br>3.58<br>1.38<br>2.60   | 4.0<br>3.0<br>3.0<br>4.0<br>< 0.5                  | 156<br>57<br>53<br>51<br>33 | 119<br>85<br>84<br>140<br>102   | 3480<br>2670<br>1315<br>589<br>125 | 14.35<br>13.05<br>8.12<br>10.05<br>6.91 | 10<br>10<br>10<br>10<br>10                       | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 0.02<br>0.03<br>0.04<br>0.04<br>0.02   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.90<br>2.14<br>2.39<br>3.77<br>3.06 | 925<br>615<br>855<br>770<br>590      | 2<br>3<br>< 1<br>< 1<br>< 1                                                      |
| N111458<br>N111459<br>N111460<br>N111461<br>N111462            | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | 0.2<br>0.6<br>< 0.2<br>0.4<br>< 0.2                         | 3.09<br>4.95<br>3.96<br>4.76<br>2.23 | <pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 170<br>400<br>360<br>140<br>250  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 5.49<br>5.37<br>4.55<br>2.86<br>>15.00 | 0.5<br>2.0<br>< 0.5<br>< 0.5<br>< 0.5              | 32<br>51<br>36<br>53<br>23  | 85<br>120<br>111<br>146<br>98   | 48<br>406<br>158<br>509<br>47      | 6.53<br>9.32<br>5.91<br>8.23<br>3.55    | 10<br>10<br>10<br>10<br>< 10                     | <pre>&lt; 1 &lt; 1 2 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 </pre>                   | 0.01<br>0.02<br>0.04<br>0.10<br>0.07   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.92<br>4.13<br>3.12<br>3.87<br>2.21 | 645<br>1480<br>1090<br>1330<br>2840  | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        |
| 1                                                              | 1 I                                    |                                        |                                                             |                                      |                                                                                   |                                  |                                                    |                                                                                   |                                        |                                                    |                             |                                 |                                    |                                         |                                                  |                                                                                  |                                        |                                              |                                      |                                      |                                                                                  |

Hanti Suchler CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| <b>o</b> : | EXPATRIATE RESOURCES LTD.                      |
|------------|------------------------------------------------|
|            | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|            | 1016 - 510 W, HASTINGS ST.                     |
|            | VANCOUVER, BC                                  |
|            | V6B 1L8                                        |

**CERTIFICATE OF ANALYSIS** 

Page Jer :1-B Total Pages :2 Certificate Date: 14-OCT-96 Invoice No. : 19635022 P.O. Number : Account :MPO

A9635022

Project : ICE-15 Comments:

#### \* PLEASE NOTE

| ſ       |     |     |        |     |       | ~~~~~ |     |     | • • • • • • • • • • • • • • • • • • • • |      |      |      |                                         |      |      |                                        |
|---------|-----|-----|--------|-----|-------|-------|-----|-----|-----------------------------------------|------|------|------|-----------------------------------------|------|------|----------------------------------------|
|         | PRE | Р   | Na     | Ni  | P     | Pb    | Sb  | Sc  | Sr                                      | Ti   | Tl   | U    | v                                       | W    | Zn   |                                        |
| SAMPLE  | COD | E   | 8      | ppm | ppm   | ppm   | ppm | ppm | ppm                                     | 3    | ppm  | ppm  | ppm                                     | ppm  | ppm  |                                        |
| N111423 | 205 | 294 | 0.01   |     | Intf* | < 2   | < 2 | 20  | 9                                       | 0.06 | < 10 | < 10 | 113                                     | < 10 | 584  |                                        |
| N111424 | 205 | 294 | 0.02   | 70  | 320   | < 2   | < 2 | 9   | 31                                      | 0.17 | < 10 | < 10 | 95                                      | < 10 | 270  |                                        |
| N111425 | 205 | 294 | 0.03   | 68  | 260   | < 2   | < 2 | 9   | 20                                      | 0.22 | < 10 | < 10 | 131                                     | < 10 | 218  |                                        |
| N111426 | 205 | 294 | 0.03   | 75  | 230   | 4     | < 2 | 15  | 19                                      | 0.12 | < 10 | < 10 | 134                                     | < 10 | 130  |                                        |
| N111427 | 205 | 294 | 0.02   | 90  | 300   | < 2   | 6   | 16  | 15                                      | 0.01 | < 10 | < 10 | 127                                     | < 10 | 136  |                                        |
| N111428 | 205 | 294 | 0.04   | 80  | 290   | < 2   | 2   | 19  | 24                                      | 0.16 | < 10 | < 10 | 173                                     | < 10 | 144  |                                        |
| N111429 | 205 | 294 | 0.01   | 85  | 270   | < 2   | < 2 | 18  | 51 <                                    | 0.01 | < 10 | < 10 | 133                                     | < 10 | 190  |                                        |
| N111430 | 205 | 294 | 0.01   | 89  | 300   | < 2   | < 2 | 16  | 37 <                                    | 0.01 | < 10 | < 10 | 106                                     | < 10 | 350  |                                        |
| N111431 | 205 | 294 | 0.01   | 102 | 300   | < 2   | < 2 | 17  | 37 <                                    | 0.01 | < 10 | < 10 | 124                                     | < 10 | 202  |                                        |
| N111432 | 205 | 294 | 0.02   | 90  | 330   | < 2   | < 2 | 23  | 34                                      | 0.11 | < 10 | < 10 | 177                                     | < 10 | 242  |                                        |
| N111433 | 205 | 294 | 0.02   | 84  | 320   | 2     | < 2 | 19  | 52 <                                    | 0.01 | < 10 | < 10 | 123                                     | < 10 | 712  |                                        |
| N111434 | 205 | 294 | 0.04   | 94  | 360   | < 2   | < 2 | 23  | 9 <                                     | 0.01 | < 10 | < 10 | 182                                     | < 10 | 220  |                                        |
| N111435 | 205 | 294 | 0.03   | 82  | 420   | 2     | < 2 | 23  | 10 <                                    | 0.01 | < 10 | < 10 | 171                                     | < 10 | 308  |                                        |
| N111436 | 205 | 294 | 0.02   | 82  | 400   | < 2   | < 2 | 18  | 12                                      | 0.01 | < 10 | < 10 | 192                                     | < 10 | 582  |                                        |
| N111437 | 205 | 294 | 0.01   | 76  | 400   | < 2   | < 2 | 20  | 30 <                                    | 0.01 | < 10 | < 10 | 179                                     | < 10 | 640  |                                        |
| N111438 | 205 | 294 | 0.01   | 79  | 460   | < 2   | < 2 | 21  | 10 <                                    | 0.01 | < 10 | < 10 | 160                                     | < 10 | 568  | ······································ |
| N111439 | 205 | 294 | < 0.01 | 63  | 470   | < 2   | < 2 | 23  | 17                                      | 0.04 | < 10 | < 10 | 241                                     | 10   | 728  |                                        |
| N111440 | 205 | 294 | 0.01   | 52  | 450   | < 2   | < 2 | 17  | 268                                     | 0.26 | < 10 | < 10 | 159                                     | < 10 | 340  |                                        |
| N111441 | 205 | 294 | 0.03   | 51  | 540   | < 2   | < 2 | 26  | 29                                      | 0.22 | < 10 | < 10 | 251                                     | < 10 | 190  |                                        |
| N111442 | 205 | 294 | 0.04   | 54  | 590   | < 2   | < 2 | 24  | 36                                      | 0.43 | < 10 | < 10 | 251                                     | < 10 | 198  |                                        |
| N111443 | 205 | 294 | 0.03   | 57  | 560   | < 2   | < 2 | 30  | 31                                      | 0.07 | < 10 | < 10 | 274                                     | < 10 | 330  |                                        |
| N111444 | 205 | 294 | 0.04   | 42  | 460   | < 2   | < 2 | 10  | 65                                      | 0.41 | < 10 | < 10 | 193                                     | < 10 | 356  |                                        |
| N111445 | 205 | 294 | 0.03   | 62  | 400   | < 2   | < 2 | 13  | 45                                      | 0.30 | < 10 | < 10 | 183                                     | < 10 | 406  |                                        |
| N111446 | 205 | 294 | 0.03   | 54  | 360   | 2     | < 2 | 24  | 64                                      | 0.13 | < 10 | < 10 | 192                                     | < 10 | 132  |                                        |
| N111447 | 205 | 294 | 0.02   | 41  | 440   | < 2   | < 2 | 17  | 26                                      | 0.33 | < 10 | < 10 | 207                                     | < 10 | 114  |                                        |
| N111448 | 205 | 294 | 0.04   | 51  | 390   | < 2   | < 2 | 23  | 43                                      | 0.20 | < 10 | < 10 | 203                                     | < 10 | 118  |                                        |
| N111449 | 205 | 294 | 0.03   | 51  | 440   | < 2   | < 2 | 19  | 29                                      | 0.19 | < 10 | < 10 | 221                                     | < 10 | 136  |                                        |
| N111450 | 205 | 294 | < 0.01 | 56  | 250   | 2     | 2   | 20  | 105 <                                   | 0.01 | < 10 | < 10 | 134                                     | < 10 | 208  |                                        |
| N111451 | 205 | 294 | < 0.01 | 33  | 210   | 2     | < 2 | 18  | 126 <                                   | 0.01 | < 10 | < 10 | 135                                     | < 10 | 996  |                                        |
| N111452 | 205 | 294 | 0.01   | 56  | 390   | < 2   | < 2 | 19  | 18                                      | 0.21 | < 10 | < 10 | 212                                     | < 10 | 1035 |                                        |
| N111453 | 205 | 294 | < 0.01 | 47  | 390   | 6     | < 2 | 16  | 7                                       | 0.14 | < 10 | < 10 | 205                                     | < 10 | 976  |                                        |
| N111454 | 205 | 294 | 0.01   | 39  | 330   | 20    | < 2 | 12  | 11                                      | 0.24 | < 10 | < 10 | 160                                     | 10   | 872  |                                        |
| N111455 | 205 | 294 | 0.01   | 38  | 510   | < 2   | < 2 | 13  | 20                                      | 0.33 | < 10 | < 10 | 183                                     | < 10 | 718  |                                        |
| N111456 | 205 | 294 | 0.01   | 49  | 430   | 2     | < 2 | 16  | 15                                      | 0.32 | < 10 | < 10 | 219                                     | < 10 | 726  |                                        |
| N111457 | 205 | 294 | 0.03   | 37  | 390   | 2     | < 2 | 12  | 27                                      | 0.32 | < 10 | < 10 | 185                                     | < 10 | 258  |                                        |
| N111458 | 205 | 294 | 0.02   | 38  | 410   | < 2   | < 2 | 11  | 41                                      | 0.35 | < 10 | < 10 | 177                                     | < 10 | 166  |                                        |
| N111459 | 205 | 294 | < 0.01 | 44  | 370   | 2     | < 2 | 18  | 72                                      | 0.32 | < 10 | < 10 | 213                                     | < 10 | 898  |                                        |
| N111460 | 205 | 294 | 0.02   | 62  | 360   | < 2   | < 2 | 16  | 30                                      | 0.31 | < 10 | < 10 | 176                                     | < 10 | 248  |                                        |
| N111461 | 205 | 294 | 0.02   | 69  | 400   | 2     | 6   | 22  | 39                                      | 0.11 | < 10 | < 10 | 204                                     | < 10 | 502  |                                        |
| N111462 | 205 | 294 | 0.01   | 41  | 180   | 2     | < 2 | 13  | 119 <                                   | 0.01 | < 10 | < 10 | 94                                      | < 10 | 86   |                                        |
|         |     |     |        |     |       | _     |     |     |                                         |      |      |      |                                         |      |      |                                        |
|         |     |     |        |     |       |       |     |     |                                         |      |      |      | • • • • • • • • • • • • • • • • • • • • |      |      |                                        |

CERTIFICATION: Hartfrichler



# **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assavers 212 Brooksbank Ave.. North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page N ; :2-A Total Pages :2 Certificate Date: 14-OCT-96 Invoice No. : 19635022 P.O. Number : Account : MPO

Project : Comments: ICE-15

-

| * PLEASE NO                                         | TE                                     |                                        |                                                             |                                      |                                                                                   |                               |                                                    |                                                              |                                      |                                                    | CE                         | RTIFI                       | CATE                       | OF A                                 | NALY                         | /SIS                                                                             |                                      | A9635                                                                      | 022                                  |                                    |                                                                           |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------|--------------------------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|-----------------------------|----------------------------|--------------------------------------|------------------------------|----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|--------------------------------------|------------------------------------|---------------------------------------------------------------------------|
| SAMPLE                                              | PR<br>CO                               | EP<br>DE                               | Ag<br>ppm                                                   | A1<br>%                              | As<br>ppm                                                                         | Ba<br>ppm                     | Be<br>ppm                                          | Bi<br>pp <b>m</b>                                            | Ca<br>%                              | Cd<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                   | Cu<br>ppm                  | Fe<br>%                              | Ga<br>ppm                    | Hg<br>mgg                                                                        | K<br>%                               | La<br>ppm                                                                  | Mg<br>%                              | Mn<br>ppm                          | Mo<br>ppm                                                                 |
| N111463<br>N111464<br>N111465<br>N111466<br>N111467 | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.70<br>3.71<br>3.47<br>3.19<br>3.18 | <pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 120<br>120<br>80<br>120<br>90 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre> &lt; 2     4 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 </pre> | 4.07<br>3.55<br>5.40<br>3.05<br>2.68 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 40<br>42<br>41<br>39<br>34 | 62<br>66<br>136<br>39<br>30 | 77<br>75<br>89<br>76<br>83 | 6.44<br>6.86<br>6.06<br>6.21<br>5.99 | 10<br>10<br>< 10<br>10<br>10 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 0.06<br>0.06<br>0.08<br>0.05<br>0.03 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 2.55<br>2.87<br>3.08<br>2.26<br>2.04 | 1310<br>1185<br>1420<br>960<br>900 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> |
| N111468<br>N111469                                  | 205                                    | 294                                    | < 0.2<br>< 0.2                                              | 3.63<br>3.31                         | <pre>&lt; 2 &lt; 2 &lt; 2</pre>                                                   | 140<br>590                    | < 0.5<br>< 0.5                                     | < 2<br>< 2                                                   | 3.36<br>3.16                         | < 0.5<br>< 0.5                                     | 33<br>36                   | 41<br>22                    | 84<br>77                   | 6.52<br>8.04                         | 10 10                        | < 1 < 1                                                                          | 0.01                                 | < 10<br>< 10                                                               | 2.72 2.31                            | 1105<br>1400                       |                                                                           |
|                                                     |                                        |                                        |                                                             |                                      |                                                                                   |                               |                                                    |                                                              |                                      |                                                    |                            |                             | <u> </u>                   |                                      |                              |                                                                                  |                                      |                                                                            |                                      | 0.0                                |                                                                           |
|                                                     |                                        |                                        |                                                             |                                      |                                                                                   |                               |                                                    |                                                              |                                      |                                                    |                            |                             |                            | c                                    | ERTIFIC                      | ATION:                                                                           | 192                                  | it                                                                         | Sec                                  | nier                               | <b>N</b>                                                                  |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| o: | EXPATRIATE RESOURCES LTD.                      |
|----|------------------------------------------------|
|    | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|    | 1016 - 510 W. HASTINGS ST.                     |
|    | VANCOUVER, BC                                  |
|    | V6B 1L8                                        |

Page per :2-B Total Hayes :2 Certificate Date: 14-OCT-96 Invoice No. : 19635022 P.O. Number : :MPO Account

ICE-15 Project : Comments:

ر. سامار

| * PLEASE NOT                                        | E                                      |                                        |                                          |                            |                                 |                                                                           |                                                                                  |                           |                            |                                      | CE                                                                         | RTIFI                                                              | CATE                            | OF A                                                                       | NALYSIS                           | A9635022 |  |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------------|---------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|----------------------------|--------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|-----------------------------------|----------|--|
| SAMPLE                                              | PR<br>CO                               | EP<br>DE                               | Na<br>%                                  | Ni<br>ppm                  | P<br>PPm                        | Pb<br>ppm                                                                 | Sb<br>ppm                                                                        | Sc<br>ppm                 | Sr<br>ppm                  | Ti<br>%                              | Tl<br>ppm                                                                  | U<br>ppm                                                           | V<br>pp <b>n</b>                | W<br>ppm                                                                   | Zn<br>ppm                         |          |  |
| N111463<br>N111464<br>N111465<br>N111466<br>N111467 | 205<br>205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294<br>294 | 0.01<br>0.01<br>0.01<br>< 0.01<br>< 0.01 | 35<br>41<br>62<br>37<br>38 | 460<br>440<br>330<br>590<br>570 | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 18<br>18<br>22<br>13<br>8 | 26<br>29<br>51<br>35<br>17 | 0.38<br>0.36<br>0.06<br>0.33<br>0.29 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 222<br>218<br>160<br>188<br>165 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 98<br>108<br>88<br>88<br>88<br>84 |          |  |
| N111468<br>N111469                                  | 205                                    | 294                                    | < 0.01<br>< 0.01                         | 35<br>31                   | 580<br>1250                     | < 2<br>< 2                                                                | < 2<br>< 2                                                                       | 13 12                     | 12 28                      | 0.37                                 | < 10<br>< 10                                                               | < 10<br>< 10                                                       | 207<br>233                      | < 10<br>< 10                                                               | 84<br>98                          |          |  |
|                                                     |                                        |                                        |                                          |                            |                                 |                                                                           |                                                                                  |                           |                            |                                      |                                                                            |                                                                    |                                 |                                                                            |                                   |          |  |

CERTIFICATION: Hart Buchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page ər : 1-A Total ۲- من s : 1 Certificate Date: 09-OCT-96 Invoice No. : 19634688 P.O. Number : Account : MPO

Project : ICE Comments:

|                                                     |                                        |                                        |                                                   |                               |                                      |                              |                                 |                                 |                                            |                                      | CE                                     | RTIFI                         | CATE                          | E OF /                                    | ANAL                                    | YSIS                                         |                                        | A9634                                    | 688                                 |                              |                                      |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------|--------------------------------------|------------------------------|---------------------------------|---------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------|-------------------------------|-------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------|-------------------------------------|------------------------------|--------------------------------------|
| SAMPLE                                              | PRI<br>CO                              | ep<br>De                               | Au g/t<br>FA+AA                                   | Ag<br>ppm                     | A1<br>%                              | <b>As</b><br>ppm             | Ba<br>ppm                       | Be<br>ppm                       | Bi<br>ppm                                  | Ca<br>%                              | Cđ<br>ppm                              | Co<br>ppm                     | Cr<br>ppm                     | Cu<br>ppm                                 | Fe<br>%                                 | Hg<br>ppm                                    | K<br>%                                 | Mg<br>%                                  | Mn<br>ppm                           | Mo<br>ppm                    | Na<br>%                              |
| N111379<br>N111380<br>N111381<br>N111382<br>N111383 | 208<br>208<br>208<br>208<br>208<br>208 | 226<br>226<br>226<br>226<br>226<br>226 | < 0.005<br>< 0.005<br>< 0.005<br>< 0.005<br>0.030 | < 1<br>< 1<br>< 1<br>1<br>< 1 | 4.23<br>3.67<br>3.60<br>6.46<br>2.31 | 110<br>20<br>20<br>30<br>510 | 100<br>140<br>240<br>680<br>120 | < 5<br>< 5<br>< 5<br>< 5<br>< 5 | < 10<br>10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.61<br>1.83<br>1.81<br>0.59<br>0.12 | < 5<br>< 5<br>10<br>< 5<br>< 5         | 90<br>85<br>70<br>50<br>45    | 50<br>40<br>40<br>80<br>210   | 1150<br>135<br>4140<br>33300<br>28400     | 9.69<br>9.95<br>10.00<br>10.40<br>17.30 | < 10<br>< 10<br>< 10<br>10<br>< 10           | 0.05<br>< 0.01<br>0.01<br>0.10<br>0.11 | 3.08<br>3.17<br>3.42<br>2.71<br>0.32     | 1610<br>1850<br>1900<br>1450<br>100 | 5<br>< 5<br>< 5<br>< 5<br>15 | 0.07<br>0.05<br>0.08<br>0.01<br>0.03 |
| N111384<br>N111385<br>N111386<br>N111387<br>N111388 | 208<br>208<br>208<br>208<br>208<br>208 | 226<br>226<br>226<br>226<br>226<br>226 | 0.070<br>0.270<br>0.380<br>0.425<br>0.040         | 5<br>9<br>8<br>12<br>1        | 1.58<br>0.42<br>0.06<br>0.04<br>4.97 | 330<br>50<br>70<br>70<br>40  | 120<br>100<br>20<br>20<br>560   | < 5<br>< 5<br>< 5<br>< 5<br>< 5 | 10<br>< 10<br>50<br>30<br>70               | 0.09<br>0.05<br>0.02<br>0.04<br>0.46 | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | 30<br>145<br>430<br>805<br>45 | 150<br>140<br>80<br>90<br>230 | 13830<br>12290<br>15870<br>40500<br>16590 | 15.25<br>>30.0<br>>30.0<br>29.0<br>8.20 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.06<br>0.03<br>0.01<br>0.01<br>0.20   | 0.26<br>0.06<br>< 0.01<br>< 0.01<br>1.95 | 110<br>70<br>30<br>50<br>460        | 10<br>< 5<br>20<br>25<br>< 5 | 0.03<br>0.02<br>0.03<br>0.02<br>0.05 |
|                                                     |                                        |                                        |                                                   |                               |                                      |                              |                                 |                                 |                                            |                                      |                                        |                               |                               |                                           |                                         |                                              |                                        |                                          |                                     |                              |                                      |
|                                                     |                                        |                                        |                                                   |                               |                                      |                              |                                 |                                 |                                            |                                      |                                        |                               |                               |                                           |                                         |                                              |                                        |                                          |                                     |                              |                                      |
|                                                     |                                        |                                        |                                                   |                               |                                      |                              |                                 |                                 |                                            |                                      |                                        |                               |                               |                                           |                                         |                                              |                                        |                                          |                                     |                              |                                      |
|                                                     |                                        |                                        |                                                   |                               |                                      |                              |                                 |                                 |                                            |                                      |                                        |                               |                               |                                           |                                         |                                              |                                        |                                          |                                     |                              |                                      |
|                                                     |                                        |                                        |                                                   |                               |                                      |                              |                                 |                                 |                                            |                                      |                                        |                               |                               |                                           |                                         |                                              |                                        |                                          |                                     |                              |                                      |
|                                                     |                                        |                                        |                                                   |                               |                                      |                              |                                 |                                 |                                            |                                      |                                        |                               |                               |                                           |                                         |                                              |                                        |                                          |                                     |                              |                                      |
|                                                     |                                        |                                        |                                                   |                               |                                      |                              |                                 |                                 |                                            |                                      |                                        |                               |                               |                                           |                                         |                                              |                                        |                                          |                                     |                              |                                      |

tart Bichler CERTIFICATION:\_

,



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver V7J 2C1

| 0: | EXPATRIATE RESOURCES LTD.                      |
|----|------------------------------------------------|
|    | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|    | 1016 - 510 W. HASTINGS ST.                     |
|    | VANCOUVER, BC                                  |
| •  | V6B 1L8                                        |

Page er: 1-B Total المربيعة: 1 Certificate Date: 09-OCT-96 Invoice No.: 19634688 P.O. Number: MPO Account

. . . . . . . .

Project : Comments: ICE

٠

|                                                          |                                        |                                        |                            |                                                |                                |                                              |                               |                            |                                              |                                              | CE                                           | RIIFI                           | CAIE                                         |                                    | NALYS                                | IS | A96. | 64688 |      |
|----------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------|------------------------------------------------|--------------------------------|----------------------------------------------|-------------------------------|----------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|------------------------------------|--------------------------------------|----|------|-------|------|
| SAMPLE                                                   | PR<br>CO                               | ep<br>De                               | Ni<br>ppm                  | P<br>ppm                                       | Pb<br>ppm                      | Sb<br>ppm                                    | Sc<br>ppm                     | Sr<br>ppm                  | Ti<br>%                                      | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                          | Cu<br>%                              |    |      |       |      |
| N111379<br>N111380<br>N111381<br>N111382<br>N111383      | 208<br>208<br>208<br>208<br>208<br>208 | 226<br>226<br>226<br>226<br>226<br>226 | 45<br>35<br>25<br>30<br>40 | 500<br>700<br>700<br>600<br>1100               | < 5<br>< 5<br>< 5<br>< 5<br>40 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 20<br>15<br>25<br>40<br>20    | 25<br>5<br>10<br>15<br>200 | 0.79<br>0.86<br>1.04<br>0.46<br>0.04         | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 280<br>280<br>360<br>420<br>380 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 1025<br>1115<br>1325<br>705<br>940 | 0.12<br>0.02<br>0.43<br>3.61<br>2.90 |    |      |       |      |
| 111384<br>111385<br>111386<br>111387<br>111388<br>111388 | 208<br>208<br>208<br>208<br>208<br>208 | 226<br>226<br>226<br>226<br>226<br>226 | 15<br>20<br>20<br>10<br>45 | 600<br>100<br>< 100<br>< 100<br>< 100<br>< 100 | 170<br>70<br>70<br>50<br>10    | 10<br>20<br>10<br>< 10<br>< 10               | 15<br>< 5<br>< 5<br>< 5<br>25 | 85<br>35<br>5<br>20<br>15  | 0.03<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.26 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 280<br>100<br>20<br>< 20<br>240 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 400<br>890<br>1125<br>520<br>660   | 1.37<br>1.27<br>1.64<br>4.35<br>1.83 |    |      |       |      |
|                                                          |                                        |                                        |                            |                                                |                                |                                              |                               |                            |                                              |                                              |                                              | -                               |                                              |                                    |                                      |    |      |       |      |
|                                                          |                                        |                                        |                            |                                                |                                |                                              |                               |                            |                                              |                                              |                                              |                                 |                                              |                                    |                                      |    |      |       |      |
|                                                          |                                        |                                        |                            |                                                |                                |                                              |                               |                            |                                              |                                              |                                              |                                 |                                              |                                    |                                      |    |      |       |      |
|                                                          |                                        |                                        |                            |                                                |                                |                                              |                               |                            |                                              |                                              |                                              |                                 |                                              |                                    |                                      |    |      |       |      |
|                                                          |                                        |                                        |                            |                                                |                                |                                              |                               |                            |                                              |                                              |                                              |                                 |                                              |                                    |                                      |    |      |       |      |
|                                                          |                                        |                                        |                            |                                                |                                |                                              |                               |                            |                                              |                                              |                                              |                                 |                                              |                                    |                                      |    |      |       |      |
|                                                          |                                        |                                        |                            |                                                |                                | · · · ·                                      |                               |                            |                                              |                                              |                                              |                                 |                                              |                                    | , , , , , , , , , , , , , , , , ,    |    |      |       | <br> |

CERTIFICATION:\_

start sichler



Analytical Chemists \* Geochemists \* Registered Assayers . . . . AL 11 1.

| 212 Brooksbank Ave.,    | North Vancouver   |
|-------------------------|-------------------|
| British Columbia, Canad | a V7J2C1          |
| PHONE: 604-984-0221     | FAX: 604-984-0218 |

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er : 1-A Total ۲- العنونية : 1 Certificate Date: 09-OCT-96 Invoice No. : 19634687 P.O. Number' : : MPO Account

| Project : | ICE |
|-----------|-----|
| Comments: |     |

#### **CERTIFICATE OF ANALYSIS** A9634687

| SAMPLE                                              | PREP<br>CODE                                                   | Ag<br>ppm                                                   | A1<br>%                              | As<br>ppm                              | Ba<br>ppm                          | Be<br>ppm                                          | Bi<br>ppm                              | Ca<br>%                                | Cd<br>ppm                                          | Co<br>ppm                     | Cr<br>ppm                      | Cu<br>ppm                         | Fe<br>%                              | Ga<br>ppm                                    | Hg<br>ppm                              | K<br>%                               | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                            | Mo<br>ppm                          |
|-----------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|-------------------------------|--------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|
| N111368<br>N111369<br>N111370<br>N111371<br>N111372 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 3.40<br>0.96<br>3.51<br>3.02<br>3.56 | < 2<br>10<br>6<br>10<br>< 2            | 120<br>210<br>200<br>120<br>130    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.91<br>2.26<br>2.44<br>5.29<br>5.08   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 30<br>3<br>29<br>33<br>36     | 44<br>136<br>68<br>14<br>75    | 73<br>25<br>61<br>58<br>69        | 6.78<br>3.09<br>7.22<br>7.50<br>7.71 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.04<br>0.02<br>0.07<br>0.07<br>0.02 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.38<br>0.30<br>1.50<br>2.62<br>2.32 | 1015<br>305<br>990<br>1455<br>1720   | 2<br>1<br>1<br>1<br>< 1            |
| N111373<br>N111374<br>N111375<br>N111376<br>N111377 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 4.03<br>3.94<br>4.13<br>0.34<br>3.31 | < 2<br>< 2<br>4<br>4<br>< 2            | 340<br>140<br>190<br>230<br>140    | < 0.5<br>< 0.5<br>< 0.5<br>0.5<br>< 0.5            | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 4.95<br>3.94<br>4.18<br>>15.00<br>2.33 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 37<br>38<br>40<br>19<br>32    | 62<br>68<br>93<br>8<br>33      | 73<br>74<br>79<br>7<br>87         | 8.15<br>8.15<br>8.32<br>4.92<br>6.54 | 10<br>< 10<br>< 10<br>< 10<br>< 10           | < 1<br>< 1<br>< 1<br>1 -<br>< 1        | 0.03<br>0.03<br>0.05<br>0.01<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.59<br>2.42<br>2.80<br>6.98<br>2.31 | 1805<br>1255<br>1480<br>1800<br>1050 | 1<br>< 1<br>< 1<br>< 1<br>< 1<br>1 |
| N111378<br>N111389<br>N111390<br>N111391<br>N111392 | 205 226<br>205 226<br>205 226<br>205 226<br>205 226<br>205 226 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 2.54<br>3.64<br>3.90<br>4.04<br>3.89 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 180<br>1610<br>3140<br>930<br>1050 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 1.58<br>1.43<br>2.03<br>2.22<br>3.63   | 3.0<br>22.5<br>20.0<br>4.0<br>< 0.5                | 69<br>116<br>131<br>131<br>78 | 46<br>155<br>154<br>176<br>181 | 109<br>1915<br>1355<br>273<br>188 | 7.03<br>9.21<br>8.93<br>9.11<br>6.69 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.02<br>0.06<br>0.08<br>0.07<br>0.06 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.08<br>3.21<br>3.26<br>3.48<br>3.17 | 1185<br>1060<br>1030<br>1070<br>985  | 1<br>< 1<br>< 1<br>1<br>< 1        |
| N111393                                             | 205 226                                                        | 1.4                                                         | 3.73                                 | < 2                                    | 60                                 | < 0.5                                              | < 2                                    | 1.27                                   | 8.0                                                | 38                            | 106                            | 583                               | 10.45                                | < 10                                         | 1                                      | 0.03                                 | < 10                                         | 2.98                                 | 875                                  | 2                                  |





MPO Account

#### **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers . .

| 212 Brooksbank Ave.,    | North Vancouver   |
|-------------------------|-------------------|
| British Columbia, Canad | a V7J2C1          |
| PHONE: 604-984-0221     | FAX: 604-984-0218 |

Project : ICE Comments:

V6B 1L8

#### **CERTIFICATE OF ANALYSIS**

•

A9634687

| SAMPLE                                              | PREP<br>CODE                                                   | Na<br>%                                                                     | Ni<br>ppm                  | P<br>ppm                         | Pb<br>ppm                              | Sb<br>ppm                                     | Sc<br>ppm                  | Sr<br>ppm                        | ti<br>%                              | Tl<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                           |  |
|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------|----------------------------------|----------------------------------------|-----------------------------------------------|----------------------------|----------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------|--|
| 1111368<br>1111369<br>1111370<br>1111371<br>1111372 | 205 220<br>205 220<br>205 220<br>205 220<br>205 220<br>205 220 | 5 < 0.01<br>5 < 0.01<br>5 < 0.01<br>5 < 0.01<br>5 < 0.01<br>5 < 0.01        | 33<br>11<br>30<br>21<br>37 | 640<br>2140<br>640<br>610<br>500 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2               | 17<br>2<br>23<br>21<br>26  | 34<br>23 <<br>18 <<br>39 <<br>56 | 0.45<br>0.01<br>0.01<br>0.01<br>0.17 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 229<br>88<br>200<br>184<br>224  | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 88<br>10<br>82<br>96<br>94          |  |
| (111373<br>(111374<br>(111375<br>(111376<br>(111377 | 205 22<br>205 22<br>205 22<br>205 22<br>205 22<br>205 22       | 5 < 0.01<br>0.01<br>0.01<br>< 0.01<br>5 0.01<br>0.01                        | 34<br>39<br>40<br>12<br>29 | 520<br>560<br>550<br>80<br>480   | < 2<br>< 2<br>< 2<br>4<br>< 2          | < 2<br>< 2<br>2<br>< 2<br>< 2<br>< 2          | 26<br>29<br>33<br>4<br>11  | 55<br>57<br>70<br>236 <<br>24    | 0.25<br>0.05<br>0.12<br>0.01<br>0.46 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 245<br>220<br>262<br>54<br>186  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 98<br>98<br>110<br>144<br>92        |  |
| 1111378<br>1111389<br>1111390<br>1111391<br>1111392 | 205 220<br>205 220<br>205 220<br>205 220<br>205 220<br>205 220 | <pre>&lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 0.01</pre> | 28<br>53<br>58<br>63<br>61 | 420<br>280<br>220<br>280<br>300  | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 13<br>14<br>15<br>18<br>17 | 24<br>29<br>35<br>24<br>25       | 0.39<br>0.22<br>0.14<br>0.17<br>0.22 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 146<br>137<br>121<br>147<br>162 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1125<br>3350<br>4230<br>2600<br>736 |  |
| 111393                                              | 205 224                                                        | < 0.01                                                                      | 36                         | 330                              | 4                                      | < 2                                           | 18                         | 17                               | 0.33                                 | < 10                                         | < 10                                         | 208                             | < 10                                         | 3340                                |  |

CERTIFICATION:



SAMPLE

N110295

N110296 N110297 N110298 N110299

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

| 212 Brooksbank Ave.,     | North Vancouver  |
|--------------------------|------------------|
| British Columbia, Canada | V7J 2C1          |
| PHONE: 604-984-0221 F    | AX: 604-984-0218 |

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page per :1-A Total Frogets :1 Certificate Date: 09-OCT-96 Invoice No. :19634686 P.O. Number : Account :MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

| _ | <b>F</b>                                                 |                  |                                                    |                                      |                             |                                |                                                    |                                        | CERTIFICATE OF ANALYSIS A9634686     |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |
|---|----------------------------------------------------------|------------------|----------------------------------------------------|--------------------------------------|-----------------------------|--------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------|-------------------------|--|
|   | PREP<br>CODE                                             |                  | Ag<br>ppm                                          | A1<br>%                              | <b>As</b><br>ppm            | Ba<br>ppm                      | Be<br>ppm                                          | Bi<br>ppm                              | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                  | Cu<br>ppm                  | Fe<br>%                              | Ga<br>ppm                        | Hg<br>ppm                              | K<br>%                                 | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                       | Mo<br>ppm               |  |
|   | 205 22<br>205 22<br>205 22<br>205 22<br>205 22<br>205 22 | 6<br>6<br>6<br>6 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.11<br>3.42<br>3.33<br>2.53<br>2.44 | < 2<br>< 2<br>< 2<br>4<br>2 | 110<br>80<br>120<br>580<br>590 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 1.70<br>2.06<br>2.11<br>1.67<br>1.78 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 25<br>26<br>27<br>33<br>28 | 35<br>44<br>37<br>16<br>13 | 65<br>68<br>72<br>31<br>14 | 5.52<br>5.71<br>5.81<br>9.43<br>8.85 | < 10<br>< 10<br>< 10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.01<br>< 0.01<br>0.02<br>0.06<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.77<br>1.90<br>1.91<br>0.93<br>0.93 | 635<br>700<br>715<br>835<br>760 | 2<br>1<br>1<br>1<br>< 1 |  |
|   |                                                          |                  |                                                    |                                      |                             |                                |                                                    |                                        |                                      |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |
|   |                                                          |                  |                                                    |                                      |                             |                                |                                                    |                                        |                                      |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |
|   |                                                          |                  |                                                    |                                      |                             |                                |                                                    |                                        |                                      |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |
|   |                                                          |                  |                                                    |                                      |                             |                                |                                                    |                                        |                                      |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |
|   |                                                          |                  |                                                    |                                      |                             |                                |                                                    |                                        |                                      |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |
|   |                                                          |                  |                                                    |                                      |                             |                                |                                                    |                                        |                                      |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |
|   |                                                          |                  |                                                    |                                      |                             |                                |                                                    |                                        |                                      |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |
| I |                                                          |                  |                                                    |                                      |                             |                                |                                                    |                                        |                                      |                                                    |                            |                            |                            |                                      |                                  |                                        |                                        |                                              |                                      |                                 |                         |  |

CERTIFICATION:\_

tart Brichler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC . V6B 1L8

Page Jer :1-B Certificate Date: 09-OCT-96 Invoice No. : 19634686 P.O. Number : Account MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

|                                                     |                                        |                                        |                              |                            |                                   |                                        |                                        |                       |                                  |                                      | CERTIFICATE OF ANALYSIS              |                                      |                                 |                                              |                              |    | A9634686 |      |      |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------|----------------------------------------|----------------------------------------|-----------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|----------------------------------------------|------------------------------|----|----------|------|------|
| SAMPLE                                              | PR<br>CO                               | ep<br>De                               | Na<br>%                      | Ni<br>ppm                  | P<br>ppm                          | Pb<br>ppm                              | Sb<br>ppm                              | Sc<br>ppm             | Sr<br>ppm                        | Ti<br>%                              | T1<br>ppm                            | U<br>mqq                             | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                    |    |          |      |      |
| N110295<br>N110296<br>N110297<br>N110298<br>N110299 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | 0.01<br>0.01<br>0.02<br>0.02 | 33<br>37<br>38<br>1<br>< 1 | 520<br>530<br>540<br>1230<br>1380 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 5<br>5<br>8<br>6<br>6 | 26<br>22<br>33<br>33<br>33<br>37 | 0.32<br>0.35<br>0.35<br>0.44<br>0.43 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 145<br>158<br>161<br>265<br>206 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 72<br>76<br>76<br>116<br>104 |    |          |      |      |
|                                                     |                                        |                                        | -                            |                            |                                   |                                        |                                        |                       |                                  |                                      |                                      |                                      |                                 |                                              |                              |    |          |      |      |
|                                                     |                                        |                                        |                              |                            |                                   |                                        |                                        |                       |                                  |                                      |                                      |                                      |                                 |                                              |                              |    |          |      |      |
|                                                     |                                        |                                        |                              |                            |                                   |                                        |                                        |                       |                                  |                                      |                                      |                                      |                                 |                                              |                              |    |          |      |      |
|                                                     |                                        |                                        |                              |                            |                                   |                                        |                                        |                       |                                  |                                      |                                      |                                      |                                 |                                              |                              |    |          |      |      |
|                                                     |                                        |                                        |                              |                            |                                   |                                        |                                        |                       |                                  |                                      |                                      |                                      |                                 |                                              |                              |    |          |      |      |
|                                                     |                                        |                                        |                              |                            |                                   |                                        |                                        |                       |                                  |                                      |                                      |                                      |                                 |                                              |                              |    |          |      |      |
|                                                     |                                        |                                        |                              |                            |                                   |                                        |                                        |                       |                                  |                                      |                                      |                                      |                                 |                                              |                              |    |          |      |      |
|                                                     |                                        |                                        |                              |                            |                                   |                                        | ····                                   |                       |                                  |                                      |                                      |                                      |                                 | C                                            |                              | Ni | Sauto    | ichl | er ! |

CERTIFICATION:\_

b: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC •

Page er :1-A Total F. J.s. :1 Certificate Date: 09-OCT-96 Invoice No. :19634685 P.O. Number : MPO Account

V6B 1L8

**Chemex Labs Ltd.** 

North Vancouver V7J 2C1

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

•

| Project : | ICE |
|-----------|-----|
| Comments: |     |

|                                                     | _                                      |                                        |                                                    |                                      |                                                      | ,                               |                                                    |                                               |                                      |                                                  | CE                                   | RTIFI                         | CATE                               | OF A                                 | NALY                                         | <b>SIS</b>                             | /                                    | 19634                                        | 685                                  |                                     |                           |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------------------|--------------------------------------|-------------------------------|------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------|---------------------------|
| SAMPLE                                              | PRE<br>COD                             | PE                                     | Ag<br>ppm                                          | Al<br>%                              | As<br>ppm                                            | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                                     | Ca<br>%                              | Cđ<br>ppm                                        | Co<br>ppm                            | Cr<br>ppm                     | Cu<br>ppm                          | Fe<br>%                              | Ga<br>ppm                                    | Hg<br>ppm                              | K<br>%                               | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                           | Mo<br>ppm                 |
| N110300<br>N111354<br>N111355<br>N111356<br>N111357 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 4.25<br>3.52<br>3.67<br>3.14<br>3.15 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 210<br>110<br>130<br>120<br>90  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>2          | 1.61<br>1.91<br>2.42<br>3.04<br>2.49 | 12.0<br>9.5<br>4.0<br>< 0.5<br>< 0.5             | 101<br>99<br>89<br>46<br>38          | 87<br>65<br>54<br>51<br>49    | 664<br>190<br>272<br>79<br>74      | 8.20<br>6.74<br>7.03<br>5.87<br>5.93 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.08<br>0.10<br>0.08<br>0.08<br>0.08 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 3.57<br>3.33<br>3.28<br>3.22<br>3.01 | 1170<br>1095<br>1040<br>845<br>815  | 2<br>< 1<br>1<br>< 1<br>1 |
| X111358<br>X111359<br>X111360<br>X111361<br>X111362 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.61<br>3.70<br>3.33<br>4.04<br>4.56 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 300<br>90<br>90<br>170<br>70    | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.14<br>3.99<br>3.64<br>3.31<br>3.50 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>2.0 | 122<br>41<br>38<br>39<br>74          | 81<br>75<br>48<br>149<br>181  | 61<br>76<br>79<br>103<br>399       | 8.45<br>7.00<br>6.49<br>6.15<br>5.86 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.03<br>0.03<br>0.05<br>0.01<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 3.21<br>3.12<br>3.02<br>4.20<br>3.82 | 1285<br>1110<br>1050<br>1255<br>745 | 1<br>1<br>< 1<br>1<br>1   |
| ¥111363<br>¥111364<br>¥111365<br>¥111366<br>¥111367 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 5.02<br>4.13<br>4.36<br>3.72<br>4.16 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 420<br>560<br>250<br>120<br>110 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>2<br>< 2<br>< 2<br>< 2<br>< 2          | 2.92<br>0.93<br>0.61<br>3.65<br>4.40 | 12.5<br>2.5<br>0.5<br>< 0.5<br>< 0.5             | 107<br>165<br>109<br>61<br><b>41</b> | 192<br>201<br>166<br>99<br>88 | 1550<br>1530<br>3440<br>793<br>180 | 8.24<br>9.22<br>7.99<br>6.37<br>6.93 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.02<br>0.02<br>0.03<br>0.02<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.89<br>4.20<br>4.04<br>3.61<br>3.38 | 830<br>1085<br>965<br>1560<br>1780  | < 1<br>1<br>1<br>1        |
|                                                     |                                        |                                        |                                                    |                                      |                                                      |                                 |                                                    |                                               |                                      |                                                  |                                      |                               |                                    |                                      |                                              |                                        |                                      |                                              |                                      |                                     |                           |
|                                                     |                                        |                                        |                                                    |                                      |                                                      |                                 |                                                    |                                               |                                      |                                                  |                                      |                               |                                    |                                      |                                              |                                        |                                      |                                              |                                      |                                     |                           |
|                                                     |                                        |                                        |                                                    |                                      |                                                      |                                 |                                                    |                                               |                                      |                                                  |                                      |                               |                                    |                                      |                                              |                                        |                                      |                                              |                                      |                                     |                           |
|                                                     |                                        |                                        |                                                    |                                      |                                                      |                                 |                                                    |                                               |                                      |                                                  |                                      |                               |                                    |                                      |                                              |                                        |                                      |                                              |                                      |                                     |                           |
|                                                     |                                        |                                        |                                                    |                                      |                                                      |                                 |                                                    |                                               |                                      |                                                  |                                      |                               |                                    |                                      |                                              |                                        |                                      |                                              |                                      |                                     |                           |
|                                                     |                                        |                                        |                                                    |                                      |                                                      |                                 |                                                    |                                               |                                      |                                                  |                                      |                               |                                    |                                      |                                              |                                        |                                      |                                              | •                                    |                                     |                           |





Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page Jer :1-B Total + Lyes 1 Certificate Date: 09-OCT-96 Invoice No. : 19634685 P.O. Number ! :MPO Account

ICE Project : Comments:

|                                                     |                                                          |                                  |                                                |                            |                                 |                                               |                                        |                            |                            |                                      | CE                                           | RTIF                                         | CATE                            | OF A                                         | SIS                                | A96 | 34685 |    |     |     |
|-----------------------------------------------------|----------------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------|---------------------------------|-----------------------------------------------|----------------------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|------------------------------------|-----|-------|----|-----|-----|
| SAMPLE                                              | PREP<br>CODE                                             | Na<br>%                          |                                                | Ni<br>ppm                  | p<br>ppm                        | Pb<br>ppm                                     | Sb<br>ppm                              | Sc<br>ppm                  | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                          |     |       |    |     |     |
| N110300<br>N111354<br>N111355<br>N111356<br>N111357 | 205 22<br>205 22<br>205 22<br>205 22<br>205 22           | 26<br>26<br>26<br>26<br>26       | < 0.01<br>< 0.01<br>0.01<br>0.01<br>0.01       | 42<br>37<br>36<br>33<br>29 | 360<br>330<br>320<br>350<br>370 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 18<br>19<br>17<br>18<br>16 | 27<br>30<br>23<br>22<br>24 | 0.35<br>0.43<br>0.39<br>0.41<br>0.41 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 194<br>192<br>194<br>180<br>180 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2600<br>2190<br>1260<br>214<br>150 |     |       |    |     |     |
| N111358<br>N111359<br>N111360<br>N111361<br>N111362 | 205 22<br>205 22<br>205 22<br>205 22<br>205 22<br>205 22 | 26<br>26<br>26<br>26<br>26<br>26 | < 0.01<br>0.01<br>< 0.01<br>0.02<br>0.02       | 41<br>35<br>33<br>41<br>47 | 370<br>390<br>370<br>260<br>260 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 25<br>24<br>19<br>22<br>26 | 12<br>21<br>17<br>21<br>14 | 0.40<br>0.41<br>0.38<br>0.33<br>0.32 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 239<br>244<br>203<br>214<br>234 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1235<br>276<br>142<br>112<br>768   |     | ,     |    |     |     |
| N111363<br>N111364<br>N111365<br>N111366<br>N111367 | 205 22<br>205 22<br>205 22<br>205 22<br>205 22<br>205 22 | 26<br>26<br>26<br>26<br>26       | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 53<br>61<br>69<br>43<br>37 | 270<br>300<br>350<br>430<br>440 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 25<br>31<br>27<br>25<br>23 | 15<br>11<br>7<br>53<br>24  | 0.29<br>0.33<br>0.11<br>0.39<br>0.40 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 220<br>244<br>261<br>226<br>233 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1630<br>1525<br>1030<br>330<br>122 |     |       |    |     |     |
|                                                     |                                                          |                                  |                                                |                            |                                 |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                    |     |       |    |     |     |
|                                                     |                                                          |                                  | <u> </u>                                       | <u></u>                    |                                 |                                               |                                        |                            |                            |                                      |                                              |                                              |                                 |                                              |                                    |     | da    | AB | uch | ler |

**CERTIFICATION:** 



Analytical Chemists "Geochemists " Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8 Page or :1 Total F. 3 :1 Certificate Date: 30-SEP-96 Invoice No. :19634057 P.O. Number : Account :MPO

1

| Project : | ICE |
|-----------|-----|
| Comments: |     |

|                                                     |                                 |            |                                      |      | CERTIFIC | ATE OF A | NALYSIS       | A96  | 34057 |    |
|-----------------------------------------------------|---------------------------------|------------|--------------------------------------|------|----------|----------|---------------|------|-------|----|
| SAMPLE                                              | PC                              | REP<br>ODE | Cu<br>%                              |      |          |          |               |      |       |    |
| N110263<br>N110264<br>N110265<br>N110266<br>N110271 | 244<br>244<br>244<br>244<br>244 |            | 1.22<br>1.41<br>1.52<br>1.18<br>1.01 |      |          |          |               |      |       |    |
| N110272<br>N110273                                  | 244<br>244                      |            | 1.64<br>0.91                         | <br> | <br>     |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      |       |    |
|                                                     |                                 |            |                                      |      |          |          |               |      | 1-1   | Λ  |
|                                                     |                                 |            |                                      |      |          | c        | ERTIFICATION: | Saro | (ein  | 2P |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

5: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATION:

Page er : 1-A Total H J s : 1 Certificate Date: 26-SEP-96 Invoice No. : 19632850 P.O. Number : MPO Account

. . . . . . . . .

Project : Comments: ICE

|                                                                 |                                 |                                       |                                                  |                              |                      |                              |                                         |                         |                                   |                                         | CERTIFICATE OF ANALYSIS     |                             |                             |                                   |                             |                                   |                                |                                     | A9632850                     |                                 |                                        |  |  |
|-----------------------------------------------------------------|---------------------------------|---------------------------------------|--------------------------------------------------|------------------------------|----------------------|------------------------------|-----------------------------------------|-------------------------|-----------------------------------|-----------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------------|-----------------------------|-----------------------------------|--------------------------------|-------------------------------------|------------------------------|---------------------------------|----------------------------------------|--|--|
| SAMPLE                                                          | PRE<br>COI                      | EP<br>DE                              | Ag<br>ppm                                        | A1<br>%                      | As<br>ppm            | Ba<br>ppm                    | Be<br>ppm                               | Bi<br>ppm               | Ca<br>%                           | Cđ<br>ppm                               | Co<br>ppm                   | Cr<br>ppm                   | Cu<br>ppm                   | Fe<br>%                           | Ga<br>ppm                   | Hg<br>ppm                         | K<br>%                         | La<br>ppm                           | Mg<br>%                      | Mn<br>ppm                       | Mo<br>ppm                              |  |  |
| SAMPLE<br>IC96-10 N110279<br>IC96-10 N110280<br>IC96-10 N110282 | COI<br>205<br>205<br>205<br>205 | DE<br>294<br>294<br>294<br>294<br>294 | ppm<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 2.95<br>2.91<br>2.82<br>2.69 | <b>ppm</b> 2 6 2 2 3 | ppm<br>70<br>60<br>40<br>100 | ppm<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | ppm<br>4<br>4<br>2<br>4 | %<br>2.27<br>2.23<br>1.88<br>1.73 | ppm<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | ppm<br>21<br>22<br>24<br>23 | ppm<br>22<br>24<br>19<br>18 | ppm<br>80<br>75<br>66<br>65 | %<br>5.15<br>4.96<br>5.30<br>5.18 | ppm<br>10<br>10<br>10<br>10 | ppn<br>< 1 -<br>< 1<br>< 1<br>< 1 | < 0.01<br>0.02<br>0.02<br>0.05 | ppm<br>< 10<br>< 10<br>< 10<br>< 10 | 1.42<br>1.34<br>1.41<br>1.27 | ppm<br>620<br>590<br>635<br>625 | ppm<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |  |  |
|                                                                 |                                 |                                       |                                                  |                              |                      |                              |                                         |                         |                                   |                                         |                             |                             |                             |                                   |                             |                                   |                                |                                     | •                            | •                               |                                        |  |  |
|                                                                 |                                 |                                       |                                                  |                              |                      |                              |                                         |                         |                                   |                                         |                             |                             |                             | C                                 | EBTIEIC                     |                                   | 19                             | rant                                | 22                           | chle                            | ろ                                      |  |  |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page ∋r :1-B Total F. \_\_\_\_\_ :1 Certificate Date: 26-SEP-96 Invoice No. 19632850 P.O. Number Account :MPO

| ICE |
|-----|
|     |
|     |

|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              | CE                                   | RTIF                                 | CATE                     | A9632850                             |                      |             |
|--------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|----------------------|--------------------------|---------------------------------|------------------------|-------------|----------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------|--------------------------------------|----------------------|-------------|
| SAMPLE                                                                   | PREP<br>CODE                                        | Na<br>%                      | Ni<br>ppm            | P<br>ppm                 | Pb<br>ppm                       | Sb<br>ppm              | Sc<br>ppm   | Sr<br>ppm            | Ti<br>%                      | T1<br>ppm                            | U<br>ppm                             | V<br>ppm                 | ppm<br>W                             | Zn<br>ppm            |             |
| IC96-10 N110279<br>IC96-10 N110280<br>IC96-10 N110281<br>IC96-10 N110282 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294 | 0.01<br>0.01<br>0.01<br>0.01 | 24<br>24<br>25<br>25 | 480<br>490<br>510<br>510 | < 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>2<br>< 2 | 4<br>4<br>3 | 11<br>13<br>13<br>16 | 0.50<br>0.47<br>0.36<br>0.34 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 180<br>180<br>159<br>155 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 46<br>44<br>70<br>74 |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      |                      |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      |                      |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      |                      |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      |                      |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      |                      |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      |                      |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      |                      |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      |                      |             |
|                                                                          |                                                     |                              |                      |                          |                                 |                        |             |                      |                              |                                      |                                      |                          |                                      | EDTIEICATION         | Jan Vichler |

CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page :: 1-A Total Pages :1 Certificate Date: 21-SEP-96 Invoice No. : 19631826 P.O. Number : Account : MPO

A9631826

Project : ICE Comments:

#### • PLEASE NOTE

| SAMPLE                                              | PREP<br>CODE                                                   | Ag<br>ppm                                      | Al<br>%                              | As<br>ppm                                                                          | Ba<br>ppm                        | Be<br>ppm                                                                 | Bi<br>ppm                                                                        | Ca<br>%                              | Cd<br>ppm                          | Co<br>ppm                   | Cr<br>ppm                       | Cu<br>ppm                                    | Fe<br>%                                  | Ga<br>ppm                      | Hg<br>pp <b>m</b>                                                         | K<br>%                                                                      | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                        | Mo<br>ppm                                                                        |
|-----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|------------------------------------|-----------------------------|---------------------------------|----------------------------------------------|------------------------------------------|--------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|----------------------------------------------------------------------------------|
| N110251<br>N110252<br>N110253<br>N110254<br>N110255 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | 0.8<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2<br>< 0.2 | 2.66<br>2.86<br>2.95<br>2.84<br>3.30 | 6<br>6<br>2<br>2<br>2<br>2                                                         | 460<br>210<br>1820<br>270<br>190 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5                        | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 1.10<br>3.54<br>2.43<br>1.57<br>1.69 | 1.5<br>< 0.5<br>0.5<br>2.5<br>14.5 | 40<br>23<br>20<br>22<br>28  | 126<br>47<br>58<br>72<br>101    | 762<br>72<br>71<br>1410<br>8380              | 5.37<br>4.74<br>4.83<br>5.75<br>5.22     | < 10<br>10<br>10<br>10<br>< 10 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 0.12<br>0.03<br>0.06<br>0.03<br>0.06                                        | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.46<br>1.66<br>1.73<br>1.66<br>1.71 | 790<br>680<br>665<br>555<br>750  | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>        |
| N110262<br>N110263<br>N110264<br>N110265<br>N110266 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | < 0.2<br>< 0.2<br>0.2<br>0.4<br>0.2            | 5.67<br>6.05<br>6.09<br>5.25<br>4.77 | 16<br>< 2<br>16<br>18<br>12                                                        | 10<br>30<br>10<br>10<br>10       | <pre>&lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5</pre> | <pre>&lt; 2 Intf* Intf* Intf* Intf* Intf*</pre>                                  | 0.04<br>0.05<br>0.01<br>0.01<br>0.01 | 1.0<br>1.5<br>1.0<br>0.5<br>0.5    | 82<br>68<br>69<br>84<br>90  | 192<br>213<br>201<br>183<br>132 | 8760<br>>10000<br>>10000<br>>10000<br>>10000 | 9.98<br>10.10<br>11.40<br>11.25<br>11.55 | 10<br>20<br>30<br>10<br>10     | <pre>&lt; 1 </pre> 3 1 2 1                                                | <pre>&lt; 0.01<br/>0.01<br/>0.01<br/>0.01<br/>&lt; 0.01<br/>&lt; 0.01</pre> | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.03<br>3.49<br>3.07<br>2.63<br>2.32 | 255<br>265<br>250<br>225<br>200  | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> |
| N110271<br>N110272<br>N110273<br>N110274<br>N110277 | 205 294<br>205 294<br>205 294<br>205 294<br>205 294<br>205 294 | 1.2<br>1.2<br>0.4<br>0.2<br>0.2                | 6.57<br>5.67<br>4.53<br>4.58<br>3.11 | <pre> &lt; 2 &lt; 2 &lt; 4 &lt; 2 &lt; 4 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 </pre> | 90<br>20<br>230<br>130<br>50     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5                        | Intf*<br>Intf*<br>Intf*<br>< 2<br>< 2                                            | 0.12<br>0.13<br>0.21<br>1.94<br>1.49 | 1.5<br>2.5<br>20.5<br>37.0<br>29.5 | 71<br>70<br>67<br>64<br>136 | 125<br>109<br>125<br>129<br>177 | >10000<br>>10000<br>>10000<br>4630<br>257    | 9.37<br>10.20<br>9.79<br>6.87<br>9.64    | 10<br>10<br>10<br>10<br>10     | <pre>&lt; 1 2 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre>                    | 0.08<br>0.03<br>0.05<br>0.06<br>0.01                                        | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.90<br>2.08<br>2.71<br>3.05<br>1.99 | 350<br>400<br>795<br>710<br>1360 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> |
| N110278                                             | 205 294                                                        | < 0.2                                          | 3.09                                 | < 2                                                                                | 1510                             | < 0.5                                                                     | < 2                                                                              | 1.41                                 | 10.0                               | 137                         | 162                             | 319                                          | 9.74                                     | 10                             | < 1                                                                       | 0.04                                                                        | < 10                                         | 1.79                                 | 1335                             | < 1                                                                              |

CERTIFICATION: Hart Buchle
C

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page. Jr :1-B Total P.J. J :1 Certificate Date: 21-SEP-96 Invoice No. : 19631826 P.O. Number : Account :MPO

A9631826

ABrchler

**CERTIFICATION:** 

Project : ICE Comments:

•

### \* PLEASE NOTE

| [       | ופט | 70  | Na      | Ni  | D             | թհ  | ch       | 50  | C+  | mi       | ጥገ   | T    | v   | W           | 7 n  |  |
|---------|-----|-----|---------|-----|---------------|-----|----------|-----|-----|----------|------|------|-----|-------------|------|--|
| SAMPLE  | COL | DE  | NG<br>S | ppm | ppm           | ppm | ppm<br>a | ppm | ppm | \$<br>11 | ppm  | ppm  | ppm | pp <b>n</b> | ppm  |  |
| N110251 | 205 | 294 | 0.04    | 37  | 550           | 168 | < 2      | 12  | 31  | 0.19     | < 10 | < 10 | 131 | < 10        | 286  |  |
| N110252 | 205 | 294 | < 0.01  | 29  | 570           | 6   | < 2      | 6   | 78  | 0.47     | < 10 | < 10 | 154 | < 10        | 82   |  |
| N110253 | 205 | 294 | 0.01    | 26  | 500           | 14  | < 2      | 11  | 44  | 0.46     | < 10 | < 10 | 177 | < 10        | 76   |  |
| N110254 | 205 | 294 | 0.03    | 26  | 320           | 16  | < 2      | 12  | 14  | 0.32     | < 10 | < 10 | 160 | < 10        | 214  |  |
| N110255 | 205 | 294 | 0.05    | 32  | 130           | 10  | < 2      | 17  | 8   | 0.22     | < 10 | < 10 | 114 | < 10        | 354  |  |
| N110262 | 205 | 294 | 0.01    | 35  | < 10          | 8   | < 2      | 17  | 2   | 0.03     | < 10 | < 10 | 188 | < 10        | 316  |  |
| N110263 | 205 | 294 | 0.01    | 38  | Intf●         | 12  | < 2      | 22  | 6   | 0.04     | < 10 | < 10 | 223 | < 10        | 244  |  |
| N110264 | 205 | 294 | 0.01    | 40  | <b>Intf</b> • | 14  | < 2      | 20  | 4   | 0.03     | < 10 | < 10 | 199 | < 10        | 206  |  |
| N110265 | 205 | 294 | 0.01    | 34  | Intf*         | 12  | < 2      | 18  | 4   | 0.04     | < 10 | < 10 | 186 | < 10        | 208  |  |
| N110266 | 205 | 294 | 0.01    | 28  | Intf*         | 14  | < 2      | 15  | 1   | 0.03     | < 10 | < 10 | 167 | < 10        | 176  |  |
| N110271 | 205 | 294 | 0.02    | 29  | Intf*         | 10  | < 2      | 21  | 10  | 0.01     | < 10 | < 10 | 159 | < 10        | 688  |  |
| N110272 | 205 | 294 | 0.01    | 27  | <b>Intf</b> • | 16  | < 2      | 30  | 14  | 0.11     | < 10 | < 10 | 176 | < 10        | 900  |  |
| N110273 | 205 | 294 | 0.03    | 37  | Intf•         | 8   | < 2      | 33  | 7   | 0.19     | < 10 | < 10 | 180 | < 10        | 3740 |  |
| N110274 | 205 | 294 | 0.03    | 44  | 180           | 6   | < 2      | 24  | 24  | 0.22     | < 10 | < 10 | 150 | < 10        | 2750 |  |
| N110277 | 205 | 294 | 0.03    | 55  | 250           | 4   | < 2      | 24  | 18  | 0.27     | < 10 | < 10 | 145 | < 10        | 3040 |  |
| N110278 | 205 | 294 | 0.03    | 47  | 230           | 6   | < 2      | 24  | 16  | 0.13     | < 10 | < 10 | 152 | < 10        | 2710 |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     | -       |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
| 1       | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         | 1   | - 1 |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
| 1       |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         | 1 1 | - 1 |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
| ļ       |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
| 1       | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
| 1       |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
| 1       | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
|         |     |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
| 1       | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |
| L       | 1   |     |         |     |               |     |          |     |     |          |      |      |     |             |      |  |

2: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er :1-A Total Payers :1 Certificate Date: 25-SEP-96 Invoice No. : 19631825 P.O. Number : Account : MPO

Project : ICE Comments:

Г

**Chemex Labs Ltd.** 

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

|                                                     | -                                      |                                        |                                        |                                      |                                                                                  |                                      |                                             |                               |                                                             |                                                                            | CE                                   | RTIFI                                                       | CATE                           | OF A                                   | ANAL                                     | YSIS                                   | 4                                                                  | 49631                                | 825                                  |                                  |                             |
|-----------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|-------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|--------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|-----------------------------|
| SAMPLE                                              | PR<br>CO                               | EP<br>DE                               | Au ppb<br>FA+AA                        | Cu<br>%                              | Ag<br>ppm                                                                        | Al<br>%                              | As<br>ppm                                   | Ba<br>ppm                     | Be<br>ppm                                                   | Bi<br>ppm                                                                  | Ca<br>%                              | Cd<br>ppm                                                   | Co<br>ppm                      | Cr<br>ppm                              | Cu<br>ppm                                | Fe<br>%                                | Hg<br>ppm                                                          | K<br>%                               | Mg<br>%                              | Mn<br>ppm                        | Mo<br>ppm                   |
| N110256<br>N110257<br>N110258<br>N110259<br>N110260 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294<br>294 | <pre>&lt; 5 15 &lt; 5 &lt; 5 100</pre> | 1.82<br>0.58<br>0.70<br>0.50<br>0.99 | <pre>&lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 6.27<br>4.61<br>4.76<br>5.59<br>1.86 | <pre>&lt; 10 &lt; 10 &lt; 10 20 40 40</pre> | 340<br>60<br>80<br>140<br>20  | <pre></pre>                                                 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 0.74<br>0.90<br>0.79<br>0.77<br>0.12 | 10<br>5<br>10<br>5<br>< 5                                   | 50<br>40<br>40<br>40<br>320    | 200<br>180<br>180<br>180<br>180<br>100 | 17960<br>5700<br>6990<br>4870<br>9260    | 10.30<br>8.34<br>8.28<br>6.84<br>21.3  | < 10<br>< 10<br>< 10<br>< 10<br>< 10 <                             | 0.26<br>0.03<br>0.02<br>0.01<br>0.01 | 4.48<br>3.45<br>2.98<br>2.43<br>0.89 | 1430<br>810<br>730<br>610<br>140 | <pre></pre>                 |
| N110261<br>N110267<br>N110268<br>N110269<br>N110270 | 208<br>208<br>208<br>208<br>208<br>208 | 294<br>294<br>294<br>294<br>294<br>294 | 25<br>70<br>30<br>< 5<br>25            | 1.72<br>1.64<br>1.69<br>0.71<br>1.05 | 1<br>1<br>< 1<br>< 1<br>< 1<br>< 1                                               | 1.06<br>1.37<br>2.59<br>6.69<br>5.12 | 30<br>10<br>10<br>< 10<br>40                | 20<br>< 20<br>80<br>400<br>60 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 0.04<br>0.03<br>0.05<br>0.18<br>0.14 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | 690<br>1015<br>535<br>35<br>85 | 130<br>110<br>110<br>100<br>120        | 16490<br>15630<br>16880<br>7340<br>10370 | 30.0<br>>30.0<br>23.4<br>7.92<br>12.90 | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 0.01<br>0.01<br>0.12<br>0.06<br>0.08 | 0.29<br>0.58<br>1.27<br>2.70<br>2.41 | 20<br>30<br>80<br>570<br>380     | 10<br>25<br>5<br>< 5<br>< 5 |
| N110275<br>N110276                                  | 208                                    | 294<br>294                             | < 5<br>40                              | 0.02<br>2.18                         |                                                                                  | 3.47<br>1.28                         | < 10<br>10                                  | 520<br>20                     | <pre>&lt; 5 &lt; 5</pre>                                    | < 10<br>< 10                                                               | 1.80<br>0.04                         | 50<br>< 5                                                   | 215<br>645                     | 180                                    | 285 21000                                | 12.75 27.8                             | < 10<br>< 10                                                       | 0.31<br>0.01                         | 2.41<br>0.70                         | 1920<br>140                      | < 5 5                       |

CERTIFICATION: HartBuchler

FO: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC Pag ber :1-B Total, Jes :1 Certificate Date: 25-SEP-96 Invoice No. : 19631825 P.O. Number : Account : MPO

Project : ICE Comments:

|                            |                                                             |                                        |                            |                                   |                                             |                                                                            |                                  |                                                  |                                                              | CE                                                                         | RTIFI                                                                      | CATE                            | OF A                                                                       | NALYSIS                         | A9631825 |  |
|----------------------------|-------------------------------------------------------------|----------------------------------------|----------------------------|-----------------------------------|---------------------------------------------|----------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|---------------------------------|----------|--|
| P<br>C                     | REP<br>ODE                                                  | Na<br>%                                | Ni<br>ppm                  | P<br>Ppm                          | Pb<br>ppm                                   | Sb<br>ppm                                                                  | Sc<br>ppm                        | Sr<br>ppm                                        | Ti<br>%                                                      | Tl<br>ppm                                                                  | U<br>ppm                                                                   | V<br>ppm                        | W<br>ppm                                                                   | Zn<br>ppm                       |          |  |
| 20<br>20<br>20<br>20<br>20 | 8 294<br>8 294<br>8 294<br>8 294<br>8 294<br>8 294          | < 0.01<br>0.04<br>0.04<br>0.01<br>0.04 | 70<br>55<br>50<br>55<br>20 | 300<br>300<br>300<br>300<br>100   | 15<br>< 5<br>10<br>5<br>15                  | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | 35<br>35<br>35<br>35<br>35<br>10 | 10<br>30<br>35<br>5<br>5                         | 0.49<br>0.59<br>0.54<br>0.47<br>0.03                         | <pre>&lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20</pre> | <pre>&lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20</pre> | 200<br>240<br>240<br>220<br>140 | <pre>&lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20</pre> | 585<br>535<br>520<br>350<br>365 |          |  |
| 20<br>20<br>20<br>20<br>20 | 8 294<br>8 294<br>8 294<br>8 294<br>8 294<br>8 294<br>8 294 | 0.04<br>0.04<br>0.04<br>0.03<br>0.03   | 15<br>25<br>30<br>35<br>40 | 100<br>< 100<br>100<br>200<br>100 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 5 15</pre> | <pre>&lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10 &lt; 10</pre> | <pre>&lt; 5 5 15 40 25</pre>     | <pre>&lt; 5 &lt; &lt; 5 &lt; 10 &lt; 25 25</pre> | <pre>&lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 0.25 0.18</pre> | <pre>&lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20</pre> | <pre>&lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20</pre> | 100<br>60<br>120<br>220<br>180  | <pre>&lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20 &lt; 20</pre> | 290<br>335<br>390<br>890<br>610 |          |  |
| 20<br>20                   | 8 294<br>8 294                                              | 0.03<br>0.04                           | 65<br>15                   | 300<br>< 100                      | < 5<br>< 5                                  | < 10<br>< 10                                                               | 25<br>5                          | 20<br>5 (                                        | 0.33                                                         | < 20<br>< 20                                                               | < 20<br>< 20                                                               | 180<br>60                       | 20<br>< 20                                                                 | 5180<br>180                     |          |  |

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

SAMPLE

N110256 N110257 N110258 N110259 N110260 N110260 N110268 N110268 N110269 N110270 N110275 N110275 **Chemex Labs Ltd.** 

CERTIFICATION: HartBuchler

V6B 1L8



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Pag .ber :1-A Totai....jes :1 Certificate Date: 15-SEP-96 Invoice No. :19631086 P.O. Number : Account :MPO

Project : ICE Comments:

### CERTIFICATE OF ANALYSIS A

A9631086

| SAMPLE                                                         | PR<br>CO                               | ep<br>De                        | Ag<br>ppm                                                   | A1<br>%                              | As<br>ppm                            | Ba<br>ppm                         | Be<br>ppm                                          | Bi<br>ppm                                     | Ca<br>%                              | Cd<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                   | Cu<br>ppm                  | Fe<br>%                              | Ga<br>ppm                  | Hg<br>ppm                              | K<br>%                                 | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                       | Mo<br>ppm                                     |
|----------------------------------------------------------------|----------------------------------------|---------------------------------|-------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|-----------------------------|----------------------------|--------------------------------------|----------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------|-----------------------------------------------|
| N111280<br>N111281<br>N111282<br>N111283<br>N111283<br>N111284 | 205<br>205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2          | 3.06<br>2.49<br>2.99<br>2.78<br>3.04 | < 2<br>4<br>< 2<br>< 2<br>< 2<br>< 2 | 1090<br>2410<br>120<br>550<br>150 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 3.46<br>2.18<br>2.61<br>2.08<br>2.52 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 24<br>25<br>25<br>27<br>28 | 79<br>102<br>80<br>66<br>64 | 76<br>78<br>64<br>72<br>59 | 5.09<br>4.87<br>5.34<br>5.43<br>5.34 | 10<br>10<br>10<br>10       | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | < 0.01<br>0.04<br>0.06<br>0.14<br>0.11 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.75<br>2.11<br>2.19<br>2.34<br>2.09 | 680<br>705<br>745<br>810<br>740 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 |
| N111285<br>N111286<br>N111287<br>N111287<br>N111288<br>N111289 | 205<br>205<br>205<br>205<br>205        | 294<br>294<br>294<br>294<br>294 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.63<br>3.22<br>2.86<br>3.25<br>4.37 | < 2<br>< 2<br>8<br>< 2<br>< 2<br>< 2 | 80<br>590<br>80<br>110<br>350     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.98<br>2.49<br>2.70<br>3.20<br>4.00 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 33<br>31<br>30<br>28<br>28 | 79<br>73<br>42<br>34<br>81  | 77<br>74<br>49<br>69<br>77 | 6.13<br>5.57<br>5.50<br>5.60<br>5.91 | 10<br>10<br>10<br>10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.05<br>0.07<br>0.08<br>0.07<br>0.14   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.56<br>2.70<br>1.96<br>1.89<br>2.44 | 855<br>835<br>925<br>775<br>940 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        |
|                                                                |                                        |                                 |                                                             |                                      |                                      |                                   |                                                    |                                               |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                        |                                              |                                      |                                 |                                               |
|                                                                |                                        |                                 |                                                             |                                      |                                      |                                   |                                                    |                                               |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                        |                                              |                                      |                                 |                                               |
|                                                                |                                        |                                 |                                                             |                                      |                                      |                                   |                                                    |                                               |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                        |                                              |                                      |                                 |                                               |
|                                                                |                                        |                                 |                                                             |                                      |                                      |                                   |                                                    |                                               |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                        |                                              |                                      |                                 |                                               |
|                                                                |                                        |                                 |                                                             |                                      |                                      |                                   |                                                    |                                               |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                        |                                              |                                      |                                 |                                               |
|                                                                |                                        |                                 |                                                             |                                      |                                      |                                   |                                                    |                                               |                                      |                                                    |                            |                             |                            |                                      |                            |                                        |                                        |                                              |                                      |                                 |                                               |

CERTIFICATION: trut Buchler



### Chemex Labs Ltd. Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Pag liber : 1-E Total - ages : 1 aber :1-B Certificate Date: 15-SEP-96 Invoice No. : [9631086 P.O. Number : Account : MPO

Project : ICE Comments:

|                                                                |                                 |                                 |                                      |                            |                                 |                           |                                        |                       |                           | CERTIFICATE OF ANALYS                |                                              |                                              |                                 |                                              | NALYSIS                    | A9631086     |
|----------------------------------------------------------------|---------------------------------|---------------------------------|--------------------------------------|----------------------------|---------------------------------|---------------------------|----------------------------------------|-----------------------|---------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|----------------------------|--------------|
| SAMPLE                                                         | PR<br>CO                        | ep<br>De                        | Na<br>%                              | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                 | Sb<br>ppm                              | Sc<br>ppm             | Sr<br>ppm                 | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                  |              |
| N111280<br>N111281<br>N111282<br>N111283<br>N111283<br>N111284 | 205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>294<br>294 | 0.03<br>0.05<br>0.04<br>0.03<br>0.03 | 22<br>28<br>26<br>25<br>27 | 400<br>360<br>360<br>370<br>360 | 6<br>10<br>20<br>< 2<br>6 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 5<br>6<br>5<br>5      | 29<br>26<br>7<br>9<br>8   | 0.46<br>0.44<br>0.45<br>0.45<br>0.42 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 169<br>151<br>163<br>143<br>157 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 70<br>58<br>66<br>72<br>70 |              |
| N111285<br>N111286<br>N111287<br>N111288<br>N111288<br>N111289 | 205<br>205<br>205<br>205<br>205 | 294<br>294<br>294<br>294<br>294 | 0.02<br>0.03<br>0.01<br>0.02<br>0.01 | 32<br>32<br>31<br>20<br>28 | 350<br>300<br>410<br>350<br>190 | 10<br>6<br>2<br>4<br>< 2  | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2   | 6<br>7<br>6<br>5<br>8 | 9<br>11<br>22<br>12<br>11 | 0.44<br>0.43<br>0.44<br>0.42<br>0.35 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 171<br>148<br>179<br>156<br>130 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 82<br>74<br>80<br>74<br>80 |              |
|                                                                |                                 |                                 |                                      |                            |                                 |                           |                                        |                       |                           |                                      |                                              |                                              |                                 |                                              |                            |              |
|                                                                |                                 |                                 |                                      |                            |                                 |                           |                                        |                       |                           |                                      |                                              |                                              |                                 |                                              |                            |              |
| l                                                              |                                 |                                 |                                      |                            |                                 |                           |                                        |                       |                           |                                      |                                              |                                              |                                 |                                              |                            |              |
|                                                                |                                 |                                 |                                      |                            |                                 |                           |                                        |                       |                           |                                      |                                              |                                              |                                 |                                              |                            |              |
|                                                                |                                 |                                 |                                      |                            |                                 |                           |                                        |                       |                           |                                      |                                              |                                              |                                 |                                              |                            |              |
|                                                                |                                 |                                 |                                      |                            |                                 |                           |                                        |                       |                           |                                      |                                              |                                              |                                 |                                              |                            |              |
|                                                                |                                 |                                 |                                      |                            |                                 |                           |                                        |                       |                           |                                      |                                              |                                              |                                 |                                              |                            | tart Bichler |

CERTIFICATION:\_

.



N110335

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pag. øer :1-A Total rages :1 Certificate Date: 15-SEP-96 Invoice No. :19631084 P.O. Number : Account :MPO

Project : ICE Comments:

|                     |         |           |         |           |           |           |           |         |           | CE        | RTIFI     | CATE      | OF A    | ANAL)     | /SIS      | A      | <b>\9631</b> | 084     |           |           |
|---------------------|---------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|--------|--------------|---------|-----------|-----------|
| SAMPLE PREP<br>CODE |         | Ag<br>ppm | A1<br>% | As<br>ppm | Ba<br>ppm | Be<br>ppm | Bi<br>ppm | Ca<br>% | Cđ<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>% | Ga<br>ppm | Hg<br>ppm | K<br>% | La<br>ppm    | Mg<br>% | Mn<br>ppm | Mo<br>ppm |
| 135                 | 205 226 | < 0.2     | 0.71    | 6         | 170       | < 0.5     | 2         | 0.06    | < 0.5     | 13        | 618       | 5         | 1.89    | < 10      | < 1       | 0.17   | 10           | 0.06    | 1165      | 1         |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         | 1         |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              |         |           |           |
|                     |         |           |         |           |           |           |           |         |           |           |           |           |         |           |           |        |              | •       |           |           |

CERTIFICATION:\_\_\_\_

Hart Buchler



### Chemex Labs Ltd. Analytical Chemists • Geochemists • Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 fo: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Pag per :1-B Total ages :1 Certificate Date: 15-SEP-96 Invoice No. :19631084 P.O. Number : Account :MPO

Project : ICE Comments:

\_

|         |          |          |         |           |          |           |           |           |           |         | CE        | RTIFI    | CATE     | OF A | NALYSIS   | A9631084 |
|---------|----------|----------|---------|-----------|----------|-----------|-----------|-----------|-----------|---------|-----------|----------|----------|------|-----------|----------|
| SAMPLE  | PR<br>CO | EP<br>DE | Na<br>% | Ni<br>ppm | P<br>ppm | Pb<br>ppm | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | Ti<br>% | Tl<br>ppm | U<br>ppm | V<br>ppm | W    | Zn<br>ppm |          |
| N110335 | 205      | 226      | < 0.01  | 30        | 210      | 18        | < 2       | < 1       | 4 <       | 0.01    | < 10      | < 10     | 8        | < 10 | 28        | <u></u>  |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         | 1        |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           |          |
|         |          |          |         |           |          |           |           |           |           |         |           |          |          |      |           | •        |

CERTIFICATION: Hart Buchler

EVELTE DECOURAES TO



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver

| To: | EXPATRIATE RESOURCES LTD.                      |
|-----|------------------------------------------------|
|     | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|     | 1016 - 510 W. HASTINGS ST.                     |
|     | VANCOUVER, BC                                  |
|     | V6B 1L8                                        |

Pag ber:1-A Total ⊢ages :1 Certificate Date:21-SEP-96 Invoice No. :19631048 P.O. Number : MPO Account

Project : Comments: ICE

|                                                     |                                        |                                               |                            |                                      |                                        |                                      |                                   | <u> </u>                             |                                        | CERTIFICATE OF ANALYS                        |                                      |                                        |                                 | YSIS                           | /                                         | <b>A9631</b>                             | 048                                          |                                      |                                        |                                 |                                       |
|-----------------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------|--------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|--------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|---------------------------------------|
| SAMPLE                                              | PR<br>CO                               | ep<br>De                                      | Au ppb<br>FA+AA            | Cu                                   | Ag<br>ppm                              | A1<br>%                              | As<br>ppm                         | Ba<br>ppm                            | Be<br>ppm                              | Bi<br>ppm                                    | Ca<br>%                              | Cđ<br>ppm                              | Co<br>ppm                       | Cr<br>ppm                      | Cu<br>ppm                                 | Fe<br>%                                  | Hg<br>ppm                                    | K<br>%                               | Mg<br>%                                | Min<br>ppm                      | Mo<br>ppm                             |
| N110951<br>N110952<br>N110953<br>N110954<br>N110955 | 208<br>208<br>208<br>208<br>208        | 222<br>222<br>222<br>222<br>222<br>222<br>222 |                            |                                      | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 2.96<br>3.62<br>5.77<br>5.23<br>0.82 | < 10<br>< 10<br>< 10<br>30<br>160 | 120<br>240<br>420<br>160<br>40       | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.31<br>2.49<br>0.51<br>0.62<br>0.03 | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | 35<br>30<br>55<br>60<br>355     | 60<br>70<br>220<br>220<br>120  | 800<br>870<br>2500<br>4230<br>3720        | 6.60<br>6.51<br>11.75<br>12.70<br>23.5   | < 10<br>10<br>< 10<br>< 10<br>< 10<br>< 10   | 0.03<br>0.05<br>0.15<br>0.07<br>0.10 | 1.70<br>2.16<br>3.31<br>2.10<br>0.13   | 720<br>720<br>1420<br>760<br>10 | 5<br>< 5<br>< 5<br>< 5<br>< 5<br>130  |
| N110956<br>N110957<br>N110958<br>N110959<br>N110960 | 208<br>208<br>208<br>208<br>208<br>208 | 222<br>222<br>222<br>222<br>222<br>222<br>222 | 20<br>20<br>20<br>10<br>30 | 1.70<br>2.06<br>4.99<br>2.35<br>1.99 | < 1<br>< 1<br>1<br>< 1<br>< 1          | 2.25<br>1.38<br>0.11<br>7.37<br>1.35 | 30<br>30<br>10<br>< 10<br>< 10    | 20<br>20<br>20<br>20<br>< 20<br>< 20 | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.04<br>0.03<br>0.01<br>0.05<br>0.02 | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | 450<br>775<br>725<br>210<br>385 | 120<br>120<br>90<br>230<br>110 | 16410<br>20500<br>47300<br>24200<br>20200 | 18.30<br>28.0<br>>30.0<br>25.6<br>27.7   | 10<br>10<br>< 10<br>< 10<br>< 10             | 0.10<br>0.15<br>0.07<br>0.10<br>0.03 | 0.70<br>0.47<br>< 0.01<br>3.66<br>0.42 | 30<br>20<br>< 10<br>250<br>30   | 15<br>15<br>15<br>< 5<br>20           |
| N110961<br>N110962<br>N110963<br>N110964<br>N110965 | 208<br>208<br>208<br>208<br>208<br>208 | 222<br>222<br>222<br>222<br>222<br>222<br>222 | 25<br>10<br>< 5<br>< 5     | 1.63<br>2.36<br>2.75<br>0.60         | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 1.59<br>7.83<br>7.03<br>4.86<br>4.22 | < 10<br>10<br>< 10<br>< 10<br>10  | < 20<br>120<br>460<br>120<br>80      | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.02<br>0.11<br>0.27<br>2.35<br>2.61 | < 5<br>< 5<br>< 5<br>30<br>35          | 640<br>60<br>55<br>100<br>130   | 120<br>210<br>150<br>80<br>110 | 15780<br>24600<br>28300<br>6200<br>575    | >30.0<br>12.10<br>10.75<br>9.67<br>10.40 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.03<br>0.08<br>0.06<br>0.04<br>0.01 | 0.71<br>5.68<br>4.06<br>3.36<br>3.94   | 60<br>620<br>780<br>930<br>1190 | 10<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 |
| %110966<br>%110967<br>%111299<br>%111300            | 208<br>208<br>208<br>208               | 222<br>222<br>222<br>222                      |                            |                                      | < 1<br>< 1<br>< 1<br>< 1               | 4.20<br>4.29<br>3.20<br>3.64         | < 10<br>< 10<br>< 10<br>< 10      | 240<br>120<br>180<br>100             | < 5<br>< 5<br>< 5<br>< 5               | < 10<br>< 10<br>< 10<br>< 10                 | 3.21<br>2.86<br>2.46<br>2.40         | < 5<br>< 5<br>< 5<br>< 5<br>< 5        | 65<br>60<br>30<br>40            | 130<br>140<br>80<br>60         | 110<br>80<br>355<br>910                   | 7.10<br>6.94<br>5.60<br>7.71             | < 10<br>< 10<br>< 10<br>10                   | 0.11<br>0.05<br>0.09<br>0.04         | 3.89<br>4.55<br>2.10<br>2.44           | 850<br>930<br>950<br>1380       | < 5<br>< 5<br>< 5<br>< 5              |
|                                                     |                                        |                                               |                            |                                      |                                        |                                      |                                   |                                      |                                        |                                              |                                      |                                        |                                 |                                |                                           |                                          |                                              |                                      |                                        |                                 |                                       |
|                                                     |                                        |                                               |                            |                                      |                                        |                                      |                                   |                                      |                                        |                                              |                                      |                                        |                                 |                                |                                           |                                          |                                              |                                      |                                        |                                 |                                       |
|                                                     |                                        |                                               |                            |                                      |                                        |                                      |                                   |                                      |                                        |                                              |                                      |                                        |                                 |                                |                                           |                                          |                                              |                                      |                                        |                                 |                                       |

CERTIFICATION:

Hart Buchler



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| To: | EXPATRIATE RESOURCES LTD.                      |
|-----|------------------------------------------------|
|     | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|     | 1016 - 510 W. HASTINGS ST.                     |
|     | VANCOUVER, BC                                  |
|     | V6B 1L8                                        |

Pag , ber :1-B Total - ages :1 Certificate Date: 21-SEP-96 Invoice No. : 19631048 P.O. Number : Account : MPO

Project : Comments: ICE

-----

Г

|                                                     |                                 |                                                             |                                      | <u> </u>                   |                                     |                                |                                              |                           |                                 |                                      |                                              | RTIFI                                        | CATE                            | E OF A                                       |                                   | A9631048 |
|-----------------------------------------------------|---------------------------------|-------------------------------------------------------------|--------------------------------------|----------------------------|-------------------------------------|--------------------------------|----------------------------------------------|---------------------------|---------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-----------------------------------|----------|
| SAMPLE                                              | PI<br>CC                        | rep<br>DDE                                                  | Na<br>%                              | Ni<br>ppm                  | P<br>ppm                            | Pb<br>ppm                      | Sb<br>ppm                                    | Sc<br>ppm                 | Sr<br>ppm                       | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                         |          |
| X110951<br>X110952<br>X110953<br>X110954<br>X110955 | 208<br>208<br>208<br>208<br>208 | B 222<br>B 222<br>B 222<br>B 222<br>B 222<br>B 222<br>B 222 | 0.08<br>0.06<br>0.03<br>0.03<br>0.05 | 35<br>40<br>85<br>50<br>15 | 500<br>400<br>200<br>300<br>600     | 5<br>< 5<br>< 5<br>25<br>< 5   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 15<br>15<br>25<br>30<br>5 | 5<br>10<br>5<br>5<br>5          | 0.60<br>0.60<br>0.41<br>0.43<br>0.03 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 200<br>200<br>200<br>240<br>180 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 215<br>185<br>910<br>950<br>235   |          |
| 1110956<br>1110957<br>1110958<br>1110959<br>1110960 | 208<br>208<br>208<br>208<br>208 | B 222<br>B 222<br>B 222<br>B 222<br>B 222<br>B 222          | 0.06<br>0.05<br>0.06<br>0.08<br>0.05 | 25<br>20<br>5<br>50<br>15  | 200<br>200<br>< 100<br>100<br>< 100 | 5<br>5<br>170<br>20<br>< 5     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 5<br>5<br>25<br>5         | 15 <<br>15 <<br>15<br>50<br>5 < | 0.01<br>0.01<br>0.01<br>0.09<br>0.01 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 120<br>100<br>20<br>380<br>100  | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 195<br>145<br>35<br>190<br>200    |          |
| 110961<br>1110962<br>1110963<br>1110964<br>1110965  | 208<br>208<br>208<br>208<br>208 | 3 222<br>3 222<br>3 222<br>3 222<br>3 222<br>3 222<br>3 222 | 0.06<br>0.06<br>0.04<br>0.02<br>0.04 | 20<br>60<br>55<br>45<br>55 | < 100<br>200<br>400<br>400<br>400   | < 5<br>< 5<br>< 5<br>< 5<br>10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 5<br>35<br>50<br>30<br>30 | 5 <<br>5<br>10<br>5<br>10       | 0.01<br>0.02<br>0.35<br>0.56<br>0.58 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 60<br>220<br>260<br>220<br>220  | < 20<br>< 20<br>< 20<br>< 20<br>< 20<br>< 20 | 105<br>405<br>500<br>2990<br>3530 |          |
| 110966<br>110967<br>111299<br>111300                | 208<br>208<br>208<br>208        | 222<br>222<br>222<br>222<br>222<br>222                      | 0.05<br>0.05<br>0.05<br>0.03         | 45<br>50<br>35<br>40       | 300<br>300<br>400<br>400            | < 5<br>< 5<br>40<br>< 5        | < 10<br>< 10<br>< 10<br>< 10                 | 20<br>25<br>10<br>15      | 5<br>10<br>15<br>5              | 0.49<br>0.55<br>0.59<br>0.70         | < 20<br>< 20<br>< 20<br>< 20<br>< 20         | < 20<br>< 20<br>< 20<br>< 20                 | 200<br>220<br>180<br>240        | < 20<br>< 20<br>< 20<br>< 20<br>< 20         | 1105<br>205<br>160<br>330         |          |
|                                                     |                                 |                                                             |                                      |                            |                                     |                                |                                              |                           |                                 |                                      |                                              |                                              |                                 |                                              |                                   |          |
|                                                     |                                 |                                                             |                                      |                            |                                     |                                |                                              |                           |                                 |                                      |                                              |                                              |                                 |                                              |                                   |          |
|                                                     |                                 |                                                             |                                      |                            |                                     |                                |                                              |                           |                                 |                                      |                                              |                                              |                                 |                                              |                                   |          |
|                                                     |                                 |                                                             | l                                    |                            |                                     |                                |                                              |                           |                                 |                                      |                                              |                                              |                                 |                                              |                                   |          |

CERTIFICATION:

Sart Brokler



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATION:

Pag per :1 Total rages :1 Certificate Date: 13-SEP-9 Invoice No. : 19630772 P.O. Number : : MPO Account

Project : ICE Comments:

|                                          |                          |                              |                              |                              |                                  | CERTIFIC                      | ATE OF ANALYSIS | A96 | 30772 | ·   |
|------------------------------------------|--------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|-------------------------------|-----------------|-----|-------|-----|
| SAMPLE                                   | PREP<br>CODE             | Cu tot<br>%                  | Cu -<br>%                    | Cu + 1<br>% 5                | Wt<br>grams                      | Wt. +<br>grams                |                 |     |       |     |
| N111173<br>N111174<br>N111175<br>N111176 | 299<br>299<br>299<br>299 | 0.04<br>0.05<br>0.05<br>0.04 | 0.04<br>0.05<br>0.05<br>0.04 | 0.01<br>0.01<br>0.02<br>0.01 | 211<br>223<br>2 <b>44</b><br>227 | 12.85<br>8.63<br>0.84<br>6.42 |                 |     |       |     |
|                                          |                          |                              |                              |                              |                                  |                               |                 |     |       |     |
|                                          |                          |                              |                              |                              |                                  |                               |                 |     |       |     |
|                                          |                          |                              |                              |                              |                                  |                               |                 |     |       |     |
|                                          |                          |                              |                              |                              |                                  |                               |                 |     |       |     |
|                                          |                          |                              |                              |                              |                                  |                               |                 |     |       |     |
|                                          |                          |                              |                              |                              |                                  |                               |                 |     |       |     |
|                                          |                          | <u>.</u>                     | 1                            | <b>_I</b>                    |                                  |                               | CERTIFICATION   | Jan | tBud  | ler |



Analytical Chemists "Geochemists " Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED
 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Pag per : 1-A Total يوجه : 1 Certificate Date: 06-SEP-96 Invoice No. : 19630087 P.O. Number : Account : MPO

Project : ICE Comments:

| r                                                   |                                 |                                                             |                                                    |                                      |                                                      |                                |                                                    |                                               |                                      |                                                    | CE                         | RTIF                          | CATE                          | OF A                                 | NALY                               | SIS                                                |                                                | <b>49630</b>                                 | 087                                  |                                   |                       |
|-----------------------------------------------------|---------------------------------|-------------------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|-------------------------------|-------------------------------|--------------------------------------|------------------------------------|----------------------------------------------------|------------------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------|-----------------------|
| SAMPLE                                              | PF                              | REP<br>DDE                                                  | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                                            | Ba<br>ppm                      | Be<br>ppm                                          | Bi<br>ppm                                     | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                     | Cu<br>ppm                     | Fe<br>%                              | Ga<br>ppm                          | Hg<br>ppm                                          | K<br>%                                         | La<br>ppm                                    | Mg<br>%                              | Min<br>ppm                        | Mo<br>ppm             |
| N111172<br>N111177<br>N111178<br>N111179<br>N111180 | 208<br>208<br>208<br>208<br>208 | 3 226<br>3 226<br>3 226<br>3 226<br>3 226<br>3 226<br>3 226 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.07<br>1.45<br>3.39<br>2.74<br>2.93 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 310<br>30<br>150<br>50<br>120  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 2.39<br>1.53<br>2.74<br>1.78<br>1.87 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 26<br>14<br>34<br>32<br>32 | 26<br>165<br>33<br>30<br>20   | 286<br>43<br>100<br>64<br>71  | 5.18<br>2.26<br>6.54<br>5.36<br>5.59 | 10<br>< 10<br>10<br>10<br>10       | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1             | 0.10<br>0.01<br>0.03<br>0.01<br>0.03           | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.50<br>0.49<br>2.55<br>1.72<br>1.64 | 620<br>320<br>965<br>750<br>760   | 1<br>1<br>1<br>1<br>1 |
| N111181<br>N111182<br>N111183<br>N111184<br>N111184 | 208<br>208<br>208<br>208<br>208 | 226<br>226<br>226<br>226<br>226<br>226<br>226               | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 2.46<br>2.88<br>3.11<br>3.66<br>3.21 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 340<br>210<br>60<br>40<br>780  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 1.58<br>1.94<br>2.06<br>2.68<br>1.51 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 43<br>63<br>42<br>44<br>41 | 16<br>23<br>25<br>28<br>25    | 66<br>71<br>68<br>89<br>92    | 5.65<br>6.91<br>6.28<br>6.43<br>7.23 | < 10<br>10<br>10<br>10<br>< 10     | 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1               | 0.11<br>0.03<br>0.01<br>0.01<br>0.06           | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.35<br>1.76<br>1.83<br>1.94<br>2.88 | 825<br>1110<br>850<br>945<br>1000 | 1<br>1<br>2<br>1<br>1 |
| N111186<br>N111187<br>N111188<br>N111189<br>N111190 | 208<br>208<br>208<br>208<br>208 | 226<br>226<br>226<br>226<br>226<br>226                      | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.50<br>2.30<br>2.95<br>2.93<br>3.05 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 630<br>680<br>360<br>90<br>220 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 1.81<br>1.56<br>2.00<br>1.60<br>1.72 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 39<br>80<br>78<br>42<br>55 | 24<br>44<br>33<br>21<br>29    | 74<br>60<br>94<br>59<br>56    | 7.65<br>7.35<br>8.16<br>6.89<br>7.48 | 10<br>< 10<br>< 10<br>10<br>< 10   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1             | 0.07<br>0.03<br>0.02<br>0.03<br>0.03           | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.58<br>2.22<br>2.78<br>2.19<br>2.15 | 965<br>1115<br>1165<br>830<br>965 | 1<br>1<br>1<br>1<br>1 |
| N111191<br>N111192<br>N111193<br>N111194<br>N111195 | 208<br>208<br>208<br>208<br>208 | 226<br>226<br>226<br>226<br>226<br>226                      | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2   | 3.04<br>1.88<br>3.89<br>4.02<br>4.41 | < 2<br>< 2<br>< 2<br>2<br>2<br>< 2                   | 140<br>90<br>40<br>520<br>140  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 1.50<br>1.51<br>2.79<br>1.09<br>2.55 | < 0.5<br>< 0.5<br>0.5<br>0.5<br>< 0.5              | 42<br>61<br>33<br>31<br>37 | 27<br>22<br>119<br>203<br>126 | 59<br>48<br>108<br>177<br>214 | 6.89<br>5.35<br>6.52<br>6.81<br>7.57 | < 10<br>< 10<br>10<br>< 10<br>< 10 | < 1 <<br>< 1 <<br>< 1 <<br>< 1 <<br>< 1 <<br>< 1 < | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.59<br>1.83<br>3.84<br>4.52<br>4.85 | 865<br>795<br>1070<br>975<br>1125 | 2<br>1<br>1<br>1<br>2 |
| ¥111196<br>¥111197<br>¥111198                       | 208<br>208<br>208               | 226<br>226<br>226                                           | < 0.2<br>0.2<br>0.2                                | 4.43<br>3.47<br>4.54                 | < 2<br>< 2<br>< 2                                    | 420<br>200<br>1190             | < 0.5<br>< 0.5<br>< 0.5                            | < 2<br>< 2<br>< 2                             | 4.88<br>8.83<br>5.27                 | < 0.5<br>< 0.5<br>< 0.5                            | 34<br>25<br>32             | 147<br>105<br>102             | 260<br>52<br>66               | 7.04<br>5.22<br>6.62                 | 10<br>< 10<br>< 10                 | < 1 <<br>< 1 <<br>1 1                              | < 0.01<br>< 0.01<br>0.07                       | < 10<br>< 10<br>< 10                         | 4.91<br>3.67<br>4.58                 | 1265<br>1245<br>1190              | 1<br>< 1<br>1         |
|                                                     |                                 |                                                             |                                                    |                                      |                                                      |                                |                                                    |                                               |                                      |                                                    |                            |                               |                               |                                      |                                    |                                                    |                                                |                                              |                                      |                                   |                       |
|                                                     |                                 |                                                             |                                                    |                                      |                                                      |                                |                                                    |                                               |                                      |                                                    |                            |                               |                               |                                      |                                    |                                                    |                                                |                                              |                                      |                                   |                       |
|                                                     |                                 |                                                             |                                                    |                                      |                                                      |                                |                                                    |                                               |                                      |                                                    |                            |                               |                               |                                      |                                    |                                                    |                                                |                                              |                                      |                                   |                       |
|                                                     |                                 |                                                             |                                                    |                                      |                                                      |                                |                                                    |                                               |                                      |                                                    |                            |                               |                               |                                      |                                    |                                                    |                                                |                                              |                                      |                                   |                       |
|                                                     |                                 |                                                             |                                                    |                                      |                                                      |                                |                                                    |                                               |                                      |                                                    |                            |                               |                               |                                      |                                    |                                                    |                                                |                                              |                                      |                                   |                       |

CERTIFICATION: Hart Buchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

 COMPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC VAB 1L8 Project : ICE Comments:

### **CERTIFICATE OF ANALYSIS** A9630087 PREP Na Ni ₽ Рb Sb Sr Тİ Tl U V W Zn SC SAMPLE CODE % % ppm ppm DDM DDM ppm ppm ppm ppm ppm ppm ppm N111172 208 226 < 0.01 27 540 2 5 21 0.50 < 10 188 136 < 2 < 10 < 10 N111177 208 226 < 0.01 9 1 152 < 10 < 10 93 94 90 < 2 < 2 0.10 < 10 208 226 < 0.01 144 N111178 35 520 7 0.54 < 10 190 9 < 10 < 10 < 2 < 2 N111179 208 226 < 0.01 < 10 116 29 490 6 12 0.37 < 10 155 < 10 < 2 < 2 N111180 208 226 < 0.01 30 540 5 7 0.38 < 10 < 10 166 < 10 134 < 2 < 2 N111181 208 226 < 0.01 28 510 < 2 < 2 5 9 0.37 < 10 < 10 145 < 10 278 N111182 208 226 < 0.01 < 10 30 490 < 2 2 7 8 0.46 < 10 174 < 10 816 N111183 208 226 < 0.01 31 530 2 6 9 0.51 < 10 < 10 189 < 10 334 < 2 N111184 208 226 < 0.01 31 480 < 2 < 2 6 11 0.52 < 10 < 10 190 < 10 304 208 226 31 720 6 198 N111185 < 0.01 < 2 < 2 21 0.71 < 10 < 10 < 10 180 N111186 208 226 < 0.01 29 710 6 25 0.64 < 10 < 10 230 < 10 180 < 2 < 2 N111187 208 226 < 0.01 29 175 600 < 2 2 11 44 0.59 < 10 < 10 < 10 800 N111188 208 226 < 0.01 35 670 < 2 2 11 46 0.58 < 10 < 10 170 < 10 664 N111189 208 226 < 0.01 26 680 < 2 10 33 0.55 < 10 < 10 205 < 10 178 < 2 N111190 208 226 < 0.01 27 670 < 2 < 2 8 24 0.54 < 10 < 10 198 < 10 336 N111191 208 226 < 0.01 670 0.66 152 31 < 2 2 7 40 < 10 < 10 196 < 10 N111192 208 226 < 0.01 23 480 < 2 7 51 0.54 < 10 < 10 142 < 10 394 < 2 N111193 208 226 < 0.01 41 330 < 2 2 12 12 0.40 < 10 < 10 206 < 10 142 N111194 208 226 < 0.01 52 290 < 2 < 2 13 5 0.31 < 10 < 10 183 < 10 404 208 226 < 0.01 43 310 19 230 N111195 < 2 < 2 17 0.37 < 10 < 10 < 10 144 N111196 208 226 < 0.01 290 28 < 2 2 33 0.42 44 < 10 < 10 245 < 10 126 N111197 208 226 < 0.01 34 290 < 2 25 57 < 10 < 10 < 2 0.40 213 70 < 10 N111198 208 226 < 0.01 40 340 < 2 < 2 17 63 0.43 < 10 < 10 207 246 < 10

CERTIFICATION: HartBuchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Invoice No. : 19629963 P.O. Number : MPO Account

Project : Comments: ICE

....

|                                                                |                                 |                                                |                                                        |                                                          |                                 | CERTIFIC                                          | ATE OF ANALYSIS | A96 | 29963 |   |
|----------------------------------------------------------------|---------------------------------|------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------------|---------------------------------------------------|-----------------|-----|-------|---|
| SAMPLE                                                         | PREP<br>CODE                    | Cu tot<br>%                                    | Cu -<br>%                                              | Cu +<br>%                                                | Wt<br>grams                     | Wt. +<br>grams                                    |                 |     |       |   |
| N111078<br>N111079<br>N111080<br>N111081<br>N111082            | 244<br>244<br>244<br>244<br>244 | 0.09<br>0.18<br>0.15<br>0.17<br>0.28           | 0.09<br>0.19<br>0.16<br>0.18<br>0.30                   | 0.03<br>0.04<br>0.04<br>0.04<br>0.02                     | 220<br>239<br>208<br>195<br>204 | 7.70<br>11.30<br>10.60<br>11.70<br>15. <b>4</b> 0 |                 |     |       |   |
| N111083<br>N111084<br>N111085<br>N111086<br>N111087            | 244<br>244<br>244<br>244<br>244 | 0.15<br>0.12<br>0.21<br>0.21<br>0.24           | 0.15<br>0.12<br>0.21<br>0.21<br>0.24                   | 0.03<br>0.02<br>0.05<br>0.01<br>0.06                     | 224<br>220<br>225<br>211<br>218 | 6.06<br>8.35<br>6.56<br>not/ss<br>1.89            |                 |     |       |   |
| N111088<br>N111089<br>N111090<br>N111091<br>N111092            | 244<br>244<br>244<br>244<br>244 | 0.34<br>0.32<br>0.21<br>0.39<br>0.08           | 0.35<br>0.34<br>0.23<br>0.39<br>0.08                   | 0.09<br>0.02<br>0.01<br>0.08<br>0.01                     | 195<br>169<br>181<br>250<br>252 | 6.81<br>12.70<br>17.15<br>2.89<br>3.32            |                 |     |       |   |
| N111093<br>N111094<br>N111095<br>N111096<br>N111097            | 244<br>244<br>244<br>244<br>244 | 0.09<br>1.02<br>0.20<br>0.25<br>0.46           | 0.09<br>1.02<br>0.20<br>0.25<br>0.46                   | 0.01<br>0.01<br>0.06<br>0.04<br>0.24                     | 225<br>211<br>255<br>224<br>228 | 2.74<br>not/ss<br>0.89<br>1.34<br>1.41            |                 |     |       |   |
| N111098<br>N111099<br>N111100<br>N111151<br>N111152            | 244<br>244<br>244<br>244<br>244 | 0.46<br>0.39<br>0.48<br>0.16<br>0.33           | 0.46<br>0.39<br>0.51<br>0.18<br>0.34                   | 0.12<br>0.19<br>0.02<br>0.04<br>0.10                     | 223<br>240<br>217<br>134<br>208 | 2.26<br>3.47<br>13.15<br>17.90<br>5.79            |                 |     |       |   |
| N111153<br>N111154<br>N111155<br>N111156<br>N111157            | 244<br>244<br>244<br>244<br>244 | 0.31<br>0.05<br>0.10<br>0.11<br>0.47           | 0.32<br>0.05<br>0.11<br>0.12<br>0.49                   | 0.03<br>0.01<br>0.02<br>0.02<br>0.07                     | 199<br>220<br>228<br>214<br>190 | 7.34<br>13.10<br>18.40<br>17.15<br>10.45          |                 |     |       |   |
| N111158<br>N111159<br>N111160<br>N111161<br>N111162            | 244<br>244<br>244<br>244<br>244 | 0.09<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01   | 0.09<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01   | 217<br>247<br>245<br>257<br>231 | 15.85<br>19.60<br>13.50<br>11.20<br>11.10         |                 |     |       |   |
| N111163<br>N111164<br>N111165<br>N111166<br>N111166<br>N111167 | 244<br>244<br>244<br>244<br>244 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>0.10           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 246<br>241<br>225<br>231<br>227 | 15.00<br>9.56<br>11.45<br>10.65<br>14.25          |                 |     |       | ٨ |

CERTIFICATION: 2010 (ETAS

5: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er :2 Total Payes :2 Certificate Date: 04-SEP-96 Invoice No. : 19629963 P.O. Number : Account : MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

|                                          |                          |                                      |                                      |                                |                          | CERTIFIC                        | ATE OF ANALYSIS | A9629 | 963     |
|------------------------------------------|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|--------------------------|---------------------------------|-----------------|-------|---------|
| SAMPLE                                   | PREP<br>CODE             | Cu tot<br>%                          | Cu -<br>%                            | Cu + W<br>% g                  | rams                     | Wt. +<br>grams                  |                 |       |         |
| N111168<br>N111169<br>N111170<br>N111171 | 244<br>244<br>244<br>244 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 0.01<br>0.01<br>0.01<br>< 0.01 | 209<br>227<br>231<br>201 | 14.70<br>10.70<br>21.3<br>16.15 |                 |       |         |
|                                          |                          |                                      |                                      |                                |                          |                                 |                 |       |         |
|                                          |                          |                                      |                                      |                                |                          |                                 |                 |       |         |
|                                          |                          |                                      |                                      |                                |                          |                                 |                 |       |         |
|                                          |                          |                                      |                                      |                                |                          |                                 |                 |       |         |
|                                          |                          |                                      |                                      |                                |                          |                                 |                 |       |         |
|                                          |                          |                                      |                                      |                                |                          |                                 |                 |       |         |
|                                          |                          |                                      |                                      |                                |                          |                                 |                 |       |         |
|                                          |                          |                                      |                                      |                                |                          |                                 | CERTIFICATION   | Sand  | Leing P |



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC

Page er :1-A Total Hayes :1 Certificate Date: 09-SEP-96 Invoice No. : 19629954 P.O. Number : MPO Account

V6B 1L8 Project : Comments: ICE

**Chemex Labs Ltd.** 

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

|                                          |                                          | _                        |                          |                              |                              |                          |                          |                              |                              | CE                       | RTIFI                | CATE                 | OF A                     | NAL                          | <b>SIS</b>                   |                              | 49629                        | 954                       |                          |                              |
|------------------------------------------|------------------------------------------|--------------------------|--------------------------|------------------------------|------------------------------|--------------------------|--------------------------|------------------------------|------------------------------|--------------------------|----------------------|----------------------|--------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------|--------------------------|------------------------------|
| SAMPLE                                   | PREP<br>CODE                             | Au ppb<br>FA+AA          | Ag<br>ppm                | A1<br>%                      | As<br>ppm                    | Ba<br>ppm                | Be<br>ppm                | Bi<br>ppm                    | Ca<br>%                      | Cđ<br>ppm                | Co<br>ppm            | Cr<br>ppm            | Cu<br>ppm                | Fe<br>%                      | Hg<br>ppm                    | K<br>%                       | Ng<br>%                      | Mn<br>ppm                 | Mo<br>ppm                | Na<br>%                      |
| N111173<br>N111174<br>N111175<br>N111176 | 208 226<br>208 226<br>208 226<br>208 226 | < 5<br>< 5<br>< 5<br>< 5 | < 1<br>< 1<br>< 1<br>< 1 | 3.23<br>3.58<br>3.39<br>3.08 | < 10<br>< 10<br>< 10<br>< 10 | 280<br>200<br>300<br>200 | < 5<br>< 5<br>< 5<br>< 5 | < 10<br>< 10<br>< 10<br>< 10 | 2.47<br>2.85<br>2.52<br>2.12 | < 5<br>< 5<br>< 5<br>< 5 | 45<br>65<br>40<br>35 | 20<br>30<br>20<br>30 | 450<br>575<br>585<br>445 | 6.45<br>6.94<br>6.60<br>6.25 | < 10<br>< 10<br>< 10<br>< 10 | 0.17<br>0.12<br>0.24<br>0.16 | 1.64<br>1.73<br>1.65<br>2.00 | 830<br>1000<br>780<br>770 | < 5<br>< 5<br>< 5<br>< 5 | 0.05<br>0.04<br>0.10<br>0.04 |
|                                          |                                          |                          |                          |                              |                              |                          |                          |                              |                              |                          |                      |                      |                          |                              |                              |                              |                              |                           |                          |                              |
|                                          |                                          |                          |                          |                              |                              |                          |                          |                              |                              |                          |                      |                      |                          |                              |                              |                              |                              |                           |                          |                              |

CERTIFICATION:\_

tart Bichler

C

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page er :1-B Total K. Jos :1 Certificate Date: 09-SEP-96 Invoice No. :19629954 P.O. Number : Account :MPO

Project : ICE Comments:

Г

|                                          |                                          |                      |                          |                       |                              |             |                      |                              |                              | CE                           | RTIF                     | CATE                         | OF ANALYSIS              | 5 | A9629954 |  |
|------------------------------------------|------------------------------------------|----------------------|--------------------------|-----------------------|------------------------------|-------------|----------------------|------------------------------|------------------------------|------------------------------|--------------------------|------------------------------|--------------------------|---|----------|--|
| SAMPLE                                   | PREP<br>CODE                             | Ni<br>ppm            | P<br>Ppm                 | Pb<br>ppm             | Sb<br>ppm                    | Sc<br>ppm   | Sr<br>ppm            | Ti<br>%                      | T1<br>ppm                    | U<br>ppm                     | V<br>ppm                 | W                            | Zn<br>ppm                |   |          |  |
| N111173<br>N111174<br>N111175<br>N111176 | 208 226<br>208 226<br>208 226<br>208 226 | 35<br>40<br>35<br>40 | 500<br>500<br>600<br>500 | < 5<br>15<br>5<br>< 5 | < 10<br>< 10<br>< 10<br>< 10 | 5<br>5<br>5 | 45<br>20<br>45<br>60 | 0.79<br>0.76<br>0.80<br>0.84 | < 20<br>< 20<br>< 20<br>< 20 | < 20<br>< 20<br>< 20<br>< 20 | 220<br>220<br>220<br>220 | < 20<br>< 20<br>< 20<br>< 20 | 170<br>160<br>135<br>185 |   |          |  |
|                                          |                                          |                      |                          |                       |                              |             |                      |                              |                              |                              |                          |                              |                          |   |          |  |



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page per :1-A Total ruges :1 Certificate Date: 26-AUG-96 Invoice No. P.O. Number : 19629743 : :MPO Account

ICE Project : Comments:

ſ

|                    |          |            |              |              |           |                   |             |                   |              |                               | CE        | RTIFI     | CATE      | OF A         | NALY      | 'SIS                                                                             |        | A9629       | 743          |            |           |
|--------------------|----------|------------|--------------|--------------|-----------|-------------------|-------------|-------------------|--------------|-------------------------------|-----------|-----------|-----------|--------------|-----------|----------------------------------------------------------------------------------|--------|-------------|--------------|------------|-----------|
| SAMPLE             | PR<br>CO | EP<br>DE   | Ag<br>ppm    | Al<br>%      | As<br>ppm | Ba<br>pp <b>m</b> | Be<br>ppm   | Bi<br>pp <b>m</b> | Ca<br>%      | Cđ<br>ppm                     | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>%      | Ga<br>ppm | Hg<br>ppm                                                                        | K<br>L | La<br>ppm   | Mg<br>%      | Mn<br>ppm  | Mo<br>ppm |
| N111278<br>N111279 | 255      | 295<br>295 | 0.2<br>< 0.2 | 4.32<br>3.99 | 2<br>< 2  | 80<br>130         | <pre></pre> | 6<br>4            | 4.16<br>5.31 | <b>₽₽</b> ₩<br>< 0.5<br>< 0.5 | 28<br>25  | 96<br>106 | 86<br>66  | 5.78<br>5.82 | <u>pp</u> | <pre>// ( 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1 &lt; 1</pre> | 0.01   | <pre></pre> | 2.44<br>2.25 | 955<br>975 |           |
|                    |          |            |              |              |           |                   |             |                   |              |                               |           |           |           |              |           |                                                                                  |        |             |              |            |           |

tart Brokler CERTIFICATION:\_



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 D: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page Jer :1-B Total Fages :1 Certificate Date: 26-AUG-96 Invoice No. : 19629743 P.O. Number : MPO Account

| Project : | ICE |
|-----------|-----|
| Comments: |     |

### **CERTIFICATE OF ANALYSIS** A9629743 Sb Ti Tl V W Zn PREP Ni P Pb Sc Sr U Na 8 CODE SAMPLE \* ppm ppm ppm ppm ppm ppm ppm pp∎ ppm pp∎ ppm 72 255 295 0.38 < 10 < 10 136 < 10 N111278 0.04 93 340 < 2 < 2 7 20 N111279 < 10 < 10 181 < 10 72 255 295 320 < 2 14 38 0.26 0.01 36 < 2 taut Buchler

CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page per : 1-A Total ss : 1 Certificate Date: 28-AUG-96 Invoice No. : 19629740 P.O. Number : Account : MPO

A9629740

Project : ICE Comments:

### \*PLEASE NOTE

|         | PR  | EP          | Au ppb | Cu   | Ag    | λ1   | λs  | Ba          | Be    | Bi    | Ca   | Cđ    | Co  | Cr  | Cu     | Fe     | Ga   | Hg  | ĸ    | La   | Mg   |
|---------|-----|-------------|--------|------|-------|------|-----|-------------|-------|-------|------|-------|-----|-----|--------|--------|------|-----|------|------|------|
| SAMPLE  | CO  | DE          | γλ+λλ  | %    | ppm   | *    | ppm | ppm         | ppm   | ppm   | %    | ppm   | ppm | ppm | ppm    | *      | ppm  | ppm | %    | ppm  | ×    |
| N111199 | 255 | 295         | < 5    | 0.15 | < 0.2 | 2.76 | < 2 | 70          | < 0.5 | 10    | 2.18 | 0.5   | 27  | 49  | 1510   | 5.26   | < 10 | < 1 | 0.08 | < 10 | 1.77 |
| N111200 | 255 | 295         | < 5    | 0.16 | < 0.2 | 3.73 | 4   | 70          | < 0.5 | 2     | 2.76 | 0.5   | 36  | 81  | 1645   | 6.49   | 10   | < 1 | 0.03 | < 10 | 2.38 |
| N111251 | 255 | 295         | < 5    | 0.24 | < 0.2 | 3.33 | 6   | 90          | < 0.5 | 2     | 2.21 | 1.5   | 43  | 79  | 2510   | 6.82   | 10   | < 1 | 0.04 | < 10 | 2.54 |
| N111252 | 255 | 295         | < 5    | 0.23 | 0.2   | 3.08 | < 2 | <b>97</b> 0 | < 0.5 | 2     | 1.77 | 2.0   | 35  | 72  | 2340   | 7.03   | 10   | < 1 | 0.06 | < 10 | 2.41 |
| N111253 | 255 | 295         | < 5    | 0.25 | < 0.2 | 3.89 | 2   | 340         | < 0.5 | < 2   | 1.57 | 0.5   | 46  | 87  | 2710   | 7.75   | 10   | 1   | 0.25 | < 10 | 3.36 |
| N111254 | 255 | 295         | < 5    | 0.39 | 0.2   | 3.28 | < 2 | 340         | < 0.5 | 6     | 1.69 | 1.5   | 45  | 79  | 4360   | 8.50   | 10   | < 1 | 0.10 | < 10 | 2.49 |
| N111255 | 255 | 295         | < 5    | 0.30 | 0.2   | 4.69 | 4   | 1010        | < 0.5 | < 2   | 1.08 | 0.5   | 59  | 93  | 3440   | 9.56   | 10   | < 1 | 0.23 | < 10 | 3.90 |
| N111256 | 255 | 295         | < 5    | 0.22 | < 0.2 | 3.72 | 4   | 240         | < 0.5 | 14    | 1.59 | 1.5   | 43  | 96  | 2430   | 7.78   | 10   | 1   | 0.11 | < 10 | 3.02 |
| N111257 | 255 | 295         | < 5    | 0.39 | 0.2   | 3.89 | 10  | 450         | < 0.5 | 6     | 2.00 | 3.5   | 48  | 97  | 4320   | 8.69   | 10   | < 1 | 0.07 | < 10 | 2.78 |
| N111258 | 255 | 295         | < 5    | 0.17 | 0.2   | 3.38 | < 2 | 80          | < 0.5 | 6     | 2.70 | 2.5   | 24  | 48  | 1790   | 6.12   | 10   | < 1 | 0.07 | < 10 | 1.85 |
| N111259 | 255 | 295         | < 5    | 0.18 | < 0.2 | 3.55 | < 2 | 60          | < 0.5 | 4     | 2.68 | 1.5   | 26  | 70  | 1750   | 6.18   | 10   | < 1 | 0.03 | < 10 | 2.14 |
| N111260 | 255 | 295         | < 5    | 0.28 | < 0.2 | 3.22 | 6   | 80          | < 0.5 | 2     | 1.86 | 1.5   | 29  | 69  | 2760   | 5.92   | 10   | 1   | 0.08 | < 10 | 2.26 |
| N111261 | 255 | 295         | < 5    | 0.38 | 0.2   | 3.10 | < 2 | 130         | < 0.5 | < 2   | 2.13 | 2.0   | 28  | 54  | 3740   | 5.99   | 10   | 3   | 0.04 | < 10 | 1.94 |
| N111262 | 200 | 295         | < 5    | 0.69 | 0.2   | 2.92 | < 2 | 80          | < 0.5 |       | 1.72 | 2.0   | 22  | 48  | 5370   | 5.08   | < 10 | < 1 | 0.08 | < 10 | 1.85 |
| 0111203 | 255 | <b>X</b> 95 | < 5    | 0.97 | < 0.2 | 3.45 | < 4 | 80          | < 0.5 | < 4   | 1.// | 4.3   | 33  | 63  | 9610   | 0.49   | 10   | 1   | 0.02 | < 10 | 2.15 |
| N111264 | 255 | 295         | < 5    | 2.92 | < 0.2 | 3.07 | 2   | 140         | < 0.5 | Intf* | 0.55 | 1.5   | 32  | 105 | >10000 | 8.25   | < 10 | 3   | 0.11 | < 10 | 1.89 |
| N111265 | 255 | 295         | < 5    | 2.98 | < 0.2 | 2.54 | < 2 | 80          | < 0.5 | Intf* | 0.71 | 0.5   | 24  | 115 | >10000 | 6.84   | < 10 | 2   | 0.04 | < 10 | 1.06 |
| N111266 | 255 | 295         | < 5    | 1.07 | < 0.2 | 1.12 | < 2 | 40          | < 0.5 | < 2   | 0.68 | < 0.5 | 16  | 184 | 9930   | 3.87   | < 10 | < 1 | 0.01 | < 10 | 0.53 |
| N111267 | 255 | 295         | < 5    | 2.47 | 0.2   | 2.38 | < 2 | 70          | < 0.5 | Intf* | 0.99 | 0.5   | 33  | 93  | >10000 | 6.11   | < 10 | 3   | 0.01 | < 10 | 2.03 |
| N111268 | 255 | 295         | < 5    | 1.37 | 0.2   | 3.77 | 2   | 100         | < 0.5 | Inti* | 1.25 | 3.0   | 35  | 101 | >10000 | 7.19   | 10   | 1   | 0.03 | < 10 | 2.94 |
| N111269 | 255 | 295         | < 5    | 1.14 | < 0.2 | 4.14 | 6   | 130         | < 0.5 | Intf* | 1.11 | 5.5   | 40  | 150 | >10000 | 7.93   | 10   | 1   | 0.04 | < 10 | 2.78 |
| N111270 | 255 | 295         | < 5    | 1.78 | < 0.2 | 4.04 | < 2 | 600         | < 0.5 | Intf* | 0.57 | 2.5   | 40  | 169 | >10000 | 7.90   | 10   | 1   | 0.03 | < 10 | 2.11 |
| N111271 | 255 | 295         | < 5    | 5.15 | < 0.2 | 3.56 | 14  | 160         | < 0.5 | Intf* | 0.64 | 30.0  | 209 | 69  | >10000 | >15.00 | < 10 | 3   | 0.12 | < 10 | 0.86 |
| N111272 | 255 | 295         | < 5    | 0.40 | < 0.2 | 4.03 | 6   | 230         | < 0.5 | 4     | 1.97 | 9.0   | 70  | 89  | 4040   | 8.83   | 10   | < 1 | 0.05 | < 10 | 2.65 |
| N111273 | 255 | 295         | < 5    | 0.01 | < 0.2 | 3.26 | 2   | 110         | < 0.5 | 4     | 1.96 | 7.0   | 57  | 89  | 159    | 7.04   | 10   | 1   | 0.03 | < 10 | 2.57 |
| N111274 | 255 | 295         | < 5    | 0.01 | 0.2   | 4.14 | 6   | 60          | < 0.5 | 6     | 2.44 | < 0.5 | 42  | 85  | 127    | 6.63   | 10   | 1   | 0.09 | < 10 | 2.81 |
| N111275 | 255 | 295         | < 5    | 0.01 | 0.2   | 3.42 | 2   | 60          | < 0.5 | 4     | 2.29 | < 0.5 | 32  | 55  | 78     | 6.19   | < 10 | < 1 | 0.05 | < 10 | 2.30 |
| N111276 | 255 | 295         | < 5 <  | 0.01 | < 0.2 | 4.19 | < 2 | 60          | < 0.5 | 6     | 3.33 | < 0.5 | 32  | 74  | 93     | 6.24   | 10   | < 1 | 0.01 | < 10 | 2.70 |
| N111277 | 255 | 295         | < 5 <  | 0.01 | < 0.2 | 3.71 | 4   | 60          | < 0.5 | 6     | 2.75 | < 0.5 | 29  | 64  | 83     | 5.78   | 10   | < 1 | 0.07 | < 10 | 2.48 |
|         |     |             |        |      |       |      |     |             |       |       |      |       |     |     |        |        |      |     |      |      |      |

CERTIFICATION: Hart Buchler



**CERTIFICATE OF ANALYSIS** 

Page per :1-B Total Forges :1 Certificate Date: 28-AUG-96 Invoice No. : 19629740 P.O. Number : Account :MPO

A9629740

tart Brehlen

CERTIFICATION:

C

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

| Project : | ICE |
|-----------|-----|
| Comments: |     |

V6B 1L8

VANCOUVER, BC

### \*PLEASE NOTE

|         |            |      |      |             |        |     |              |            | · · · · · · |            |        |      |      |      |     |      |      |   |
|---------|------------|------|------|-------------|--------|-----|--------------|------------|-------------|------------|--------|------|------|------|-----|------|------|---|
|         | ł          |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         | PR         | RP   | Mn   | Mo          | Na     | Nİ  | P            | Pb         | Sb          | Sc         | Sr     | тi   | ተ1   | Π    | v   | W    | Zn   | ļ |
| CANOT R | 00         |      |      |             |        |     | -            |            |             |            |        | e    |      |      |     |      |      |   |
| OADLYUS |            | DE . | ррш  | <u>b</u> bm | •      | ррш | ррш          | bbw        | ррш         | ррш        | ррш    | ð    | ррш  | ррш  | рЪщ | рЪщ  | ррш  |   |
| 111100  | 255        | 205  | 71.0 | 1 1         | 0.02   | 24  | 200          | 26         | 12          | 7          | 7      | 0 35 | × 10 | < 10 | 150 | < 10 | 132  |   |
| N111200 | 255        | 205  | 910  | 21          | 0.02   | 47  | 310          | ~ 2        | 2 2         | 10         | ,<br>2 | 0.35 | 2 10 | 2 10 | 190 | 2 10 | 200  |   |
| N111200 | 255        | 435  | 910  |             | 0.04   | 45  | 300          | 1          | 2 2         | 12         | ő      | 0.30 | < 10 | < 10 | 170 | 2 10 | 270  |   |
| N111491 | 400<br>155 | 295  | 910  |             | 0.01   | 12  | 300          | 4          | 2 2         | 13         | 12     | 0.39 | < 10 |      | 167 | - 10 | 205  |   |
| N111252 | 400        | 495  | 915  |             | 0.03   | 3/  | 300          |            | × 4         | 13         | 13     | 0.43 | < 10 | < 10 | 141 | < 10 | 200  |   |
| M111253 | 400        | 493  | 1190 | < 1         | 0.04   | 50  | <b>2</b> 00  | < 4        | < 4         | <b>4</b> 0 | 49     | 0.43 | < 10 | < 10 | 141 | × 10 | 308  | 1 |
| N111254 | 255        | 295  | 940  | < 1         | 0.03   | 43  | 360          | < 2        | < 2         | 15         | 21     | 0.40 | < 10 | < 10 | 163 | < 10 | 436  |   |
| N111255 | 255        | 295  | 1395 | < 1         | < 0.01 | 57  | 280          | 2          | < 2         | 24         | 35     | 0.44 | < 10 | < 10 | 138 | < 10 | 458  |   |
| N111256 | 255        | 295  | 1015 | < 1         | 0.04   | 45  | 310          | < 2        | 2           | 18         | 27     | 0.38 | < 10 | < 10 | 165 | < 10 | 282  |   |
| N111257 | 255        | 295  | 860  | < 1         | 0.04   | 41  | 270          | < 2        | < 2         | 23         | 18     | 0.37 | < 10 | < 10 | 213 | < 10 | 422  |   |
| N111258 | 255        | 295  | 560  | < 1         | 0.04   | 27  | 370          | < 2        | < 2         | 9          | 10     | 0.35 | < 10 | < 10 | 168 | < 10 | 116  |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
| N111259 | 255        | 295  | 645  | < 1         | 0.03   | 32  | 270          | < 2        | < 2         | 10         | 9      | 0.36 | < 10 | < 10 | 174 | < 10 | 134  |   |
| N111260 | 255        | 295  | 790  | < 1         | 0.03   | 34  | 310          | < 2        | < 2         | 8          | 9      | 0.36 | < 10 | < 10 | 142 | < 10 | 124  |   |
| N111261 | 255        | 295  | 675  | < 1         | 0.03   | 29  | 310          | < 2        | < 2         | 9          | 8      | 0.40 | < 10 | < 10 | 169 | < 10 | 160  |   |
| N111262 | 255        | 295  | 680  | < 1         | 0.02   | 26  | 260          | < 2        | < 2         | 11         | 9      | 0.35 | < 10 | < 10 | 152 | < 10 | 130  |   |
| N111263 | 255        | 295  | 770  | < 1         | 0.03   | 32  | 240          | < 2        | < 2         | 11         | 11     | 0.39 | < 10 | < 10 | 161 | < 10 | 214  |   |
|         |            | 005  | 575  |             | 0.00   |     | 7-484        |            |             | 26         |        | 0.10 | < 10 | < 10 | 120 | . 10 | 210  |   |
| D111204 | 433        | 499  | 3/3  | ~ 1         | 0.04   | 34  | Incl."       | 2.5        | <b>`</b>    | 20         | , , ,  | 0.15 | - 10 | < 10 | 100 | ~ 10 | 204  |   |
| D111205 | 400        | 495  | 105  |             | 0.01   | 40  | 10CL-        |            | × 2         | 10         | 20     | 0.15 | < 10 | < 10 | 110 | < 10 | 479  |   |
| DI11200 | 433        | 295  |      | < 1<br>1    | 0.01   | 10  | 24U<br>T-14+ | 24         | × 4         | 17         | 15     | 0.10 | < 10 | < 10 | 140 | < 10 | 114  |   |
| N11126/ | 433        | 295  | 262  | < 1         | 0.02   | 40  | Inti-        | < 4<br>0   | < 4<br>- 0  | 17         | 72     | 0.30 | < 10 | < 10 | 160 | < 10 | 100  |   |
| M111200 | 433        | 493  | 790  | Κ.Τ.        | 0.04   | • 1 | Incl."       | 4          | • •         | 17         | 33     | 0.35 | < 10 | < 10 | 120 | < 10 | 190  |   |
| N111269 | 255        | 295  | 670  | < 1         | 0.03   | 56  | Intf*        | < 2        | < 2         | 26         | 8      | 0.21 | < 10 | < 10 | 239 | < 10 | 262  |   |
| N111270 | 255        | 295  | 385  | < 1         | 0.02   | 49  | Intf*        | < 2        | < 2         | 30         | 60     | 0.02 | < 10 | < 10 | 240 | < 10 | 336  |   |
| N111271 | 255        | 295  | 1530 | < 1         | < 0.01 | 34  | Intf*        | < 2        | < 2         | 22         | 31 <   | 0.01 | < 10 | < 10 | 148 | < 10 | 5480 |   |
| N111272 | 255        | 295  | 1135 | < 1         | < 0.01 | 50  | 320          | < 2        | < 2         | 23         | 14     | 0.28 | < 10 | < 10 | 207 | < 10 | 1420 |   |
| N111273 | 255        | 295  | 995  | < 1         | < 0.01 | 38  | 330          | < 2        | < 2         | 14         | 15     | 0.36 | < 10 | < 10 | 164 | < 10 | 906  |   |
|         |            | 0.05 |      |             |        |     |              |            |             |            | -      | 0.44 |      |      |     |      | 007  |   |
| N111274 | 255        | 295  | 955  | < 1         | < 0.01 | 40  | 260          | < 2        | < 2         | 11         | 5      | 0.41 | < 10 | < 10 | 144 | < 10 | 164  |   |
|         | 433        | 433  | 833  |             | 0.01   | 47  | 350          |            |             | 10         |        | 0.37 | 10   | 10   | 100 | 10   | 104  |   |
| N111276 | 255        | 295  | 910  | < 1         | 0.01   | 34  | 350          | < <b>4</b> | < 2         | 14         | 9      | 0.37 | < 10 | < 10 | 189 | < 10 | 104  |   |
| N111277 | 255        | 295  | 845  | < 1         | 0.01   | 33  | 310          | < 2        | < 2         | 10         | y      | 0.40 | < 10 | < 10 | 162 | < 10 | 114  |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            | - 1  |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |
|         |            |      |      |             |        |     |              |            |             |            |        |      |      |      |     |      |      |   |



Page per : 1-A Total reges : 1 Certificate Date: 31-AUG-96 Invoice No. :19628917 P.O. Number MPO Account

Project :

**Chemex Labs Ltd.** 

North Vancouver

V7J 2C1

Analytical Chemists \* Geochemists \* Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

212 Brooksbank Ave..

Au ppb

FX+AA

British Columbia, Canada

λg

ppm

C

SAMPLE

PREP

CODE

200 226

ICE Comments:

### **CERTIFICATE OF ANALYSIS** A9628917 **A**1 As Ba Be Bi Ca Cđ Co Cr Cu Fe Ga Ηg K La Mg Mn % ppm ppm ppm ppm % ppm ppm ppm ppm % ppm ррш % ppm \* ppm 2 74 1 2 50 < 0 E 4 54 4 5 26 124 2620 A 40 - 10 11 0 10 - 10 2 50 1 2

| N111091<br>N111092<br>N111093<br>N111094<br>N111095 | 208<br>208<br>208<br>208<br>208 | 226<br>226<br>226<br>226<br>226<br>226 | ~ ~ ~ ~ ~ | 5 ×<br>5 ×<br>5 ×<br>5 × | 0.2<br>0.2<br>4.8<br>0.2<br>0.2 | 2.74<br>3.01<br>3.71<br>1.04<br>2.07 | < 2<br>< 2<br>< 2<br>< 2 | 2<br>2<br>2<br>2 | 50<br>40<br>50<br>10<br>30 | < 0.<br>< 0.<br>< 0.<br>< 0.<br>< 0. | .5<br>.5<br>.5<br>.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 1.51<br>2.42<br>3.52<br>0.61<br>1.31 | 4.5<br>15.0<br>25.0<br>35.5<br>9.0 | 26<br>30<br>42<br>507<br>96 | 134<br>124<br>121<br>39<br>96 | 3630<br>766<br>891<br>9280<br>1895 | 4.49<br>4.50<br>5.42<br>>15.00<br>10.10 | < 10<br>10<br>10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.19<br>0.06<br>0.04<br>0.04<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.50<br>2.34<br>2.00<br>0.45<br>1.75 | 640<br>630<br>620<br>3930<br>915 |
|-----------------------------------------------------|---------------------------------|----------------------------------------|-----------|--------------------------|---------------------------------|--------------------------------------|--------------------------|------------------|----------------------------|--------------------------------------|----------------------|----------------------------------------|--------------------------------------|------------------------------------|-----------------------------|-------------------------------|------------------------------------|-----------------------------------------|----------------------------------|---------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|
| N111096<br>N111097<br>N111098<br>N111099            | 208<br>208<br>208<br>208        | 226<br>226<br>226<br>226               | < < < <   | 5 «<br>5 «<br>5 «        | 0.6<br>0.2<br>0.2<br>0.2        | 2.26<br>3.82<br>3.78<br>3.66         | < 2<br>< 2<br>< 2<br>< 2 | 2<br>2<br>2<br>2 | 90<br>170<br>10<br>30      | < 0.<br>< 0.<br>< 0.<br>< 0.         | .5<br>.5<br>.5       | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.60<br>0.76<br>0.47<br>0.40         | 4.5<br>2.5<br>2.0<br>11.0          | 63<br>89<br>94<br>140       | 138<br>125<br>122<br>120      | 2440<br>4170<br>4140<br>3790       | 10.60<br>13.80<br>>15.00<br>14.30       | < 10<br>10<br>10<br>10           | < 1 <<br>< 1<br>< 1 <<br>1      | 0.01<br>0.01<br>0.01<br>0.01         | < 10<br>< 10<br>< 10<br>< 10                 | 1.97<br>3.15<br>3.07<br>2.82         | 645<br>1045<br>1015<br>1335      |
|                                                     |                                 |                                        |           |                          |                                 |                                      |                          |                  |                            |                                      |                      |                                        |                                      |                                    |                             |                               |                                    |                                         |                                  |                                 |                                      |                                              |                                      |                                  |
|                                                     |                                 |                                        |           |                          |                                 |                                      |                          |                  |                            |                                      |                      |                                        |                                      |                                    |                             |                               |                                    |                                         |                                  |                                 |                                      |                                              |                                      |                                  |
|                                                     |                                 |                                        |           |                          |                                 |                                      |                          |                  |                            |                                      |                      |                                        |                                      |                                    |                             |                               |                                    |                                         |                                  |                                 |                                      |                                              |                                      |                                  |
|                                                     |                                 |                                        |           |                          |                                 |                                      |                          |                  |                            |                                      |                      |                                        |                                      |                                    |                             |                               |                                    |                                         |                                  |                                 |                                      |                                              |                                      |                                  |
|                                                     |                                 |                                        |           |                          |                                 |                                      |                          |                  |                            |                                      |                      |                                        |                                      |                                    |                             |                               |                                    |                                         |                                  |                                 |                                      |                                              |                                      |                                  |

**CERTIFICATION:** 

tart Buchler

 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page per :1-B Total Harges :1 Certificate Date: 31-AUG-96 Invoice No. : [9628917 P.O. Number : Account : MPO

A9628917

Project : ICE Comments:

**Chemex Labs Ltd.** 

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C

|                                                     |                                                                | _                                       |                                              |                            |                                 |                                    |                                        |                            |                             |                                      |                                              |                                              |                                |                                              |                                    | <br> |  |
|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------|---------------------------------|------------------------------------|----------------------------------------|----------------------------|-----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------|------------------------------------|------|--|
| SAMPLE                                              | PREP<br>CODE                                                   | Mo<br>ppm                               | Na<br>%                                      | Ni<br>ppm                  | ppm<br>P                        | Pb<br>ppm                          | Sb<br>ppm                              | Sc<br>ppm                  | Sr<br>ppm                   | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                       | W<br>ppm                                     | Zn<br>ppm                          | <br> |  |
| 1111091<br>1111092<br>1111093<br>1111094<br>1111095 | 208 226<br>208 226<br>208 226<br>208 226<br>208 226<br>208 226 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1  | 0.01<br>0.03<br>0.01<br>0.01<br>0.01         | 53<br>47<br>39<br>36<br>42 | 310<br>290<br>350<br>290<br>370 | < 2<br>2<br>< 2<br>2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 15<br>13<br>17<br>12<br>20 | 15<br>8<br>43<br>< 1 <<br>9 | 0.36<br>0.29<br>0.31<br>0.01<br>0.38 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 127<br>148<br>176<br>68<br>213 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 114<br>270<br>842<br>10000<br>1975 |      |  |
| 111096<br>111097<br>111098<br>111099                | 208 226<br>208 226<br>208 226<br>208 226<br>208 226            | < 1<br>< 1 <<br>< 1 <<br>< 1 <<br>< 1 < | 0.01<br>: 0.01<br>: 0.01<br>: 0.01<br>: 0.01 | 42<br>47<br>48<br>50       | 380<br>370<br>370<br>340        | < 2<br>2<br>< 2<br>2               | < 2<br>< 2<br>< 2<br>< 2<br>< 2        | 27<br>27<br>26<br>24       | 11<br>12<br>4<br>7          | 0.29<br>0.37<br>0.27<br>0.09         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 271<br>243<br>272<br>255       | < 10<br>< 10<br>< 10<br>< 10                 | 1100<br>1420<br>1350<br>2690       |      |  |
|                                                     |                                                                |                                         |                                              |                            |                                 |                                    |                                        |                            |                             |                                      |                                              |                                              |                                |                                              |                                    |      |  |
|                                                     |                                                                |                                         |                                              |                            |                                 |                                    |                                        |                            |                             |                                      |                                              |                                              |                                |                                              |                                    |      |  |
|                                                     |                                                                |                                         |                                              |                            |                                 |                                    |                                        |                            |                             |                                      |                                              |                                              |                                |                                              |                                    |      |  |
|                                                     |                                                                |                                         |                                              |                            |                                 |                                    |                                        |                            |                             |                                      |                                              |                                              |                                |                                              |                                    |      |  |
|                                                     |                                                                |                                         |                                              |                            |                                 |                                    |                                        |                            |                             |                                      |                                              |                                              |                                |                                              |                                    |      |  |
|                                                     |                                                                | -                                       |                                              |                            |                                 |                                    |                                        |                            |                             |                                      |                                              |                                              |                                |                                              |                                    |      |  |

CERTIFICATION:

Hart Brehlen



12

### Chemex Labs Ltd. Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

Fo: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page per :1-A Total Pages :1 Certificate Date: 01-SEP-96 Invoice No. :19628915 P.O. Number : Account :MPO

Project : ICE Comments:

### **CERTIFICATE OF ANALYSIS** A9628915 PREP Au ppb λg A1 As Ba Be Bi Ca Cđ Co Cr Cu Fe Ga Ηg ĸ La Mg Mn SAMPLE CODE % % % % % FA+AA ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm N111078 205 226 < 5 < 0.2 3.10 < 2 300 < 0.5 3.5 24 123 732 4.71 10 < 1 0.03 < 10 2.18 630 < 2 2.13 N111079 205 226 < 5 < 0.2 3.17 < 2 2090 < 0.5 < 2 2.25 3.5 23 98 1640 4.95 < 10 < 1 0.05 < 10 2.18 580 N111080 205 226 < 5 < 0.2 4.14 < 2 310 < 0.5 < 2 1.20 1.0 33 114 1495 6.18 < 10 1 0.20 < 10 3.45 810 N111081 205 226 < 5 < 0.2 4.18 < 2 380 < 0.5 < 2 1.22 1.5 34 135 1530 6.38 < 10 1 0.25 < 10 3.46 815 N111082 205 226 < 5 < 0.2 4.03 < 2 290 < 0.5 < 2 0.87 0.5 37 2590 6.78 < 10 0.25 < 10 3.21 760 149 < 1 N111083 205 226 < 5 785 < 0.2 4.43 < 2 3150 < 0.5 < 2 1.21 1.5 33 169 1430 6.29 < 10 < 1 0.45 < 10 3.38 205 226 N111084 650 < 0.2 3.88 < 0.5 1115 5.51 < 5 < 2 230 < 2 3.08 5.0 25 112 10 < 1 0.10 < 10 2.16 205 226 N111085 < 0.5 2.08 < 5 < 0.2 3.80 < 2 140 < 2 32 122 1895 6.11 10 0.12 < 10 560 2.29 5.0 < 1 < 0.2 N111086 205 226 3.74 < 0.5 < 10 1.90 525 < 5 < 2 150 < 2 2.83 6.0 31 135 1880 4.67 < 10 < 1 0.23 N111087 < 2 205 226 < 5 < 0.2 3.31 90 < 0.5 < 2 2.59 7.0 30 118 2020 4.76 < 10 < 1 0.06 < 10 1.91 545 N111088 205 226 < 5 < 0.2 3.63 < 2 120 < 0.5 < 2 2.18 6.0 35 158 3010 5.26 < 10 < 1 0.13 < 10 2.55 680 N111089 205 226 < 0.2 2.89 < 2 2420 < 0.5 26 113 2930 5.01 2.92 700 5 < 2 1.12 2.0 < 10 < 1 0.09 < 10 N111090 205 226 < 5 < 0.2 2.20 < 2 180 < 0.5 < 2 0.99 0.5 21 85 1990 3.88 < 10 0.18 < 10 2.26 550 < 1 N111100 205 226 < 5 < 0.2 2.61 < 2 70 < 0.5 < 2 0.35 16.0 431 90 4120 >15.00 10 < 1 0.05 < 10 1.76 1810 N111151 205 226 < 5 < 0.2 3.55 290 < 0.5 18.5 1535 9.67 1295 < 2 < 2 1.90 120 135 10 < 1 0.03 < 10 1.86 N111152 < 0.5 205 226 15 < 0.2 3.54 < 2 220 < 2 20.0 144 91 1590 2.60 2910 10.85 10 < 1 < 0.01 < 10 1.90 N111153 205 226 0.88 < 5 < 0.2 3.81 < 2 90 < 0.5 < 2 16.5 172 193 2740 11.55 10 < 1 0.07 < 10 1.74 1495 N111154 205 226 < 5 < 0.2 3.79 < 2 100 < 0.5 < 2 2.76 36.0 185 130 469 12.10 10 < 1 0.02 < 10 1.67 1580 N111155 205 226 < 5 < 0.2 3.85 < 2 110 < 0.5 < 2 2.34 27.0 131 106 1010 10.75 10 < 1 < 0.01< 10 2.10 1135 N111156 205 226 < 5 < 0.2 3.37 < 2 350 < 0.5 < 2 1.73 21.0 145 137 1170 10.60 10 < 1 0.02 < 10 2.00 1660 N111157 205 226 < 5 < 0.2 2.52 < 2 580 < 0.5 < 2 0.52 49.5 353 65 4530 >15.00 10 < 1 0.03 < 10 1.01 2050 N111158 205 226 < 5 < 0.2 3.23 < 2 110 < 0.5 < 2 1,95 8.0 63 102 799 6.83 10 < 1 < 0.01 < 10 2.58 1005 N111159 205 226 < 5 < 0.2 3.94 < 2 220 < 0.5 < 2 3.00 2.5 49 130 106 6.47 10 < 1 < 0.01 < 10 2.67 1815 N111160 205 226 < 5 < 0.2 2.78 3.83 < 2 70 < 0.5 < 2 2.79 < 0.5 38 141 144 6.00 10 < 1 < 0.01 < 10 2570 N111161 205 226 < 5 < 0.2 4.23 < 2 80 < 0.5 < 2 3.85 < 0.5 31 114 105 5.63 10 < 1 0.07 < 10 2.81 1850 N111162 205 226 < 2 < 10 < 5 < 0.2 3.57 < 2 90 < 0.5 2.92 < 0.5 29 127 116 4.97 10 < 1 0.05 2.19 1005 N111163 205 226 < 2 4.83 < 1 < 0.01 < 10 2.09 < 5 < 0.2 3.66 < 2 60 < 0.5 3.21 < 0.5 24 96 81 10 745 N111164 205 226 < 5 < 0.2 3.62 < 2 100 < 0.5 < 2 4.48 < 0.5 29 171 63 5.40 10 0.03 < 10 2.43 965 < 1 N111165 205 226 < 5 < 0.2 3.78 < 2 180 < 0.5 < 2 4.66 < 0.5 33 132 80 6.40 10 0.01 < 10 2.34 895 < 1 N111166 205 226 < 5 < 0.2 3.35 < 2 240 < 0.5 < 2 4.21 0.5 26 64 76 5.23 10 < 1 < 0.01 < 10 1.91 750 N111167 205 220 30 0.8 3.12 < 2 70 < 0.5 < 2 2.93 7.5 36 115 823 7.02 10 < 0.01 < 10 2.52 720 1 N111168 205 226 15 3.57 < 0.2 < 2 290 < 0.5 < 2 3.45 1.5 41 160 122 6.25 10 0.08 < 10 2.25 750 < 1 N111169 205 226 < 5 0.2 4.61 < 2 180 < 0.5 < 2 2.40 1.5 30 147 267 7.69 10 0.01 < 10 4.18 1280 < 1 205 226 N111170 < 5 < 0.2 3.50 < 2 180 < 0.5 < 2 4.09 < 0.5 30 148 363 5.34 10 < 1 < 0.01 < 10 3.43 1095 N111171 205 226 < 5 < 0.2 3.60 < 2 110 < 0.5< 2 5.22 < 0.5 23 83 61 5.20 10 < 1 0.03 < 10 2.24 1000

CERTIFICATION:

tart Bichles



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Invoice No. : 19628915 P.O. Number : MPO Account

Project : Comments: ICE

|                |             |     |                |         |           |            |           |           |           | L         | CE           | RTIF         | CATE                                                                                             | OF A       | NAL           | YSIS               | A9628915 |
|----------------|-------------|-----|----------------|---------|-----------|------------|-----------|-----------|-----------|-----------|--------------|--------------|--------------------------------------------------------------------------------------------------|------------|---------------|--------------------|----------|
| SAMPLE         | PRE<br>CODI | P   | Mo<br>mqq      | Na<br>% | Ni<br>ppm | P<br>ppm   | PD<br>Eqq | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | Ti<br>%      | T1<br>ppm    | D<br>B<br>D<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | V<br>mqq   | W<br>ppm      | Zn<br>ppm          |          |
| 111078         | 205         | 226 | < 1            | 0.01    | 48        | 320        | 2         | < 2       | 12        | 19        | 0.35         | < 10         | < 10                                                                                             | 133        | < 10          | 94                 |          |
| 11079          | 205         | 226 | < 1            | 0.01    | 48        | 330        | < 2       | < 2       | 10        | 64        | 0.34         | < 10         | < 10                                                                                             | 122        | < 10          | 106                |          |
| 11080          | 205         | 226 | < 1 <          | 0.01    | 54        | 180        | 2         | < 2       | 18        | 34        | 0.36         | < 10         | < 10                                                                                             | 99         | < 10          | 138                |          |
| 11082          | 205         | 226 | < 1 <          | 0.01    | 52        | 250        | < 2       | < 2       | 26        | 10        | 0.29         | < 10         | < 10                                                                                             | 133        | < 10          | 202                |          |
| 11083          | 205         | 226 | < 1 <          | 0.01    | 56        | 170        | < 2       | < 2       | 27        | 97        | 0.31         | < 10         | < 10                                                                                             | 117        | < 10          | 162                |          |
| 11084          | 205         | 226 | < 1            | 0.03    | 38        | 200        | 2         | < 2       | 17        | 10        | 0.34         | < 10         | < 10                                                                                             | 148        | < 10          | 124                |          |
|                | 205 2       | 226 | < 1            | 0.02    | 45        | 270        | 2         | < 2       | 19        | 11        | 0.27         | < 10         | < 10                                                                                             | 168        | < 10          | 206                |          |
| 11087          | 205         | 226 | < 1            | 0.03    | 64        | 240        | 2         | < 2       | 12        | 8         | 0.24         | < 10         | < 10                                                                                             | 127        | < 10          | 114                |          |
| 1088           | 205 2       | 226 | < 1            | 0.01    | 72        | 200        | < 2       | < 2       | 16        | 9         | 0.29         | < 10         | < 10                                                                                             | 130        | < 10          | 150                |          |
| 1089           | 205 2       | 226 | < 1 <          | 0.01    | 53        | 160        | < 2       | < 2       | 17        | 104       | 0.39         | < 10         | < 10                                                                                             | 97         | < 10          | 158                |          |
| 1090           | 205 2       | 226 | < 1            | 0.03    | 40        | 250        | 2         | < 2       | 11        | 18        | 0.35         | < 10         | < 10                                                                                             | 97         | < 10          | 104                |          |
| L1100<br>L1151 | 205 2       | 226 | < 1 <<br>< 1 < | 0.01    | 40        | 320        | < 2       | < 2       | 32        | 9         | 0.01         | < 10<br>< 10 | < 10<br>< 10                                                                                     | 136<br>214 | < 10<br>< 10  | 6600<br>2960       |          |
| 1152           | 205 2       | 226 | < 1 <          | 0.01    | 36        | 360        | 2         | < 2       | 34        | 10        | 0.33         | < 10         | < 10                                                                                             | 225        | < 10          | 3110               |          |
| 1153           | 205 2       | 226 | < 1 <          | 0.01    | 52        | 290        | < 2       | < 2       | 31        | 5         | 0.05         | < 10         | < 10                                                                                             | 208        | < 10          | 3430               |          |
| .1154          | 205 2       | 226 | < 1 <          | 0.01    | 47        | 320        | - 2       | < 2       | 20        | 7         | 0.24         | < 10         | < 10                                                                                             | 179        | < 10          | 4870               |          |
| 1156           | 205 2       | 226 | < 1 <          | 0.01    | 49        | 320        | < 2       | < 2       | 30        | 7         | 0.27         | < 10         | < 10                                                                                             | 220        | < 10          | 3790               |          |
| 1157           | 205 2       | 226 | < 1 <          | 0.01    | 37        | 180        | < 2       | < 2       | 24        | 5         | 0.03         | < 10         | < 10                                                                                             | 137        | 10 :          | 10000              |          |
| 1158           | 205 2       | 226 | < 1 <          | 0.01    | 35        | 290        | < 2       | < 2       | 19        | 1         | 0.37         | < 10         | < 10                                                                                             | 180        | < 10          | 1500               |          |
| 1150           | 205 2       | 226 |                | 0.01    | 50        | 220        | 1 2       | 22        | 16        | 11        | 0.33         | < 10         | < 10                                                                                             | 140        | < 10          | <b>33</b> ∡<br>202 |          |
| 1161           | 205         | 226 | < 1            | 0.01    | 47        | 220        | < 2       | < 2       | 12        | 14        | 0.27         | < 10         | < 10                                                                                             | 126        | < 10          | 86                 |          |
| 1162           | 205 2       | 226 | < 1            | 0.04    | 44        | 320        | < 2       | < 2       | 9         | 11        | 0.31         | < 10         | < 10                                                                                             | 133        | < 10          | 116                |          |
| 1163           | 205 2       | 226 | < 1            | 0.03    | 37        | 290        | < 2       | < 2       | 8         | 14        | 0.27         | < 10         | < 10                                                                                             | 126        | < 10          | 76                 |          |
| 1164           | 205 2       | 226 |                | 0.03    | 40        | 290        | < 2       |           | 25        | 25        | 0.21         | < 10         | < 10                                                                                             | 187        | < 10          | 62                 |          |
| .1166          | 205 2       | 226 | < 1 <          | 0.01    | 34        | 330        | 2         | < 2       | 17        | 31        | 0.27         | < 10         | < 10                                                                                             | 167        | < 10          | 176                |          |
| 1167           | 205 2       | 226 | < 1            | 0.01    | 50        | 340        | 10        | < 2       | 19        | 52        | 0.26         | < 10         | < 10                                                                                             | 189        | < 10          | 1875               |          |
| 1168           | 205 2       | 126 | < 1            | 0.02    | 55        | 320        | 4         | < 2       | 31        | 43 <      | 0.01         | < 10         | < 10                                                                                             | 201        | < 10          | 600                |          |
| 1170           | 205 2       | 226 | < 1 <          | 0.01    | 42        | 3∡0<br>240 | 2         | < 2       | 19        | 210       | 0.40         | < 10         | < 10                                                                                             | 197        | < 10          | 4 ¥6<br>170        |          |
| .1171          | 205 2       | 226 | < 1            | 0.01    | 35        | 290        | < 2       | < 2       | 17        | 55        | 0.33         | < 10         | < 10                                                                                             | 174        | < 10          | 64                 |          |
|                |             |     |                |         |           |            |           |           |           |           |              |              |                                                                                                  |            | <u>,,,,,,</u> |                    |          |
|                | L           |     |                |         |           |            | <u> </u>  |           | <u></u>   |           | ** <u></u> - |              |                                                                                                  |            |               |                    | t. 12.00 |

CERTIFICATION:\_



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Project : ICE Comments:

Г

| • PLEASE NOT                                                   | re                                                             |                                                                                                                                                |                                      |                                                      |                                 | ·····                                              |                                                                                  |                                      |                                                    | CE                         | RTIF                          | ICATE                         | EOF                                  | ANAL                                         | YSIS                                          |                                      | A9628                                        | 881                                  |                                  |                               |
|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|-------------------------------|-------------------------------|--------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------|-------------------------------|
| SAMPLE                                                         | PREP<br>CODE                                                   | Ag<br>ppm                                                                                                                                      | A1<br>%                              | λs<br>ppn                                            | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                                                                        | Ca<br>%                              | Cđ<br>ppm                                          | Со<br>ррш                  | Cr<br>ppm                     | Cu<br>ppn                     | Fe<br>X                              | Ga<br>pp <b>n</b>                            | Hg<br>ppm                                     | K<br>%                               | La<br>ppa                                    | Ng<br>%                              | Mn.<br>ppm                       | Мо<br>ррж                     |
| BB06001<br>BB06002<br>BB06003<br>BB06004<br>BB06005            | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | <pre>     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2     &lt; 0.2 </pre> | 1.98<br>2.63<br>2.75<br>2.05<br>1.93 | 10<br>14<br>4<br>6<br>8                              | 400<br>450<br>400<br>340<br>360 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                    | 0.43<br>0.50<br>1.33<br>0.63<br>0.39 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 13<br>30<br>23<br>33<br>17 | 73<br>150<br>195<br>361<br>83 | 25<br>32<br>85<br>26<br>30    | 3.78<br>4.54<br>4.14<br>4.09<br>5.04 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1               | 0.03<br>0.03<br>0.04<br>0.05<br>0.05 | < 10<br>< 10<br>10<br>< 10<br>10             | 0.71<br>1.37<br>2.26<br>4.73<br>0.93 | 475<br>855<br>595<br>625<br>790  | 1<br>< 1<br>< 1<br>< 1<br>1   |
| BB06006<br>BB06101<br>BB06102<br>BB06103<br>BB06103            | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | <pre>&lt; 0.2 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2 &lt; 0.2</pre>                                                                  | 1.93<br>1.55<br>0.61<br>1.78<br>1.22 | 10<br>12<br>< 2<br>6<br>< 2                          | 690<br>550<br>190<br>300<br>180 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                    | 0.57<br>1.57<br>0.13<br>0.68<br>0.50 | < 0.5<br>1.5<br>< 0.5<br>< 0.5<br>< 0.5            | 13<br>19<br>4<br>23<br>8   | 114<br>28<br>7<br>12<br>4     | 30<br>1115<br>9<br>49<br>24   | 3.05<br>2.48<br>1.19<br>3.79<br>1.68 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.05<br>0.15<br>0.03<br>0.12<br>0.04 | 10<br>10<br>< 10<br>< 10<br>< 10             | 1.93<br>0.66<br>0.14<br>0.48<br>0.21 | 515<br>475<br>140<br>1485<br>850 | < 1<br>1<br>< 1<br>< 1<br>< 1 |
| BB06105<br>BB06106<br>BB06107<br>BB06108<br>BB06108<br>BB06109 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.2<br>0.2<br>< 0.2<br>0.2<br>< 0.2<br>< 0.2                                                                                                   | 0.97<br>0.82<br>2.52<br>1.43<br>1.49 | < 2<br>< 2<br>4<br>6<br>8                            | 180<br>160<br>300<br>290<br>460 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | <pre>&lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre> | 0.16<br>2.30<br>0.54<br>1.29<br>1.33 | 0.5<br>< 0.5<br>0.5<br>< 0.5<br>1.0                | 11<br>7<br>18<br>12<br>22  | 13<br>9<br>36<br>25<br>27     | 16<br>201<br>50<br>273<br>866 | 1.78<br>1.08<br>3.95<br>2.65<br>2.41 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.07<br>0.05<br>0.10<br>0.08<br>0.12 | < 10<br>< 10<br>10<br>< 10<br>10             | 0.17<br>0.42<br>0.65<br>0.44<br>0.62 | 540<br>600<br>995<br>655<br>475  | < 1<br>< 1<br>1<br>1          |
| BB06110<br>BB06111<br>BB06112<br>BB06113<br>BB06113<br>BB06114 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.2<br>0.2<br>0.4<br>0.2<br>< 0.2<br>< 0.2                                                                                                     | 0.46<br>0.37<br>0.36<br>0.18<br>0.31 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 250<br>420<br>550<br>130<br>130 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                             | 2.22<br>3.44<br>2.94<br>0.67<br>0.19 | < 0.5<br>< 0.5<br>1.5<br>< 0.5<br>< 0.5            | 2<br>1<br>3<br>1<br>1      | 6<br>4<br>1<br>4              | 54<br>29<br>21<br>4<br>9      | 0.51<br>0.31<br>0.56<br>0.29<br>0.48 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.04<br>0.03<br>0.11<br>0.04<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.21<br>0.19<br>0.10<br>0.06<br>0.07 | 125<br>235<br>1275<br>185<br>80  | 1<br>1<br>1<br>< 1<br>< 1     |
| BB06115<br>BB06116<br>BB06117<br>BB06118<br>BB06118<br>BB06119 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2<br>< 0.2                                                                                               | 0.25<br>0.20<br>1.75<br>0.98<br>1.62 | < 2<br>< 2<br>8<br>4<br>6                            | 70<br>170<br>370<br>420<br>530  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                    | 0.21<br>0.21<br>0.45<br>0.33<br>1.56 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | 2<br>1<br>14<br>8<br>15    | 4<br>2<br>33<br>21<br>30      | 4<br>8<br>18<br>25<br>878     | 0.42<br>0.37<br>3.38<br>1.84<br>2.62 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.05<br>0.05<br>0.11<br>0.10<br>0.14 | < 10<br>< 10<br>10<br>10<br>10               | 0.07<br>0.05<br>0.58<br>0.31<br>0.71 | 250<br>215<br>320<br>620<br>545  | < 1<br>< 1<br>1<br>1          |
| BB06120<br>BB06121<br>BB06122<br>BB06123<br>BB06123<br>BB06124 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | < 0.2<br>0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2                                                                                                 | 1.48<br>2.05<br>0.74<br>2.04<br>2.28 | 8<br>6<br>< 2<br>4<br>8                              | 350<br>190<br>280<br>280<br>240 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                    | 0.59<br>0.88<br>0.12<br>0.35<br>0.51 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 10<br>23<br>6<br>12<br>20  | 25<br>38<br>11<br>39<br>34    | 35<br>49<br>9<br>70<br>66     | 2.66<br>3.52<br>1.07<br>3.59<br>4.54 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.08<br>0.08<br>0.06<br>0.05<br>0.08 | < 10<br>< 10<br>< 10<br>10<br>10             | 0.45<br>0.68<br>0.13<br>0.49<br>0.65 | 265<br>1025<br>695<br>275<br>555 | 1<br>1<br>< 1<br>< 1<br>1     |
| BB06125<br>BB06126<br>BB06127<br>BB06128<br>BB06128<br>BB06129 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.2<br>< 0.2<br>0.2<br>< 0.2<br>< 0.2                                                                                                          | 1.67<br>2.04<br>1.48<br>1.20<br>0.50 | 8<br>2<br>6<br>2<br>< 2                              | 380<br>340<br>370<br>230<br>240 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                    | 1.17<br>0.58<br>2.09<br>0.81<br>0.56 | < 0.5<br>< 0.5<br>0.5<br>0.5<br>< 0.5              | 11<br>13<br>9<br>8<br>4    | 32<br>38<br>28<br>22<br>5     | 70<br>47<br>119<br>15<br>9    | 2.65<br>3.23<br>2.34<br>2.21<br>0.61 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.08<br>0.06<br>0.07<br>0.09<br>0.03 | < 10<br>10<br>< 10<br>< 10<br>< 10<br>< 10   | 0.56<br>0.65<br>0.69<br>0.39<br>0.08 | 660<br>430<br>370<br>320<br>440  | 1<br>1<br>< 1<br>1<br>1       |
| BB06130<br>BB06131<br>BB06132<br>BB06133<br>BB06134            | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2<br>0.2                                                                                                 | 1.20<br>2.12<br>1.46<br>1.65<br>1.06 | < 2<br>10<br>6<br>8<br>2                             | 150<br>440<br>310<br>450<br>430 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2                                    | 0.52<br>0.36<br>0.45<br>1.29<br>1.75 | 0.5<br>< 0.5<br>< 0.5<br>0.5<br>< 0.5              | 5<br>21<br>7<br>10<br>5    | 24<br>41<br>34<br>32<br>15    | 7<br>20<br>13<br>25<br>62     | 2.34<br>3.66<br>2.09<br>2.43<br>1.23 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1        | 0.05<br>0.14<br>0.10<br>0.13<br>0.07 | 10<br>10<br>10<br>10<br>< 10                 | 0.34<br>0.62<br>0.63<br>0.68<br>0.34 | 135<br>1365<br>210<br>405<br>415 | 1<br>1<br>1<br>1<br>1         |

CERTIFICATION:\_\_\_

tart Brehler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page ar Total عدي ar :1-B :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : : MPO Account

A9628881

Project : Comments: ICE

### \* PLEASE NOTE

| SAMPLE           | PR<br>CO | ep<br>De | Na<br>%          | Ni<br>ppm | P<br>ppm   | Pb<br>ppm | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | ti<br>X | T1<br>ppm    | D<br>Boar    | V<br>ppm  | W<br>ppm     | Zn<br>ppm |                                       |
|------------------|----------|----------|------------------|-----------|------------|-----------|-----------|-----------|-----------|---------|--------------|--------------|-----------|--------------|-----------|---------------------------------------|
| B06001           | 201      | 202      | < 0.01           | 34        | 440        | 8         | < 2       | 4         | 19        | 0.13    | < 10         | < 10         | 107       | < 10         | 88        |                                       |
| B06002           | 201      | 202      | < 0.01           | 98        | 330        | 10        | < 2       | 6         | 15        | 0.14    | < 10         | < 10         | 117       | < 10         | 124       |                                       |
| 06003            | 201      | 202      | < 0.01           | 176       | 580        | 4         | 2         | 12        | 17        | 0.14    | < 10         | < 10         | 113       | < 10         | 92        |                                       |
| 106004<br>106005 | 201      | 202      | < 0.01<br>< 0.01 | 306       | 370<br>600 | 6         | < 2       | 8<br>5    | 13        | 0.13    | < 10<br>< 10 | < 10<br>< 10 | 92<br>140 | < 10<br>< 10 | 60<br>60  |                                       |
| 06006            | 201      | 202      | < 0.01           | 102       | 400        | 8         | < 2       | 5         | 26        | 0.09    | < 10         | < 10         | 75        | < 10         | 52        |                                       |
| 06101            | 201      | 202      | 0.01             | 30        | 1110       | 10        | < 2       | 6         | 49        | 0.05    | < 10         | < 10         | 59        | < 10         | 216       |                                       |
| 06102            | 201      | 202      | 0.06             | 4         | 110        | 2         | < 2       | < 1       | 8         | 0.04    | < 10         | < 10         | 45        | < 10         | 30        |                                       |
| 06104            | 201      | 202      | 0.08             | 5         | 530        | < 2       | < 2       | 6         | 18        | 0.04    | < 10         | < 10         | 47        | < 10         | 46        |                                       |
| 06105            | 201      | 202      | 0.05             | 8         | 330        | 6         | < 2       | 1         | 9         | 0.04    | < 10         | < 10         | 47        | < 10         | 104       |                                       |
| 06106            | 201      | 202      | 0.06             | 8         | 1030       | < 2       | < 2       | 8         | 40        | 0.01    | < 10         | < 10         | 28        | < 10         | 44        |                                       |
| 06107            | 201      | 202      | 0.01             | 26        | 330        | 14        | < 2       | 4         | 22        | 0.05    | < 10         | < 10         | 109       | < 10         | 140       |                                       |
| 06108            | 201      | 202      | 0.01             | 25        | 1000       | 10        | × 2<br>2  | 6         | 42        | 0.03    | < 10         | < 10         | 84<br>54  | < 10<br>< 10 | 212       |                                       |
| 06110            | 201      | 202      | 0.03             | 9         | 730        | < 2       | < 2       | 1         | 57 •      | 0.01    | < 10         | < 10         | 12        | < 10         | 24        |                                       |
| 06111            | 201      | 202      | 0.01             | 6         | 680        | < 2       | < 2       | < 1       | 79 -      | 0.01    | < 10         | < 10         | 8         | < 10         | 10        |                                       |
| 06112            | 201      | 202      | 0.05             | 6         | 1300       | < 2       | < 2       | 1         | 47        | 0.01    | < 10         | < 10         | 13        | < 10         | 244       |                                       |
| 06113<br>06114   | 201      | 202      | 0.08             | 2         | 130        | < 2       | < 2       | < 1       | 9         | 0.01    | < 10<br>< 10 | < 10         | 10        | < 10<br>< 10 | 8         |                                       |
| 06115            | 201      | 202      | 0.08             | 2         | 280        | < 2       | < 2       | < 1       | 10        | 0.01    | < 10         | < 10         | 14        | < 10         | 12        |                                       |
| 06116            | 201      | 202      | 0.09             | 3         | 250        | < 2       | < 2       | < 1       | 9         | 0.01    | < 10         | < 10         | 12        | < 10         | 40        |                                       |
| 06117            | 201      | 202      | 0.02             | 21        | 500        | 8         | < 2       | 3         | 19        | 0.08    | < 10         | < 10         | 103       | < 10         | 84        |                                       |
| 06119            | 201      | 202      | 0.01             | 28        | 1010       | 10        | 2         | 6         | 50        | 0.07    | < 10         | < 10         | 72        | < 10         | 146       |                                       |
| 6120             | 201      | 202      | 0.01             | 17        | 210        | 8         | < 2       | 3         | 18        | 0.06    | < 10         | < 10         | 82        | < 10         | 58        |                                       |
| 06121            | 201      | 202      | 0.03             | 24        | 330        | 2         | 2         | 8         | 20        | 0.07    | < 10         | < 10         | 108       | < 10         | 66        |                                       |
| 06122            | 201      | 202      | 0.04             | 6         | 220        | 2         | < 2       | 1         | 6         | 0.03    | < 10         | < 10         | 31        | < 10         | 46        |                                       |
| )6123<br>)6124   | 201      | 202      | < 0.01           | 23        | 420        | 8         | < 2       | 4         | 17        | 0.11    | < 10         | < 10         | 127       | < 10         | 102       |                                       |
| 6125             | 201      | 202      | 0.02             | 19        | 250        | 6         | < 2       | 5         | 22        | 0.08    | < 10         | < 10         | 83        | < 10         | 64        |                                       |
| 6126             | 201      | 202      | 0.01             | 23        | 290        | 8         | 2         | 4         | 14        | 0.10    | < 10         | < 10         | 97        | < 10         | 92        |                                       |
| 06127            | 201      | 202      | 0.03             | 19        | 710        | 2         | < 2       | 7         | 38        | 0.09    | < 10         | < 10         | 79        | < 10         | 78        |                                       |
| 6129             | 201      | 202      | 0.02             | 5         | 650        | < 2       | < 2       | < 1       | 22        | 0.05    | < 10         | < 10         | 16        | < 10         | 12        |                                       |
| 6130             | 201      | 202      | < 0.01           | 15        | 450        | 8         | < 2       | 1         | 15        | 0.05    | < 10         | < 10         | 81        | < 10         | 64        | · · · · · · · · · · · · · · · · · · · |
| 6131             | 201      | 202      | < 0.01           | 25        | 1100       | 12        | < 2       | 4         | 15        | 0.04    | < 10         | < 10         | 98        | < 10         | 140       |                                       |
| 0132             | 201      | 202      | < 0.01           | 19        | 450        | 8<br>10   | < 2       | 3         | 18        | 0.06    | < 10         | < 10         | 74        | < 10         | 112       |                                       |
| 6134             | 201      | 202      | 0.05             | 18        | 560        | 4         | < 2       | 3         | 39        | 0.02    | < 10         | < 10         | 36        | < 10         | 46        |                                       |
|                  |          |          |                  |           |            |           |           |           |           |         |              |              |           |              |           | · · · · · · · · · · · · · · · · · · · |
|                  |          |          |                  |           |            |           |           |           |           |         |              |              |           | с            | ERTIFIC   | ATION: tento Such Da                  |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page эг :2-А Total 1 .... 5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : MPO Account

A9628881

Project : ICE Comments:

### **PLEASE NOTE**

| SAMPLE             | PR  | ep<br>De | Ag<br>ppm | A1<br>% | <b>As</b><br>ppm | Ba<br>ppa | Be<br>ppm | Bi<br>ppm | Ca<br>% | Cđ<br>ppm | Co<br>ppm                                    | Cr<br>ppm | Cu<br>ppm | Fe<br>X | Ga<br>ppm | Hg<br>ppm | K<br>% | La<br>ppa | Ng<br>X | Mn<br>ppm | Mo<br>ppm |
|--------------------|-----|----------|-----------|---------|------------------|-----------|-----------|-----------|---------|-----------|----------------------------------------------|-----------|-----------|---------|-----------|-----------|--------|-----------|---------|-----------|-----------|
| BB06135            | 201 | 202      | 1.0       | 1.34    | < 2              | 560       | < 0.5     | < 2       | 1.17    | 1.0       | 7                                            | 23        | 40        | 1.37    | < 10      | < 1       | 0.06   | < 10      | 0.52    | 340       | 1         |
| BB06136            | 201 | 202      | < 0.2     | 1.08    | < 2              | 360       | < 0.5     | < 2       | 0.31    | < 0.5     | 6                                            | 14        | 18        | 1.40    | < 10      | < 1       | 0.07   | < 10      | 0.22    | 395       | ī         |
| BB06137            | 201 | 202      | < 0.2     | 1.57    | 2                | 380       | < 0.5     | < 2       | 0.33    | < 0.5     | 5                                            | 21        | 14        | 2.12    | < 10      | < 1       | 0.07   | 10        | 0.34    | 190       | < 1       |
| BB06138            | 201 | 202      | < 0.2     | 1.46    | 4                | 410       | < 0.5     | < 2       | 0.25    | < 0.5     | 8                                            | 23        | 23        | 2.22    | < 10      | < 1       | 0.10   | 10        | 0.42    | 180       | 1         |
| BB01401            | 201 | 202      | 0.2       | 1.65    | 10               | 610       | < 0.5     | < 2       | 1.31    | 1.0       | 38                                           | 29        | 2670      | 2.63    | < 10      | < 1       | 0.14   | 10        | 0.56    | 410       | < 1       |
| BB01402            | 201 | 202      | 0.6       | 2.23    | 8                | 530       | < 0.5     | < 2       | 1.19    | 2.0       | 97                                           | 38        | 6720      | 4.52    | < 10      | < 1       | 0.11   | 10        | 0.59    | 590       | 2         |
| BB01403            | 201 | 202      | 0.8       | 2.23    | < 2              | 580       | < 0.5     | < 2       | 1.39    | 1.5       | 110                                          | 33        | 4330      | 3.27    | < 10      | < 1       | 0.12   | < 10      | 0.51    | 690       | 2         |
| BB01404            | 201 | 202      | 1.0       | 1.97    | < 2              | 990       | < 0.5     | Intf*     | 1.18    | 2.5       | 292                                          | 30 :      | >10000    | 2.76    | < 10      | < 1       | 0.11   | < 10      | 0.48    | 1525      | 2         |
| BBU1605<br>BB01406 | 201 | 202      | < 0.2     | 1.52    | 2                | 280       | < 0.5     | < 2       | 0.36    | < 0.5     | 16                                           | 26        | 61        | 3.61    | < 10      | < 1       | 0.11   | < 10      | 0.72    | 1915      | < 1       |
| BUTERO -           | 101 | 404      | < 0.2     | 0.49    | < 4              | ev        | < 0.5     | < 4       | 0.74    | < 0.5     | < 1                                          | 2         | 12        | 0.26    | < 10      | < 1       | 0.03   | < 10      | 0.07    | 45        | < 1       |
| BB01407            | 201 | 202      | 0.2       | 0.52    | < 2              | 140       | < 0.5     | < 2       | 1.42    | < 0.5     | 1                                            | 4         | 35        | 0.54    | < 10      | < 1       | 0.03   | < 10      | 0.10    | 85        | < 1       |
| BB01408            | 201 | 202      | 0.2       | 1.58    | 6                | 330       | < 0.5     | < 2       | 1.53    | < 0.5     | 10                                           | 24        | 56        | 2.59    | < 10      | < 1       | 0.07   | 10        | 0.56    | 290       | < 1       |
| BB01409            | 201 | 202      | < 0.2     | 0.38    | < 2              | 80        | < 0.5     | < 2       | 0.16    | < 0.5     | 2                                            | 5         | 7         | 0.52    | < 10      | < 1       | 0.05   | < 10      | 0.09    | 115       | < 1       |
| B01411             | 201 | 202      | < 0.2     | 1 15    | 6                | 240       | V.3       |           | 1.14    | 4.0       | 14                                           | 39        | 10        | 2.95    | < 10      | < 1       | 0.13   | < 10      | 0.43    | 1155      | 1         |
|                    | 401 |          | <u> </u>  | ****    |                  | 440       | < v. j    |           | 0.11    | × 0.5     | 3                                            | 41        | 19        | 1.33    | < 10      | < 1       | 0.11   | 40        | 0.2/    | 145       | 1         |
| BB01412            | 201 | 202      | < 0.2     | 1.15    | 2                | 340       | < 0.5     | < 2       | 0.47    | < 0.5     | 7                                            | 23        | 14        | 1.83    | < 10      | < 1       | 0.11   | 10        | 0.44    | 450       | < 1       |
| BB05229            | 201 | 202      | 0.2       | 2.15    | 2                | 440       | 0.5       | < 2       | 0.53    | < 0.5     | 11                                           | 37        | 70        | 2.92    | < 10      | < 1       | 0.11   | 10        | 0.52    | 730       | 1         |
| BB05230            | 201 | 202      | < 0.2     | 2.40    | < 2              | 570       | 0.5       | < 2       | 0.83    | 0.5       | 12                                           | 43        | 41        | 3.49    | < 10      | < 1       | 0.12   | 10        | 0.69    | 490       | 1         |
| BB05231            | 201 | 202      | < 0.2     | 2.16    | < 2              | 460       | < 0.5     | < 2       | 0.59    | 0.5       | 19                                           | 45        | 43        | 4.01    | < 10      | < 1       | 0.09   | 10        | 0.91    | 885       | 1         |
| BBU 52 3 2         | 201 | 202      | < 0.2     | 2.24    | 12               | 410       | < 0.5     | < 2       | 0.25    | < 0.5     | 13                                           | 48        | 31        | 4.06    | < 10      | < 1       | 0.07   | 10        | 0.76    | 445       | 1         |
| BB05233            | 201 | 202      | < 0.2     | 1.77    | 8                | 460       | < 0.5     | < 2       | 0.83    | < 0.5     | 11                                           | 40        | 29        | 3.09    | < 10      | < 1       | 0.07   | 10        | 0.77    | 430       | 1         |
| BB05234            | 201 | 202      | < 0.2     | 3.06    | 2                | 520       | < 0.5     | < 2       | 0.44    | < 0.5     | 19                                           | 66        | 43        | 5.63    | < 10      | < 1       | 0.08   | 10        | 1.01    | 960       | < 1       |
| BB05235            | 201 | 202      | < 0.2     | 2.11    | 6                | 640       | < 0.5     | < 2       | 0.73    | < 0.5     | 10                                           | 37        | 28        | 2.69    | < 10      | < 1       | 0.07   | 10        | 0.71    | 535       | < 1       |
| 5503436            | 201 | 202      | < 0.2     | 1.71    |                  | 410       | < 0.5     | < 2       | 0.35    | < 0.5     | 11                                           | 36        | 33        | 2.77    | < 10      | < 1       | 0.10   | 10        | 0.59    | 520       | 1         |
| 5506160            | 201 | 202      | < 0.4     | 1.03    | 14               | 420       | < 0.5     | < 4       | 0.50    | < 0.5     | 10                                           | 32        | 205       | 2.78    | < 10      | < 1       | 0.12   | 10        | 0.66    | 320       | 1         |
| BB08181            | 201 | 202      | 0.6       | 1.87    | 12               | 480       | < 0.5     | < 2       | 1.01    | 0.5       | 19                                           | - 44      | 640       | 3.68    | < 10      | < 1       | 0.08   | 10        | 0.66    | 630       | 3         |
| BB08182            | 201 | 202      | < 0.2     | 2.34    | 10               | 650       | < 0.5     | < 2       | 0.46    | < 0.5     | 22                                           | 39        | 65        | 4.14    | < 10      | < 1       | 0.05   | 10        | 1.06    | 690       | 1         |
| B08183             | 201 | 202      | < 0.2     | 3.06    | 4                | 680       | < 0.5     | < 2       | 0.92    | 0.5       | 39                                           | 49        | 93        | 7.38    | 10        | < 1       | 0.08   | < 10      | 1.07    | 1800      | 2         |
| BB08184            | 201 | 202      | < 0.2     | 2.39    | 8                | 330       | < 0.5     | < 2       | 0.27    | < 0.5     | 29                                           | 33        | 27        | 5.86    | < 10      | < 1       | 0.02   | < 10      | 0.59    | 1480      | < 1       |
| B08185             | 201 | 202      | < 0.2     | 2.59    | 6                | 360       | < 0.5     | < 2       | 0.11    | < 0.5     | 8                                            | 40        | 58        | 3.40    | < 10      | < 1       | 0.05   | 10        | 0.49    | 375       | 1         |
| B08186             | 201 | 202      | < 0.2     | 1.36    | 8                | 620       | < 0.5     | < 2       | 0.15    | 0.5       | 13                                           | 18        | 65        | 3.54    | < 10      | < 1       | 0.10   | 10        | 0.22    | 1415      | 1         |
| B08187             | 201 | 202      | < 0.2     | 0.88    | 6                | 440       | < 0.5     | < 2       | 0.13    | < 0.5     | 7                                            | 17        | 48        | 2.16    | < 10      | < 1       | 0.08   | 20        | 0.23    | 310       | 1         |
| B08188             | 201 | 202      | 0.2       | 1.73    | 6                | 780       | < 0.5     | < 2       | 0.67    | 1.5       | 26                                           | 37        | 1100      | 4.96    | < 10      | < 1       | 0.07   | 10        | 0.38    | 575       | 2         |
| BB08189            | 201 | 202      | 0.4       | 1.88    | 12               | 1510      | 0.5       | < 2       | 1.01    | 1.5       | 30                                           | 35        | 770       | 2.82    | < 10      | < 1       | 0.21   | 10        | 0.71    | 450       | 2         |
| 3B08190            | 201 | 202      | < 0.2     | 1.78    | 6                | 470       | < 0.5     | < 2       | 0.35    | < 0.5     | 8                                            | 32        | 26        | 2.62    | < 10      | < 1       | 0.08   | 10        | 0.67    | 245       | 1         |
| B08191             | 201 | 202      | < 0.2     | 2.53    | 20               | 300       | < 0.5     | < 2       | 0.20    | < 0.5     | 10                                           | 43        | 35        | 3.49    | < 10      | < 1       | 0.06   | 10        | 0.60    | 275       | 1         |
| B08192             | 201 | 202      | < 0.2     | 1.71    | 24               | 220       | < 0.5     | < 2       | 0.24    | < 0.5     | 12                                           | 35        | 30        | 3.35    | < 10      | < 1       | 0.09   | 10        | 0.56    | 460       | < 1       |
| B08193             | 201 | 202      | < 0.2     | 1.45    | 14               | 570       | < 0.5     | < 2       | 0.52    | < 0.5     | 9                                            | 32        | 277       | 2.54    | < 10      | < 1       | 0.07   | 10        | 0.67    | 345       | 1         |
| SBUE194            | 201 | 202      | 0.6       | 2.04    | 8                | 980       | 0.5       | < 2       | 0.60    | 1.0       | 15                                           | 43        | 166       | 2.84    | < 10      | < 1       | 0.15   | 20        | 0.60    | 1260      | 2         |
| DVƏL72             | 401 | 404      | < U.2     | ¥.30    | 8                | 370       | < U.5     | < 2       | 0.58    | < 0.5     | 19                                           | 47        | 61        | 4.70    | < 10      | < 1       | 0.08   | < 10      | 0.99    | 870       | 1         |
|                    |     |          |           |         | ·                |           |           |           |         |           | <b>,,,,,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |           |         |           |           |        |           |         | •         |           |
|                    |     |          |           |         |                  |           |           |           |         |           |                                              |           |           |         |           |           | 1      | 1.        | LR      | 120       | -         |



\* PLEASE NOTE

# **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| 2 | EXPATRIATE RESOURCES LTD.                      |
|---|------------------------------------------------|
|   | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|   | 1016 - 510 W. HASTINGS ST.                     |
|   | VANCOUVER, BC                                  |
|   | V6B 1L8                                        |

Page er :2-B Total ruges :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : Account : MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

-

### CERTIFICATE OF ANALYSIS A96

A9628881

| SAMPLE  | PRI<br>CO | ep<br>De | Na<br>% | Ni<br>ppm | P<br>ppm | Pb<br>ppa | Sb<br>ppm | Sc<br>ppm | Sr<br>ppm | ti<br>% | Tl<br>ppm | U<br>ppma | V<br>Ppm | W<br>ppm | Zn<br>ppz |                                       |
|---------|-----------|----------|---------|-----------|----------|-----------|-----------|-----------|-----------|---------|-----------|-----------|----------|----------|-----------|---------------------------------------|
| BB06135 | 201       | 202      | 0.03    | 19        | 450      | 6         | < 2       | 3         | 39        | 0.03    | < 10      | < 10      | 36       | < 10     | 146       |                                       |
| BB06136 | 201       | 202      | 0.04    | 12        | 350      | 6         | < 2       | 1         | 18        | 0.03    | < 10      | < 10      | 42       | < 10     | 66        |                                       |
| BB06137 | 201       | 202      | 0.01    | 13        | 460      | 6         | < 2       | 1         | 17        | 0.04    | < 10      | < 10      | 73       | < 10     | 96        |                                       |
| BB06138 | 201       | 202      | 0.02    | 20        | 180      | 10        | < 2       | 3         | 14        | 0.03    | < 10      | < 10      | 59       | < 10     | 56        |                                       |
| 8801401 | 201       | 202      | 0.01    | 28        | 810      | 8         | 2         | 8         | 42        | 0.03    | < 10      | < 10      | 55       | < 10     | 216       |                                       |
| BB01402 | 201       | 202      | 0.01    | 29        | 950      | 6         | < 2       | 14        | 34        | 0.05    | < 10      | < 10      | 79       | < 10     | 272       |                                       |
| BB01403 | 201       | 202      | 0.02    | 26        | 1020     | 8         | < 2       | 15        | 36        | 0.02    | < 10      | < 10      | 60       | < 10     | 240       |                                       |
| BB01404 | 201       | 202      | 0.03    | 22        | Intf*    | 2         | < 2       | 10        | 46        | 0.03    | < 10      | < 10      | 53       | < 10     | 78        |                                       |
| BB01405 | 201       | 202      | 0.02    | 17        | 400      | 4         | < 2       | 7         | 11        | 0.07    | < 10      | < 10      | 104      | < 10     | 60        |                                       |
| BB01406 | 201       | 202      | 0.11    | 1         | 380      | < 2       | < 2       | 1         | 11        | 0.01    | < 10      | < 10      | 9        | < 10     | 4         |                                       |
| BB01407 | 201       | 202      | 0.07    | 5         | 760      | < 2       | < 2       | < 1       | 21        | 0.01    | < 10      | < 10      | 12       | < 10     | 12        | · · · · · · · · · · · · · · · · · · · |
| BB01408 | 201       | 202      | 0.02    | 26        | 760      | 8         | 2         | 6         | 27        | 0.03    | < 10      | < 10      | 70       | < 10     | 78        |                                       |
| BB01409 | 201       | 202      | 0.08    | 3         | 300      | 2         | < 2       | < 1       | 8         | 0.01    | < 10      | < 10      | 18       | < 10     | 14        |                                       |
| BB01410 | 201       | 202      | 0.01    | 35        | 800      | 14        | < 2       | 6         | 32        | 0.03    | < 10      | < 10      | 68       | < 10     | 372       |                                       |
| B01411  | 201       | 202      | 0.01    | 17        | 270      | 10        | < 2       | 1         | 12        | 0.02    | < 10      | < 10      | 42       | < 10     | 86        |                                       |
| BB01412 | 201       | 202      | 0.03    | 16        | 190      | 2         | < 2       | 3         | 14        | 0.02    | < 10      | < 10      | 51       | < 10     | 64        |                                       |
| BB05229 | 201       | 202      | 0.03    | 28        | 460      | 12        | < 2       | 9         | 18        | 0.03    | < 10      | < 10      | 80       | < 10     | 78        |                                       |
| BB05230 | 201       | 202      | < 0.01  | 25        | 290      | 12        | 2         | 6         | 19        | 0.05    | < 10      | < 10      | 100      | < 10     | 82        |                                       |
| BB05231 | 201       | 202      | < 0.01  | 26        | 370      | 8         | < 2       | 6         | 15        | 0.11    | < 10      | < 10      | 127      | < 10     | 234       |                                       |
| 8805232 | 201       | 202      | < 0.01  | 22        | 340      | 8         | < 2       | 5         | 11        | 0.08    | < 10      | < 10      | 112      | < 10     | 72        |                                       |
| BB05233 | 201       | 202      | < 0.01  | 23        | 320      | 10        | < 2       | 6         | 17        | 0.08    | < 10      | < 10      | 90       | < 10     | 58        |                                       |
| BB05234 | 201       | 202      | < 0.01  | 30        | 290      | 10        | < 2       | 8         | 13        | 0.15    | < 10      | < 10      | 163      | < 10     | 132       |                                       |
| BB05235 | 201       | 202      | 0.01    | 24        | 240      | 10        | < 2       | 6         | 14        | 0.05    | < 10      | < 10      | 74       | < 10     | 70        |                                       |
| BB05236 | 201       | 202      | 0.01    | 28        | 350      | 10        | < 2       | 5         | 13        | 0.04    | < 10      | < 10      | 66       | < 10     | 82        |                                       |
| BB08180 | 201       | 202      | < 0.01  | 28        | 580      | 10        | < 2       | 4         | 24        | 0.06    | < 10      | < 10      | 68       | < 10     | 84        |                                       |
| BB08181 | 201       | 202      | 0.02    | 28        | 570      | 8         | < 2       | 11        | 29        | 0.06    | < 10      | < 10      | 97       | < 10     | 142       |                                       |
| BB08182 | 201       | 202      | < 0.01  | 29        | 160      | 10        | < 2       | 6         | 14        | 0.07    | < 10      | < 10      | 98       | < 10     | 78        |                                       |
| BB08183 | 201       | 202      | < 0.01  | 32        | 860      | 8         | < 2       | 15        | 23        | 0.16    | < 10      | < 10      | 179      | < 10     | 172       |                                       |
| BB0#184 | 201       | 202      | < 0.01  | 18        | 470      | 6         | < 2       | 5         | 8         | 0.11    | < 10      | < 10      | 158      | < 10     | 122       |                                       |
| 8808185 | 201       | 202      | < 0.01  | 22        | 410      | 12        | 2         | 4         | 6         | 0.05    | < 10      | < 10      | 94       | < 10     | 112       |                                       |
| BB08186 | 201       | 202      | 0.01    | 31        | 1280     | 8         | < 2       | 2         | 12        | 0.01    | < 10      | < 10      | 42       | < 10     | 202       |                                       |
| BB08187 | 201       | 202      | < 0.01  | 23        | 390      | 10        | < 2       | 1         | 12        | 0.01    | < 10      | < 10      | 31       | < 10     | 108       |                                       |
| BB08188 | 201       | 202      | 0.01    | 21        | 630      | 16        | < 2       | 5         | 23        | 0.06    | < 10      | < 10      | 109      | < 10     | 342       |                                       |
| BB08189 | 201       | 202      | 0.01    | 35        | 810      | 14        | < 2       | 7         | 46        | 0.04    | < 10      | < 10      | 70       | < 10     | 216       |                                       |
| BB08190 | 201       | 202      | < 0.01  | 23        | 390      | 10        | < 2       | 3         | 16        | 0.06    | < 10      | < 10      | 69       | < 10     | 70        |                                       |
| BB08191 | 201       | 202      | < 0.01  | 22        | 260      | 18        | < 2       | 4         | 10        | 0.06    | < 10      | < 10      | 99       | < 10     | 84        |                                       |
| BB08192 | 201       | 202      | < 0.01  | 23        | 430      | 14        | < 2       | 4         | 9         | 0.07    | < 10      | < 10      | 81       | < 10     | 74        |                                       |
| BB08193 | 201       | 202      | 0.01    | 33        | 440      | 10        | < 2       | 6         | 21        | 0.06    | < 10      | < 10      | 55       | < 10     | 92        |                                       |
| BB08194 | 201       | 202      | 0.01    | 43        | 730      | 16        | < 2       | 10        | 26        | 0.03    | < 10      | < 10      | 79       | < 10     | 226       |                                       |
| 8802132 | 201       | 202      | < 0.01  | 32        | 420      | 8         | < 2       | 9         | 14        | 0.17    | < 10      | < 10      | 135      | < 10     | 90        |                                       |



## **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_

Page ar Total ruges ∋r ∶3-A :5 Certificate Date: 29-AUG-96 Invoice No. :19628881 P.O. Number MPO Account

Project : ICE Comments:

:

Γ

| * PLEASE NO        | DTE          | ·····          |         |                  |            |           |           |              |           |           | RTIF       |           | EOF     | ANAL         | YSIS       |        | A9628      | 3881         |           |           |
|--------------------|--------------|----------------|---------|------------------|------------|-----------|-----------|--------------|-----------|-----------|------------|-----------|---------|--------------|------------|--------|------------|--------------|-----------|-----------|
| SAMPLE             | PREP<br>CODE | Ag<br>ppm      | A1<br>* | <b>As</b><br>ppm | Ba<br>ppm  | Be<br>ppm | Bi<br>ppm | Ca<br>%      | Cđ<br>ppm | Co<br>ppm | Cr<br>ppm  | Cu<br>ppm | Ye<br>X | Ga<br>ppm    | Hg<br>ppm  | K<br>% | La<br>ppm  | Mg<br>%      | Mn<br>ppm | Mo<br>ppm |
| BB08196            | 201 202      | < 0.2          | 2.12    | 12               | 430        | < 0.5     | < 2       | 0.32         | < 0.5     | 9         | 38         | 21        | 3.46    | < 10         | < 1        | 0.05   | 10         | 0.58         | 315       | 1         |
| BB08197            | 201 202      | < 0.2          | 2.06    | 2                | 320        | < 0.5     | < 2       | 0.33         | < 0.5     | 11        | 32         | 23        | 3.82    | < 10         |            | 0.06   | 10         | 0.59         | 380       | < 1       |
| BB08084            | 201 202      | < 0.2          | 1.73    | 6                | 430        | < 0.5     | < 2       | 0.10         | < 0.5     | 7         | 34         | 18        | 2.45    | < 10         | < 1        | 0.06   | 10         | 0.55         | 235       | 1         |
| BB08085            | 201 202      | < 0.2          | 3.22    | 14               | 640        | 0.5       | < 2       | 0.08         | 0.5       | 10        | 53         | 30        | 3.59    | < 10         | < 1        | 0.10   | 10         | 0.66         | 230       | 3         |
| BB08086            | 201 202      | < 0.2          | 2.44    | 8                | 610        | 0.5       | < 2       | 0.11         | < 0.5     | 13        | 51         | 68        | 3.48    | < 10         | < 1        | 0.07   | < 10       | 0.72         | 455       | < 1       |
| BBUSUS /           | 201 202      | < 0.2          | 2.60    | 14               | 380        | < 0.5     | < 2       | 0.08         | < 0.5     | 16        | 25         | 35        | 5.88    | 10           | < 1        | 0.03   | < 10       | 0.65         | 335       | 1         |
| BB08089            | 201 202      | < 0.2          | 2.78    | 16               | 1120       | 0.5       | < 2       | 0.21         | < 0.5     | 11        | 35         | 50        | 4.07    | < 10         | < 1        | 0.07   | < 10       | 0.77         | 320       | 2         |
| BB08090            | 201 202      | < 0.2          | 4.97    | 4                | 1380       | < 0.5     | < 2       | 0.58         | 0.5       | 33        | 134        | 103       | 9.01    | 10           | < 1        | 0.01   | < 10       | 2.78         | 1180      | < 1       |
| BB08091            | 201 202      | < 0.2          | 3.81    | 4                | 300        | < 0.5     | < 2       | 0.51         | < 0.5     | 32        | 159        | 84        | 6.99    | 10           | < 1        | 0.01   | < 10       | 1.38         | 950       | < 1       |
| BB08092            | 201 202      | < 0.2          | 2.53    | 20               | 410        | < 0.5     | < 2       | 0.41         | < 0.5     | 11        | 89<br>57   | 37        | 3.54    | < 10         | < 1        | 0.03   | < 10       | 0.80         | 330       | < 1       |
| BB08094            | 201 202      | < 0.2          | 2.58    | 12               | 530        | 0.5       | < 2       | 0.14         | < 0.5     | - 9       | 46         | 28        | 3.37    | < 10         | < 1        | 0.10   | 10         | 0.63         | 410       | < 1       |
| 8809501            | 201 202      | < 0.2          | 1.27    | 12               | 290        | 0.5       | < 2       | 0.09         | < 0.5     | 7         | 21         | 17        | 2.32    | < 10         | < 1        | 0.08   | 30         | 0.22         | 990       | < 1       |
| BB09502            | 201 202      | < 0.2          | 1.14    | 16               | 190        | < 0.5     | < 2       | 0.06         | < 0.5     | 5         | 23         | 16        | 2.24    | < 10         | < 1        | 0.04   | 10         | 0.29         | 275       | 1         |
| BB09503<br>BB09504 | 201 202      | < 0.2          | 1.39    | 10               | 220        | < 0.5     | < 2       | 0.04         | < 0.5     |           | 34<br>27   | 30        | 2.41    | < 10         | < 1        | 0.05   | 10         | 0.41         | 435       | 1         |
| BB09505            | 201 202      | < 0.2          | 1.64    | 8                | 350        | < 0.5     | < 2       | 0.09         | < 0.5     | 6         | 37         | 30        | 2.48    | < 10         | < 1        | 0.05   | 10         | 0.44         | 355       | 1         |
| BB09506            | 201 202      | < 0.2          | 1.13    | 2                | 530        | < 0.5     | < 2       | 0.06         | < 0.5     | 17        | 36         | 56        | 2.58    | < 10         | < 1        | 0.06   | 10         | 0.34         | 2870      | 1         |
| BB09507            | 201 202      | < 0.2          | 1.35    | 8                | 870        | < 0.5     | < 2       | 0.11         | < 0.5     | 6         | 37         | 49        | 2.71    | < 10         | < 1        | 0.08   | 10         | 0.25         | 830       | < 1       |
| BB09508            | 201 202      | < 0.2          | 2.85    | 12               | 1860       | 0.5       | < 2       | 0.21         | < 0.5     | 7         | 87         | 96        | 4.18    | < 10         | < 1        | 0.11   | 30         | 0.44         | 455       | • 1       |
| BB09510            | 201 202      | < 0.2          | 2.89    | 6                | 520        | < 0.5     | < 2       | 0.51         | < 0.5     | 12        | 30         | 83        | 3.93    | < 10         | < 1        | 0.03   | 30         | 1.45         | 1015      | 1         |
| BB09511            | 201 202      | < 0.2          | 2.29    | < 2              | 530        | < 0.5     | < 2       | 0.34         | < 0.5     | 13        | 26         | 119       | 2.70    | < 10         | < 1        | 0.05   | 20         | 1.13         | 2180      | < 1       |
| BB09512            | 201 202      | < 0.2          | 1.22    | 8                | 520        | < 0.5     | < 2       | 0.22         | < 0.5     | 7         | 51         | 36        | 2.11    | < 10         | < 1        | 0.07   | 30         | 0.41         | 175       | 1         |
| BB09513            | 201 202      | < 0.2          | 1.67    | 10               | 740        | < 0.5     | < 2       | 0.41         | < 0.5     | 17        | 238        | 26        | 3.42    | < 10         | < 1        | 0.05   | 10         | 1.85         | 425       | 1         |
| BB09515            | 201 202      | < 0.2          | 2.14    | 6                | 620        | < 0.5     | < 2       | 1.11         | < 0.5     | 19        | 153        | 41        | 3.03    | < 10         | < 1        | 0.03   | < 10       | 1.79         | 485       | 1         |
| BB09516            | 201 202      | < 0.2          | 1.99    | 10               | 630        | < 0.5     | < 2       | 0.82         | < 0.5     | 31        | 236        | 52        | 3.38    | < 10         | < 1        | 0.05   | < 10       | 1.78         | 665       | < 1       |
| BB09517            | 201 202      | < 0.2          | 2.28    | < 2              | 450        | < 0.5     | < 2       | 0.68         | < 0.5     | 25        | 234        | 42        | 3.13    | < 10         | < 1        | 0.03   | < 10       | 2.16         | 555       | < 1       |
| BB09518            | 201 202      | < 0.2          | 2.11    | 2                | 390        | < 0.5     | < 2       | 0.68         | < 0.5     | 40        | 484        | 60<br>50  | 3.97    | < 10         | < 1        | 0.05   | < 10       | 3.97         | 615       | < 1       |
| BB09520            | 201 202      | < 0.2          | 1.84    | 2                | 180        | < 0.5     | < 2       | 0.30         | < 0.5     | 66        | 881        | 37        | 4.38    | < 10         | < 1        | 0.04   | < 10       | 9.72         | 175       | < 1       |
| BB09521            | 201 202      | < 0.2          | 1.04    | < 2              | 140        | < 0.5     | < 2       | 0.36         | < 0.5     | 64        | 1080       | 26        | 4.05    | < 10         | < 1        | 0.03   | < 10       | 11.35        | 580       | < 1       |
| BB09522            | 201 202      | < 0.2          | 1.80    | 6                | 210        | < 0.5     | < 2       | 0.86         | < 0.5     | 24        | 275        | 12        | 3.21    | < 10         | < 1        | 0.02   | < 10       | 2.57         | 465       | < 1       |
| BB09523            | 201 202      | < 0.2          | 1.68    | 4                | 190        | < 0.5     | < 2       | 0.74         | < 0.5     | 23        | 344        | 16        | 3.26    | < 10         | < 1        | 0.03   | < 10       | 3.41         | 495       | < 1       |
| BBU9324<br>BB09525 | 201 202      | < 0.2<br>< 0.2 | 1.83    | 10               | 360<br>190 | < 0.5     | < 2       | 0.45<br>0.38 | < 0.5     | 30<br>55  | 46U<br>648 | 10<br>10  | 3.63    | < 10<br>< 10 | < 1<br>< 1 | 0.04   | 10<br>< 10 | €.∡y<br>7.00 | 525       | < 1       |
| BB09526            | 201 202      | < 0.2          | 1.14    | 4                | 180        | < 0.5     | < 2       | 0.29         | < 0.5     | 57        | 618        | 21        | 3.72    | < 10         | < 1        | 0.05   | 10         | 6.27         | 645       | < 1       |
| {                  |              |                |         |                  |            |           |           |              |           |           |            |           |         |              |            |        |            |              |           |           |

tart Bichler CERTIFICATION:\_

\* INTERFERENCE: HIGH Cu on Bi and P



\* PLEASE NOTE

# **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page 3r :3-B Total, 3 :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : Account : MPO

Project : ICE Comments:

### CERTIFICATE OF ANALYSIS

A9628881

| <b></b>            |         | <b>'</b> |      |      |            |                                       |     |          |             |           |      |     |          |     |                                       |
|--------------------|---------|----------|------|------|------------|---------------------------------------|-----|----------|-------------|-----------|------|-----|----------|-----|---------------------------------------|
|                    | DRED    | Na       | NÍ   | P    | Ph         | sh                                    | 80  | gr       | <b>m</b> -i | <b>#1</b> | Π    | v   | ¥        | Zn  |                                       |
| SAMPLE             | CODE    | *        | ppa  | ppm  | ppm        | ppm                                   | ppm | ppm      | *           | ppm       | ppm  | ppm | pp       | ppm |                                       |
| BB08196            | 201 20  | 2 < 0.01 | 23   | 240  | 12         | < 2                                   | 3   | 9        | 0.07        | < 10      | < 10 | 90  | < 10     | 82  |                                       |
| BB08197            | 201 20  | 2 < 0.01 | 18   | 210  | 12         | • 2                                   | 4   | 8        | 0.06        | < 10      | < 10 | 101 | < 10     | 62  |                                       |
| BB08198            | 201 20  | 2 < 0.01 | 19   | 290  | 8          | < 2                                   | 5   | 10       | 0.04        | < 10      | < 10 | 45  | < 10     | 114 |                                       |
| BB08084            | 201 20  | 2 0.01   | 23   | 270  | 10         | < 2                                   | 3   | 10       | 0.02        | < 10      | < 10 | 63  | < 10     | 78  |                                       |
| BB08085            | 201 20  | 2 < 0.01 | 34   | 340  | 16         | 2                                     | 4   | 11       | 0.01        | < 10      | < 10 | 100 | < 10     | 116 |                                       |
| BB08086            | 201 20  | 2 < 0.01 | 34   | 170  | 10         | < 2                                   | 5   | 8        | 0.04        | < 10      | < 10 | 98  | < 10     | 360 |                                       |
| BB08087            | 201 20  | 2 < 0.01 | 25   | 170  | 10         | 2                                     | 5   | 7        | 0.02        | < 10      | < 10 | 88  | < 10     | 88  |                                       |
| BB08088            | 201 20  | 2 < 0.01 | 20   | 430  | 10         | < 2                                   | 8   | 14       | 0.30        | < 10      | < 10 | 201 | < 10     | 106 |                                       |
| BB08089            | 201 20  | 2 < 0.01 | 25   | 330  | 10         | < 2                                   | 6   | 27       | 0.04        | < 10      | < 10 | 111 | < 10     | 86  |                                       |
|                    | 201 20  | < 0.01   | 50   | 310  | 2          | < 2                                   | 16  | 23       | 0.28        | < 10      | < 10 | 293 | < 10     | 118 |                                       |
| BB08091            | 201 20  | 2 0.01   | 49   | 150  | 2          | < 2                                   | 36  | 35       | < 0.01      | < 10      | < 10 | 190 | < 10     | 54  |                                       |
| BBUGU <b>9</b> 4   | 201 20  |          | 38   | 210  | 10         | < 2                                   | 8   | 13       | 0.17        | < 10      | < 10 | 178 | < 10     | 94  |                                       |
| BBV8V93<br>BB08004 | 201 20  |          | 25   | 210  | 10         | × 4                                   | 5   | 10       | 0.09        | < 10      | < 10 | 100 | < 10     | /2  |                                       |
| RB09501            | 201 20  | 0.01     | 15   | 540  | <b>A</b> 0 | < 2                                   | 1   |          | 0.05        | < 10      | < 10 | 27  | < 10     | 70  |                                       |
|                    |         |          |      | 510  |            | <u>` •</u>                            |     | <b>,</b> |             | <u> </u>  | ·    |     | <u> </u> | 70  | · · · · · · · · · · · · · · · · · · · |
| BB09502            | 201 20  | 2 < 0.01 | 16   | 280  | 18         | < 2                                   | 1   | 7        | 0.01        | < 10      | < 10 | 32  | < 10     | 56  |                                       |
| BB09503            | 201 20  | < 0.01   | 28   | 350  | 8          | < 2                                   | 1   | 6        | 0.01        | < 10      | < 10 | 30  | < 10     | 60  |                                       |
| BB09504            | 201 202 | < 0.01   | 24   | 410  | 8          | < 2                                   | 1   | 7        | 0.01        | < 10      | < 10 | 33  | < 10     | 56  |                                       |
| BB09505            | 201 202 | < 0.01   | 25   | 350  | 10         | < 2                                   | 1   | 8        | 0.01        | < 10      | < 10 | 39  | < 10     | 52  |                                       |
| BU3506             | 201 20  | 0.01     | 45   | 930  | 10         | < 4                                   | < 1 | 1        | 0.01        | < 10      | < 10 | 40  | < 10     | 72  |                                       |
| BB09507            | 201 202 | 0.01     | 23   | 860  | 12         | < 2                                   | 1   | 13 <     | 0.01        | < 10      | < 10 | 31  | < 10     | 104 |                                       |
| BB09508            | 201 202 | 0.01     | 45   | 1990 | 14         | < 2                                   | 3   | 23 🗸     | 0.01        | < 10      | < 10 | 73  | < 10     | 122 |                                       |
| BB09509            | 201 202 | < 0.01   | 40   | 470  | 12         | < 2                                   | 1   | 9        | 0.01        | < 10      | < 10 | 48  | < 10     | 72  |                                       |
| BB09510            | 201 202 | < 0.01   | 42   | 1060 | 12         | < 2                                   | 5   | 33       | 0.04        | < 10      | < 10 | 73  | < 10     | 82  |                                       |
| BB09511            | 201 202 | < 0.01   | 36   | 770  | 16         | < 2                                   | 2   | 39       | 0.06        | < 10      | < 10 | 23  | < 10     | 72  |                                       |
| BB09512            | 201 202 | < 0.01   | 35   | 590  | 12         | < 2                                   | 1   | 35 <     | 0.01        | < 10      | < 10 | 29  | < 10     | 64  |                                       |
| BBUY313            | 201 202 | < 0.01   | 135  | 370  | 10         | < 2                                   | 4   | 15       | 0.06        | < 10      | < 10 | 74  | < 10     | 80  |                                       |
| DBV3316<br>DDA0515 | 201 202 |          | 107  | 370  | 6          |                                       | 5   | 10       | 0.06        | < 10      | < 10 | 51  | < 10     | 62  |                                       |
| BB09515<br>BB09516 | 201 202 |          | 201  | 720  | 10         | 2.5                                   | 0   | 24       | 0.15        | < 10      | < 10 | 73  | < 10     | 94  |                                       |
|                    |         |          |      | /40  |            | · · · · · · · · · · · · · · · · · · · |     |          |             | × 10      | · 10 | /0  | × 10     |     |                                       |
| BB09517            | 201 202 | < 0.01   | 156  | 100  | 8          | < 2                                   | 5   | 14       | 0.16        | < 10      | < 10 | 76  | < 10     | 58  |                                       |
| BB09518            | 201 202 | < 0.01   | 683  | 800  | 6          | < 2                                   | 9   | 22       | 0.05        | < 10      | < 10 | 79  | < 10     | 78  |                                       |
| BB09519            | 201 202 | < 0.01   | 609  | 790  | 8          | < 2                                   | 6   | 37       | 0.05        | < 10      | < 10 | 64  | < 10     | 66  |                                       |
| BBUY520<br>BB04521 | 201 202 | < 0.01   | 929  | 380  | 2          | < 2                                   | 7   | 11       | 0.03        | < 10      | < 10 | 66  | < 10     | 100 |                                       |
| BBU 7741           | 201 202 | < 0.01   | T302 | 360  | < 2        | < 2                                   |     |          | 0.04        | < 10      | < 10 |     | < 10     | 48  |                                       |
| BB09522            | 201 202 | < 0.01   | 152  | 140  | 6          | < 2                                   | 5   | 14       | 0.19        | < 10      | < 10 | 84  | < 10     | 54  |                                       |
| BB09523            | 201 202 | < 0.01   | 211  | 280  | 6          | < 2                                   | 6   | 11       | 0.14        | < 10      | < 10 | 75  | < 10     | 82  |                                       |
| BB09524            | 201 202 | < 0.01   | 283  | 220  | 6          | < 2                                   | 6   | 11       | 0.09        | < 10      | < 10 | 69  | < 10     | 62  |                                       |
| BB09525            | 201 202 | 0.01     | 581  | 450  | 8          | < 2                                   | 6   | 14       | 0.04        | < 10      | < 10 | 50  | < 10     | 64  |                                       |
| BBUY526            | 201 202 | < 0.01   | 810  | 370  | 8          | < 2                                   | 6   | 10       | 0.03        | < 10      | < 10 | 40  | < 10     | 72  |                                       |
|                    |         |          |      |      |            |                                       |     |          |             |           |      |     |          |     |                                       |

tair Bichler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

A9628881

Project : ICE Comments:

\_

### \* PLEASE NOTE

|         |         |         |            |     |     |       |     |      |       |     |      |     |      |      |       |        |      |       | and the second second second second second second second second second second second second second second secon |     |
|---------|---------|---------|------------|-----|-----|-------|-----|------|-------|-----|------|-----|------|------|-------|--------|------|-------|-----------------------------------------------------------------------------------------------------------------|-----|
|         | PREP    |         |            | λε  | Ba  | Be    | ві  | Ca   | Cđ    | Co  | Cr   | Cu  | Ia   | Ga   | Ha    | ĸ      | La   | Ma    | Ma                                                                                                              | Mo  |
| SAMPLE  | CODE    | PI      | <b>N S</b> | ppm | ppm | ppm   | ppm | *    | ppm   | ppm | ppm  | ppm | *    | ppm  | ppm   | *      | ppm  | *     | ppm                                                                                                             | ppm |
| 8809527 | 201 20  | 2 < 0.  | 2 0.83     | 2   | 60  | < 0.5 | < 2 | 0.19 | < 0.5 | 83  | 1020 | 15  | 3.68 | < 10 | < 1   | 0.01   | < 10 | 12.60 | 825                                                                                                             | < 1 |
| BB09528 | 201 20  | 2 < 0.  | 2 1.40     | < 2 | 40  | < 0.5 | < 2 | 0.25 | < 0.5 | 90  | 945  | 28  | 3.68 | < 10 | < 1 < | : 0.01 | < 10 | 11.85 | 720                                                                                                             | < 1 |
| BB09529 | 201 20  | 2 < 0.  | 2 2.01     | . 4 | 30  | < 0.5 | < 2 | 0.78 | < 0.5 | 70  | 852  | 46  | 3.09 | < 10 | < 1 < | 0.01   | < 10 | 12.00 | 590                                                                                                             | < 1 |
| BB09530 | 201 20  | 2 < 0.  | 2 3.01     | 10  | 650 | < 0.5 | < 2 | 1.48 | < 0.5 | 55  | 280  | 128 | 6.66 | < 10 | < 1   | 0.04   | < 10 | 2.58  | 1615                                                                                                            | < 1 |
| BB09531 | 201 20  | 2 < 0.  | 2 3.34     | 6   | 100 | < 0.5 | < 2 | 0.17 | < 0.5 | 77  | 926  | 57  | 4.92 | < 10 | < 1 • | 0.01   | < 10 | 10.70 | 1420                                                                                                            | < 1 |
| BB09532 | 201 20  | 2 < 0.  | 2 0.84     | 2   | 50  | < 0.5 | < 2 | 0.32 | < 0.5 | 66  | 923  | 24  | 3.83 | < 10 | < 1   | 0.02   | < 10 | 13.65 | 570                                                                                                             | < 1 |
|         | 201 20  | 2 < 0.  | 2 3.41     | 2   | 140 | < 0.5 | < 2 | 2.29 | < 0.5 | 34  | 313  | 28  | 3.26 | < 10 | < 1   | 0.02   | < 10 | 5.16  | 465                                                                                                             | < 1 |
| BB09534 | 201 20  | 2 < 0.  | 2 1.33     | 6   | 170 | < 0.5 | < 2 | 0.68 | < 0.5 | 48  | 641  | 24  | 3.36 | < 10 | < 1   | 0.04   | < 10 | 8.54  | 520                                                                                                             | < 1 |
| BBU3333 | 201 20  |         | 4 1.49     | 4   | 200 | < 0.5 | < 2 | 0.72 | < 0.5 | 31  | 520  | 27  | 3.24 | < 10 | < 1   | 0.04   | < 10 | 6.25  | 540                                                                                                             | < 1 |
| 8803330 | 201 20  | ~ ~ 0.  | 4 1.71     | 4   | 280 | < 0.5 | < 4 | 0.73 | < 0.5 | 20  | 308  | 22  | 3.02 | < 10 | < 1   | 0.03   | < 10 | 3.68  | 490                                                                                                             | < 1 |
| BB09537 | 201 20  | 2 < 0.  | 2 1.45     | 2   | 60  | < 0.5 | < 2 | 0.46 | < 0.5 | 16  | 104  | 40  | 1.94 | < 10 | < 1   | 0.03   | < 10 | 1.57  | 250                                                                                                             | < 1 |
| BB09538 | 201 20  | 2 < 0.  | 2 1.61     | 2   | 260 | < 0.5 | < 2 | 0.62 | < 0.5 | 39  | 511  | 28  | 3.31 | < 10 | < 1   | 0.05   | < 10 | 4.90  | 605                                                                                                             | < 1 |
| BB09539 | 201 20  | 2 < 0.  | 2 2.06     | 8   | 510 | < 0.5 | < 2 | 0.60 | 0.5   | 35  | 365  | 38  | 3.67 | < 10 | 1     | 0.11   | < 10 | 2.95  | 895                                                                                                             | < 1 |
| BB09540 | 201 20  | 2 < 0.  | 2 1.59     | 8   | 290 | < 0.5 | < 2 | 0.49 | < 0.5 | 22  | 314  | 16  | 3.10 | < 10 | < 1   | 0.05   | 10   | 3.20  | 385                                                                                                             | < 1 |
| BB09541 | 201 20  | 2 < 0.  | 2 0.82     | 2   | 30  | < 0.5 | < 2 | 0.12 | < 0.5 | 72  | 1070 | 23  | 3.71 | < 10 | < 1 < | 0.01   | < 10 | 13.95 | 640                                                                                                             | < 1 |
| BB09542 | 201 20  | 2 < 0.  | 2 2.16     | 4   | 200 | < 0.5 | < 2 | 0.64 | < 0.5 | 59  | 847  | 24  | 4.42 | < 10 | < 1   | 0.05   | < 10 | 8.19  | 640                                                                                                             | < 1 |
| BB09543 | 201 20  | 2 < 0.  | 2 1.80     | 8   | 210 | < 0.5 | < 2 | 0.40 | < 0.5 | 27  | 437  | 12  | 3.96 | < 10 | < 1   | 0.04   | < 10 | 3.13  | 405                                                                                                             | < 1 |
| BB09544 | 201 20  | 2 < 0.  | 2 1.78     | 8   | 320 | < 0.5 | < 2 | 0.35 | < 0.5 | 46  | 584  | 20  | 3.81 | < 10 | < 1   | 0.05   | 10   | 4.58  | 625                                                                                                             | < 1 |
| BB09545 | 201 20  | 2 < 0.  | 2 1.28     | < 2 | 130 | < 0.5 | < 2 | 0.34 | < 0.5 | 80  | 986  | 27  | 3.79 | < 10 | < 1   | 0.02   | < 10 | 12.50 | 760                                                                                                             | < 1 |
| 8809546 | 201 20  | 2 < 0.  | 2 1.47     | 6   | 280 | < 0.5 | < 2 | 0.42 | < 0.5 | 37  | 451  | 12  | 3.72 | < 10 | < 1   | 0.05   | < 10 | 4.28  | 660                                                                                                             | < 1 |
| BB09547 | 201 20  | 2 < 0.  | 2 1.81     | 2   | 220 | < 0.5 | < 2 | 0.83 | < 0.5 | 48  | 655  | 73  | 3.53 | < 10 | < 1   | 0.04   | < 10 | 7.13  | 535                                                                                                             | < 1 |
| BB09548 | 201 20: | 2 < 0.  | 2 1.40     | 6   | 580 | < 0.5 | < 2 | 0.62 | < 0.5 | 16  | 247  | 17  | 2.55 | < 10 | < 1   | 0.04   | < 10 | 2.55  | 365                                                                                                             | < 1 |
| BB09549 | 201 20: | 2 0.    | 2 1.50     | 18  | 650 | < 0.5 | < 2 | 1.30 | < 0.5 | 37  | 443  | 54  | 3.40 | < 10 | < 1   | 0.05   | < 10 | 3.97  | 535                                                                                                             | < 1 |
| BB09550 | 201 20  | 2 < 0.  | 2 1.87     | 6   | 440 | < 0.5 | < 2 | 0.66 | < 0.5 | 32  | 475  | 41  | 3.45 | < 10 | < 1   | 0.05   | < 10 | 5.36  | 525                                                                                                             | < 1 |
| BB09551 | 201 20  | 2 < 0.  | 2 2.28     | 12  | 500 | < 0.5 | < 2 | 0.69 | < 0.5 | 28  | 292  | 50  | 3.52 | < 10 | < 1   | 0.06   | 10   | 3.06  | 735                                                                                                             | < 1 |
| BB09552 | 201 202 | 2 < 0.  | 2 2.54     | 6   | 490 | < 0.5 | < 2 | 0.65 | < 0.5 | 30  | 293  | 51  | 3.60 | < 10 | < 1   | 0.08   | 10   | 3.02  | 730                                                                                                             | < 1 |
| BB09553 | 201 20: | 2 0.    | 2 1.79     | < 2 | 310 | < 0.5 | < 2 | 1.45 | < 0.5 | 15  | 47   | 73  | 2.36 | < 10 | < 1   | 0.09   | 10   | 0.90  | 665                                                                                                             | 1   |
| BB09554 | 201 202 | 2 0.    | 2 1.93     | 12  | 340 | < 0.5 | < 2 | 1.24 | < 0.5 | 16  | 65   | 35  | 3.12 | < 10 | < 1   | 0.11   | 10   | 1.27  | 700                                                                                                             | 1   |
| BB09555 | 201 202 | 2 < 0.  | 2 1.55     | 2   | 420 | < 0.5 | < 2 | 0.50 | < 0.5 | 10  | 48   | 24  | 2.42 | < 10 | < 1   | 0.08   | 20   | 0.75  | 360                                                                                                             | 1   |
| BB09556 | 201 203 | < 0.    | 2 4.11     | < 2 | 290 | < 0.5 | < 2 | 1.54 | < 0.5 | 29  | 155  | 91  | 5.13 | < 10 | < 1   | 0.11   | < 10 | 2.64  | 800                                                                                                             | < 1 |
| BB09557 | 201 202 | 2 < 0.  | 2 1.57     | 10  | 570 | < 0.5 | < 2 | 0.21 | < 0.5 | 11  | 57   | 42  | 2.45 | < 10 | < 1   | 0.07   | 20   | 0.77  | 340                                                                                                             | 1   |
| BB09558 | 201 202 | 2 0.    | 2 1.38     | 12  | 630 | < 0.5 | < 2 | 0.82 | < 0.5 | 10  | 54   | 31  | 2.29 | < 10 | < 1   | 0.08   | 10   | 0.75  | 355                                                                                                             | 1   |
| BB09559 | 201 202 | < 0.    | 2 1.35     | 14  | 480 | < 0.5 | < 2 | 0.44 | < 0.5 | 11  | 63   | 40  | 2.47 | < 10 | < 1   | 0.08   | 10   | 0.89  | 345                                                                                                             | 1   |
| BB09560 | 201 202 | 0.      | 2 2.00     | 14  | 350 | < 0.5 | < 2 | 0.81 | < 0.5 | 16  | 61   | 30  | 3.21 | < 10 | < 1   | 0.09   | < 10 | 1.07  | 515                                                                                                             | 1   |
| BB09561 | 201 202 | < 0.    | 2 1.82     | 8   | 830 | 0.5   | < 2 | 0.30 | < 0.5 | 11  | 46   | 27  | 3.08 | < 10 | < 1   | 0.09   | 10   | 0.62  | 445                                                                                                             | 1   |
| BB09562 | 201 202 | < 0.    | 1.73       | < 2 | 270 | < 0.5 | < 2 | 0.49 | < 0.5 | 13  | 43   | 34  | 2.54 | < 10 | < 1   | 0.10   | 10   | 0.78  | 395                                                                                                             | < 1 |
| BB09563 | 201 202 | < 0.    | 1.50       | 10  | 550 | 0.5   | < 2 | 0.30 | < 0.5 | 11  | 49   | 28  | 2.73 | < 10 | < 1   | 0.19   | 10   | 0.52  | 360                                                                                                             | 2   |
| BB09564 | 201 202 | < 0.    | 1.56       | 10  | 660 | 0.5   | < 2 | 0.37 | < 0.5 | 11  | 36   | 45  | 2.80 | < 10 | < 1   | 0.18   | 20   | 0.48  | 495                                                                                                             | 2   |
| BB09565 | 201 202 | l < 0.  | 1.35       | 8   | 350 | 0.5   | < 2 | 0.38 | < 0.5 | 10  | 23   | 34  | 2.92 | < 10 | < 1   | 0.21   | 40   | 0.46  | 325                                                                                                             | 1   |
| BB03222 | 201 202 | ¶ < 0.1 | 1.51       | 10  | 640 | 0.5   | < 2 | 0.36 | < 0.5 | 12  | 25   | 29  | 2.76 | < 10 | < 1   | 0.17   | 30   | 0.44  | 660                                                                                                             | 2   |
|         |         |         |            |     |     |       |     |      |       |     |      |     |      |      |       |        |      |       |                                                                                                                 |     |

CERTIFICATION: HT. M.B. chles

\* INTERFERENCE: HIGH Cu on Bi and P



\* PLEASE NOTE

# Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| ); | EXPATRIATE RESOURCES LTD.                      |
|----|------------------------------------------------|
|    | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|    | 1016 - 510 W. HASTINGS ST.                     |
|    | VANCOUVER, BC                                  |
|    | V6B 1L8                                        |

**CERTIFICATE OF ANALYSIS** 

A9628881

tart Bichle

Project : ICE Comments:

|         |         |        |      |      |     |            |     |      | the standards | 10.0                                   |      |            |      |            |                                        |
|---------|---------|--------|------|------|-----|------------|-----|------|---------------|----------------------------------------|------|------------|------|------------|----------------------------------------|
|         |         |        |      |      |     |            |     |      |               |                                        |      |            |      |            |                                        |
|         | PREP    | Na     | Ni   | P    | Pb  | Sb         | Sc  | Sr   | Ti            | <b>T</b> 1                             | σ    | V          | W    | Zn         |                                        |
| STORES  | CODE    | *      | חחח  | 008  | ກກສ | nnm        | הממ | ກກໜ  |               | ກກຫ                                    | DDM  | <b>DDB</b> | 000  | <b>nnn</b> |                                        |
|         |         |        |      |      |     |            |     | **** |               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |      |            |      | 77-        |                                        |
| BB09527 | 201 202 | 0.01   | 1275 | 150  | < 2 | < 2        | 6   | 5    | < 0.01        | < 10                                   | < 10 | 28         | < 10 | 52         |                                        |
| BB09528 | 201 202 | < 0.01 | 1390 | 120  | 2   | < 2        | ŝ   | 4    | 0.01          | < 10                                   | < 10 | 38         | < 10 | 38         |                                        |
| BB09529 | 201 202 | 0.01   | 1245 | 120  | < 2 | < 2        | 7   | 5    | 0.01          | < 10                                   | < 10 | 32         | < 10 | 30         |                                        |
| BB09530 | 201 202 | 0.01   | 158  | 410  | 2   | < 2        | 40  | 26   | 0.03          | < 10                                   | < 10 | 156        | < 10 | 68         |                                        |
| BB09531 | 201 202 | < 0.01 | 887  | 170  | < 2 | < 2        | 17  | -4   | 0.07          | < 10                                   | < 10 | 103        | < 10 | 50         |                                        |
|         |         |        |      |      |     |            |     |      | ••••          |                                        |      |            |      |            |                                        |
| BB09532 | 201 202 | < 0.01 | 1400 | 90   | < 2 | < 2        | 6   | 3    | 0.01          | < 10                                   | < 10 | 29         | < 10 | 34         |                                        |
| BB09533 | 201 202 | < 0.01 | 495  | 310  | < 2 | < 2        | 11  | 16   | 0.10          | < 10                                   | < 10 | 63         | < 10 | 36         |                                        |
| BB09534 | 201 202 | < 0.01 | 798  | 410  | 2   | < 2        | 6   | 15   | 0.06          | < 10                                   | < 10 | 49         | < 10 | 62         |                                        |
| BB09535 | 201 202 | < 0.01 | 538  | 370  | 6   | < 2        | 7   | 14   | 0.10          | < 10                                   | < 10 | 60         | < 10 | 52         |                                        |
| BB09536 | 201 202 | < 0.01 | 290  | 230  | 6   | < 2        | 6   | 14   | 0.16          | < 10                                   | < 10 | 68         | < 10 | 50         |                                        |
| BBA9537 | 201 202 | 0.08   | 151  | 570  | 12  | <i>c</i> 2 | 4   | 17   | 0.07          | < 10                                   | < 10 | 47         | < 10 | 12         | ······································ |
| BB/0532 | 201 202 | a 0.01 | 515  | 490  |     | 2.5        | 7   | 16   | 0.10          | < 10                                   | < 10 | 62         | 2 10 | 59         |                                        |
| BB09530 | 201 202 | × 0.01 | 347  | 970  | 10  | 2.2        | , , | 10   | 0.08          | < 10                                   | < 10 | 84         | 2 10 | 90         |                                        |
| BB09540 | 201 202 | 2 0.01 | 230  | 400  | 10  | < 2        | Ś   | 17   | 0.10          | < 10                                   | < 10 | 73         | < 10 | 76         |                                        |
| BB09541 | 201 202 | 2 0.01 | 1285 | 80   | < 2 | 22         | 7   | 1.   | ¢ 0.01        | < 10                                   | < 10 | 30         | < 10 | 36         |                                        |
|         |         |        |      |      |     |            |     | -    |               |                                        |      | ••         |      |            |                                        |
| BB09542 | 201 202 | < 0.01 | 539  | 150  | 8   | 2          | 10  | 12   | 0.07          | < 10                                   | < 10 | 68         | < 10 | 50         |                                        |
| BB09543 | 201 202 | < 0.01 | 174  | 240  | 8   | < 2        | 4   | 15   | 0.11          | < 10                                   | < 10 | 83         | < 10 | 82         |                                        |
| BB09544 | 201 202 | < 0.01 | 482  | 390  | 8   | < 2        | 9   | 14   | 0.06          | < 10                                   | < 10 | 62         | < 10 | 60         |                                        |
| 8309545 | 201 202 | < 0.01 | 1080 | 140  | 2   | < 2        | 9   | 7    | 0.03          | < 10                                   | < 10 | 42         | < 10 | 38         |                                        |
| BB09546 | 201 202 | < 0.01 | 256  | 310  | 10  | < 2        | 5   | 13   | 0.06          | < 10                                   | < 10 | 64         | < 10 | 136        |                                        |
| 8809547 | 201 202 | 0.02   | 793  | 600  | 2   | 1 2        | 10  | 21   | 0.05          | < 10                                   | < 10 | 66         | < 10 | 70         |                                        |
| 2209549 | 201 202 | 0.01   | 175  | 320  | ŝ   | 22         | 4   | 10   | 0.06          | < 10                                   | < 10 | 51         | < 10 | 46         |                                        |
| BB09549 | 201 202 | 0.01   | 613  | 1110 | Ă   | < 2        | 8   | 37   | 0.03          | < 10                                   | < 10 | 65         | < 10 | 114        |                                        |
| 8809550 | 201 202 | < 0.01 | 397  | 460  | 2   | < 2        | ā   | 17   | 0.05          | < 10                                   | < 10 | 71         | < 10 | RO         |                                        |
| BB09551 | 201 202 | < 0.01 | 241  | 530  | 6   | 2          | 7   | 20   | 0.10          | < 10                                   | < 10 | 79         | < 10 | 72         |                                        |
|         |         |        |      |      | · · | _          |     |      |               |                                        |      |            |      |            |                                        |
| BB09552 | 201 202 | < 0.01 | 239  | 390  | 6   | < 2        | 6   | 20   | 0.12          | < 10                                   | < 10 | 85         | < 10 | 70         |                                        |
| BB09553 | 201 202 | 0.01   | 37   | 930  | 8   | < 2        | 10  | 35   | 0.09          | < 10                                   | < 10 | 77         | < 10 | 86         |                                        |
| BB09554 | 201 202 | < 0.01 | 57   | 560  | 10  | < 2        | 7   | 38   | 0.14          | < 10                                   | < 10 | 86         | < 10 | 86         |                                        |
| BB09555 | 201 202 | < 0.01 | 29   | 200  | 10  | < 2        | 4   | 21   | 0.07          | < 10                                   | < 10 | 59         | < 10 | 60         |                                        |
| BB09556 | 201 202 | < 0.01 | 82   | 120  | 2   | < 2        | 15  | 20   | 0.09          | < 10                                   | < 10 | 111        | < 10 | 66         |                                        |
|         |         |        |      |      |     |            |     | 4.0  | <u> </u>      |                                        |      |            | . 10 |            |                                        |
| BB0322/ | 201 202 | < 0.01 | 23   | 200  | 10  | < <u>4</u> | 2   | 12   | 0.02          | < 10                                   | < 10 | 40         | < 10 | 28         |                                        |
| BB03228 | 201 202 | 0.01   | 54   | 300  | 10  | 4          |     | 30   | 0.04          | < 10                                   | < 10 | 40         | < 10 | 12         |                                        |
| BB03223 | 201 202 | < 0.01 | 63   | 390  | 10  |            | 2   | 25   | 0.04          | < 10                                   | < 10 | 50         | < 10 | 76         |                                        |
| BB09360 | 201 202 | 0.01   | 67   | 300  | 10  | × 4        |     | 10   | 0.08          | < 10                                   | < 10 | 84<br>53   | < 10 | 84         |                                        |
| 857391  | 201 202 | < 0.01 | 31   | 340  | 10  | × 4        | •   | 10   | 0.01          | < 10                                   | < 10 | 53         | < 10 | 00         |                                        |
| BB09562 | 201 202 | 0.03   | 30   | 420  | 4   | < 2        | 5   | 20   | 0.05          | < 10                                   | < 10 | 60         | < 10 | 62         |                                        |
| BB09563 | 201 202 | < 0.01 | 49   | 360  | 10  | < 2        | 5   | 20   | 0.01          | < 10                                   | < 10 | 54         | < 10 | 94         |                                        |
| BB09564 | 201 202 | 0.01   | 49   | 450  | 10  | < 2        | 5   | 24 < | 0.01          | < 10                                   | < 10 | 59         | < 10 | 130        |                                        |
| BB09565 | 201 202 | < 0.01 | 35   | 840  | 18  | < 2        | 4   | 27 < | 0.01          | < 10                                   | < 10 | 28         | < 10 | 98         |                                        |
| BB09566 | 201 202 | 0.01   | 33   | 660  | 20  | < 2        | 4   | 24 < | 0.01          | < 10                                   | < 10 | 43         | < 10 | 146        |                                        |
| 1       |         |        |      |      |     |            |     |      |               |                                        |      |            |      |            |                                        |



\* PLEASE NOTE

## Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALYSIS

Page or :5-A Total Fayes :5 Certificate Date: 29-AUG-96 Invoice No. : 19628881 P.O. Number : Account : MPO

chle

A9628881

Project : ICE Comments:

1

### PREP λg **A1** λs Ba Be Bi Ca Cđ Co Cr Cu Fe Ga Ηg K La Ng Mn Mo SAMPLE \* \* CODE \* \* \* DDE DDM DDE DDE DDM DDE DDE DDM DDM DDE DDE ppm DDB **pp** BB09567 201 202 < 0.2 2.01 0.5 < 2 < 2 840 0.14 < 0.5 8 43 29 2.42 < 10 < 1 0.15 20 0.35 290 1 BB09568 201 202 < 0.2 2.08 6 480 < 0.5 < 2 0.28 < 0.5 9 38 6 2.43 < 10 < 1 0.09 20 0.55 220 1 BB09569 201 202 < 0.2 2.25 < 2 650 0.5 0.5 36 0.06 2 0.11 10 19 3.12 < 10 < 1 10 0.72 245 2 BB09570 201 202 < 0.2 3.31 12 510 0.5 2 0.32 < 0.5 11 54 23 3.83 0.05 20 0.58 310 10 < 1 1 BB09571 201 202 < 0.2 2.15 200 < 0.5 0.19 < 0.5 9 40 3.21 4 2 6 < 10 < 1 0.04 10 0.41 265 < 1 BB09572 201 202 16 < 0.2 2.16 350 < 0.5 < 2 0.12 < 0.5 8 38 12 3.25 < 10 < 1 0.05 10 0.51 215 2 BB09573 201 202 < 0.2 3.05 6 740 1.5 2 0.44 < 0.5 15 65 96 4.30 < 10 < 1 0.10 20 1.42 275 R < 0.5 BB09574 201 202 < 0.2 2.32 2 740 < 2 0.31 < 0.5 12 51 15 3.01 < 10 1 0.04 10 0.72 315 < 1 3309575 201 202 < 0.2 1.92 < 2 430 < 0.5 < 2 0.36 < 0.5 13 32 24 3.01 < 10 < 1 0.06 10 0.76 335 1 BB09576 201 202 < 0.2 2.04 < 2 450 < 0.5 2 0.26 < 0.5 9 35 10 2.63 0.05 < 10 < 1 10 0.54 275 < 1 BB09577 201 202 0.2 3.28 2 220 0.5 2 0.25 < 0.5 14 49 33 4.91 0.08 10 < 10 < 1 0.86 315 5 201 202 BB09578 < 0.2 2.30 6 320 < 0.5 < 2 0.18 < 0.5 8 39 17 2.43 < 10 0.05 10 < 1 0.38 160 2 201 202 < 10 BB09579 < 0.2 2.88 < 2 230 < 0.5 2 1.22 < 0.5 27 68 44 4.54 < 10 0.06 0.98 < 1 935 < 1 BB09580 201 202 290 4.89 < 0.2 2.90 < 2 < 0.5 2 0.56 0.5 17 50 29 10 0.06 < 10 0.96 < 1 555 1 BB09581 201 202 < 0.2 470 0.5 12 55 3.38 < 2 2 0.42 < 0.5 40 3.59 < 10 < 1 0.09 10 0.84 350 < 1 201 202 0.5 4.01 < 1 BB09582 < 0.2 3.47 2 340 < 2 0.42 < 0.5 16 62 46 < 10 < 1 0.08 10 0.96 555 BB09583 201 202 < 0.2 3.03 < 2 190 0.5 2 0.53 < 0.5 21 71 45 4.90 < 10 < 1 0.03 < 10 1.12 415 < < 1 0.57 BB09584 201 202 < 0.2 3.33 10 310 < 0.5 < 2 < 0.5 28 58 86 6.06 10 < 1 0.06 < 10 1.75 1375 < 1 < 0.2 BB09585 201 202 2.01 2 300 < 0.5 < 2 0.13 < 0.5 9 31 19 2.91 < 10 < 1 0.06 10 0.53 330 1 BB09586 201 202 < 0.2 3.36 4 390 0.5 2 0.67 < 0.5 35 25 37 8.38 10 0.05 < 1 < 10 1.50 1310 < 1 0.5 BB09587 201 202 < 0.2 3.61 < 2 550 2 0.93 < 0.5 29 48 41 8.05 10 < 1 0.06 10 1.71 990 1 **BB09588** 201 202 < 0.2 2.71 10 270 < 0.5 < 2 0.22 < 0.5 11 49 25 3.82 10 < 10 < 1 0.06 0.63 310 1 BB09589 201 202 < 0.2 3.70 950 0.5 0.30 26 < 2 2 < 0.5 110 48 5.10 < 10 0.06 < 1 < 10 1.27 1365 < 1 BB09590 201 202 < 0.2 3.70 < 2 670 0.5 < 2 0.41 < 0.5 20 86 68 4.91 10 0.06 < 1 10 1.36 940 < 1 BB12680 201 202 < 0.2 1.66 < 2 470 < 0.5 < 0.5 11 30 0.62 < 2 0.52 26 2.64 < 10 < 1 0.07 10 500 < 1 201 < 2 520 1.27 BB12681 202 < 0.2 1.88 < 0.5 < 2 < 0.5 9 33 77 2.38 < 10 < 1 0.10 10 0.57 490 1 201 202 170 < 0.2 < 0.5 BB12682 1.21 < 2 < 2 0.21 < 0.5 8 23 23 2.41 < 10 < 1 0.07 < 10 0.23 355 < 1 201 202 BB12683 0.4 1.43 < 2 470 < 0.5 < 2 1.04 < 0.5 6 26 42 1.86 < 10 < 1 0.09 10 0.36 410 < 1 **BB12684** 201 202 < 0.2 1.26 < 2 430 < 0.5 < 2 0.38 < 0.5 6 23 16 1.99 < 10 < 1 0.08 10 0.44 295 < 1 201 < 0.5 1.05 BB12685 202 < 0.2 1.22 < 2 450 < 2 < 0.5 6 23 43 1.73 < 10 < 1 0.06 10 0.34 400 < 1 **BB12686** 201 202 2 960 < 0.5 < 2 1.17 < 0.5 12 0.2 1.59 35 39 2.63 < 10 0.08 10 0.66 < 1 585 1 < 0.5 BB12687 201 202 < 0.2 570 < 0.5 23 1.11 4 < 2 0.81 9 26 1.95 < 10 < 1 0.05 10 0.51 325 < 1 201 202 BB12688 0.2 1.21 2 530 < 0.5 < 2 0.37 0.5 9 28 22 2.35 < 10 < 1 0.07 10 0.37 460 1 BB12689 201 202 < 0.2 1.59 < 2 860 < 0.5 < 2 0.70 0.5 11 47 31 2.24 < 10 < 1 0.04 < 10 0.55 585 < 1 BB12690 201 202 < 0.2 1.24 4 310 < 0.5 < 2 0.11 9 26 < 0.5 14 2.28 < 10 0.06 < 1 10 0.37 450 1 BB12691 201 202 < 0.2 0.92 < 2 320 < 0.5 < 2 0.48 < 0.5 9 21 23 1.97 < 10 < 10 < 1 0.08 575 0.26 < 1 201 202 270 0.29 33 BB12692 < 0.2 1.49 6 < 0.5 < 2 < 0.5 12 23 3.15 < 10 0.08 10 0.51 < 1 510 1 BB12693 201 202 520 < 0.5 < 2 0.54 9 27 21 < 0.2 1.44 < 2 < 0.5 2.43 < 10 0.07 10 330 < 1 0.66 < 1

CERTIFICATION:

40

INTERFERENCE: HIGH Cu on Bi and P



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page er :5-B Total r عدي :5 Certificate Date: 29-AUG-96 Invoice No. :19628881 P.O. Number Account :MPO

A9628881

Project : Comments: ICE

~

### \* PLEASE NOTE

| [       |              |          |           | _           |            |           | Sc                                     | -         | _1      |           |          |           |              | _         |               |
|---------|--------------|----------|-----------|-------------|------------|-----------|----------------------------------------|-----------|---------|-----------|----------|-----------|--------------|-----------|---------------|
| SAMPLE  | PREP<br>CODE | Na<br>%  | Ni<br>ppm | P<br>ppm    | Pb<br>ppm  | Sd<br>ppm | Sc<br>ppm                              | Sr<br>ppm | Ti<br>% | T1<br>ppm | U<br>PPm | V<br>ppm  | W<br>ppm     | Zn<br>ppm |               |
| 8809567 | 201 202      | 2 < 0.01 | 25        | 740         | 10         | 4         | ــــــــــــــــــــــــــــــــــــــ | 13        | 0.01    | < 10      | < 10     | 84        | < 10         | 110       |               |
| BB09568 | 201 202      | < 0.01   | 30        | 260         | 14         | - 4       | 3                                      | 10        | 0.03    | < 10      | < 10     | 78        | < 10         | 86        |               |
| BB09569 | 201 202      | < 0.01   | 27        | 230         | 14         | 6         | 3                                      | 11        | 0.01    | < 10      | < 10     | 106       | < 10         | 88        |               |
| BB09570 | 201 202      | 2 < 0.01 | 24        | 220         | 16         | 6         | 6                                      | 14        | 0.04    | < 10      | < 10     | 114       | < 10         | 116       |               |
| BB09571 | 201 202      | 2 < 0.01 | 16        | 230         | 6          | 2         | 3                                      | 7         | 0.05    | < 10      | < 10     | 95        | < 10         | 114       |               |
| BB09572 | 201 202      | 2 < 0.01 | 22        | 190         | 14         | 2         | 3                                      | 13        | 0.03    | < 10      | < 10     | 74        | < 10         | 70        |               |
| BB09573 | 201 202      | 2 < 0.01 | 75        | 370         | 12         | 4         | 6                                      | 30        | 0.07    | < 10      | < 10     | 176       | < 10         | 178       |               |
| BB09574 | 201 202      | < 0.01   | 26        | 240         | 6          | 4         | 4                                      | 24        | 0.07    | < 10      | < 10     | 80        | < 10         | 72        |               |
| BB09575 | 201 202      |          | 19        | 140         | 6          | < 2       | 3                                      | 13        | 0.06    | < 10      | < 10     | 79        | < 10         | 92        |               |
|         |              |          |           |             | <b>`</b>   |           |                                        |           |         |           |          |           |              |           |               |
| BB09577 | 201 202      | < 0.01   | 32        | 330         | 4          | < 2       | 6                                      | 16        | 0.12    | < 10      | < 10     | 174       | < 10         | 162       |               |
| BB09578 | 201 202      | < 0.01   | 19        | 150         | 2          | < 2       | 3                                      | 12        | 0.05    | < 10      | < 10     | 127       | < 10         | /6        |               |
| BB09579 | 201 202      |          | 30        | 400         | × 4<br>2 2 | 1 2       | y .                                    | 14        | 0.17    | < 10      | < 10     | 160       | < 10         | 146       |               |
| BB09581 | 201 202      | < 0.01   | 27        | 150         | 1          | 2         | 6                                      | 15        | 0.07    | < 10      | < 10     | 107       | < 10         | 86        |               |
|         |              |          |           |             |            |           |                                        |           |         |           |          |           |              |           |               |
| BB09582 | 201 202      | < 0.01   | 30        | 150         | 6          | 2         | 6                                      | 23        | 0.13    | < 10      | < 10     | 118       | < 10         | 68        |               |
| BB09583 | 201 202      | < 0.01   | 32        | 230         | < 2        | 2         | 11                                     | 43        | 0.12    | < 10      | < 10     | 162       | < 10         | 86        |               |
| BBU9384 | 201 202      |          | 21        | 260         | × 4        | × 4       | 11                                     | 10        | 0.04    | < 10      | < 10     | 194<br>69 | < 10         | 74        |               |
| BB09586 | 201 202      | < 0.01   | 22        | 580         | 4          | < 2       | 8                                      | 16        | 0.31    | < 10      | < 10     | 229       | < 10         | 142       |               |
|         | 1 201 202    |          | 30        | <b>F</b> 20 |            |           | 10                                     | 26        | 0.20    | < 10      | < 10     | 262       | < 10         | 126       |               |
| DD0936/ | 201 202      |          | 2▲        | 190         | Ì.         | < 2       | 4                                      | 15        | 0.08    | < 10      | < 10     | 98        | < 10         | 102       |               |
| BB09569 | 201 202      | 0.01     | 46        | 350         | 2          | 4         | 9                                      | 14        | 0.01    | < 10      | < 10     | 128       | < 10         | 112       |               |
| BB09590 | 201 202      | < 0.01   | 42        | 100         | 6          | 4         | 8                                      | 17        | 0.09    | < 10      | < 10     | 125       | < 10         | 76        |               |
| BB12680 | 201 202      | < 0.01   | 25        | 320         | 8          | 6         | 4                                      | 13        | 0.01    | < 10      | < 10     | 43        | < 10         | 80        |               |
| BB12681 | 201 202      | 0.02     | 25        | 740         | 2          | < 2       | 11                                     | 23        | 0.03    | < 10      | < 10     | 70        | < 10         | 62        |               |
| BB12682 | 201 202      | 0.03     | 12        | 230         | 4          | 4         | 3                                      | 7         | 0.06    | < 10      | < 10     | 73        | < 10         | 42        |               |
| BB12683 | 201 202      | 0.01     | 18        | 530         | 8          | < 2       | 3                                      | 23        | 0.01    | < 10      | < 10     | 46        | < 10         | 80        |               |
| BB12684 | 201 202      | < 0.01   | 17        | 340         | 4          | < 2       | 4                                      | 11        | 0.03    | < 10      | < 10     | 48        | < 10         | 70        |               |
| BB12685 | 201 202      | 0.01     | 19        | 610         | 2          | < 2       | 4                                      | 18        | 0.02    | < 10      | < 10     | 44        | < 10         | 68        |               |
| BB12686 | 201 202      | < 0.01   | 32        | 630         | 12         | < 2       | 5                                      | 36        | 0.03    | < 10      | < 10     | 52        | < 10         | 80        |               |
| BB12687 | 201 202      | < 0.01   | 24        | 810         | 4          | < 2       | 3                                      | 28        | 0.04    | < 10      | < 10     | 42        | < 10         | 70        |               |
| BB12688 | 201 202      | < 0.01   | 19        | 450         | 10         | < 2       | 2                                      | 15        | 0.03    | < 10      | < 10     | 55        | < 10         | 118       |               |
| BB12689 | 201 202      | 0.01     | 16        | 210         | 4          | × 2       | 2                                      | 1/        | 0.02    | < 10      | < 10     | 42        | < 10         | 00<br>7∡  |               |
|         |              |          |           |             |            |           |                                        |           |         |           |          |           |              |           |               |
| BB12691 | 201 202      | < 0.01   | 23        | 760         | 6          | 4         | 1                                      | 15        | 0.01    | < 10      | < 10     | 29        | < 10         | 82        |               |
| BB12692 | 201 202      |          | 24        | 100         | 10         |           | 3                                      | 12        | 0.04    | < 10      | < 10     | 60        | < 10<br>< 10 | 54        |               |
| BB14073 | 101 202      | < 0.01   | 13        | 130         | TO         | × 4       | -                                      | 14        | 4.04    | × 10      | × 10     |           | 10           | 74        |               |
|         |              | 1        |           |             |            |           |                                        |           |         |           |          |           |              |           |               |
| L       |              | ]        |           |             |            |           |                                        |           |         |           |          |           |              |           | •             |
|         |              |          |           |             |            |           |                                        |           |         |           |          |           |              |           | 11. toBuchlo. |
|         |              |          |           |             |            |           |                                        |           |         |           |          |           | (            | CERTIFIC  | ATION: JUNIO  |



.

# **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

| 212 Brooksbank Ave.,     | North Vancouver   |
|--------------------------|-------------------|
| British Columbia, Canada | a V7J 2C1         |
| PHONE: 604-984-0221      | FAX: 604-984-0218 |
|                          |                   |

o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page per : 1-A Total , jas : 1 Certificate Date: 29-AUG-96 Invoice No. P.O. Number :19628777 Account : MPO

Project : Comments: ICE

### **CERTIFICATE OF ANALYSIS**

A9628777

| SAMPLE                                              | PREP<br>CODE                                             | λg<br>ppm                                       | A1<br>%                              | As<br>ppm                | Ba<br>ppm                        | Be<br>ppm                                          | Bi<br>ppm                              | Ca<br>%                              | Cđ<br>ppm                           | Co<br>ppm                  | Cr<br>ppm                     | Cu<br>ppm                      | Fe<br>%                               | Ga<br>ppm                                | Hg<br>ppm                              | К<br>%                                 | La<br>ppm                                    | Mg<br>%                              | Mn<br>ppm                          | Mo<br>ppm                 |
|-----------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------|----------------------------------|----------------------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------|----------------------------|-------------------------------|--------------------------------|---------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------|---------------------------|
| N111101<br>N111102<br>N111103<br>N111104<br>N111105 | 205 22<br>205 22<br>205 22<br>205 22<br>205 22<br>205 22 | 6 < 0.2<br>6 < 0.2<br>6 < 0.2<br>6 0.6<br>6 0.4 | 3.47<br>3.27<br>3.97<br>4.71<br>5.23 | < 2<br>6<br>8<br>10<br>8 | 220<br>440<br>1620<br>120<br>570 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 1.92<br>2.34<br>3.78<br>0.33<br>2.12 | 2.0<br>< 0.5<br>< 0.5<br>1.5<br>2.5 | 77<br>55<br>63<br>63<br>50 | 60<br>49<br>154<br>148<br>185 | 1765<br>71<br>95<br>357<br>310 | 8.14<br>7.14<br>7.92<br>10.70<br>9.48 | 10<br>10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.05<br>0.01<br>0.03<br>0.03<br>0.02   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.26<br>2.48<br>3.69<br>4.39<br>5.55 | 1025<br>870<br>1385<br>970<br>1255 | 1<br>< 1<br>< 1<br>1<br>1 |
| N111106<br>N111107<br>N111108                       | 205 22<br>205 22<br>205 22                               | 6 0.8<br>6 < 0.2<br>6 < 0.2                     | 5.61<br>4.53<br>4.59                 | 10<br>10<br>8            | 10<br>90<br>80                   | < 0.5<br>< 0.5<br>< 0.5                            | < 2<br>< 2<br>6                        | 0.85<br>3.49<br>2.86                 | 0.5<br>< 0.5<br>< 0.5               | 44<br>31<br>27             | 230<br>209<br>146             | 458<br>78<br>63                | 12.05<br>7.59<br>5.86                 | < 10<br>< 10<br>< 10                     | < 1 < < 1<br>< 1                       | <pre>&lt; 0.01<br/>0.05<br/>0.05</pre> | < 10<br>< 10<br>< 10                         | 5.61<br>4.91<br>4.19                 | 1315<br>1380<br>935                | 1<br>< 1<br>< 1           |
|                                                     |                                                          |                                                 |                                      |                          |                                  |                                                    |                                        |                                      |                                     |                            |                               |                                |                                       |                                          |                                        |                                        |                                              | •                                    |                                    |                           |

Sant Buchler CERTIFICATION:\_



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Project : ICE Comments:

|                                                     |                                 |                                        | -                                              |                            |                                 |                           |                                         |                            |                            |                                      | CE                                   | RIIFI                                |                                 | A9628///                             |                                    |   |  |
|-----------------------------------------------------|---------------------------------|----------------------------------------|------------------------------------------------|----------------------------|---------------------------------|---------------------------|-----------------------------------------|----------------------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|------------------------------------|---|--|
| SAMPLE                                              | PR<br>CO                        | ep<br>De                               | Na<br>%                                        | Ni<br>ppm                  | P<br>ppm                        | Pb<br>ppm                 | Sb<br>ppm                               | Sc<br>ppm                  | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                            | U<br>ppm                             | V<br>ppm                        | W<br>ppm                             | Zn<br>ppm                          |   |  |
| N111101<br>N111102<br>N111103<br>N111104<br>N111105 | 205<br>205<br>205<br>205<br>205 | 226<br>226<br>226<br>226<br>226<br>226 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 42<br>37<br>50<br>47<br>51 | 460<br>490<br>350<br>300<br>300 | < 2<br>6<br>< 2<br>6<br>4 | < 2<br>2<br>< 2<br>2                    | 20<br>15<br>24<br>21<br>21 | 15<br>15<br>35<br>10<br>18 | 0.29<br>0.39<br>0.33<br>0.01<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 202<br>189<br>232<br>209<br>200 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1575<br>948<br>426<br>1480<br>1575 |   |  |
| N111105<br>N111106<br>N111107<br>N111108            | 205                             | 226 226 226                            | < 0.01<br>< 0.01<br>< 0.01                     | 54<br>45<br>39             | 280<br>290<br>290               | 6<br>4<br>< 2             | < 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 24 23 16                   | 16<br>43<br>20             | 0.01<br>0.12<br>0.28                 | < 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10         | 226<br>198<br>184               | < 10<br>< 10<br>< 10<br>< 10         | 710<br>476<br>370                  |   |  |
|                                                     |                                 |                                        |                                                |                            |                                 |                           |                                         |                            |                            |                                      |                                      |                                      |                                 | <b>-</b>                             |                                    | • |  |

------


Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page per :1-A Total. Jes :1 Certificate Date: 21-AUG-96 Invoice No. : 19627904 P.O. Number : Account : MPO

Project : ICE Comments:

| • ···································· |                    |              |              | <u>.</u> . |            |                |            |              |            | CE        | RTIF       | CATE       | OF A         | NALY         | 'SIS       | /            | <b>\9627</b> | 904          |                   |           |
|----------------------------------------|--------------------|--------------|--------------|------------|------------|----------------|------------|--------------|------------|-----------|------------|------------|--------------|--------------|------------|--------------|--------------|--------------|-------------------|-----------|
| SAMPLE                                 | PREP<br>CODE       | λg<br>ppm    | A1<br>%      | As<br>ppm  | Ba<br>ppm  | Be<br>ppm      | Bi<br>ppm  | Ca<br>%      | Cđ<br>ppm  | Co<br>ppm | Cr<br>ppm  | Cu<br>ppm  | Fe<br>%      | Ga<br>ppm    | Hg<br>ppm  | K<br>%       | La<br>ppm    | Mg<br>%      | Mn<br>ppm         | Mo<br>ppm |
| IC 96-01 N111075<br>IC 96-01 N111076   | 205 226<br>205 226 | 0.2<br>< 0.2 | 0.81<br>0.91 | < 2<br>< 2 | 690<br>530 | < 0.5<br>< 0.5 | < 2<br>< 2 | 0.08<br>0.08 | 0.5<br>0.5 | 17<br>20  | 163<br>105 | 334<br>337 | 1.80<br>2.29 | < 10<br>< 10 | < 1<br>< 1 | 0.18<br>0.12 | < 10<br>< 10 | 0.28<br>0.40 | <b>495</b><br>705 | 4<br>3    |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   | i         |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            |              |              |            |              |              |              |                   |           |
|                                        |                    |              |              |            |            |                |            |              |            |           |            |            | <u>.</u>     |              |            |              |              |              |                   |           |

CERTIFICATION:

tart Bichles



Analytical Chemists \* Geochemists \*\*Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pag ber :1-B Tota, Jes 11 Certificate Date: 21-AUG-96 Invoice No. : 19627904 P.O. Number : MPO Account

Project : ICE Comments:

| SAMPLE         Na         Ni         P         Pb         Sb         Sc         Sr         Ti         Tl         U         V         N         Zn           96-01 N111075         205         226         < 0.01         24         100         10         < 2         1         5 < 0.01         < 10         21         23           10         2         < 0.01         < 0.01         24         100         10         < 2         1         5 < 0.01         < 10         21         23           10         2         < 2         1         5 < 0.01         < 10         24          10         2         < 2         1         5 < 0.01         < 10         24          10         2         < 2         1         5 < 0.01         < 10         24         < 10         228           96-01 N111075         205         226         < 0.01 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 96-01 M111075 205 226 < 0.01 24 100 10 < 2 1 5 < 0.01 < 10 < 10 27 < 10 162<br>96-01 M111076 205 226 < 0.01 24 110 2 < 2 1 4 < 0.01 < 10 < 10 24 < 10 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 LR.V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

EXPATRIATE RESOURCES I TO



### **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| o: | EXPATRIATE RESOURCES LTD.                      |
|----|------------------------------------------------|
|    | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|    | 1016 - 510 W. HASTINGS ST.                     |
|    | VANCOUVER, BC                                  |
|    | V6B 1L8                                        |

**CERTIFICATE OF ANALYSIS** 

Page ⊳er:1-A Certificate Date: 12-AUG-96 Invoice No. : 19627236 P.O. Number . Account : MPO

A9627236

Project : Comments: ICE

و مسر ر

#### \* PLEASE NOTE

| SAMPLE                                                         | PREP<br>CODE                                                   | Au ppb<br>RUSH                                           | Cu<br>% | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                                            | Ba<br>ppm                        | Be<br>ppm                                          | Bi<br>ppm                               | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                  | Cr<br>ppm                       | Cu<br>ppm                  | Fe<br>%                              | Ga<br>ppm                                    | Hg<br>ppm                            | K<br>%                                   | La<br>ppm                                    | Mg<br>%                              |
|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------|----------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------------|----------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------|
| N110935<br>N110936<br>N110937<br>N110938<br>N110938            | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>     |         | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.35<br>4.17<br>1.03<br>4.32<br>3.32 | < 2<br>< 2<br>< 2<br>< 2<br>< 2                      | 80<br>60<br>50<br>150<br>150     | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | 6<br>< 2<br>< 2<br>< 2<br>8             | 4.05<br>4.55<br>7.24<br>4.12<br>2.11 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5          | 32<br>40<br>8<br>36<br>29  | 86<br>97<br>113<br>21<br>15     | 66<br>82<br>79<br>56<br>69 | 6.28<br>8.55<br>2.91<br>8.94<br>7.20 | < 10<br>10<br>< 10<br>10<br>< 10             | < 1<br>< 1<br>< 1<br>< 1<br>< 1      | 0.04<br>0.02<br>< 0.01<br>0.02<br>0.03   | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 2.19<br>2.56<br>0.54<br>2.33<br>1.71 |
| N110940<br>N110941<br>N110942<br>N110943<br>N110944            | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>     |         | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.92<br>3.66<br>1.34<br>3.36<br>3.30 | < 2<br>2<br>< 2<br>2<br>4                            | 130<br>130<br>860<br>420<br>140  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>2<br>< 2<br>2<br>2<br>2          | 3.19<br>4.49<br>6.97<br>5.73<br>4.63 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 35<br>35<br>8<br>34<br>34  | 17<br>19<br>43<br>81<br>87      | 66<br>63<br>29<br>61<br>69 | 8.28<br>8.06<br>4.05<br>6.87<br>7.46 | 10<br>10<br>< 10<br>10<br>10                 | 1                                    | 0.01<br>0.06<br>0.03<br>0.06<br>0.05     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.32<br>1.98<br>0.59<br>2.30<br>2.58 |
| N110945<br>N110946<br>N110947<br>N110948<br>N110949            | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | < 5<br>< 5<br>< 5<br>< 5<br>< 5                          |         | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.91<br>2.77<br>3.23<br>3.11<br>3.61 | 2<br>< 2<br>2<br>< 2<br>< 2<br>< 2                   | 90<br>90<br>70<br>40<br>220      | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 8<br>2<br>6<br>2<br>6                   | 5.13<br>2.56<br>3.22<br>2.47<br>5.17 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 31<br>25<br>29<br>30<br>30 | 35<br>16<br>41<br>44<br>77      | 76<br>56<br>63<br>67<br>68 | 7.08<br>5.94<br>6.41<br>6.20<br>6.79 | 10<br>10<br>10<br>< 10<br>< 10               | < 1<br>< 1<br>1<br>< 1<br>< 1<br>< 1 | 0.06<br>0.05<br>0.04<br>0.01<br>0.08     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.30<br>1.71<br>2.49<br>2.59<br>2.69 |
| N110950<br>N111001<br>N111002<br>N111003<br>N111004            | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>            |         | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.07<br>3.94<br>3.46<br>2.98<br>2.82 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 1160<br>450<br>90<br>120<br>590  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>4<br>6<br>6                      | 8.83<br>4.90<br>3.99<br>3.22<br>2.44 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 27<br>32<br>28<br>26<br>25 | 103<br>89<br>43<br>39<br>19     | 53<br>69<br>63<br>72<br>57 | 5.76<br>6.87<br>6.49<br>5.70<br>6.55 | < 10<br>10<br>10<br>< 10<br>< 10             | 2<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.05<br>< 0.01<br>< 0.01<br>0.01<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.64<br>2.70<br>2.35<br>2.16<br>2.06 |
| N111005<br>N111006<br>N111007<br>N111008<br>N111008<br>N111009 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>     |         | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 2.90<br>2.37<br>2.75<br>2.64<br>2.79 | 2<br>< 2<br>2<br>< 2<br>< 2<br>< 2                   | 520<br>690<br>350<br>430<br>650  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 10<br>6<br>4<br>4<br>2                  | 4.91<br>2.97<br>3.39<br>2.37<br>2.86 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 25<br>25<br>27<br>25<br>28 | 20<br>19<br>29<br>16<br>24      | 54<br>44<br>37<br>44<br>57 | 6.40<br>6.37<br>6.96<br>6.50<br>6.79 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.08<br>0.05<br>0.03<br>0.04<br>0.08     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.18<br>1.81<br>2.71<br>2.06<br>2.26 |
| N111010<br>N111011<br>N111012<br>N111013<br>N111014            | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre>     |         | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 2.68<br>3.32<br>2.75<br>2.64<br>2.89 | < 2<br>2<br>< 2<br>< 2<br>< 2<br>< 2                 | 440<br>690<br>310<br>530<br>1100 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 2<br>4<br>8<br>8<br>6                   | 3.20<br>2.61<br>1.95<br>2.02<br>2.84 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 27<br>32<br>28<br>25<br>30 | 17<br>41<br>24<br>24<br>29      | 53<br>59<br>57<br>55<br>53 | 6.27<br>7.60<br>6.35<br>6.18<br>7.43 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1      | 0.05<br>0.06<br>0.05<br>0.08<br>0.07     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.08<br>2.89<br>1.81<br>1.74<br>2.69 |
| N111015<br>N111016<br>N111017<br>N111017<br>N111018<br>N111019 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5&lt;</pre>        |         | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 2.80<br>2.74<br>2.33<br>2.39<br>3.59 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 510<br>470<br>290<br>80<br>110   | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 6<br>4<br>6<br>2                        | 2.56<br>2.10<br>2.40<br>2.32<br>3.38 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 27<br>29<br>25<br>21<br>24 | 21<br>26<br>22<br>22<br>106     | 57<br>59<br>59<br>58<br>82 | 6.56<br>6.69<br>5.85<br>6.85<br>4.39 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1<br>< 1<br>< 1<br>< 1<br>1          | 0.11<br>0.12<br>0.13<br>0.02<br>0.08     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.17<br>2.32<br>1.53<br>1.45<br>2.15 |
| N111020<br>N111021<br>N111022<br>N111023<br>N111023<br>N111024 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5&lt;</pre> |         | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.93<br>4.27<br>4.03<br>4.56<br>4.09 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 80<br>60<br>50<br>60<br>120      | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>2<br>2 | 3.92<br>4.17<br>3.55<br>3.90<br>3.58 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 25<br>23<br>25<br>26<br>27 | 124<br>134<br>112<br>143<br>160 | 79<br>73<br>82<br>77<br>96 | 4.36<br>4.33<br>4.46<br>4.86<br>4.76 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.09<br>0.05<br>0.12<br>0.08<br>0.08     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.57<br>2.45<br>2.45<br>2.86<br>3.00 |
|                                                                |                                                                |                                                          |         |                                                    |                                      |                                                      |                                  |                                                    |                                         |                                      |                                                    |                            |                                 |                            |                                      |                                              |                                      |                                          |                                              |                                      |

Hant Bichler CERTIFICATION:



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218

fo: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Pagu per :1-B Total uses :3 Certificate Date: 12-AUG-96 Invoice No. :19627236 P.O. Number :MPO Account

A9627236

| Project : | ICE |
|-----------|-----|
| Comments: |     |

-

#### \* PLEASE NOTE

|         |        |            |            |             |          |            |            |            |            | Contractor and Contractor of Contractor |          |         |              |          |          |              |           |              |
|---------|--------|------------|------------|-------------|----------|------------|------------|------------|------------|-----------------------------------------|----------|---------|--------------|----------|----------|--------------|-----------|--------------|
|         |        |            | 16-        | W.          |          | ***        |            | 71         | a.         | <b>6</b> -                              | a        | m i     | m1           |          | v        | N            | 7.5       |              |
| G110777 | PREP   |            | Mn         | <b>1</b> 10 | N8.<br>¢ | NI         | P          | PD         | 30         | 30                                      | 31       | TI<br>Q | TI           |          | <b>v</b> |              | 211       |              |
| SARPLE  | CODE   |            | ррш        | ррш         |          | ըրա        | ррш        | ppm        | ЪЪт        | ърт                                     | ppm      |         | <u>р</u> рш  | ЪЪщ      | Ъħщ      | ppa          | <br>₽₽m   |              |
| N110935 | 255 29 | 5          | 1150       | < 1         | c 0.01   | 40         | 590        | < 2        | 2          | 21                                      | 43       | 0.37    | < 10         | < 10     | 234      | < 10         | 80        |              |
| N110936 | 255 29 | 5          | 1205       | 1           | 0.01     | 44         | 690        | < 2        | 2          | 24                                      | 19       | 0.20    | < 10         | < 10     | 279      | < 10         | 100       |              |
| N110937 | 255 29 | 5          | 1250       | < 1 -       | < 0.01   | 13         | 1270       | < 2        | < 2        | 5                                       | 40       | 0.01    | < 10         | < 10     | 92       | 150          | 18        |              |
| N110938 | 255 29 | 5          | 1155       | 2 •         | < 0.01   | 23         | 760        | < 2        | < 2        | 25                                      | 31       | 0.16    | < 10         | < 10     | 298      | < 10         | 104       |              |
| N110939 | 255 29 | 95         | 895        | 1 •         | < 0.01   | 21         | 740        | < 2        | < 2        | 10                                      | 17       | 0.50    | < 10         | < 10     | 223      | < 10         | 92        |              |
| N110940 | 255 29 | 95         | 1170       | 1 •         | < 0.01   | 23         | 700        | < 2        | < 2        | 21                                      | 24       | 0.31    | < 10         | < 10     | 252      | < 10         | 108       |              |
| N110941 | 255 29 | 95         | 1155       | 1 •         | < 0.01   | 27         | 700        | < 2        | 2          | 26                                      | 32       | 0.26    | < 10         | < 10     | 269      | < 10         | 102       |              |
| N110942 | 255 29 | 95         | 860        | < 1 •       | < 0.01   | 18         | 3950       | 2          | < 2        | 3                                       | 43 <     | < 0.01  | < 10         | < 10     | 103      | < 10         | 14        |              |
| N110943 | 255 29 | 5          | 1130       | < 1         | 0.01     | 38         | 530        | < 2        | < 2        | 21                                      | 39       | 0.33    | < 10         | < 10     | 235      | < 10         | 78        |              |
| N110944 | 255 29 | 15         | 995        | < 1 •       | 0.01     | 37         | 580        | < 4        | < 4        | 31                                      | 37       | 0.44    | < 10         | < 10     | 409      | < 10         | 84        |              |
| N110945 | 255 29 | 5          | 950        | 1           | 0.01     | 29         | 690        | < 2        | 2          | 16                                      | 61       | 0.58    | < 10         | < 10     | 270      | < 10         | 86        |              |
| N110946 | 255 29 | 25         | 650        | 1 .         | 0.01     | 24         | 600        | < 2        | < 2        | y<br>10                                 | 17       | 0.34    | < 10         | < 10     | 192      | < 10         | 72        |              |
| N110947 | 255 29 | 15         | 855        | 1 4         |          | 29         | 560        | < 2        | < 2        | 19                                      | 33       | 0.30    | < 10         | < 10     | 101      | < 10         | 79        |              |
| N110940 | 255 20 | 2          | 1105       | 2 1 ·       | 0.01     | 37         | 550        | < 2        | 2          | 27                                      | 85       | 0.45    | < 10         | < 10     | 266      | < 10         | 82        |              |
|         |        | <u> </u>   | 1100       | · •         |          |            |            | · •        |            |                                         |          |         |              |          |          |              |           |              |
| N110950 | 255 29 | )5         | 1550       | < 1         | 0.01     | 33         | 400        | < 2        | < 2        | 24                                      | 87       | 0.21    | < 10         | < 10     | 211      | < 10         | 64        |              |
| N111001 | 255 29 | 5          | 1145       | 1 •         | < 0.01   | 37         | 500        | < 2        | < 2        | 25                                      | 32       | 0.44    | < 10         | < 10     | 257      | < 10         | 82        |              |
| N111002 | 255 29 | 5          | 1000       | 1           |          | 31         | 510        | < 2        | < 2        | 16                                      | 28       | 0.35    | < 10         | < 10     | 198      | < 10         | /6        |              |
| N111003 | 255 29 | 15         | 745        | 1 4         |          | 30         | 5∡0<br>720 | < 4<br>2 2 | 12         | 10                                      | 34       | 0.45    | < 10         | < 10     | 220      | < 10         | 00<br>Q.4 |              |
| MIII004 | 455 45 | · · ·      | /05        | · · ·       | . 0.01   |            |            | × 4        | × •        |                                         |          |         | × 10         | < 10     |          | • 10         |           |              |
| N111005 | 255 29 | 5          | 1055       | 1 •         | 0.01     | 21         | 640        | < 2        | 2          | 16                                      | 65       | 0.63    | < 10         | < 10     | 257      | < 10         | 76        |              |
| N111006 | 255 29 | 5          | 830        | < 1 •       | < 0.01   | 20         | 690        | < 2        | < 2        | 12                                      | 41       | 0.52    | < 10         | < 10     | 242      | < 10         | 74        |              |
| N111007 | 255 29 | 5          | 915        | < 1 <       | 0.01     | 20         | 590        | < 2        | < 2        | 18                                      | 41       | 0.46    | < 10         | < 10     | 249      | < 10         | 78        |              |
| N111008 | 255 29 | 5          | 760        |             | 0.01     | 1/         | 730        |            | < <u>4</u> | 15                                      | 38       | 0.41    | < 10         | < 10     | 220      | < 10         | 90        |              |
|         | 455 45 | , <b>3</b> | 380        | · · ·       | . 0.01   | **         |            | · •        | -          |                                         |          |         | × 10         | < 10     |          | · 10         |           |              |
| N111010 | 255 29 | 5          | 955        | 1 -         | < 0.01   | 21         | 650        | < 2        | < 2        | 11                                      | 43       | 0.40    | < 10         | < 10     | 213      | < 10         | 84        |              |
| N111011 | 255 29 | 5          | 1045       | 1 •         | < 0.01   | 28         | 700        | < 2        | < 2        | 23                                      | 53       | 0.48    | < 10         | < 10     | 270      | < 10         | 96        |              |
| N111012 | 255 29 | 5          | 820        | 1 •         | 0.01     | 25         | 720        | < 2        | 2          | 10                                      | 42       | 0.48    | < 10         | < 10     | 196      | < 10         | 90        |              |
| N111013 | 255 29 | 15         | 795        | 1           | 0.01     | 23         | 650        | < 2        | 2          | 10                                      | 42<br>E0 | 0.50    | < 10         | < 10     | 204      | < 10         | 84        |              |
| N111014 | 255 29 | 5          | 1090       | 1 4         | 0.01     | <b>4</b> 5 | 910        | < 4        | < 4        | 19                                      | 39       | 0.43    | × 10         | × 10     | <u> </u> | × 10         |           |              |
| N111015 | 255 29 | 5          | 880        | 1 <         | 0.01     | 24         | 650        | < 2        | < 2        | 15                                      | 43       | 0.46    | < 10         | < 10     | 220      | < 10         | 86        |              |
| N111016 | 255 29 | 5          | 860        | < 1 •       | < 0.01   | 25         | 710        | < 2        | 2          | 15                                      | 43       | 0.47    | < 10         | < 10     | 211      | < 10         | 86        |              |
| N111017 | 255 29 | 15         | 930        | 1           | 0.01     | 23         | 650        | < 2        | <u> </u>   | y<br>11                                 | 26       | 0.46    | < 10         | < 10     | 180      | < 10         | 78        |              |
| N111018 | 255 29 |            | 715        | < 1 <       | 0.01     | 10         | 210        |            |            | 11                                      | 15       | 0.61    | < 10         | < 10     | 140      | < 10         | 56        |              |
| MILIOIS | 455 45 |            | /50        | < I         | 0.03     |            | 310        | <u> </u>   | <u> </u>   | <b>.</b>                                | 15       |         |              | < 10<br> | 140      | · 10         |           |              |
| N111020 | 255 29 | 5          | 775        | < 1         | 0.01     | 55         | 270        | < 2        | 2          | 11                                      | 16       | 0.27    | < 10         | < 10     | 138      | < 10         | 54        |              |
| N111021 | 255 29 | 2          | 685<br>775 | < 1         | 0.03     | 55         | 290<br>200 | < 4<br>2 3 | 1 2        | 11                                      | 10       | 0.20    | < 10<br>< 10 | < 10     | 176      | < 10<br>< 10 | 50        |              |
| N111022 | 255 29 | 5          | 749<br>800 | < <u>1</u>  | 0.04     | 20<br>01   | 280        | < 2        | 2          | 13                                      | 18       | 0.30    | < 10         | < 10     | 159      | < 10         | 56        |              |
| N111024 | 255 29 | 5          | 815        | 1           | 0.01     | 65         | 270        | < 2        | 2          | 15                                      | 13       | 0.29    | < 10         | < 10     | 161      | < 10         | 58        |              |
|         |        |            | ***        | -           | ****     | ••         |            | • -        | -          |                                         |          |         | 2            |          |          |              |           |              |
| L       |        |            |            |             |          |            |            |            |            |                                         |          |         |              |          |          |              |           |              |
|         |        |            |            |             |          |            |            |            |            |                                         |          |         |              | ~        | COTICI   | ATION        | - 14      | Tart Sichles |

CERTIFICATION:



#### Chemex Labs Ltd. Analytical Chemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page per :2-A Total Pages :3 Certificate Date: 12-AUG-96 Invoice No. :19627236 P.O. Number : Account :MPO

A9627236

A Buchles

CERTIFICATION

Project : ICE Comments:

#### \* PLEASE NOTE

|         | PRE | SP  | Au ppb | Cu    | λg    | <b>A</b> 1 | As         | Ba         | Be    | Bi    | Ca   | Cđ    | Co       | Cr  | Cu     | Fe     | Ga   | Eg       | K      | La   | Mg   |
|---------|-----|-----|--------|-------|-------|------------|------------|------------|-------|-------|------|-------|----------|-----|--------|--------|------|----------|--------|------|------|
| SAMPLE  | COL | )E  | RUSH   | *     | ppm   | *          | ppm        | ppm        | ppm   | ppm   | %    | ppm   | ppm      | ppm | ppm    | *      | ppm  | ppm      | *      | ppm  | *    |
| N111025 | 255 | 295 | < 5    |       | < 0.2 | 3.50       | < 2        | 50         | < 0.5 | < 2   | 2.95 | < 0.5 | 35       | 163 | 534    | 5.58   | < 10 | < 1      | 0.10   | < 10 | 2.74 |
| N111026 | 255 | 295 | 40     | 1.32  | 2.2   | 4.34       | 4          | < 10       | < 0.5 | Intf* | 0.69 | 1.5   | 140      | 155 | >10000 | 13.50  | < 10 | 2        | 0.01   | < 10 | 3.37 |
| N111027 | 255 | 295 | 50     | 1.18  | 1.6   | 4.12       | 8          | < 10       | < 0.5 | Intf* | 0.22 | 3.0   | 112      | 150 | >10000 | 12.35  | < 10 | 2        | < 0.01 | < 10 | 3.28 |
| N111028 | 255 | 295 | 15     | 0.05  | < 0.2 | 5.04       | 2          | 10         | < 0.5 | < 2   | 0.10 | < 0.5 | 109      | 159 | 451    | 13.10  | < 10 | <b>1</b> | < 0.01 | < 10 | 3.66 |
| N111029 | 255 | 295 | 10     | 0.09  | 0.2   | 3.65       | < 2        | < 10       | < 0.5 | < 2   | 0.66 | < 0.5 | 82       | 112 | 806    | 13.65  | < 10 | < 1      | < 0.01 | < 10 | 2.94 |
| N111030 | 255 | 295 | 10     | 0.03  | < 0.2 | 3.62       | 6          | < 10       | < 0.5 | < 2   | 0.40 | < 0.5 | 73       | 102 | 190    | 14.90  | < 10 | 1        | < 0.01 | < 10 | 2.84 |
| N111031 | 255 | 295 | < 5    | 0.01  | < 0.2 | 6.57       | < 2        | < 10       | < 0.5 | < 2   | 0.12 | < 0.5 | 104      | 129 | 57     | 13.45  | 10   | 1 -      | < 0.01 | < 10 | 5.76 |
| N111032 | 255 | 295 | 10     | 0.12  | 0.4   | 5.61       | 4          | < 10       | < 0.5 | < 2   | 0.14 | < 0.5 | 111      | 120 | 1070   | >15.00 | 10   | 1        | < 0.01 | < 10 | 4.53 |
| N111033 | 255 | 295 | 5      | 0.01  | < 0.2 | 5.06       | < 2        | < 10       | < 0.5 | < 2   | 0.27 | < 0.5 | 88       | 185 | 23     | >15.00 | < 10 | < 1 -    | < 0.01 | < 10 | 3.98 |
| N111034 | 255 | 295 | 60     | 0.02  | 0.2   | 3.50       | < 2        | < 10       | < 0.5 | < 2   | 1.93 | 1.5   | 75       | 139 | 127    | 14.45  | < 10 | 1 ·      | < 0.01 | < 10 | 2.62 |
| N111035 | 255 | 295 | 10     | *     | < 0.2 | 6.07       | < 2        | < 10       | < 0.5 | < 2   | 0.13 | < 0.5 | 88       | 140 | 22     | 13.10  | 10   | < 1      | < 0.01 | < 10 | 4.71 |
| N111036 | 255 | 295 | 20     |       | 0.6   | 5.50       | < 2        | 30         | < 0.5 | < 2   | 0.16 | 4.5   | 106      | 140 | 315    | 13.30  | 10   | < 1 -    | < 0.01 | < 10 | 3.65 |
| N111037 | 255 | 295 | 30     |       | 0.2   | 5.20       | < 2        | 10         | < 0.5 | < 2   | 0.25 | 25.0  | 110      | 126 | 240    | 12.35  | 10   | 3 -      | < 0.01 | < 10 | 3.70 |
| N111038 | 255 | 295 | 45     |       | < 0.2 | 6.48       | < 2        | 10         | < 0.5 | < 2   | 0.27 | 9.5   | 69       | 118 | 122    | 13.55  | 10   | 1 ·      | < 0.01 | < 10 | 4.84 |
| N111039 | 255 | 295 | 15     |       | 0.2   | 5.80       | 6          | 10         | < 0.5 | < 2   | 0.41 | 1.5   | 62       | 114 | 570    | 12.70  | 10   | 2 ·      | < 0.01 | < 10 | 4.71 |
| N111040 | 255 | 295 | 10     |       | < 0.2 | 5.45       | < 2        | 110        | < 0.5 | 2     | 1.25 | 2.5   | 50       | 115 | 397    | 10.75  | 10   | 1        | 0.04   | < 10 | 4.90 |
| N111041 | 255 | 295 | 10     |       | < 0.2 | 3.71       | < 2        | 80         | < 0.5 | < 2   | 1.05 | < 0.5 | 37       | 115 | 251    | 8.30   | < 10 | 1 -      | < 0.01 | < 10 | 3.50 |
| N111042 | 255 | 295 | < 5    |       | < 0.2 | 4.63       | < 2        | 160        | < 0.5 | < 2   | 1.54 | < 0.5 | 34       | 119 | 183    | 8.21   | < 10 | 1        | 0.01   | < 10 | 4.48 |
| N111043 | 255 | 295 | < 5    |       | < 0.2 | 4.13       | < 2        | 230        | < 0.5 | 4     | 1.86 | < 0.5 | 33       | 100 | 142    | 6.99   | < 10 | < 1      | 0.01   | < 10 | 4.15 |
| N111044 | 255 | 295 | < 5    |       | < 0.2 | 3.68       | 2          | 170        | < 0.5 | 2     | 1.86 | < 0.5 | 31       | 105 | 105    | 6.29   | < 10 | 1        | 0.05   | < 10 | 3.77 |
| N111045 | 255 | 295 | < 5    | ***** | < 0.2 | 3.81       | < 2        | 190        | < 0.5 | 2     | 2.41 | < 0.5 | 32       | 154 | 101    | 6.28   | < 10 | < 1      | 0.05   | < 10 | 3.84 |
| N111046 | 255 | 295 | < 5    |       | < 0.2 | 5.74       | < 2        | 10         | < 0.5 | 6     | 1.74 | < 0.5 | 57       | 97  | 228    | 10.05  | 10   | 1 ·      | < 0.01 | < 10 | 5.06 |
| N111047 | 255 | 295 | < 5    |       | < 0.2 | 5.58       | < 2        | 10         | < 0.5 | < 2   | 1.42 | < 0.5 | 58       | 98  | 390    | 11.70  | 10   | 2 .      | < 0.01 | < 10 | 4.38 |
| N111048 | 255 | 295 | 30     |       | 0.2   | 4.70       | 2          | 80         | < 0.5 | < 2   | 2.54 | 3.0   | 73       | 137 | 886    | 8.63   | < 10 | 2        | 0.01   | < 10 | 4.46 |
| N111049 | 255 | 295 | < 5    |       | < 0.2 | 5.64       | < 2        | 390        | < 0.5 | 6     | 2.76 | < 0.5 | 39       | 239 | 17     | 5.62   | < 10 | < 1      | 0.01   | < 10 | 7.17 |
| N111050 | 255 | 295 | < 5    |       | < 0.2 | 3.91       | 2          | 180        | < 0.5 | 2     | 1.70 | < 0.5 | 29       | 177 | 35     | 4.73   | < 10 | 1        | 0.04   | < 10 | 5.64 |
| N111051 | 255 | 295 | < 5 -  |       | < 0.2 | 2.74       | < 2        | 60         | < 0.5 | < 2   | 0.99 | < 0.5 | 24       | 87  | 65     | 3.82   | < 10 | 1        | 0.08   | < 10 | 3.83 |
| N111052 | 255 | 295 | < 5 ·  |       | < 0.2 | 2.45       |            | 30         | < 0.5 | < 2   | 1.32 | < 0.5 | 22       | 86  | 65     | 3.54   | < 10 | < 1      | 0.09   | < 10 | 3.32 |
| N111053 | 400 | 292 | < 5 ·  |       | < 0.4 | 3.04       | < 4        | 70         | < 0.5 | < 2   | 1 22 | < 0.5 | 25       | 89  | 12     | 4.07   | < 10 | < 1      | 0.08   | < 10 | 3.75 |
| N111034 | 400 | 295 | < 3 ·  |       | < 0.2 | 1.69       | < <b>x</b> | <b>4</b> U | < 0.5 | 4     | 1.34 | < 0.5 | <u> </u> |     | 54     | 3.94   | < 10 | 1        | 0.08   | < 10 | 3.62 |
| N111055 | 255 | 295 | < 5 -  |       | < 0.2 | 3.18       | 2          | 60         | < 0.5 | < 2   | 1.49 | < 0.5 | 25       | 110 | 59     | 3.91   | < 10 | < 1      | 0.09   | < 10 | 4.05 |
| N111056 | 255 | 295 | < 5 -  |       | < 0.2 | 3.63       | < 2        | 90         | < 0.5 | 6     | 1.71 | < 0.5 | 28       | 99  | 89     | 5.07   | < 10 | < 1      | 0.06   | < 10 | 3.99 |
| N111057 | 255 | 295 | < 5 -  |       | < 0.2 | 3.03       | 2          | 40         | < 0.5 | 2     | 1.33 | < 0.5 | 26       | 45  | 69     | 4.45   | < 10 | < 1      | 0.10   | < 10 | 3.03 |
| N111058 | 255 | 295 | < 5 -  |       | < 0.2 | 3.53       | < 2        | 40         | < 0.5 | 4     | 1.35 | < 0.5 | 29       | 55  | 65     | 6.21   | < 10 | 1        | 0.05   | < 10 | 3.46 |
| N111059 | 255 | 295 | < 5 ·  |       | < 0.2 | 3.73       | < 2        | 40         | < 0.5 | < 2   | 1.30 | < 0.5 | 30       | 84  | 68     | 6.42   | < 10 | < 1      | 0.02   | < 10 | 3.83 |
| N111060 | 255 | 295 | < 5 -  |       | < 0.2 | 2.99       | < 2        | 40         | < 0.5 | 4     | 1.17 | < 0.5 | 27       | 63  | 68     | 4.79   | < 10 | < 1      | 0.08   | < 10 | 3.12 |
| N111061 | 255 | 295 | < 5 -  |       | < 0.2 | 3.96       | < 2        | 40         | < 0.5 | 2     | 1.93 | < 0.5 | 31       | 83  | 57     | 6.59   | < 10 | 1        | 0.04   | < 10 | 3.98 |
| N111062 | 255 | 295 | < 5 -  |       | < 0.2 | 3.57       | < 2        | 240        | < 0.5 | 4     | 1.58 | < 0.5 | 29       | 63  | 53     | 5.54   | < 10 | 1        | 0.05   | < 10 | 3.87 |
| N111063 | 255 | 295 | < 5 -  |       | < 0.2 | 4.32       | < 2        | 290        | < 0.5 | 4     | 1.12 | 3.5   | 32       | 83  | 112    | 6.65   | < 10 | 1        | 0.05   | < 10 | 4.65 |
| N111064 | 255 | 295 | < 5 •  |       | < 0.2 | 3.98       | 2          | 430        | < 0.5 | 4     | 1.64 | < 0.5 | 29       | 75  | 50     | 5.42   | < 10 | < 1      | 0.03   | < 10 | 4.31 |
|         |     |     |        |       |       |            |            |            |       |       |      |       |          |     |        |        |      |          |        |      |      |



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| <b>o</b> : | EXPATRIATE RESOURCES LTD.                      |
|------------|------------------------------------------------|
|            | C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED |
|            | 1016 - 510 W, HASTINGS ST.                     |
|            | VANCOUVER, BC                                  |
|            | V6B 1L8                                        |

**CERTIFICATE OF ANALYSIS** 

Page per :2-B Total Fayes :3 Certificate Date: 12-AUG-96 Invoice No. : 19627236 P.O. Number : Account : MPO

A9627236

Project : ICE Comments:

#### \* PLEASE NOTE

|         | 00  | FD  | Mm   | Mo  | Ne     | Nİ  | D        | Ph       | sh  | Sc  | 81  | ጥነ    | ጥ1   | Π    | v    | ¥    | Zn   |                                       |
|---------|-----|-----|------|-----|--------|-----|----------|----------|-----|-----|-----|-------|------|------|------|------|------|---------------------------------------|
| SAMDLE  |     | DE  | nom  | maa | 4<br>% | חמת | היי      | ກກຫ      | maa | מממ | maa | · · · | הי   | nna  | נוסמ | ייי  | maa  |                                       |
|         |     |     |      |     |        |     | <u> </u> |          |     | PP  |     |       |      |      |      |      |      |                                       |
| N111025 | 255 | 295 | 770  | 1   | 0.01   | 54  | 300      | < 2      | 2   | 18  | 128 | 0.29  | < 10 | < 10 | 171  | < 10 | 120  |                                       |
| N111026 | 255 | 295 | 350  | 10  | < 0.01 | 34  | Intf*    | 10       | < 2 | 15  | 6   | 0.01  | < 10 | < 10 | 139  | < 10 | 366  |                                       |
| N111027 | 255 | 295 | 260  | 11  | < 0.01 | 29  | Intf*    | 8        | 2   | 16  | 2   | 0.02  | < 10 | < 10 | 153  | < 10 | 854  |                                       |
| N111028 | 255 | 295 | 280  | 2   | < 0.01 | 33  | 190      | 2        | 2   | 18  | 2   | 0.04  | < 10 | < 10 | 169  | < 10 | 152  |                                       |
| N111029 | 255 | 295 | 255  | 3   | < 0.01 | 23  | 80       | 2        | 2   | 13  | 6   | 0.05  | < 10 | < 10 | 130  | < 10 | 134  |                                       |
| N111030 | 255 | 295 | 265  | 2   | < 0.01 | 23  | 50       | 6        | < 2 | 13  | 2   | 0.06  | < 10 | < 10 | 115  | < 10 | 72   |                                       |
| N111031 | 255 | 295 | 360  | 1   | < 0.01 | 39  | 290      | < 2      | < 2 | 21  | 2   | 0.02  | < 10 | < 10 | 218  | < 10 | 94   |                                       |
| N111032 | 255 | 295 | 300  | 1   | < 0.01 | 37  | 210      | 2        | < 2 | 19  | 1   | 0.06  | < 10 | < 10 | 175  | < 10 | 86   |                                       |
| N111033 | 255 | 295 | 260  | 2   | < 0.01 | 46  | 160      | < 2      | 2   | 17  | 2   | 0.07  | < 10 | < 10 | 165  | < 10 | 74   |                                       |
| N111034 | 255 | 295 | 240  | 5   | < 0.01 | 27  | 70       | 4        | 2   | 12  | 6   | 0.07  | < 10 | < 10 | 131  | < 10 | 908  |                                       |
| N111035 | 255 | 295 | 385  | 3   | < 0.01 | 35  | 310      | 2        | 2   | 22  | 1   | 0.01  | < 10 | < 10 | 210  | < 10 | 192  |                                       |
| N111036 | 255 | 295 | 380  | 3   | < 0.01 | 32  | 250      | 4        | 2   | 20  | 1   | 0.03  | < 10 | < 10 | 188  | < 10 | 980  |                                       |
| N111037 | 255 | 295 | 380  | 3   | < 0.01 | 32  | 270      | < 2      | 2   | 18  | 2   | 0.02  | < 10 | < 10 | 190  | < 10 | 4780 |                                       |
| N111038 | 255 | 295 | 645  | 1   | < 0.01 | 37  | 340      | < 2      | < 2 | 23  | 3   | 0.06  | < 10 | < 10 | 245  | < 10 | 2040 |                                       |
| N111039 | 255 | 295 | 855  | 1   | < 0.01 | 38  | 330      | < 2      | 2   | 19  | 0   | 0.03  | < 10 | < 10 | 224  | < 10 | 538  |                                       |
| N111040 | 255 | 295 | 985  | 1   | < 0.01 | 38  | 370      | < 2      | 2   | 22  | 11  | 0.29  | < 10 | < 10 | 268  | < 10 | 584  |                                       |
| N111041 | 255 | 295 | 850  | 1   | < 0.01 | 21  | 170      | < 2      | < 2 | 13  | 5   | 0.16  | < 10 | < 10 | 136  | < 10 | 228  |                                       |
| N111042 | 255 | 295 | 1000 | < 1 | < 0.01 | 39  | 400      | < 2      | 2   | 22  | 19  | 0.49  | < 10 | < 10 | 267  | < 10 | 288  |                                       |
| N111043 | 255 | 295 | 1000 | 1   | < 0.01 | 36  | 360      | < 2      | 2   | 17  | 14  | 0.42  | < 10 | < 10 | 205  | < 10 | 328  |                                       |
| N111044 | 255 | 295 | 740  | 1   | 0.01   | 37  | 360      | < 2      | < 2 | 17  | 29  | 0.40  | < 10 | < 10 | 213  | < 10 | 154  |                                       |
| N111045 | 255 | 295 | 740  | < 1 | 0.03   | 42  | 340      | < 2      | < 2 | 18  | 34  | 0.36  | < 10 | < 10 | 203  | < 10 | 312  | · · · · · · · · · · · · · · · · · · · |
| N111046 | 255 | 295 | 850  | 1   | < 0.01 | 31  | 270      | < 2      | 2   | 21  | 10  | 0.32  | < 10 | < 10 | 218  | < 10 | 288  |                                       |
| N111047 | 255 | 295 | 770  | 2   | < 0.01 | 31  | 300      | 2        | 2   | 20  | 10  | 0.13  | < 10 | < 10 | 229  | < 10 | 242  |                                       |
| N111048 | 255 | 295 | 835  | 3   | < 0.01 | 34  | 260      | < 2      | 2   | 18  | 37  | 0.16  | < 10 | < 10 | 202  | < 10 | 852  |                                       |
| N111049 | 255 | 295 | 795  | 1   | < 0.01 | 59  | 330      | < 2      | 2   | 23  | 84  | 0.38  | < 10 | < 10 | 180  | < 10 | 80   |                                       |
| N111050 | 255 | 295 | 665  | 1   | < 0.01 | 49  | 330      | < 2      | 2   | 12  | 41  | 0.24  | < 10 | < 10 | 111  | < 10 | 56   |                                       |
| N111051 | 255 | 295 | 590  | < 1 | < 0.01 | 36  | 390      | < 2      | < 2 | 5   | 32  | 0.18  | < 10 | < 10 | 74   | < 10 | 54   |                                       |
| N111052 | 255 | 295 | 600  | 1   | < 0.01 | 39  | 350      | < 2      | 2   | 2   | 28  | 0.16  | < 10 | < 10 | 68   | < 10 | 48   |                                       |
| N111053 | 255 | 295 | 730  | < 1 | < 0.01 | 47  | 350      | < 2      | < 2 | 1   | 27  | 0.18  | < 10 | < 10 | 84   | < 10 | 54   |                                       |
| N111054 | 255 | 295 | 655  | < 1 | < 0.01 | 41  | 360      | < 2      | < 2 | 6   | 32  | 0.20  | < 10 | < 10 |      | < 10 | 24   |                                       |
| N111055 | 255 | 295 | 690  | 1   | < 0.01 | 41  | 370      | < 2      | 2   | 8   | 68  | 0.27  | < 10 | < 10 | 102  | < 10 | 54   |                                       |
| N111056 | 255 | 295 | 795  | 1   | < 0.01 | 38  | 440      | < 2      | 2   | 8   | 50  | 0.33  | < 10 | < 10 | 159  | < 10 | 78   |                                       |
| N111057 | 255 | 295 | 770  | 1   | 0.01   | 31  | 380      | < 2      | < 2 | 5   | 40  | 0.35  | < 10 | < 10 | 132  | < 10 | 70   |                                       |
| N111058 | 255 | 295 | 895  | < 1 | < 0.01 | 32  | 430      | < 2      | < 2 | 6   | 25  | 0.36  | < 10 | < 10 | 165  | < 10 | 84   |                                       |
| N111059 | 255 | 295 | 990  | 1   | < 0.01 | 34  | 400      | < 2      | < 2 | 6   | 28  | 0.38  | < 10 | < 10 | 174  | < 10 | 94   |                                       |
| N111060 | 255 | 295 | 765  | < 1 | < 0.01 | 33  | 400      | < 2      | 2   | 4   | 26  | 0.30  | < 10 | < 10 | 124  | < 10 | 92   | · · · · · · · · · · · · · · · · · · · |
| N111061 | 255 | 295 | 890  | 1   | < 0.01 | 34  | 460      | < 2      | < 2 | 9   | 56  | 0.39  | < 10 | < 10 | 175  | < 10 | 148  |                                       |
| N111062 | 255 | 295 | 750  | 1   | < 0.01 | 34  | 440      | < 2      | 2   | 9   | 62  | 0.34  | < 10 | < 10 | 154  | < 10 | 100  |                                       |
| N111063 | 255 | 295 | 810  | 1   | < 0.01 | 39  | 430      | < 2      | 2   | 9   | 25  | 0.36  | < 10 | < 10 | 183  | < 10 | 1310 |                                       |
| N111064 | 255 | 295 | 640  | 1   | < 0.01 | 39  | 420      | < 2      | 2   | 9   | 39  | 0.38  | < 10 | < 10 | 141  | < 10 | 86   |                                       |
|         | L   | l   | I    |     |        |     |          | <u> </u> |     |     |     |       |      |      |      |      |      | •                                     |

CERTIFICATION: tartBuchler



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page эr :3-А Total F\_\_\_\_s :3 Certificate Date: 12-AUG-96 Invoice No. : 19627236 P.O. Number MPO Account

Project : ICE Comments:

#### CEDTIEICATE OF ANALVEIS A0607026

tart Sichler

CERTIFICATION:

| * PLEASE NO                                         |                                                                |                                                                                                            |                      |                                                |                                      |                                               |                               |                                                    |                           |                                      |                                                    | CATE                         | OFA                             | ANAL'                            | YSIS                                     | A                                            | 19627                       | 236                                    |                                              |                                      |
|-----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|--------------------------------------|-----------------------------------------------|-------------------------------|----------------------------------------------------|---------------------------|--------------------------------------|----------------------------------------------------|------------------------------|---------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|-----------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|
| SAMPLE                                              | PREP<br>CODE                                                   | Au ppb<br>RUSH                                                                                             | Cu<br>%              | Ag<br>ppm                                      | A1<br>%                              | As<br>ppm                                     | Ba<br>ppm                     | Be<br>ppm                                          | Bi<br>ppm                 | Ca<br>%                              | Cđ<br>ppm                                          | Co<br>ppm                    | Cr<br>ppm                       | Cu<br>ppm                        | Fe<br>%                                  | Ga<br>ppm                                    | Hg<br>ppm                   | K<br>%                                 | La<br>ppm                                    | Mg<br>%                              |
| N111065<br>N111066<br>N111067<br>N111068<br>N111068 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>     &lt; &lt; 5     &lt; 5     &lt; 5     &lt; 5     &lt; 5     &lt; 5     &lt; 5     &lt; 10 </pre> | 0.30<br>0.35<br>0.33 | < 0.2<br>< 0.2<br>1.0<br>0.2<br>0.2            | 4.49<br>5.22<br>5.74<br>5.99<br>5.70 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 4 | 1980<br>870<br>40<br>50<br>10 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 2<br>8<br>2<br>2<br>< 2   | 1.44<br>1.61<br>0.44<br>0.43<br>0.34 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 30<br>34<br>97<br>106<br>130 | 116<br>203<br>180<br>205<br>196 | 91<br>94<br>2810<br>3510<br>3360 | 6.69<br>7.96<br>13.25<br>13.95<br>>15.00 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>1 ·<br>3<br>1 | 0.03<br>0.01<br>< 0.01<br>0.05<br>0.07 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 4.46<br>5.52<br>4.66<br>4.29<br>3.78 |
| N111070<br>N111071<br>N111072<br>N111073<br>N111074 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | 15<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5                                                                      | 0.45                 | 0.2<br>< 0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 5.22<br>3.92<br>4.43<br>4.19<br>3.57 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 10<br>130<br>140<br>440<br>90 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>2<br>2<br>2<br>< 2 | 0.36<br>1.87<br>2.64<br>3.17<br>2.71 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 117<br>30<br>30<br>32<br>26  | 188<br>130<br>63<br>84<br>63    | 4120<br>118<br>109<br>86<br>107  | 14.65<br>5.99<br>6.15<br>6.31<br>5.27    | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3<br>< 1<br>1<br>1<br>< 1   | 0.03<br>0.06<br>0.03<br>0.03<br>0.01   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.73<br>3.16<br>3.29<br>3.51<br>2.91 |
|                                                     |                                                                |                                                                                                            |                      |                                                |                                      |                                               |                               |                                                    |                           | <u></u>                              |                                                    | · · · · ·                    |                                 |                                  |                                          |                                              |                             | `                                      |                                              |                                      |
|                                                     |                                                                |                                                                                                            |                      |                                                |                                      |                                               |                               |                                                    |                           |                                      |                                                    |                              |                                 |                                  |                                          |                                              |                             |                                        |                                              |                                      |
|                                                     |                                                                |                                                                                                            |                      |                                                |                                      |                                               |                               |                                                    |                           |                                      |                                                    |                              |                                 |                                  |                                          |                                              |                             |                                        |                                              |                                      |
|                                                     |                                                                |                                                                                                            |                      |                                                |                                      |                                               |                               |                                                    |                           |                                      |                                                    |                              |                                 |                                  |                                          |                                              |                             |                                        |                                              |                                      |

#### INTERFERENCE: Cu on Bi and P

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page i 3-B Total Payes :3 Certificate Date: 12-AUG-96 Invoice No. : 19627236 P.O. Number Account MPO

A9627236

Project : Comments: ICE

,. ····

#### • PLEASE NOTE

| SAMPLE                                                         | PRI<br>COI                             | ep<br>De                               | Mn<br>ppm                        | Mo<br>ppm               | Na<br>%                                        | Ni<br>ppm                  | ppm<br>P                        | Pb<br>ppm                     | Sb<br>ppm                            | Sc<br>ppm                  | Sr<br>ppm                 | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                       |      |     |    |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------|-------------------------|------------------------------------------------|----------------------------|---------------------------------|-------------------------------|--------------------------------------|----------------------------|---------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|---------------------------------|------|-----|----|
| N111065<br>N111066<br>N111067<br>N111068<br>N111068<br>N111069 | 255<br>255<br>255<br>255<br>255<br>255 | 295<br>295<br>295<br>295<br>295<br>295 | 820<br>1105<br>945<br>565<br>540 | 1<br>2<br>3<br>4<br>3   | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 43<br>50<br>41<br>47<br>55 | 400<br>380<br>250<br>210<br>230 | < 2<br>< 2<br>6<br>2<br>6     | 2<br>2<br>4<br>6<br>2                | 11<br>18<br>19<br>19<br>17 | 40<br>18<br>7<br>6<br>4   | 0.40<br>0.43<br>0.27<br>0.29<br>0.22 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 198<br>258<br>227<br>215<br>202 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 186<br>206<br>214<br>482<br>226 |      |     |    |
| N111070<br>N111071<br>N111072<br>N111073<br>N111074            | 255<br>255<br>255<br>255<br>255<br>255 | 295<br>295<br>295<br>295<br>295<br>295 | 675<br>710<br>820<br>935<br>780  | 6<br>< 1<br>1<br>1<br>1 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 47<br>61<br>33<br>36<br>34 | 230<br>360<br>390<br>390<br>330 | 6<br>< 2<br>< 2<br>< 2<br>< 2 | < 2<br>< 2<br>2<br>< 2<br>< 2<br>< 2 | 18<br>9<br>9<br>14<br>9    | 4<br>11<br>17<br>19<br>18 | 0.23<br>0.35<br>0.40<br>0.40<br>0.38 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 216<br>176<br>198<br>214<br>172 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 422<br>228<br>94<br>138<br>118  |      |     |    |
|                                                                |                                        |                                        |                                  |                         |                                                |                            |                                 |                               |                                      |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |     |    |
|                                                                |                                        |                                        |                                  |                         |                                                |                            |                                 |                               |                                      |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |     |    |
|                                                                |                                        |                                        |                                  |                         |                                                |                            |                                 |                               |                                      |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |     |    |
|                                                                |                                        |                                        |                                  |                         |                                                |                            |                                 |                               |                                      |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |     |    |
|                                                                |                                        |                                        |                                  |                         |                                                |                            |                                 |                               |                                      |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      |     |    |
|                                                                |                                        |                                        |                                  |                         |                                                |                            |                                 |                               |                                      |                            |                           |                                      |                                              |                                              |                                 |                                              |                                 |      | •   |    |
|                                                                |                                        |                                        |                                  |                         |                                                |                            |                                 |                               |                                      |                            |                           |                                      |                                              | C                                            | ERTIFIC                         |                                              | 1                               | taks | ich | en |





Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

۰.

CO: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page ber :1 Total uges :1 Certificate Date: 06-AUG-96 Invoice No. :19626852 P.O. Number : Account :MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

### A9626852 **CERTIFICATE OF ANALYSIS** PREP Cu CODE 8 SAMPLE 1.05 N110810 244 ---N110811 244 - -1.11 N110812 244 - -0.98 Sarc CERTIFICATION:

2: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page : er :1-A Total Pages :1 Certificate Date: 12-AUG-96 Invoice No. :19626578 P.O. Number Account : MPO

Project : Comments: ICE

|                                                     |                                                          |                                      |                                 |                                      |                       |                                 |                                                    |                                               |                                      |                                           | CE                     | RTIFI                          | CATE                       | OF A                                 | NALY                                         | SIS                                    |                                      | 19626                            | 578                                  |                                     |                           |
|-----------------------------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------|---------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------|-------------------------------------------|------------------------|--------------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|-------------------------------------|---------------------------|
| SAMPLE                                              | PREP<br>CODE                                             |                                      | Ag<br>ppm                       | A1<br>%                              | <b>As</b><br>ppm      | Ba<br>ppm                       | Be<br>ppm                                          | Bi<br>ppm                                     | Ca<br>%                              | Cđ<br>ppm                                 | Со<br>ррш              | Cr<br>ppm                      | Cu<br>ppm                  | Fe<br>%                              | Ga<br>ppm                                    | Hg<br>ppm                              | K<br>%                               | La<br>ppm                        | Mg<br>%                              | Mn<br>ppm                           | Mo<br>ppm                 |
| N110898<br>N110899<br>N110900<br>N110901<br>N110902 | 205 22<br>205 22<br>205 22<br>205 22<br>205 22<br>205 22 | 26<br>26 <<br>26 <<br>26<br>26<br>26 | 0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 0.74<br>1.24<br>0.63<br>0.81<br>1.41 | 8<br>2<br>8<br>8<br>4 | 380<br>470<br>330<br>400<br>670 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 1.57<br>1.06<br>3.38<br>1.57<br>0.34 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 7<br>10<br>7<br>7<br>9 | 165<br>137<br>167<br>128<br>80 | 60<br>58<br>61<br>62<br>86 | 1.44<br>1.84<br>1.24<br>1.42<br>2.17 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.10<br>0.16<br>0.09<br>0.15<br>0.27 | < 10<br>10<br>< 10<br>< 10<br>10 | 0.47<br>0.67<br>0.43<br>0.51<br>0.73 | 1115<br>1070<br>2470<br>1165<br>420 | 5<br>< 1<br>5<br>2<br>< 1 |
| W110903                                             | 205 22                                                   | 26                                   | 0.2                             | 2.01                                 | 8                     | 550                             | < 0.5                                              | < 2                                           | 0.53                                 | < 0.5                                     | 13                     | 86                             | 73                         | 3.12                                 | < 10                                         | < 1                                    | 0.40                                 | 30                               | 0.91                                 | 545                                 | < 1                       |
|                                                     |                                                          |                                      |                                 |                                      |                       |                                 |                                                    |                                               |                                      |                                           |                        |                                |                            |                                      |                                              |                                        | 1                                    | •                                |                                      | Δ.                                  |                           |

tart Sichler CERTIFICATION:

CEDTIEICATE OF ANIAL VEIS



### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

SEXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page er :1-B Total F. J.s :1 Certificate Date: 12-AUG-96 Invoice No. : 19626578 P.O. Number : Account : MPO

| Project : | ICE |
|-----------|-----|
| Comments: |     |

#### **CERTIFICATE OF ANALYSIS** A9626578 PREP Ni Pb Sb Sr Тİ T1 υ V W Zn Na ₽ Sc SAMPLE CODE \* ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm N110898 205 226 < 0.01 34 140 6 < 2 < 1 26 < 0.01 < 10 < 10 15 < 10 78 N110899 205 226 < 0.01 30 220 2 2 17 < 0.01< 10 < 10 17 < 10 56 1 N110900 205 226 < 0.01 47 620 8 < 2 1 69 < 0.01< 10 < 10 14 < 10 84 N110901 205 226 < 0.01 38 260 8 < 2 1 19 < 0.01< 10 < 10 14 < 10 66 1 23 < 10 74 N110902 205 226 < 0.01 36 180 8 < 2 5 < 0.01 < 10 < 10 N110903 108 205 226 42 < 10 < 0.01 560 16 < 2 2 8 < 0.01 < 10 < 10 39

CERTIFICATION: Hart Buchler

C

## Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page ər :1 Total :1 . Certificate Date: 26-JUL-96 Invoice No. : 19625462 P.O. Number 1 Account :MPO

UN1148

Project : ICE

Comments: FAX:EXPATRIATE RES WHITEHORSE FAX: EXPATRIATE RES.VAN

#### CEDTIEICATE OF AMAI VOIC 10605460

|         |              |         | CENTIFIC | ATE OF ANALTS | J AJU | 23402 |
|---------|--------------|---------|----------|---------------|-------|-------|
| SAMPLE  | PREP<br>CODE | Cu<br>% |          |               |       |       |
| N110839 | 244          | 1.02    |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          |               |       |       |
|         |              |         |          | <u> </u>      |       |       |
|         |              |         |          | CEDTIEICAT    |       | The h |



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

Page r:1-A Total F. :1 Certificate Date: 02-AUG-96 Invoice No. : 19625251 P.O. Number : Account MPO

A9625251

Project : Comments: ICE

#### \* PLEASE NOTE

|         | PREP    | Ag             | A1   | λs  | Ba  | Be    | Bi    | Ca           | Cđ         | Co        | Cr      | Cu     | Fe    | Ga       | Вg    | K      | La   | Mg   | Mn   | No         |
|---------|---------|----------------|------|-----|-----|-------|-------|--------------|------------|-----------|---------|--------|-------|----------|-------|--------|------|------|------|------------|
| SAMPLE  | CODE    | ppm            | X    | ppm | ррш | ppm   | ppm   | *            | ppm        | ррш       | ppm<br> | ррш    | X     | ррш      | ppm   | *      | ppm  |      | bbw  | <u>ppm</u> |
| N110802 | 208 22  | 5 0.2          | 4.15 | < 2 | 90  | < 0.5 | < 2   | 2.70         | 5.0        | 21        | 94      | 2660   | 6.05  | 10       | 1     | 0.01   | < 10 | 2.37 | 590  | < 1        |
| N110803 | 208 220 | 5 0.4          | 3.66 | < 2 | 80  | < 0.5 | < 2   | 2.08         | 4.0        | 19        | 75      | 1330   | 6.12  | 10       | < 1 < | < 0.01 | < 10 | 2.41 | 595  | < 1        |
| N110804 | 208 22  | 5 0.2          | 3.35 | < 2 | 100 | < 0.5 | < 2   | 1.82         | 4.0        | 22        | 67      | 1580   | 5.86  | 10       | < 1 • | < 0.01 | < 10 | 2.39 | 625  | < 1        |
| N110805 | 208 220 | 6 0.2          | 3.26 | < 2 | 80  | < 0.5 | < 2   | 1.92         | 2.0        | 20        | 118     | 872    | 4.89  | 10       | < 1 < | < 0.01 | < 10 | 2.60 | 650  | < 1        |
| N110806 | 208 220 | < 0.2          | 3.34 | < 4 | 60  | < 0.5 | < 2   | <b>X.</b> 0X | 4.0        | <b>41</b> | 22      | 1040   | 2.45  | 10       | < 1 < | 0.01   | < 10 | 4.33 | 643  | < 1        |
| N110807 | 208 220 | 5 < 0.2        | 3.23 | < 2 | 260 | < 0.5 | < 2   | 1.51         | 1.0        | 33        | 40      | 1880   | 6.14  | 10       | < 1 < | < 0.01 | < 10 | 2.32 | 680  | < 1        |
| N110808 | 208 220 | 5 < 0.2        | 3.24 | < 2 | 110 | < 0.5 | < 2   | 1.54         | 1.5        | 25        | 40      | 2890   | 5.81  | 10       | < 1 • | < 0.01 | < 10 | 2.44 | 700  | < 1        |
| N110809 | 208 220 | <b>5</b> < 0.2 | 3.56 | < 2 | 170 | < 0.5 | < 2   | 1.45         | 2.5        | 36        | 99      | 2970   | 6.34  | 10       | < 1 < | < 0.01 | < 10 | 2.95 | 745  | < 1        |
| N110810 | 208 220 |                | 4.51 | < 2 | 400 | < 0.5 | IntI" | 0.55         | 3.0        | 85        | 141     | >10000 | 10.60 | 10       |       | 0.01   | < 10 | 3.41 | 1195 | < 1        |
|         | 400 440 |                | 4.03 | × 4 | 930 | < 0.5 | THCI. | 0.20         | 3.0        | 00        |         | 10000  | 3.33  | 10       | × 1   | 0.09   | < 10 | 3.13 | 1255 | × 1        |
| N110812 | 208 22  | 5 0.2          | 4.76 | < 2 | 640 | < 0.5 | Intf* | 0.23         | 3.5        | 100       | 97      | >10000 | 10.35 | 10       | < 1   | 0.09   | < 10 | 3.07 | 1420 | < 1        |
| N110813 | 208 220 | < 0.2          | 0.81 | < 2 | 270 | < 0.5 | < 2   | 0.04         | < 0.5      | 16        | 40      | 3040   | 2.40  | < 10     | < 1   | 0.16   | < 10 | 0.23 | 110  | < 1        |
| N110814 | 208 220 |                | 0.70 | < 2 | 240 | < 0.5 | < 2   | 0.03         | < 0.5      | 11        | 44      | 4/30   | 1.85  | < 10     |       | 0.12   | < 10 | 0.08 | 35   | < 1        |
| N110816 | 208 22  | < 0.2          | 0.91 | 4   | 330 | < 0.5 | < 2   | 0.04         | < 0.5      | 18        | 44      | 4910   | 2.48  | < 10     | < 1   | 0.10   | < 10 | 0.24 | 100  | < 1        |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
| N110B17 | 208 226 | 0.2            | 1.07 | 2   | 200 | < 0.5 | < 2   | 0.23         | 2.0        | 85        | 54      | 5550   | 5.89  | < 10     | < 1   | 0.14   | < 10 | 0.27 | 1235 | < 1        |
| N110818 | 208 220 |                | 0.40 | 2   | 330 | < 0.5 | ~ 4   | 0.11         | ∡.∪<br>1 5 | 44        | 04      | 1925   | 2 76  | < 10     |       | 0.10   | < 10 | 0.14 | 870  |            |
| N110820 | 208 22  | 0.2            | 0.72 | 2   | 490 | < 0.5 | < 2   | 0.12         | 1.5        | 53        | 86      | 1810   | 3.13  | < 10     | < 1   | 0.14   | < 10 | 0.19 | 1330 | < 1        |
| N110821 | 208 226 | 0.2            | 0.70 | < 2 | 550 | < 0.5 | < 2   | 0.07         | 1.0        | 36        | 71      | 2910   | 2.59  | < 10     | < 1   | 0.12   | < 10 | 0.20 | 775  | 4          |
| N110922 | 208 226 | × 0 2          | 0 69 | 12  | 390 | < 0.5 | 12    | 0.08         | 1 5        | 38        | 104     | 2510   | 2 69  | < 10     | < 1   | 0 10   | < 10 | 0 17 | 870  | 11         |
| N110823 | 208 220 | < 0.2          | 0.70 | < 2 | 550 | < 0.5 | < 2   | 0.06         | 1.0        | 36        | 106     | 3380   | 2.73  | < 10     | < 1   | 0.10   | < 10 | 0.18 | 760  | -6         |
| N110824 | 208 220 | 5 0.2          | 0.90 | 2   | 520 | < 0.5 | < 2   | 0.73         | 0.5        | 34        | 112     | 736    | 2.67  | < 10     | < 1   | 0.14   | < 10 | 0.38 | 1120 | 1          |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         | 1              |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
| 1       |         | 1              |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         | 1              |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         | ļ              |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         | 1              |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         | ł              |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          |       |        |      |      |      |            |
| i       | -L      |                |      |     |     |       |       |              |            |           |         |        |       |          | •     | 1      | 112  | . 0  | J    | !          |
|         |         |                |      |     |     |       |       |              |            |           |         |        |       |          | ATION | 4a     | 213  | ich  | ren  |            |
|         |         |                |      |     |     |       |       |              |            |           |         |        | (     | JER HEIC | ATION | -      |      | ·    |      |            |



\* PLEASE NOTE

### Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

North Vancouver V7J 2C1 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

**CERTIFICATE OF ANALYSIS** 

CERTIFICATION:

Page Total F. эг:1-B Total F. :1 Certificate Date: 02-AUG-96 Invoice No. :19625251 P.O. Number :MPO Account

A9625251

Project : ICE Comments:

:

| SAMPLE         PREP<br>CODE         Na         Ni         p         Pb         Sb         Sc         Sr         Ti         TI         U         V         W         Zn           N10802         208         226         0.01         38         310         12         < 2         11         6         0.44         < 10         10         170         < 10         686           N10803         208         226         0.01         33         340         10         < 2         12         6         0.44         < 10         10         170         < 10         686           N10804         208         226         0.01         33         340         10         < 2         12         6         0.44         < 10         10         170         < 10         686           N10804         208         226         0.03         36         250         4         < 2         13         6         0.40         < 10         151         < 10         208           N10805         208         226         0.01         28         370         2         < 2         13         7         0.47         10         <10         166         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |        |        |     |     |     |            |          |          | _    |      |      |     |      | _          |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|--------|--------|-----|-----|-----|------------|----------|----------|------|------|------|-----|------|------------|--------------|
| SAMPLE         CODE         *         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm         ppm </th <th>(1)/D17</th> <th>PRE</th> <th>P</th> <th>Na</th> <th>Ni</th> <th>P</th> <th>Pb</th> <th>Sb</th> <th>SC</th> <th>Sr</th> <th>Ti</th> <th>T1</th> <th>U</th> <th>V</th> <th>W</th> <th>Zn</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1)/D17  | PRE | P      | Na     | Ni  | P   | Pb  | Sb         | SC       | Sr       | Ti   | T1   | U    | V   | W    | Zn         |              |
| N110802       208       226       0.01       38       310       12       < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE   | COD | )E<br> |        | bbw | ррш | ppm | ррш        | ррш      | ррш      | ~    | ррш  | ррш  | ррш | bbm  | ррш<br>    |              |
| N110803       208       226       0.01       33       340       10       < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N110802  | 208 | 226    | 0.01   | 38  | 310 | 12  | < 2        | 11       | 6        | 0.44 | < 10 | < 10 | 170 | < 10 | 686        |              |
| N110804       208       226       0.01       29       300       16       < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N110803  | 208 | 226    | 0.01   | 33  | 340 | 10  | < 2        | 12       | 6        | 0.44 | < 10 | < 10 | 170 | < 10 | 646<br>550 |              |
| N110806       208       226       0.01       28       290       2       < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N110804  | 208 | 226    | 0.01   | 36  | 250 | 16  | < ∡        | 13       | 6        | 0.40 | < 10 | < 10 | 151 | < 10 | 208        |              |
| N110807       208       226       < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N110806  | 208 | 226    | 0.01   | 28  | 290 | 2   | < 2        | 13       | 15       | 0.47 | < 10 | < 10 | 166 | < 10 | 160        |              |
| N110808       208       226       0.01       30       350       < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N110807  | 208 | 226    | < 0.01 | 28  | 370 | 2   | < 2        | 13       | 7        | 0.47 | < 10 | < 10 | 177 | < 10 | 282        |              |
| N110809       208 226       0.02       44       280       6       < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N110808  | 208 | 226    | 0.01   | 30  | 350 | < 2 | < 2        | 10       | 6        | 0.49 | < 10 | < 10 | 166 | < 10 | 130        |              |
| M110810       208       226       0.01       49       240       6 $2$ 20 $7$ $0.36$ $10$ $10$ $12$ $10$ $10$ $215$ $10$ $302$ N110811       208       226 $0.02$ 48 $360$ $6$ $2$ $21$ $11$ $0.03$ $10$ $10$ $182$ $10$ $676$ N110812       208       226 $0.01$ $52$ $370$ $6$ $2$ $19$ $8$ $0.01$ $< 10$ $173$ $< 10$ $904$ N110813       208       226 $0.01$ $26$ $190$ $10$ $< 2$ $2$ $1 < 0.01$ $< 10$ $16$ $10$ $162$ N110814       208 $226$ $0.01$ $16$ $210$ $6$ $< 2$ $3$ $1 < 0.01$ $< 10$ $22$ $< 10$ $108$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N110809  | 208 | 226    | 0.02   | 44  | 280 | 6   | < 2        | 14       | 5        | 0.43 | < 10 | < 10 | 180 | < 10 | 282        |              |
| N110812       208       226       0.01       52       370       6       < 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N110811  | 208 | 226    | 0.02   | 48  | 360 | 6   | < 2        | 21       | 11       | 0.03 | < 10 | < 10 | 182 | < 10 | 676        |              |
| N110813 208 226 0.01 26 190 10 <2 2 1 < 0.01 < 10 < 10 16 < 10 162<br>N110814 208 226 0.01 16 210 6 <2 3 1 < 0.01 < 10 < 10 22 < 10 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N110812  | 208 | 226    | 0.01   | 52  | 370 | 6   | < 2        | 19       | 8        | 0.01 | < 10 | < 10 | 173 | < 10 | 904        |              |
| N110814 208 226 0.01 16 210 6 < 2 3 1 < 0.01 < 10 < 10 22 < 10 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N110813  | 208 | 226    | 0.01   | 26  | 190 | 10  | < 2        | 2        | <u> </u> | 0.01 | < 10 | < 10 | 16  | < 10 | 162        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N110814  | 208 | 226    | 0.01   | 16  | 210 | 6   | < 2        | 3        | 1 <      | 0.01 | < 10 | < 10 | 22  | < 10 | 108        |              |
| <b>M110815</b> 208 226 0.01 32 550 14 $< 2$ 4 4 $< 0.01 < 10 < 10$ 25 $< 10$ 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N110815  | 208 | 226    | 0.01   | 32  | 550 | 14  | < 2        | 4        | 4 <      | 0.01 | < 10 | < 10 | 25  | < 10 | 220        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N110816  | 208 | 440    | 0.01   | 34  | 180 | •   | < <b>4</b> | <b>A</b> |          | 0.01 | × 10 | < 10 |     | < 10 |            |              |
| <b>w110817</b> 208 226 0.01 34 790 16 < 2 4 6 < 0.01 < 10 < 10 24 < 10 1030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N110817  | 208 | 226    | 0.01   | 34  | 790 | 16  | < 2        | 4        | 6 <      | 0.01 | < 10 | < 10 | 24  | < 10 | 1030       |              |
| $\frac{M110818}{2108} = \frac{208}{226} = 0.01 + \frac{22}{12} + \frac{190}{12} = 8 + \frac{2}{12} + \frac{1}{12} + \frac{100}{12} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + \frac{100}{10} + 1$ | N110818  | 208 | 226    | 0.01   | 22  | 190 | 12  | < 2        | 2        | 1 4      | 0.01 | < 10 | < 10 | 19  | < 10 | 426        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N110820  | 208 | 226    | 0.01   | 28  | 150 |     | < 2        | 3        | î <      | 0.01 | < 10 | < 10 | 20  | < 10 | 374        |              |
| N110821 208 226 0.01 25 150 6 < 2 2 3 < 0.01 < 10 < 10 17 < 10 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N110821  | 208 | 226    | 0.01   | 25  | 150 | 6   | < 2        | 2        | 3 <      | 0.01 | < 10 | < 10 | 17  | < 10 | 340        |              |
| W110822 208 226 0.01 28 110 8 < 2 1 1 < 0.01 < 10 < 10 14 < 10 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N110822  | 208 | 226    | 0.01   | 28  | 110 | 8   | < 2        | 1        | 1 <      | 0.01 | < 10 | < 10 | 14  | < 10 | 364        |              |
| <b>M110823</b> 208 226 0.01 20 100 8 $< 2$ 1 1 $< 0.01 < 10 < 10$ 15 $< 10$ 368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N110823  | 208 | 226    | 0.01   | 20  | 100 | 8   | < 2        | 1        | 1 <      | 0.01 | < 10 | < 10 | 15  | < 10 | 368        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M110824  | 108 | 440    | 0.01   | 31  | 100 | 10  | × 4        | -        | 11 \     |      | × 10 | × 10 | 10  | × 10 |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            |              |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            | -            |
| tre to Bucho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>.</b> |     |        |        |     |     |     |            |          |          |      |      |      |     |      |            | start Brehen |

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC

**CERTIFICATE OF ANALYSIS** 

Page эг :1-А Total Pages :1 Certificate Date: 22-JUL-96 Invoice No. : 19625216 P.O. Number • Account MPO

A9625216

V6B 1L8 Project : ICE

Comments: FAX:EXPATRIATE RES WHITEHORSE FAX: EXPATRIATE RES.VAN

#### \* CORRECTED COPY

| SAMPLE                                                         | PREP<br>CODE                                                   | Au ppb<br>RUSH                                                            | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                                            | Ba<br>ppm                       | Be<br>ppm                                        | Bi<br>ppm                                            | Ca<br>%                                | Cđ<br>ppm                           | Co<br>ppm                     | Cr<br>ppm                             | Cu<br>ppm                           | Fe<br>%                                | Ga<br>ppm                                  | Hg<br>ppm                                     | K<br>%                               | La<br>ppm                                    | Ng<br>%                              | Mn<br>ppm                           |
|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------|--------------------------------------------------|------------------------------------------------------|----------------------------------------|-------------------------------------|-------------------------------|---------------------------------------|-------------------------------------|----------------------------------------|--------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------|
| N110825<br>N110826<br>N110827                                  | 255 295<br>255 295<br>255 295                                  | 5<br>< 5<br>5<br>10                                                       | < 0.2<br>< 0.2<br>< 0.2                            | 3.04<br>3.59<br>3.13                 | < 2<br>2<br>< 2                                      | 370<br>200<br>440               | < 0.5<br>0.5<br>< 0.5                            | < 2<br>< 2<br>< 2                                    | 4.64<br>9.33<br>2.33                   | 1.5<br>2.0<br>0.5                   | 28<br>47<br>26                | 40<br>53<br>29                        | 56<br>72<br>68                      | 6.97<br>7.15<br>6.32                   | 10<br>10<br>10                             | < 1<br>< 1<br>1                               | 0.06<br>0.09<br>0.08                 | < 10<br>< 10<br>< 10                         | 2.20<br>2.09<br>1.58                 | 1015<br>2170<br>745                 |
| N110829                                                        | 255 295                                                        | < 5                                                                       | < 0.2                                              | 3.48                                 | < 2                                                  | 430                             | < 0.5                                            | < 2                                                  | 3.47                                   | 1.0                                 | 34                            | 40                                    | 66                                  | 7.46                                   | 10                                         | 1                                             | 0.09                                 | < 10                                         | 2.25                                 | 1075                                |
| N110830<br>N110831<br>N110832<br>N110833<br>N110833<br>N110834 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | <pre>&lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5 &lt; 5</pre> | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.73<br>3.27<br>2.45<br>1.31<br>0.91 | < 2<br>< 2<br>26<br>18                               | 360<br>800<br>200<br>120<br>500 | < 0.5<br>< 0.5<br>0.5<br>0.5<br>1.0              | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 2.43<br>2.96<br>7.08<br>12.75<br>13.05 | 1.0<br>1.5<br>1.5<br>2.0<br>10.0    | 43<br>42<br>68<br>47<br>127   | 46<br>55<br>54<br>62<br>24            | 70<br>62<br>68<br>1865<br>2950      | 8.01<br>7.97<br>6.57<br>5.80<br>8.69   | 10<br>10<br>< 10<br>< 10<br>< 10<br>< 10   | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.18<br>0.24<br>0.24<br>0.05<br>0.03 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.20<br>2.15<br>3.25<br>5.82<br>5.64 | 915<br>985<br>1420<br>1780<br>2450  |
| N110835<br>N110836<br>N110837<br>N110838<br>N110838<br>N110839 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | 5<br>5<br>< 5<br>10<br>20                                                 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.4<br>1.4     | 1.61<br>2.16<br>1.28<br>1.78<br>3.34 | 14<br>< 2<br>12<br>10<br>< 2                         | 210<br>130<br>150<br>90<br>10   | 0.5<br>< 0.5<br>0.5<br>0.5<br>< 0.5<br>< 0.5     | 6<br>< 2<br>< 2<br>< 2<br>Intf*                      | 10.75<br>4.00<br>10.10<br>3.19<br>0.23 | 11.5<br>0.5<br>1.5<br>3.5<br>4.5    | 104<br>42<br>30<br>152<br>223 | 50<br>150<br>62<br>111<br>155         | 3900<br>311<br>134<br>2630          | 7.46<br>4.63<br>4.75<br>10.90<br>13.90 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>1          | 0.06<br>0.13<br>0.15<br>0.09<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 5.32<br>2.54<br>5.20<br>2.60<br>2.51 | 1625<br>935<br>1350<br>1610<br>510  |
| N110890<br>N110891<br>N110892<br>N110893<br>N110894            | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | 10<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5                              | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 4.51<br>4.47<br>3.79<br>3.83<br>3.52 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 70<br>250<br>120<br>270<br>150  | < 0.5<br>< 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>8<br>4<br>2<br>< 2                            | 1.92<br>1.34<br>2.88<br>2.65<br>2.77   | 18.5<br>19.0<br>16.5<br>13.5<br>6.0 | 161<br>137<br>107<br>86<br>50 | 92<br>143<br>71<br>50<br>37           | 5830<br>9010<br>4840<br>3030<br>266 | 9.92<br>9.96<br>9.02<br>7.89<br>6.59   | < 10<br>< 10<br>10<br>10<br>10             | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>1          | 0.07<br>0.05<br>0.08<br>0.08<br>0.02 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3.41<br>3.23<br>2.76<br>2.36<br>2.17 | 1015<br>1060<br>1090<br>1010<br>825 |
| N110895<br>N110896<br>N110897                                  | 255 295<br>255 295<br>255 295                                  | < 5<br>< 5<br>< 5                                                         | < 0.2<br>< 0.2<br>< 0.2                            | 4.23<br>5.03<br>4.40                 | < 2<br>< 2<br>< 2                                    | 60<br>60<br>60                  | < 0.5<br>< 0.5<br>< 0.5                          | < 2 < 2 < 2 < 2                                      | 3.55<br>5.07<br>3.06                   | 1.5<br>2.5<br>4.5                   | 39<br>42<br>52                | 37<br>73<br>51                        | 202<br>523<br>1965                  | 6.77<br>6.03<br>7.08                   | 10<br>10<br>10                             | < 1<br>< 1 <<br>< 1                           | 0.01<br>( 0.01<br>0.02               | < 10<br>< 10<br>< 10                         | 2.48<br>2.25<br>2.36                 | 875<br>885<br>870                   |
|                                                                | L!                                                             |                                                                           |                                                    |                                      |                                                      |                                 |                                                  |                                                      |                                        |                                     |                               | · · · · · · · · · · · · · · · · · · · |                                     |                                        |                                            | 14                                            |                                      | Bre                                          | hle                                  | J                                   |

\* FOR SAMPLES N110839 & N110890 ON ALL DATA. \*\*INTERFERENCE: HIGH Cu on Bi and P

Chemex Labs Ltd.

AnaMical Chemists \* Geochemists \* Registered Assavers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218



Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

| C/O ARCHER, CATHRO & ASSOCIATES (1981) LIM<br>1016 - 510 W. HASTINGS ST.<br>VANCOUVER, BC<br>V6B 1L8 |        |
|------------------------------------------------------------------------------------------------------|--------|
| 1016 - 510 W. HASTINGS ST.<br>VANCOUVER, BC<br>V6B 1L8                                               | IMITED |
| VANCOUVER, BC<br>V6B 1L8                                                                             |        |
| V6B 1L8                                                                                              |        |
|                                                                                                      |        |

**CERTIFICATE OF ANALYSIS** 

Page , ∋r : 1-B Total Payes : 1 Certificate Date: 22-JUL-96 Invoice No. : 19625216 P.O. Number : Account : MPO

A9625216

Project : ICE

1

Comments: FAX: EXPATRIATE RES WHITEHORSE FAX: EXPATRIATE RES. VAN

### ◆CORRECTED COPY

| SAMPLE                                                         | PREP<br>CODE                                                   | Mo<br>ppm                             | Na<br>%                                                | Ni<br>ppm                  | P<br>ppm                          | Pb<br>ppm                 | Sb<br>ppm                                            | Sc<br>ppm                  | Sr<br>ppm                             | Ti<br>%                                        | T1<br>ppm                                    | D<br>Wdđ                                     | V<br>mqq                        | W<br>ppm                                     | Zn<br>ppm                           |                |
|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|----------------------------|-----------------------------------|---------------------------|------------------------------------------------------|----------------------------|---------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------|----------------|
| N110825<br>N110826<br>N110827<br>N110828<br>N110828<br>N110829 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | < 1<br>< 1<br>< 1<br>< 1<br>< 1       | 0.01<br>0.01<br>0.02<br>0.01                           | 27<br>44<br>25<br>25<br>29 | 690<br>610<br>720<br>710<br>690   | 4<br>6<br>2<br>< 2<br>< 2 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 20<br>27<br>8<br>7<br>21   | 53<br>72<br>66<br>47<br>57            | 0.57<br>0.03<br>0.75<br>0.69<br>0.58           | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 286<br>278<br>242<br>241<br>303 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 92<br>256<br>98<br>98<br>134        |                |
| N110830<br>N110831<br>N110832<br>N110833<br>N110833<br>N110834 | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | < 1<br>< 1<br>< 1 ·<br>< 1 ·<br>< 1 · | 0.01<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01             | 33<br>35<br>77<br>32<br>41 | 740<br>710<br>570<br>130<br>50    | < 2<br>2<br>6<br>8<br>12  | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 22<br>26<br>24<br>13<br>10 | 53<br>60<br>65 <<br>130 <<br>179 <    | 0.48<br>0.31<br>0.01<br>0.01<br>0.01           | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>10<br>10             | 308<br>286<br>186<br>119<br>73  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 246<br>158<br>204<br>438<br>1755    |                |
| N110835<br>N110836<br>N110837<br>N110838<br>N110839            | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | < 1 <<br>< 1<br>< 1 <<br>1 <<br>4 <   | < 0.01<br>0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 71<br>59<br>38<br>75<br>32 | 200<br>300<br>190<br>240<br>Intf* | 10<br>2<br>6<br>6<br>12   | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 16<br>22<br>16<br>23<br>16 | 151 <<br>37 <<br>129 <<br>35 <<br>6 < | : 0.01<br>: 0.01<br>: 0.01<br>: 0.01<br>: 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 123<br>147<br>104<br>129<br>137 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1250<br>110<br>116<br>1615<br>1805  |                |
| N110890<br>N110891<br>N110892<br>N110893<br>N110894            | 255 295<br>255 295<br>255 295<br>255 295<br>255 295<br>255 295 | 1 ·<br>1 ·<br>< 1 ·<br>< 1 ·<br>< 1 · | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>0.01 | 40<br>46<br>43<br>36<br>36 | 190<br>270<br>350<br>440<br>480   | 2<br>2<br>2<br>4<br>4     | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2               | 26<br>29<br>25<br>19<br>12 | 43<br>37<br>43<br>42<br>16            | 0.38<br>0.17<br>0.45<br>0.52<br>0.58           | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 222<br>198<br>227<br>234<br>225 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 6520<br>4830<br>3850<br>2930<br>874 |                |
| N110895<br>N110896<br>N110897                                  | 255 295<br>255 295<br>255 295                                  | < 1<br>< 1 -<br>< 1 -                 | 0.01<br>< 0.01<br>< 0.01                               | 35<br>35<br>37             | 500<br>380<br>430                 | < 2 < 2 < 2 < 2           | < 2<br>< 2<br>< 2                                    | 14<br>15<br>17             | 17<br>50<br>37                        | 0.54<br>0.39<br>0.45                           | < 10<br>< 10<br>< 10                         | < 10<br>< 10<br>< 10                         | 239<br>226<br>228               | < 10<br>< 10<br>< 10                         | 338<br>490<br>1040                  |                |
|                                                                |                                                                |                                       |                                                        |                            |                                   |                           |                                                      |                            |                                       |                                                |                                              |                                              |                                 |                                              |                                     | the to Buchle. |
|                                                                |                                                                |                                       |                                                        |                            |                                   |                           |                                                      |                            |                                       |                                                |                                              |                                              | c                               | ERTIFIC                                      | ATION:                              | Numite and     |



Page . ər :1-A Total Pagus :1 Certificate Date: 25-JUL-96 Invoice No. : 19625215 P.O. Number : Account :MPO

A9625215

tart Bichler

CERTIFICATION:\_

V6B 1L8

Project : ICE Comments: FAX:EXPATRIATE RES WHITEHORSE FAX: EXPATRIATE RES.VAN

**CERTIFICATE OF ANALYSIS** 

#### • PLEASE NOTE

| SAMPLE                                                         | PR<br>CC                               | ep<br>De                        | Au ppb<br>RUSH               | Cu<br>%                              | Ag<br>ppm                                          | A1<br>%                              | <b>As</b><br>ppm                      | Ba<br>ppm                        | Be<br>ppm                                 | Bi<br>ppm                                 | Ca<br>%                              | Cđ<br>ppm                            | Co<br>ppm                       | Cr<br>ppm                       | Cu<br>ppm                                      | Fe<br>%                                        | Ga<br>ppm                          | Hg<br>ppm                               | K<br>%                                       | La<br>ppm                            | Ng<br>%                              |
|----------------------------------------------------------------|----------------------------------------|---------------------------------|------------------------------|--------------------------------------|----------------------------------------------------|--------------------------------------|---------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|
| N110840<br>N110841                                             | 258                                    | 295<br>295                      | 30<br>< 5                    | 4.10                                 | 1.4                                                | 4.28                                 | 22<br>< 2                             | 30<br>300                        | < 0.5                                     | Intf*<br>Intf*                            | 0.10                                 | 2.5                                  | 301<br>45                       | 156<br>109                      | >10000<br>>10000                               | >15.00 9.34                                    | < 10<br>10                         | 6                                       | 0.09                                         | < 10<br>< 10                         | 2.87<br>3.82                         |
| N110842<br>N110843<br>N110844                                  | 258<br>258                             | 295<br>295<br>295               | < 5<br>< 5<br>< 5            | 1.13<br>1.93<br>0.93                 | < 0.2<br>< 0.2<br>0.2                              | 4.63<br>5.11<br>4.12                 | < 2<br>< 2<br>< 2                     | 140<br>200                       | < 0.5<br>< 0.5<br>< 0.5                   | < 2<br>Intf*<br>2                         | 2.40<br>2.76<br>2.44                 | 20.0<br>23.5<br>24.0                 | 97<br>82<br>142                 | 95<br>100<br>82                 | 9280<br>>10000<br>8070                         | 10.55<br>10.20<br>11.50                        | 10<br>10<br>< 10                   | 4<br>5<br>3                             | 0.06<br>0.07<br>0.04                         | < 10<br>< 10<br>< 10                 | 4.28<br>3.55<br>3.28                 |
| N110845<br>N110846<br>N110847<br>N110848<br>N110848<br>N110849 | 258<br>258<br>258<br>258<br>258        | 295<br>295<br>295<br>295<br>295 | 15<br>< 5<br>< 5<br>5<br>< 5 | 0.56<br>0.02<br>0.39<br>0.46<br>0.99 | 0.6<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2   | 3.80<br>3.46<br>5.71<br>5.87<br>6.97 | 10<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 60<br>10<br>30<br>70<br>230      | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>4<br>< 2<br>< 2             | 0.44<br>0.20<br>0.14<br>0.20<br>0.20 | 13.5<br>2.5<br>6.5<br>6.5<br>20.5    | 271<br>155<br>92<br>122<br>116  | 108<br>111<br>113<br>112<br>204 | 4790<br>170<br>3200<br>3920<br>8330            | >15.00<br>>15.00<br>11.55<br>13.40<br>11.75    | < 10<br>< 10<br>10<br>10<br>< 10   | 2 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0.10<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.99<br>2.33<br>6.11<br>6.07<br>6.32 |
| N110850<br>N110885<br>N110886<br>N110887<br>N110888            | 258<br>258<br>258<br>258<br>258<br>258 | 295<br>295<br>295<br>295<br>295 | 20<br>15<br>< 5<br>10<br>95  | 2.97<br>5.03<br>7.13<br>8.29<br>1.49 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 3.26<br>6.55<br>3.20<br>4.97<br>4.55 | 4<br>28<br>14<br>14<br>< 2            | < 10<br>30<br>< 10<br>30<br>< 10 | < 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5   | Intf*<br>Intf*<br>Intf*<br>Intf*<br>Intf* | 0.04<br>0.18<br>0.08<br>0.23<br>0.12 | < 0.5<br>0.5<br>< 0.5<br>13.0<br>4.0 | 328<br>156<br>476<br>349<br>226 | 100<br>82<br>53<br>58<br>118    | >10000<br>>10000<br>>10000<br>>10000<br>>10000 | >15.00<br>>15.00<br>>15.00<br>>15.00<br>>15.00 | 10<br>< 10<br>< 10<br>< 10<br>< 10 | 3 7 6 7 2                               | 0.02<br>0.09<br>0.04<br>0.04                 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | 2.28<br>1.63<br>0.78<br>0.68         |
| N110889                                                        | 258                                    | 295                             | 90                           | 1.20                                 | 2.0                                                | 5.52                                 | < 2                                   | 40                               | < 0.5                                     | Intf*                                     | 0.58                                 | 12.5                                 | 150                             | 135                             | >10000                                         | 13.50                                          | 10                                 | 4                                       | 0.06                                         | < 10                                 | 4.40                                 |
|                                                                |                                        |                                 |                              |                                      |                                                    |                                      |                                       |                                  |                                           |                                           |                                      |                                      |                                 |                                 |                                                |                                                |                                    |                                         |                                              |                                      |                                      |
|                                                                |                                        |                                 |                              |                                      |                                                    |                                      |                                       |                                  |                                           |                                           |                                      |                                      |                                 |                                 |                                                |                                                |                                    |                                         |                                              |                                      |                                      |
|                                                                |                                        |                                 |                              |                                      |                                                    |                                      |                                       |                                  |                                           |                                           |                                      |                                      |                                 |                                 |                                                |                                                |                                    |                                         |                                              |                                      |                                      |
|                                                                |                                        |                                 |                              |                                      |                                                    |                                      |                                       |                                  |                                           |                                           |                                      |                                      |                                 |                                 |                                                |                                                |                                    |                                         | •                                            |                                      |                                      |



#### Chemex Labs Ltd. Analytical Chemists \* Geochemists \* Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

North Vancouver

V7J 2C1

212 Brooksbank Ave., British Columbia, Canada



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page . ∋r :1-B Page 3r : 1-Total Pແລະຮີ : 1 Certificate Date: 25-JUL-96 Invoice No. P.O. Number :19625215 : MPO Account

ichler

tarth

Project :

ICE Comments: FAX:EXPATRIATE RES WHITEHORSE FAX: EXPATRIATE RES.VAN

#### **CERTIFICATE OF ANALYSIS** A9625215

| SAMPLE                                                         | PRE<br>COI                             | EP<br>DE                               | Mn<br>ppm                          | Mo<br>ppm                  | ı<br>L                                 | Na<br>%                         | Ni<br>ppm                  | p<br>ppm                                           | Pb<br>ppm                  | Sb<br>ppm                                   | Sc<br>ppm                  | Sr<br>ppm                  | Ti<br>%                              | T1<br>ppm                        | U<br>ppm                                   | V<br>ppm                        | W<br>ppm                                     | Zn<br>ppm                            |  |
|----------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|----------------------------|----------------------------------------|---------------------------------|----------------------------|----------------------------------------------------|----------------------------|---------------------------------------------|----------------------------|----------------------------|--------------------------------------|----------------------------------|--------------------------------------------|---------------------------------|----------------------------------------------|--------------------------------------|--|
| N110840<br>N110841<br>N110842<br>N110843<br>N110843            | 258<br>258<br>258<br>258<br>258<br>258 | 295<br>295<br>295<br>295<br>295<br>295 | 330<br>640<br>1270<br>1170<br>1250 | 10<br>1<br>< 1<br>1<br>< 1 | < 0<br>0<br>< 0<br>0<br>< 0            | .01<br>.01<br>.01<br>.01<br>.01 | 34<br>39<br>49<br>57<br>39 | Intf*<br>Intf*<br>630<br>Intf*<br>440              | 30<br>26<br>10<br>14<br>8  | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2      | 21<br>41<br>35<br>36<br>34 | 8<br>33<br>12<br>18<br>10  | 0.02<br>0.14<br>0.43<br>0.45<br>0.27 | 10<br>10<br>< 10<br>< 10<br>< 10 | 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 147<br>251<br>237<br>209<br>229 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1390<br>428<br>2000<br>1150<br>2760  |  |
| N110845<br>N110846<br>N110847<br>N110848<br>N110848<br>N110849 | 258<br>258<br>258<br>258<br>258<br>258 | 295<br>295<br>295<br>295<br>295<br>295 | 1135<br>710<br>765<br>1025<br>580  | 2<br>1<br>< 1<br>1<br>< 1  | < 0<br>< 0<br>< 0<br>< 0<br>< 0<br>< 0 | .01<br>.01<br>.01<br>.01<br>.01 | 53<br>35<br>47<br>45<br>63 | 230<br>50<br>310<br>370<br>220                     | 16<br>6<br>8<br>10<br>14   | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 21<br>18<br>22<br>21<br>25 | 5<br>4<br>7<br>7<br>8 <    | 0.01<br>0.07<br>0.01<br>0.04<br>0.01 | < 10<br>< 10<br>10<br>10<br>< 10 | < 10<br>10<br>< 10<br>< 10<br>< 10<br>< 10 | 161<br>138<br>204<br>200<br>146 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 4230<br>2320<br>2030<br>2660<br>3500 |  |
| N110850<br>N110885<br>N110886<br>N110887<br>N110888            | 258<br>258<br>258<br>258<br>258<br>258 | 295<br>295<br>295<br>295<br>295        | 185<br>185<br>100<br>840<br>295    | 4<br>7<br>3<br>3           | < 0<br>< 0<br>< 0<br>< 0<br>< 0        | .01<br>.01<br>.01<br>.01<br>.01 | 31<br>32<br>19<br>39<br>32 | Intf*<br>Intf*<br>Intf*<br>Intf*<br>Intf*<br>Intf* | 22<br>30<br>38<br>42<br>20 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>2        | 14<br>35<br>19<br>28<br>21 | 3<br>6 <<br>2<br>11 <<br>5 | 0.02<br>0.01<br>0.01<br>0.01<br>0.12 | 10<br>10<br>< 10<br>< 10<br>10   | 20<br>20<br>40<br>10<br>20                 | 114<br>206<br>117<br>194<br>140 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 638<br>1110<br>814<br>8160<br>1930   |  |
| N110889                                                        | 258                                    | 295                                    | 775                                | 5                          | < 0                                    | .01                             | 44                         | Intf*                                              | 18                         | < 2                                         | 22                         | 20                         | 0.15                                 | 10                               | < 10                                       | 218                             | < 10                                         | 4260                                 |  |

CERTIFICATION:

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

CERTIFICATE OF ANALVSIS

Page I Total P. r ·1-A :3 Certificate Date: 23-JUN-96 Invoice No. P.O. Number : 19620849 • Account MPO

A9620849

Proiect : F.P. ICE Comments:

|                  |              |           |         |            |           |           |            |         |           |           |           |           |         |           |                |        | 13020     | <u> </u> |              |           |
|------------------|--------------|-----------|---------|------------|-----------|-----------|------------|---------|-----------|-----------|-----------|-----------|---------|-----------|----------------|--------|-----------|----------|--------------|-----------|
| SAMPLE           | PREP<br>CODE | Ag<br>ppm | A1<br>% | As<br>ppm  | Ba<br>ppm | Be<br>ppm | Bi<br>ppm  | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>% | Ga<br>ppm | Hg<br>ppm      | K<br>% | La<br>ppm | Mg<br>%  | Mn<br>ppm    | Mo<br>ppm |
| <b>T6057</b>     | 201 202      | 0.6       | 2.55    | 2          | 520       | < 0.5     | 4          | 0.50    | 1.0       | 26        | 78        | 6330      | 6.82    | 10        | < 1            | 0.08   | < 10      | 0.94     | 540          | 5         |
| T6058            | 201 202      | 2 < 0.2   | 3.76    | 10         | 390       | < 0.5     | 2          | 0.73    | 1.5       | 31        | 82        | 2070      | 7.20    | 10        | < 1            | 0.07   | < 10      | 1.27     | 525          | 4         |
| T6059            | 201 202      | 2 < 0.2   | 1.74    | 14         | 580       | 0.5       | < 2        | 0.60    | 0.5       | 13        | 32        | 68        | 3.21    | < 10      | < 1            | 0.23   | 10        | 0.69     | 540          | 3         |
| <b>T6060</b>     | 201 202      | 2 < 0.2   | 2.50    | < 2        | 370       | < 0.5     | < 2        | 0.80    | < 0.5     | 24        | 32        | 83        | 4.93    | 10        | < 1            | 0.07   | 10        | 0.85     | 1265         | 1         |
| T6061            | 201 202      | < 0.2     | 1.99    | < 2        | 410       | < 0.5     | < 2        | 0.88    | < 0.5     | 11        | 39        | 42        | 2.76    | < 10      | < 1            | 0.08   | 10        | 0.63     | 470          | 1         |
| T6062            | 201 202      | 2 0.4     | 1.34    | 2          | 230       | < 0.5     | < 2        | 0.78    | 0.5       | 6         | 22        | 29        | 1.75    | < 10      | < 1            | 0.08   | 10        | 0.43     | 270          | 3         |
| 1608J<br>M6064   | 201 202      |           | 1 75    | ~ ~ ~      | 450       | < 0.5     |            | 1.08    | 0.5       | <b>`</b>  | 24        | 59        | 2.10    | < 10      |                | 0.14   | 10        | 0.54     | 560          | 2         |
| 10008<br>mcn25   | 201 202      |           | 1 29    | 2          | 530       | < 0.5     | 2 2        | 0.83    | < 0.5     | 9         | 37        | 20        | 2 30    | < 10      | 21             | 0.12   | 10        | 0.39     | 515          | 1         |
| 76065<br>76066   | 201 202      | < 0.2     | 1.37    | 1          | 340       | < 0.5     | < 2        | 0.63    | < 0.5     | š         | 26        | 30        | 1.94    | < 10      | < 1            | 0.09   | 10        | 0.43     | 365          | 1         |
|                  |              |           |         |            |           |           |            |         |           |           |           |           |         |           |                |        |           |          |              |           |
| <b>T6067</b>     | 201 202      | 2 < 0.2   | 0.19    | < 2        | 280       | < 0.5     | < 2        | 3.53    | < 0.5     | < 1       | 2         | 18        | 0.18    | < 10      | < 1            | 0.03   | < 10      | 0.29     | 165          | 1         |
| T6068            | 201 202      | 2 0.2     | 1.15    | < 2        | 330       | < 0.5     | < 2        | 1.10    | < 0.5     | 5         | 18        | 28        | 1.31    | < 10      | < 1            | 0.09   | < 10      | 0.33     | 220          | 1         |
| <b>T6069</b>     | 201 202      | < 0.2     | 2.05    | 12         | 750       | 0.5       | < 2        | 1.15    | < 0.5     | 13        | 48        | 6/        | 3.05    | < 10      | < 1            | 0.08   | 10        | 0.75     | 920          | 2         |
| 100/0<br>m6071   | 201 202      |           | 1 64    | 14         | 420       | 2 0 S     |            | 0.33    | < 0.5     | 10        | 34        | 21        | 2.00    | < 10      |                | 0.17   | 10        | 0.59     | 300          | 4         |
|                  | 201 202      | < 0.2     | 1.04    |            | • • • • • | × 0.5     | · · ·      | 0.33    | < 0.5     |           |           |           | 4.34    | < 10<br>  | · 1            | 0.08   | 10        | 0.37     | 390          |           |
| T6072            | 201 202      | 2 < 0.2   | 1.28    | < 2        | 480       | < 0.5     | < 2        | 0.21    | < 0.5     | 7         | 25        | 13        | 1.85    | < 10      | < 1            | 0.04   | 10        | 0.39     | 265          | < 1       |
| <b>T</b> 6073    | 201 202      | 2 < 0.2   | 2.16    | 2          | 170       | < 0.5     | < 2        | 0.34    | < 0.5     | 27        | 27        | 32        | 5.98    | 10        | < 1            | 0.04   | < 10      | 0.61     | 1265         | 1         |
| <b>T6074</b>     | 201 202      | 2 < 0.2   | 2.17    | 8          | 150       | < 0.5     | < 2        | 0.24    | < 0.5     | 11        | 34        | 37        | 6.48    | 10        | < 1            | 0.03   | < 10      | 0.45     | 335          | 3         |
| <b>T6075</b>     | 201 202      | < 0.2     | 3.05    | 4          | 430       | < 0.5     | < 2        | 0.58    | < 0.5     | 28        | 17        | 34        | 7.52    | 10        | < 1            | 0.15   | < 10      | 0.92     | 1070         | < 1       |
| T6076            | 201 202      | < 0.2     | 1.89    | 4          | 270       | < 0.5     | < 2        | 0.24    | < 0.5     | 22        | 26        | 34        | 5.03    | 10        | < 1            | 0.06   | < 10      | 0.43     | 1230         | 2         |
| T6077            | 201 202      | 0.2       | 2.32    | 6          | 450       | < 0.5     | < 2        | 0.27    | < 0.5     | 14        | 40        | 49        | 5.31    | 10        | < 1            | 0.05   | < 10      | 0.59     | 685          | 2         |
| T6078            | 201 202      | < 0.2     | 2.28    | 10         | 640       | < 0.5     | < 2        | 1.18    | 0.5       | 24        | 57        | 78        | 4.64    | 10        | 1              | 0.12   | 10        | 1.20     | 1275         | 2         |
| T6079            | 201 202      | < 0.2     | 2.33    | 10         | 200       | < 0.5     | < 2        | 0.55    | < 0.5     | 14        | 51        | 42        | 5.38    | 10        | < 1            | 0.04   | < 10      | 0.75     | 555          | 1         |
| T6UBU<br>#6081   | 201 202      |           | 1.6/    | 8          | 220       | < 0.5     |            | 0.0/    | < 0.5     | 70        | 12        | 41        | 3.30    | < 10      | < 1            | 0.08   | < 10      | 0.80     | 2000         | 4         |
|                  | 201 202      | < 0.Z     | 1.40    | < 4<br>    |           | < 0.5     | <u> </u>   | 0.39    | 0.3       |           |           |           | 3.90    | <u> </u>  | < I            | 0.05   | < 10      | 0.29     | <b>2</b> 000 |           |
| <b>T6082</b>     | 201 202      | 2 < 0.2   | 1.47    | 2          | 120       | < 0.5     | , < 2      | 0.24    | < 0.5     | 13        | 23        | 50        | 3.28    | < 10      | < 1            | 0.04   | < 10      | 0.24     | 900          | 1         |
| <b>T6083</b>     | 201 202      | < 0.2     | 1.39    | 6          | 910       | 0.5       | < 2        | 0.27    | 0.5       | 17        | 26        | 45        | 2.36    | < 10      | < 1            | 0.05   | 10        | 0.30     | 1295         | 1         |
| <b>T16545</b>    | 201 202      | 0.6       | 1.49    | < 2        | 480       | 0.5       | < 2        | 2.37    | 0.5       | 8         | 27        | 83        | 1.83    | < 10      | < 1            | 0.07   | 10        | 0.46     | 540          | 1         |
| T16546           | 201 202      | 0.2       | 1.47    | < 2        | 300       | < 0.5     | < 2        | 1.64    | 0.5       | 7         | 26        | 58        | 1.92    | < 10      | < 1            | 0.09   | < 10      | 0.50     | 425          | 2         |
| T16547           | 201 202      | < 0.2     | 2.13    | 4          | 430       | < 0.5     | < 2        | 0.33    | < 0.5     | 12        | 41        | 40        | 3.38    | < 10      | < 1            | 0.11   | 10        | 0.54     | 590          | د<br>     |
| F16548           | 201 202      | < 0.2     | 2.16    | < 2        | 550       | 0.5       | < 2        | 0.85    | < 0.5     | 7         | 34        | 152       | 2.41    | < 10      | < 1            | 0.10   | 10        | 0.42     | 795          | 1         |
| 110349           | 201 202      |           | 0.00    | < <u>4</u> | 530       | < 0.5     |            | 0.14    | < 0.5     | 21        | 11        | 14        | 4 60    | 10        |                | 0.11   | < 10      | 1 22     | 1050         | < 1       |
| F1033U<br>#16551 | 201 202      |           | 2.33    | < 4<br>2 2 | 470       | < 0.5     | < <u>4</u> | 0.43    | < 0.5     | 10        | 64<br>67  | 40<br>03  | 4.00    | × 10      |                | 0.00   | < 10      | 1.44     | 1020         | 1         |
| F16551<br>P16552 | 201 202      |           | 1 75    | 2          | 490       | < 0.5     | 2.2        | 0.58    | < 0.5     | 10        | 37        | 21        | 2 60    | < 10      | $\frac{1}{21}$ | 0.10   | 10        | 0 73     | 435          | 2         |
|                  |              |           | ±.,2    | <b>_</b>   |           | - 0.3     | <u> </u>   | 0,20    | ~ 0.5     |           |           | A 1       | A.00    | · +··     | · •            |        | 10        |          |              |           |
| F16553           | 201 202      | < 0.2     | 1.28    | 2          | 260       | < 0.5     | < 2        | 0.30    | < 0.5     | 7         | 29        | 21        | 2.01    | < 10      | < 1            | 0.09   | 10        | 0.49     | 295          | 2         |
| r16554           | 201 202      | < 0.2     | 1.39    | 8          | 420       | < 0.5     | < 2        | 0.43    | < 0.5     | 6         | 26        | 37        | 1.83    | < 10      | < 1            | 0.07   | < 10      | 0.29     | 235          | 1         |
| P16555           | 201 202      | 0.2       | 1.95    | < 2        | 460       | 0.5       | < 2        | 0.53    | < 0.5     | 8         | 38        | 49        | 2.37    | < 10      | < 1            | 0.08   | 10        | 0.44     | 515          | 1         |
| F16556           | 201 202      | < 0.2     | 1.31    | 2          | 230       | < 0.5     | < 2        | 0.15    | < 0.5     | 5         | 27        | 19        | 1.95    | < 10      | < 1            | 0.12   | 10        | 0.36     | 245          | 2         |
| F16557           | 201 202      | < 0.2     | 1.44    | < 2        | 300       | < 0.5     | < 2        | 0.52    | < 0.5     | 8         | 30        | 20        | 2.19    | < 10      | < 1            | 0.09   | 10        | 0.53     | 375          | 1         |
|                  |              |           |         |            |           |           |            |         |           |           |           |           |         |           |                |        |           |          |              |           |

CERTIFICATION: Hart Buchles

### **Chemex Labs Ltd.** Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

6

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

∋r :1-B Page I 96 9

**Chemex Labs Ltd.** 

Analytical Chemists \* Geochemists \* Registered Assayers

C

|                                                                           | CERTIFICATE OF ANALYSIS         | A9620849 |
|---------------------------------------------------------------------------|---------------------------------|----------|
| British Columbia, Canada V7J 2C1<br>PHONE: 604-984-0221 FAX: 604-984-0218 | Project : F.P. ICE<br>Comments: | Accou    |
| 212 Brooksbank Ave. North Vancouver                                       | V6B 1L8                         | P.O. N   |

| i utai r c ju   | . 3         |
|-----------------|-------------|
| Certificate Dat | e: 23-JUN-9 |
| Invoice No.     | :19620849   |
| P.O. Number     | :           |
| Account         | MPO         |
|                 |             |

| SAMPLE                                         | PREP                                                           | Na<br>%                                          | Ni                         | P                               | Pb                         | Sb                                          | SC                        | Sr                           | Ti<br>%                              | T1<br>ppm                                    | U<br>mag                                     | V<br>Maga                      | W<br>Maga                                    | Zn<br>mqq                      |   |
|------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|----------------------------|---------------------------------|----------------------------|---------------------------------------------|---------------------------|------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------|--------------------------------|---|
|                                                | 0022                                                           |                                                  | ~~~~                       |                                 |                            |                                             |                           |                              |                                      |                                              |                                              |                                |                                              |                                |   |
| T6057<br>T6058<br>T6059<br>T6060<br>T6061      | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.01<br>0.01<br>0.01<br>0.01<br>0.01             | 26<br>24<br>44<br>24<br>27 | 760<br>500<br>560<br>440<br>370 | 16<br>12<br>14<br>4<br>6   | 2<br>4<br>6<br>< 2<br>2                     | 22<br>16<br>6<br>16<br>10 | 23<br>22<br>31<br>18<br>14   | 0.10<br>0.13<br>0.02<br>0.11<br>0.05 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 159<br>205<br>71<br>145<br>71  | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 290<br>324<br>160<br>148<br>74 |   |
| T6062<br>T6063<br>T6064<br>T6065<br>T6066      | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.04<br>0.02<br>0.03<br>0.03<br>0.03             | 22<br>27<br>29<br>22<br>20 | 600<br>600<br>640<br>360<br>380 | 6<br>6<br>8<br>8<br>6      | < 2<br>< 2<br>2<br>2<br>2<br>< 2            | 3<br>6<br>7<br>5<br>5     | 19<br>22<br>20<br>12<br>16   | 0.03<br>0.03<br>0.03<br>0.01<br>0.03 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 49<br>59<br>62<br>51<br>54     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 92<br>82<br>84<br>86<br>62     |   |
| T6067<br>T6068<br>T6069<br>T6070<br>T6071      | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.01<br>0.04<br>0.01<br>0.01<br>< 0.01           | 3<br>13<br>32<br>37<br>26  | 600<br>700<br>960<br>510<br>420 | < 2<br>< 2<br>6<br>12<br>8 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>2 | < 1<br>4<br>12<br>7<br>3  | 62 4<br>30<br>31<br>27<br>14 | 0.01<br>0.02<br>0.05<br>0.04<br>0.05 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 4<br>37<br>74<br>57<br>56      | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 80<br>38<br>64<br>106<br>66    |   |
| T6072<br>T6073<br>T6074<br>T6075<br>T6076      | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.01<br>< 0.01<br>0.01<br>0.01<br>0.01           | 12<br>21<br>16<br>20<br>15 | 200<br>810<br>450<br>350<br>280 | 6<br>< 2<br>6<br>< 2<br>4  | 2<br>2<br>2<br>2<br>2<br>2                  | 3<br>5<br>4<br>15<br>5    | 11<br>9<br>7<br>22<br>10     | 0.03<br>0.14<br>0.17<br>0.08<br>0.12 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 52<br>179<br>191<br>230<br>145 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 64<br>118<br>98<br>122<br>130  |   |
| r6077<br>r6078<br>r6079<br>r6080<br>r6081      | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.01<br>0.01<br>0.01<br>< 0.01<br>< 0.01<br>0.04 | 22<br>45<br>21<br>26<br>12 | 300<br>620<br>560<br>440<br>530 | 8<br>2<br>2<br>6<br>4      | 2<br>< 2<br>4<br>2<br>< 2                   | 7<br>16<br>6<br>11<br>4   | 10<br>25<br>12<br>17<br>19   | 0.14<br>0.12<br>0.17<br>0.10<br>0.10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 162<br>112<br>150<br>87<br>97  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 154<br>138<br>102<br>90<br>108 |   |
| T6082<br>T6083<br>T16545<br>T16546<br>T16547   | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.03<br>0.01<br>0.01<br>0.03<br>0.01             | 13<br>21<br>28<br>21<br>23 | 640<br>680<br>900<br>850<br>270 | 4<br>12<br>6<br>4<br>10    | < 2<br>< 2<br>2<br>< 2<br>< 2<br>< 2<br>< 2 | 4<br>4<br>5<br>6<br>5     | 9<br>12<br>37<br>28<br>12    | 0.08<br>0.01<br>0.03<br>0.03<br>0.05 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 86<br>46<br>56<br>49<br>82     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 120<br>154<br>68<br>130<br>98  |   |
| T16548<br>T16549<br>T16550<br>T16551<br>T16552 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.03<br>0.06<br>0.01<br>0.01<br>0.01             | 32<br>6<br>26<br>37<br>21  | 930<br>470<br>390<br>450<br>140 | 6<br>2<br>6<br>4<br>10     | < 2<br>< 2<br>< 2<br>2<br>2<br>< 2          | 14<br>< 1<br>8<br>21<br>4 | 19<br>7<br>10<br>15<br>13    | 0.04<br>0.02<br>0.16<br>0.01<br>0.08 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 73<br>26<br>127<br>155<br>67   | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 84<br>28<br>140<br>116<br>64   |   |
| F16553<br>F16554<br>F16555<br>F16556<br>F16557 | 201 202<br>201 202<br>201 202<br>201 202<br>201 202<br>201 202 | 0.01<br>0.04<br>0.03<br>0.02<br>0.02             | 20<br>17<br>27<br>17<br>19 | 120<br>300<br>540<br>160<br>150 | 6<br>6<br>8<br>8<br>8      | 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 3<br>4<br>7<br>3<br>4     | 10<br>14<br>14<br>9<br>14    | 0.04<br>0.03<br>0.03<br>0.04<br>0.06 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 50<br>48<br>58<br>49<br>56     | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 70<br>64<br>74<br>64<br>88     | _ |
|                                                | I                                                              | 1                                                |                            |                                 |                            |                                             |                           |                              |                                      |                                              |                                              |                                |                                              |                                |   |

CERTIFICATION: Hart Buchler

EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page i II:2-A Total Paguis: 3 Certificate Date: 23-JUN-96 Invoice No. : 19620849 P.O. Number : Account : MPO

Project : F.P. ICE Comments:

:

|               |     |          | •         |         |           |           |           |           |         |           | CE        | RTIF      | ICATE     | E OF /  | ANAL      | YSIS      |        | A9620     | )849    |           |           |
|---------------|-----|----------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|-----------|-----------|---------|-----------|-----------|--------|-----------|---------|-----------|-----------|
| SAMPLE        | PR  | ep<br>De | Ag<br>ppm | A1<br>% | As<br>ppm | Ba<br>ppm | Be<br>ppm | Bi<br>ppm | Ca<br>% | DD<br>mqq | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>% | Ga<br>ppm | Hg<br>ppm | K<br>% | La<br>ppm | Ng<br>% | Mn<br>ppm | Mo<br>ppm |
| T16558        | 201 | 202      | 0.6       | 1.93    | < 2       | 810       | 1.5       | < 2       | 0.81    | < 0.5     | 9         | 32        | 98        | 2.30    | < 10      | < 1       | 0.06   | 20        | 0.37    | 565       | 3         |
| T16559        | 201 | 202      | < 0.2     | 1.52    | < 2       | 340       | < 0.5     | < 2       | 0.83    | < 0.5     | 9         | 35        | 58        | 2.09    | < 10      | < 1       | 0.06   | < 10      | 0.51    | 710       | 1         |
| T16560        | 201 | 202      | < 0.2     | 1.19    | < 2       | 350       | < 0.5     | < 2       | 1.31    | < 0.5     | 4         | 20        | 39        | 1.42    | < 10      | < 1       | 0.07   | < 10      | 0.34    | 360       | 1         |
| T16586        | 201 | 202      | < 0.2     | 1.56    | 12        | 320       | < 0.5     | < 2       | 0.25    | 0.5       | 12        | 32        | 126       | 3.17    | < 10      | < 1       | 0.06   | 10        | 0.54    | 420       | 2         |
| <b>T16587</b> | 201 | 202      | < 0.2     | 2.78    | < 2       | 470       | < 0.5     | < 2       | 0.65    | 2.0       | 49        | 84        | 935       | 8.12    | 10        | < 1       | 0.03   | < 10      | 0.94    | 355       | 1         |
| T16588        | 201 | 202      | < 0.2     | 2.50    | 2         | 380       | 0.5       | < 2       | 0.59    | 0.5       | 36        | 42        | 260       | 5.46    | 10        | < 1       | 0.13   | < 10      | 0.90    | 1465      | 1         |
| T16589        | 201 | 202      | < 0.2     | 2.62    | 4         | 340       | 0.5       | < 2       | 0.67    | < 0.5     | 28        | 42        | 70        | 5.22    | 10        | < 1       | 0.11   | 10        | 1.00    | 945       | 3         |
| T16590        | 201 | 202      | < 0.2     | 3.39    | 4         | 340       | < 0.5     | < 2       | 0.67    | 0.5       | 33        | 72        | 164       | 6.28    | 10        | < 1       | 0.14   | 10        | 1.55    | 1995      | 1         |
| T16591        | 201 | 202      | 0.2       | 2.13    | 2         | 490       | < 0.5     | < 2       | 0.67    | 0.5       | 21        | 44        | 113       | 3.79    | < 10      | < 1       | 0.15   | 10        | 0.66    | 1410      | 1         |
| <b>T16592</b> | 201 | 202      | 0.2       | 1.46    | 10        | 540       | < 0.5     | < 2       | 0.19    | 0.5       | 13        | 28        | 82        | 4.38    | < 10      | < 1       | 0.12   | < 10      | 0.25    | 1925      | 4         |
| T16593        | 201 | 202      | < 0.2     | 3.60    | < 2       | 330       | 0.5       | < 2       | 1.18    | < 0.5     | 50        | 47        | 119       | 7.71    | 10        | < 1       | 0.13   | < 10      | 1.23    | 3110      | 3         |
| T16594        | 201 | 202      | < 0.2     | 2.34    | 6         | 300       | < 0.5     | < 2       | 0.71    | < 0.5     | 26        | 45        | 106       | 5.06    | 10        | 1         | 0.17   | < 10      | 0.99    | 1320      | 1         |
| T16595        | 201 | 202      | < 0.2     | 3.30    | < 2       | 570       | < 0.5     | < 2       | 0.91    | 0.5       | 33        | 78        | 108       | 5.66    | 10        | < 1       | 0.18   | 10        | 1.36    | 1730      | 2         |
| <b>T16596</b> | 201 | 202      | < 0.2     | 3.11    | 2         | 420       | < 0.5     | < 2       | 0.73    | 1.5       | 200       | 101       | 880       | 6.45    | 10        | < 1       | 0.09   | < 10      | 1.09    | 2300      | 2         |
| T16597        | 201 | 202      | < 0.2     | 2.87    | 8         | 540       | 0.5       | < 2       | 0.58    | 0.5       | 121       | 102       | 951       | 4.28    | < 10      | < 1       | 0.12   | 10        | 0.83    | 1140      | 2         |
| T16598        | 201 | 202      | 0.2       | 4.03    | < 2       | 450       | 0.5       | 2         | 0.79    | 1.5       | 72        | 80        | 5070      | 9.83    | 10        | < 1       | 0.10   | < 10      | 1.56    | 795       | 3         |
| T16599        | 201 | 202      | 0.6       | 1.33    | < 2       | 420       | < 0.5     | < 2       | 0.56    | 0.5       | 10        | 28        | 493       | 2.83    | < 10      | < 1       | 0.07   | < 10      | 0.38    | 415       | 2         |
| <b>T16600</b> | 201 | 202      | < 0.2     | 1.76    | 2         | 400       | < 0.5     | < 2       | 0.29    | < 0.5     | 24        | 27        | 52        | 3.90    | < 10      | 1         | 0.06   | < 10      | 0.63    | 1515      | 2         |
| T16601        | 201 | 202      | < 0.2     | 2.01    | 10        | 150       | < 0.5     | < 2       | 0.10    | < 0.5     | 9         | 23        | 38        | 5.63    | < 10      | < 1       | 0.05   | 10        | 0.33    | 390       | 2         |
| T16602        | 201 | 202      | < 0.2     | 2.33    | < 2       | 380       | < 0.5     | < 2       | 0.28    | < 0.5     | 20        | 47        | 149       | 4.32    | 10        | < 1       | 0.05   | < 10      | 0.89    | 995       | 2         |
| <b>T16603</b> | 201 | 202      | < 0.2     | 1.47    | < 2       | 180       | < 0.5     | < 2       | 0.18    | < 0.5     | 6         | 24        | 58        | 2.02    | < 10      | < 1       | 0.06   | 10        | 0.30    | 215       | 1         |
| T16604        | 201 | 202      | 1.0       | 1.79    | < 2       | 240       | < 0.5     | < 2       | 0.28    | 0.5       | 15        | 38        | 356       | 3.62    | < 10      | < 1       | 0.08   | 10        | 0.61    | 340       | 3         |
| T16605        | 201 | 202      | 0.8       | 2.41    | 6         | 430       | < 0.5     | < 2       | 0.63    | 0.5       | 22        | 84        | 2770      | 7.63    | 10        | < 1       | 0.10   | < 10      | 0.89    | 560       | 5         |
| T16606        | 201 | 202      | 2.4       | 1.88    | < 2       | 280       | < 0.5     | 2         | 0.54    | 0.5       | 19        | 48        | 1095      | 4.26    | < 10      | 1         | 0.09   | < 10      | 0.45    | 425       | 3         |
| T16607        | 201 | 202      | < 0.2     | 3.26    | < 2       | 480       | < 0.5     | < 2       | 0.96    | 0.5       | 29        | 62        | 75        | 5.82    | 10        | < 1       | 0.14   | < 10      | 1.39    | 1630      | 3         |
| <b>T16608</b> | 201 | 202      | < 0.2     | 2.39    | 6         | 340       | < 0.5     | 2         | 0.53    | 0.5       | 66        | 59        | 478       | 4.30    | < 10      | < 1       | 0.11   | 10        | 0.94    | 975       | 2         |
| T16609        | 201 | 202      | < 0.2     | 2.56    | 6         | 420       | < 0.5     | < 2       | 0.54    | < 0.5     | 27        | 66        | 196       | 4.18    | < 10      | < 1       | 0.15   | < 10      | 0.87    | 850       | 1         |
| <b>T16610</b> | 201 | 202      | < 0.2     | 2.09    | 6         | 300       | < 0.5     | < 2       | 0.39    | < 0.5     | 32        | 46        | 66        | 3.71    | < 10      | < 1       | 0.14   | 10        | 0.75    | 900       | 1         |
| T16611        | 201 | 202      | < 0.2     | 3.98    | < 2       | 3270      | < 0.5     | < 2       | 1.28    | < 0.5     | 36        | 85        | 83        | 6.05    | 10        | < 1       | 0.07   | < 10      | 1.69    | 2110      | 1         |
| T16612        | 201 | 202      | 0.2       | 2.07    | < 2       | 300       | 0.5       | < 2       | 0.76    | < 0.5     | 17        | 46        | 89        | 3.78    | < 10      | < 1       | 0.07   | < 10      | 0.44    | 900       | 1         |
| T16613        | 201 | 202      | < 0.2     | 2.11    | 2         | 310       | < 0.5     | < 2       | 0.39    | < 0.5     | 15        | 45        | 40        | 3.46    | < 10      | < 1       | 0.09   | 10        | 0.72    | 500       | 1         |
| T16614        | 201 | 202      | < 0.2     | 2.67    | 2         | 570       | < 0.5     | < 2       | 0.81    | < 0.5     | 22        | 59        | 49        | 4.81    | 10        | < 1       | 0.25   | < 10      | 1.02    | 1550      | 2         |
| T16615        | 201 | 202      | < 0.2     | 2.86    | 6         | 1660      | < 0.5     | < 2       | 0.89    | < 0.5     | 22        | 99        | 546       | 4.17    | 10        | 1         | 0.10   | < 10      | 1.16    | 940       | 2         |
| T16616        | 201 | 202      | < 0.2     | 2.69    | < 2       | 390       | < 0.5     | < 2       | 0.99    | 0.5       | 21        | 38        | 48        | 4.93    | 10        | < 1       | 0.17   | < 10      | 0.97    | 1055      | < 1       |
| T16617        | 201 | 202      | < 0.2     | 1.90    | 2         | 410       | < 0.5     | < 2       | 0.65    | < 0.5     | 13        | 38        | 36        | 3.51    | < 10      | < 1       | 0.13   | 10        | 0.58    | 580       | 2         |
| T16618        | 201 | 202      | < 0.2     | 2.27    | < 2       | 270       | < 0.5     | < 2       | 0.23    | < 0.5     | 9         | 30        | 18        | 3.41    | < 10      | < 1       | 0.05   | 10        | 0.46    | 255       | 1         |
| r16619        | 201 | 202      | < 0.2     | 3.54    | < 2       | 580       | 0.5       | < 2       | 1.24    | 1.5       | 55        | 68        | 89        | 6.32    | 10        | < 1       | 0.14   | < 10      | 1.49    | 6760      | 3         |
| T16621        | 201 | 202      | < 0.2     | 1.72    | 8         | 650       | 0.5       | < 2       | 0.34    | < 0.5     | 10        | 31        | 47        | 2.58    | < 10      | < 1       | 0.18   | 20        | 0.50    | 495       | 3         |



0.15

0.07

10

10

0.86

0.51

495

325

3

2

C

T16622

T16623

201 202

201 202

< 0.2

< 0.2

1.97

2.02

8

6

640 < 0.5

420 < 0.5

< 2

< 2

0.80

0.15 < 0.5

0.5

18

9

39

35

2680

38

3.43

2.67

< 10

< 10

< 1

< 1

### Chemex Labs Ltd. Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada V7J 2C1

PHONE: 604-984-0221 FAX: 604-984-0218



Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Pager:2-BTotal Page:3Certificate Date:23-JUN-96Invoice No.:19620849P.O. Number:Account: MPO

Project : F.P. ICE Comments:

|                  |          |          |         |            |            |            |                                              |           |           |         | CERTIFICATE OF ANALYSIS |              |          |          | A9620849  |   |  |
|------------------|----------|----------|---------|------------|------------|------------|----------------------------------------------|-----------|-----------|---------|-------------------------|--------------|----------|----------|-----------|---|--|
| SAMPLE           | PR<br>CO | ep<br>De | Na<br>% | Ni<br>ppm  | P<br>ppm   | Pb<br>ppm  | Sb<br>ppm                                    | Sc<br>ppm | Sr<br>ppm | Ti<br>% | T1<br>ppm               | U<br>ppm     | V<br>ppm | W<br>ppm | Zn<br>ppm |   |  |
| T16558           | 201      | 202      | 0.01    | 43         | 930        | 10         | < 2                                          | 6         | 29        | 0.01    | < 10                    | < 10         | 51       | < 10     | 104       |   |  |
| T16559           | 201      | 202      | 0.03    | 21         | 430        | 2          | < 2                                          | 8         | 19        | 0.04    | < 10                    | < 10         | 56       | < 10     | 56        |   |  |
| <b>T16560</b>    | 201      | 202      | 0.02    | 17         | 480        | 2          | < 2                                          | 5         | 25        | 0.01    | < 10                    | < 10         | 33       | < 10     | 48        |   |  |
| T16586           | 201      | 202      | < 0.01  | 25         | 210        | 8          | < 2                                          | 4         | 10        | 0.05    | < 10                    | < 10         | 66       | < 10     | 122       |   |  |
| 11038/           | 201      | 202      | 0.01    | 34         | 430        | < <b>4</b> | . 4                                          | 15        | 10        | 0.17    | < 10                    | < 10         | 105      | < 10     | 1120      |   |  |
| T16588           | 201      | 202      | 0.01    | 28         | 600        | 6          | 4                                            | 16        | 19        | 0.16    | < 10                    | < 10         | 143      | < 10     | 252       |   |  |
| <b>T16589</b>    | 201      | 202      | 0.01    | 27         | 400        | 2          | < 2                                          | 12        | 28        | 0.18    | < 10                    | < 10         | 147      | < 10     | 134       |   |  |
| T16590           | 201      | 202      | 0.01    | 39         | 690        | 2          | 4                                            | 44        | 14        | 0.19    | < 10                    | < 10         | 192      | < 10     | 208       |   |  |
| T16591           | 201      | 202      | 0.01    | 33         | 580        | 8          | < 2                                          | 10        | 15        | 0.09    | < 10                    | < 10         | 90       | < 10     | 174       |   |  |
| 110223           | 201      | 404      | < 0.01  | 40         | 450        | 14         | 4                                            | 5         | 10        | 0.02    | < 10                    | < 10         | 63       | < 10     | 190       |   |  |
| T16593           | 201      | 202      | 0.02    | 33         | 760        | < 2        | 6                                            | 36        | 29        | 0.30    | < 10                    | < 10         | 213      | < 10     | 148       |   |  |
| T16594           | 201      | 202      | 0.03    | 24         | 950        | 2          | 2                                            | 10        | 20        | 0.14    | < 10                    | < 10         | 122      | < 10     | 156       |   |  |
| T16595           | 201      | 202      | 0.01    | 41         | 840        | 4          | < 2                                          | 19        | 18        | 0.19    | < 10                    | < 10         | 132      | < 10     | 390       |   |  |
| T10390<br>m16507 | 201      | 202      |         | 53         | 5/0        | 4          | 4                                            | 21        | 18        | 0.14    | < 10                    | < 10         | 145      | < 10     | 1050      |   |  |
|                  |          | 404      | 0.01    | 40         | 390        |            | *                                            |           | 10        | 0.10    | × 10                    | < 10         | 113      | < 10     | ***       |   |  |
| T16598           | 201      | 202      | 0.01    | 49         | 830        | 2          | 2                                            | 47        | 22        | 0.11    | < 10                    | < 10         | 245      | < 10     | 960       |   |  |
| T16599           | 201      | 202      | 0.03    | 16         | 360        | 4          | < 2                                          | 5         | 15        | 0.06    | < 10                    | < 10         | 61       | < 10     | 150       |   |  |
| T16600           | 201      | 202      | 0.03    | 17         | 280        | < 2        | < 2                                          | 5         | 13        | 0.09    | < 10                    | < 10         | 98       | < 10     | 96        |   |  |
| T100U1<br>m16602 | 201      | 202      |         | 11         | 340        | 4          | < 4                                          | 5         | 12        | 0.13    | < 10                    | < 10         | 142      | < 10     | 104       |   |  |
| 110002           |          | 202      | 0.01    | <b>44</b>  | 570        |            | <u>`                                    </u> |           | ±4        |         | < 10                    | < 10         | 114      | × 10     | 120       |   |  |
| T16603           | 201      | 202      | 0.01    | 10         | 250        | 2          | < 2                                          | 3         | 9         | 0.07    | < 10                    | < 10         | 59       | < 10     | 214       |   |  |
| T16604           | 201      | 202      | 0.01    | 23         | 210        | 14         | < 2                                          | 5         | 14        | 0.11    | < 10                    | < 10         | 82       | < 10     | 208       |   |  |
| T100U3           | 201      | 202      | 0.01    | 2/         | 280        | 10         | 4                                            | 14        | 10        | 0.10    | < 10                    | < 10         | 130      | < 10     | 2/8       |   |  |
| F16600           | 201      | 202      | 0.03    | 32         | 230        | 10         | 2                                            | 13        | 15        | 0.00    | < 10                    | < 10         | 160      | < 10     | 400       |   |  |
|                  |          |          | 0.01    |            |            | *          |                                              |           |           |         | · • • •                 | < 10<br>     | 100      | · 10     | 100       |   |  |
| <b>T16608</b>    | 201      | 202      | 0.01    | 37         | 380        | 8          | 2                                            | 11        | 17        | 0.11    | < 10                    | < 10         | 104      | < 10     | 286       |   |  |
| <b>F16609</b>    | 201      | 202      | 0.01    | 36         | 380        | 8          | 2                                            | 9         | 21        | 0.10    | < 10                    | < 10         | 106      | < 10     | 150       |   |  |
| F16610           | 201      | 202      | 0.01    | 28         | 420        | 8          | 2                                            | 17        | 14        | 0.11    | < 10                    | < 10         | 90       | < 10     | 148       |   |  |
| F10011           | 201      | 202      | 0.01    | 35         | 1450       | < 2        | 1 2                                          | 11        | 154<br>21 | 0.46    | < 10                    | < 10         | 1/6      | < 10     | 100       |   |  |
|                  |          |          | 0.03    | <b>•</b> / | 1450       | •          | <u> </u>                                     |           | <u> </u>  |         | × 10                    | < 10         |          | × 10     | 108       |   |  |
| <b>F16613</b>    | 201      | 202      | 0.01    | 27         | 320        | 8          | < 2                                          | 6         | 12        | 0.10    | < 10                    | < 10         | 91       | < 10     | 92        |   |  |
| T16614           | 201      | 202      | 0.01    | 31         | 490        | 6          | 2                                            | 14        | 18        | 0.13    | < 10                    | < 10         | 128      | < 10     | 138       |   |  |
| T10015<br>m16616 | 201      | 202      | 0.01    | 40         | 300        | 4          | 2                                            | 13        | 18        | 0.11    | < 10                    | < 10         | 111      | < 10     | 194       |   |  |
| r16617           | 201      | 202      | 0.01    | 23         | 280        | 0<br>0     | 1 2                                          | 5         | 17        | 0.13    | < 10                    | < 10         | 140      | < 10     | 120       |   |  |
|                  |          |          |         |            |            | - <u> </u> |                                              |           |           |         |                         | < 10<br>     |          | · 10     | 50        |   |  |
| <b>F16618</b>    | 201      | 202      | 0.01    | 16         | 210        | 4          | < 2                                          | 3         | 11        | 0.10    | < 10                    | < 10         | 99       | < 10     | 82        |   |  |
| LT00TA           | 1 201    | 202      | < 0.01  | 38         | 34U<br>500 | 14         | 4                                            | 18        | 27        | 0.17    | < 10                    | < 10         | 100      | < 10     | 114       |   |  |
| F16622           | 201      | 202      | 0.01    | 30<br>27   | 390<br>700 | 14         | <u>د</u> ۲                                   | 11        | 25        | 0.10    | < 10                    | < 10<br>< 10 | 20<br>91 | < 10     | 134       |   |  |
| 16623            | 201      | 202      | < 0.01  | 25         | 120        | 10         | < 2                                          | 4         | 9         | 0.04    | < 10                    | < 10         | 69       | < 10     | 76        |   |  |
|                  |          |          |         |            |            |            |                                              | -         | -         |         |                         |              | ••       |          |           | • |  |
|                  |          |          |         |            |            |            |                                              |           |           |         |                         |              |          |          |           |   |  |

CERTIFICATION:

Sant Brahler

C 

## **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Page i Total F. : :3-A :3 Certificate Date: 23-JUN-96 Invoice No. : 19620849 P.O. Number : MPO Account

~

Project : F.P. ICE Comments:

|                                                |                                        |                                        |                                                    |                                      |                           |                                  |                                                    |                                               |                                      |                                                  | CERTIFICATE OF ANALYSIS     |                            |                                 |                                       | A9620849                                     |                                        |                                      |                                |                                      |                                   |                           |
|------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|---------------------------|----------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------------------|-----------------------------|----------------------------|---------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------|--------------------------------------|-----------------------------------|---------------------------|
| SAMPLE                                         | PRI                                    | ep<br>D <b>e</b>                       | Ag<br>ppm                                          | A1<br>%                              | As<br>ppm                 | Ba<br>ppm                        | Be<br>ppm                                          | Bi<br>ppm                                     | Ca<br>%                              | Cđ<br>ppm                                        | Co<br>ppm                   | Cr<br>ppm                  | Cu<br>ppm                       | Fe<br>%                               | Ga<br>ppm                                    | Hg<br>ppm                              | К<br>%                               | La<br>ppm                      | Mg<br>%                              | Mn<br>ppm                         | Mo<br>ppm                 |
| T16624<br>T16625<br>T16626<br>T16627<br>T16628 | 201<br>201<br>201<br>201<br>201        | 202<br>202<br>202<br>202<br>202<br>202 | 0.2<br>< 0.2<br>< 0.2<br>0.2<br>0.2                | 2.37<br>2.15<br>2.88<br>1.71<br>1.93 | 2<br>6<br>2<br>2<br>< 2   | 340<br>880<br>1000<br>730<br>520 | < 0.5<br>0.5<br>< 0.5<br>0.5<br>< 0.5              | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.39<br>0.86<br>1.15<br>0.41<br>0.48 | 0.5<br>< 0.5<br>0.5<br>1.5<br>0.5                | 67<br>14<br>102<br>17<br>20 | 80<br>50<br>33<br>21<br>37 | 4760<br>177<br>127<br>57<br>248 | 11.25<br>3.47<br>6.50<br>2.77<br>3.73 | < 10<br>< 10<br>10<br>< 10<br>< 10           | 1<br>< 1<br>< 1<br>< 1<br>< 1          | 0.08<br>0.14<br>0.24<br>0.16<br>0.11 | < 10<br>10<br>10<br>10<br>10   | 0.52<br>0.94<br>1.29<br>0.24<br>0.49 | 405<br>665<br>2080<br>3080<br>880 | < 1<br>1<br>2<br>3        |
| T16629<br>T16630<br>T16631<br>T16632<br>T16633 | 201<br>201<br>201<br>201<br>201<br>201 | 202<br>202<br>202<br>202<br>202<br>202 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 0.78<br>0.89<br>1.48<br>0.62<br>1.47 | 10<br>4<br>< 2<br>6<br>6  | 190<br>320<br>960<br>190<br>370  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.09<br>0.15<br>0.20<br>0.14<br>0.29 | < 0.5<br>< 0.5<br>0.5<br>0.5<br>< 0.5            | 4<br>5<br>8<br>5<br>7       | 13<br>18<br>19<br>14<br>30 | 111<br>30<br>35<br>40<br>23     | 2.33<br>1.86<br>2.28<br>1.81<br>2.14  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.10<br>0.11<br>0.11<br>0.10<br>0.08 | 10<br>20<br>10<br>10<br>10     | 0.17<br>0.20<br>0.26<br>0.08<br>0.46 | 135<br>185<br>940<br>300<br>250   | 3<br>3<br>1<br>1<br>1     |
| T16634<br>T16635<br>T16636<br>T16637<br>T16638 | 201<br>201<br>201<br>201<br>201<br>201 | 202<br>202<br>202<br>202<br>202<br>202 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 1.90<br>1.49<br>1.80<br>1.51<br>2.17 | 10<br>< 2<br>2<br>4<br>10 | 670<br>440<br>280<br>300<br>270  | 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5   | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.73<br>0.40<br>0.24<br>0.18<br>0.22 | 1.0<br>0.5<br>1.0<br>< 0.5<br>< 0.5              | 15<br>11<br>10<br>7<br>11   | 44<br>35<br>34<br>27<br>37 | 587<br>1405<br>27<br>26<br>42   | 3.16<br>2.76<br>2.50<br>1.91<br>2.98  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>1<br>< 1<br>< 1<br>< 1<br>< 1   | 0.27<br>0.09<br>0.08<br>0.06<br>0.06 | 10<br>10<br>10<br>10<br>10     | 0.78<br>0.51<br>0.46<br>0.46<br>0.46 | 700<br>295<br>320<br>205<br>300   | 4<br>3<br>2<br>1<br>2     |
| T16639<br>T16640<br>T16641<br>T16642<br>T16643 | 201<br>201<br>201<br>201<br>201        | 202<br>202<br>202<br>202<br>202<br>202 | 0.2<br>1.0<br>< 0.2<br>< 0.2<br>< 0.2              | 1.78<br>1.23<br>1.48<br>1.95<br>1.93 | 8<br>2<br>12<br>22<br>14  | 730<br>630<br>450<br>260<br>300  | < 0.5<br>< 0.5<br>0.5<br>< 0.5<br>< 0.5            | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.29<br>0.76<br>0.45<br>0.14<br>0.20 | 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5            | 15<br>9<br>11<br>9<br>8     | 37<br>22<br>28<br>40<br>30 | 221<br>1025<br>142<br>27<br>18  | 3.64<br>2.00<br>2.41<br>3.34<br>2.84  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>1   | 0.08<br>0.11<br>0.11<br>0.07<br>0.04 | 10<br>< 10<br>20<br>10<br>10   | 0.56<br>0.27<br>0.54<br>0.65<br>0.39 | 815<br>240<br>425<br>240<br>255   | 3<br>2<br>1<br>2<br>1     |
| T16644<br>T16645<br>T16646<br>T16647<br>T16648 | 201<br>201<br>201<br>201<br>201<br>201 | 202<br>202<br>202<br>202<br>202<br>202 | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>0.2   | 1.51<br>1.77<br>1.26<br>1.84<br>2.35 | 8<br>12<br>8<br>8<br>10   | 280<br>260<br>180<br>550<br>520  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>0.5   | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.09<br>0.23<br>0.26<br>0.56<br>0.71 | < 0.5<br>< 0.5<br>< 0.5<br>0.5<br>0.5            | 9<br>8<br>15<br>24          | 31<br>36<br>25<br>36<br>49 | 37<br>19<br>12<br>66<br>225     | 3.01<br>3.75<br>3.07<br>3.39<br>4.62  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.08<br>0.06<br>0.08<br>0.08<br>0.08 | 10<br>10<br>10<br>< 10<br>< 10 | 0.42<br>0.55<br>0.38<br>0.80<br>0.92 | 265<br>255<br>290<br>465<br>675   | 2<br>1<br>< 1<br>1<br>1   |
| T16649<br>T16650<br>T18634<br>T18635<br>T18636 | 201<br>201<br>201<br>201<br>201        | 202<br>202<br>202<br>202<br>202<br>202 | < 0.2<br>< 0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2   | 1.99<br>1.99<br>1.97<br>3.74<br>1.75 | 12<br>12<br>2<br>2<br>12  | 420<br>390<br>300<br>630<br>640  | < 0.5<br>< 0.5<br>< 0.5<br>0.5<br>< 0.5            | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.44<br>0.23<br>0.38<br>0.90<br>0.24 | < 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5          | 18<br>17<br>11<br>39<br>17  | 43<br>30<br>36<br>65<br>37 | 804<br>131<br>38<br>96<br>78    | 3.49<br>5.62<br>3.32<br>7.98<br>3.66  | < 10<br>< 10<br>< 10<br>10<br>< 10           | < 1<br>< 1<br>1<br>1<br>< 1            | 0.07<br>0.06<br>0.03<br>0.14<br>0.11 | 10<br>10<br>< 10<br>< 10<br>10 | 0.80<br>0.59<br>0.56<br>1.77<br>0.56 | 525<br>490<br>455<br>4480<br>965  | 1<br>1<br>< 1<br>< 1<br>2 |
| T18637<br>T18638<br>T18639<br>T18640<br>T18674 | 201<br>201<br>201<br>201<br>201<br>201 | 202<br>202<br>202<br>202<br>202<br>202 | 0.2<br>0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>22.4      | 1.69<br>1.41<br>1.65<br>1.61<br>0.24 | 8<br>8<br>8<br>14<br>8    | 800<br>700<br>360<br>220<br>370  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 0.20<br>1.37<br>0.15<br>0.28<br>0.01 | < 0.5<br>0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | 17<br>15<br>6<br>9<br>1     | 27<br>30<br>37<br>34<br>11 | 47<br>1090<br>20<br>29<br>221   | 3.55<br>2.53<br>2.21<br>3.05<br>1.52  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.17<br>0.14<br>0.08<br>0.08<br>0.01 | 20<br>10<br>10<br>10<br>< 10   | 0.50<br>0.58<br>0.41<br>0.53<br>0.03 | 800<br>435<br>155<br>310<br>20    | 1<br>1<br>1<br>1<br>6     |
| T18675<br>T18676                               | 201<br>201                             | 202<br>202                             | 0.2<br>< 0.2                                       | 1.67<br>1.33                         | 8<br>8                    | 440<br>600                       | < 0.5<br>< 0.5                                     | < 2<br>< 2                                    | 1.23<br>0.86                         | 1.0<br>0.5                                       | 13<br>12                    | 35<br>37                   | 56<br>36                        | 2.98<br>2.49                          | < 10<br>< 10                                 | < 1<br>< 1                             | 0.21<br>0.12                         | 10<br>10                       | 0.94<br>0.80                         | 540<br>630                        | 1<br>1                    |
|                                                |                                        |                                        |                                                    |                                      |                           | <u> </u>                         |                                                    | ••••••••                                      |                                      |                                                  |                             |                            |                                 |                                       |                                              |                                        | 14                                   | sait                           | R31                                  | chle                              | ~                         |

CERTIFICATION:

C

## **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8 Page i :3-B Total P. :3 Certificate Date: 23-JUN-96 Invoice No. : I 9620849 P.O. Number : Account : MPO

Project : F.P. ICE Comments:

......

|                                                          | _                                      |                                        | _                                              |                            |                                  |                             |                                                      |                         |                                |                                      | CERTIFICATE OF ANALYSIS                      |                                              |                               |                                              |                                | A9620849 |
|----------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------|----------------------------|----------------------------------|-----------------------------|------------------------------------------------------|-------------------------|--------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------|----------------------------------------------|--------------------------------|----------|
| SAMPLE                                                   | PR<br>CO                               | ep<br>De                               | Na<br>%                                        | Ni<br>ppm                  | P<br>pom                         | Pb<br>ppm                   | Sb<br>ppm                                            | Sc<br>ppm               | Sr<br>ppm                      | Ti<br>%                              | T1<br>ppm                                    | U<br>ppm                                     | V<br>ppm                      | W<br>ppm                                     | Zn<br>ppm                      |          |
| T16624<br>T16625<br>T16626                               | 201<br>201<br>201                      | 202<br>202<br>202                      | < 0.01<br>0.01<br>0.03                         | 29<br>35<br>24             | 530<br>340<br>420                | 4<br>6<br>< 2               | < 2<br>< 2<br>2                                      | 21<br>10<br>29          | 15<br>19<br>43                 | 0.01<br>0.10<br>0.26                 | < 10<br>< 10<br>< 10                         | 10<br>< 10<br>< 10                           | 106<br>79<br>178              | < 10<br>< 10<br>< 10                         | 1135<br>122<br>272             |          |
| T16627<br>T16628                                         | 201<br>201                             | 202<br>202                             | 0.03<br>0.02                                   | 27<br>28                   | 970<br>530                       | 14<br>8                     | < 2<br>< 2                                           | <u>4</u><br>6           | 19<br>21                       | 0.01<br>0.07                         | < 10<br>< 10                                 | < 10<br>< 10                                 | <b>44</b><br>80               | < 10<br>< 10                                 | 252<br>17 <b>4</b>             |          |
| T16629<br>T16630<br>T16631<br>T16632<br>T16633           | 201<br>201<br>201<br>201<br>201        | 202<br>202<br>202<br>202<br>202        | 0.01<br>0.01<br>0.03<br>< 0.01                 | 27<br>13<br>17<br>18<br>20 | 400<br>330<br>520<br>380<br>330  | 10<br>10<br>18<br>6<br>8    | < 2<br>< 2<br>< 2<br>< 2                             | 2<br>1<br>1<br>1<br>3   | 11<br>12<br>25<br>9<br>13      | 0.01<br>0.03<br>0.01<br>0.03<br>0.06 | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 29<br>38<br>36<br>49<br>59    | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 100<br>144<br>340<br>92<br>72  |          |
| T16634<br>T16635<br>T16636<br>T16637                     | 201<br>201<br>201<br>201<br>201        | 202<br>202<br>202<br>202<br>202        | 0.01<br>0.03<br>0.01<br>0.01                   | 55<br>22<br>21<br>17       | 910<br>550<br>240<br>240         | 14<br>6<br>6                | 2<br>< 2<br>< 2<br>2<br>2                            | 9<br>7<br>3<br>3        | 41<br>23<br>13<br>11           | 0.07<br>0.04<br>0.06<br>0.05         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 72<br>59<br>63<br>49          | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 160<br>130<br>152<br>82        |          |
| T16639<br>T16640<br>T16641<br>T16642                     | 201<br>201<br>201<br>201<br>201        | 202<br>202<br>202<br>202<br>202        | < 0.01<br>0.04<br>0.01<br>< 0.01               | 32<br>20<br>28<br>22       | 430<br>470<br>420<br>260         | 10<br>2<br>12<br>8          | < 2<br>< 2<br>2<br>4                                 | 6<br>5<br>5<br>4        | 18<br>23<br>25<br>10           | 0.06<br>0.02<br>0.04<br>0.07         | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 76<br>42<br>45<br>89          | < 10<br>< 10<br>< 10<br>< 10<br>< 10         | 184<br>110<br>102<br>178       |          |
| T16644<br>T16644<br>T16645<br>T16646<br>T16647<br>T16648 | 201<br>201<br>201<br>201<br>201<br>201 | 202<br>202<br>202<br>202<br>202        | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 29<br>17<br>15<br>24<br>35 | 350<br>200<br>380<br>390<br>720  | 12<br>10<br>10<br>8<br>12   | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 2<br>3<br>1<br>5<br>7   | 11<br>12<br>9<br>9<br>17<br>25 | 0.01<br>0.08<br>0.07<br>0.11<br>0.14 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 51<br>121<br>85<br>95<br>125  | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 78<br>56<br>58<br>90<br>138    |          |
| T16649<br>T16650<br>T18634<br>T18635<br>T18636           | 201<br>201<br>201<br>201<br>201<br>201 | 202<br>202<br>202<br>202<br>202<br>202 | < 0.01<br>< 0.01<br>0.03<br>< 0.01<br>< 0.01   | 31<br>19<br>17<br>43<br>30 | 370<br>350<br>1060<br>600<br>560 | 10<br>8<br>< 2<br>< 2<br>16 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 6<br>4<br>6<br>42<br>4  | 15<br>14<br>15<br>20<br>13     | 0.07<br>0.09<br>0.01<br>0.06<br>0.05 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 84<br>138<br>100<br>194<br>79 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 144<br>158<br>90<br>108<br>138 |          |
| T18637<br>T18638<br>T18639<br>T18640<br>T18674           | 201<br>201<br>201<br>201<br>201<br>201 | 202<br>202<br>202<br>202<br>202<br>202 | 0.01<br>0.03<br>< 0.01<br>< 0.01<br>< 0.01     | 31<br>30<br>21<br>18<br>3  | 890<br>670<br>190<br>200<br>120  | 20<br>8<br>8<br>12<br>12    | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 2<br>6<br>2<br>3<br>< 1 | 29<br>45<br>11<br>11<br>4      | 0.01<br>0.04<br>0.05<br>0.08<br>0.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 49<br>57<br>65<br>87<br>21    | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 246<br>114<br>54<br>60<br>36   |          |
| T18675<br>T18676                                         | 201<br>201                             | 202<br>202                             | < 0.01<br>< 0.01                               | 34<br>34                   | 1100<br>1110                     | 14<br>12                    | < 2<br>< 2                                           | 6<br>5                  | 54<br>43                       | 0.08                                 | < 10<br>< 10                                 | < 10<br>< 10                                 | 73<br>66                      | < 10<br>< 10                                 | 154<br>106                     |          |
|                                                          | 1                                      |                                        |                                                |                            |                                  |                             |                                                      |                         |                                |                                      |                                              |                                              |                               |                                              |                                |          |

CERTIFICATION:

tart Brokler

**APPENDIX VI** 

**REPORTS FROM VANCOUVER PETROGRAPHICS** 



# Vancouver Petrographics Ltd.

8080 G!-OVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

Report # 960741 for:

Doug Eaton, Expatriate Resources Ltd,. c/o Archer, Cathro & Associates (1981) Ltd., 1016 - 510 West Hastings Street, Vancouver, B.C., V6B 1L6

November 1996

Project: Ice

#### Samples: IC96-34A 79.9 m, IC96-34B 81.3 m, IC96-34C 92.1 m

#### Summary:

Samples are massive sulfides showing a variety of textures, some of which are cryptocrystalline intergrowths suggestive of low-temperature formation. Other, mainly coarser grained textures probably were formed by metamorphic recrystallization (of all minerals) and mobilization (mainly of chalcopyrite, bornite, and quartz). The gangue in chalcopyrite-bearing samples is moderately abundant to abundant and dominated by quartz. In the sample in which Cu-minerals are bornite and digenite, minor gangue is dominated by calcite with much less abundant quartz. It would be valuable to document the textures of these samples with photographs.

Sample IC96-34A 79.9 m is a massive sulfide dominated by pyrite with interstitial patches of bornite which is intergrown with (and possibly replaced by) much less abundant digenite. Intergrowths of pyrite and bornite show a wide variety of textures, in many of which the minerals are intergrown intimately. Sphalerite is concentrated in one main interstitial lens and a few patches. Interstitial gangue minerals are calcite and lesser quartz.

Sample IC96-34B 81.3 m is a massive sulfide dominated by pyrite with interstitial patches dominated by quartz much less abundant chalcopyrite and calcite. The abundances of chalcopyrite and sphalerite in the thin section are not enough to account for the assay values. However, the distribution of chalcopyrite is very irregular, and this section might represent a low-grade part of the assay interval.

Sample IC96-34C 92.1 m is a massive sulfide dominated by pyrite and quartz, with less abundant chalcopyrite and bornite showing a wide variety of textures. These range from cryptocrystalline, massive to locally banded and colloform textures, indicative of low-temperature formation, to very fine to fine grained textures suggestive of recrystallization and remobilization. The distribution of the Cu-bearing minerals is very patchy, with many zones rich in chalcopyrite with zero to minor bornite, and others containing bornite with no chalcopyrite. Less commonly, bornite and chalcopyrite are intergrown coarsely. Sphalerite occurs locally with bornite and chalcopyrite.

y Vaying

Jóhn G. Payne, PhØ., Tel: (604)-986-2928 Fax: (604)-983-3318 e-mail: johnpayn@istar.ca

#### Sample IC96-34A 79.9 m Massive Sulfide: Pyrite-Bornite-Digenite-(Sphalerite) with Sparse Gangue of Calcite-Quartz

The sample is a massive sulfide dominated by pyrite with interstitial patches of bornite which is intergrown with (and possibly replaced by) much less abundant digenite. Intergrowths of pyrite and bornite show a wide variety of textures, in many of which the minerals are intergrown intimately. Sphalerite is concentrated in one main interstitial lens and a few patches. Interstitial gangue minerals are calcite and lesser quartz.

| pyrite       | 75-78% |
|--------------|--------|
| bornite      | 10-12  |
| digenite     | 2-3    |
| calcite      | 5-7    |
| quartz       | 1-2    |
| sphalerite   | 1-2    |
| chalcopyrite | trace  |

Pyrite forms massive aggregates of subhedral grains averaging 0.2-0.5 mm in size and a few up to 1 mm across. These are intergrown with patches of granular aggregates of pyrite grains averaging 0.02-0.1 mm in size. Some coarser pyrite grains with relatively inclusion-free cores contain overgrowths of pyrite with moderately abundant, intergrowths of bornite averaging 2-5 microns in size. Massive pyrite aggregates contain only minor interstitial bornite/chalcocite. Granular pyrite aggregates contain moderately abundant interstitial patches of bornite/digenite mainly between 0.02-0.2 mm in size, with a few interstitial patches from 0.5-1 mm across and one patch 3 mm across. A few patches up to 1 mm in size are dominated by pyrite grains averaging 5-10 microns in size with minor to moderately abundant interstitial bornite. Borders of coarser pyrite grains against bornite are mainly subrounded, but a few are euhedral. Several patches up to 0.7 mm across consist of ragged, skeletal patches of pyrite enclosed in much more abundant bornite. A very few pyrite grains up to 0.1 mm across contain one or two growth zones up to 5 microns in width of bornite. A few coarser pyrite grains contain minor inclusions of chalcopyrite averaging 0.01 mm in size.

Intergrown with bornite are lenses and irregular patches of light blue, isotropic digenite. Some lensy textures suggest that the two minerals are in equilibrium and some patchy textures suggest that digenite formed by replacement of bornite during supergene enrichment. The secondary mineral is identified as digenite rather than chalcocite because of its light blue colour. Locally bornite is replaced more strongly to hematite along borders of patches against calcite.

Sphalerite is concentrated strongly in a few lenses up to 3 mm long in which it is interstitial to pyrite. Sphalerite is colourless, and generally is free of inclusions of other minerals.

Calcite forms interstitial patches averaging 0.2-0.8 mm in length and a few from 0.8-1.5 mm long of mainly very fine grains. A few grains are from 0.5-1 mm across; most of these occupy almost all of the interstitial patch in which they occur. Pyrite grains adjacent to calcite commonly have euhedral terminations.

Quartz forms interstitial patches up to 0.7 mm in size of slightly interlocking grains averaging 0.03-0.05 mm in size. In general, calcite and quartz occur in separate interstitial patches, and the rock can be divided roughly into irregular calcite-rich and quartz-rich zones.

#### Sample IC96-34C 92.1 m Massive Sulfide: Pyrite-Quartz-Chalcopyrite-Bornite

The sample is dominated by pyrite and quartz, with less abundant chalcopyrite and bornite showing a wide variety of textures. These range from cryptocrystalline, massive to locally banded and colloform textures indicative of low-temperature formation to very fine to fine grained textures suggestive of recrystallization and remobilization. The distribution of the Cu-bearing minerals is very patchy, with many zones rich in chalcopyrite with zero to minor bornite, and others containing bornite with no chalcopyrite. In a few patches bornite and chalcopyrite are intergrown. Sphalerite occurs locally with bornite and chalcopyrite.

| pyrite       | 50-55% |
|--------------|--------|
| quartz       | 35-40  |
| chalcopyrite | 10-12  |
| bornite      | 2-3    |
| sphalerite   | minor  |

Pyrite occurs in a few main textures. It forms disseminated, subhedral grains averaging 0.05-0.2 mm in size with a few up to 0.5 mm across intergrowth with patches of quartz. It occurs in intimate intergrowths with bornite in patches averaging 0.07-0.3 mm in size. In some of these, pyrite appears to have been fractured strongly and replaced by bornite. In some coarser patches of this type (up to 1.5 mm across), minor to moderately abundant chalcopyrite and trace sphalerite occur with bornite in the matrix.

Several patches up to a few mm across consist of extremely intimate intergrowths (1-5 microns) of bornite and/or chalcopyrite in pyrite in massive to locally banded and colloform textures; the latter particularly suggest low-temperature precipitation. In some of the massive aggregates, sphalerite forms scattered grains averaging 0.02-0.03 mm in size.

A few patches up to several mm across are dominated by intimate intergrowths of chalcopyrite and pyrite in a variety of textures and mineral proportions ranging from extremely fine to very fine.

Bornite also forms coarser patches averaging 0.5-1 mm in size along borders between pyrite and quartz and one larger lens 2.5 mm long.

One patch several mm long and a few mm wide has a crudely banded texture as follows:

- 1) (0.3 mm wide) intimate intergrowth of bornite and pyrite averaging 5-10 microns.
- 2) (0.2 mm wide) bornite with much less cryptocrystalline pyrite and minor to moderately abundant very fine grained chalcopyrite
- 3) (1.2 mm wide) chalcopyrite with minor to locally moderately abundant patches of very fine grained bornite.

Adjacent to this patch is another 8 mm long which has similar zoning which is less well defined. As well, the chalcopyrite-rich zone also contains abundant cryptocrystalline to extremely fine grained pyrite inclusions.

A few proximal patches up to 0.6 mm in size consist of intergrowths of pyrite and chalcopyrite with minor bornite. At one end chalcopyrite is dominant, and contains tiny angular fragments of pyrite. Towards the other end, pyrite is more abundant, and the texture is of abundant dendritic to braided veinlets of chalcopyrite cutting pyrite. These patches are included in a coarser grained matrix consisting of coarse intergrowths of bornite and chalcopyrite intergrown with very fine grained quartz.

A few patches of pyrite are cut by braided veinlets and a network of tiny fractures containing patches of each of chalcopyrite, sphalerite, and bornite.

(continued)

Sphalerite occurs as a lens 0.08 mm long with a smaller patch of bornite as an inclusion in a grain of pyrite.

Quartz forms aggregates of grains averaging 0.01-0.03 mm in size and fewer patches averaging 0.03-0.07 mm in grain size. About 2-3% are recrystallized to comb textured aggregates averaging 0.03-0.05 mm thick between pyrite grains. Some coarser grained patches and lenses are intergrown with coarser grained patches of chalcopyrite and bornite; these probably formed by metamorphic recrystallization and remobilization.

#### Notes regarding the suite of samples:

1. No Cobalt-rich phase was identified. As you suggested, it probably occurs in pyrite.

2. No precious mineral phases were identified.

## Sample IC96-34B 81.3 m Massive Sulfide: Pyrite-Chalcopyrite with Gangue of Quartz

The sample is a massive sulfide dominated by pyrite with interstitial patches dominated by quartz much less abundant chalcopyrite and calcite. The abundances of chalcopyrite and sphalerite in the thin section are not enough to account for the assay values. However, the distribution of chalcopyrite is very irregular, and this section might represent a low-grade part of the assay interval.

| pyrite       | 70-75% |
|--------------|--------|
| quartz       | 20-25  |
| chalcopyrite | 3-4    |
| calcite      | 1      |
| sericite     | minor  |
| sphalerite   | trace  |

Pyrite forms anhedral to subhedral grains averaging 0.1-0.5 mm in size, with a few grains up to 1 mm across. At one end of the section is a coarser grained patch in which a few pyrite grains average 1-1.5 mm in size. Some grains have euhedral terminations against quartz and chalcopyrite. Finer grained pyrite (0.01-0.05 mm) forms very irregular patches intergrown with extremely fine grained quartz.

Chalcopyrite forms irregular patches averaging 0.05-0.2 mm in size interstitial to pyrite. It also occurs as narrow veinlets in fractures in pyrite grains. In a few larger interstitial patches, chalcopyrite is concentrated moderately to strongly in patches up to 1 mm long with very fine grained quartz.

Quartz forms interstitial patches showing a variety of textures. Much of the quartz forms slightly interlocking grains averaging 0.01-0.02 mm in size. Scattered large interstitial patches up to 2 mm long are of slightly interlocking quartz grains averaging 0.03-0.08 mm in size. About 5-7% of the quartz was recrystallized into comb-textured aggregates averaging 0.05-0.1 mm thick adjacent to pyrite crystal faces. A few larger interstitial patches are of coarser grained quartz or have broad cores of coarser grained quartz averaging 0.1-0.5 mm in size. Associated with some of these are chalcopyrite-rich patches up to 1 mm across.

Calcite forms scattered anhedral grains intergrown with quartz, mainly averaging 0.03-0.1 mm in size, with a few from 0.1-0.4 mm in size. One interstitial patch 2 mm across at one end of the section is dominated by calcite grains averaging 0.1-0.2 mm in size with much less abundant extremely fine grained quartz.

A few interstitial patches up to 0.8 mm long contain moderately abundant to abundant sericite flakes averaging 0.03-0.05 mm long intergrown with extremely fine grained quartz.

Sphalerite forms minor patches and lenses up to 0.12 mm long in a few pyrite grains.



# Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 - FAX (604) 888-3642

Report # 960632 for:

Tom Becker, Archer Cathro & Associates, 1016 - 510 West Hastings Street, Vancouver, B.C., V6B 1L8

October, 1996

copy to: Lee Pigage, L.C. Pigage Consulting, 2 Rosewood Place, Whitehorse, Yukon, Y1A 4X3

| Project:  | Finlayson |                                    |
|-----------|-----------|------------------------------------|
| Property: | Ice       |                                    |
| Samples:  | IC96-02:  | 26.90 m, 37.80 m, 45.15 m, 82.70 m |
| _         | IC96-03:  | 91.50 m, 120.80 m, 121.10 m        |
|           | IC96-05:  | 24.12 m;                           |
|           | IC96-06:  | 19.60 m, 26.45 m, 90.30 m          |
|           | IC96-07:  | 45.20 m;                           |
|           | IC96-08:  | 22.66 m                            |

#### Summary:

#### A1: Anvil Range Group Basalt

Sample IC96-05 24.12 m is an altered diabase. The freshest part of the rock (at one end) is a massive fine to medium grained diabase composed of lathy plagioclase grains with interstitial clinopyroxene. Much of the rock was more strongly altered; plagioclase is replaced moderately by chlorite and tremolite/actinolite, and clinopyroxene is replaced partly by cryptocrystalline epidote-chlorite. Leucoxene forms abundant interstitial patches after ilmenite. A few amygdules(?) are of chlorite-(epidote). A few veinlets are of chlorite.

Sample IC96-06 90.30 m is a diabase containing fine to medium grained lathy plagioclase intergrown with interstitial fine grained clinopyroxene (augite) and minor leucoxene. Plagioclase is altered moderately to strongly to cryptocrystalline clinozoisite(?). A major vein and replacement zone is dominated by cherty quartz with a few patches of chlorite, one hemispherical patch of quartz, and minor patches of clinozoisite. A few subparallel veinlets are of chlorite. A breccia zone in one corner of the section contains angular fragments of clinopyroxene in a matrix of cryptocrystalline clinozoisite.

Sample IC96-07 45.20 m is a porphyritic basalt. It contains clinozoisite-rich patches and phenocrysts of plagioclase in a groundmass dominated by lathy plagioclase with minor disseminated opaque. Minor spheroidal amygdules are dominated by chlorite; a few also contain quartz or epidote. An irregular replacement patch is of chlorite. A veinlet is of quartz-chlorite-(epidote-opaque). A few veinlets are of chlorite.

#### A2: Auto-brecciated Anvil Range Group Basalt

**Sample IC96-03 91.50 m** is a brecciated, altered basalt containing minor phenocrysts of plagioclase and clusters of clinopyroxene(?) in a groundmass dominated by plagioclase, which was replaced strongly by clinozoisite(?) as in Sample IC96-07 42.50 m, with minor clinopyroxene. Veinlets up to 0.25 mm wide are of extremely fine grained sericite with locally abundant seams and patches of one of calcite, chlorite, and epidote. Along the margins of the sample the rock was weathered/altered with the introduction in the groundmass of moderately abundant disseminated patches of dusty hematite.

**Sample IC96-02 82.70 m** is an altered, auto-brecciated basalt containing rounded to angular fragments up to 2.5 cm in size of basalt with a variable texture. Minor clusters of phenocrysts of plagioclase (altered moderately to chlorite-(sericite)) are set in a groundmass dominated by radiating to subradiating plagioclase spheroids. The groundmass in a few patches is of anhedral plagioclase grains with interstitial, cryptocrystalline clinozoisite and disseminated patches of leucoxene and minor opaque. Most fragments have a rim from 1-1.5 mm in width; many of these contain spheroidal patches of basalt in a matrix of chlorite and cuspate patches of leucoxene. Some are of plagioclase which is less altered to clinozoisite than plagioclase in the cores of the patches. Fragments are set in a variable matrix dominated by chlorite with less abundant quartz, locally abundant clinozoisite, and minor epidote and sphalerite. Late veinlets of calcite occur mainly in the matrix.

Metamorphic grade of the basalt samples based on the assemblages chlorite-epidote/ clinozoisite probably is in the upper greenschist facies.

#### Stratiform Unit A: Hematite-Pyrite Unit

The rocks were metamorphosed and recrystallized; thus metamorphic textures obscure original textures and make it difficult to determine the original paragenetic sequence. Original pyrite was brecciated and healed by quartz-specular hematite-chlorite. The white mineral is quartz. Late seams are of ankerite. No chalcocite was identified.

Sample IC96-02 37.80 m contains spheroidal to irregular patches of quartz with abundant disseminated plates of specular hematite surrounded by a matrix of chlorite with patches of clinozoisite(?) and seams and veinlets of ankerite. Minor veinlets are of limonite/hematite, locally with minor quartz.

Sample IC96-02 45.15 m contains angular fragments of pyrite enclosed in a sparse groundmass of cryptocrystalline to extremely fine grained quartz and scattered patches of chlorite. One band dominated by cryptocrystalline quartz probably represents an original sedimentary layer. Moderately abundant quartz was recrystallized into comb-textured aggregates against pyrite grains. An irregular, warped vein is of quartz with patches of specular hematite.

Sample IC96-08 19.35 m is dominated by massive pyrite, which was brecciated strongly and fragments healed by a patchy matrix of specular hematite, quartz, and much less abundant chlorite-clinozoisite(?).

Sample IC96-08 22.65 m is dominated by coarse grained pyrite, which was brecciated and fragments healed by a patchy groundmass dominated by quartz, specular hematite, and lesser chlorite. Minor veinlets are of limonite/hematite.

#### Stratiform Unit B

Sample IC96-03 120.80 m contains fragments of altered andesite flow, mostly dominated by chlorite with lesser relic plagioclase. One is dominated by plagioclase. Chlorite-rich fragments have a thin rind dominated by sub-radiating plagioclase. Interior to this rind are several patches and lenses of chalcopyrite-epidote. A patchy matrix is of fine grained quartz with disseminated patches of dusty hematite and others of chlorite. Pyrite, lesser chalcopyrite, and minor epidote are concentrated in clusters, mainly in quartz. Late patches of quartz and associated quartz veinlets contain minor chalcopyrite and are relatively free of dusty hematite.

**Sample IC96-03 121.10 m** contains fragments up to a few mm across of strongly altered basalt flow containing minor relic plagioclase grains in a matrix dominated by chlorite. A strongly brecciated seam up to 1.5 mm wide contains fragments of a variety of altered basalt in a matrix of chlorite. The main replacement patches are dominated by quartz and pyrite, with less abundant chlorite, chalcopyrite, epidote, and muscovite/sericite.

Textures suggest that disseminated pyrite in the altered host rocks could be stratiform. However, that in the replacement patches, with a much higher chalcopyrite/pyrite ratio probably was formed by replacement and introduction of copper.

#### Samples with Secondary Cu minerals

Sample IC96-06 26.45 m is a metamorphosed andesite flow containing minor plagioclase phenocrysts and lathy plagioclase grains in an extremely fine grained groundmass dominated by plagioclase with moderately abundant chlorite and limonite, and minor disseminated native copper and chalcocite. Amygdules are mainly of chlorite and quartz-chlorite, and one is of plagioclase-chloritechalcocite. An irregular vein/replacement zone is of plagioclase-chlorite with less abundant epidote. Late veinlets are dominated by limonite and hematite with moderately abundant lenses of native copper. One limonite/hematite seams contains lenses of chlorite.

Sample IC96-06 19.60 m is an extremely fine grained basalt flow dominated by plagioclase with much less abundant chlorite and ilmenite/leucoxene. Several early patches and veinlets are dominated by chlorite with locally abundant sericite and minor patches of quartz and epidote. Abundant, late, complex veins up to a few mm wide are dominated by secondary Cu-minerals (malachite, tenorite, cuprite) and limonite/hematite; some of these have border zones of quartz and one has a lensy core of quartz. In some veins, tenorite surrounds cuprite and probably was formed in part by replacement of cuprite. Malachite probably was the last-formed secondary Cu-mineral.

Sample IC96-02 26.90 m is strongly altered. Patches of quartz-chlorite-ankerite-hematite may represent an early replacement. Some hematite clusters are warped moderately, suggesting that the host rock was folded. Other patches (possibly a later replacement) are dominated by quartz and pyrite with moderately abundant chalcopyrite and minor sphalerite.

Some pyrite grains were fractured moderately to locally very strongly, with chalcopyritechalcocite deposited in fractures, and some quartz grains were recrystallized to comb-textured aggregates against pyrite grains. These textures may have formed during a later deformation event. Chalcopyrite was replaced slightly to moderately by chalcocite.

#### Sample IC96-05 24.12 m Altered Diabase: Secondary Chlorite-Tremolite/Actinolite; Veinlets of Chlorite

The freshest part of the rock (at one end) is a massive fine to medium grained diabase composed of lathy plagioclase grains with interstitial clinopyroxene. Much of the rock was more strongly altered; plagioclase is replaced moderately by chlorite and tremolite/actinolite, and clinopyroxene is replaced partly by cryptocrystalline epidote-chlorite. Leucoxene forms abundant interstitial patches after ilmenite. A few amygdules(?) are of chlorite-(epidote). A few veinlets are of chlorite.

| 45-50%                             |
|------------------------------------|
| 17-20                              |
| 20-25 (mainly after clinopyroxene) |
| 3-4                                |
| 1                                  |
| 1 (pyrite?)                        |
|                                    |
| 3-4                                |
| minor                              |
|                                    |
| 0.1                                |
|                                    |

Plagioclase forms subhedral prismatic grains averaging 0.5-1 mm long and a few from 1-1.7 mm long. Alteration is slight to moderate to cryptocrystalline chlorite and clusters of extremely fine to locally very fine grained, fibrous tremolite/actinolite.

Clinopyroxene forms anhedral to subhedral, equant grains averaging 0.1-0.3 mm in size and a few from 0.5-1 mm across; these commonly are interstitial to lathy plagioclase grains. Some are twinned simply.

Patches up to 2 mm in size (possibly secondary after clinopyroxene) consist of cryptocrystalline epidote and much less abundant chlorite.

Leucoxene forms abundant disseminated patches averaging 0.1-0.3 mm in size, probably secondary after original interstitial ilmenite.

Tremolite/actinolite forms disseminated acicular flakes and subradiating clusters of flakes averaging 0.05-0.08 mm long, and locally up to 0.12 mm long, mainly secondary after plagioclase.

Opaque forms disseminated patches up to 0.5 mm in size, many of which consist of subhedral grains averaging 0.03-0.06 mm in size. Commonly adjacent to these are skeletal patches up to 0.8 mm long of opaque intergrown with silicates.

Chlorite forms a few patches up to 1.2 mm in size of extremely fine grained, light to medium green flakes. These may represent primary amygdules. Some contain minor disseminated grains of epidote up to 0.15 mm in size, mainly near their margins.

A few lensy veinlets up to 0.1 mm wide are of extremely fine grained chlorite. In the largest veinlet, many grains are oriented at a moderate to high angle to the walls of the veinlet.

#### Sample IC96-06 90.30 m Diabase: Clinozoisite-(Chlorite) Alteration of Plagioclase; Chlorite Amygdules(?); Vein of Chalcedony-Chlorite-Quartz; Veinlets of Chlorite; Breccia Zone

Fine to medium grained lathy plagioclase is intergrown with interstitial fine grained clinopyroxene (augite) and minor leucoxene. Plagioclase is altered moderately to strongly to cryptocrystalline clinozoisite(?). A major vein and replacement zone is dominated by cherty quartz with a few patches of chlorite, one hemispherical patch of quartz, and minor patches of clinozoisite. A few subparallel veinlets are of chlorite. A breccia zone in one corner of the section contains angular fragments of clinopyroxene in a matrix of cryptocrystalline clinozoisite.

| plagioclase   | 55-60% | main vein             |               |
|---------------|--------|-----------------------|---------------|
| clinopyroxene | 25-30  | cherty quartz         | 4- 5          |
| leucoxene     | 3-4    | chlorite              | 0.5           |
| pyrite        | 0.2    | cryptocrystalline cli | nozoisite 0.1 |
| amygdules(?)  |        | radiating quartz      | 0.1           |
| chlorite      | 1-2    | veinlets              |               |
|               |        | chlorite              | 2-3           |

Plagioclase forms unoriented lathy grains averaging 0.5-0.8 mm long and a few up to 1 mm long. Alteration is strong to cryptocrystalline clinozoisite(?) and minor to moderately abundant, cryptocrystalline chlorite. In some plagioclase-rich patches up to 2 mm in size, the outlines of original grains are obscured by alteration.

Clinozoisite forms anhedral grains averaging 0.2-0.4 mm in size, commonly interstitial to plagioclase grains.

Ilmenite/leucoxene forms disseminated patches averaging 0.15-0.25 mm in size and a few up to 0.3 mm across. A few skeletal patches of leucoxene are up to 0.7 mm in size.

Pyrite forms a few euhedral grains up to 0.25 mm in size, and a few patches up to 0.2 mm in size of grains averaging 0.02-0.05 mm in size, and a few lenses up to 0.03 mm wide.

Interstitial patches (possibly amygdules) averaging 0.1-0.2 mm in size are of cryptocrystalline to extremely fine grained, medium green chlorite.

A few, proximal irregular vein/replacement zones are dominated by cryptocrystalline to extremely fine grained, cherty quartz. In places the patches appear to be a breccia matrix with very irregular outlines against patches and ragged fragments of host rock. A few small patches are of slightly coarser grained quartz averaging 0.05 mm in grain size. Chlorite forms patches up to 0.6 mm in size of unoriented to radiating flakes up to 0.3 mm long. Cryptocrystalline clinozoisite(?) forms a few seams and patches. A well formed hemispherical patch 0.9 mm in diameter is of radiating quartz grains.

A few veinlets from 0.15-0.3 mm wide are of extremely fine grained, light to medium green chlorite. A few patches up to 1.5 mm in size of similar chlorite probably are related to the veinlets.

In one corner of the sample, the rock was brecciated strongly with angular fragments of clinopyroxene averaging 0.05-0.15 mm in size in a matrix of cryptocrystalline clinozoisite(?).

#### Sample IC96-07 45.20 m Porphyritic Basalt; Amygdules: Chlorite-(Quartz-Epidote); Replacement Patches, Veinlets: Chlorite; Vein: Quartz-Chlorite-(Epidote-Opaque)

Patches containing abundant anhedral grains of clinozoisite(?), and phenocrysts of plagioclase are set in a groundmass dominated by lathy plagioclase with minor disseminated opaque. Minor spheroidal amygdules are dominated by chlorite; a few also contain quartz or epidote. An irregular replacement patch is of chlorite. A veinlet is of quartz-chlorite-(epidote-opaque). A few veinlets are of chlorite.

| phenocrysts     |                     | epidote                          | trace |     |
|-----------------|---------------------|----------------------------------|-------|-----|
| clinozoisite(?) | 7- 8%               | amygdules                        |       |     |
| plagioclase     | 4-5                 | chlorite-(quartz-epidote) 1      |       |     |
| groundmass      | replacement patches |                                  |       |     |
| plagioclase     | 80-83               | chlorite                         | 1-2   |     |
| opaque          | 2-3                 | veinlets                         |       |     |
| chlorite        | 1-2                 | quartz-chlorite-(epidote-opaque) |       | 0.3 |
| leucoxene       | 0.2                 | chlorite                         | minor |     |
| quartz          | trace               |                                  |       |     |

Several patches up to 1.5 mm in size contains abundant angular clinozoisite(?) grains averaging 0.05-0.1 mm in size, which are intergrown with minor to moderately abundant, prismatic plagioclase grains from 0.2-0.5 mm long. The origin of these patches is uncertain. Clinozoisite(?) is colourless with a refractive index about 1.65-1.68 and birefringence about 0.015. Many grains have moderately to strongly strained extinction.

Plagioclase forms elongate prismatic phenocrysts up to 0.8 mm long and one tabular grain 0.7 mm long. Alteration is slight to moderate to extremely fine grained chlorite.

The groundmass is dominated by lathy plagioclase grains averaging 0.05-0.2 mm long, some of which form sub-radiating clusters. Plagioclase is replaced moderately to strongly by cryptocrystalline clinozoisite(?). Chlorite forms minor cryptocrystalline interstitial grains. Opaque forms disseminated grains averaging 0.01-0.02 mm in size. Leucoxene forms disseminated patches averaging 0.05-0.1 mm in size. Epidote forms disseminated grains averaging 0.02-0.03 mm in size. Quartz forms a few patches up to 0.1 mm across of extremely fine grains.

Spheroidal amygdules averaging 0.1-0.3 mm in size are dominated by chlorite. A few are zoned. Some of the latter have a core of a single epidote grain up to 0.1 mm in size. A few contain a core of quartz-chlorite. A few have rims of quartz and cores of chlorite, some of which are in radiating clusters up to 0.07 mm in size.

A vein up to 0.3 mm wide is dominated by extremely fine grained quartz and chlorite. Epidote forms a few patches of grains up to 0.1 mm in size. A few of these contain a core of an anhedral opaque grain averaging 0.02-0.03 mm in size.

A few veinlets up to 0.02 mm wide are of cryptocrystalline to extremely fine grained chlorite.

One irregular replacement patch 1.5 mm across is of extremely fine grained chlorite.
#### Sample IC96-03 91.50 m Brecciated, Altered Basalt; Veinlets of Sericite-(Calcite-Opaque)

Minor phenocrysts of plagioclase and clusters of clinopyroxene(?) are set in a groundmass dominated by plagioclase, which was replaced strongly by clinozoisite(?) as in Sample IC96-07 42.50 m, with minor clinopyroxene. Veinlets up to 0.25 mm wide are of extremely fine grained sericite with locally abundant seams and patches of one of calcite, chlorite, and epidote. Along the margins of the sample the rock was weathered/altered with the introduction in the groundmass of moderately abundant disseminated patches of dusty hematite.

| phenocrysts           |                |     |
|-----------------------|----------------|-----|
| plagioclase           | 1-2%           |     |
| clinopyroxene clust   | ters 2-3       |     |
| groundmass            |                |     |
| plagioclase           | 80-85          |     |
| clinopyroxene         | 3-4            |     |
| hematite              | 2-3            |     |
| replacement patch     | les            |     |
| epidote-chlorite      | 0.5            |     |
| veinlets              |                |     |
| sericite-calcite-(chl | orite-epidote) | 4-5 |

Plagioclase forms scattered lathy grains up to 0.5 mm in length and a cluster 0.7 mm across of more equant grains up to 0.4 mm long. Alteration is strong to complete to cryptocrystalline sericite.

Clinopyroxene(?) is concentrated strongly in clusters up to 1 mm in size of equant, anhedral grains averaging 0.01-0.03 mm in size. One euhedral, prismatic mafic phenocryst 0.9 mm long (possibly clinopyroxene) was replaced completely by extremely fine grained chlorite, much less abundant patches of sericite(?) and minor patches of leucoxene.

In the groundmass, plagioclase forms lathy grains averaging 0.07-0.15 mm long and a few up to 0.3 mm long, in part in poorly developed, radiating aggregates. Alteration is complete to cryptocrystalline clinozoisite/epidote(?) and sericite, with minor extremely fine grained epidote.

Clinopyroxene(?) forms disseminated equant grains averaging 0.03-0.05 mm in size and a few up to 0.07 mm long. Some have moderately strained extinction.

A few replacement patches up to 0.6 mm in size are of cryptocrystalline to extremely fine grained epidote and or extremely fine grained, pale green chlorite.

Irregular veinlets up to 0.2 mm wide and a few patches up to 0.8 mm across are dominated by extremely fine grained sericite. One vein up to 1 mm wide contains a thin rim of sericite and a core up to 0.7 mm wide of coarse grained calcite. One veinlet contains a seam up to 0.03 mm wide of cryptocrystalline epidote.

A few patches in the weathered/altered zone contain moderately abundant to abundant interstitial patches up to 0.2 mm in size of hematite.

#### Sample IC96-02 82.70 m Altered, Auto-Brecciated Basalt; Breccia Matrix of Chlorite-Quartz; Late Calcite Veinlets

The sample contains rounded to angular fragments up to 2.5 cm in size of basalt with a variable texture. Minor clusters of phenocrysts of plagioclase (altered moderately to chlorite-(sericite)) are set in a groundmass dominated by radiating to subradiating plagioclase spheroids. The groundmass in a few patches is of anhedral plagioclase grains with interstitial, cryptocrystalline clinozoisite and disseminated patches of leucoxene and minor opaque. Most fragments have a rim from 1-1.5 mm in width; many of these contain spheroidal patches of basalt in a matrix of chlorite and cuspate patches of leucoxene. Some are of plagioclase which is less altered to clinozoisite than plagioclase in the cores of the patches. Fragments are set in a variable matrix dominated by chlorite with less abundant quartz, locally abundant clinozoisite, and minor epidote and sphalerite. Late veinlets of calcite occur mainly in the matrix.

| fragments       |        |
|-----------------|--------|
| phenocrysts     |        |
| plagioclase     | 1-2%   |
| groundmass      |        |
| plagioclase     | 55-60% |
| clinozoisite    | 15-20  |
| leucoxene       | 1-2    |
| opaque          | minor  |
| amygdules       |        |
| quartz-chlorite | trace  |
| breccia matrix  |        |
| chlorite        | 10-12  |
| quartz          | 5-7    |
| calcite         | minor  |
| opaque          | trace  |
| late veinlets   |        |
| calcite         | 0.3    |

Plagioclase forms a few subhedral to euhedral phenocrysts and clusters of several phenocrysts averaging 0.3-0.6 mm in length. Alteration is moderate to strong to extremely fine grained chlorite-(sericite).

In much of the basalt, plagioclase forms poorly to well developed, spheroidal aggregates averaging 0.2-0.4 mm in diameter of radiating aggregates of grains averaging 0.05-0.1 mm in length. In many of these, plagioclase is stained light to medium orange by limonite and probably replaced strongly by cryptocrystalline clinozoisite. Borders of many spheroids are marked by moderately abundant dusty leucoxene(?). In rims of some fragments, alteration of plagioclase to clinozoisite(?) is much less intense than in the cores.

Some patches in the groundmass of the basalt are dominated by plagioclase grains averaging 0.05-0.1 mm in length with interstitial patches of cryptocrystalline plagioclase, chlorite, and leucoxene.

Opaque forms disseminated grains averaging 0.02-0.05 mm in size.

A few spheroidal amygdules average 0.05 mm in size. Some have outer zones of quartz and cores of chlorite.

#### Sample IC96-02 82.70 m (page 2)

Along margins of most fragments of basalt is a zone up to 2 mm wide containing patches of basalt, commonly spheroidal plagioclase, averaging 0.15-0.3 mm in size enclosed in a matrix of cryptocrystalline chlorite. Leucoxene forms moderately abundant, irregular to curved patches averaging 0.07-0.2 mm in size, mainly enclosed in chlorite.

The breccia matrix is variable in texture. Some patches and veinlets contain minor to abundant quartz grains averaging 0.05-0.15 mm in size and a few patches up to 0.5 mm in size of slightly interlocking quartz grains up to 0.25 mm in size enclosed in cryptocrystalline to extremely fine grained chlorite. Some patches contain quartz grains and patches of cherty, extremely fine grained quartz enclosed in a matrix of cryptocrystalline quartz and chlorite. A few patches and veinlike zones are of extremely fine grained intergrowths of chlorite and quartz, with moderately abundant disseminated, cubic opaque grains averaging 0.01-0.02 mm in size.

Some veinlike patches are of extremely fine grained chlorite with abundant seams parallel to the length of the zone of cryptocrystalline clinozoisite. One patch 0.8 mm across contains numerous patches of calcite up to 0.4 mm in size intergrown with chlorite. Epidote forms a few disseminated patches up to 0.2 mm in size; a few of these contain cores up to 0.06 mm in size of colourless sphalerite.

Late veinlets up to 0.07 mm wide are dominated by cryptocrystalline calcite with a few lenses and seams of very fine grained calcite.

#### Sample IC96-02 37.80 m Stratiform Unit A: Quartz-Specular Hematite-Chlorite-Ankerite

Spheroidal to irregular patches of quartz with abundant disseminated plates of specular hematite are surrounded by a matrix of chlorite with patches of clinozoisite(?) and seams and veinlets of ankerite. Minor veinlets are of limonite/hematite, locally with minor quartz.

| quartz                     | 60-65% |     |
|----------------------------|--------|-----|
| hematite                   | 17-20  |     |
| chlorite                   | 8-10   |     |
| ankerite                   | 4-5    |     |
| clinozoisite(?)            | 1-2    |     |
| pyrite                     | minor  |     |
| veinlets                   |        |     |
| limonite/hematite-(quartz) |        | 0.5 |

Spheroidal to irregular patches averaging 0.5-2 mm in size and a few larger zones without any internal structure consist of intergrowths of quartz and specular hematite. Quartz mainly forms aggregates of cryptocrystalline to extremely fine, strongly interlocking grains. A few patches up to a few mm long are of slightly interlocking quartz grains averaging 0.05-0.3 mm in size. A few single quartz grains are up to 0.15 mm in size.

Bright red to opaque specular hematite forms disseminated, slender plates and clusters of a few plates averaging 0.05-0.2 mm in length. A few patches up to 0.4 mm in size are of much finer plates averaging 0.01-0.02 mm in length and interstitial patches of massive hematite. A few equant, opaque grains from 0.05-0.12 mm in size of hematite may be secondary after magnetite.

Interstitial to these are patches dominated by extremely fine grained to cryptocrystalline chlorite, a few of which also contains moderately abundant patches of hematite. A few large interstitial patches contain several patches up to 0.3 mm in size of cryptocrystalline, semi-opaque clinozoisite(?). In some patches, much of the chlorite was removed from the rock, either during weathering or sample preparation.

Ankerite forms cryptocrystalline to extremely fine grained seams and patches, commonly along margins of chlorite-rich patches. Most are stained light orange by limonite, which obscures (among other things) the interference colour of ankerite. A few seams also contain lenses up to 0.05 mm wide of bright red hematite.

Pyrite forms minor disseminated equant grains averaging 0.03-0.05 mm in size. One patch 0.3 mm across contains angular fragments of pyrite up to 0.07 mm in size with minor interstitial chlorite.

A set of subparallel veinlets of limonite/hematite cut across some quartz-rich patches. One veinlet also contains a few patches up to 0.3 mm long of cryptocrystalline quartz.

#### Sample IC96-02 45.15 m Stratiform Unit A: Brecciated Pyrite with Interstitial Quartz-(Chlorite); Vein of Quartz-Specular Hematite; Vuggy Veinlets of Quartz

Angular fragments of pyrite are enclosed in a sparse groundmass of cryptocrystalline to extremely fine grained quartz and scattered patches of chlorite. One band dominated by cryptocrystalline quartz probably represents an original sedimentary layer. Moderately abundant quartz was recrystallized into comb-textured aggregates against pyrite grains. An irregular, warped vein is of quartz with patches of specular hematite.

| pyrite            | 65-70% |
|-------------------|--------|
| quartz            |        |
| cryptocrystalline | 5-7    |
| extremely fine    | 15-20  |
| chlorite          | 1-2    |
| specular hematite | minor  |
| vein              |        |
| quartz            | 2-3    |
| specular hematite | 0.2    |

One band up to 1.5 mm wide is dominated by cryptocrystalline quartz with moderately abundant dusty to extremely fine grained hematite, which is concentrated in a few patches up to 0.12 mm in size. This band probably represents a primary sedimentary layer.

Pyrite forms angular fragments averaging 0.005-0.2 mm in size. In a few patches, fragments of pyrite range from dusty to 0.03 mm in size. In many patches, angular fragments were separated only slightly by seams of quartz, and original coarser grains could be reconstructed by removing the quartz and rejoining the fragments. Interstitial to a few dense patches of angular pyrite grains are thin seams of cryptocrystalline, reddish brown hematite.

In much of the rock, quartz forms patches of grains averaging 0.02-0.03 mm in size with lesser patches of grains averaging 0.03-0.05 mm in size and a few of grains up to 0.1 mm in size. It was recrystallized moderately to irregular, comb-textured aggregates of grains averaging 0.05-0.15 mm long, with these grains oriented sub-perpendicular to surfaces of pyrite grains. A few quartz grains are up to 0.3 mm in size.

A few patches up to 1 mm across and a few wispy patches/seams up to 0.05 mm wide and 0.5 mm long are of extremely fine grained, pale olive green chlorite.

Hematite forms a few clusters up to 0.2 mm in size of deep red plates up to 0.05 mm long in quartz.

A discontinuous, moderately warped vein zone up to 0.8 mm wide is of very fine grained quartz with patches up to 0.5 mm in size containing abundant, slender plates of specular hematite up to 0.15 mm long; many of these are in subparallel orientation and are separated by minor groundmass guartz.

A few veinlets up to 0.2 mm wide contain subhedrally to euhedrally terminated quartz grains averaging 0.02 mm long, which extend from the walls of the veinlets into a central cavity.

#### Sample IC96-03 120.80 m Stratiform Unit B: Strongly Altered Andesite Flow: Chlorite-(Plagioclase); Lenses of Chalcopyrite-Epidote; Replacement Patches: Quartz-Chlorite-Hematite-Pyrite-(Epidote-Chalcopyrite) Field Name: PYSM

Fragments are of altered andesite flow, mostly dominated by chlorite with lesser relic plagioclase. One is dominated by plagioclase. Chlorite-rich fragments have a thin rind dominated by sub-radiating plagioclase. Interior to this rind are several patches and lenses of chalcopyrite-epidote. A patchy matrix is of fine grained quartz with disseminated patches of dusty hematite and others of chlorite. Pyrite, lesser chalcopyrite, and minor epidote are concentrated in clusters, mainly in quartz. Late patches of quartz and associated quartz veinlets contain minor chalcopyrite and are relatively free of dusty hematite.

| rock fragmen | its   | replacement  | (matrix) |
|--------------|-------|--------------|----------|
| plagioclase  | 4- 5% | quartz       | 60-65    |
| chlorite     | 12-15 | chlorite     | 12-15    |
| pyrite       | 2-3   | hematite     |          |
| Ti-oxide     | 0.3   | dense        | 4-5      |
| epidote      | 0.3   | specular     | 0.3      |
| lenses       |       | pyrite       | 2-3      |
| chalcopyrite | 1     | chalcopyrite | 0.3      |
| epidote      | 1     | epidote      | 0.1      |
| veinlets     |       |              |          |
| quartz       | 1-2   |              |          |
| chalcopyrite | minor |              |          |

Relic fragments of the host rock up to 1.5 cm across, probably an andesite flow, contain scattered lathy plagioclase grains averaging 0.05-0.1 mm long and a few irregular to radiating patches of very fine grained plagioclase laths in a groundmass of extremely fine grained chlorite with disseminated patches of cryptocrystalline epidote and Ti-oxide. Along the margins of the large fragments are rinds averaging 0.1-0.2 mm wide of plagioclase grains up to 0.1 mm long, which commonly have a sub-radiating texture and are intergrown with abundant dusty to cryptocrystalline hematite. Just inside the plagioclase-rich rind are a few lenses up to 0.8 mm wide of chalcopyrite intergrown with epidote and much less abundant chlorite and trace pyrite. A few spheroidal amygdules up to 0.15 mm in size have a core of chlorite and an outer zone of quartz.

One fragment on the edge of the section is dominated by extremely fine grained plagioclase, which has a radiating texture outlined by abundant dusty hematite. Chlorite forms minor interstitial patches. In another one smaller fragment, plagioclase forms moderately abundant anhedral grains averaging 0.07-0.15 mm in size intergrown with chlorite. In all these fragments, plagioclase contains abundant dusty hematite.

In much of the rock, quartz forms anhedral grains averaging 0.1-0.5 mm in size. These contain moderately abundant dusty to dense patches of hematite and are intergrown coarsely with irregular patches of chlorite.

Chlorite is concentrated in irregular interstitial patches averaging 0.1-0.5 mm in size of cryptocrystalline, light green grains. Patches commonly are rimmed by dusty to cryptocrystalline hematite (see below).

Pyrite forms disseminated anhedral to subhedral grains averaging 0.03-0.15 mm in size, which are concentrated strongly in a few patches of chlorite. In these zones chalcopyrite forms minor interstitial patches up to 0.05 mm in size. In quartz, pyrite forms clusters up to 2 mm across of anhedral to subhedral grains averaging 0.2-0.5 mm in size, with a few up to 1.2 mm across. In these patches, chalcopyrite forms anhedral grains averaging 0.03-0.1 mm in size interstitial to pyrite and as minor inclusions in pyrite. Some large pyrite grains are fractured moderately; many of these fractures contain patches of chalcopyrite. A few patches of sulfides, mainly chalcopyrite, are rimmed by very fine grained epidote.

Hematite is concentrated in a few clusters up to 0.3 mm in size as slender plates of specular hematite with high reflectivity averaging 0.02-0.05 mm long and interstitial patches of red-brown, cryptocrystalline material with low reflectivity. Elsewhere, it forms very open to dense patches of intergrown with quartz and bordering chlorite-rich patches. These contain moderately abundant specular hematite flakes averaging 1-3 microns long in a matrix of red-brown, cryptocrystalline hematite.

Quartz forms patches up to several mm across of grains averaging 0.3-0.8 mm in size, which are relatively free of dusty hematite inclusions. These probably are of replacement origin. Some coarser quartz grains contain a few wispy, concentric trains of dusty opaque, which outline growth zones. Interstitial patches among some coarser grained quartz patches consist of aggregates of interlocking quartz grains averaging 0.01 mm in size. Chalcopyrite forms disseminated patches averaging 0.05-0.4 mm in size.

A few late veinlets up to 0.3 mm wide are of very fine grained quartz. Chalcopyrite forms minor patches up to 0.15 mm in size.

#### Sample IC96-03 121.10 m Fragments of Altered Basalt Flow: Strong Chlorite Alteration; Replacement Patches of Quartz-Pyrite-Chlorite-Epidote-Chalcopyrite); Breccia Seam Quartz-Pyrite Veinlets in Fragments

Fragments up to a few mm across are of strongly altered basalt flow containing minor relic plagioclase grains in a matrix dominated by chlorite. A strongly brecciated zone up to 1.5 mm wide contains fragments of a variety of altered basalt in a matrix of chlorite-pyrite). The main replacement patches are dominated by quartz and pyrite, with less abundant chlorite, chalcopyrite, epidote, and muscovite/sericite.

| basalt       |       |                                |       |
|--------------|-------|--------------------------------|-------|
| plagioclase  | 5- 7% | pyrite                         | 3- 4% |
| chlorite     | 30-35 | Ti-oxide/leucoxene             | 1     |
| replacement  |       |                                |       |
| quartz       | 25-30 | epidote                        | 1-2   |
| pyrite       | 12-15 | muscovite/sericite             | 0.3   |
| chlorite     | 4-5   | biotite                        | 0.1   |
| chalcopyrite | 3-4   |                                |       |
| breccia seam | 4-5   | (similar mineralogy to basalt) |       |

Fragments of altered basalt contain minor to abundant extremely fine grained plagioclase intergrown with and replaced by patches of extremely fine grained chlorite. In some fragments, pyrite forms abundant disseminated grains averaging 0.05-0.1 mm in size and a few up to 0.4 mm across. Ti-oxide/leucoxene forms disseminated, ragged patches averaging 0.02-0.03 mm in size.

In the matrix, quartz occurs in two main textures. In some patches it forms slightly interlocking grains averaging 0.1-0.3 mm in size, and a few up to 0.8 mm across. It was strained moderately, and locally recrystallized slightly to much finer grained aggregates. In other patches it forms interlocking grains averaging 0.02-0.05 mm in size and locally 0.01-0.03 mm in size.

Pyrite is concentrated in irregular patches up to several mm across of grains averaging 0.05-0.5 mm in size and a few up to 2 mm in size. Many grains are fractured moderately. A few patches were granulated strongly to produce a texture with scattered angular fragments averaging 0.1-0.2 mm in size in a matrix of cryptocrystalline to extremely fine grained pyrite intergrown with minor chlorite. In a few patches, chalcopyrite is a minor to major component of the matrix of the granulated pyrite.

Chalcopyrite occurs in fractures in pyrite and in patches up to 2 mm across interstitial to and adjacent to pyrite grains. In quartz, chalcopyrite forms anhedral patches up to 0.4 mm across.

Epidote forms anhedral to subhedral prismatic grains averaging 0.2-0.4 mm long, mainly adjacent to sulfides and in particular associated with and commonly surrounding chalcopyrite.

Intergrown intimately with a few patches of pyrite-chalcopyrite up to 1.5 mm long are slender flakes of muscovite averaging 0.07-0.1 mm long, and patches of epidote and chlorite. One patch 1.5 mm across contains abundant extremely fine grained muscovite/sericite intergrown with plagioclase, and probably formed by replacement of plagioclase.

Biotite forms minor patches adjacent to sulfides up to 0.5 mm in size of radiating cluster of flakes averaging 0.03 mm in diameter. Pleochroism is from pale to light greenish brown.

A few veinlets averaging 0.2-0.3 mm wide are of very fine grained quartz with disseminated subhedral pyrite grains averaging 0.1 mm across concentrated along its centerline. One lens 0.5 mm wide is of fine to medium grained quartz which was strained moderately.

The main breccia band is from 0.3-1.5 mm wide. It contains rounded to subangular fragments averaging 0.1-0.5 mm in size of strongly altered basalt in a matrix of cryptocrystalline chlorite (probably formed by granulation). Pyrite forms moderately abundant disseminated grains averaging 0.02-0.1 mm in size.

# Sample IC96-06 26.45 mMetamorphosed Andesite Flow; Amygdules of Chlorite-Quartz;Field Name: MSBSDisseminated Native Copper and Chalcocite<br/>Replacement Vein/Patch of Plagioclase-Chlorite-(Epidote);<br/>Early Veinlets of Quartz-(K-feldspar);<br/>Late Veinlets of Limonite-Native Copper.

Minor plagioclase phenocrysts and lathy plagioclase grains are set in an extremely fine grained groundmass dominated by plagioclase with moderately abundant chlorite and limonite, and minor disseminated native copper and chalcocite. Amygdules are mainly of chlorite and quartz-chlorite, and one is of plagioclase-chlorite-chalcocite. An irregular vein/replacement zone is of plagioclase-chlorite with less abundant epidote. Late veinlets are dominated by limonite and hematite with moderately abundant lenses of native copper. One limonite/hematite seams contains lenses of chlorite.

| phenocrysts      |                |              |                    |       |
|------------------|----------------|--------------|--------------------|-------|
| plagioclase      | 0.3%           |              |                    |       |
| groundmass       |                |              |                    |       |
| plagioclase      |                |              | limonite           | 3- 4% |
| lathy            | 7-8            |              | native copper      | 0.2   |
| anhedral         | 65-70          |              | ilmenite/leucoxene | 0.5   |
| chlorite         | 5- 7           |              | chalcocite         | minor |
| amygdules        |                |              |                    |       |
| quartz-chlorite- | (plagioclase-c | halcocite) 0 | ).7                |       |
| replacement pa   | tches          |              |                    |       |
| plagioclase-chlo | orite-epidote  | 5-7          |                    |       |
| veinlets         |                |              |                    |       |
| 1) quartz-(K-fe  | eldspar) 1-2   |              |                    |       |
| 2) limonite/hen  | natite 2-3     |              |                    |       |
| native coppe     | er l           |              |                    |       |
| 3) limonite/hem  | atite-chlorite | 0.2          |                    |       |

Plagioclase forms minor euhedral phenocrysts averaging 0.4-0.8 mm in size. Alteration is complete to extremely fine to very fine grained quartz and less abundant extremely fine grained chlorite. It also forms unoriented, lathy grains averaging 0.12-0.2 mm long, with a few up to 0.4 mm long. These also are replaced by extremely fine grained quartz and chlorite. (It is possible that some of these phenocrysts were original hornblende.)

The groundmass is dominated by anhedral, moderately interlocking, equant grains of plagioclase averaging 0.01-0.03 mm in size, intergrown with much less abundant, extremely fine grained chlorite and patches of cryptocrystalline Ti-oxide. Limonite forms disseminated patches up to 0.1 mm in size of cryptocrystalline material.

Ilmenite forms disseminated irregular patches averaging 0.02-0.05 mm in size and a few up to 0.15 mm across of extremely fine grains. It is concentrated moderately to strongly in patches up to 0.8 mm in size in which it forms up to 30% of the patch intergrown with groundmass plagioclase. Leucoxene forms disseminated patches averaging 0.01-0.03 mm in size of cryptocrystalline grains.

Native copper forms disseminated patches averaging 0.02-0.05 mm in size. Chalcocite forms disseminated patches averaging 0.03-0.07 mm in size and a few up to 0.2 mm across.

Amygdules averaging 0.1-0.2 mm in size and a few up to 0.4 mm across are dominated by chlorite and quartz. Many contain rims of quartz and cores of chlorite. A few irregular amygdules up to 0.6 mm long are of very fine grained chlorite. One of these contains a stubby grain of epidote 0.1 mm long. One irregular patch ()possibly an amygdule) up to 2 mm long is of extremely fine grained chlorite with one patch 0.6 mm across of plagioclase altered strongly to chlorite and trace epidote. One amygdule 0.2 mm across consists of about equal amounts of chlorite, plagioclase, and chalcocite.

One very irregular vein or lensy replacement patch up to 2 mm wide is dominated by patches of cryptocrystalline to extremely fine grained plagioclase, others of extremely fine to very fine grained chlorite, in part with radiating textures, and a few ragged patches of very fine grained epidote.

One irregular patch 1.7 mm long contains a core of two plagioclase grains up to 1.5 mm long rimmed by extremely fine grained chlorite and minor sericite.

Early veinlets averaging 0.03-0.06 mm wide and locally up to 0.1 mm wide are of extremely fine to locally very fine grained quartz with local patches of extremely fine grained K-feldspar.

Late veinlets averaging 0.03-0.2 mm wide are dominated by red-brown hematite, with moderately abundant lenses averaging 0.01-0.03 mm wide of native copper, with a few lenses up to 0.05 mm wide and patches up to 0.1 mm across.

Along one late seam of limonite are a few lenses up to 0.3 mm wide of very fine grained chlorite, in which chlorite flakes are in parallel orientation at a moderate angle to the length of the lens.

## Sample IC96-08 19.35 m Stratiform Unit A: Brecciated Pyrite; Interstitial Specular Hematite, Quartz, Chlorite-Clinozoisite

The sample is dominated by massive pyrite, which was brecciated strongly and fragments healed by a patchy matrix of specular hematite, quartz, and much less abundant chlorite-clinozoisite(?).

| pyrite          | 65-70% |
|-----------------|--------|
| quartz          | 12-15  |
| hematite        | 12-15  |
| chlorite        | 2-3    |
| clinozoisite(?) | 1      |
| chalcopyrite    | trace  |

Massive pyrite was fragmented into angular fragments averaging 0.1-0.5 mm in size. Some fragments are cut by wispy veinlets of hematite and quartz. Chalcopyrite forms a few inclusions averaging 0.01-0.02 mm in size in one pyrite grain.

In the groundmass, quartz forms interstitial patches up to 1 mm in size of grains averaging 0.03-0.1 mm in grain size and a few from 0.1-0.4 mm across. In several of these, quartz is recrystallized to moderately well developed, comb-textured aggregates oriented perpendicular to pyrite surfaces.

Specular hematite forms patches up to 2 mm in size of clusters of subparallel plates averaging 0.05-0.15 mm in size with minor interstitial quartz.

Patches averaging 0.1-0.3 mm in size are of cryptocrystalline, pale green chlorite and moderately abundant to abundant, disseminated, cryptocrystalline clinozoisite(?).

#### Sample IC96-08 22.65 m Stratiform Unit A: Pyrite-Specular Hematite-Quartz-Chlorite

Coarse grained pyrite was brecciated, and fragments healed by a patchy groundmass dominated by quartz, specular hematite, and lesser chlorite. Minor veinlets are of limonite/hematite.

| pyrite            | 65-70% |
|-------------------|--------|
| quartz            | 15-17  |
| specular hematite | 10-12  |
| chlorite          | 4-5    |
| veinlets          |        |
| limonite/hematite | minor  |

Pyrite forms medium to coarse grains which were fractured moderately to strongly, producing angular fragments averaging 0.1-0.5 mm in size. Some very strongly fractured patches and seams contain angular fragments averaging 0.02-0.03 mm in size.

Quartz forms patches up to 0.7 mm wide of grains averaging 0.03-0.1 mm in size, with a few patches of grains averaging 0.1-0.15 mm in size. Many patches were recrystallized to comb-textured aggregates in which subparallel grains average 0.07-0.15 mm long.

Specular hematite is concentrated in patches up to a few mm across, mainly concentrated in one half of the section. It forms moderately warped, opaque to deep red, subparallel plates averaging 0.05-0.1 mm in size and a few up to 0.3 mm long.

Chlorite is concentrated in patches up to 0.6 mm in size of extremely fine grained, pale greyish green flakes.

Minor late veinlets up to 0.01 mm wide are of limonite/hematite.

#### Sample IC96-02 26.90 m Quartz-Pyrite-Chlorite-Chalcopyrite-Hematite Replacement; Chalcocite replacement of Chalcopyrite

The sample is strongly altered. Patches of quartz-chlorite-ankerite-hematite may represent an early replacement. Some hematite clusters are warped moderately, suggesting that the host rock was folded. Other patches (possibly a later replacement) are dominated by quartz and pyrite with moderately abundant chalcopyrite and minor sphalerite.

Some pyrite grains were fractured moderately to locally very strongly, with chalcopyritechalcocite deposited in fractures, and some quartz grains were recrystallized to comb-textured aggregates against pyrite grains. These textures may have formed during a later deformation event. Chalcopyrite was replaced slightly to moderately by chalcocite.

| quartz            | 50-55% |
|-------------------|--------|
| pyrite            | 20-25  |
| chlorite          | 15-17  |
| chalcopyrite      | 3-4    |
| hematite          | 1-2    |
| chalcocite        | 1      |
| ankerite/limonite | 0.5    |
| sphalerite        | 0.2    |

Quartz forms patches up to a few mm across of strongly strained grains averaging 0.1-0.2 mm across with strongly sutured grain borders. In places, these were recrystallized to strongly interlocking grains averaging 0.01-0.02 mm in size. Bordering many pyrite grains, quartz forms delicate, curved, comb-textured aggregates averaging 0.1-0.3 mm long oriented perpendicular to pyrite crystal faces.

Chlorite forms ragged patches averaging 0.2-1 mm in size and a few up to several mm long of cryptocrystalline grains. Many patches have a moderate foliation.

Hematite is concentrated in patches averaging 0.1-0.5 mm in size as disseminated plates averaging 0.03-0.08 mm in size, intergrown with both quartz and chlorite. In many patches, clusters of hematite plates have a curved texture, suggesting that the host rock was deformed moderately.

Ankerite/limonite forms wispy seams up to 0.05 mm wide parallel to foliation in chlorite-rich patches.

Pyrite forms anhedral grains ranging widely, with most between 0.05-0.5 mm in size, and a few up to 1 mm across. Many coarser grains are fractured slightly to moderately; some of these contain irregular seams of chalcopyrite along fractures. A few patches up to a few mm across were granulated strongly. These contain minor to abundant interstitial patches of chalcopyrite altered strongly to chalcocite.

Chalcopyrite also forms disseminated patches averaging 0.1-0.3 mm in size, one irregular patch 1.5 mm across, and one discontinuous veinlet 0.2 mm wide. Alteration is slight to moderate along fractures and borders of patches to chalcocite.

Colourless sphalerite forms a few patches from 0.1-0.4 mm in size which are concentrated in a few clusters. They contain inclusions of chalcopyrite averaging 0.02-0.04 mm in size and inclusions of pyrite(?) averaging 1-2 microns in size. The latter cause most of the grains to be opaque in transmitted light.

#### Sample IC96-06 19.60 m

#### Basalt Flow; Early Veins, Veinlets of Chlorite-Sericite-(Quartz-Epidote); Abundant Veins, Veinlets of Secondary Cu Minerals (Cuprite, Tenorite, Malachite), Limonite/Hematite, Quartz

#### Field Name: MSBS

The sample is an extremely fine grained basalt flow dominated by plagioclase with much less abundant chlorite and ilmenite/leucoxene. Several early patches and veinlets are dominated by chlorite with locally abundant sericite and minor patches of quartz and epidote. Abundant, late, complex veins up to a few mm wide are dominated by secondary Cu-minerals (malachite, tenorite, cuprite) and limonite/hematite; some of these have border zones of quartz and one has a lensy core of quartz. In some veins, tenorite surrounds cuprite and probably was formed in part by replacement of cuprite. Malachite probably was the last-formed secondary Cu-mineral.

| plagioclase           | 70-75%               |
|-----------------------|----------------------|
| chlorite              | 4-5                  |
| ilmenite/leucoxene    | 1-2                  |
| limonite              | 1-2                  |
| amygdules             |                      |
| quartz-chlorite       | minor                |
| veins, veinlets       |                      |
| 1) chlorite-sericite- | (quartz-epidote) 5-7 |
| 2) limonite/hematit   | e 4-5                |
| tenorite              | 2-3                  |
| cuprite               | 2-3                  |
| malachite             | 1-2                  |
| quartz                | 0.3                  |
| -                     |                      |

Plagioclase forms unoriented, lathy grains averaging 0.05-0.08 mm long and a few up to 0.15 mm long. Alteration is complete quartz and minor chlorite. The groundmass is of cryptocrystalline to extremely fine grained plagioclase with minor chlorite and minor to moderately abundant limonite/hematite, which is concentrated moderately to strongly in a few patches and bands.

A few zoned spherical amygdules averaging 0.05-0.07 mm in diameter have rims of quartz and cores of chlorite. A few lenses up to 0.7 mm long are of extremely fine grained quartz and much less abundant chlorite.

Early veinlets up to 0.3 mm wide are dominated by extremely fine to very fine grained, pale yellowish green chlorite. A few also contain patches of extremely fine to very fine grained quartz. One lensy veinlike patch up to 2 mm wide is of extremely fine to cryptocrystalline sericite and chlorite. Epidote forms a patch 0.8 mm across; it is cut by veinlets of chlorite and contains a few patches of hematite. A few lenses up to 0.2 mm wide are of very fine grained epidote and quartz.

Late veins up to a few mm wide and veinlets are dominated by limonite/hematite with irregular lenses and patches of cuprite-tenorite and others of malachite. In tenorite-cuprite intergrowths, tenorite commonly forms the core of patches and lenses as intergrowths of equant grains averaging 0.02-0.03 mm in size. Elsewhere, tenorite forms spheroidal aggregates averaging 0.1-0.2 mm in size in the cores of the grains. Some zones of limonite/hematite have a relic boxwork texture which suggests that it is secondary after ankerite. Some veins have moderately abundant cavities, which probably represent leached malachite and other more-soluble secondary Cu-minerals or ankerite. A few veins up to 0.15 mm wide are of cuprite.

Cuprite forms lenses up to 0.5 mm long of extremely fine grained aggregates. Surrounding the largest cuprite patch and probably an alteration of cuprite is a patch up to 0.8 mm across of feathery tenorite grains averaging 0.02-0.03 mm in size. Tenorite also forms disseminated, spheroidal aggregates averaging 0.1-0.2 mm in size with radiating textures.

Pyrite forms a few subhedral to euhedral grains averaging 0.02-0.04 mm in size.

Malachite forms spheroidal patches averaging 0.07-0.15 mm in size. Many have a well developed radiating and concentric texture. Many of these have overgrowths of prismatic grains up to 0.03 mm long. Other interstitial patches are of extremely fine grained malachite, in part interstitial to patches of limonite/hematite.

One veinlet dominated by cuprite-tenorite contains a lensy core of very fine grained quartz. Some veinlets have a thin outer zone of extremely fine grained quartz up to 0.05 mm wide.

A few veinlets up to 0.05 mm wide are of quartz.

Jun Gilanne

John G. Payne, Ph.D., Tel: (604)-986-2928 Fax: (604)-983-3318 email: johnpayn@istar.ca



## Vancouver Petrographics Ltd.

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 - FAX (604) 888-3642

Report # 960819 for:

Tom Becker, Expatriate Resources Ltd,. c/o Archer, Cathro & Associates (1981) Ltd., 1016 - 510 West Hastings Street, Vancouver, B.C., V6B 1L6

November 1996

 Project:
 Ice

 Samples:
 IC96-24:
 54.05 m, 62.97 m, 77.70 m

Summary:

Sample IC96-24 54.05 m is a cherty siltstone dominated by subrounded fragments of quartz grains and chert averaging 0.05-0.2 mm in size. Minor fragments are of sericite/muscovite. A sparse to moderate groundmass is of cherty quartz, sericite and limonite-stained ankerite. The composition and shape of fragments indicate that the rock is of sedimentary rather than volcanic origin. At one end of the section is the edge of a band of argillite. A replacement patch and related veinlet are of quartz. A few late veinlets are of calcite with minor quartz and/or limonite.

Sample IC96-24 62.98 m is a compositionally banded, cryptocrystalline argillite dominated by plagioclase and much less abundant sericite; the latter is concentrated moderately in a few bands up to 2 mm wide. It was fractured moderately and fractures healed by veinlets and replacement patches of quartz with minor barite and hematite; minor displacement of compositional bands occurs along many fractures. Late veinlets are of limonite/hematite.

Sample IC96-24 77.70 m is a compositionally banded, cryptocrystalline argillite dominated by plagioclase and lesser sericite. The latter is concentrated moderately to strongly in some bands which also contain minor to moderately abundant dusty to extremely fine grained carbonaceous opaque and minor pyrite. The plagioclase-rich layers were brecciated strongly and fragments were partly silicified and healed by early veinlets dominated by quartz with minor dolomite/ankerite, sericite, and chalcopyrite, and a few veinlets of dolomite/ankerite. Later deformation produced brecciation of brittle layers, and contortion and development of tiny kink folds in layers rich in muscovite/sericite and dusty opaque. Late cavities were filled by patches and veinlets of dolomite-kaolinite.

John G. Payne, PhD., / Tel: (604)-986-2928 For: (104) 500-00 Fax: (604)-983-3318 e-mail: johnpayn@istar.ca

#### Sample IC96-24 54.05 m Cherty Siltstone; Minor Argillite; Quartz-(Calcite) Replacement and Veinlet; Late Calcite-(Limonite-Quartz) Veinlets

The sample is dominated by subrounded fragments of quartz grains and chert averaging 0.05-0.2 mm in size. Minor fragments are of sericite/muscovite. A sparse to moderate groundmass is of cherty quartz, sericite and limonite-stained ankerite. The composition and shape of fragments indicate that the rock is of sedimentary rather than volcanic origin. At one end of the section is the edge of a band of argillite. A replacement patch and related veinlet are of quartz. A few late veinlets are of calcite with minor quartz and/or limonite.

| siltstone          |        | argillite            | 0.5%      |
|--------------------|--------|----------------------|-----------|
| fragments          |        | replacement          |           |
| quartz             | 30-35% | quartz               | 4-5       |
| chert              | 30-35  | calcite              | 0.2       |
| sericite/muscovite | 0.3    | veinlets             | •         |
| groundmass         |        | quartz-(calcite)     | 0.1       |
| cherty quartz      | 10-12  | calcite-(quartz-limo | nite) 0.7 |
| ankerite           | 7-8    |                      |           |
| sericite           | 7-8    |                      |           |
| hematite/leucoxene | minor  |                      |           |
| zircon             | trace  |                      |           |

Quartz forms single grains averaging 0.05-0.15 mm in size with a few from 0.2-0.3 mm across. Many grains are strained slightly to moderately.

Chert forms fragments averaging 0.07-0.15 mm in size with a few up to 0.3 mm across. They consist of interlocking quartz grains averaging 3-8 microns in size. Some contain minor to moderately abundant, cryptocrystalline to extremely fine grained sericite.

A few fragments averaging 0.1-0.12 mm in size are of cryptocrystalline sericite, probably secondary after plagioclase. A few up to 0.1 mm long are of single flakes or parallel aggregates of flakes of muscovite/sericite.

In the groundmass, cherty quartz forms patches of grains averaging 3-7 microns in grain size. These are gradational texturally into cherty fragments. Ankerite forms patches and seams of grains averaging 0.02-0.05 mm in size which are altered strongly to brown limonite. Sericite forms cryptocrystalline flakes either disseminated iun cherty quartz or concentrated in sericite-rich patches up to 0.15 mm in size. Hematite and leucoxene form disseminated grains averaging 0.02-0.04 mm in size. Zircon forms a few grains averaging 0.02-0.03 mm in size.

A band from 0.5-1 mm wide of extremely fine grained quartz may be of replacement origin. It is associated with and possibly cut by a veinlet 0.2 mm wide of extremely fine grained calcite and lesser quartz, in which the latter is concentrated near the core of the veinlet.

A replacement patch 1.5 mm across is dominated by very fine grained quartz with much less abundant extremely fine grained calcite in patches up to 0.2 mm long in its core. It grades along strike into a discontinuous veinlet of extremely fine grained quartz.

A few veinlets from 0.15-0.4 mm wide consist of very fine grained calcite showing a delicate concentric growth structure. Another discontinuous veinlet 0.03 mm wide is of extremely fine grained calcite. Some of these contain patches up to 0.1 mm in size of limonite.

At one end of the section is the border of a bed of argillite up to 0.6 mm wide. It is dominated by cryptocrystalline sericite with disseminated limonite, with minor subrounded grains of quartz up to 0.05 mm in size.

#### Sample IC96-24 62.98 m Fractured, Compositionally Banded Argillite: Quartz Veinlets; Late Limonite/Hematite Veinlets

The sample is a compositionally banded, cryptocrystalline argillite dominated by plagioclase and much less abundant sericite; the latter is concentrated moderately in a few bands up to 2 mm wide. It was fractured moderately and fractures healed by veinlets and replacement patches of quartz with minor barite and hematite; minor displacement of compositional bands occurs along many fractures. Late veinlets are of limonite/hematite.

plagioclase70-75%sericite15-17limonite/hematite-(pyrite)1quartztracefragmenttracechertminorveinlets, replacement1)quartz-(barite-hematite-muscovite)4-52)limonite/hematite1-2

Plagioclase forms grains averaging 2-5 microns in size. Grain size is too fine for positive identification, and it is possible that some of this material is quartz.

Sericite forms flakes averaging 0.01-0.02 mm long intergrown with plagioclase and concentrated slightly to strongly in a few bands up to 2 mm wide in which it is

Limonite/hematite forms disseminated patches averaging 0.02-0.07 mm in size and lenses parallel to foliation averaging 0.05-0.15 mm long, with a few up to 0.25 mm long. Some of these contain a core of fresh pyrite up to 0.01 mm in size. Compositional banding (seen well in the hand sample) is defined by moderate variation in the abundance of dusty to cryptocrystalline limonite(?).

One subrounded patch (fragment?) 0.2 mm in diameter is of cryptocrystalline chert.

A few, disseminated grains of quartz averaging 0.02-0.03 mm in size may be detrital.

Quartz forms veinlets of extremely fine grains averaging 0.03-0.07 mm wide. One contains a few anhedral grains of barite up to 0.2 mm long. A few coarser grained veins up to 0.3 mm wide have a lensy central cavity, some of which were filled by dark brown limonite/hematite. A few replacement patches up to 1.2 mm in size are of extremely fine grained quartz. In all of these, quartz contains minor to moderately abundant, dusty hematite. A few quartz-rich replacement patches contain several flakes of muscovite up to 0.05 mm long.

The rock was deformed slightly by kink folding; this is shown best in mica-rich bands, and in many of these layers a weak to moderate, secondary foliation is developed at about 30-70° to the primary foliation (= compositional banding).

Late, in part braided, in part very irregular seams and veinlets averaging 0.02-0.05 mm wide are of deep brown limonite/hematite.

#### Sample IC96-24 77.70 m Brecciated Compositionally Banded Argillite: Early Quartz, Dolomite/Ankerite Veins; Late Dolomite-Kaolinite Veins, Breccia Matrix

The sample is a compositionally banded, cryptocrystalline argillite dominated by plagioclase and lesser sericite. The latter is concentrated moderately to strongly in some bands which also contain minor to moderately abundant dusty to extremely fine grained carbonaceous opaque and minor pyrite. The plagioclase-rich layers were brecciated strongly and fragments were partly silicified and healed by early veinlets dominated by quartz with minor dolomite/ankerite, sericite, and chalcopyrite, and a few veinlets of dolomite/ankerite. Later deformation produced brecciation of brittle layers and contortion and development of tiny kink folds in seams rich in muscovite/sericite and dusty opaque. Late cavities were filled by patches and veinlets of dolomite-kaolinite.

plagioclase 70-73% sericite 15-17 carbonaceous opaque 0.7 quartz (detrital) 0.2 pyrite 0.2 Ti-oxide trace chalcopyrite trace replacement patches, veinlets early 1) guartz-(dolomite-sericite-chalcopyrite-pyrite-sphalerite) 8-10 2) dolomite/ankerite-(hematite) 0.7 late dolomite-kaolinite 2

Plagioclase forms grains averaging 2-5 microns in size. Grain size is too fine for positive identification, and it is possible that some of this material is quartz.

Sericite forms flakes averaging 0.02-0.03 mm in length. It is concentrated moderately to strongly in some layers, in which it is oriented parallel to foliation. Mica-rich layers contain minor to moderately abundant dusty grains and minor, disseminated, commonly angular grains averaging 0.01-0.025 mm in size of carbonaceous opaque. Some bands contain moderately abundant, rounded to lensy inclusions of cherty quartz averaging 0.1-0.15 mm in size.

In some layers of intermediate composition, quartz forms up to 2% disseminated detrital grains averaging 0.01-0.02 mm in size.

Pyrite forms disseminated anhedral to subhedral grains averaging 0.01-0.015 mm in size and a few from 0.03-0.05 mm across. Many of the finer patches are subrounded and have a framboidal texture of cryptocrystalline grains intergrown with minor non-reflective material.

Ti-oxide forms minor disseminated grains averaging 0.01-0.02 mm in size.

The rock was fractured strongly. A few small fractures were filled by cryptocrystalline quartz and some patches were replaced by similar quartz, which was distinguished from groundmass plagioclase mainly because it is free of dusty to extremely fine grained opaque inclusions. This silica may represent an early stage of replacement.

Many fractures were healed by veinlets dominated by extremely fine to very fine grained quartz. Most of the veinlets are from 0.02-0.07 mm in width, and a few coarser grained ones are up to 0.3 mm wide. Related replacement patches up to 1.5 mm in size are of cryptocrystalline to locally very fine grained quartz. A few coarser grained patches and veinlets also contain a few grains of dolomite or ankerite, and a few contain cores of cryptocrystalline sericite. Chalcopyrite forms patches up to 0.05 mm in size in quartz and locally associated with pyrite, and minor inclusions in a few of the largest pyrite grains. Pyrite forms disseminated grains averaging 0.02-0.05 mm in size. Sphalerite forms a colourless grain 0.03 mm long associated with a patch of chalcopyrite and lesser pyrite.

A few early veinlets up to 0.2 mm wide are of extremely fine grained dolomite/ankerite containing disseminated, dusty to cryptocrystalline hematite. These were fragmented during later brecciation.

The rock was deformed strongly with deformation concentrated along sericite-rich layers in the original rock. Movement on these layers and rotation of plagioclase-rich fragments is indicated by truncation of early quartz veins in the latter along the former. Most of the seams contain moderately abundant dusty opaque which accentuates the foliation. Seams were later warped slightly to strongly, probably during late stages of the same deformation, and tightly spaced kink folds were developed in some mica-rich layers.

Late veinlets up to 0.5 mm wide and irregular replacement patches are of subhedral to euhedral very fine grained dolomite, with scattered patches (= central cavities) among the euhedrally terminated crystals filled with cryptocrystalline kaolinite flakes. In one corner of the section the rock was brecciated strongly and healed by abundant extremely fine to very fine grained dolomite, with cores of a few larger patches containing cryptocrystalline kaolinite.

#### **APPENDIX VII**

#### CERTIFICATES OF ANALYSIS XRF



## Chemex Labs Ltd.

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Page er :1 Total Frages :1 Certificate Date: 12-DEC-96 Invoice No. :19642286 P.O. Number : Account :MPO

----

Project : ICE-IC 96 Comments:

-

|                                                     |                                                     |                                          |                                      |                                                                         |                                       |                                      |                                      |                                      |                                          | CE                                   | RTIF                                      | ICATE                                | EOF /                                | ANAL                                      | YSIS                              | A                          | 9642                       | 286                      |                             |                            |
|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------|----------------------------|----------------------------|--------------------------|-----------------------------|----------------------------|
| SAMPLE                                              | PREP<br>CODE                                        | A1203 %<br>XRF                           | CaO %C1<br>XRF                       | 203 %F(<br>XRF                                                          | e203 %<br>XRF                         | K20 %<br>XRF                         | MgO %<br>XRF                         | MnO %<br>XRF                         | Na 20 %<br>XRF                           | P205 %<br>XRF                        | sio2 %<br>XRF                             | Tio2 %<br>XRF                        | LOI %<br>XRF                         | TOTAL<br>%                                | Ba<br>ppm                         | Rb<br>ppm                  | Sr<br>ppm                  | Nb<br>ppm                | Zr<br>ppm                   | Y<br>ppm                   |
| N110037<br>N110038<br>N110039<br>N110040<br>N110041 | 208 226<br>208 226<br>208 226<br>208 226<br>208 226 | 5 7.69<br>9.66<br>7.74<br>11.03<br>14.92 | 0.10<br>2.30<br>1.30<br>6.16<br>7.66 | <pre>&lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 &lt; 0.01 </pre> | 3.41<br>3.37<br>3.03<br>17.47<br>9.10 | 1.84<br>2.62<br>1.91<br>0.10<br>0.46 | 0.60<br>0.89<br>1.47<br>6.75<br>5.68 | 0.05<br>0.17<br>0.08<br>0.22<br>0.14 | 0.01<br>< 0.01<br>< 0.01<br>2.11<br>4.77 | 0.05<br>0.24<br>0.14<br>0.13<br>0.09 | 82.74<br>74.07<br>77.62<br>49.24<br>50.53 | 0.38<br>0.66<br>0.36<br>1.59<br>0.91 | 2.36<br>5.33<br>5.55<br>4.82<br>4.60 | 99.23<br>99.31<br>99.20<br>99.62<br>98.87 | 6050<br>5000<br>4080<br>90<br>160 | 72<br>96<br>78<br>< 2<br>6 | 10<br>18<br>30<br>52<br>96 | 6<br>14<br>8<br>2<br>< 2 | 96<br>168<br>84<br>99<br>51 | 10<br>20<br>12<br>28<br>16 |
|                                                     |                                                     |                                          |                                      |                                                                         |                                       |                                      |                                      |                                      |                                          |                                      |                                           |                                      |                                      |                                           |                                   |                            |                            |                          |                             |                            |
|                                                     |                                                     |                                          |                                      |                                                                         |                                       |                                      |                                      |                                      |                                          |                                      |                                           |                                      |                                      |                                           |                                   |                            |                            |                          |                             |                            |
|                                                     |                                                     |                                          |                                      |                                                                         |                                       |                                      |                                      |                                      |                                          |                                      |                                           |                                      |                                      |                                           |                                   |                            |                            |                          |                             |                            |
|                                                     |                                                     |                                          |                                      |                                                                         |                                       |                                      |                                      |                                      |                                          |                                      |                                           |                                      |                                      |                                           |                                   |                            |                            |                          |                             |                            |
| 1                                                   |                                                     |                                          |                                      |                                                                         |                                       |                                      |                                      |                                      | •                                        |                                      |                                           |                                      |                                      |                                           |                                   |                            |                            |                          |                             |                            |
|                                                     |                                                     |                                          |                                      |                                                                         |                                       |                                      |                                      |                                      | •                                        |                                      |                                           |                                      |                                      |                                           |                                   |                            |                            |                          |                             |                            |
|                                                     |                                                     |                                          |                                      |                                                                         |                                       |                                      |                                      |                                      |                                          |                                      |                                           |                                      |                                      |                                           |                                   |                            |                            | •                        |                             |                            |

Hart Brehler CERTIFICATION:



## **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: EXPATRIATE RESOURCES LTD. C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST. VANCOUVER, BC V6B 1L8

Pay (11 Totar, 11 Certificate Date: 20-OCT-96 Invoice No. : 19635213 P.O. Number ٠ : MPO Account

Project : ICE Comments: CC: LEE PIGAGE

|                    |              |                  |               |                |               |              |               |              |               | C             | ERTIF          | ICATI         |              | ANAL           | YSIS      | A         | 9635        | 213       |           |          |
|--------------------|--------------|------------------|---------------|----------------|---------------|--------------|---------------|--------------|---------------|---------------|----------------|---------------|--------------|----------------|-----------|-----------|-------------|-----------|-----------|----------|
| SAMPLE             | PREP<br>CODE | A1203 %<br>XRF   | CaO %C<br>XRF | r203 %F<br>XRF | e203 %<br>XRF | K20 %<br>XRF | MgO %<br>XRF  | Mn0 %<br>XRF | Na20 %<br>XRF | P205 %<br>XRF | SiO2 %<br>XRF  | TiO2 %<br>XRF | LOI %<br>XRF | TOTAL<br>%     | Ba<br>ppm | Rb<br>ppm | Sr<br>ppm   | Nb<br>ppm | Zr<br>ppm | Y<br>mqq |
| N111050<br>N111108 | 244          | - 13.47<br>13.89 | 6.52<br>7.78  | 0.01           | 11.58         | 0.83<br>0.39 | 13.69<br>8.73 | 0.18<br>0.20 | 1.39<br>2.47  | 0.11          | 44.12<br>46.78 | 1.23<br>1.18  | 6.52<br>5.81 | 99.65<br>99.01 | 155       | 888       | 286 52      | 2 < 2     | 33<br>69  | 14 28    |
|                    |              |                  |               |                |               |              |               |              |               |               |                |               |              |                |           |           |             | 9         |           |          |
|                    |              |                  |               |                |               |              |               |              |               |               |                |               |              | CERTIFIC       | CATION:_  |           | <b>(</b> ). | 12 a      | -D. Q.    |          |

\_\_\_\_

`



## **Chemex Labs Ltd.**

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218  a: EXPATRIATE RESOURCES LTD.
 C/O ARCHER, CATHRO & ASSOCIATES (1981) LIMITED 1016 - 510 W. HASTINGS ST.
 VANCOUVER, BC
 V6B 1L8

Page er: 1 Total Payes :1 Certificate Date: 10-OCT-96 Invoice No. : 19632755 P.O. Number : Account : MPO

. . . . . . . . .

| Project : | ICE |
|-----------|-----|
| Comments: |     |

ſ

|                               | _                 |                   | -                       |                      |                                  |                         |                      |                      |                      |                      | CENTIFICATE OF ANALYSIS A9632755 |                         |                      |                      |                         |                    |                   |                   |             |                   |                |
|-------------------------------|-------------------|-------------------|-------------------------|----------------------|----------------------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------------------|-------------------------|----------------------|----------------------|-------------------------|--------------------|-------------------|-------------------|-------------|-------------------|----------------|
| SAMPLE                        | PR<br>CO          | EP<br>DE          | Al2O3 %<br>XRF          | CaO %<br>XRI         | Cr2O3 %<br>FXRF                  | Fe2O3 %<br>XRF          | K20 %<br>XRF         | Mg0 %<br>XRF         | Mn0 %<br>XRF         | Na2O %<br>XRF        | P2O5 %<br>XRF                    | SiO2 %<br>XRF           | TiO2 %<br>XRF        | LOI %<br>XRF         | TOTAL<br>%              | Ba<br>ppm          | Rb<br>pp <b>n</b> | Sr<br>ppm         | Nb<br>ppm   | Zr<br>pp <b>a</b> | Y<br>ppm       |
| N110292<br>N110293<br>N110294 | 208<br>208<br>208 | 294<br>294<br>294 | 13.28<br>13.08<br>13.15 | 9.07<br>9.97<br>7.78 | 7 < 0.01<br>7 < 0.01<br>3 < 0.01 | 12.89<br>12.74<br>15.22 | 0.91<br>0.33<br>0.24 | 7.18<br>6.67<br>6.42 | 0.22<br>0.20<br>0.23 | 3.31<br>3.07<br>3.52 | 0.11<br>0.14<br>0.20             | 48.39<br>47.69<br>46.01 | 1.43<br>1.58<br>2.26 | 2.31<br>2.98<br>3.42 | 99.10<br>98.45<br>98.45 | 200<br>405<br>1495 | 18<br>2<br>2      | 136<br>214<br>228 | 2<br>2<br>4 | 63<br>81<br>114   | 30<br>30<br>46 |
|                               |                   |                   |                         |                      |                                  |                         |                      |                      |                      |                      |                                  |                         |                      |                      |                         |                    |                   |                   |             |                   |                |
|                               |                   |                   |                         |                      |                                  |                         |                      |                      |                      |                      |                                  |                         |                      |                      |                         |                    |                   |                   |             |                   |                |
|                               |                   |                   |                         |                      |                                  |                         |                      |                      |                      |                      |                                  |                         |                      |                      |                         |                    |                   |                   |             |                   |                |
|                               |                   |                   |                         |                      |                                  |                         |                      |                      |                      |                      |                                  |                         |                      |                      |                         |                    |                   |                   |             | <u> </u>          |                |

CERTIFICATION:

tart sicher