1995 ASSESSMENT REPORT

STRIKE PROPERTY

AIRBORNE GEOPHYSICS,
SILT GEOCHEMISTRY AND GEOLOGICAL MAPPING

WATSON LAKE M.D., YUKON

EAST WOLVERINE LAKE AREA

WORK PERIOD
July 6-8, 16, 1995

LATITUDE: 61°29'
MARCH, 1996

LONGITUDE: 130°01'
DARREN A. SENFT
R. W. HOLROYD
1995 ASSESSMENT REPORT
STRIKE PROPERTY, YUKON TERRITORY

1. SUMMARY

The STRIKE property, comprising 319 units, is located north of Money Creek, approximately 30 kms east of Cominco's ABM VHMS Deposit, 10 kms east of Wolverine Lake, and roughly 130 kms southeast of Ross River.

The original property was staked to cover an area on strike of the Julia Showing with numerous anomalous silt samples identified during a government RGS survey conducted in 1987.

The rocks underlying this part of southeastern Yukon have been assigned to 2 terranes: the Yukon-Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT). The YTT consists primarily of a layered sequence of metamorphosed rocks comprising a "lower unit" of pre-Devonian quartzite, pelitic schist and minor marble, a late Devonian to mid-Mississippian "middle unit" comprising carbonaceous phyllite and schist with interbanded mafic and, locally significant, felsic metavolcanics, and an "upper unit" of Pennsylvanian marbles and quartzite. Felsic volcanics of the middle unit are host to Cominco's ABM and Westmin/Atna's Wolverine Zone VHMS Deposits.

The late Devonian to Triassic SMT comprises a heterogenous package of mafic to ultramafic plutonic rocks, mafic volcanics, massive carbonate and chert. This sequence was structurally emplaced as thrust bounded klippen on YTT rocks or as thrust slices imbricated within YTT rocks during a period of crustal shortening (D2). The SMT is thought to represent a disrupted oceanic crust and volcanic arc assemblage thought to be located between the YTT and ancestral North America(?). Mafic volcanics of th SMT are host to Atna’s Julia Showing.

The STRIKE property is underlain by late Devonian to Triassic mafic volcanics and metasediments of the SMT within the Finlayson Lake Fault Zone. The stratigraphy over much of the property exhibits variable trends, from north to west, with shallow to steep north and east dips. Mafic volcanics of the SMT are host to Besshi-style mineralization at the Julia Showing.

The geology on the STRIKE property can be divided into two distinct geological units. The first of these lies on the southern third of the property, and is comprised almost entirely of mafic volcanics. These chlorite-rich volcanic rocks include weakly calcareous, locally epidotized and silicified tuffs, as well as massive pillowed basalt flows. Several small gossanous zones occur within the mafic volcanics. These zones consist of small mafic fragments floating in an Fe-rich carbonate (dolomite) matrix, which contains up to 2-5% pyrite.

The northern limit of the mafic volcanics on the property is at a normal fault contact with mixed metasedimentary and metavolcanic rocks that have been considered to be either a down-dropped block correlating with the lower division of the Slide Mountain Terrane, or possibly an uplifted block of Yukon Tanana Terrane rocks. The metasediments are comprised mainly of fine grained, greenish-grey to black, variably carbonaceous, finely laminated siltstone, mudstone and shale. The metavolcanics include both felsic quartz-sericite-feldspar schists, as well as minor chloritic andesite tuffs and mafic sills.

A helicopter supported silt sampling program was carried out in the STRIKE claim area on July 16, 1995. A total of 40 silt samples were collected from streams on or near the property. Results returned one sample anomalous in Cu, and several anomalous in Ba.
An airborne geophysical survey flown by Aerodat outlined three conductive zones, two of which possess moderate to strong AEM responses associated with strong, linear mag features.

Further detailed geological mapping, prospecting, soil and rock geochemistry, as well as ground geophysics are recommended for work on the STRIKE property in 1996.

2. LOCATION AND ACCESS

The STRIKE property is located about 30 kms east of Cominco's ABM VHMS Deposit, north of Money Creek, approximately 10 kms east of Wolverine Lake, and 130 kms southeast of Ross River (Figure 1). The gravel, all-weather Robert Campbell Highway provides access to within 5 kms of the northern extent of the property. Direct access is by helicopter.

3. PROPERTY AND OWNERSHIP

The STRIKE property, totalling 319 units (Figure 2), is 100% owned by Cominco Ltd. Subsequent Cominco staking has made the ERA claims contiguous with the STRIKE claim block.

<table>
<thead>
<tr>
<th>NAME</th>
<th>UNITS</th>
<th>CLAIM NO.</th>
<th>DUE DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRIKE 1-317</td>
<td>317</td>
<td>YB59582-898</td>
<td>Feb. 5/97</td>
</tr>
<tr>
<td>STRIKE 319-320</td>
<td>2</td>
<td>YB59899-900</td>
<td>Feb. 5/97</td>
</tr>
</tbody>
</table>

4. PREVIOUS WORK

The current property lies just to the north of the Julia showing (Minfile #78), which contains Besshi-type stratiform massive sulphide mineralization. This occurrence was initially staked in 1980 by Welcome North Minerals Ltd. and Esperanza Expl. Ltd. They were then optioned to Arbor Resources Ltd., which carried out gravity surveys in 1981 and later performed EM, mag and geochem surveys and drilled 3 holes (329 m) in a joint venture with Esso Minerals Ltd. The claims were dropped, and in 1990 restaked by YGC resources who completed soil and rock geochemical sampling and prospecting. The property has been subsequently acquired by Atna Resources Ltd.

A government RGS survey was also conducted in this area in 1987. Initial staking by Comincoin this area was in response to several anomalous silt samples from this survey, results of which are listed below.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Cu (ppm)</th>
<th>Pb (ppm)</th>
<th>Zn (ppm)</th>
<th>Mn (ppm)</th>
<th>Cd (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>873002</td>
<td>32</td>
<td>13</td>
<td>155</td>
<td>10800</td>
<td>1.8</td>
</tr>
<tr>
<td>873003</td>
<td>265</td>
<td>9</td>
<td>142</td>
<td>679</td>
<td>0.5</td>
</tr>
<tr>
<td>873004</td>
<td>70</td>
<td>12</td>
<td>126</td>
<td>869</td>
<td>0.7</td>
</tr>
<tr>
<td>873005</td>
<td>71</td>
<td>14</td>
<td>126</td>
<td>777</td>
<td>0.6</td>
</tr>
<tr>
<td>873450</td>
<td>31</td>
<td>14</td>
<td>120</td>
<td>259</td>
<td>0.5</td>
</tr>
<tr>
<td>873451</td>
<td>71</td>
<td>18</td>
<td>170</td>
<td>657</td>
<td>1.2</td>
</tr>
<tr>
<td>873452</td>
<td>63</td>
<td>14</td>
<td>114</td>
<td>386</td>
<td>0.2</td>
</tr>
<tr>
<td>873453</td>
<td>178</td>
<td>36</td>
<td>203</td>
<td>349</td>
<td>1.6</td>
</tr>
<tr>
<td>873454</td>
<td>274</td>
<td>3</td>
<td>46</td>
<td>16</td>
<td>5.6</td>
</tr>
</tbody>
</table>

5. 1995 WORK

GEOLOGICAL MAPPING

On July 6-8, 1995, 1:20,000 scale geological mapping and prospecting was carried out by D. Rhodes, D. Senft, T.C. Schwartz, L. Hall and A.B. Mawer on the STRIKE claims (Figure 3). A total of 8 rock samples were collected, data for which is presented in Appendix 2.
SILT GEOCHEMISTRY

A helicopter supported silt sampling program was carried out in the STRIKE property area on July 16, 1995. A total of 40 silt samples were collected from streams on or near the property. Data is presented in Figure 3 and Appendix 2.

GEOCHEMICAL ANALYSES: The silt and rock samples were analyzed for Cu, Pb, Zn, Ag, As, Cd, Co, Ni, Fe, Mo, Cr, Bi, Sb, V, Sn, W, Sr, Y, La, Mn, Mg, Ti, Al, Ca, Na and K by I.C.P., Au by Aqua Regia decomposition/AAS and Ba by XRF at Cominco Exploration Research Laboratory (CERL) in Vancouver.

AIRBORNE GEOPHYSICAL SURVEYS

The airborne EM/MAG survey was flown over the STRIKE property between July 22 and August 23, 1995. Results are included in Figures 4a,b.

6. REGIONAL GEOLOGY

The rocks underlying this part of southeastern Yukon have been assigned to 2 terranes: the Yukon-Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT) (Mortensen, 1983a; Mortensen and Jilson, 1985).

The YTT consists primarily of a layered sequence of metamorphosed rocks comprising a "lower unit" of pre-Devonian quartzite, pelitic schist and minor marble, a late Devonian to mid-Mississippian "middle unit" (3F) comprising carbonaceous phyllite and schist with interbanded mafic and, locally significant, felsic metavolcanics (3G), and an "upper unit" of Pennsylvanian marbles and quartzite. Volcanism within the "middle unit" was accompanied by the intrusion of 2-3, late Devonian to Mississippian, mafic to felsic metaplutonic suites (Simpson Range suite and augen and monzonitic orthogneisses). This sequence appears to reflect stable platformal or shelf sedimentation with an intervening period of mafic to felsic arc volcanism developed within a more reduced basinal setting.

The late Devonian to Triassic SMT comprises a heterogenous package of mafic to ultramafic plutonic rocks, mafic volcanics, massive carbonate and chert. This sequence was structurally emplaced as thrust bounded klippen on YTT rocks or as thrust slices imbricated within YTT rocks during a period of crustal shortening (D2). The SMT is thought to represent a disrupted oceanic crust and volcanic arc assemblage thought to be located between the YTT and ancestral North America(?). A subhorizontal to moderately north to northeast dipping, penetrative ductile deformation fabric (S2) and associated middle greenschist facies (chlorite-biotite grade) metamorphism affects all YTT rocks. This fabric reflects the first, and most significant, deformational and metamorphic event (D1) perhaps related to a continent-arc collision during late Permian to early Triassic time.

Late Triassic immature clastics comprising micaceous argillite, siltstone and sandstone unconformably(?) overlie the deformed and metamorphosed YTT rocks. These sediments are often closely associated with SMT volcanics and are invariably in fault contact with YTT rocks.

The SMT, Late Triassic sediments and Late Triassic to Middle Jurassic plutons are all affected by a period of Middle Jurassic to Late Cretaceous thrust faulting (D2), during which the Finlayson Lake Fault Zone was formed. This complex fault zone contains both thrust and steep, transcurrent(?) faults and separates the YTT from autochthonous North America (Mortensen, 1983a; Mortensen and Jilson, 1985). Thrust faulting continued after the formation of the Finlayson Lake Fault Zone as indicated by the presence of over thrust sheets of SMT rocks (Campbell Range Belt) above the fault zone (Plint, 1994).

7. PROPERTY GEOLOGY AND MINERALIZATION

The STRIKE property is underlain by late Devonian to Triassic mafic volcanics and metasediments of the SMT within the Finlayson Lake Fault Zone. The mafic volcanics of the SMT are host to Besshi-style mineralization on Atna's Julia Showing.
The property is very well exposed on the ridges above treeline, as well as along creek cuts at higher elevations. The stratigraphy is generally moderately to steeply dipping, with variable bedding and foliation trends. The stratigraphy on the southern part of the property generally trends north to northwest, with shallow to steep east to northeast dips (15-84°). Stratigraphy on the central portion of the property trends west to northwest, with moderate to steep north to northeast dips of 40-70° (Figure 3).

The geology on the STRIKE property can be divided into two distinct geological packages. The first of these lies on the southern third of the property, and is comprised almost entirely of mafic volcanics. These chlorite-rich volcanic rocks include weakly calcareous, locally epidotized and silicified tuffs, characterized by small lapilli and larger bombs; as well as massive pillowed basalt flows, which often exhibit brecciated flow tops. Visible mineralization within the mafic volcanics is limited to minor pyrite locally. Several small gossanous zones occur within the mafic rocks. These zones consist of primary breccias of small mafic fragments floating in an Fe-rich carbonate (dolomite) matrix, which contains up to 2-5% pyrite. A sample from one of these zones, containing significant pyrite, returned 80 ppm Au and 1148 ppm Cu.

To the north, the mafic volcanics are truncated by a normal fault. North of this fault is a sequence of interbedded/banded metasedimentary and metavolcanic rocks. The metasediments are comprised mainly of fine grained, greenish-grey to black, variably carbonaceous, finely laminated siltstone, mudstone and shale. The metavolcanics include both felsic and mafic components. The felsic rocks are more common, generally consisting of finely foliated quartz-sericite-feldspar schists, likely derivatives of quartz-eye crystal tuff and rhyolite tuff. Mafic volcanics are seen locally as chloritic andesite tuffs, and minor mafic sills. Mineralization within the rocks of this package is limited to minor pyrite.

Plint (1994) suggests the fault separating these two packages of rocks is normal, with a north side down displacement. She correlates the mixed metasedimentary and metavolcanic sequence with the lower division of the Slide Mountain Terrane. An alternative theory is that the fault has north side up displacement, with the rocks correlating to units within the Yukon Tanana Terrane. These rocks may then be equivalent with the ABM or Wolverine Zone hosting stratigraphy.

8. **SILT GEOCHEMISTRY**

A helicopter supported silt sampling program was carried out in the STRIKE property area on July 16, 1995. A total of 40 silt samples were collected from streams on or near the property. Results from this program returned several samples anomalous in Cu (131-1443 ppm) and several anomalous in Ba (up to 3719 ppm). Data is presented in Figure 3 and Appendix 2.

9. **AIRBORNE GEOPHYSICAL SURVEY**

SURVEY PROCEDURES

The survey was completed in the period from July 22 to August 23, 1995 with the flying over the STRIKE claims involving only a small portion of this time. Aircraft ground speed is maintained at approx. 60 knots (30 metres per second). The nominal EM sensor height is 30 metres (100 feet), consistent with the safety of the aircraft and crew. The spacing of the flight lines is 300 metres.

A global positioning system (GPS) consisting of a Magnavox MX 9212 operated in differential mode guides aircraft navigation and flight line control. Field processing of the differential GPS data in the field utilizes a PC using software supplied by the manufacturer. One system is installed in the survey helicopter. This involves mounting the receiver antenna on the tail boom. A second system acts as the base station.

The published NTS maps provide the UTM coordinates of the survey area corners. These coordinates program the navigation system. A test flight confirms if area coverage is correct. Thereafter, the navigation system guides the pilot along the survey traverse lines marked on the topographic map. The operator also enters manual fiducials over prominent topographic features. Survey lines showing excessive deviation are re-flown.
Aircraft position is registered by the navigation system. The operator calibrates the geophysical systems at the start, middle (if required) and end of every survey flight. During calibration the aircraft is flown away from ground effects to record electro-magnetic zero levels.

PRESENTATION

A claim map of the STRIKE area is presented on a topo base, at a scale of 1:10,000. The EM and magnetic data are overlain for easy interpretation in this report and include the 4600 Hz coaxial, electromagnetic profiles and interpretation on a coloured total field magnetic background, at a scale of 1:10,000 (Figure 4a). On a separate plate is a total field magnetic contour map, also at a scale of 1:10,000 (Figure 4b).

AIRCRAFT AND EQUIPMENT

The survey aircraft was an Aerospatiale AS316B helicopter (C-FPWH), piloted by G. Suthern and B. Stone, owned and operated by Turbowest Helicopters. P. Moisan and J. Cunningham of Aerodat acted as navigator and equipment operator. Aerodat performed the installation of the geophysical and ancillary equipment. The survey aircraft flies at a mean terrain clearance of 60 metres (200 feet).

The electromagnetic system is an Aerodat five-frequency configuration, though this data set includes only one vertical coaxial coil pair at a frequency of 4600 Hz. Transmitter-receiver separation is seven metres. In-phase and quadrature signals are measured simultaneously with a time constant of 0.1 seconds. The HEM bird is towed 30 metres (100 feet) below the helicopter.

A Scintrex H88 Cesium, optically pumped magnetometer sensor, measures the earth's magnetic field. The sensitivity of this instrument is 0.001 nT at a sampling rate of 0.2 second. The sensor is towed in a bird 15 metres (50 feet) below the helicopter, 45 metres (150 feet) above the ground. A GSM-19 Cesium magnetometer is set up at the base of operations to record diurnal variations of the earth's magnetic field. Synchronization of the clock of the base station with that of the airborne system is checked each day to ensure diurnal corrections will be accurate. Recording resolution is 1 nT with an update rate of four seconds. The data is saved to disk.

DATA PROCESSING AND PRESENTATION

The base map is taken from digital NTS topographic maps. A UTM reference grid and the survey area boundary are added.

The electromagnetic data are recorded digitally at a sample rate of 10 per second with a time constant of 0.1 seconds. A two-stage digital filtering process rejects major sferic events and reduces system noise. Following the filtering process, a base level correction is made using EM zero levels determined during high altitude calibration sequences. The correction applied is a linear function of time that ensures the corrected amplitude of the various in-phase and quadrature components is zero when no conductive or permeable source is present.

The aeromagnetic data are corrected for diurnal variations by adjustment with the recorded base station magnetic values. No corrections for regional variations are applied. The corrected profile data are interpolated on a regular grid using an Akima spline technique. The grid provided the basis for threading the presented contours. The minimum contour interval is 2 nT. The grid cell is 50 m.

ANOMALY SELECTION

EM anomalies are manually picked from the profiles, are digitized by location and type (normal, magnetite or power line). The 4600 Hz in-phase and quadrature anomaly amplitudes are recovered for the locations given. Normal anomalies are modelled as a vertical thin sheet conductor using an automated phasor diagram. Inversion returns estimates of source conductance and depth of burial. Anomaly centres showing the conductance range and in-phase response are plotted on selected map products.
10. CONCLUSIONS and RECOMMENDATIONS

The STRIKE property is underlain by late Devonian to Triassic mafic volcanics and metasediments of the SMT within the Finlayson Lake Fault Zone. The stratigraphy on the southern part of the property generally trends north to northwest, with shallow to steep east to northeast dips (15-84°). Stratigraphy on the central portion of the property trends west to northwest, with moderate to steep north to northeast dips (40-70°).

The geology on the STRIKE property can be divided into two distinct geological units. The first of these lies on the southern third of the property, and is comprised almost entirely of mafic volcanics (greenstones). These chlorite-rich volcanic rocks include weakly calcareous, locally epidotized and silicified tuffs, as well as massive pillowed basalt flows. Several small gossanous zones occur within the mafic rocks. These zones consist of small mafic fragments floating in an Fe-rich carbonate (dolomite) matrix, which contains up to 2-5% pyrite.

The northern part of the property is underlain by a distinctive package of mixed metasedimentary and metavolcanic rocks thought to correlate with either the lower division of the SMT, or with the YTT rocks seen in the hosting stratigraphy of the ABM and Wolverine Zone VHMS Deposits. The metasediments are comprised mainly of fine grained, greenish-grey to black, variably carbonaceous, finely laminated siltstone, mudstone and shale. The metavolcanics include both felsic quartz-sericite-feldspar schists, as well as minor chloritic andesite tuffs and mafic sills.

A helicopter supported silt sampling program was carried out in the STRIKE property area on July 16, 1995. A total of 40 silt samples were collected from streams on or near the property. Results returned one sample anomalous in Cu, and several anomalous in Ba.

An airborne geophysical survey flown by Aerodat outlined three conductive zones, two of which possess moderate to strong AEM responses associated with strong, linear mag features.

Further detailed geological mapping, prospecting and soil and rock geochemistry are recommended for the STRIKE property, specifically targeting drainages with anomalous silt results. Grid-based geophysical surveys are also recommended for specific AEM/MAG targets.

Report by:
D. A. Senft, B.Sc.
Geologist

R.W. Holroyd, B.Sc./P.Geo
Geophysicist

Endorsed by:
D. Rhodes
Senior Geologist

Approved for Release by:
D.W. Moore
Manager, Exploration
Western Canada

DISTRIBUTION:
W.D. Files
Geophysics Files
Mining Recorder (2)
11. REFERENCES

TAKATA, S. S., 1995. OPERATIONAL REPORT ON A COMBINED HELICOPTER-BORNE MAGNETIC AND ELECTROMAGNETIC SURVEY, PELLY MOUNTAIN EXTENSION, YUKON TERRITORY; for Cominco Exploration Ltd.
APPENDIX 1

STATEMENT OF QUALIFICATIONS
STATEMENT OF QUALIFICATIONS

I, Darren A. Senft, of #4-2415 W. 4th Ave., Vancouver, B.C. hereby declare that I:

1. Graduated from The University of British Columbia, Vancouver, B.C. with a B.Sc. in Geology in May, 1994.

2. Have been actively engaged in mineral exploration in Western Canada from 1991 to 1995, and am presently employed as a geologist with Cominco Ltd.

Date: March, 1996

D. A. Senft
GEOLOGIST
STATEMENT OF QUALIFICATIONS

I, ROBERT W. HOLROYD, of 2752 Dollarton Highway, in the City of North Vancouver, in the Province of British Columbia, do hereby certify:

1. THAT I graduated with a Bachelor of Science in Honours Applied Earth Science - Cooperative Programme, from the University of Waterloo in 1977.

2. THAT I am a member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

3. THAT I have been actively practising my profession from 1973 to 1995, and have been an employee of Cominco Ltd. from 1977 to 1995.

Date: March, 1996

Robert W. Holroyd,
B.Sc./P.Geo.
GEOPHYSICIST
<table>
<thead>
<tr>
<th>LAB NO</th>
<th>sample name</th>
<th>property</th>
<th>As</th>
<th>Be(s)</th>
<th>Ca</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>As</th>
<th>Ba</th>
<th>Cd</th>
<th>Ca</th>
<th>Ni</th>
<th>Fe</th>
<th>Mo</th>
<th>Cr</th>
<th>Br</th>
<th>Sr</th>
<th>Si</th>
<th>W</th>
<th>Fe</th>
<th>V</th>
<th>Co</th>
<th>Ni</th>
<th>Ti</th>
<th>Al</th>
<th>Ca</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>R9519633</td>
<td>TS65-R12</td>
<td>STRIKE</td>
<td>12</td>
<td>123</td>
<td>38</td>
<td>31</td>
<td>21</td>
<td>2.5</td>
<td>31</td>
<td>105</td>
<td><1</td>
<td>2</td>
<td>2.9</td>
<td>3.0</td>
<td><2</td>
<td>56</td>
<td>12</td>
<td>20</td>
<td><2</td>
<td>1.2</td>
<td><2</td>
<td><2</td>
<td>104</td>
<td><2</td>
<td>0.22</td>
<td>0.02</td>
<td>0.01</td>
<td>0.11</td>
<td>0.41</td>
</tr>
<tr>
<td>R9519634</td>
<td>TS65-R14</td>
<td>STRIKE</td>
<td>10</td>
<td>827</td>
<td>1140</td>
<td>64</td>
<td>348</td>
<td><4</td>
<td>29</td>
<td>621</td>
<td><1</td>
<td>2</td>
<td>13</td>
<td>13</td>
<td>17.86</td>
<td>8</td>
<td>13</td>
<td><4</td>
<td>18</td>
<td>60</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>104</td>
<td><2</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>R9519635</td>
<td>TS65-R15</td>
<td>STRIKE</td>
<td>113</td>
<td>440</td>
<td>45</td>
<td>44</td>
<td>78</td>
<td><4</td>
<td>2</td>
<td>104</td>
<td><1</td>
<td>20</td>
<td>29</td>
<td>5.74</td>
<td><2</td>
<td>10</td>
<td><4</td>
<td><2</td>
<td>113</td>
<td>31</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>135</td>
<td>1.88</td>
<td><2</td>
<td>2.13</td>
<td>0.11</td>
</tr>
<tr>
<td>R9519636</td>
<td>TS65-R16</td>
<td>STRIKE</td>
<td>113</td>
<td>19</td>
<td>6</td>
<td>44</td>
<td>8</td>
<td><4</td>
<td><2</td>
<td>66</td>
<td><1</td>
<td>4</td>
<td>0.28</td>
<td>2</td>
<td>141</td>
<td><4</td>
<td>8</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>56</td>
<td><2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.14</td>
<td>0.01</td>
<td>0.31</td>
</tr>
<tr>
<td>R9519637</td>
<td>TS65-R17</td>
<td>STRIKE</td>
<td>112</td>
<td>338</td>
<td>56</td>
<td>44</td>
<td>80</td>
<td><4</td>
<td>2</td>
<td>30</td>
<td><1</td>
<td>27</td>
<td>27</td>
<td>4.66</td>
<td>2</td>
<td>73</td>
<td><4</td>
<td><2</td>
<td>134</td>
<td>18</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>497</td>
<td>1.62</td>
<td>0.51</td>
<td>0.27</td>
<td>0.01</td>
</tr>
<tr>
<td>R9519638</td>
<td>TS65-R18</td>
<td>STRIKE</td>
<td>112</td>
<td>182</td>
<td>69</td>
<td>44</td>
<td>50</td>
<td><4</td>
<td>10</td>
<td>20</td>
<td><1</td>
<td>25</td>
<td>110</td>
<td>4.37</td>
<td><2</td>
<td>255</td>
<td><4</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>129</td>
<td><2</td>
<td>0.12</td>
<td>0.01</td>
<td>0.10</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>R9519639</td>
<td>TS65-R19</td>
<td>STRIKE</td>
<td>20</td>
<td>96</td>
<td>22</td>
<td>32</td>
<td>48</td>
<td><4</td>
<td>7</td>
<td>22</td>
<td><1</td>
<td>6</td>
<td>18</td>
<td>9.47</td>
<td><2</td>
<td>72</td>
<td><5</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td><2</td>
<td>110</td>
<td><2</td>
<td>0.42</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.29</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 3

STATEMENT OF EXPENDITURES
<table>
<thead>
<tr>
<th>STRIKE PROPERTY</th>
<th>EXPENDITURE ITEM</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STAFF COSTS</td>
<td>3,275</td>
</tr>
<tr>
<td></td>
<td>DOMICILE</td>
<td>425</td>
</tr>
<tr>
<td>GEOCHEMISTRY</td>
<td></td>
<td>2,222</td>
</tr>
<tr>
<td>HELICOPTER</td>
<td></td>
<td>1,168</td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>GEOPHYSICS/HELICOPTER</td>
<td></td>
<td>15,795</td>
</tr>
<tr>
<td>EXPEDITING</td>
<td></td>
<td>355</td>
</tr>
<tr>
<td>DRAFTING</td>
<td></td>
<td>882</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>24,182</td>
</tr>
</tbody>
</table>
MAP NO: 105H/5, G/8, 9
ASSESSMENT REPORT: X
DOCUMENT NO: 093612
MINING DISTRICT: Watson Lake
TYPE OF WORK: G, P, GC, GP

Minfile #: 105H-78
PROSPECTUS:
CONFIDENTIAL: X

OPEN FILE:

REPORT FILED UNDER: Cominco Exploration
DATE PERFORMED: June 15-August 12, 1996
DATE FILED: March 27, 1997
LATITUDE: 61 29
AREA: Money Creek
LONGITUDE: 130 01
VALUE: $105,500

CLAIM NAME AND #: Era 1-139, 144-349, Strike 1-320
WORK DONE BY: Darren Senft
WORK DONE FOR: Cominco Exploration

Remarks: Prospecting, geochemistry and HLEM/Mag surveys on claims that are on strike to the north of the Julia showing.

<table>
<thead>
<tr>
<th>Claims in Good Standing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
COAXIAL EM PROFILES
AERODAT 4600 Hz - 2 ppm/mm
(SOLID = IN PHASE; DASHED = OUT OF PHASE)
STRIKE PROPERTY
1: 20,000