COMINCO LTD.

EXPLORATION

WESTERN DISTRICT

NTS 105 G/13, 14

1994 ASSESSMENT REPORT

FRET AND DOT PROPERTIES

SOIL GEOCHEMISTRY, GEOLOGICAL MAPPING, LINECUTTING AND GROUND GEOPHYSICS (HLEM, MAG AND GRAVITY)

WATSON LAKE M.D., YUKON

PELLY MOUNTAINS AREA

FRET - LAT: 61°51' DOWT - LAT: 61°50'
FRET - LONG: 131°28' DOT - LONG: 131°38'

WORK PERIOD

JULY 18, 19, 21-27 AND AUGUST 14-15, 1994

APRIL, 1995

PAUL A. MacROBBIE
MAP NO: 105G/13,14
ASSESSMENT REPORT: X
PROSPECTUS:
CONFIDENTIAL: X
MINING DISTRICT: Watson Lake
TYPE OF WORK: Geochemistry, mapping, geophysics

REPORT FILED UNDER: Cominco Ltd.

DATE PERFORMED: July August 1994
DATE FILED: June 23, 1995
LATITUDE: 61 51
AREA: Pelly Mountains
LONGITUDE: 131 28
VALUE: $26800

CLAIM NAME AND #: Fret 1-51, Dot 3-34, 37-68

WORK DONE BY: P. MacRobbie

WORK DONE FOR: Cominco Ltd.

<table>
<thead>
<tr>
<th>DATE TO GOOD STANDING</th>
<th>REMARKS: Spotty Cu plus Fe and Ba anomalies were identified on the Dot property. No anomalies of interest were reported from the Fret.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STATEMENT OF QUALIFICATIONS

I, Paul A. MacRobbie, of 11164 Southridge Rd., Delta, B.C. hereby declare that I:

1. Graduated from Carleton University, Ottawa, Ontario with a B.Sc. in Geology in May, 1986 and a M.Sc. in Geology in June, 1988.

2. Have been actively engaged in mineral exploration in Western Canada as a permanent geologist with Cominco Ltd. since June, 1988.

3. Am a registered member of The Association of Professional Engineers and Geoscientists of the Province of British Columbia.

Date: April 10, 1995

P.A MacROBBIE, P.Geo
GEOLOGIST
COMINCO LTD.

EXPLORATION

WESTERN DISTRICT

NTS 105 G/13, 14

1994 ASSESSMENT REPORT

FRET AND DOT PROPERTIES

SOIL GECHEMISTRY, GEOLOGICAL MAPPING, LINECUTTING AND GROUND GEOPHYSICS (HLEM, MAG AND GRAVITY)

WATSON LAKE M.D., YUKON

PELLY MOUNTAINS AREA

WORK PERIOD

JULY 18, 19, 21-27 AND AUGUST 14-15, 1994

APRIL, 1995

PAUL A. MACROBBIE
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2. LOCATION AND ACCESS</td>
<td>1</td>
</tr>
<tr>
<td>3. PROPERTY AND OWNERSHIP</td>
<td>1</td>
</tr>
<tr>
<td>4. PREVIOUS WORK</td>
<td>3</td>
</tr>
<tr>
<td>5. 1994 WORK</td>
<td>3</td>
</tr>
<tr>
<td>6. REGIONAL GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>7. FRET PROPERTY GEOLOGY AND GEOCHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>8. DOT PROPERTY GEOLOGY AND GEOCHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>9. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>5</td>
</tr>
<tr>
<td>10. REFERENCES</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 1 GENERAL LOCATION

Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STATEMENT OF QUALIFICATIONS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1994 GEOCHEMISTRY DATA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>STATEMENTS OF EXPENDITURES</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GEOPHYSICAL TARGET EVALUATION & FIGURES</td>
<td></td>
</tr>
</tbody>
</table>

Attachments

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CLAIM MAP (1:10,000)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GEOLOGY and GEOCHEMISTRY MAP (1:10,000)</td>
<td></td>
</tr>
</tbody>
</table>

This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mining Act and is allowed as representation work in the amount of $26,800.

Regional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.
1. SUMMARY

The DOT and FRET properties are located north of the Pelly River and Robert Campbell Highway on the Yukon Plateau, approximately 50 kms eastsoutheast of Ross River.

The property was staked to cover airborne geophysical targets identified during a Cominco survey conducted in early 1994.

The rocks underlying this part of southeastern Yukon have been assigned to 2 terranes: the Yukon-Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT). The YTT consists primarily of a layered sequence of metamorphosed rocks comprising a "lower unit" of pre-Devonian quartzite pelitic schist and minor marble, a late Devonian to mid-Mississippian "middle unit" comprising carbonaceous phyllite and schist with interbanded mafic and, locally significant, felsic metavolcanics, and an "upper unit" of Pennsylvanian marbles and quartzite. Volcanism within the "middle unit" was accompanied by the intrusion of 2-3, late Devonian to Mississippian, mafic to felsic metaplutonic suites. Felsic volcanics of the middle unit are host to Cominco's ABM VHMS deposit.

Both properties appear underlain by rocks correlated to mixed sediments/mafic volcanics of the "middle unit".

The FRET property partially straddles the Finlayson Lake Fault Zone, which incorporates both YTT and SMT rocks and structurally separates the YTT from autochthonous North America. The FRET property is poorly exposed. Outcrops mapped comprise mafic volcanics and gabbroic intrusives with minor intercalated chert and minor zones of serpentinitized mafic/ultramafic volcanics. The AEM/HLEM anomalies are possibly structural or related to carbonaceous sediments seen in exposures located off the property. The aeromagnetic feature is a mafic intrusive. Soil geochemistry revealed no anomalies of interest.

The DOT property is relatively well exposed comprising a sequence of fissile, silvery grey muscovite phyllites with minor intercalated, Fe-carbonate altered/veined, chloritic schists and phyllites (mafic volcanics?) and blue quartz-bearing wackes. A quartz-feldspar augened schist unit was mapped at the east end of the property and may reflect the presence of either felsic volcanics or coarse-grained arkosic sediments. An aeromagnetic anomaly coincides with a magnetic intermediate/mafic intrusive. As at the FRET, the AEM conductors are likely related to structures and/or carbonaceous sediments. Soil geochemistry reveals spotty weak to moderate Cu±Fe and Ba anomalies reflecting a mafic volcanic and sediment association respectively.

Further geological mapping, prospecting and a small ground geophysical survey (HLEM and MAG) are recommended for the DOT property.

2. LOCATION AND ACCESS

The FRET and DOT properties are located north of the Pelly River and Robert Campbell Highway on the Yukon Plateau, approximately 50 kms eastsoutheast of Ross River (Figures 1 and 2). The gravel, all-weather Robert Campbell Highway provides access to within 10 kms of the property. Direct access is by helicopter.

3. PROPERTY AND OWNERSHIP

The FRET property (51 units) and DOT property (76 units) are both due June 22, 1995 (Figure 2) and are 100% owned by Cominco Ltd.
<table>
<thead>
<tr>
<th>NAME</th>
<th>UNITS</th>
<th>CLAIM NO.</th>
<th>DUE DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRET 1-51</td>
<td>51</td>
<td>YB50023-0073</td>
<td>June 22/95</td>
</tr>
<tr>
<td>DOT 1-76</td>
<td>76</td>
<td>YB49847-9922</td>
<td>June 22/95</td>
</tr>
</tbody>
</table>

4. PREVIOUS WORK

No previous work has been recorded in the immediate DOT property area.

In the FRET property area, 2 Minfile showings are present. Minfile #111 (TOR) is an occurrence of silicified and Fe-carbonate altered, serpentinized ultramafics staked by Welcome North Mines Ltd. in 1988. Soil geochemistry gave no responses of interest. The property subsequently lapsed. This showing is plotted to the west of the FRET (Figure 3). Minfile#51 (CHOW) was originally staked by Kerr Addison in 1966 following regional geochem surveys. The property lapsed and was staked and restaked several times between 1973 and 1976. Yukon Revenue optioned the ground in 1976 and drilled several holes in 1977. The property was allowed to lapse. Mineralization consisted of pyrite-siderite-galena-sphalerite-chalcopyrite veins and breccia fillings in phyllites and pyritic schists, proximal to a small diorite intrusive.

5. 1994 WORK

FRET PROPERTY
LINECUTTING

During the period of July 21-27, 1994, a geophysical grid totalling 8.9 line kilometres was cut on the property by Coureur Des Bois Ltd. of Whitehorse, Yukon (Figure 3).

GEOPHYSICAL SURVEYS

Between August 14 and 15, 1994, a total of 7.2 lkms of HLEM, 7.2 lkms of total field MAGNETICS and 1.0 lkms of GRAVITY were surveyed on the grid by a Cominco geophysical crew.

GEOLOGICAL MAPPING

On July 19, 1994, N. J. Callan conducted geological mapping and prospecting on the property (Figure 3).

GEOCHEMISTRY

A total of 47 soil samples and 4 silts were collected on the FRET property. Data is presented in Figure 3 and Appendix 2.

DOT PROPERTY
GEOLOGICAL MAPPING

On July 18, 1994, 1:10,000 scale geological mapping and prospecting was carried out by P. A. MacRobbie, A. B. Mawer and N. J. Callan (Figure 3) on the property.

GEOCHEMISTRY

A total of 67 soils and 2 rock samples were collected on the DOT property. Data is presented in Figure 3 and Appendix 2.

The soil, silt and rock samples were analyzed for Cu, Pb, Zn, Ag, As, Cd, Co, Ni, Fe, Mo, Cr, Bi, Sb, V, Sn, W, Sr, Y, La, Mn, Mg, Ti, Al, Ca, Na and K by I.C.P., Au by Aqua Regia decomposition/AAS and Ba by XRF at Cominco Exploration Research Laboratory (CERL) in Vancouver.
6. REGIONAL GEOLOGY

The rocks underlying this part of southeastern Yukon have been assigned to 2 terranes: the Yukon-Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT) (Mortensen, 1983a; Mortensen and Jilson, 1985).

The YTT consists primarily of a layered sequence of metamorphosed rocks comprising a "lower unit" of pre-Devonian quartzite, pelitic schist and minor marble, a late Devonian to mid-Mississippian "middle unit" (3F) comprising carbonaceous phyllite and schist with interbanded mafic and, locally significant, felsic metavolcanics (3G), and an "upper unit" of Pennsylvanian marbles and quartzite. Volcanism within the "middle unit" was accompanied by the intrusion of 2-3, late Devonian to Mississippian, mafic to felsic metaplutonic suites (Simpson Range suite and augen and monzonitic orthogneisses). This sequence appears to reflect stable platformal or shelf sedimentation with an intervening period of mafic to felsic arc volcanism developed within a more reduced basinal setting.

A subhorizontal to moderately north to northeast dipping, penetrative ductile deformation fabric (S2) and associated middle greenschist facies (chlorite-biotite grade) metamorphism affects all YTT rocks. This fabric reflects the first, and most significant, deformatonal and metamorphic event (D1) perhaps related to a continent-arc collision during late Permian to early Triassic time.

The late Devonian to Triassic SMT comprises a heterogenous package of mafic to ultramafic plutonic rocks, mafic volcanics, massive carbonate and chert. This sequence was structurally emplaced as thrust bounded klippen on YTT rocks or as thrust slices imbricacked within YTT rocks during a period of crustal shortening (D2). The SMT is thought to represent a disrupted oceanic crust and volcanic arc assemblage thought to be located between the YTT and ancestral North America(?).

Late Triassic immature clastics comprising micaceous argillite, siltstone and sandstone unconformably(?). overlie the deformed and metamorphosed YTT rocks. These sediments are often closely associated with SMT volcanics and are invariably in fault contact with YTT rocks.

The SMT, Late Triassic sediments and Late Triassic to Middle Jurassic plutons are all affected by a period of Middle Jurassic to Late Cretaceous thrust faulting (D2), during which the Finlayson Lake Fault Zone was formed. This complex fault zone, which incorporates both YTT and SMT lithologies, contains both thrust and steep, transcurrent(? faults and seperates the YTT from autocthonous North America(?).

7. FRET PROPERTY GEOLOGY AND GEOCHEMISTRY

The FRET property appears underlain by rocks correlative to the mixed sediments/mafic volcanics of the "middle unit". The FRET property partially straddles the Finlayson Lake Fault Zone.

Outcrop exposure on the property is apparently poor (Figure 3), apart from the highest ground which exposes mafic volcanics and gabbroic intrusives with minor intercalated chert and minor zones or serpenitized mafic/ultramafic volcanics.

The area about the AEM conductor is overburden covered, but coincident with several boggy draws. The AEM/HLEM anomalies are possibly structural or related to carbonaceous sediments seen in exposures located off the property. Several small magnetic features are possibly mafic intrusive related.

Soil geochemistry revealed no anomalies of interest. Several anomalous Cu+Fe-Ni-V-Cr-Ag samples are present reflecting a mafic/ultramafic volcanic association. A single, strongly anomalous Ba (12682 ppm) sample likely reflects the presence of argillites. No Zn or Pb anomalies are present.

8. DOT PROPERTY GEOLOGY AND GEOCHEMISTRY

The DOT property also appears to be underlain by rocks correlative to the mixed sediments/mafic volcanics of the "middle unit".

The property is relatively well exposed comprising a sequence of fissile, silvery grey muscovite phyllites with minor intercalated, Fe-carbonate altered/veined, chloritic schists and phyllites (mafic volcanics?) and blue quartz-bearing wackes (Figure 3). These units are strongly foliated, generally non-graphitic and are locally strongly folded and crenulated adjacent to faults. An south verging, NE dipping thrust fault is exposed at one locality. A 3-4 metre wide, muscovite-mariposite-Fe carbonate-silica (listwanite?) shear zone(?) containing trace disseminated chalcopryite is locally exposed.
An aeromagnetic anomaly appears to coincide with an equigranular, medium-grained pyroxene-feldspar intrusive containing disseminated fine-grained magnetite and trace pyrrhotite.

The presence of quartz-feldspar augened schists at the east end of the property may reflect felsic volcaniclastic sediments, and is, therefore, significant.

Soil geochemistry reveals spotty weak to moderate Cu±Fe and Ba anomalies reflecting a mafic volcanic and sediment association respectively. Pb values are slightly elevated (up to 42 ppm) and a single coincident Zn(457 ppm)-Cu(124 ppm)+Pb(27 ppm) is present.

9. CONCLUSIONS and RECOMMENDATIONS

The FRET property lacks any indication of felsic volcanism. The soil anomalies appear to reflect structures or carbonaceous sediments. The HLEM and Magnetics defined anomalies; however, the EM and magnetics were not coincident and no corresponding gravity anomaly was found. No further work is recommended.

The DOT property is dominated by sediments; although, the presence of an augened schist may reflect felsic volcanics or coarse-grained arkosic sediments. Further geological mapping, prospecting and soil geochemistry are recommended for this area.

The magnetic feature on the DOT appears to have been explained. The 2 AEM conductors, although not exposed, lack a coincident magnetic expression and are felt to be likely due to structures within sheared phyllites. A small ground survey (HLEM and MAG) is still recommended.

Report by: P.A. MacRobbie, P.Geo
Geologist

Endorsed by: D. Rhodes
Senior Geologist

Approved for Release by: J.M. Hamilton
Manager, Exploration
Western Canada

DISTRIBUTION:
W.D. Files
Mining Recorder
10. REFERENCES

APPENDIX 1

STATEMENT OF QUALIFICATIONS
STATEMENT OF QUALIFICATIONS

I, Paul A. MacRobbie, of 11164 Southridge Rd., Delta, B.C. hereby declare that I:

1. Graduated from Carleton University, Ottawa, Ontario with a B.Sc. in Geology in May, 1986 and a M.Sc. in Geology in June, 1988.

2. Have been actively engaged in mineral exploration in Western Canada as a permanent geologist with Cominco Ltd. since June, 1988.

3. Am a registered member of The Association of Professional Engineers and Geoscientists of the Province of British Columbia.

Date: April 10, 1995

P.A MacROBBIE, P.Geo
GEOLOGIST
APPENDIX 2

1994 GEOCHEMISTRY DATA
Dot	S9414841	241549	5	1	2	KG	25	3	2	45	2	A2	**	14	2	18	0.2	4	118	1	2	8	0.68	1	4	2	2	6	1	1	50	2	3	129	0.22	0.01	0.53	1.31	0.03	0.01	5	10	1185
Dot	S9414842	241550	6	1	2	2G	12	1	1	30	2	B2	**	82	5	54	0.2	7	89	1	20	59	4.01	1	33	2	2	38	1	1	42	12	20	276	0.68	0.01	1.07	3.85	0.01	0.05	5	10	2008
Dot	S9414843	241551	5	1	1	2G	25	1	1	30	3	B2	**	57	13	77	0.2	20	167	1	20	52	3.66	1	27	2	2	23	2	1	24	17	23	154	0.80	0.01	1.49	0.89	0.01	0.06	5	10	2064
APPENDIX 3

STATEMENTS OF EXPENDITURES
<table>
<thead>
<tr>
<th>Service</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAFF COSTS</td>
<td>777</td>
</tr>
<tr>
<td>DOMICILE</td>
<td>327</td>
</tr>
<tr>
<td>LINECUTTING</td>
<td>7,750</td>
</tr>
<tr>
<td>HELICOPTER</td>
<td>7,704</td>
</tr>
<tr>
<td>GEOPHYSICS</td>
<td>3,814</td>
</tr>
<tr>
<td>HELICOPTER</td>
<td>2,016</td>
</tr>
<tr>
<td>GEOCHEMISTRY</td>
<td>867</td>
</tr>
<tr>
<td>HELICOPTER</td>
<td>720</td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
<td>36</td>
</tr>
<tr>
<td>TRUCK RENTAL</td>
<td>76</td>
</tr>
<tr>
<td>FREIGHT</td>
<td>236</td>
</tr>
<tr>
<td>EXPEDITING</td>
<td>48</td>
</tr>
<tr>
<td>DRAFTING</td>
<td>228</td>
</tr>
<tr>
<td>TOTAL</td>
<td>24,559</td>
</tr>
<tr>
<td>Department</td>
<td>Cost</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Staff Costs</td>
<td>1,440</td>
</tr>
<tr>
<td>Domicile</td>
<td>600</td>
</tr>
<tr>
<td>Geochemistry</td>
<td>1,181</td>
</tr>
<tr>
<td>Helicopter</td>
<td>2,376</td>
</tr>
<tr>
<td>Communications</td>
<td>48</td>
</tr>
<tr>
<td>Truck Rental</td>
<td>100</td>
</tr>
<tr>
<td>Freight</td>
<td>310</td>
</tr>
<tr>
<td>Expediting</td>
<td>63</td>
</tr>
<tr>
<td>Drafting</td>
<td>300</td>
</tr>
<tr>
<td>Total</td>
<td>6,418</td>
</tr>
</tbody>
</table>
APPENDIX 4:

GEOPHYSICAL TARGET EVALUATION & FIGURES
PELLY MTN - GEOPHYSICAL TARGET EVALUATION

TARGET NAME: HI NTS: 105G/14SW

CLAIMS: FRET

GEOLOGY:

Strattles Finlayson Fault Zone. Area has poor exposure, though the limited outcrop reveals mafic volcanics and gabbroic intrusives with minor intercalated chert and zones of serpentinized mafic/ultramafic volcanics.

GEOPHYSICS:

<table>
<thead>
<tr>
<th>SURVEY</th>
<th>KMS</th>
<th>DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLEM</td>
<td>3.6</td>
<td>Aug. 14</td>
</tr>
<tr>
<td>MAGNETICS</td>
<td>4.0</td>
<td>Aug. 14</td>
</tr>
<tr>
<td>GRAVITY</td>
<td>1.0</td>
<td>Aug. 16</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Three closely paced narrow conductors within a 250 m wide conductive zone. Moderate conductances (15-35 S) at shallow depths (7-18 m). A discrete magnetic feature occurs on the south side of the conductor has prominent 200-800 nT response in an area of flat magnetics, and appears to reflect the presence of a mafic dyke. Conductors veer away from the magnetic feature on the easternmost line, L-600E. Gravity was run along L-00 and showed the conductivity to be confined to a local gravity low.

CONCLUSIONS:

The conductors are probably due to carbonaceous sediments seen in exposures beyond the grid area, whereas the magnetic feature correlates well with a mafic intrusive.

RECOMMENDATIONS:

No further work is warranted on this target.
EQUIPMENT AND PROCEDURES

a) MAGNETICS

The magnetics survey was carried out with the EDA OMNI PLUS system. Total field measurements were recorded, utilizing the same grid lines as the UTEM survey, though a denser station spacing of 12.5 m was used. Data is recorded and stored within the magnetometer's internal memory, and dumped to a computer in the evenings. A base station magnetometer was set up in camp and set to record at 15 second intervals throughout the day.

The base station and field units were linked and dumped to the computer simultaneously at the end of the day. Computer processing of the data allows diurnal magnetic variations to be removed from the field data. Reading accuracies of ±5 nT were attained for the magnetics survey.

b) HORIZONTAL LOOP EM

The HLEM portion of the survey utilized the MaxMin I system with the MMC data logger, produced by Apex Parametrics Ltd. Grid lines were routinely surveyed with a 100 m coil spacing, though 50 m and 25 m coil spacings were also utilized on selected lines over the ABM Zone. Readings for three frequencies (440 Hz, 1760 Hz, and 3520 Hz) were taken at 25 m intervals (12.5 m for 50 m c.s., 6.25 m for 25 m c.s.). A reading accuracy of ±0.5% was attained for both the in-phase and quadrature components of the secondary electromagnetic field. The data recorded by the MMC was transferred to a portable computer at the end of each survey day, from which it was processed and plotted.

c) GRAVITY

A Lacoste & Romberg Model 'G' gravity meter was utilized in the survey, and the gravity readings are corrected for latitude and elevation (including both free-air and Bouguer corrections). The gravity data is processed for a Bouguer density of 2.67 g/cc. A Base Station was established on each grid, and by utilizing the base station readings (at least 2 per day) all gravity readings were corrected for diurnal drift and levelled to this common base.

A Nikon D-50 Total Station survey instrument was used to provide
the elevation data for the gravity corrections. A base station was established, typically near the middle of the gravity line, and the gravity stations were surveyed at 25m intervals, tying into several stations on the return trip plus the initial base station. Any minor errors were distributed throughout the stations of that loop, resulting in individual station accuracies in the order of 0.05 metres.

With reading variations due to gravity meter reading accuracy and drift, and elevation errors, the overall accuracy of the corrected gravity values is probably in the order of 0.05-0.10 mgals.

The results of the gravity survey are presented at a scale of 1:5,000 as profiles of the Bouguer gravity data, along with the topographic profiles, for a Bouguer density of 2.67 gm/cc. The Bouguer gravity data is plotted at a vertical scale of 1 cm = 0.25 mgals and the topography at an exaggerated vertical scale of 1 cm = 5 m.
DATA PRESENTATION

MAGNETICS

The total field magnetic data are presented in both profile and contour formats, on 1:2,500 plan maps. The total field profiles are plotted at a vertical scale of 1 cm = 250 nT for each grid area. The magnetics contour map of the ABM Zone is plotted with a contour interval of 50 nT.

HORIZONTAL LOOP EM

The HLEM data are presented on 1:2,500 in profile plots, one for each of the three frequencies recorded (440, 1760, and 3520 Hz). A vertical scale of 1 cm = 20% was used for the HLEM profiles.

GRAVITY

The gravity data are also plotted in profile form, along with the topographic profile, at a horizontal scale of 1:2500. The gravity reductions are calculated for a Bouguer density of 2.67 gm/cc, and profiles are presented at a vertical scale of 1 cm = 0.25 milligals, and topography at a scale of 1 cm = 20 m (5X vertical exaggeration).
PELLY MTN - GEOPHYSICAL TARGET EVALUATION

TARGET NAME: H2 NTS: 105G/14SW

CLAIMS: FRET

GEOLOGY:

Strattles Finlayson Fault Zone. Area has poor exposure, though the limited outcrop reveals mafic volcanics and gabbroic intrusives with minor intercalated chert and minor zones of serpentinized mafic/ultramafic volcanics.

GEOPHYSICS:

<table>
<thead>
<tr>
<th>SURVEY</th>
<th>KMS</th>
<th>DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLEM</td>
<td>3.2</td>
<td>Aug. 14,15</td>
</tr>
<tr>
<td>MAGNETICS</td>
<td>3.2</td>
<td>Aug. 14</td>
</tr>
<tr>
<td>GRAVITY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Strong wide conductor along southern margin of grid and a weak conductor immediately north of BL-00. Southern conductor is quite wide (>100m) although the southern margin of the conductor was not outlined. Conductances are moderate to high, ranging from 8 to 34 S, and typically at depths of <5m. A weak deeper conductor subparallels 250-300 m to the north, occurring at depths in the order of 25 m. The conductors flank a wide magnetic feature which has a magnetic relief of 100-700 nT.

CONCLUSIONS:

The southern conductor is of interest due to its high δt and significant width. However, the lack of direct magnetic signature downgrades the target somewhat. More geological support is required, though a gravity line may be warranted. This is a low priority target, since the source is probably carbonaceous sediments that are exposed in the area.

RECOMMENDATIONS:

A low priority target, though a line of gravity may be warranted.
EQUIPMENT AND PROCEDURES

a) MAGNETICS

The magnetics survey was carried out with the EDA OMNI PLUS system. Total field measurements were recorded, utilizing the same grid lines as the UTEM survey, though a denser station spacing of 12.5 m was used. Data is recorded and stored within the magnetometer's internal memory, and dumped to a computer in the evenings. A base station magnetometer was set up in camp and set to record at 15 second intervals throughout the day.

The base station and field units were linked and dumped to the computer simultaneously at the end of the day. Computer processing of the data allows diurnal magnetic variations to be removed from the field data. Reading accuracies of ±5 nT were attained for the magnetics survey.

b) HORIZONTAL LOOP EM

The HLEM portion of the survey utilized the MaxMin I system with the MMC data logger, produced by Apex Parametrics Ltd. Grid lines were routinely surveyed with a 100 m coil spacing, though 50 m and 25 m coil spacings were also utilized on selected lines over the AEM Zone. Readings for three frequencies (440 Hz, 1760 Hz, and 3520 Hz) were taken at 25 in intervals (12.5 in for 50 m c.s., 6.25 m for 25 m c.s.). A reading accuracy of ±0.5% was attained for both the in-phase and quadrature components of the secondary electromagnetic field. The data recorded by the MMC was transferred to a portable computer at the end of each survey day, from which it was processed and plotted.

c) GRAVITY

A Lacoste & Romberg Model 'G' gravity meter was utilized in the survey, and the gravity readings are corrected for latitude and elevation (including both free-air and Bouguer corrections). The gravity data is processed for a Bouguer density of 2.67 g/cc. A Base Station was established on each grid, and by utilizing the base station readings (at least 2 per day) all gravity readings were corrected for diurnal drift and levelled to this common base.

A Nikon D-50 Total Station survey instrument was used to provide...
the elevation data for the gravity corrections. A base station was established, typically near the middle of the gravity line, and the gravity stations were surveyed at 25m intervals, tying into several stations on the return trip plus the initial base station. Any minor errors were distributed throughout the stations of that loop, resulting in individual station accuracies in the order of 0.05 metres.

With reading variations due to gravity meter reading accuracy and drift, and elevation errors, the overall accuracy of the corrected gravity values is probably in the order of 0.05-0.10 mgals.

The results of the gravity survey are presented at a scale of 1:5,000 as profiles of the Bouguer gravity data, along with the topographic profiles, for a Bouguer density of 2.67 gm/cc. The Bouguer gravity data is plotted at a vertical scale of 1 cm = 0.25 mgals and the topography at an exaggerated vertical scale of 1 cm = 5 m.
DATA PRESENTATION

MAGNETICS

The total field magnetic data are presented in both profile and contour formats, on 1:2,500 plan maps. The total field profiles are plotted at a vertical scale of 1 cm = 250 nT for each grid area. The magnetics contour map of the ABM Zone is plotted with a contour interval of 50 nT.

HORIZONTAL LOOP EM

The HLEM data are presented on 1:2,500 in profile plots, one for each of the three frequencies recorded (440, 1760, and 3520 Hz). A vertical scale of 1 cm = 20% was used for the HLEM profiles.

GRAVITY

The gravity data are also plotted in profile form, along with the topographic profile, at a horizontal scale of 1:2500. The gravity reductions are calculated for a Bouguer density of 2.67 gm/cc, and profiles are presented at a vertical scale of 1 cm = 0.25 milligals, and topography at a scale of 1 cm = 20 m (5X vertical exaggeration).
Vertical Scales:

— In Phase — 1 cm = 20%
— Quadrature — 1 cm = 20%

COMINCO EXPLORATION
TAG PROPERTY
H1 GRID
HORIZONTAL LOOP EM

440 Hz
100 m cs

COMINCO GEOPHYSICS
Vertical Scales:

- In Phase: 1 cm = 20%
- Quadrature: 1 cm = 20%

COMINCO EXPLORATION
TAG PROPERTY
H1 GRID
HORIZONTAL LOOP EM

Scale 1:5000
(meters)

1760 Hz
100m cs

COMINCO GEOPHYSICS
Vertical Scales:
- In Phase - 1 cm = 20%
- Quadrature - 1 cm = 20%

Scale 1:5000
50 0 50 100 (meters)

COMINCO EXPLORATION
TAG PROPERTY
H1 GRID
HORIZONTAL LOOP EM
3520 Hz
100m cs
COMINCO GEOPHYSICS

093345
Vertical Scales:
- Gravity - 1 cm = 0.25 mgals
- Topography - 1 cm = 20 m

COMINCO EXPLORATION
TAG PROPERTY
H1 GRID
BOUGUER GRAVITY
Density = 2.67
L-00

COMINCO GEOPHYSICS
Vertically Scales:
- In Phase - 1 cm = 20%
- Quadrature - 1 cm = 20%

COMINCO EXPLORATION

TAG PROPERTY
H2 GRID
HORIZONTAL LOOP EM
440 Hz
100m cs

COMINCO GEOPHYSICS
Vertical Scales:
- In Phase - 1 cm = 20%
- Quadrature - 1 cm = 20%
Vertical Scales:
- In Phase - 1 cm = 20%
- Quadrature - 1 cm = 20%

COMINCO EXPLORATION
TAG PROPERTY
H1 GRID
HORIZONTAL LOOP EM
440 Hz
100 m cs

COMINCO GEOPHYSICS
Vertical Scale: 1 cm = 200nT

COMINCO EXPLORATION
TAG PROPERTY
H2 GRID
TOTAL FIELD MAGNETICS

COMINCO GEOPHYSICS