1994 ASSESSMENT REPORT

AMP PROPERTY

SOIL GECHEMISTRY, GEOLOGICAL MAPPING, LINECUTTING AND GROUND GEOPHYSICAL SURVEYS (HLEM, MAG AND GRAVITY)

WATSON LAKE M.D., YUKON

PELLY MOUNTAINS AREA

WORK PERIOD

JULY 19- 21, 26 AND AUGUST 13, 14, 1994

APRIL, 1995

PAUL A. MacROBBIE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>LOCATION AND ACCESS</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>PROPERTY AND OWNERSHIP</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>PREVIOUS WORK</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1994 WORK</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>REGIONAL GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>PROPERTY GEOLOGY AND GEOCHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>REFERENCES</td>
<td>5</td>
</tr>
</tbody>
</table>

FIGURE 1 GENERAL LOCATION 2

APPENDIX 1 STATEMENT OF QUALIFICATIONS

APPENDIX 2 1994 GEOCHEMISTRY DATA

APPENDIX 3 STATEMENT OF EXPENDITURES

APPENDIX 4 GEOPHYSICAL TARGET EVALUATION & FIGURES

ATTACHMENTS

FIGURE 2 CLAIM MAP (1:10,000)

FIGURE 3 GEOLOGY and GEOCHEMISTRY MAP (1:10,000)
1994 ASSESSMENT REPORT
AMP Property, Yukon Territory

1. SUMMARY

The AMP property is located south of the Robert Campbell Highway approximately 20 kms west of Finlayson Lake and 85 kms southeast of Ross River.

The property was staked to cover airborne geophysical targets identified during a Cominco survey conducted in early 1994.

The rocks underlying this part of southeastern Yukon have been assigned to 2 terranes: the Yukon-Tanana Terrane (YTT) and the Slide Mountain Terrane. The YTT consists primarily of a layered sequence of metamorphosed rocks comprising a "lower unit" of pre-Devonian quartzite, pelitic schist and minor marble, a late Devonian to mid-Mississippian "middle unit" comprising carbonaceous phyllite and schist with interbanded mafic and, locally significant, felsic metavolcanics, and an "upper unit" of Pennsylvanian marbles and quartzite. Volcanism within the "middle unit" was accompanied by the intrusion of 2-3, late Devonian to Mississippian, mafic to felsic metaplutonic suites. Felsic volcanics of the middle unit are host to Cominco's ABM VHMS deposit.

The property is underlain by mafic metavolcanics and associated sediments of the "middle unit".

No outcrop exposures were found on the property; however, an old Hudson Bay camp and a drill hole was located. Drill chips were sampled from this hole with no interesting results.

Soil geochemistry revealed numerous, scattered, generally weak Cu (51 to 107 ppm; 1 sample returned 490 ppm) anomalies, locally with a good Co-Ni-Ag+Cd metal association. One soil sample returned 309 ppm Zn with coincident 51 ppm Cu and 3.0 ppb Cd. Another single sample returned 37 ppm Pb with coincident 29 ppb Au.

Ground HLEM and Mag and subsequent Gravity surveys suggest the EM/Mag feature has no associated gravity response.

Since no outcrop is exposed on the property and soil geochemistry appears to be hampered by overburden cover, the property's potential must be based on the geophysical anomalies. No further work is recommended.

2. LOCATION AND ACCESS

The AMP property is located northeast of the Tintina Fault, between Big Campbell Creek and Mink Creek, approximately 20 kms west of Finlayson Lake and 85 kms southeast of Ross River (Figures 1 and 2). The gravel, all-weather Robert Campbell Highway provides access to within 10 kms of the property. Direct access is by helicopter. An old, overgrown 20 km winter road joins the property to the highway at the Mink Creek crossing.

3. PROPERTY AND OWNERSHIP

The AMP property, totalling 24 units due July 7, 1995 (Figure 2), is 100% owned by Cominco Ltd.

<table>
<thead>
<tr>
<th>NAME</th>
<th>UNITS</th>
<th>CLAIM NO.</th>
<th>DUE DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP 1-24</td>
<td>24</td>
<td>YB50935-0958</td>
<td>July 7/95</td>
</tr>
</tbody>
</table>
AMP
PROPERTY LOCATION

105 G/10, 11

Scale: As Shown Date: April, 1995 Plate: 1
4. PREVIOUS WORK

No previous work by Cominco has been done in the immediate property area. The property area was previously staked (Minfile #78; Hudson or Bev) in 1974 by Hudson Bay following airborne EM and Mag surveys. Hudson Bay conducted ground EM and Mag surveys and drilled 1 hole totaling 195 m in 1975 and 3 more holes totaling 314 m in 1976. The property was allowed to lapse.

5. 1994 WORK

LINECUTTING

During the period of July 19-21, 1994, a geophysical grid totalling 8.0 line kilometres was cut on the property by Coureur Des Bois Ltd. of Whitehorse, Yukon (Figure 3).

GEOPHYSICAL SURVEYS

Between August 13 and 14, 1994, a total of 6.4 lkms of HLEM, 6.4 lkms of total field MAGNETICS and 1.1 lkms of GRAVITY were surveyed on the grid by a Cominco geophysical crew.

GEOLOGICAL MAPPING

On July 26, 1994, 1:10,000 scale geological mapping and prospecting was carried out by P.W. Ransom (Fig. 3).

GEOCHEMISTRY

A total of 55 soil samples & 1 rock sample were collected. Data is presented in Fig. 3 and Appendix 2. The soil and rock samples were analyzed for Cu, Pb, Zn, Ag, As, Cd, Co, Ni, Fe, Mo, Cr, Bi, Sb, V, Sn, W, Sr, Y, La, Mn, Mg, Ti, Al, Ca, Na and K by I.C.P., Au by Aqua Regia decomposition/AAS and Ba by XRF at Cominco Exploration Research Laboratory (CERL) in Vancouver.

6. REGIONAL GEOLOGY

The rocks underlying this part of southeastern Yukon have been assigned to 2 terranes: the Yukon-Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT) (Mortensen, 1983a; Mortensen and Jilson, 1985).

The YTT consists primarily of a layered sequence of metamorphosed rocks comprising a "lower unit" of pre-Devonian quartzite, pelitic schist and minor marble, a late Devonian to mid-Mississippian "middle unit" (3F) comprising carbonaceous phyllite and schist with interbanded mafic and, locally significant, felsic metavolcanics (3G), and an "upper unit" of Pennsylvanian marbles and quartzite. Volcanism within the "middle unit" was accompanied by the intrusion of 2-3, late Devonian to Mississippian, mafic to felsic metaplutonic suites (Simpson Range suite and augen and monzonitic orthogneisses). This sequence appears to reflect stable platformal or shelf sedimentation with an intervening period of mafic to felsic arc volcanism developed within a more reduced basinal setting.

A subhorizontal to moderately north to northeast dipping, penetrative ductile deformation fabric (S2) and associated middle green schist facies (chlorite-biotite grade) metamorphism affects all YTT rocks. This fabric reflects the first, and most significant, deformational and metamorphic event (D1) perhaps related to a continent-arc collision during late Permian to early Triassic time.

The late Devonian to Triassic SMT comprises a heterogenous package of mafic to ultramafic plutonic rocks, mafic volcanics, massive carbonate and chert. This sequence was structurally emplaced as thrust bounded klippen on YTT rocks or as thrust slices imbricained within YTT rocks during a period of crustal shortening (D2). The SMT is thought to represent a disrupted oceanic crust and volcanic arc assemblage thought to be located between the YTT and ancestral North America(?)

Late Triassic immature clastics comprising micaceous argillite, siltstone and sandstone unconformably(?) overlie the deformed and metamorphosed YTT rocks. These sediments are often closely associated with SMT volcanics and are invariably in fault contact with YTT rocks.
The SMT, Late Triassic sediments and Late Triassic to Middle Jurassic plutons are all affected by a period of thrust faulting (D2) during the Jurassic.

7. PROPERTY GEOLOGY AND GEOCHEMISTRY

The property is underlain by mafic metavolcanics and associated sediments of the "middle unit".

No outcrop exposures were found on the property (Figure 3). The old Hudson Bay camp and a drill hole was located. Drill chips were sampled from this hole with no interesting results.

Soil geochemistry revealed numerous, scattered, generally weak Cu (51 to 107 ppm; 1 sample returned 490 ppm) anomalies, locally with a good Co-Ni-Ag+Cd metal association. One soil sample returned 309 ppm Zn with coincident 51 ppm Cu and 3.0 ppm Cd. Another single sample returned 37 ppm Pb with coincident 29 ppb Au.

Ground HLEM and Mag and subsequent Gravity surveys suggest the EM/Mag feature has no associated gravity anomaly and is, therefore, of little interest.

8. CONCLUSIONS and RECOMMENDATIONS

Since no outcrop is exposed on the property and soil geochemistry appears to be hampered by overburden cover, the property's potential must be based on the geophysical anomalies. The old Hudson Bay drill hole and the ground HLEM/Mag and Gravity surveys suggesting the EM/Mag feature has no associated gravity response downgrades this property.

No further work is recommended.

Report by:
P.A. MacRobbie, P.Geo
Geologist

Endorsed by:
D. Rhodes,
Senior Geologist

Approved for Release by:
J.M. Hamilton
Manager, Exploration
Western Canada

PAM/

DISTRIBUTION:
W.D. Files
Mining Recorder
9. REFERENCES

APPENDIX 1

STATEMENT OF QUALIFICATIONS
STATEMENT OF QUALIFICATIONS

I, Paul A. MacRobbie, of 11164 Southridge Rd., Delta, B.C. hereby declare that I:

1. Graduated from Carleton University, Ottawa, Ontario with a B.Sc. in Geology in May, 1986 and a M.Sc. in Geology in June, 1988.

2. Have been actively engaged in mineral exploration in Western Canada as a permanent geologist with Cominco Ltd. since June, 1988.

3. Am a registered member of The Association of Professional Engineers and Geoscientists of the Province of British Columbia.

Date: April 10, 1995 P.A MacROBBIE, P.Geo GEOLOGIST
APPENDIX 2

1994 GEOCHEMISTRY DATA
AMP PROPERTY GEOCHEM.

<table>
<thead>
<tr>
<th>LAB NO</th>
<th>FIELD NUMBER</th>
<th>Au</th>
<th>Wt Au</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ppb</td>
<td>gram</td>
<td>ppm</td>
</tr>
<tr>
<td>R9410503</td>
<td>R94450</td>
<td><10</td>
<td>5</td>
<td>2059</td>
</tr>
</tbody>
</table>

*I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow.

ANALYTICAL METHODS

- **Au**: Aqua regia decomposition / solvent extraction / AAS
- **Wt Au**: The weight of sample taken to analyse for gold (geochem)
- **Ba**: X-Ray fluorescence / loose powder

LAB NO FIELD NUMBER Cu Pb Zn Ag As Ba Cd Co Ni Fe Mo Cr Bi

<table>
<thead>
<tr>
<th>LAB NO</th>
<th>FIELD NUMBER</th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
<th>Ag ppm</th>
<th>As ppm</th>
<th>Ba ppm</th>
<th>Cd ppm</th>
<th>Co ppm</th>
<th>Ni ppm</th>
<th>Fe ppm</th>
<th>Mo ppm</th>
<th>Cr ppm</th>
<th>Bi ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>R9410503</td>
<td>R94450</td>
<td>106</td>
<td>17</td>
<td>178</td>
<td>.6</td>
<td>74</td>
<td>148</td>
<td>1</td>
<td>25</td>
<td>60</td>
<td>4.87</td>
<td>9</td>
<td>73</td>
<td><5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sb ppm</th>
<th>V ppm</th>
<th>Sn ppm</th>
<th>W ppm</th>
<th>Sr ppm</th>
<th>Y ppm</th>
<th>La ppm</th>
<th>Mn ppm</th>
<th>Mg ppm</th>
<th>Ti ppm</th>
<th>Al ppm</th>
<th>Ca ppm</th>
<th>Na ppm</th>
<th>K ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>20</td>
<td>5</td>
<td>153</td>
<td>24</td>
<td>7</td>
<td>11</td>
<td>389</td>
<td>.75</td>
<td><.01</td>
<td>1.73</td>
<td>.29</td>
<td>.01</td>
<td>.13</td>
</tr>
</tbody>
</table>

ANALYTICAL METHODS

ICP PACKAGE: 0.5 gram sample digested in hot reverse aqua regia (soil, silt) or hot Aqua Regia (rocks).
APPENDIX 3

STATEMENT OF EXPENDITURES
<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff Costs</td>
<td>717</td>
</tr>
<tr>
<td>Domicile</td>
<td>327</td>
</tr>
<tr>
<td>Linecutting</td>
<td>4,000</td>
</tr>
<tr>
<td>Helicopter</td>
<td>2,592</td>
</tr>
<tr>
<td>Geophysics</td>
<td>3,822</td>
</tr>
<tr>
<td>Helicopter</td>
<td>1,440</td>
</tr>
<tr>
<td>Geochemistry</td>
<td>956</td>
</tr>
<tr>
<td>Helicopter</td>
<td>720</td>
</tr>
<tr>
<td>Communications</td>
<td>38</td>
</tr>
<tr>
<td>Truck Rental</td>
<td>80</td>
</tr>
<tr>
<td>Freight</td>
<td>248</td>
</tr>
<tr>
<td>Expediting</td>
<td>50</td>
</tr>
<tr>
<td>Drafting</td>
<td>240</td>
</tr>
<tr>
<td>Total</td>
<td>15,230</td>
</tr>
</tbody>
</table>
APPENDIX 4:

GEOPHYSICAL TARGET EVALUATION & FIGURES
PELLY MTN - GEOPHYSICAL TARGET EVALUATION

TARGET NAME: E10 NTS: 105G/10NW

CLAIMS: AMP

GEODESY:

No outcrop exposures were found on the property. An old Hudson Bay camp and drill hole were located on the claims, and sampling of drill chips produced no interesting results. Soil geochemistry indicated the presence of several scattered weak Cu (51-107 ppm, one @ 490 ppm) values, with good Co-Ni-Ag±Cd association. Also some anomalous Zn (309 ppm) with coincident Cu (51 ppm) and Cd (3 ppm), and another with 37 ppm Pb and coincident 29 ppb Au.

GEOPHYSICS:

<table>
<thead>
<tr>
<th>SURVEY</th>
<th>KMS</th>
<th>DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLEM</td>
<td>3.2</td>
<td>Aug. 13</td>
</tr>
<tr>
<td>MAGNETICS</td>
<td>3.2</td>
<td>Aug. 13</td>
</tr>
<tr>
<td>GRAVITY</td>
<td>1.1</td>
<td>Aug. 14</td>
</tr>
</tbody>
</table>

Target E10 is a broad 300 m wide conductive zone, outlined on the central 2 lines of the grid, i.e., L-200E and L-400E, and separating into weaker narrow conductors to the east on L-600E. The conductive unit ends abruptly to the west between L-200E and L-00. The conductive zone appears to consist of 2 main conductors with conductances ranging from 9-15 S, and depths of 5-10 m. There is no direct magnetic correlation, but a narrow magnetic feature to the south, with local peaks of 100-400 nT stands out in an area of generally quiet magnetics. A gravity survey along L-400E showed that there is no positive increased density associated with the conductors.

CONCLUSIONS:

Though the target has some associated geochem values, the lack of exposure in the area, and lack of magnetics and positive gravity response associated with the conductor downgrades the target substantially. The shallow nature of the conductive responses and the lack of gravity signature indicates that the source is not massive sulphides.

RECOMMENDATIONS:

No further work is recommended on this target.
EQUIPMENT AND PROCEDURES

a) MAGNETICS

The magnetics survey was carried out with the EDA OMNI PLUS system. Total field measurements were recorded, utilizing the same grid lines as the UTEM survey, though a denser station spacing of 12.5 m was used. Data is recorded and stored within the magnetometer's internal memory, and dumped to a computer in the evenings. A base station magnetometer was set up in camp and set to record at 15 second intervals throughout the day.

The base station and field units were linked and dumped to the computer simultaneously at the end of the day. Computer processing of the data allows diurnal magnetic variations to be removed from the field data. Reading accuracies of ±5 nT were attained for the magnetics survey.

b) HORIZONTAL LOOP EM

The HLEM portion of the survey utilized the MaxMin I system with the MMC data logger, produced by Apex Parametrics Ltd. Grid lines were routinely surveyed with a 100 m coil spacing, though 50 m and 25 m coil spacings were also utilized on selected lines over the ABM Zone. Readings for three frequencies (440 Hz, 1760 Hz, and 3520 Hz) were taken at 25 m intervals (12.5 m for 50 m c.s., 6.25 m for 25 m c.s.). A reading accuracy of ±0.5% was attained for both the in-phase and quadrature components of the secondary electromagnetic field. The data recorded by the MMC was transferred to a portable computer at the end of each survey day, from which it was processed and plotted.

c) GRAVITY

A Lacoste & Romberg Model 'G' gravity meter was utilized in the survey, and the gravity readings are corrected for latitude and elevation (including both free-air and Bouguer corrections). The gravity data is processed for a Bouguer density of 2.67 g/cc. A Base Station was established on each grid, and by utilizing the base station readings (at least 2 per day) all gravity readings were corrected for diurnal drift and levelled to this common base.

A Nikon D-50 Total Station survey instrument was used to provide
the elevation data for the gravity corrections. A base station was established, typically near the middle of the gravity line, and the gravity stations were surveyed at 25m intervals, tying into several stations on the return trip plus the initial base station. Any minor errors were distributed throughout the stations of that loop, resulting in individual station accuracies in the order of 0.05 metres.

With reading variations due to gravity meter reading accuracy and drift, and elevation errors, the overall accuracy of the corrected gravity values is probably in the order of 0.05-0.10 mgals.

The results of the gravity survey are presented at a scale of 1:5,000 as profiles of the Bouguer gravity data, along with the topographic profiles, for a Bouguer density of 2.67 gm/cc. The Bouguer gravity data is plotted at a vertical scale of 1 cm = 0.25 mgals and the topography at an exaggerated vertical scale of 1 cm = 5 m.
DATA PRESENTATION

MAGNETICS

The total field magnetic data are presented in both profile and contour formats, on 1:2,500 plan maps. The total field profiles are plotted at a vertical scale of 1 cm = 250 nT for each grid area. The magnetics contour map of the ABM Zone is plotted with a contour interval of 50 nT.

HORIZONTAL LOOP EM

The HLEM data are presented on 1:2,500 in profile plots, one for each of the three frequencies recorded (440, 1760, and 3520 Hz). A vertical scale of 1 cm = 20% was used for the HLEM profiles.

GRAVITY

The gravity data are also plotted in profile form, along with the topographic profile, at a horizontal scale of 1:2500. The gravity reductions are calculated for a Bouguer density of 2.67 gm/cc, and profiles are presented at a vertical scale of 1 cm = 0.25 milligals, and topography at a scale of 1 cm = 20 m (5X vertical exaggeration).
PELLY MTN - GEOPHYSICAL TARGET EVALUATION

TARGET NAME: E10A NTS: 105G/10NW

CLAIMS: AMP

GEOLOGY:

No outcrop exposures were found on the property. An old Hudson Bay camp and drill hole were located on the claims, and sampling of drill chips produced no interesting results. Soil geochemistry indicated the presence of several scattered weak Cu (51-107 ppm, one @ 490 ppm) values, with good Co-Ni-Ag±Cd association. Also some anomalous Zn (309 ppm) with coincident Cu (51 ppm) and Cd (3 ppm), and another with 37 ppm Pb and coincident 29 ppb Au.

GEOPHYSICS:

<table>
<thead>
<tr>
<th>SURVEY</th>
<th>KMS</th>
<th>DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLEM</td>
<td>3.2</td>
<td>Aug. 13</td>
</tr>
<tr>
<td>MAGNETICS</td>
<td>3.2</td>
<td>Aug. 13</td>
</tr>
<tr>
<td>GRAVITY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Target E10A is a moderate strength HLEM conductor, mainly evident on the two western lines of the grid, i.e., L-1000E and L-1200E, with a weak trace to L-1400E. The conductor occurs at moderate depth (10-20 m) and has conductances of 12S and 21S on L-1000E and L-1200E respectively. There is very little magnetic relief on the grid, and none associated with the conductor. No gravity test was done on this target since it appears to have been previously drill tested.

CONCLUSIONS:

Although the E10 conductor has a reasonable conductance, the absence of a direct magnetic signature downgrades the target somewhat. It appears that the Hudson Bay drilling tested this conductor and so there was little incentive to carry out any additional work to further test this target.

RECOMMENDATIONS:

No further work is recommended on this target.
EQUIPMENT AND PROCEDURES

a) MAGNETICS

The magnetics survey was carried out with the EDA OMNI PLUS system. Total field measurements were recorded, utilizing the same grid lines as the UTEM survey, though a denser station spacing of 12.5 m was used. Data is recorded and stored within the magnetometer's internal memory, and dumped to a computer in the evenings. A base station magnetometer was set up in camp and set to record at 15 second intervals throughout the day.

The base station and field units were linked and dumped to the computer simultaneously at the end of the day. Computer processing of the data allows diurnal magnetic variations to be removed from the field data. Reading accuracies of ±5 nT were attained for the magnetics survey.

b) HORIZONTAL LOOP EM

The HLEM portion of the survey utilized the MaxMin I system with the MMC data logger, produced by Apex Parametrics Ltd. Grid lines were routinely surveyed with a 100 m coil spacing, though 50 m and 25 m coil spacings were also utilized on selected lines over the ABM Zone. Readings for three frequencies (440 Hz, 1760 Hz, and 3520 Hz) were taken at 25 m intervals (12.5 m for 50 m c.s., 6.25 m for 25 m c.s.). A reading accuracy of ±0.5% was attained for both the in-phase and quadrature components of the secondary electromagnetic field. The data recorded by the MMC was transferred to a portable computer at the end of each survey day, from which it was processed and plotted.

c) GRAVITY

A Lacoste & Romberg Model 'G' gravity meter was utilized in the survey, and the gravity readings are corrected for latitude and elevation (including both free-air and Bouguer corrections). The gravity data is processed for a Bouguer density of 2.67 g/cc. A Base Station was established on each grid, and by utilizing the base station readings (at least 2 per day) all gravity readings were corrected for diurnal drift and levelled to this common base.

A Nikon D-50 Total Station survey instrument was used to provide
the elevation data for the gravity corrections. A base station was established, typically near the middle of the gravity line, and the gravity stations were surveyed at 25m intervals, tying into several stations on the return trip plus the initial base station. Any minor errors were distributed throughout the stations of that loop, resulting in individual station accuracies in the order of 0.05 metres.

With reading variations due to gravity meter reading accuracy and drift, and elevation errors, the overall accuracy of the corrected gravity values is probably in the order of 0.05-0.10 mgals.

The results of the gravity survey are presented at a scale of 1:5,000 as profiles of the Bouguer gravity data, along with the topographic profiles, for a Bouguer density of 2.67 gm/cc. The Bouguer gravity data is plotted at a vertical scale of 1 cm = 0.25 mgals and the topography at an exaggerated vertical scale of 1 cm = 5 m.
DATA PRESENTATION

MAGNETICS

The total field magnetic data are presented in both profile and contour formats, on 1:2,500 plan maps. The total field profiles are plotted at a vertical scale of 1 cm = 250 nT for each grid area. The magnetics contour map of the ABM Zone is plotted with a contour interval of 50 nT.

HORIZONTAL LOOP EM

The HLEM data are presented on 1:2,500 in profile plots, one for each of the three frequencies recorded (440, 1760, and 3520 Hz). A vertical scale of 1 cm = 20% was used for the HLEM profiles.

GRAVITY

The gravity data are also plotted in profile form, along with the topographic profile, at a horizontal scale of 1:2500. The gravity reductions are calculated for a Bouguer density of 2.67 gm/cc, and profiles are presented at a vertical scale of 1 cm = 0.25 milligals, and topography at a scale of 1 cm = 20 m (5X vertical exaggeration).
COMINCO LTD.

EXPLORATION

NTS 105 G/10, 11

WESTERN DISTRICT

1994 ASSESSMENT REPORT

AMP PROPERTY

SOIL GEOFROMISTRY, GEOLOGICAL MAPPING, LINECUTTING AND GROUND GEOPHYSICAL SURVEYS (HLEM, MAG AND GRAVITY)

WATSON LAKE M.D., YUKON

PELLY MOUNTAINS AREA

LAT: 69°39' LONG: 131°100'

WORK PERIOD

JULY 19-21, 26 AND AUGUST 13, 14, 1994

APRIL, 1995

PAUL A. MacROBBIE
STATEMENT OF QUALIFICATIONS

I, Paul A. MacRobbie, of 11164 Southridge Rd., Delta, B.C. hereby declare that I:

1. Graduated from Carleton University, Ottawa, Ontario with a B.Sc. in Geology in May, 1986 and a M.Sc. in Geology in June, 1988.

2. Have been actively engaged in mineral exploration in Western Canada as a permanent geologist with Cominco Ltd. since June, 1988.

3. Am a registered member of The Association of Professional Engineers and Geoscientists of the Province of British Columbia.

Date: April 10, 1995

P.A MacROBBIE, P.Geo
GEOLOGIST
MAP NO: 1050/10,11
ASSESSMENT REPORT: X
PROSPECTUS:
CONFIDENTIAL: X
DOCUMENT NO: 093329
MINING DISTRICT: Watson Lake
TYPE OF WORK: Geology, geochem, geophysics
OPEN FILE:

REPORT FILED UNDER: Cominco Ltd

DATE PERFORMED: July, August 1994
DATE FILED: June 23, 1995
LATITUDE: 69 39
AREA: Pelly Mountains
LONGITUDE: 131 00
VALUE: $12000

CLAIM NAME AND #: Amp 1-24

WORK DONE BY: Paul MacRobbie
WORK DONE FOR: Cominco Ltd.

<table>
<thead>
<tr>
<th>DATE TO GOOD STANDING</th>
<th>REMARKS: Several weak Cu geochem anomalies were identified.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vertical Scales:

--- In Phase — 1 cm = 20%
--- Quadrature — 1 cm = 20%

COMINCO EXPLORATION

TAG PROPERTY
E10 GRID
HORIZONTAL LOOP EM

440 Hz
100 m cs

COMINCO GEOPHYSICS
Vertical Scales:
- In Phase - 1 cm = 20%
- Quadrature - 1 cm = 20%

COMINCO EXPLORATION
TAG PROPERTY
E10 GRID
HORIZONTAL LOOP EM
1760 Hz
100m cs

COMINCO GEOPHYSICS
Vertical Scales:
- In Phase - 1 cm = 20%
- Quadrature - 1 cm = 20%

COMINCO EXPLORATION
TAG PROPERTY
E10 GRID
HORIZONTAL LOOP EM
3520 Hz
100m cs
COMINCO GEOPHYSICS
Vertical Scale: 1cm = 100nT

COMINCO EXPLORATION

TAG PROPERTY
E10 GRID
TOTAL FIELD MAGNETICS

COMINCO GEOPHYSICS
Vertical Scales:
- Gravity - 1 cm = 0.25 mgals
- Topography - 1 cm = 10 m
Vertical Scales:
- In Phase - 1cm = 20%
- Quadrature - 1cm = 20%

COMINCO EXPLORATION
TAG PROPERTY
E10A GRID
HORIZONTAL LOOP EM

440 Hz
100m cs

COMINCO GEOPHYSICS
COMINCO EXPLORATION
TAG PROPERTY
E10A GRID
HORIZONTAL LOOP EM
3520 Hz
100m cs
COMINCO GEOPHYSICS
Vertical Scale: 1 cm = 25nT

COMINCO EXPLORATION
TAG PROPERTY
E10A GRID
TOTAL FIELD MAGNETICS

COMINCO GEOPHYSICS