1994 ASSESSMENT REPORT

MONY PROPERTY

LINECUTTING, GROUND GEOPHYSICAL SURVEYS (HLEM/MAG), SOIL GEOCHEMISTRY AND GEOLOGICAL MAPPING

WATSON LAKE M.D., YUKON

MONEY CREEK AREA

LAT: 61°17' LONG: 130°10'

WORK PERIOD

JULY 14-18 AND AUGUST 2-5, 11 and 13, 1994

APRIL, 1995

PAUL A. MacROBBIE
STATEMENT OF QUALIFICATIONS

I, Paul A. MacRobbie, of 11164 Southridge Rd., Delta, B.C. hereby declare that I:

1. Graduated from Carleton University, Ottawa, Ontario with a B.Sc. in Geology in May, 1986 and a M.Sc. in Geology in June, 1988.

2. Have been actively engaged in mineral exploration in Western Canada as a permanent geologist with Cominco Ltd. since June, 1988.

3. Am a registered member of The Association of Professional Engineers and Geoscientists of the Province of British Columbia.

Date: April 10, 1995

P.A MacROBBIE, P.Geo.
GEOLOGIST
COMINCO LTD.

EXPLORATION

NTS 105 G/8

WESTERN DISTRICT

1994 ASSESSMENT REPORT

MONY PROPERTY

LINECUTTING, GROUND GEOPHYSICAL SURVEYS (HLEM/MAG), SOIL GEOCHEMISTRY AND GEOLOGICAL MAPPING

WATSON LAKE M.D., YUKON

MONEY CREEK AREA

WORK PERIOD

JULY 14-18 AND AUGUST 2-5, 11 and 13, 1994

APRIL, 1995

PAUL A. MacROBBIE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>2. LOCATION AND ACCESS</td>
<td>2</td>
</tr>
<tr>
<td>3. PROPERTY AND OWNERSHIP</td>
<td>2</td>
</tr>
<tr>
<td>4. PREVIOUS WORK</td>
<td>2</td>
</tr>
<tr>
<td>5. 1994 WORK</td>
<td>2</td>
</tr>
<tr>
<td>6. REGIONAL GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>7. PROPERTY GEOLOGY</td>
<td>4</td>
</tr>
<tr>
<td>8. MINERALIZATION</td>
<td>5</td>
</tr>
<tr>
<td>9. SOIL and ROCK GEOCHEMISTRY</td>
<td>5</td>
</tr>
<tr>
<td>10. GEOPHYSICS</td>
<td>6</td>
</tr>
<tr>
<td>11. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>6</td>
</tr>
<tr>
<td>12. REFERENCES</td>
<td>8</td>
</tr>
</tbody>
</table>

FIGURE 1 GENERAL LOCATION 3

APPENDIX 1 STATEMENT OF QUALIFICATIONS

APPENDIX 2 1994 GEOCHEMISTRY DATA

APPENDIX 3 STATEMENT OF EXPENDITURES

APPENDIX 4 GEOPHYSICAL TARGET EVALUATION & FIGURES

ATTACHMENTS

FIGURE 2 CLAIM MAP (1:10,000)

FIGURE 3 GEOLOGY MAP (1:10,000)

FIGURE 4 GEOCHEMISTRY MAP (1:10,000)
1. **SUMMARY**

The MONY property, comprising 146 units, is located about 30 kms southeast of Cominco’s ABM VHMS Deposit, south of Money Creek, approximately 25 kms eastnortheast of Fire Lake and 130 kms southeast of Ross River.

The property was staked to cover airborne geophysical targets identified during a Cominco survey conducted in early 1994.

The rocks underlying this part of southeastern Yukon have been assigned to 2 terranes: the Yukon-Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT). The YTT consists primarily of a layered sequence of metamorphosed rocks comprising a "lower unit" of pre-Devonian quartzite, pelitic schist and minor marble, a late Devonian to mid-Mississippian "middle unit" comprising carbonaceous phyllite and schist with interbanded mafic and, locally significant, felsic metavolcanics, and an "upper unit" of Pennsylvanian marbles and quartzite. Volcanism within the "middle unit" was accompanied by the intrusion of 2-3, late Devonian to Mississippian, mafic to felsic metaplutonic suites. Felsic volcanics of the middle unit are host to Cominco’s ABM VHMS Deposit.

The MONY property is underlain by late Devonian to mid-Mississippian, "middle unit" felsic metavolcanics (3G) and carbonaceous phyllite and schist with interbanded mafic metavolcanics (3F) of the Yukon Tanana Terrane. The stratigraphy generally trends north to northeast with shallow to moderate east to southeast dips (10°-35°) and has been divided into 7 units.

In the geophysical grid area, the uppermost 2 units are present; comprising a medium-grained, white to grey marble underlain by a mixed metasedimentary/metavolcanic interval dominated by grey to dark grey phyllite and quartzite with minor felsic fine tufts to coarse crystal-rich tufts and several mafic sills/dykes.

The western half of the property is underlain by strata occurring structurally lower in the section than in the grid area 3 kms to the east. Four units or intervals appear to be recognizable. An uppermost, >1,000 metres thick sequence of massive to bedded/banded, light grey green to grey, locally pyritic, felsic coarse-grained quartz and quartz-feldspar crystal-rich tufts with lesser fine-grained, granular felsic tufts is underlain by a 300-400 metres thick interval of interbedded/banded, green grey to dark grey, variably siliceous, carbonaceous and pyritic, phyllic mudstone/mudstone/tuffaceous wacke with minor interbeds of pyritic felsic tufts and pistachio green, mafic-felsic(?!) tuffs, containing numerous mafic tufts/sills/dykes. A single rock sample from a mafic tuff/sill/dyke outcrop suggests a tholeiitic basaltic affinity, similar to the mafic units within the metasedimentary/mafic sill/dyke complex in the structural hangingwall of the ABM VHMS Deposit. The metasedimentary package is underlain by a 400-500 metres thick sequence of light green grey, locally pyritic and rusty weathering, massive, fine to coarse-grained felsic quartz-feldspar crystal-rich tufts and granular, fine-grained tufts with minor mafic tufts/sills and dense, siliceous, aphyric felsic flows overlying a 200-400 metres thick interval of dark grey to black, variably carbonaceous phyllic mudstone and siltstone. The lowermost unit found in the property area are fine-grained, grey to light green felsic volcaniclastics exposed on the ridge to the northwest of the property.

The entire felsic volcaniclastic sequence in the MONY property area is variably pyritic and a favourable host for VHMS deposits. The most significant mineralization consists of numerous float boulders of strongly pyritic, quartz-sericite schists (Money showings) containing disseminated to weakly banded, fine-grained sphalerite±chalcopyrite-galena. Grab samples grade up to 2.1% Zn, 0.4% Cu, 0.3% Pb and 17.5 g/t Ag. A very strong Zn-Cu-Pb (2550-690-425 ppm respectively) Cominco silt anomaly and a Zn-Ba anomalous rock sample from the drainage 1 km to the south, suggests the presence of outcropping mineralization. Soil geochemistry has identified large areas of weak to moderate Ag anomalies containing 2 areas of more restricted weak to moderate Zn, weak to strong Cu and weak to strong Pb anomalies in areas of felsic volcaniclastics, in the upper reaches of the Money showing drainage and in the anomalous drainage to the south.
In the geophysical grid area, soil sampling identified a moderate to strong Cu, Zn and Ag anomaly with a strong Ni-Co-Mo-Cd metal signature. This soil signature, the presence of mafic sills/dykes and the ground geophysical survey results suggests the AEM/Mag anomaly maybe explained by the presence of mafic sills/dykes cutting locally carbonaceous sediments.

Further detailed geological mapping, prospecting and soil and rock geochemistry are required for the western part of the property. Weak AEM/Mag features should be checked on the ground. Any favourable anomalies should be evaluated by a ground UTEM/HLEM/Mag and Gravity survey. The existing grid area should be prospected and mapped to determine whether the soil anomaly is related to the mafic units as suspected.

2. LOCATION AND ACCESS

The MONY property is located about 30 kms southeast of Cominco’s ABM VHMS Deposit, south of Money Creek, approximately 25 kms eastnortheast of Fire Lake and 130 kms southeast of Ross River (Figures 1). The gravel, all-weather Robert Campbell Highway provides access to within 30 kms of the property. Direct access is by helicopter.

3. PROPERTY AND OWNERSHIP

The MONY property, totalling 146 units (Figure 2), is 100% owned by Cominco Ltd. The MONY claim block, with subsequent Cominco staking, is now contiguous with the larger EXPO, MONY and GO claim blocks.

<table>
<thead>
<tr>
<th>NAME</th>
<th>UNITS</th>
<th>CLAIM NO.</th>
<th>DUE DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONY</td>
<td>1-146</td>
<td>YB50290-435</td>
<td>July 7/95</td>
</tr>
</tbody>
</table>

4. PREVIOUS WORK

Prior Cominco work carried out in the immediate area of the property consists of regional silt and minor soil geochemistry sampling in 1977.

The current property overstaked the Money showing (Minfile #81). This occurrence was initially staked by Cyprus Anvil Mining Corp. in 1975 and explored by grid soil sampling and a Mag survey. The showings comprise minor galena as discontinuous lenses within felsic volcanic schists. A Zn-Mo±Pb-Cu soil anomaly was attributed to elevated backgrounds within black shale interbeds. The claims subsequently lapsed.

5. 1994 WORK

LINECUTTING

During the period of July 14-18, 1994, a geophysical grid totalling 8.2 line kilometres was cut on the MONY property by Coureur Des Bois Ltd. of Whitehorse, Yukon (Figure 3).

GEOPHYSICAL SURVEYS

Between August 4 and 5, 1994, a total of 7.2 lkms of HLEM, 7.2 lkms of total field MAGNETICS and 1.4 lkms of GRAVITY were surveyed on the MONY grid by a Cominco geophysical crew.

GEOLOGICAL MAPPING

On August 2, 3 and 11, 1994, 1:10,000 scale geological mapping and prospecting was carried out by A.B. Mawer, P.A. MacRobbie and P.W. Ransom (Figure 3).

SOIL GEOCHEMISTRY

A total of 489 soil samples and 11 rock samples were collected on August 11 and 13, 1994. Data is presented in Figure 4 and Appendix 2.
The soil and rock samples were analyzed for Cu, Pb, Zn, Ag, As, Cd, Co, Ni, Fe, Mo, Cr, Bi, Sb, V, Sn, W, Sr, Y, La, Mn, Mg, Ti, Al, Ca, Na and K by I.C.P., Au by Aqua Regia decomposition/AAS and Ba by XRF at Cominco Exploration Research Laboratory (CERL) in Vancouver.

6. REGIONAL GEOLOGY

The rocks underlying this part of southeastern Yukon have been assigned to 2 terranes: the Yukon-Tanana Terrane (YTT) and the Slide Mountain Terrane (SMT) (Mortensen, 1983a; Mortensen and Jilson, 1985).

The YTT consists primarily of a layered sequence of metamorphosed rocks comprising a "lower unit" of pre-Devonian quartzite, pelitic schist and minor marble, a late Devonian to mid-Mississippian "middle unit" (3F) comprising carbonate phyllite and schist with interbanded mafic and, locally significant, felsic metavolcanics (3G), and an "upper unit" of Pennsylvanian marbles and quartzite. Volcanism within the "middle unit" was accompanied by the intrusion of 2-3 late Devonian to Mississippian, mafic to felsic metaplutonic suites (Simpson Range suite and augen and monzonitic orthogneisses). This sequence appears to reflect stable platformal or shelf sedimentation with an intervening period of mafic to felsic arc volcanism developed within a more reduced basinal setting.

The late Devonian to Triassic SMT comprises a heterogenous package of mafic to ultramafic plutonic rocks, mafic volcanics, massive carbonate and chert. This sequence was structurally emplaced as thrust bounded klippen on YTT rocks or as thrust slices imbricated within YTT rocks during a period of crustal shortening (D2). The SMT is thought to represent a disrupted oceanic crust and volcanic arc assemblage thought to be located between the YTT and ancestral North America(?).

A subhorizontal to moderately north to northeast dipping, penetrative ductile deformation fabric (S2) and associated middle greenschist facies (chlorite-biotite grade) metamorphism affects all YTT rocks. This fabric reflects the first, and most significant, deformational and metamorphic event (D1) perhaps related to a continent-arc collision during late Permian to early Triassic time.

Late Triassic immature clastics comprising micaceous argillite, siltstone and sandstone unconformably(?!) overlie the deformed and metamorphosed YTT rocks. These sediments are often closely associated with SMT volcanics and are invariably in fault contact with YTT rocks.

The SMT, Late Triassic sediments and Late Triassic to Middle Jurassic plutons are all affected by a period of Middle Jurassic to Late Cretaceous thrust faulting (D2), during which the Finlayson Lake Fault Zone was formed. This complex fault zone contains both thrust and steep, transcurrent(?) faults and separates the YTT from autochthonous North America (Mortensen, 1983a; Mortensen and Jilson, 1985). Thrust faulting continued after the formation of the Finlayson Lake Fault Zone as indicated by the presence of over thrust sheets of SMT rocks (Campbell Range Belt) above the fault zone (Plint, 1994).

7. PROPERTY GEOLOGY

The MONY property is underlain by late Devonian to mid-Mississippian, "middle unit" felsic metavolcanics (3G) and carbonaceous phyllite and schist with interbanded mafic metavolcanic (3F).

The property is relatively well exposed along creeks and ridges above treeline. The stratigraphy generally trends north to northeast with shallow to moderate east to southeast dips (10-35°) and has been divided into 7 units (Figure 3).

The structurally uppermost unit (Unit 7) is exposed along a creek cut, north of the geophysical grid. This unit comprises a medium-grained, thin to thick bedded, white to grey recrystallized marble with minor siltstone and dolomitic interbands/beds. This carbonate may represent the Pennsylvanian "upper unit" of Mortensen (1983a).

Immediately below the carbonate is a mixed metasedimentary/metavolcanic interval (Unit 6) dominated by grey to dark grey siliceous phyllite and quartzite with lesser dark grey to black, variably carbonaceous mudstone and siltstone. The quartzites often contain abundant white quartz veins. The uppermost 100-200 ± metres contains calcareous, weakly skarned wackes, rusty weathering, felsic quartz-feldspar-sericite±chlorite schists (tuff to coarse-grained crystal-rich tuffs) and minor (2-3) dark green to grey, feldspar porphyroblastic and magnetite-bearing mafic sills/dykes(?). Unit 6 appears to overlie AEM/Mag feature in the grid area.
The western half of the property is underlain by strata occurring structurally lower in the section, assuming no thrust repeats, than Units 6 and 7 which are found approximately 3 kms to the east. In this area 4 units or intervals appear to be recognizable.

Unit 5, the structurally uppermost unit in this area, consists of a >1,000(?) metres thick sequence of massive to medium bedded/banded, light grey green to grey, locally pyritic, quartz-sericite±feldspar-chlorite schists (felsic coarse-grained quartz and quartz-feldspar crystal-rich tufts predominate; lesser fine-grained, granular tufts) and phyllitic schists with minor thin interbedded grey argillaceous, phyllitic siltstone/sandstone and minor black mudstone.

Below this thick felsic volcaniclastic sequence is 300-400(?) metres thick interval (Unit 4) of thinly interbedded/banded, green grey to dark grey, variably siliceous, carbonaceous and pyritic, phyllitic siltstone, mudstone, tuffaceous wacke and lesser thin interbeds of yellowish weathering, pyritic felsic tufts. In the showing area, thin pistachio green, sericite-chlorite+Fe-carbonate phyllites (mafic-felsic? tufts) are present. This metasedimentary dominated sequence contains numerous, thin to thick (10-40 metres), dark green fine-grained chlorite-calcite+feldspar schists representing mafic tufts or sills/ dykes.

Unit 4 in underlain by another felsic volcaniclastic package (Unit 3) up to 400-500+ metres thick comprising light grey green, locally pyritic and rusty weathering, massive quartz-feldspar-sericite±chlorite schists (felsic, fine to coarse-grained quartz-feldspar crystal-rich tufts) to thin banded/ bedded, aphyric to fine granular, quartz-sericite+feldspar phyllitic schists (felsic fine tufts) with minor chlorite-calcite mafic intervals and dense, siliceous, aphyric felsic flows. Thin interbeds of variably carbonaceous and siliceous phyllitic mudstone and siltstone are locally present.

Another metasedimentary interval (Unit 2), up to 200-400+ metres thick, comprises dark grey to black, variably carbonaceous phyllitic mudstone and siltstone with minor thin felsic tuff interbeds and rare mafic tuffs/sills/dykes underlies Unit 3 felsic volcaniclastics.

The ridge northwest of the property exposes fine-grained, grey to light green felsic volcaniclastics. This interval has been termed Unit 1, although this package may, in fact, belong to Unit 3.

There are indications of steeply orientated, northeast and northwest trending faults (thrusts?) which have localized a series of strongly listwanite altered (silica-Fe-carbonate-marioposite), ultramafic units (Figure 3).

8. MINERALIZATION

The entire felsic volcaniclastic sequence in the MONY property area is variably pyritic and a favourable host for VHMS deposits.

Unit 5 felsics are locally rusty weathering and pyritic in the small tributary creek in the northeast corner of the property. Trace sphalerite was noted at one location.

Unit 4 mudstones exposed in the main creek at the north end of the property are strongly pyritic and return elevated Pb (214-482 ppm) and Zn (1300-1360 ppm) values.

In this same creek, numerous float boulders of strongly pyritic, quartz-sericite schists (likely Unit 3) contain disseminated to weakly banded, fine-grained sphalerite±chalcopyrite-galena extend well up into a small cirque (Figure 3). Grab samples grade up to 2.1% Zn, 0.4% Cu, 0.3% Pb and 17.5 g/t Ag. A very strong Zn-Cu-Pb (2560-690-425 ppm respectively) Cominco silt anomaly in the next drainage, 1 km to the south, suggests the presence of outcropping mineralization. A rock sample taken from a gossanous area in this creek returned 0.3% Zn and 7756 ppm Ba.

9. SOIL and ROCK GEOCHEMISTRY

In the geophysical grid area, soil samples were collected every 50 metres along most of the cut lines (Figure 4). A moderate to strong Cu (>65, up to 250 ppm), Zn (>230, up to 1,482 ppm) and Ag (>0.7, up to 3.0 ppm) anomaly with a strong Ni-Co-Mo-Cd metal signature is present. This metal signature and the presence of magnetic mafic sills/dykes in the area suggests the anomaly is associated with the mafic sills/dykes.

Creek parallel soil traverses and contour soil lines, with 50 metres sample spacing, over the western part of the property identified large areas of weak to moderate Ag (>0.7, up to 10.8 ppm; generally ≤1.4 ppm)
anomalies containing 2 areas of more restricted weak to moderate Zn (>230, up to 511 ppm), weak to strong Cu (>65, up to 275 ppm) and weak to strong Pb (>45, up to 135 ppm) anomalies in areas of felsic volcanioclastics, in the upper reaches of the Money showing drainage and in the anomalous drainage to the south. The peak Pb (290 ppm) value, with associated anomalous Cu-Ag values, found further to the east in the Money showing drainage may reflect mineralization within Unit 5 felsic metavolcaniclastics or the underlying pyritic, metasedimentary Unit 4.

Two lithogeochemistry samples from Unit 3 were collected on the property. Two other samples were collected from Unit 1 (Unit 3?), on the ridge off the property to the northwest. The results suggest the 4 felsic rocks are related and include a calc-alkaline (high Zr) rhyodacite and 3 calc-alkaline (low Zr) rhyolites showing Zr depletion effects. The high Zr and depleted, low Zr rhyodacite and rhyolites are similar chemically to the felsic sequence which hosts the ABM VHMS Deposit.

A single rock sample from a mafic tuff/sill/dyke interval in Unit 4, to the north of the property, suggests a tholeiitic basaltic affinity, similar to the mafic units within the metasedimentary/mafic sill/dyke complex in the structural hangingwall of the ABM VHMS Deposit.

10. GEOPHYSICS

The 1994 ground geophysical surveys identified 2 wide EM trends, oriented in a EW direction, on either side of a very strong, "linear" magnetic anomaly (with no coincident conductivity) trending across the grid in the area of the baseline. No gravity response was obtained over these EM and Mag features.

11. CONCLUSIONS and RECOMMENDATIONS

The MONY property is underlain by late Devonian to mid-Mississippian, "middle unit" felsic metavolcanics (3G) and carbonaceous phyllite and schist with interbanded mafic metavolcanics (3F) of the Yukon Tanana Terrane. The stratigraphy generally trends north to northeast with shallow to moderate east to southeast dips (10-35°) and has been divided into 7 units.

In the geophysical grid area, the uppermost 2 units are present; comprising a medium-grained, white to grey marble underlain by a mixed metasedimentary/metavolcanic interval dominated by grey to dark grey phyllite and quartzite with minor felsic fine tufts to coarse crystal-rich tufts and several mafic sills/dykes.

The western half of the property is underlain by strata occurring structurally lower in the section than in the grid area 3 kms to the east. Four units or intervals appear to be recognizable. An uppermost, >1,000(?) metres thick sequence of massive to bedded/banded, light grey green to grey, locally pyritic, felsic coarse-grained quartz and quartz-feldspar crystal-rich tufts with lesser fine-grained, granular felsic tufts is underlain by a 300-400(?) metres thick interval of interbedded/banded, green grey to dark grey, variably siliceous, carbonaceous and pyritic, phyllitic siltstone/mudstone/tuffaceous wacke with minor interbeds of pyritic felsic tufts and pistacho green, mafic-felsic(?!) tuffs, containing numerous mafic tufts/sills/dykes. A single rock sample from a mafic tuff/sill/dyke outcrop suggests a tholeiitic basaltic affinity, similar to the mafic units within the metasedimentary/mafic sill/dyke complex in the structural hangingwall of the ABM VHMS Deposit. The metasedimentary package is underlain by a 400-500± metres thick sequence of light green grey, locally pyritic and rusty weathering, massive, fine to coarse-grained felsic quartz-feldspar crystal-rich tufts and granular, fine-grained tufts with minor mafic tufts/sills and dense, siliceous, aphyric felsic flows overlying a 200-400± metres thick interval of dark grey to black, variably carbonaceous phyllitic mudstone and siltstone. The lowermost unit found in the property area are fine-grained, grey to light green felsic volcanioclastics exposed on the ridge to the northwest of the property.

The entire felsic volcaniclastic sequence in the MONY property area is variably pyritic and a favourable host for VHMS deposits. The most significant mineralization consists of numerous float boulders of strongly pyritic, quartz-sericite schists (Money showings) containing disseminated to weakly banded, fine-grained sphalerite±chalcopyrite-galena. Grab samples grade up to 2.1% Zn, 0.4% Cu, 0.3% Pb and 17.5 g/t Ag. A very strong Zn-Cu-Pb (2550-690-425 ppm respectively) Cominco silt anomaly and a Zn-Ba anomalous gossan sample from the next drainage 1 km to the south, suggests the presence of outcropping mineralization. Soil geochemistry has identified large areas of weak to moderate Ag anomalies containing 2 areas of more restricted weak to moderate Zn, weak to strong Cu and weak to strong Pb anomalies in areas of felsic volcanioclastics, in the upper reaches of the Money showing drainage and in the anomalous drainage to the south.
In the geophysical grid area, soil sampling identified a moderate to strong Cu, Zn and Ag anomaly with a strong Ni-Co-Mo-Cd metal signature. This soil signature, the presence of mafic sills/dykes and the ground geophysical survey results suggests the AEM/Mag anomaly maybe explained by the presence of mafic sills/dykes cutting locally carbonaceous sediments.

Further detailed geological mapping, prospecting and soil and rock geochemistry are required for the western part of the property. Weak AEM/Mag features should be checked on the ground. Any favourable anomalies should evaluated by a ground UTEM/HLEM/Mag and Gravity survey. The existing grid area should be prospected and mapped to determine whether the soil anomaly is related to the mafic units as suspected.

Report by:

P.A. MacRobbie, P.Geo
Geologist

Endorsed by:

D. Rhodes,
Senior Geologist

Approved for Release by:

J.M. Hamilton
Manager, Exploration
Western Canada

PAM/

DISTRIBUTION:
W.D. Files
Mining Recorder
12. REFERENCES

APPENDIX 1

STATEMENT OF QUALIFICATIONS
STATEMENT OF QUALIFICATIONS

I, Paul A. MacRobbie, of 11164 Southridge Rd., Delta, B.C. hereby declare that I:

1. Graduated from Carleton University, Ottawa, Ontario with a B.Sc. in Geology in May, 1986 and a M.Sc. in Geology in June, 1988.

2. Have been actively engaged in mineral exploration in Western Canada as a permanent geologist with Cominco Ltd. since June, 1988.

3. Am a registered member of The Association of Professional Engineers and Geoscientists of the Province of British Columbia.

Date: April 10, 1995

P.A MacROBBIE, P.Geo
GEOLOGIST
APPENDIX 2

1994 GEOCHEMISTRY DATA
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

Table Data

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
</tr>
<tr>
<td>Value 7</td>
<td>Value 8</td>
<td>Value 9</td>
</tr>
<tr>
<td>Value 10</td>
<td>Value 11</td>
<td>Value 12</td>
</tr>
</tbody>
</table>

Diagram Data

- Diagram 1: [Diagram Image]
- Diagram 2: [Diagram Image]
- Diagram 3: [Diagram Image]
APPENDIX 3

STATEMENT OF EXPENDITURES
<table>
<thead>
<tr>
<th>MONY PROPERTY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STAFF COSTS</td>
<td>3,413</td>
</tr>
<tr>
<td>DOMICILE</td>
<td>1,580</td>
</tr>
<tr>
<td>LINECUTTING</td>
<td>4,500</td>
</tr>
<tr>
<td>HELICOPTER</td>
<td>3,456</td>
</tr>
<tr>
<td>GEOPHYSICS</td>
<td>3,377</td>
</tr>
<tr>
<td>HELICOPTER</td>
<td>1,728</td>
</tr>
<tr>
<td>GEOCHEMISTRY</td>
<td>8,442</td>
</tr>
<tr>
<td>HELICOPTER</td>
<td>11,088</td>
</tr>
<tr>
<td>COMMUNICATIONS</td>
<td>346</td>
</tr>
<tr>
<td>TRUCK RENTAL</td>
<td>728</td>
</tr>
<tr>
<td>FREIGHT</td>
<td>2,257</td>
</tr>
<tr>
<td>EXPEDITING</td>
<td>455</td>
</tr>
<tr>
<td>DRAFTING/REPRODUCTIONS</td>
<td>2,184</td>
</tr>
<tr>
<td>TOTAL</td>
<td>43,554</td>
</tr>
</tbody>
</table>
APPENDIX 4

GEOPHYSICAL TARGET EVALUATION & FIGURES
PELLY MOUNTAIN - GEOPHYSICAL TARGET EVALUATION

TARGET NAME: L6 NTS: 105G/8SE

CLAIMS: MONTY

GEOLGY:

The property has a reasonable amount of outcrop. Exposed along a creek, north of the target area, is a medium-grained bedded crystalline marble with minor siltstone and dolomitic interbeds/beds. Immediately below the carbonate is a mixed metasedimentary/metagranitic unit, dominated by siliceous phyllite and quartzite, with carbonaceous mudstone and siltstone, and minor felsic tuffs and several mafic sills/dykes.

GEOPHYSICS:

<table>
<thead>
<tr>
<th>SURVEY</th>
<th>KMS</th>
<th>DATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLEM</td>
<td>7.2</td>
<td>Aug. 4</td>
</tr>
<tr>
<td>MAGNETICS</td>
<td>7.2</td>
<td>Aug. 4</td>
</tr>
<tr>
<td>GRAVITY</td>
<td>1.4</td>
<td>Aug. 5</td>
</tr>
</tbody>
</table>

Two conductive trends, both traceable across the grid, are apparent in the ground geophysics. These conductors have high conductances, ranging from 40 S to 65 S, and both appear to have a lower conductivity feature flanking. Depths are typically less than 10 m. These conductors, though they have no direct magnetic signature, flank a broad magnetic feature to the north and south, which has amplitudes of 200 nT to 400 nT, and has a width of over 200 m. A gravity test along L-600E shows very little density contrast along the line, and no significant positive density related to the conductors.

CONCLUSIONS:

The conductors which comprise target L6 are probably due to carbonaceous sediments, and the magnetic feature is either a mafic sill/dyke, or a carbonate with a magnetite component. The geophysical responses are not indicative of a significant sulphide source.

RECOMMENDATIONS:

No further work is warranted on this particular target, though the area is geologically quite interesting, and other AEM targets should be examined.
DATA PRESENTATION

MAGNETICS

The total field magnetic data are presented in both profile and contour formats, on 1:2,500 plan maps. The total field profiles are plotted at a vertical scale of 1 cm = 250 nT for each grid area. The magnetics contour map of the ABM Zone is plotted with a contour interval of 50 nT.

HORIZONTAL LOOP EM

The HLEM data are presented on 1:2,500 in profile plots, one for each of the three frequencies recorded (440, 1760, and 3520 Hz). A vertical scale of 1 cm = 20% was used for the HLEM profiles.

GRAVITY

The gravity data are also plotted in profile form, along with the topographic profile, at a horizontal scale of 1:2500. The gravity reductions are calculated for a Bouguer density of 2.67 gm/cc, and profiles are presented at a vertical scale of 1 cm = 0.25 milligals, and topography at a scale of 1 cm = 20 m (5X vertical exaggeration).
EQUIPMENT AND PROCEDURES

a) MAGNETICS

The magnetics survey was carried out with the EDA OMNI PLUS system. Total field measurements were recorded, utilizing the same grid lines as the UTEM survey, though a denser station spacing of 12.5 m was used. Data is recorded and stored within the magnetometer's internal memory, and dumped to a computer in the evenings. A base station magnetometer was set up in camp and set to record at 15 second intervals throughout the day.

The base station and field units were linked and dumped to the computer simultaneously at the end of the day. Computer processing of the data allows diurnal magnetic variations to be removed from the field data. Reading accuracies of ±5 nT were attained for the magnetics survey.

b) HORIZONTAL LOOP EM

The HLEM portion of the survey utilized the MaxMin I system with the MMC data logger, produced by Apex Parametrics Ltd. Grid lines were routinely surveyed with a 100 m coil spacing, though 50 m and 25 m coil spacings were also utilized on selected lines over the ABM Zone. Readings for three frequencies (440 Hz, 1760 Hz, and 3520 Hz) were taken at 25 m intervals (12.5 m for 50 m c.s., 6.25 m for 25 m c.s.). A reading accuracy of ±0.5% was attained for both the in-phase and quadrature components of the secondary electromagnetic field. The data recorded by the MMC was transferred to a portable computer at the end of each survey day, from which it was processed and plotted.

c) GRAVITY

A Lacoste & Romberg Model 'G' gravity meter was utilized in the survey, and the gravity readings are corrected for latitude and elevation (including both free-air and Bouguer corrections). The gravity data is processed for a Bouguer density of 2.67 g/cc. A Base Station was established on each grid, and by utilizing the base station readings (at least 2 per day) all gravity readings were corrected for diurnal drift and levelled to this common base.

A Nikon D-50 Total Station survey instrument was used to provide
the elevation data for the gravity corrections. A base station was established, typically near the middle of the gravity line, and the gravity stations were surveyed at 25m intervals, tying into several stations on the return trip plus the initial base station. Any minor errors were distributed throughout the stations of that loop, resulting in individual station accuracies in the order of 0.05 metres.

With reading variations due to gravity meter reading accuracy and drift, and elevation errors, the overall accuracy of the corrected gravity values is probably in the order of 0.05-0.10 mgals.

The results of the gravity survey are presented at a scale of 1:5,000 as profiles of the Bouguer gravity data, along with the topographic profiles, for a Bouguer density of 2.67 gm/cc. The Bouguer gravity data is plotted at a vertical scale of 1 cm = 0.25 mgals and the topography at an exaggerated vertical scale of 1 cm = 5 m.
MAP NO: 105G 8
ASSESSMENT REPORT: X
DOCUMENT NO: 093324
PROSPECTUS:
MINING DISTRICT: Watson Lake
CONFIDENTIAL: X
TYPE OF WORK: Linecutting, geophysics, geochemistry, geology

OPEN FILE:

REPORT FILED UNDER: Cominco Ltd.

DATE PERFORMED: July 14-18, August 2-5, 11, 13, 1994
DATE FILED: June 23, 1995

LATITUDE: 61° 17'
AREA: Mony Creek
LONGITUDE: 130° 10'
VALUE: $43,300

CLAIM NAME AND #: Mony 1-146

WORK DONE BY: Paul MacRobbie

WORK DONE FOR: Cominco Ltd.

DATE TO GOOD STANDING

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS: The property is underlain by felsic metavolcanics. The Mony showing consists of numerous float boulders of strongly pyritic, quartz-sericite schists containing disseminated to weakly banded, fine-grained sphalerite +/- chalcocyprite-galena. Grab samples grad up to 2.1% Zn, 0.4% Cu, 0.3% Pb and 17.5 g/T Ag.
Vertical Scales:
— Gravity — 1 cm = 0.25 mgals
— Topography — 1 cm = 10 m
COMINCO EXPLORATION

PELLY MNT PROPERTY
L6 GRID
TOTAL FIELD MAGNETICS

Contour Interval: 25 nT

Scale 1:5000

COMINCO GEOPHYSICS
In Phase — Quadrature
$1 \text{cm} = 20\%$

Scale 1:5000

COMINCO EXPLORATION
PELLY MTN PROPERTY
L6 GRID
HORIZONTAL LOOP EM
1760 Hz
100 m cs

COMINCO GEOPHYSICS