Assessment Report
on Bee & Cee Mineral Claims
NTS 105-D-14 - 60047'N / 135012'W
Silver Sabre Resources Ltd.
Rotary Drilling Report
Nov. 24-25, 1994
Prepared by: Bruce Patnode
Whitehorse, Yukon
Jan. 15, 1995
Table of Contents

Introduction----------------------------Page 3
Access--------------------------------Page 3
General Geology-----------------------Page 3
History--------------------------------Page 3-5
Assessment work - Drill Program-------Page 6
Drill Logs------------------------------Page 7
Summary-------------------------------Page 7
Conclusion-----------------------------Page 7 & 8
Recommendation------------------------Page 8
Statement of Expenditures-------------Page 8

Appendix

Assay results
Introduction:

Silver Sabre Resources owns 46 contiguous claims at the north end of the Whitehorse Copper Belt. The "Copper Belt" has produced 10 million tons of copper, along with significant amounts of gold and silver, since 1898. The average grade was 1 1/2 % copper. The mineralization generally occurs in magnetite skarns.

Access: Excellent all weather road to central part of the claim block.

General Geology:
The BEE and CEE claims are underlain by Triassic sediments of the Lewes River Group and possibly younger Jurassic sediments of the Leberge group. These sediments have been invaded by Cretaceous granites and possibly younger dikes and stocks (ryolite/quartz feldspar porphyry (Eocene?)), and Miocene basalt ?. Quartz and quartz/ carbonate gash veins, stockworks, and sheeted veins that carry Pb., Zn., Au., Ag., occur throughout the property. Values range up to 20% combined Pb./Zn., 5000 ppb. Au. and 10 Oz. Ag.

Eastern Part of Claim Group:
Previously unmapped basalt occurs in the eastern part of the claim group, its significance is undetermined. One sample from a trench in the eastern area ran 23,000 ppm Cu. and 600 ppb. Au. No recent work has been conducted in this portion of the claim block since Whitehorse Copper Mines looked for copper skarns during 1980. The highest grab sample of gold (5480 ppb.) comes from slightly south east of the grid.

Central Area:
The central portion of the claim group is characterized by altered Triassic sediments that have been silicified, hornfelsed, epidotized, and mineralized. Propylitic alteration occurs characteristically as chloritization, pyritization, carbonatization and seritization. However, strong silification seems to have overprinted the seritization in many areas. Lapilli tuff and tuff breccias are seen in the central parts of the claim block. Quartz feldspar porphyry is also common as are rhyodacites.

The mineralized zones are most likely of epigenetic origin. Secondary silica along with secondary minerals such as galena, sphalerite, pyrrhotite, arsenopyrite and chalcopyrite have been observed. Pyrrhotite seems to be pervasively distributed throughout the rocks.

Southern Area:
What appears to be the top of a breccia pipe was discovered and a 2 foot continuous chip sample was taken and the results were as follows:

<table>
<thead>
<tr>
<th>Au. ppm</th>
<th>Ag ppm</th>
<th>Cu. ppm</th>
<th>Pb ppm</th>
<th>Zn. ppm</th>
<th>As. ppm</th>
<th>Sb. ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2143</td>
<td>2.5</td>
<td>82</td>
<td>5090</td>
<td>5169</td>
<td>54</td>
<td>15</td>
</tr>
</tbody>
</table>
Rock Assays # 2

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>Ag</td>
<td>Cu</td>
<td>Pb</td>
<td>Zn</td>
<td>Cd</td>
</tr>
<tr>
<td>158</td>
<td>10.9</td>
<td>227</td>
<td>17</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0.6</td>
<td>101</td>
<td>10</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>2.4</td>
<td>2208</td>
<td>13</td>
<td>71</td>
<td>0</td>
</tr>
</tbody>
</table>

Rock assays # 3

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>Ag</td>
<td>Cu</td>
<td>Pb</td>
<td>Zn</td>
<td>Cd</td>
</tr>
<tr>
<td>7</td>
<td>0.4</td>
<td>186</td>
<td>6</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

The breccia exposure is 3 feet to ground level and is observed laterally about 12 feet. The clasts are rounded and rotated, their size ranges from approx. 3 to 12 inches. Pyrrhotite is abundant and to a lesser extent so is magnetite.

A D-7 Catapillar with ripper owned by Kluane Drilling was brought on site to further expose the breccia zone, unfortunately after repeated attempts to reach the outcrop, the cat was only able to make it to about 100 feet of the showing, due to the presence of perma-frost, and the steepness of the grade.

Panned Silt Samples:

Two panned silt samples were taken in the vicinity of a wide east west trending shear zone. One ran 16,000 ppb. Au. and the other 13,000 ppb. Au. and 280 ppm. Pb. The significance of the shear in terms of gold emplacement is unknown because anomalous gold values are found within the shear zone as well as outside of it. Arsenic values up to 2000 ppm. were observed in chip samples within the shear zone, and 2 meter chip sample ran 0.1 oz. Au., but could not be duplicated. Other samples of similar grade have been hard to consistently duplicate, and therefore the possibility of the "nugget effect" occurring in the assays is very high. This particular shear could be the crest of an anticline.

A 1 Km. by 1Km. grid was set out at 100 meter E-W spacings and stations were set at every 25 meters N-S. Soil geochemistry was conducted in 1985 and only 6 samples were anomalous in gold the highest being 900ppb. Au. However, a volcanic ash layer was observed and the area was re-sampled below the ash layer and of the 150 samples taken all but 3 were anomalous in gold. The values ranged up to 3444 ppb. Au. The mean average of the 150 samples was 109 ppb. Au.

Trenching:

An excavator with a 24 foot reach was used to trench some of the anomalies in the eastern part of this grid. Bedrock was not reached and the water filled the bottom of the trenches.
Drilling:
Two rotary drill holes were angled 250' through the shear zone in the center part of the grid. The rotary drill was not equipped with splitter or cyclone. Water was encountered and filled the sample bags, therefore the bags were cut and poor representative samples were taken. Voids were also encountered and the possibility of the heavy minerals being washed away at the bottom of the holes is great. None the less anomalous gold values were observed.

The holes were angled at 60° to the south. Both of the 250 foot holes were stopped in mineralized calcareous sediments because of lack of financing and proper equipment.

Near the top of the grid two diamond drill holes and two rotary drill holes angled across a gash vein. Only one diamond drill hole intersected the the vein at approx. 105'. This hole was stopped in the mineralized zone for financial reasons. Elevated gold values were observed. One rotary drill hole encountered tuffaceous arkosic material that ran 1650 ppb. Au. over 5 feet.

Geophysics:
Magnetometer; There is at least one significant mag high and corresponding low in the south central part of the grid. An attempt to trench this was not successful as bed rock was not reached.

VLF. : Numerous vlf cross-overs are unexplained.

SE-88: a small resistivity survey was conducted in the central portion of the grid. the contact between the high and low resistivity seems to wrap around the mag high. Significance not known.

Crone Loop: Broad anomaly in central portion of grid, but reliability of data cannot be vouched for.
Assessment Work - Rotary Drilling:

This report summarizes the assessment work completed by Silver Sabre Resources Ltd. between the dates of Nov. 24-25, 1994.

The work was carried out on Claim Bee, #27, YA3108 at the intersection of grid number L1600E and L1200N. (Location map #2).

A vertical Rotary drill hole was drilled by the Midnight Sun Drilling Company, to a depth of 60'.

The object of the drilling was to intersect possible Pb, Zn, Ag, and Au, mineralization in a magnetic anomalous area and to assess the stratigraphy and mineralogical changes in a structure that appears on the surface to resemble a tuffaceous and/or agglomerate unit(s). Altered tuff and ash flow debris have been observed on other areas of the claim block. Silty limestone was seen in previous drill holes near this site. Granites appear in surface outcrops on the southern part of the group and probably underlie most of the claims.

Drill Logs:

Acknowledgement: Roger Hulstein, Kennecott geologist graciously helped to log the chips.

5'-10' - Grey muddy limestone, fragments limonite stained, some with hairline calcite fractures, others with up to 5% diss. pyrite. Volcaniclastic tuff(?) fragments.

10'-15' - Grey muddy limestone, tuff fragments, minor arkosic fragments. About 5% of fragments show flat rusty-limonite stained fracture surfaces. Some fragments cross-cut by hairline calcite fractures. White to light grey quartz as irregular replacement blebs (± 5%) and less than 1 mm. in size. 1-2% limonite overall, rare fragments with up to 15% diss. pyrite. 5-10% white rounded fragments and 10-15% light grey very fine grained muddy or sandy limestone.

15'-20' - As above but with less rust limonite and more diss. pyrite (up to 5% in some fragments). Limestone muddy to silty. Sand sized clasts rare. Rare calcite veinlets 1-2 mm. to hairline. Rare chloritized fragments.

20'-25' - As above: Grey calcareous muddy to sandy limestone. Trace to 5% diss. pyrite and 2% pyrite overall. Rare calcite veinlets, 5-15% quartz as blebs and replacement. Possible sphalerite in granular quartz with pyrite. 10-20% white rounded calcite blebs with diffuse margins.
25'-30' - As above: Trace to 5% disseminated pyrite, 2% overall. Possible sphalerite as rusty- limy fragments with quartz-sphalerite veinlets? Volcanic-tuff fragments: fine to medium grained with biotite crystals. More siliceous and chloritic than previous 5 feet.

30'-35' - As above but more volcanioclastic, more biotite (1%) and more quartz blebs (5%-10%) associated with disseminated pyrite and trace chalcopyrite. Rare angular fine grained lithic tuff clasts in grey limestone, which is moderately siliceous.

35'-40' - Muddy to tuffaceous limestone, same as last 5 feet but more recognizable angular tuff clasts, feldspar crystals and biotite crystals. Possible skarn with biotite-feldspar-quartz? Sedimentary laminae visible. 2-5% pyrite overall associated with quartz. Rare fragments up to 75% pyrite, 15% quartz blebs.

40'-45' - As the last 5 feet, euhedral biotite, skarnified and moderately siliceous. 2-5% disseminated pyrite and 15% quartz blebs and fragments.

45'-50' - As last 5 feet weakly skarnified muddy limestone. Assemblage of biotite-quartz-calcite-chlorite and rare calc-silicate minerals (fine grained and green) possible pyroxenes?

50'-55' - As last 5 feet, weakly skarnified muddy (tuffaceous) limestone biotite-chlorite-calc silicate/calcite-quartz/ and possible garnet. Less biotite than last 5 feet. Moderately siliceous.

55'-60' - no recovery

Summary: Hole was collared in fine grained muddy limestone with rare (sand?) clasts. By 20 feet the muddy limestone became coarser and had euhedral biotite and coarser calcite-quartz grains and crystals. The best skarnification appears at the bottom of the hole with the development of chlorite-pyroxene-quartz-silicate crystals. Pyrite content 2-5% overall.

Conclusion: Over burden masks much of the area. The rocks have been highly altered, over a very large area. Epigenetic minerals are pervasively scattered throughout the rocks. Favorable geological features such as, stockworks, breccia pipes, faults, anticlines, folding, and limestones and calcareous sediments that dip into the intrusive, that could host bonanza type ore bodies appear to be present.
The Whitehorse batholith has been age dated at 70 million years by W.D. Sinclair 1983. According to copper porphyry literature, in an island arc setting, quartz monzonite to granodiorite/diorite rocks around 70 million year old are favourable for porphyry deposits and that many base metal skarns grade into porphyry deposits. The geological setting on the Bee & Cee claims fit this criteria. However, not enough geological work has been done to ascertain exactly what style of mineralization is occurring, although skarnification in certain areas is becoming more apparent as more work is completed.

Recommendations:

Much of the area is covered with overburden, therefore I.P. reconnaissance lines should be conducted over the breccia pipe, other anomalous areas and previous drill holes. The drill logs of previous holes should be re-evaluated along with the I.P. data to ascertain if these holes should be extended to a greater depth.

Statement of expenditures:

Midnight Sun Drilling------------------------------- $2630.00
Geological Supervision (R. Pathnade) 1 day----------$375.00
Core Logging (R. Holstein & B. Patnude)----------- $275.00
Report (B. Patnude)------------------------------- $375.00
Assays--- $360.00
Total--- $4115.00
Certificate of Analysis

iPL 94L0701

Client:
Northern Analytical Laboratories

Project:
10 Pulp

Out:
Dec 07, 1994

In:
Dec 08, 1994

Sample Name | Ag ppm | Cu ppm | Pb ppm | Zn ppm | As ppm | Sb ppm | Hg ppm | Mo ppm | Ti ppm | Bi ppm | Cd ppm | Co ppm | Ni ppm | Ba ppm | Cr ppm | V ppm | Mn ppm | La ppm | Ce ppm | Pr ppm | Nd ppm | Sm ppm | Eu ppm | Gd ppm | Tb ppm | Dy ppm | Ho ppm | Er ppm | Tm ppm | Yb ppm | Lu ppm | X ppm |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0005-0010</td>
<td>< 54</td>
<td>11</td>
<td>52</td>
<td>31</td>
<td>< 5</td>
<td>12</td>
<td>13</td>
<td>26</td>
<td>146</td>
<td>68</td>
<td>67</td>
<td>470</td>
<td>5</td>
<td>225</td>
<td>6</td>
<td>4</td>
<td>0.10</td>
<td>1.77</td>
<td>16</td>
<td>2.39</td>
<td>1.31</td>
<td>0.39</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010-0015</td>
<td>< 46</td>
<td>13</td>
<td>73</td>
<td>13</td>
<td>< 7</td>
<td>< 5</td>
<td>0.9</td>
<td>14</td>
<td>35</td>
<td>45</td>
<td>35</td>
<td>3</td>
<td>0.32</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>0.09</td>
<td>2.32</td>
<td>17</td>
<td>2.64</td>
<td>1.90</td>
<td>0.89</td>
<td>0.19</td>
<td>0.06</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0015-0020</td>
<td>< 27</td>
<td>9</td>
<td>50</td>
<td>27</td>
<td>< 9</td>
<td>< 5</td>
<td>0.8</td>
<td>8</td>
<td>22</td>
<td>26</td>
<td>54</td>
<td>49</td>
<td>49</td>
<td>2</td>
<td>8</td>
<td>0.07</td>
<td>1.16</td>
<td>17</td>
<td>1.98</td>
<td>1.08</td>
<td>0.40</td>
<td>0.12</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>0020-0025</td>
<td>< 37</td>
<td>9</td>
<td>70</td>
<td>34</td>
<td>< 10</td>
<td>< 5</td>
<td>0.8</td>
<td>15</td>
<td>42</td>
<td>88</td>
<td>116</td>
<td>97</td>
<td>563</td>
<td>4</td>
<td>45</td>
<td>8</td>
<td>0.12</td>
<td>2.63</td>
<td>17</td>
<td>2.72</td>
<td>2.15</td>
<td>1.06</td>
<td>0.21</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0025-0030</td>
<td>< 36</td>
<td>9</td>
<td>79</td>
<td>36</td>
<td>< 6</td>
<td>< 5</td>
<td>0.8</td>
<td>15</td>
<td>43</td>
<td>86</td>
<td>121</td>
<td>91</td>
<td>528</td>
<td>3</td>
<td>44</td>
<td>7</td>
<td>0.13</td>
<td>2.67</td>
<td>17</td>
<td>2.72</td>
<td>2.14</td>
<td>1.08</td>
<td>0.21</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0030-0035</td>
<td>< 32</td>
<td>7</td>
<td>74</td>
<td>26</td>
<td>< 4</td>
<td>< 5</td>
<td>0.8</td>
<td>15</td>
<td>40</td>
<td>105</td>
<td>127</td>
<td>91</td>
<td>566</td>
<td>3</td>
<td>46</td>
<td>7</td>
<td>0.14</td>
<td>2.81</td>
<td>17</td>
<td>2.46</td>
<td>2.29</td>
<td>1.25</td>
<td>0.23</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0035-0040</td>
<td>< 30</td>
<td>8</td>
<td>70</td>
<td>35</td>
<td>< 5</td>
<td>< 5</td>
<td>0.4</td>
<td>15</td>
<td>39</td>
<td>123</td>
<td>125</td>
<td>88</td>
<td>556</td>
<td>3</td>
<td>45</td>
<td>8</td>
<td>0.15</td>
<td>3.82</td>
<td>17</td>
<td>2.33</td>
<td>2.39</td>
<td>1.17</td>
<td>0.23</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0040-0045</td>
<td>< 36</td>
<td>9</td>
<td>62</td>
<td>25</td>
<td>< 5</td>
<td>< 5</td>
<td>0.5</td>
<td>15</td>
<td>39</td>
<td>117</td>
<td>99</td>
<td>80</td>
<td>566</td>
<td>3</td>
<td>45</td>
<td>6</td>
<td>0.13</td>
<td>3.84</td>
<td>17</td>
<td>2.40</td>
<td>2.13</td>
<td>1.09</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0045-0050</td>
<td>< 45</td>
<td>9</td>
<td>92</td>
<td>33</td>
<td>< 10</td>
<td>< 5</td>
<td>1.3</td>
<td>16</td>
<td>42</td>
<td>146</td>
<td>120</td>
<td>99</td>
<td>643</td>
<td>4</td>
<td>42</td>
<td>8</td>
<td>0.14</td>
<td>2.91</td>
<td>17</td>
<td>3.17</td>
<td>2.26</td>
<td>1.03</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0050-0055</td>
<td>< 34</td>
<td>8</td>
<td>74</td>
<td>34</td>
<td>< 7</td>
<td>< 5</td>
<td>0.7</td>
<td>15</td>
<td>39</td>
<td>163</td>
<td>117</td>
<td>89</td>
<td>664</td>
<td>4</td>
<td>47</td>
<td>6</td>
<td>0.14</td>
<td>2.78</td>
<td>17</td>
<td>2.79</td>
<td>2.35</td>
<td>1.27</td>
<td>0.18</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Min Limit | 0.1 | 1 | 2 | 1 | 5 | 5 | 3 | 1 | 10 | 2 | 0.1 | 1 | 1 | 1 | 2 | 5 | 1 | 2 | 1 | 1 | 1 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |

Method
- ICP
- TEI
- ICP

No Test - Insufficient Sample - S=Soil R=Rock O=Core L=Silt P=Pulp U=Undefined E=Estimate/1000 K=Estimate X=Max-No Estimate
Mobilization/Demobilization: (Silver 4J)

- Preparing equipment in yard, hauling PROSPECTOR drill mounted on a hard track undercarrage, service truck and two man crew from shop to unloading point and return Lump Sum. $925

Drilling:

- Center Sampling (0'-250')
- Drilling with 4 1/2" diameter C.S.R. drill stem
 5 1/2" diameter hole at $17.90 /foot 60 feet $1,074

Note: Any equipment lost or damaged in the hole will be charged at cost plus 10%.
Any holes 550 or shallower add 7%.

Unscheduled Rig Time:

- To move from Lowbed to first drill hole; to move from hole to hole; from mast down to mast up; to pull stuck rods; to move back to lowbed at job completion estimated at 2 hours @ $225.00 /hour $450

Expendables:

- Sample bags at $1.45 /bag 6 bags $9

Crew Travel: (After one hour/shift)

- From camp to camp at $90.00 /hr. 0 hour estimated $0

Plus 7% GST $172

Total Cost $2,630