DATE PERFORMED: JUNE 18-JULY 26, 1981
DATE FILED: NOV 12, 1981
LOCATION: LAT.: 60°08'N
AREA: SWIFT RIVER
LONG.: 131°26'W
VALUE $: N/A
CLAIM NAME & NO.: SIN 1-118

REMARKS: JC Stephen explorations supervised a trenching program on the SIN claims. The claims were actively explored for tin and tungsten mineralization. The program did not reveal any significant mineralization.
TRANSMITTAL FORM

From: Mining Recorder at Western Lake
To: Regional Manager, Mineral Rights at Whitehorse, YT

For action are:

- NEW APPLICATION FOR PLACER LEASE TO PROSPECT
- RENEWAL APPLICATION PLACER LEASE TO PROSPECT
- AFFIDAVIT OF EXPENDITURE ON PLACER LEASE
- SECURITY DEPOSIT
- FINANCIAL ABILITY
- ASSIGNMENT OF PLACER LEASE NO
- GROUPING APPLICATION UNDER SEC 5251 LAC MINING ACT

- DIAMOND DRILL LOGS
- QUARTZ ASSESSMENT REPORT

For Numbering Only
Please return this copy.

Type of report: Trenching
Submited by: S.J. Skeffington Exploration

Signature:

REPLY ACTION

Date returned: 09/29/31
REPORT ON TRENCHING

SIN 1 - 118 MINERAL CLAIMS
YA 33343 - 456; YA 66178 - 179
WATSON LAKE MINING DISTRICT
YUKON
MAP 105 B/3

LATITUDE: 60°08'N. LONGITUDE: 131°26'W

by

J.C. STEPHEN

WORK DONE: June 18 - July 26, 1981
BY: J.C. STEPHEN EXPLORATIONS LTD.
FUNDED BY: D.C. SYNDICATE OCTOBER 1981
SUMMARY AND CONCLUSIONS

A strong and extensive tin anomaly in talus on the north side of Brock Cirque was investigated by check analysis, check talus sampling, mapping, trenching and rock sampling. Greisen zones are indicated with 0.02 to 0.10 tin content. Tonnage and grade potential are limited and no further work is recommended.

A fairly extensive skarn development occurs at the north west corner of the S1N claim group. This was investigated by mapping, trenching and rock sampling. Tin grades are much lower than expected and no significant tungsten is indicated. Low grade and limited tonnage potential indicate no further work is warranted.

Exploration of other zones of alteration and fracturing on and near the property failed to find mineralization of economic interest.
INTRODUCTION

The SIN claim group was staked in 1978 by Welcome North Mines Ltd and McCrory Holdings (Yukon) Ltd and was operated by Dupont-Duval Joint Venture (Klinkit Project) 1978, 1979 under an option agreement.

Early in 1981 the claim group was returned to Welcome North and McCrory Holdings. Data was submitted to J.C. Stephen Explorations Ltd on behalf of D.C. Syndicate and after check analysis of talus samples an option of the property was recommended. This report describes work during the summer of 1981.

LOCATION AND ACCESS

The SIN group is located near the north contact of the Seagull batholith north west of Swift River, Yukon within map sheet 1058/3, see Figure 1. The claims trend north westerly between the D.C. Syndicate's SIN claim group and Dupont-Duval's POHT claim group covering volcanics and sediments intruded by two bodies of the Brock intrusive and the Seagull batholith.

Fly camps were established at three locations on the claim group with the main site being on SIN 107 in the central Brock Cirque valley. This location is 13 miles (21 km) north west of Swift River (Mile 733) on the Alaska Highway. Access to the property was entirely by helicopter from Swift River.
PROPERTY OWNERSHIP AND STATUS

The SIN claim group consists of the SIN 1-116 mineral claims staked by McCrory Holdings in 1978 as listed below. Two additional claims were staked in 1981 as the SIN 117 and 118 to cover apparently open ground at the north west corner of the property, see Figure 2 Claim Map.

Work on the SIN claim group during 1981 was conducted by J.C. Stephen Explorations Ltd. on behalf of D.C. Syndicate under a letter of agreement between the Syndicate and Welcome North Mines Ltd.

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Record Number</th>
<th>Expiry Date</th>
<th>Recorded Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN 1-116</td>
<td>YA 33343-456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIN 117,118</td>
<td>YA 66178,66179</td>
<td>July 15, 1982</td>
<td>Eleanor Sidey</td>
</tr>
</tbody>
</table>

Assessment work is to be filed for a minimum of one year as a result of physical work (trenching) done on the SIN group while held under option by D.C. Syndicate.
HISTORY AND PREVIOUS WORK

There is no recorded history of exploration on the ground covered by the SIN claims prior to reconnaissance by D.C. Syndicate in 1977 and exploration of the property by Dupont-Duval in 1978 and 1979.

D.C. Syndicate had obtained moderately anomalous tin values in creeks draining north from the SIN area into Smart River and had prospected the area during part of the 1977 season. Minor malayaite mineralization had been located on ground now held by Dupont-Duval as the PONT 'B' claims and on ground previously staked as the MAY 1 and 2 claims. No exploration had been conducted south of the height of land located in the north portion of the SIN claim group.

Exploration of the claim group by Dupont-Duval is described in "Report of Geological and Geochemical Surveys on SIN Project" by G. Ditson dated January 1980. A copy of this report was supplied to J.C. Stephen Explorations Ltd. by Welcome North Mines Ltd. in January 1981. A geology map which accompanied that report, with some revisions, is included in this report as Map I.
Geology

Three main rock units were described by G. Ditson in her report on the SII group. These consist of "(1) sedimentary and volcanic rocks of the Sylvester group (2) two large bodies of intrusive rock referred to as the Brock intrusions, and (3) the Seagull batholith."

Sylvester group rocks consist of mixed quartzite, limestone, argillite and chert (M2) and overlying argillaceous sedimentary, volcano-sedimentary and volcanic rocks (M3).

The Brock intrusions are described with discussion of their possible origin and field relationships.

Post Brock dykes and the Seagull batholith are similarly described.

In general it was concluded that the Sylvester group rocks consisted of a mainly sedimentary sequence overlain by a primarily volcanic sequence. These formations were intruded by the Brock intrusives which are themselves intruded by pyroxene porphyry and andesitic dykes. The complex is intruded and underlain by the Seagull batholith.

Geochemistry

G. Ditson's report describes a talus sample reconnaissance of the north facing cirques north of SII and grid soil sampling of the talus anomaly on south facing slopes in the Brock Cirque. High tin geochemical values were reported but prospecting and sampling failed to locate a source.
GEOLOGICAL MAPPING AND PROSPECTING

No attempt was made to systematically map the property geology but work was done in several areas resulting in partial revision of the Dupont geological map. See Map I.

Traverses were made along the trend of the main talus anomaly and up several shallow gullies where a fair percentage of outcrop was available. Most of the exposed Brock intrusive appeared relatively fresh with prominent east-west trending joints. It was evident, however, that weak to moderate greisen type alteration occurred associated with this jointing. In the vicinity of a near vertical face on SIN 108 east of the anomaly these zones appear as narrow vein-joints with up to 20 cm widths of quartz, tourmaline, fluorite, mica, etc. mineralization. A sample of this material ran 84 ppm Sn. In the vicinity of the talus anomaly these zones are several feet wide and include veins up to one metre wide with tourmaline, fluorite etc. mineralization within wider zones of discoloration and alteration. Some spotty arsenopyrite mineralization is evident.

Trenching was done on vein and alteration zones within the talus anomaly area as described below.

Within the Brock intrusive are several irregular narrow andesitic dykes which have sharp contacts and are not apparently mineralized. In the gully just west of Trench 8 fragments of a peculiar pyroxene porphyry dyke are abundant. No outcrop of this rock type was found and it was not possible to trace the dyke (?) down either the north or south slopes. Assay of a specimen (27583) returned 0.01% Sn. <0.01% W03.
It has been noted that the talus anomaly is centred on the location of this pyroxene porphyry dyke, the postulated fault, and relatively strong east west jointing and veining with alteration. There is some indication that jointing in Brock intrusive dips 75° S in the lower outcrops to the south, gradually steepens and changes to a north dip in the upper portion of the geochemical anomaly along a prominent line of change in the character of the talus slope.

Up slope the Brock intrusive is in contact with tuffs and volcano sediments of M-3. There is no apparent skarning nor evident unusual alteration of the volcanics. They are unusual only in that they strike 320° and dip 70° north. Along the spur to the mountain peak these volcanics are contorted and resume their usual south dip at the peak and along the ridge to the north. It is likely the north dips, and complicated folding down the west slope, are due to disruption during emplacement of the Brock intrusive. The north dip of jointing in the Brock would be parallel to the local north dip of the volcanics through the intrusive contact transects bedding in tuffs.

The north trending ridge consists of primarily basic volcanics with zones of quartz, tourmaline and fluorite above the indicated high in the Seagull intrusive. The upper parts of the Seagull in this area are locally pegmatitic and rise as short dykes which degenerate into pegmatite and quartz veining along east west fracture zones at the top of the ridge.

To the north beyond two east trending fault zones, thin beds of limestone are complexly folded. Volcanic agglomerates and breccias, folded with the limestone, are skarned producing thin irregular garnet epidote skarn zones. No significant mineralization was located.
Near the north west boundary of the property a remnant of limestone with associated quartzites and siltstone is intruded by Brock and Seagull granites. The structure is complex but appears to be of limited size. Skarn is developed to varying degree and a substantial amount of magnetite skarn is present. The zone extends below the talus west of the limits shown on the map. This zone was thought to provide a significant area for tin mineralization. No actual contact was found between Seagull and Brock intrusives.

In the north east portion of the claim group weak greisen type alteration was found in fracture zones approximately along the trend of the east striking MUII fault. Arsenopyrite occurs in outcrops of the Seagull intrusive. The zones continue up into the volcanics of the M-3 formation but no mineralization is evident. Trenching was done on portions of these zones.
TRENCHING PROGRAM

McCrory Holdings (Yukon) Ltd. were contracted to conduct trenching of several zones of mineralization and alteration along generally east west trending zones on the SIN claims. Trenches were laid out after local mapping and were cleaned out for sampling and examination after blasting. Chip samples were taken as continuously as rock exposure would permit while talus and soil samples were collected from those trenches which failed to reach bed rock.

Fly camps for the trenching crew and supporting geological crew were moved and supplied by helicopter. A diesel compressor was used to supply compressed air for drilling on most rock trenches. This required more helicopter support but greatly speeds up drilling production.
North west Skarn Zone Trenching 51N 115 - 118 Claims

Figures 4 and 5 show location of trenches 51N 1 to 4 with local geology, profiles of the trenches, sample numbers and assay results for tin and tungsten.

The following descriptions are taken from field notes and results. Trenches 51N 1 to 51N 4 are located in about 150,000 square feet of exposed sediments, meta sediments and skarn bounded on three sides by Brock and Seagull intrusives. The west area was not mapped and extent of possible skarn in that direction is not known.

Trench 1 is about 6 feet north of the contact of the intrusive and sedimentary rocks. It is 32 feet long trending 242°. The trench is in a zone of contact sediments and three samples were taken in medium grey, chloritic, siliceous skarn. A small zone of weakly disseminated chalcopyrite was found at the north end of the trench.

No significant assay values were obtained for tin, tungsten, silver or copper.

Trench 2 is in the same zone of contact sediments as Trench 1. Two samples were taken in this 30 foot long trench. Both samples were of pale green calc-silicate. Limestone outcrop occurs close to the trench.

Sample 25904C assayed 0.20% Sn, 0.01% WO₃, 0.01% Cu and 0.01 oz Ag. Values for sample 25905C were 0.01 or less than 0.01%.
LEGEND

A. BLUE GREY-GREEN CHEERY SILTSTONE OR CALCISILTE

E. MEDIUM GREY SILTSTONE

C. MEDIUM BROWN SKARN WITH FINELY GRAINED MASSES OF RED GARNET AND GREEN DIOPSIDE

25901C ROCK CHIP SAMPLE NUMBER

0.04.001 ASSAY VALUE Sn, KOI %

J.C. STEPHEN EXPLORATIONS LTD

SIN PROJECT

PROFILE OF TRENCHES 1-4

N.W. SKARN ZONE

Scale 1:120

AUG. 1981

FIGURE 5
Trench 3 is a 40 foot long trench located in a magnetite skarn. The south end of the trench begins at the contact between limestone and skarn and follows the trend of the skarn bed. A fifth sample (25910C) was taken five feet north of the trench in moderately magnetic skarn. Full extent of the skarn has not been mapped.

Considering the appearance of the skarn assay values were very disappointing with the highest tin value 0.06% Sn over 8 feet. Two values of 0.07 oz/ton Ag were received for samples 25909 and 910C. Values for copper and tungsten were 0.01% or less.

Trench 4 is about 300 feet north of trench 3. It is a 25 foot trench in an interbedded contact sediment zone very close to the Seagull intrusive contact. The samples are principally in siltstone. Trace to weakly disseminated chalcopyrite and arsenopyrite are found in the trench along with some malachite stain.

Sample 25911C assayed 0.16% Sn over 8 feet. The trench averaged 0.098% Sn across 25 feet. Values up to 0.07 oz/ton silver, 0.03% Cu and 0.02% WO₃ accompany the tin.
Main Talus Zone S1N 108-111 Claims

Figures 6 and 7 indicate location of trenches 5 to 8 with trench profiles and tin, tungsten assays.

Trench 5 is located near the nose of the eastern Brock intrusive. The trench is at the contact between the Brock intrusive and the intruded volcanic rock. A small ultra basic dyke is found to the east of the trench.

The volcanic is cherty andesite or dacite. A 15 foot contact zone consists of volcanic breccia fragments in Brock matrix. This zone has trace disseminated pyrrhotite, arsenopyrite and specularite.

All values for Sn, WO$_3$, Ag and Cu were 0.01% or less except for one value of 0.03 oz Ag.

Trench 6 is located about 1800 feet west of trench 5 and is entirely in Brock monzonite. The trench includes a greisen zone which is exposed for 19 feet and extends to the north of the trench below talus. Moderately disseminated traces of galena, chalcopyrite and arsenopyrite were found in the zone. The highest tin assay is 0.07% across 6.5 feet. Sample 25922C gave 1.14 oz Ag/ton across 6.5 feet.

Trench 7 is about 300 feet east of trench 6. It is 30 feet long in a poorly exposed outcrop area. The trench is probably entirely in Brock intrusive although a six foot interval had volcanic and Brock rubble in it. This interval was not deep enough to sample properly and no sample was taken. A small rusty kaolinized zone occurs in the trench but no mineralization was found.

Sample 25930C returned 0.09% Sn, 0.04 oz Ag per ton across 9 feet.
TRENCH 5

SAMPLE WIDTHS IN FEET

TRENCH 6

SAMPLE WIDTHS IN FEET

TRENCH 7

SAMPLE WIDTHS IN FEET

TRENCH 8

SAMPLE WIDTHS IN FEET

VEIN IS APPROXIMATELY 3 FT WIDE

25924 C ROCK CHIP SAMPLE
0.02 0.01 ASSAY VALUE Sn WO3 %

J.C. STEPHEN EXPLORATIONS LTD
SIN PROJECT
MAIN TALUS ANOMALY
PROFILE OF TRENCHES 5 - 8
Scale 1:120 AUG.1981

FIGURE 7
Trench B is in a saddle near the gully presumed to mark the position of a north trending fault. The trench is in Brock intrusive but includes a three foot tourmaline quartz vein. The vein appears to strike and dip parallel to the prominent regional east trending jointing. Minor realgar and orpiment were found in the vein. The Brock intrusive is altered (lime green feldspar alteration, kaolinitization and manganese staining) with alteration decreasing away from the vein. A three foot zone beside the vein has minor tourmaline, azurite and malachite.

Sample 25926C assayed 0.10% Sn, 0.38 oz Ag, and 0.11% Cu across 3 feet. Other values in the trench were negligible.
East Alteration Zone Trenches 9, 10, 11,

These trenches are located in a valley east of the head of Brock cirque within volcanic rocks a short distance above the contact with the Seagull batholith. The MLM fault zone passes close to this area.

Trench 9 This is a 36 foot long trench in amygdaloidal basalt. Three 12 foot long samples were taken. Only one of these contained a trace of disseminated pyrite.

Assay values for tin tungsten and copper were all less than 0.01%. Values of 0.02, 0.03 and 0.04 oz silver per ton were received.

Trench 10 is about 200 feet north of Trench 9. It is also in amygdaloidal basalt. A four foot tourmaline breccia zone is found near the north end of the trench. It strikes about 120° and may be on strike with a four foot Brock dyke to the west. Only trace disseminated pyrite or chalcopyrite was found in the breccia zone.

Assay values for tin tungsten and copper were all 0.01% or less. Silver values were 0.01 and 0.02 oz per ton.

Trench 11 is about 1100 feet north east of trench 9 in a grassy south sloping hill. Bed rock was not obtained and soil samples were taken across this trench.

Geochemical values for tin, tungsten, copper and silver were below anomalous levels.
LEGEND

== Brock Dyke
\| AREA OF NW TRENDING QUARTZ VEINS AND LENSES
•••• Tourmaline Breccia Zone
1-9 Trench

SIN PROJECT
EAST ALTERATION ZONE
GEOLOGY & TRENCHES

Scale 1:1200 AUG 1981

J.C. STEPHEN EXPLORATIONS LTD

FIGURE 8
TRENCH 9

South End of Trench

<0.01 <0.01 <0.01 <0.01
25937c 25938c 25939c

North End of Trench

Surface of Outcrop

Sample Width in Feet

TRENCH 10

End of Trench

BASALT -- Slightly Silicified BASALT

<0.01 <0.01 <0.01 <0.01
25933c 25934c 25935c 25936c

TRENCH BOTTOM

Sample Width in Feet

25933c Rock Chip Sample

0.01 0.01 Assay Value Sn W %

TRENCH 11

TRENCH END

Grass and Cobble

17. 5. 01. 55 DG51

DG51N1

TRENCH BOTTOM

17. 5. 01. 55 DG51N1

DG51N2

DG51N3

0º 5º 10º 20º 30º 40º

Sample Width in Feet

dg512 Talus Sample

17.5.01.55 Sn, W, Ag, Cu ppm.

J.C. STEPHEN EXPLORATIONS LTD

SIN PROJECT

EAST ALTERATION ZONE

PROFILE OF TRENCHES 9-11

Scale 1:120 AUG 1981

FIGURE 9
CONCLUSIONS AND RECOMMENDATIONS

Extensive soil, tuff and talus sampling on the SIN claim group has indicated anomalous levels of tin, tungsten, arsenic and zinc. Investigation of the anomalous areas for tin mineralization has not been successful in finding economic mineral grades.

The skarn zones in the north west portion of the claim group return grades up to 0.20% Sn in certain areas. The sedimentary-skarn package is surrounded by intrusive rocks and tonnage potential is limited. This, coupled with very low grades indicates only low potential.

Prospecting on the ridge north of the central portion of SIN group encountered skarn, greisen and quartz tourmaline veining above local pegmatitic phases of the intrusive. No significant values were obtained and the structures are of very limited extent.

On the main talus anomaly fairly extensive greisen type alteration follows east striking joint and fracture zones. The best assay obtained, in the quartz, tourmaline vein, was 0.10% tin. Values obtained in talus approximate the best grades and appear to represent rock geochemical values for the area. The grade indicated is too low for commercial consideration. These zones are very similar to those on the Dupont Plateau zone on the DU claims although sulphide mineralization is not as intense here.

Investigation of axinite garnet skarn south of Brock cirque and of greisen type alteration along MUN fault failed to find tin or tungsten mineralization of note.
It is recommended that the option on the S1N claims not be retained.

Respectfully submitted,
J.C. Stephen Explorations Ltd.

J.C. Stephen

JCS/ms
<table>
<thead>
<tr>
<th>TRENCH NUMBER</th>
<th>MATERIAL</th>
<th>LENGTH</th>
<th>WIDTH</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ROCK</td>
<td>40</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ROCK</td>
<td>25</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>TRENCH NUMBER</td>
<td>MATERIAL</td>
<td>LENGTH</td>
<td>WIDTH</td>
<td>DEPTH</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>ROCK</td>
<td>32</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ROCK</td>
<td>30</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
CLAIM GROUPING SIN 3

DIMENSIONS OF TRENCHES

<table>
<thead>
<tr>
<th>TRENCH NUMBER</th>
<th>MATERIAL</th>
<th>LENGTH</th>
<th>WIDTH</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ROCK</td>
<td>35</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
CLAIM GROUPING SIN 4

DIMENSIONS OF TRENCHES

<table>
<thead>
<tr>
<th>TRENCH NUMBER</th>
<th>MATERIAL</th>
<th>LENGTH</th>
<th>WIDTH</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROCK RUBBLE</td>
<td>FIVE IRREGULAR AREAS AVERAGING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND TALUS</td>
<td>APPROXIMATELY 20'x 3'x 2'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STRIPPED AND EXCAVATED BY HAND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRENCH NUMBER</td>
<td>MATERIAL</td>
<td>LENGTH</td>
<td>WIDTH</td>
<td>DEPTH</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>6</td>
<td>ROCK</td>
<td>38</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>ROCK</td>
<td>30</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
CLAIM GROUPING SIN 6

DIMENSIONS OF TRENCHES

<table>
<thead>
<tr>
<th>TRENCH NUMBER</th>
<th>MATERIAL</th>
<th>LENGTH</th>
<th>WIDTH</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ROCK</td>
<td>35</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Claim Grouping: Sin 7

Dimensions of Trenches

<table>
<thead>
<tr>
<th>Trench Number</th>
<th>Material</th>
<th>Length</th>
<th>Width</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Rock</td>
<td>36</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Rock</td>
<td>38</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
CLAIM GROUPING SIN 8

DIMENSIONS OF TRENCHES

<table>
<thead>
<tr>
<th>TRENCH NUMBER</th>
<th>MATERIAL</th>
<th>LENGTH</th>
<th>WIDTH</th>
<th>DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>ROCK</td>
<td>40</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
To: Cam Stephen

RE: Trenching in Swift River Area

<table>
<thead>
<tr>
<th>Date</th>
<th>Men</th>
<th>Rate</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 9</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 10</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 11</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 12</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 13</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 14</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 15</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 16</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 17</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 18</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 19</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 20</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 21</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 22</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 23</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 24</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 25</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 26</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 27</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 28</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 29</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 30</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
<tr>
<td>July 31</td>
<td>2</td>
<td>$250</td>
<td>$500.00</td>
</tr>
</tbody>
</table>

Explosives:
- 14 bags AMEX: $441.00 + Fed. sales tax: $22.75 = $463.75
- 5 cases 40% FORCITE: $427.50 + Fed. sales tax: $22.47 = $449.97
- 3 roll B-Line: $275.40 + Fed. sales tax: $17.55 = $292.95
- 80 3" Fuses: $107.20 + Fed. sales tax: $7.96 = $115.16
- Mag Rental: $80.00 + Trip charge: $30.00 = $110.00

TOTAL DUE: $11,931.85

Thank you

Direct to McCrory Holdings
CIBC Whitehorse, 10090 4th Ave, Whitehorse, Yukon

September 11/81

Bill Preston
Res: (403) 667-7175
Terry McCrory
Res: (403) 633-5424