Eight grab and eight channel samples were collected from an altered zone mineralized with arsenopyrite and pyrite, exposed in a blast trench over a length of 14 m. The arsenopyrite occurs as fine needles in silicified and propylitically altered lapilli tuff of the Bennett Lake Caldera. The best channel sample returned 4,453 ppm As and 37 ppb Au across 1.4 m, with grab samples up to 14,911 ppm As and 350 ppb Au.
TRENCHING REPORT
ON THE

PIM 1-13 (YA98388-YA98400)
PIM 14-109 (YB05801-YB05896)

Mineral Claims

Lemieux Creek - West Arm of Bennett Lake

WHITEHORSE MINING DISTRICT
YUKON TERRITORY

N.T.S.: 105D/3

LATITUDE: 60 Degrees 01 Minutes North
LONGITUDE: 135 Degrees 08 Minutes West

SEPTEMBER 25 to OCTOBER 1, 1989

By

HUGH F. MacKINNON B.Sc.

NOVEMBER 13, 1989

For

Skukum Gold Inc.
990 - 840 Howe St.
Vancouver, B.C.
V6Z 2L2

092799
This report has been examined by
the Geological Evaluation Unit
under Section 53 (4) Yukon Quartz
Mining Act and is allowed as
representation work in the amount
of $9300.00.

Regional Manager, Exploration and
Geological Services for Commissioner
of Yukon Territory.
SUMMARY

Exploration on the PIM claims in 1989 consisted of the excavation, mapping and sampling of one trench on the PIM 60 mineral claim. A total of eight channel samples and eight bulk grab rock samples were collected.

Mineralized alteration zones were exposed for 14 of the 15 meters of trench. The best channel sample returned 4,453 ppm arsenic and 37 ppb gold over 1.4 meters, and the best grab sample 14,911 ppm arsenic and 350 ppb gold. Arsenopyrite and pyrite are the principal metallic minerals present. The arsenopyrite occurs as very fine grained needles, needle aggregates and crystals within strongly silicified and propylitic altered lapilli tuff of the Eocene Bennett Lake Cauldron Subsidence Complex. The alteration zones trend northeast and likely extend across the cirque to the HL zone some 500 meters to the northeast.

The mineralogy and geochemistry of the HL EXTENSION ZONE differs from the HL zone in that the HL zone is base metal enriched and has higher gold values. These differences may be due to lateral and or vertical zonation in the hydrothermal system.

Porosity of the tuffs may be one of the factors which controls the mineralization and suggests a mesothermal origin for the mineralization. No apparent structural control to the system was observed however the zones cross lithological contacts.

Presence of a porphyry type system to the southeast, a volcanic center to the northwest and ring dyke intrusives adjacent to the zones make the area a promising exploration target.

An exploration program consisting of prospecting, mapping and sampling is proposed for 1990.
TABLE OF CONTENTS

SUMMARY

1. INTRODUCTION
 1.1 Location and Access
 1.2 Property and Claim Status
 1.3 Previous Work History
 1.4 1989 Exploration Program
 1.5 Trenching Method

2. TRENCH GEOLOGY
 2.1 Lithologies and Alteration
 2.2 Mineralization

3. GEOCHEMISTRY
 3.1 Introduction
 3.2 Sample Preparation and Analytical Procedures
 3.3 Lithogeochemistry

4. DISCUSSION

5. CONCLUSIONS AND RECOMMENDATIONS

6. REFERENCES

7. STATEMENT OF EXPENDITURES

8. STATEMENT OF QUALIFICATIONS

LIST OF FIGURES

Fig. 1 - Location map.......................1:250,000 scale 2
Fig. 2 - Claim map..........................1:30,000 scale 3
Fig. 3 - Trench 89-HL; Location Map.......1:10,000 scale 6
Fig. 4 - Trench 89-HL; Geology.............1:100 scale 7
Fig. 5 - Trench 89-HL; Geochemical Results..1:100 scale 10
Fig. 6 - Trench 89-HL: Anomalous Geochemistry............ 12
Fig. 7 - PIM, Y.T.: Main Anomalous Zones and
Geologic Elements...............1:30,000 scale 14

LIST OF TABLES
Table 1 - Claim Status.. 1
Table 2 - Strongly Anomalous Rock Samples............... 9

APPENDICES
APPENDIX - 1 : Analytical results

In back of report
1. INTRODUCTION

This report describes exploration work conducted by Skukum Gold Inc. on the PIM 60 mineral claim between September 25 and October 1, 1989. Exploration consisted of trenching and mapping and sampling of the trench.

1.1 LOCATION & ACCESS

The PIM 1-109 claims are located north of, and adjoining, the Yukon - B.C. border, on the southwest end of the West Arm of Bennett Lake in the southern Yukon at 60 degrees 01 minutes north latitude and 135 degrees 08 minutes west longitude (NTS:105D/3) (Figure 1). The property is accessible by helicopter or float plane with the nearest permanent base being Whitehorse, Yukon Territory. Alternate access is provided by boat from Carcross, Yukon Territory, but lake crossings are weather dependent.

1.2 PROPERTY & CLAIM STATUS

The PIM property consists of 109 contiguous 2 post claims located within the Whitehorse Mining District and staked under the provisions of the Yukon Quartz Mining Act (Figure 2). The claim status is listed in Table 1 below.

Table 1: Claim Status

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant Numbers</th>
<th>Recording Date</th>
<th>Renewal Period*</th>
<th>Total Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM 83</td>
<td>YB05870</td>
<td>July 2,1987</td>
<td>Oct. 2,1991</td>
<td>1</td>
</tr>
<tr>
<td>PIM 84</td>
<td>YB05871</td>
<td>July 2,1987</td>
<td>Oct. 2,1990</td>
<td>1</td>
</tr>
<tr>
<td>PIM 85</td>
<td>YB05872</td>
<td>July 2,1987</td>
<td>Oct. 2,1991</td>
<td>1</td>
</tr>
<tr>
<td>PIM 86</td>
<td>YB05873</td>
<td>July 2,1987</td>
<td>Oct. 2,1990</td>
<td>1</td>
</tr>
<tr>
<td>PIM 87</td>
<td>YB05874</td>
<td>July 2,1987</td>
<td>Oct. 2,1991</td>
<td>1</td>
</tr>
<tr>
<td>PIM 88</td>
<td>YB05875</td>
<td>July 2,1987</td>
<td>Oct. 2,1990</td>
<td>1</td>
</tr>
<tr>
<td>PIM 89</td>
<td>YB05876</td>
<td>July 2,1987</td>
<td>Oct. 2,1991</td>
<td>1</td>
</tr>
</tbody>
</table>

* Pending acceptance of assessment report.

All the claims are 100% owned by Skukum Gold Inc. of 990-840 Howe St., Vancouver, B.C.

1.3 PREVIOUS WORK HISTORY

Skukum Gold Inc. conducted a preliminary geological and geochemical survey of the property in 1988 (Wilkins & MacKinnon, 1988). Numerous geochemical and talus fines
anomalies and mineralized showings were discovered, of which the HL Zone is the most significant. This zone covers an area of 300 by 250 meters and consists of small quartz veins and alteration zones which returned up to 5.59 oz/ton silver, 47,739 ppm arsenic, 17,933 ppm copper, 20,999 ppm lead and 1,155 ppb gold.

A regional stream sediment geochemical survey was conducted by the Geological Survey of Canada in 1985 and outlined a few anomalous streams draining the PIM claims (G.S.C., 1985).

No other work has been recorded for the PIM claims, however numerous companies conducted regional uranium exploration programs in the area in the 1970's and early 1980's. Precious metal exploration is ongoing in the area by several companies.

1.4 1989 EXPLORATION PROGRAM

Trenching was the focus of the 1989 exploration program and was performed between September 25 and October 1, 1989. A single trench was excavated in an alteration zone approximately 500 meters south west of the HL showings. This location was selected for the following reasons:

1) Reexamination of the HL showing showed that the veins and alteration zones are quite small and not worthy of trenching at this time.

2) Strike extensions of the HL zone, that are present on the cliffs, were inaccessible for trenching.

3) Since work was conducted late in the year snow cover was at a minimum and many previously snow covered gossans were exposed. It was decided that it would be advantageous to examine these exposures at this time.

4) One of these gossans, and associated alteration zone, was found at the head of a ice gully splay off of a prominent fault (?) ice gully along strike from the HL zone and cliff vein exposures. Initial examination showed that this alteration zone was at least 3 meters wide; much larger than at the HL zone. Several samples collected in 1988 of similar gossans in the immediate area returned up to 11,270 ppm arsenic and 139 ppb gold.

The work was conducted out of the Skukum Gold - Omni Resources base camp in the Wheaton River Valley using a Bell 206 helicopter for access. High winds and stormy weather conditions at this time of year made mobilization and demobilization of the crew and compressor difficult and thus more time consuming (expensive) than expected.

Exploration work was conducted by the following personnel:
1.5 TRENCHING METHOD

Trenching was undertaken by M.J. Moreau Enterprises Ltd. using the following techniques;

1) All loose material was mucked by hand, shovel and pick down to bedrock.

2) Two to six foot holes were drilled at regular intervals using a compressed air driven portable drill.

3) Holes were redrilled to remove ice as required and loaded with dynamite.

4) Fuses were set and the trench blasted.

5) Trench was mucked by hand, shovel and pick down to bedrock and walls stabilized.

6) Trench walls were blasted with compressed air to clean face prior to mapping and channel sampling.

7) Drill-chipper was used for sampling when necessary.

2. TRENCH GEOLOGY

On the opposite side of the cirque from the HL showings are several subparallel to parallel gossanous alteration zones which are exposed on a ridge and precipitous cliff face. The zones trend east-northeast and can be partially traced on cliff faces toward the HL zone 500 meters to the east. One of these zones occurs at the head of a 040 azimuth trending ice gully. This gully is a splay off of a well defined north-south trending fault (?) ice gully lineament. Trench 89-HL was excavated at the top of the gully just below the escarpment edge and above the blue ice chute (figures 3 and 4).

Felsenmeer, glacial debris and talus covered the first 5 to 70 centimeters of the trench, the remainder of the trench was excavated in blocky, well jointed bedrock. At the center of the trench the till and bedrock were well cemented by ice. Insufficient time was available to completely excavate this
area so sampling over this area consisted of large grabs instead of channels.

2.1 LITHOLOGIES AND ALTERATION

Trench 89-HL was excavated in Eocene Partridge Lake Formation felsic lithic lapilli tuff. The tuff weathers a light greenish grey to buff pale grey and has a dark grey to grey fresh face. It is composed of < 1.5 mm crystal fragments, grey tuffaceous lithic fragments and < 1 cm black felsic volcanic fragments in a dark grey, aphanitic to very fine grained, fairly silicious (rhyodacitic ?) matrix. Additional information about this unit can be obtained from Wilkins and MacKinnon (1988), Doherty and Hart (1988) and Lambert (1974).

The trench bedrock is weakly to strongly altered throughout the 15 meters length of trench. Alteration starts as a weak to moderate silicification of the lithic fragments, as evident by rimming of most fragments, accompanied by weak to moderate chloritization of crystal fragments and lithic fragment rims, and weak carbonate alteration with precipitation of calcite along fractures and joints. As the alteration intensity increases the rock becomes rusty weathered and limonite stained, and there is a pervasive silicification and propylitic alteration of all the rock. In the most strongly altered rock the original textures are obliterated by the alteration. Quartz veinlets and stringers, and grey cryptocrystalline(?) quartz are also present in the most strongly altered zones. The strongest zones of alteration appear to occur in 1 to 3 meter, east-northeast trending bands. The other alteration zones in the vicinity of the trench, including one 21 meters to the south, have a similar trend and most commonly occur on the south side of northeast trending gullies.

Rocks in the trench are well jointed. The principal joint attitudes are 139/75 SW and 076/76 SE. Several small northeast trending shear bands were observed in the trench and trend into the gully.

2.2 MINERALIZATION

Pyrite is the principal metallic mineral present and occurs disseminated throughout the rock and as fracture and joint filling. The most strongly altered rocks contain up to 6% fine grained pyrite. Up to 2% arsenopyrite occurs as very fine (<0.5mm) needles, needle aggregates and crystals disseminated in very strongly silicified tuff and quartz stringer bands. Lesser amounts of arsenopyrite were found disseminated throughout the moderate to strongly altered tuffs. Trace amounts of chalcopyrite, galena and possibly molybdenite are also present in the trench.
3. GEOCHEMISTRY

3.1 INTRODUCTION

A total of 16 rock samples were collected from the trench. Most samples are continuous chip/channel samples taken over one meter, or more, intervals. Additional samples were collected as large grab samples of interesting bands, less well exposed areas and blasted float. All sample locations and analytical results are shown on figure 5. Analytical reports for all samples are included in appendix 1.

3.2 SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Rock samples were collected in plastic bags and sent to ACME ANALYTICAL LABS of Vancouver, B.C.. At ACME, samples were crushed down to minus 3/16 of an inch, and then a 1/2 pound is pulverized to minus 100 mesh. A 0.5 gram sample of the minus 80 fraction of all samples was digested in hot, dilute aqua regia in a boiling water bath and then diluted to 10 ml. with distilled water. All samples were analyzed for silver, copper, lead, zinc and arsenic using the Induced Coupled Plasma (ICP) technique. In addition gold was analyzed from a 10 gm. fraction by the conventional Atomic Absorption (AA) technique.

3.3 LITHOGEOCHEMISTRY

Of the 16 rocks sampled 15 are anomalous in arsenic (figure 5). Ten of these samples returned greater than 1,000 ppm arsenic including sample 5R12 which returned 4,453 ppm over 1.4 meters (table 2). Six samples are considered anomalous in gold and three possibly anomalous in silver. No other elements are significantly anomalous.

Table 2: Strongly Anomalous Rock Samples

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Width (meters)</th>
<th>As (ppm)</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>or Grab (G)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89-4A-5R3</td>
<td>1.0</td>
<td>993</td>
<td>2</td>
</tr>
<tr>
<td>89-4A-5R4</td>
<td>G</td>
<td>1,472</td>
<td>3</td>
</tr>
<tr>
<td>89-4A-5R7</td>
<td>1.0</td>
<td>1,952</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R8</td>
<td>1.0</td>
<td>126</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R9</td>
<td>G</td>
<td>14,911</td>
<td>350</td>
</tr>
<tr>
<td>89-4A-5R10</td>
<td>1.0</td>
<td>3,251</td>
<td>38</td>
</tr>
<tr>
<td>89-4A-5R11</td>
<td>G</td>
<td>1,794</td>
<td>6</td>
</tr>
<tr>
<td>89-4A-5R12</td>
<td>1.4</td>
<td>4,453</td>
<td>37</td>
</tr>
<tr>
<td>89-4A-5R13</td>
<td>1.4</td>
<td>1,144</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R14</td>
<td>1.0</td>
<td>1,140</td>
<td>3</td>
</tr>
<tr>
<td>89-4A-5R15</td>
<td>G</td>
<td>6,101</td>
<td>55</td>
</tr>
<tr>
<td>89-4A-5R16</td>
<td>G</td>
<td>13,484</td>
<td>260</td>
</tr>
<tr>
<td>89-4A-5R17</td>
<td>G</td>
<td>8,532</td>
<td>55</td>
</tr>
</tbody>
</table>
4. DISCUSSION

Arsenopyrite mineralization is present in all but the north end of the trench. Arsenic values are highest in bulk grab samples from the center of the trench, from samples blown free during blasting, and in the channel samples from the south end of the trench. Rough contouring of the results (figure 6) shows that there is an eight meter wide zone with values in excess of 0.1% (1,000 ppm) arsenic. This zone roughly corresponds to the area of strongest silicification and iron oxide (gossanous) staining.

No evidence of structural control to the mineralization was observed other than a correspondence with the gully. In addition no strong quartz vein systems are present. Therefore the porosity of the lapilli tuffs may be the factor which controlled the fluid migration. This view is supported by the gradation from rimming of fragments and alteration of the matrix to complete fragment replacement, or obliteration of original textures, as the alteration increases. If porosity is a principal factor, then a mesothermal origin for the veins may be suggested. Since the alteration zones trend parallel to small gully splays off of the main north-south trending gully this larger gully may have acted as a conduit for fluid migration.

Low lead and copper geochemical results suggest that either galena and chalcopyrite were misidentified in hand samples or that they occur in very minute amounts.

The mineralogy and geochemistry of the trench differs from that of the HL zone, 500 meters to the northwest, in that the HL zone in addition to being anomalous in arsenic and gold is also strongly anomalous in lead, zinc, copper and silver. The HL zone is hosted in granitic instead of volcanic rocks and has somewhat stronger quartz veining systems, but similar alteration, as at the trench area. Based on the presence of gossan zones on the north facing cliff between the two zones it appears that the zones may be part of a large continuous series of mineralized zones which strike for over 500 meters. Wilkins and MacKinnon (1988) suggest that several clusters of anomalies to the west of this area may also be related to the HL zones and thus extend the system for a 2.1 kilometer strike length.

The differences between the zones may be a function of vertical and lateral zonation. As the HL zone is about 600 feet in elevation below the trench and has higher gold values than the trench there may be an increase in gold values at depth.
LEGEND:

- 5000 - Arsenic contour Values in ppm

350 * - Anomalous Gold Results

SKUKUM GOLD INC

PQH CLAIMS - HL ZONE
WHITENPORE MINING DISTRICT

TRENCH-80 HL
ANOMALOUS GEOCHEMISTRY

Drawn by: HM/V Date: Dec.85 Figure No 6
NTS: 105/03 Scale: 1:100
Some of the proposed factors which may have been related to, or controlled, the genesis of the mineralization are summarized below:

1) Precious and base metal mineralization as a lateral continuation or outer shell of the Latreille porphyry copper-molybdenum system.

2) Proximity to the eruptive center, documented by Lambert (1974), and structural and hydrothermal activity, and dyking related to stages of eruption of this volcano.

3) Activity related to the intrusion of the ring dyke and dyke related rocks. Chalcedony veins and alteration associated with these rocks (Wilkins and MacKinnon, 1988) are evidence of at least one phase of hydrothermal activity.

4) Potential buried (?) Eocene specialized granitic intrusives, as in the Mt. MacAuley area to the northwest, may have been a metal or heat source.

5. CONCLUSIONS AND RECOMMENDATIONS

Although no economic gold values were found in the 1989 trench the trenching can be considered a success on the basis of the discovery of a 14 meter wide alteration zone. Finely disseminated arsenopyrite was found in silicified and propylitic altered lapilli tuff within the trench and several zones parallel to this one may also be similarly mineralized. Values of up to 14,911 ppm arsenic and 350 ppb gold were returned from the trench. A brief examination of the cliff face between the HL zone and the trench suggests that these zones are probably part of the same mineralized system and thus the system strikes at least 500 meters. The alteration zone (HL EXTENSION) does not appear to be structurally controlled, however the zones are hosted in both granitic and volcanic rocks so some structural control is likely.

Several geological elements are present in the claims which could contribute to the formation of the zones. Figure 7 summarizes most of these elements and relates them to the anomalous areas discovered in 1988.

All zones of silicification should be carefully examined in 1990. Bruce Ballantyne of the GSC reports that gold in similar (?) alteration zones in the Bennett Lake Complex is very fine grained (< 200 mesh) and thus samples require special preparation to achieve accurate analysis. In addition since the arsenopyrite is so fine grained the gold may be refractory and therefore difficult to detect without fire assay.
The exploration program outlined by Wilkins and MacKinnon (1988) is recommended for 1990. This program consists of:

1) Production of a professional 1:5,000 scale orthophoto and contour map for the northern and western portion of the claim block in the vicinity of the HL zone and the anomalies and showings to the southwest.

2) Further prospecting and mapping on a 1:5,000 scale in vicinity of the HL zone and the anomalies and showings to the southwest. Some of this terrain is rather precipitous requiring climbing equipment and climbing geologists.

3) Prospecting of the gossans in the cliffs adjacent to trench 89-HL, on the west side of the north facing cirque in which the HL zone is located. Again, the area is rather precipitous.

4) Follow up prospecting and mapping of the other anomalies on the property.

5) Completion of the talus fines sampling and prospecting traverses that were not covered in the 1988 exploration program.
6. REFERENCES

Doherty, R.A., & Hart, C.J.R., 1988 Preliminary Geology of Fenwick Creek (105D/3) and Alligator Lake (105D/6) Map Areas; Department of Indian and Northern Affairs Canada; Open File 1988-2, 30pp. With 1:50,000 scale maps.

7. **STATEMENT OF EXPENDITURES**

Labour Costs:

H. MacKinnon; Sept. 25 & October 1, 1989
1 man day field work; 3 days report preparation and project supervision;
4 days at $220 per day.......................... $ 880.00

M.J. Moreau Enterprises Ltd. Contract
Trenching - Sept. 25 to Oct. 1,1999
5.5 days at $700.00 per day.................... $3850.00
1 day at $450.00 per day...................... $450.00

Total Labour Costs $5180.00

Trenching Costs Calculation (Weighted average depths used)

16.4 yds x 2.7 yds x 0.4 yds = 17.7 cu yds
at $6.00 per cu yd............................... $106.27

16.4 yds x 2.7 yds x 1.7 yds = 75.3 cu yds
at $30.00 per cu yd.............................. $2259.00

Trenching Representation Work Costs $2365.27*

Analytical Costs:

Rock Samples: 16 samples at $12.00 per sample...$192.00

Sample Shipping: 98 lbs............................. $ 54.80

Total Analytical Costs $246.80

Camp & Transportation Costs:

Helicopter Costs: 6.18 hours at $610.00
 per hour + fuel at $57.00 per hour........... $4122.06

Camp Supplies and Room & Board: 12.5 man
days at an estimated $40.00 per day............. $500.00

Total Camp & Transportation Costs $4622.06

Report & Miscellaneous Costs:

Explosives, blasting caps and fuses.............. $325.00
Compressor fuel.................................. $ 50.00
Field Supplies (flagging, sample bags etc.)..... $ 10.00
Drafting: Estimated......................... $150.00
Photocopying, binding, map copying; estimated
20.00 per report....................... $120.00

Total Report & Miscellaneous Costs $655.00

Total Costs $13,069.13

Total 1989 exploration expenditures for assessment
on the PIM 1-109 claims: $13,069.13 - $2365.27* = $10,703.86*

* Assessment cost is reported as actual expenditure rather
than representation work/trenching costs; so calculated
representation trenching costs (*) are not included in total.
8. STATEMENT OF QUALIFICATIONS

I, Hugh Francis MacKinnon of P.O. Box 1785, Rossland, B.C., hereby certify that:

1) I graduated with a Bachelor of Science Degree with Honours in Geology from Carleton University, Ottawa, Ontario, in 1986.

2) I have been engaged in mineral exploration since 1980 in Ontario, Saskatchewan, The Northwest Territories, British Columbia, Nova Scotia and The Yukon Territory.

3) I was the project geologist for Skukum Gold's regional claims program.

4) I was involved in the work performed on the PIM claims in the summer of 1989 and am the author of this report.

Dated this thirtieth day of November, 1989

Hugh F. MacKinnon, B.Sc.
APPENDIX 1

ANALYTICAL RESULTS
ACME ANALYTICAL LABORATORIES LTD.
852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE (604)253-3158 FAX (604)253-1716 DATE RECEIVED: OCT 17 1989

GEOCHEMICAL ANALYSIS CERTIFICATE

- 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
- SAMPLE TYPE: Rock Chips
- AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.
- SAMPLE LEACH IS PARTIAL FOR Mn Fe Sr Ca P La Cr Mg Ba Ti B W AND LIMITED FOR Na K AND Al. AU DETECTION LIMIT BY ICP IS 3 PPM.
- AU ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SIGNED BY: D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Skukum Gold Inc. PROJECT 4A-PIM FILE # 89-4320

<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Cu PPM</th>
<th>Pb PPM</th>
<th>Zn PPM</th>
<th>Ag PPM</th>
<th>As PPM</th>
<th>Au* PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>89-4A-5R1</td>
<td>13</td>
<td>19</td>
<td>70</td>
<td>.1</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R2</td>
<td>11</td>
<td>10</td>
<td>78</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R3</td>
<td>10</td>
<td>13</td>
<td>70</td>
<td>.1</td>
<td>993</td>
<td>2</td>
</tr>
<tr>
<td>89-4A-5R4</td>
<td>4</td>
<td>8</td>
<td>59</td>
<td>.1</td>
<td>1472</td>
<td>3</td>
</tr>
<tr>
<td>89-4A-5R6</td>
<td>8</td>
<td>15</td>
<td>73</td>
<td>.1</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R7</td>
<td>6</td>
<td>14</td>
<td>71</td>
<td>.1</td>
<td>1952</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R8</td>
<td>11</td>
<td>15</td>
<td>71</td>
<td>.1</td>
<td>126</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R9</td>
<td>7</td>
<td>14</td>
<td>50</td>
<td>.7</td>
<td>14911</td>
<td>350</td>
</tr>
<tr>
<td>89-4A-5R10</td>
<td>8</td>
<td>18</td>
<td>65</td>
<td>.2</td>
<td>3251</td>
<td>38</td>
</tr>
<tr>
<td>89-4A-5R11</td>
<td>11</td>
<td>4</td>
<td>69</td>
<td>.2</td>
<td>1794</td>
<td>6</td>
</tr>
<tr>
<td>89-4A-5R12</td>
<td>21</td>
<td>50</td>
<td>73</td>
<td>.2</td>
<td>4453</td>
<td>37</td>
</tr>
<tr>
<td>89-4A-5R13</td>
<td>17</td>
<td>21</td>
<td>73</td>
<td>.2</td>
<td>1144</td>
<td>1</td>
</tr>
<tr>
<td>89-4A-5R14</td>
<td>4</td>
<td>10</td>
<td>40</td>
<td>.1</td>
<td>810</td>
<td>3</td>
</tr>
<tr>
<td>89-4A-5R15</td>
<td>8</td>
<td>9</td>
<td>49</td>
<td>.3</td>
<td>6101</td>
<td>55</td>
</tr>
<tr>
<td>89-4A-5R16</td>
<td>7</td>
<td>23</td>
<td>58</td>
<td>.8</td>
<td>13484</td>
<td>260</td>
</tr>
<tr>
<td>89-4A-5R17</td>
<td>9</td>
<td>12</td>
<td>52</td>
<td>.1</td>
<td>8532</td>
<td>55</td>
</tr>
</tbody>
</table>

- ASSAY REQUIRED FOR CORRECT RESULT -