Preliminary mapping & geochemistry in 1988 delineated numerous showings & anomalies. The ERT zone is a sulphide breccia 10 m wide. Grab samples from the ERT zone contained up to 5675 g/t Ag and 5.8 g/t Au.
PRELIMINARY
GEOLOGICAL AND GEOCHEMICAL
REPORT
ON THE
BOB 1-95 MINERAL CLAIMS
(YA98093 - YA98187)
CROZIER CREEK AREA
WHITEHORSE MINING DISTRICT
YUKON TERRITORY
N.T.S.: 105D-3

LATITUDE: 60 DEGREES 04 MINUTES NORTH
LONGITUDE: 135 DEGREES 20 MINUTES WEST

SKUKUM GOLD INC.
#706-595 Howe Street,
Vancouver, B.C.
V6C 2T5

BY
ANDREW L. WILKINS B.Sc.
and
HUGH F. MacKINNON B.Sc.

May 19, 1988 to October 02, 1988

092625
This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mining Act and is allowed as representation work in the amount of $9500.00.

Regional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.
SUMMARY

This report describes exploration work performed on the BOB 1-95 Mineral Claims located on Crozier Creek in the southern Yukon.

The property is underlain by Yukon Group metamorphic rocks of the Yukon Crystalline Complex, which have been intruded by granitic rocks of the Coast Plutonic Complex. These units are intruded or overlain by volcanic rocks and related sediments of the Bennett Lake Complex of Eocene age. Epithermal and mesothermal veins and structures are found throughout the Bennett Lake Caldera and the potential for finding commercial precious metal deposits is good.

Exploration work consisted of preliminary geological mapping, prospecting, and geochemical rock, talus fines and stream sediment silt sampling. A total of 2 silt samples, 308 talus fines samples and 48 rock samples were collected from the property in June and August of 1988.

Numerous showings and anomalies were delineated on the property, the most exciting and significant being the ERT zone. This zone consists of a sulphide breccia with disseminated and occasionally massive pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, and possible stibnite. The zone is at least 10 meters wide and of unknown strike length. Ore grade assays of up to 165.44 ounces per ton (5675 gm./tonne) silver and 0.169 ounces per ton (5.8 gm./tonne) gold were obtained from grab samples within the zone. The zone is marked by a geochemical talus fines anomaly 0.2 square kilometers in size with samples analyzing up to 770 ppb gold and 176.5 ppm silver.

Further exploration work is warranted on the BOB claims with emphasis on the ERT zone.
TABLE OF CONTENTS

1. INTRODUCTION
 - 1.1 LOCATION & ACCESS .. 1
 - 1.2 CLIMATE, TOPOGRAPHY & VEGETATION 1
 - 1.3 PROPERTY & CLAIM STATUS 1
 - 1.4 PREVIOUS WORK HISTORY .. 4
 - 1.5 1988 WORK PROGRAM .. 4

2. GEOLOGY
 - 2.1 REGIONAL GEOLOGY .. 4
 - 2.2 PROPERTY GEOLOGY .. 6
 - 2.2.1 LITHOLOGY .. 6
 - 2.2.2 STRUCTURE .. 8

3. GEOCHEMISTRY
 - 3.1 INTRODUCTION ... 8
 - 3.2 SAMPLE PREPARATION & ANALYTICAL PROCEDURE 8
 - 3.3 TREATMENT & PRESENTATION OF RESULTS 9
 - 3.4 MINERALIZATION & ROCK GEOCHEMISTRY 9
 - 3.5 TALUS FINES GEOCHEMISTRY 11

4. CONCLUSIONS & RECOMMENDATIONS 11

5. REFERENCES .. 14

6. STATEMENT OF EXPENDITURES ... 15

7. STATEMENT OF QUALIFICATIONS 16

APPENDICES .. in back of report

APPENDIX 1: SAMPLE DESCRIPTIONS

APPENDIX 2: ANALYTICAL RESULTS

APPENDIX 3: STATISTICAL SUMMARY

cont.
LIST OF FIGURES

FIG. 1 - LOCATION MAP - 1:250,000 scale..............................2
FIG. 2 - CLAIM MAP - 1:30,000 scale...............................3
FIG. 3 - REGIONAL GEOLOGY MAP - 1:50,000 scale...............5
FIG. 4 - 1989 WORK PROPOSAL MAP - 1:30,000 scale.........13

LIST OF TABLES

TABLE 1 - CLAIM STATUS...1
TABLE 2 - TABLE OF FORMATIONS.................................7
TABLE 3 - STATISTICAL SUMMARY OF ANOMALIES.................9
TABLE 4 - ERT ZONE ASSAYS......................................10

LIST OF MAPS

MAP 1 - PROPERTY GEOLOGY & SAMPLE LOCATIONS - 1:10,000 scale
...in pocket

MAP 2 - MINERALIZED SHOWINGS & ANOMALOUS GEOCHEMISTRY -
1:10,000 scale..in pocket

MAP 3 - THE ERT ZONE - MINERALIZATION & ANOMALOUS
GEOCHEMISTRY - 1:1,000 scale.........................in pocket
1. INTRODUCTION

1.1 LOCATION & ACCESS

The BOB 1-95 Mineral Claims are located north of the Yukon - B.C. border, on Crozier Creek, at 60 degrees 04 minutes North latitude and 135 degrees 20 minutes West longitude (N.T.S. 105D-3). The property is accessible by helicopter, with the nearest permanent bases being Whitehorse, Y.T. or Atlin, B.C.. The 1988 work program was conducted from a camp established in the Wheaton River Valley, Y.T..

1.2 CLIMATE, TOPOGRAPHY & VEGETATION

The climate in this area of the Yukon is variable with hot summers, enhanced by 18 - 20 hours of daylight, and long cold winters. Precipitation is moderate (120 cm. annually) with about half falling as rain. At the higher elevations, snow remains on the north exposures well into July. The creeks are open from early June to mid October.

The topography of the BOB claims is fairly rugged with precipitous mountainsides, glacially sculptured cirques and valleys, and alpine passes. Snowfields and small glaciers exist on the northern aspects of most of the ridges and mountains within the claim group. Maximum relief in the area is approximately 1060 meters (3500 ft.) with valley floors of 1150 meters (3800 ft.) and summits up to 2210 meters (7300 ft.).

Ninety percent of the property is above treeline, with talus and felsenmeer covering the higher elevations, and stunted spruce, willows, alpine grasses, shrubs and wild flowers in the subalpine zone at lower elevations.

1.3 PROPERTY & CLAIM STATUS

The BOB Property consists of 95 contiguous claims located within the Whitehorse Mining District and staked under the provisions of the Yukon Quartz Mining Act. The claims are listed in table 1 below.

TABLE 1: - CLAIM STATUS

<table>
<thead>
<tr>
<th>Claim Name</th>
<th>Grant Numbers</th>
<th>Recording Date</th>
<th>Renewal Period</th>
<th>Total Claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOB 1 - 95</td>
<td>YA98093-187</td>
<td>JUL 02,1987</td>
<td>OCT 02,1989*</td>
<td>95</td>
</tr>
</tbody>
</table>

* pending acceptance of this report

The claims are shown on Claim Sheet 105D-3 and lie within the Whitehorse Mining District. All the claims are 100%
owned by Skukum Gold Inc. of Vancouver, B.C.

1.4 PREVIOUS WORK HISTORY

No record of exploration work has been recorded on the BOB claim block. Since the early 1980's there has been sporadic exploration work conducted on numerous properties located in the immediate vicinity (Bennett Lake Caldera Complex). These properties saw initial interest in uranium exploration and more recently, in precious metals exploration. The Geological Survey of Canada conducted a regional stream sediment geochemical survey in 1985 (G.S.C., 1985) and sampled several of the creeks draining the BOB claims. Anomalous values for lead, zinc, arsenic, silver and gold were found in several of these samples. Numerous important epithermal and mesothermal style lead-zinc-arsenic-silver-gold showings exist in the Bennett Lake Caldera. Skukum Gold and several other companies are conducting work throughout the Bennett Lake Caldera Complex.

1.5 1988 WORK PROGRAM

A preliminary exploration program was carried out by a four person crew intermittently between May 19 and August 10, 1988. The Skukum Creek Mining Camp in the Wheaton River Valley was used as a base and a Hughes 500D helicopter was used for access to the property.

Exploration consisted of prospecting, preliminary mapping, rock sampling, stream sediment sampling and talus fines sampling.

The 1988 work program was conducted by the following Skukum Gold Inc. personnel:

Andrew Wilkins B.Sc..................................Project Geologist
Hugh MacKinnon B.Sc..................................Geologist
Erik Bergvinson.......................................Geological Assistant
Allan Ferguson..Geological Assistant
Martin Rhodes.................................Geological Assistant (Student)

2. GEOLOGY

2.1 REGIONAL GEOLOGY

The regional geology is presented in Figure 3.

The BOB Claims lie on the eastern edge of the Nisling Terrane, near the boundary with folded Mesozoic volcanic and sedimentary rocks of the Whitehorse Trough to the east. The Nisling Terrane is composed of rocks of the Proterozoic to Permian Yukon Crystalline Terrane and the Triassic to Tertiary Coast Plutonic Complex.
Lower Tertiary volcanics of the Skukum Group unconformably overlie the granitic rocks of the Coast Plutonic Complex and the discontinuous roof pendants of schists, gneisses, marbles and quartzites of the Yukon Group. The Skukum Group is the northernmost part of the Skloko volcanic province and outcrops in two distinct areas. The Bennett Lake Cauldon Subsidence Complex of Eocene age, is the more southerly of the two pockets of Skukum Group volcanics and occurs throughout the BOB claims.

The area of the Bennett Lake Volcanic Complex was mapped in detail by M.B. Lambert (G.S.C., 1974). Lambert concludes that the Eocene volcanic rocks of the complex "...consist mainly of rhyolite to dacite ash-flow tuffs and breccias with subordinate rhyolite, dacite and andesite lavas. The volcanic rocks are partly circumscribed by a large rhyolite ring dike..., the complex consists of two nested calderas, an eroded structural dome and a thick succession of pyroclastics and epiclastic rocks related to eruption, subsidence and filling of the cauldrons."

Twenty-five kilometers to the north is another group of Skukum Volcanics that is also an Eocene aged caldera complex. Much exploration work has been generated in this area since the development of TOTAL ERICKSON'S MT. SKUKUM MINE (Au, Ag), and OMNI RESOURCES' and SKUKUM GOLD's opening SKUKUM CREEK MINE (Au, Ag, Pb, Zn, Cu).

2.2 PROPERTY GEOLOGY

Property geology is presented on Map 1 in the rear pocket.

2.2.1 LITHOLOGY

The BOB claims are underlain by Upper Jurassic medium to coarse grained hornblende + biotite granodiorite (Kgd) and fine to medium grained hornblende - biotite diorite (Kdi) of the Coast Mountain Plutonic Complex, as well as roof pendants of Proterozoic to Permian quartz - feldspar - biotite - muscovite gneisses, schists and quartzites of the Yukon Group (Hcsn). The Yukon Group and Coast Mountain Plutonic Complex have been overlain and intruded by Eocene volcanics and related feeder pipes and dykes of the Bennett Lake Cauldon Subsidence Complex. The basement rocks are commonly shattered and brecciated along the cauldron margins and adjacent to faults and dykes.

The Bennett Lake Complex is composed of one formation in the vicinity of the BOB claims. The Boudette Creek Formation (EBC) consists of a succession of densely welded ignimbrites that outcrop on dark brown precipitous cliffs. Volcanic and granitic boulder conglomerate occurs at the base of the formation.
All the above rocks are cut by quartz eye-feldspar porphyry
dykes of rhyolitic composition (Eqfp) and are referred to as
"ring" dykes for they circle the cauldron complex. The ring
dykes form buff to cream weathering outcrops. They pinch and
swell, are steeply dipping and range from 150 to 300 meters
in width. Other rhyolitic, dacitic, andesitic and basaltic
dykes are found on the property and are related to the
evolution of the cauldron complex.

TABLE 2: - TABLE OF FORMATIONS

QUATERNARY
PLEISTOCENE AND RECENT
Q..............Glacial drift and alluvium.
 Unconformity

TERTIARY
EOCENE
Ebd,ad,dd,rd...Basalt dyke, andesite dyke, dacite dyke,
 rhyolite dyke.
Eqfp...........Ring dyke intrusions: rhyolitic quartz-
 feldspar porphyry.
 Intrusive contact

SKUKUM GROUP
EBC..........Boudette Creek Formation: ignimbrite;
 minor tuff and granitic boulder
 conglomerate.
 Unconformity

UPPER JURASSIC AND CRETACEOUS

COAST PLUTONIC COMPLEX
Kgd..........Granodiorite.
Kdi..........Diorite
 Intrusive contact

PALEOZOIC AND OLDER

YUKON GROUP
HCSn.........Quartz-feldspar-biotite-muscovite gneiss
 and schist.
2.2.2 STRUCTURE

The main structural features of the Bennett Lake complex include concentric and radial fracture systems, two nested cauldrons and a central dome (Lambert, 1974). The outer ring-fracture system is evident on the BOB claims and is marked by the ring dykes, the deep curved valley of Crozier Creek and other steeply dipping faults and dykes in the area. The ring fracture system marks the approximate rim of the outer of the two nested cauldrons.

3. GEOCHEMISTRY

3.1 INTRODUCTION

Talus fines were collected along the base of most of the slopes on the property at 50 meter spacings between samples. Stream sediment silt samples were collected from some of the streams where possible. Grab rock samples were collected from interesting looking lithologies, alteration and mineralized showings. A total of 308 talus fines samples, 2 silt samples and 48 rock samples were collected.

Sample locations are presented in Map 1. Geochemical analysis and assay certificates are presented in Appendix 2. All the talus fines and silt sampling data was combined with other geochemical data from Skukum Gold Inc.'s 1988 sampling programs on other claims in the Bennett Lake Caldera for the determination of anomalies.

3.2 SAMPLE PREPARATION AND ANALYTICAL PROCEDURE

Talus fines and silt samples were collected in KRAFT gusseted paper bags and sent to ACME ANALYTICAL LABS of Vancouver B.C. At ACME, samples were oven dried at approximately 60 degrees Celsius and sieved to minus 80 mesh. Rock samples were collected in plastic bags and also sent to ACME. Samples were then crushed down to minus 3/16 of an inch, and then a 1/2 pound of the sample is pulverized to minus 100 mesh. A 0.5 gram sample of the minus 80 fraction of all samples was digested in hot, dilute aqua regia in a boiling water bath and then diluted to 10 ml. with distilled water. Samples were analyzed for copper, lead, zinc, arsenic and silver using the Induced Coupled Plasma (ICP) technique. Some of the rock samples were analyzed for 30 element ICP. In addition, gold was analyzed from a 10 gram fraction by the conventional Atomic Absorption (AA) technique. Select rock samples were assayed for gold, silver, lead, zinc, arsenic and antimony using conventional assay methods from the ERT zone.
3.3 TREATMENT AND PRESENTATION OF RESULTS

Talus fines and silt sample results were combined with other samples taken from the Bennett Lake Caldera Area in 1988 by Skukum Gold Inc.. Graphical statistical methods were used to separate background from anomalous metal concentration. The data is heavily skewed. Threshold values and anomalous values were determined at the mean plus one standard deviation (x+1s) and the mean plus two standard deviations (x+2s) respectively. A possibly anomalous category was selected for lead, silver, arsenic and gold based on observed background values and experience. Anomalous sample divisions are presented in Table 3 below.

TABLE 3: - STATISTICAL SUMMARY OF ANOMALIES

<table>
<thead>
<tr>
<th>Mean (x) talus fines</th>
<th>Possibly Anomalous (?)</th>
<th>Threshold x+1s</th>
<th>Anomalous x+2s</th>
<th>Strongly Anomalous x+3s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu 30 ppm</td>
<td>105-179</td>
<td>180-254</td>
<td>255+</td>
<td></td>
</tr>
<tr>
<td>Pb 62 ppm</td>
<td>194-325</td>
<td>326-457</td>
<td>458+</td>
<td></td>
</tr>
<tr>
<td>Zn 149 ppm</td>
<td>261-372</td>
<td>373-484</td>
<td>485+</td>
<td></td>
</tr>
<tr>
<td>As 35 ppm</td>
<td>250-464</td>
<td>465-679</td>
<td>680+</td>
<td></td>
</tr>
<tr>
<td>Ag 0.6 ppm</td>
<td>2.6-4.5</td>
<td>4.6-6.5</td>
<td>6.6+</td>
<td></td>
</tr>
<tr>
<td>Au 6 ppb</td>
<td>30-53</td>
<td>54-77</td>
<td>78+</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>silts</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu 20 ppm</td>
<td>37-53</td>
<td>54-70</td>
<td>71+</td>
<td></td>
</tr>
<tr>
<td>Pb 30 ppm</td>
<td>51-71</td>
<td>72-92</td>
<td>93+</td>
<td></td>
</tr>
<tr>
<td>Zn 112 ppm</td>
<td>174-235</td>
<td>236-297</td>
<td>298+</td>
<td></td>
</tr>
<tr>
<td>As 7 ppm</td>
<td>15-22</td>
<td>23-30</td>
<td>31+</td>
<td></td>
</tr>
<tr>
<td>Ag 0.5 ppm</td>
<td>0.9-1.2</td>
<td>1.3-1.6</td>
<td>1.7+</td>
<td></td>
</tr>
<tr>
<td>Au 2 ppb</td>
<td>5-7</td>
<td>8-10</td>
<td>11+</td>
<td></td>
</tr>
</tbody>
</table>

3.4 MINERALIZATION & ROCK GEOCHEMISTRY

Mineralized showings are presented on Map 2.

To date three mineral occurrences have been found on the property by Skukum geologists.

The largest and most interesting mineralized area is known as the ERT zone and occurs in the south central portion of the claim block, on a nose shaped ridge off the main ridge that runs through the property. A rough sketch map of the zone is presented in the rear pocket (Map 3). The showing is located close to the contact between Coast Plutonic Complex granodiorite and Yukon Group schists and gneisses. It is a breccia zone with fragments of silicified Yukon Group and a matrix composed of wad, fine grained to massive sulphides.
(pyrite-arsenopyrite-galena-sphalerite-chalcopyrite) and/or graphite, chlorite, sericite. Ore grade assays of up to 165.44 ounces per ton (5675 gm./tonne) silver, 0.169 ounces per ton (5.8 gm./tonne) gold, 1.84% lead, 4.21% zinc, 4.26% arsenic and 0.66% antimony were obtained from grab samples of this zone. All assayed samples are presented below in Table 4. The zone is 10 meters wide and of unknown strike length.

TABLE 4: - ERT ZONE ASSAYS

<table>
<thead>
<tr>
<th>Sample #</th>
<th>silver oz/ton gm/tonne</th>
<th>gold oz/ton gm/tonne ppb</th>
<th>lead % ppm</th>
<th>zinc % ppm</th>
<th>arsenic % ppm</th>
<th>antimony % ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D-4R18</td>
<td>2.88</td>
<td>335</td>
<td>1.84</td>
<td>4.21</td>
<td>4795</td>
<td>0.66</td>
</tr>
<tr>
<td>4D-4R19</td>
<td>165.44</td>
<td>0.169</td>
<td>1.84</td>
<td>4.21</td>
<td>4.26</td>
<td>0.66</td>
</tr>
<tr>
<td>4D-4R21</td>
<td>1.24</td>
<td>5.80</td>
<td>1.84</td>
<td>4.21</td>
<td>4795</td>
<td>0.66</td>
</tr>
<tr>
<td>4D-4R25</td>
<td>147.17</td>
<td>890</td>
<td>1.84</td>
<td>4.21</td>
<td>4795</td>
<td>0.66</td>
</tr>
<tr>
<td>4D-4R27</td>
<td>8.35</td>
<td>725</td>
<td>1169</td>
<td>1357</td>
<td>8519</td>
<td>115</td>
</tr>
</tbody>
</table>

Two hundred meters to the southeast are some shear zones that are on strike with the ERT zone and are anomalous in copper, lead, arsenic, silver and possibly gold (241 ppm copper, 849 ppm lead, 155 ppm arsenic, 8.1 ppm silver and 20 ppm gold). One soil sample taken over a pyritic shear zone in this area analyzed 770 ppb gold and 176.5 ppm silver. Eight hundred meters northwest of the ERT zone is some altered pyritic Yukon Group that analyzed 1012 ppm arsenic and 14.0 ppm silver. It should be emphasized that when both of these two areas were sampled, the slopes were still covered in snow. The ERT showing was discovered during follow up of the earlier sampling and, with only one days work, it still remains relatively unexplored.

The second showing, known as the ROB showing, is located in a west facing fault gully on the west portion of the claim block. It is a quartz - chlorite - pyrite - chalcopyrite vein within sheared and veined quartz - carbonate - epidote - magnetite altered granodiorite. The fault gully is traceable over the length of the mountain side, however mineralization has only been found in two localities, spaced 110 meters apart. Assays of 1.05% copper, 1.30 ounces per ton (44.6 gm/tonne) silver and 220 ppb gold have been determined in the zone.

The third showing is a 10 cm. wide quartz vein with
chalcopyrite, molybdenite and magnetite in granodiorite (3547 ppm copper, 12.5 ppm silver).

3.5 TALUS FINES GEOCHEMISTRY

Anomalous results are presented in Map 2 and Map 3.

The largest and most significant anomaly on the property is located at the ERT mineralized zone. Forty-nine samples are anomalous in at least one of either copper (up to 490 ppm), zinc (up to 1247 ppm) or silver (up to 176.5 ppm) and possibly anomalous in lead (up to 900 ppm), arsenic (up to 4288 ppm), and/or gold (up to 770 ppb) as well. These samples are found in an area approximately 0.2 square kilometers in size. The anomaly, combined with the known ore grade mineralization from this area, makes the ERT zone a very exciting exploration target.

In the vicinity of the ERT zone is a spot lead (382 ppm), zinc (388 ppm), arsenic (450 ppm), silver (29.6 ppm), possible gold (24 ppb) anomaly 800 meters to the northwest, and a spot gold (41 ppb) anomaly 900 meters to the west.

In the vicinity of the ROB showing only two samples were found to be anomalous (119 ppm copper and 825 ppm copper, 1.9 ppm silver).

In the central portion of the claim block are 13 scattered anomalies that for the most part are quite weak, however there are a couple of stronger numbers including 210 ppb gold and 618 ppm zinc.

One spot gold anomaly (265 ppb gold) occurs between the ERT zone and the central scatter of anomalies.

The eastern portion of the claim block contains seven scattered anomalies, including a 78 ppb gold anomaly.

4. CONCLUSIONS AND RECOMMENDATIONS

Geological prospecting and mapping as well as stream sediment, talus fines and rock geochemistry was the focus of exploration activity on the BOB group of mineral claims during the summer of 1988. Many of the north facing slopes were not covered due to snow cover in the early summer months.

The BOB group of mineral claims is a part of the Bennett Lake Caldera Complex. There are numerous epithermal and mesothermal style gold-silver-lead-zinc-arsenic showings within this complex and the potential for finding similar showings and possible mineral deposits is good.

The most exciting and significant showing on the claim block
is the ERT zone. It consists of a sulphide breccia, close to the contact between Yukon Group schists and gneisses and Coast Plutonic granodiorite. Sulphides present include pyrite, arsenopyrite, sphalerite, chalcopyrite, galena and possible stibnite. The breccia zone is 10 meters wide and of unknown strike length, and is associated with a large talus fines anomaly that covers approximately 0.2 square kilometers. Ore grade assays of up to 165.44 ounces per ton (5675 gm./tonne) silver and 0.169 ounces per ton (5.8 gm./tonne) gold were obtained from grab samples of the zone. Preliminary prospecting of the area was conducted when lots of snow still remained on the ground.

Recommendations are as follows:

1; Production of a professional 1:5,000 scale orthophoto and contour map for the western portion of the claim block in the vicinity of the ERT zone.

2; Further mapping, prospecting and channel sampling on a 1:5,000 scale in the vicinity of the ERT zone. The cliff face to the immediate east of the showing is rather precipitous requiring climbing equipment and climbing geologists. This work should not be started until late July, after the snow cover has melted and cornices have stabilized.

3; Possible blasting and trenching of the ERT zone.

4; Grid talus fines sampling on the south and southwest facing slope around the ERT zone in late July.

5; Possible drilling of the ERT zone in late August or the following spring once targets have been established.

6; Mapping and prospecting between the ROB and the ERT showings.

7; Talus fines sampling and prospecting traverses on the north facing slopes of the BOB claims after the snow has melted.

Figure 3 summarizes these recommendations.
5. REFERENCES

Doherty, R.A., & Hart, C.J.R., 1988 Preliminary Geology of Fenwick Creek (105D/3) and Alligator Lake (105D/6) Map Areas; Department of Indian and Northern Affairs Canada; Open File 1988-2, 80pp. With 1:50,000 scale maps.

6. STATEMENT OF EXPENDITURES

Salaries and Camp Costs:
- Project Geologist: 14 days @ 265. per day. $3710.00
- Geologist: 4 days @ 220. per day. $880.00
- Geologist: 1 days @ 175. per day. $175.00
- Field Assistants: 8 days @ 110. per day. $880.00
- Room and Board: 27 days @ 50. per day. $1350.00

Truck Rental:
- 5 days @ $60. per day. $300.00

Analytical Costs:
- Talus Fines: 308 @ $9.85 per sample. $3033.80
- Silt Samples: 2 @ $9.85 per sample. $19.70
- Rock Samples: 33 @ $12.00 per sample. $396.00
- Rock Samples: 15 @ $13.75 per sample. $206.25
- Rock Samples (Assays): $69.00
- Shipping Costs: $257.00

Helicopter Costs:
- Hughes 500D: $2875.85

Drafting Costs: $480.00

Miscellaneous Costs: $300.00

TOTAL EXPLORATION COSTS: $14,932.60
7. STATEMENT OF QUALIFICATIONS

I, Andrew L. Wilkins, of #314 - 1860 West 2nd. Avenue, Vancouver, B.C., certify that:

1) I am a graduate of the University of British Columbia with a B.Sc. degree in the geological sciences (1981).

2) I have been engaged in the mining exploration industry in British Columbia and the Yukon since 1978.

3) I was the project geologist for Skukum Gold Inc.'s regional claims program.

4) I was involved with the work performed on the BOB 1 - 95 Claims in summer of 1988 and am co-author of this report.

Dated this twenty-third day of November, 1988.

Andrew L. Wilkins B.Sc.
I, Hugh Francis MacKinnon of P.O. Box 1785, Rossland, B.C., hereby certify that:

1) I obtained a Bachelor of Science Degree with Honours in Geology from Carleton University, Ottawa, Ontario, in 1986;

2) I have been engaged in mineral exploration since 1980 in Ontario, Saskatchewan, The Northwest Territories, British Columbia and The Yukon Territory.

3) I was involved in the work performed on the BOB 1 - 95 Claims in 1988, and am co-author of this report.

Dated this twenty-third day of November, 1988.

[Signature]
Hugh F. MacKinnon, B.Sc.
APPENDIX 1:
SAMPLE DESCRIPTIONS
<table>
<thead>
<tr>
<th>Sample</th>
<th>Date</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>884D-4R1</td>
<td>05 June/88</td>
<td>Top of ridge</td>
<td>Quartz, sericite alteration, pyrite, pyrrhotite alteration zone 0.5 m wide in KgD (granodiorite) approx. 000°/90°.</td>
</tr>
<tr>
<td>884D-4R2</td>
<td>05 June/88</td>
<td>25 m from 4R1</td>
<td>As above. Another parallel zone.</td>
</tr>
<tr>
<td>884D-4R3</td>
<td>05 June/88</td>
<td>Top of ridge</td>
<td>10 cm wide glossy-white quartz vein with chalcopyrite, pyrite, magnetite and molybdenite. Limonitic and malachite staining. Good chlorite and epidote (propylitic) alteration surrounding vein. Vein cuts KgD.</td>
</tr>
<tr>
<td>884D-4R4</td>
<td>06 June/88</td>
<td>Steep cliffs eastern end of claims</td>
<td>Quartz-sericite alteration alteration, gossanous, in 15 cm shear zone related to the large ring dyke (Eqfp).</td>
</tr>
<tr>
<td>884D-4R5</td>
<td>06 June/88</td>
<td>"</td>
<td>Breccia zone in ring dyke (Eqfp), related to some andesitic dykes. Vuggy, quartz-quartz calcite in matrix.</td>
</tr>
<tr>
<td>884D-4R6</td>
<td>07 June/88</td>
<td>West end</td>
<td>Subcrop, grab sample. Bull white quartz vein with minor chlorite and magnetite cutting KgD.</td>
</tr>
<tr>
<td>884D-4R7</td>
<td>07 June/88</td>
<td>"</td>
<td>Subcrop, grab sample. Bull white quartz and chlorite vein, some minor sericite alteration. Country rock is KgD.</td>
</tr>
<tr>
<td>884D-4R8</td>
<td>07 June/88</td>
<td>"</td>
<td>Gossanous rhyolitic dyke, pink on fresh surfaces, aphanitic.</td>
</tr>
<tr>
<td>884D-4R9</td>
<td>08 June/88</td>
<td>Rob Showing</td>
<td>Extremely gossanous vein with 50% rusty pyrite in gully fault 087°/85°N. Vein approx. 10 cm. Grab sample.</td>
</tr>
<tr>
<td>884D-4R10</td>
<td>08 June/88</td>
<td>"</td>
<td>Nodule of sulphide with pyrite and chalcopyrite in fault zone. Chlorite-epidote propylitic alteration in host rock. Grab sample.</td>
</tr>
<tr>
<td>884D-4R11</td>
<td>08 June/88</td>
<td>"</td>
<td>Grab sample. Chlorite-quartz-magnetite-epidote vein with pyrite and malachite. Same location as above 2 samples.</td>
</tr>
<tr>
<td>Sample</td>
<td>Date</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>884D-4R12</td>
<td>08 June/88</td>
<td>Rob Showing west end</td>
<td>Quartz vein with pyrite with possible galena(?), molybdenite (smeared). There is chlorite-epidote alteration along envelope. Same fault zone as above three samples.</td>
</tr>
<tr>
<td>884D-4R14</td>
<td>08 June/88</td>
<td>"</td>
<td>Grab sample. Pyrite vein 3 cm wide in gully fault; 90% pyrite.</td>
</tr>
<tr>
<td>Sample</td>
<td>Date</td>
<td>Location Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>884D-5R3</td>
<td>07 June/88</td>
<td>Central portion of claims Bull quartz within Yukon Group quartzites and intrusive rocks.</td>
<td></td>
</tr>
<tr>
<td>884D-5R4</td>
<td>07 June/88</td>
<td>Gossanous and altered quartzites with possible ignimbrite or rhyolite mix. Very siliceous; 2 to 4% fine grained pyrite.</td>
<td></td>
</tr>
<tr>
<td>884D-5R5</td>
<td>08 June/88</td>
<td>Gossanous and pyritic (1 to 5%) band, within quartz veining (sweats) within silicified, chloritized and epidotized quartzite and diorite.</td>
<td></td>
</tr>
<tr>
<td>884D-5R6</td>
<td>08 June/88</td>
<td>Gossanous shear zone with massive pyrite lens and disseminated pyrite. R6 - hanging wall quartzites and sheared and altered (chlorite, epidote, carbonated diorite(?)) and massive (up to 60%) to disseminated (5 to 15%) pyrite lenses. R7 - footwall contact with quartzites, minor disseminated pyrite, 15 cm chip samples. Zone width up to 25 cm; minor rusty quartz pods.</td>
<td></td>
</tr>
<tr>
<td>884D-9R01 to 9R06</td>
<td>05 June/88</td>
<td>Evidence of quartz vein and gossanous rock with altered plagioclase (6 rocks).</td>
<td></td>
</tr>
<tr>
<td>884D-4F1</td>
<td>08 June/88</td>
<td>ERT Showing Quartz sweat of Yukon Group - brecciated and slightly gossanous.</td>
<td></td>
</tr>
<tr>
<td>884D-4R18</td>
<td>08 June/88</td>
<td>Deep brown-orange gossan granodiorite, chlorite, minor argillite, sericite alteration, limonite schist (graphite-granodiorite), sheared up completely. Minor finely disseminated sulphide (arsenopyrite-pyrite).</td>
<td></td>
</tr>
<tr>
<td>884D-4R20</td>
<td>08 June/88</td>
<td>Breccia - siliceous with chlorite alteration as well as disseminated pyrite and manganese oxides throughout. Black matrix; 110°/40°S; 202°/60°E.</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Date</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>884D-4R21</td>
<td>08 June/88</td>
<td>ERT Showing</td>
<td>Manganese oxides in shear zone, brecciated, dark grey, some propylitic alteration; 125°/30°S.</td>
</tr>
<tr>
<td>884D-4R22</td>
<td>08 June/88</td>
<td>"</td>
<td>Siliceous fragments in a manganese oxide-like matrix, dark grey, slightly gossanous.</td>
</tr>
<tr>
<td>884D-4R23</td>
<td>08 June/88</td>
<td>"</td>
<td>Bull quartz. Quartz vein in rhyolite fragment in breccia zone.</td>
</tr>
<tr>
<td>884D-4R24</td>
<td>08 June/88</td>
<td>"</td>
<td>Banded and sheared breccia. Siliceous elongate fragments with pyrite, minor chlorite, some sericite alteration in dark grey streaky matrix; pyritic.</td>
</tr>
<tr>
<td>884D-4R25</td>
<td>08 June/88</td>
<td>"</td>
<td>Galena, chalcopyrite, malachite in siliceous breccia. Pale grey to white quartz with fine grained sulphides.</td>
</tr>
<tr>
<td>884D-4R26</td>
<td>08 June/88</td>
<td>"</td>
<td>Heavy gossanous, dark grey sheared rock from breccia zone.</td>
</tr>
<tr>
<td>884D-4R27</td>
<td>08 June/88</td>
<td>"</td>
<td>Galena, sphalerite, pyrite, chalcopyrite sulphide breccia, siliceous fragments in a sulphide matrix; 105°/15°S.</td>
</tr>
<tr>
<td>884D-4R28</td>
<td>08 June/88</td>
<td>"</td>
<td>Black graphitic breccia. Graphitic matrix with pyrite. Sheared and gossanous; 076°/60°S.</td>
</tr>
<tr>
<td>884D-4R29</td>
<td>08 June/88</td>
<td>"</td>
<td>Breccia, elongate, lighter coloured siliceous fragments up to 30 cm long in a dark grey graphitic matrix. Loaded with manganese oxides; 095°/55°S.</td>
</tr>
<tr>
<td>884D-4R30</td>
<td>08 June/88</td>
<td>"</td>
<td>Limonitic and Mn stained siliceous breccia, much like the ERT Showing. Quartz-sericite alteration; pyrite alteration.</td>
</tr>
</tbody>
</table>
APPENDIX 2:

ANALYTICAL RESULTS
ASSAY CERTIFICATE

SAMPLE TYPE: PulP AUE** & AG** BY FIRE ASSAY FROM I.A.T.

SKUKUM GOLD INC. PROJECT 4D FILE # 88-3698R BoB CL.

<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Pb</th>
<th>Zn</th>
<th>As</th>
<th>Ag**</th>
<th>Au**</th>
<th>Sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-4D-4R-18</td>
<td></td>
<td></td>
<td></td>
<td>2.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-4D-4R-19</td>
<td>1.84</td>
<td>4.21</td>
<td>4.26</td>
<td>165.44</td>
<td>.169</td>
<td>.66</td>
</tr>
<tr>
<td>88-4D-4R-21</td>
<td></td>
<td></td>
<td></td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-4D-4R-25</td>
<td></td>
<td></td>
<td></td>
<td>142.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-4D-4R-27</td>
<td></td>
<td></td>
<td></td>
<td>8.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ASSAY CERTIFICATE

SAMPLE TYPE: Pulp AG** BY FIRE ASSAY FROM I A.T.

SIGNED BY: C.L. TOYE, C.LEONG, B.CHEAN, J.WANG; CERTIFIED B.C. ASSAYERS

SKUKUM GOLD INC. PROJECT 4D FILE # 88-1964R

SAMPLE# Cu Ag** % OZ/T
88-4D-4R-11 1.05 1.30 44.6 gm/ton.
GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 gram sample is digested with 3M-1.2 HCL-HNO3-H2O at 95 deg. C for one hour and is diluted to 10 ml with water.
This leach is partial for Mn Fe Sr Ca P La Cr Mg Ba Ti B W and limited for Na K and Al. Au detection limit by ICP is 3 ppm.
- Sample Type: Soil
- Assay Analysis by Acid Leach/AA from 10 gm Sample. P-20 mesh, Pulverized.

ASSAYER: .. D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

SKUKUM GOLD INC. PROJECT 4D FILE # 88-4840 Page 1

<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Cu PPM</th>
<th>Pb PPM</th>
<th>Zn PPM</th>
<th>Ag PPM</th>
<th>As PPM</th>
<th>Au* PPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-4D-2S-1</td>
<td>87</td>
<td>26</td>
<td>96</td>
<td>.2</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-2S-2</td>
<td>56</td>
<td>25</td>
<td>77</td>
<td>.2</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-3</td>
<td>81</td>
<td>19</td>
<td>82</td>
<td>.1</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-2S-4</td>
<td>43</td>
<td>20</td>
<td>75</td>
<td>.5</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-5</td>
<td>53</td>
<td>25</td>
<td>73</td>
<td>.1</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-2S-6</td>
<td>45</td>
<td>76</td>
<td>104</td>
<td>.2</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-2S-7</td>
<td>42</td>
<td>35</td>
<td>82</td>
<td>.2</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-2S-8</td>
<td>42</td>
<td>20</td>
<td>104</td>
<td>.1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-9</td>
<td>29</td>
<td>126</td>
<td>161</td>
<td>.6</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-2S-10</td>
<td>25</td>
<td>21</td>
<td>82</td>
<td>.1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-11</td>
<td>72</td>
<td>120</td>
<td>178</td>
<td>6.5</td>
<td>183</td>
<td>11</td>
</tr>
<tr>
<td>88-4D-2S-12</td>
<td>92</td>
<td>108</td>
<td>148</td>
<td>5.0</td>
<td>149</td>
<td>15</td>
</tr>
<tr>
<td>88-4D-2S-13</td>
<td>75</td>
<td>48</td>
<td>112</td>
<td>.7</td>
<td>55</td>
<td>18</td>
</tr>
<tr>
<td>88-4D-2S-14</td>
<td>132</td>
<td>54</td>
<td>156</td>
<td>3.1</td>
<td>107</td>
<td>16</td>
</tr>
<tr>
<td>88-4D-2S-15</td>
<td>176</td>
<td>42</td>
<td>119</td>
<td>1.5</td>
<td>83</td>
<td>14</td>
</tr>
<tr>
<td>88-4D-2S-16</td>
<td>42</td>
<td>23</td>
<td>97</td>
<td>.1</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-2S-17</td>
<td>26</td>
<td>26</td>
<td>87</td>
<td>.1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-18</td>
<td>30</td>
<td>17</td>
<td>93</td>
<td>.2</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-19</td>
<td>48</td>
<td>32</td>
<td>128</td>
<td>.4</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-2S-20</td>
<td>58</td>
<td>30</td>
<td>128</td>
<td>.1</td>
<td>38</td>
<td>7</td>
</tr>
<tr>
<td>88-4D-2S-21</td>
<td>64</td>
<td>29</td>
<td>163</td>
<td>.3</td>
<td>42</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-2S-22</td>
<td>138</td>
<td>42</td>
<td>320</td>
<td>.8</td>
<td>77</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-2S-23</td>
<td>126</td>
<td>23</td>
<td>226</td>
<td>.6</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-24</td>
<td>272</td>
<td>36</td>
<td>295</td>
<td>.7</td>
<td>47</td>
<td>6</td>
</tr>
<tr>
<td>88-4D-2S-25</td>
<td>88</td>
<td>50</td>
<td>313</td>
<td>.3</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-2S-26</td>
<td>153</td>
<td>23</td>
<td>243</td>
<td>.5</td>
<td>35</td>
<td>8</td>
</tr>
<tr>
<td>88-4D-2S-27</td>
<td>136</td>
<td>41</td>
<td>468</td>
<td>.8</td>
<td>105</td>
<td>15</td>
</tr>
<tr>
<td>88-4D-2S-28</td>
<td>136</td>
<td>42</td>
<td>597</td>
<td>.6</td>
<td>57</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-2S-29</td>
<td>142</td>
<td>29</td>
<td>288</td>
<td>.9</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-30</td>
<td>142</td>
<td>42</td>
<td>281</td>
<td>1.4</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>88-4D-2S-31</td>
<td>92</td>
<td>53</td>
<td>243</td>
<td>.5</td>
<td>71</td>
<td>9</td>
</tr>
<tr>
<td>88-4D-2S-32</td>
<td>107</td>
<td>23</td>
<td>200</td>
<td>.6</td>
<td>101</td>
<td>7</td>
</tr>
<tr>
<td>88-4D-2S-33</td>
<td>111</td>
<td>20</td>
<td>212</td>
<td>.6</td>
<td>113</td>
<td>8</td>
</tr>
<tr>
<td>88-4D-2S-34</td>
<td>178</td>
<td>47</td>
<td>212</td>
<td>1.3</td>
<td>109</td>
<td>30</td>
</tr>
<tr>
<td>88-4D-2S-35</td>
<td>192</td>
<td>20</td>
<td>243</td>
<td>1.0</td>
<td>101</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-2S-36</td>
<td>74</td>
<td>73</td>
<td>266</td>
<td>.4</td>
<td>98</td>
<td>21</td>
</tr>
<tr>
<td>STD C/AU-S</td>
<td>62</td>
<td>41</td>
<td>132</td>
<td>6.7</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Cu</td>
<td>Pb</td>
<td>Zn</td>
<td>Ag</td>
<td>As</td>
<td>Au*</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
</tr>
<tr>
<td>88-4D-2S-37</td>
<td>45</td>
<td>89</td>
<td>210</td>
<td>7.5</td>
<td>241</td>
<td>12</td>
</tr>
<tr>
<td>88-4D-2S-38</td>
<td>48</td>
<td>77</td>
<td>187</td>
<td>7.6</td>
<td>270</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-2S-39</td>
<td>49</td>
<td>81</td>
<td>193</td>
<td>7.6</td>
<td>272</td>
<td>13</td>
</tr>
<tr>
<td>88-4D-2S-40</td>
<td>45</td>
<td>20</td>
<td>106</td>
<td>.4</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-41</td>
<td>61</td>
<td>24</td>
<td>169</td>
<td>.4</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-42</td>
<td>64</td>
<td>26</td>
<td>173</td>
<td>.4</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-43</td>
<td>75</td>
<td>17</td>
<td>168</td>
<td>.6</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-44</td>
<td>29</td>
<td>13</td>
<td>93</td>
<td>.3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-45</td>
<td>65</td>
<td>25</td>
<td>115</td>
<td>.5</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-46</td>
<td>30</td>
<td>17</td>
<td>76</td>
<td>.2</td>
<td>13</td>
<td>41</td>
</tr>
<tr>
<td>88-4D-2S-47</td>
<td>38</td>
<td>31</td>
<td>99</td>
<td>.4</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-2S-48</td>
<td>34</td>
<td>16</td>
<td>79</td>
<td>.3</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-49</td>
<td>36</td>
<td>28</td>
<td>92</td>
<td>.4</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-50</td>
<td>36</td>
<td>15</td>
<td>95</td>
<td>.3</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-2S-51</td>
<td>54</td>
<td>33</td>
<td>235</td>
<td>1.0</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-39</td>
<td>72</td>
<td>231</td>
<td>405</td>
<td>11.5</td>
<td>304</td>
<td>27</td>
</tr>
<tr>
<td>88-4D-4S-40</td>
<td>109</td>
<td>641</td>
<td>602</td>
<td>11.4</td>
<td>1688</td>
<td>118</td>
</tr>
<tr>
<td>88-4D-4S-41</td>
<td>165</td>
<td>597</td>
<td>779</td>
<td>31.0</td>
<td>3026</td>
<td>136</td>
</tr>
<tr>
<td>88-4D-4S-42</td>
<td>181</td>
<td>523</td>
<td>553</td>
<td>93.7</td>
<td>4288</td>
<td>330</td>
</tr>
<tr>
<td>88-4D-4S-43</td>
<td>83</td>
<td>840</td>
<td>908</td>
<td>57.0</td>
<td>2656</td>
<td>191</td>
</tr>
<tr>
<td>88-4D-4S-44</td>
<td>125</td>
<td>884</td>
<td>1247</td>
<td>114.3</td>
<td>2026</td>
<td>170</td>
</tr>
<tr>
<td>88-4D-4S-45</td>
<td>115</td>
<td>609</td>
<td>687</td>
<td>142.5</td>
<td>1044</td>
<td>183</td>
</tr>
<tr>
<td>88-4D-4S-46</td>
<td>184</td>
<td>900</td>
<td>942</td>
<td>118.5</td>
<td>3530</td>
<td>390</td>
</tr>
<tr>
<td>88-4D-4S-47</td>
<td>18</td>
<td>58</td>
<td>113</td>
<td>1.6</td>
<td>102</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-4S-48</td>
<td>26</td>
<td>56</td>
<td>130</td>
<td>3.6</td>
<td>171</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-4S-49</td>
<td>54</td>
<td>265</td>
<td>255</td>
<td>19.3</td>
<td>1637</td>
<td>55</td>
</tr>
<tr>
<td>88-4D-4S-50</td>
<td>140</td>
<td>69</td>
<td>173</td>
<td>5.1</td>
<td>183</td>
<td>11</td>
</tr>
<tr>
<td>88-4D-4S-51</td>
<td>44</td>
<td>86</td>
<td>154</td>
<td>2.0</td>
<td>139</td>
<td>10</td>
</tr>
<tr>
<td>88-4D-4S-52</td>
<td>38</td>
<td>71</td>
<td>137</td>
<td>2.2</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td>88-4D-4S-53</td>
<td>64</td>
<td>48</td>
<td>139</td>
<td>1.4</td>
<td>81</td>
<td>10</td>
</tr>
<tr>
<td>88-4D-4S-54</td>
<td>39</td>
<td>24</td>
<td>99</td>
<td>.7</td>
<td>39</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-4S-55</td>
<td>66</td>
<td>14</td>
<td>111</td>
<td>.6</td>
<td>38</td>
<td>12</td>
</tr>
<tr>
<td>88-4D-4S-56</td>
<td>34</td>
<td>19</td>
<td>87</td>
<td>.2</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>88-4D-4S-57</td>
<td>40</td>
<td>17</td>
<td>80</td>
<td>.1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4S-58</td>
<td>27</td>
<td>17</td>
<td>74</td>
<td>.1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>STD C/AU-S</td>
<td>59</td>
<td>43</td>
<td>132</td>
<td>6.6</td>
<td>43</td>
<td>47</td>
</tr>
</tbody>
</table>
ICP - 500 Gm SAMPLE IS DIGESTED WITH 30% HCl-HNO3-H2O AT 95 DEG C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR Na Fe Sr Ca P La Cr Mg Ba Ti B V AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- **SAMPLE TYPE:** ROCK
- **ANALYSIS BY ACID LEACH/AA FROM 10 G SAMPLE.

DATE RECEIVED: AUG 10 1988
DATE REPORT MAILED:
ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

SKUKUM GOLD INC. PROJECT 4D File # 88-3698

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>As</th>
<th>Fe</th>
<th>Dm</th>
<th>Au</th>
<th>Th</th>
<th>Sb</th>
<th>Bi</th>
<th>V</th>
<th>Ca</th>
<th>P</th>
<th>La</th>
<th>Cr</th>
<th>Mg</th>
<th>Ba</th>
<th>Ti</th>
<th>B</th>
<th>Al</th>
<th>Na</th>
<th>K</th>
<th>V</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-40-1</td>
<td>1</td>
<td>10</td>
<td>17</td>
<td>39</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>925</td>
<td>4.14</td>
<td>22</td>
<td>5</td>
<td>HD</td>
<td>5</td>
<td>56</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1.62</td>
<td>0.073</td>
<td>15</td>
<td>3</td>
<td>0.25</td>
<td>0.08</td>
<td>0.01</td>
<td>3</td>
<td>0.69</td>
<td>0.02</td>
</tr>
<tr>
<td>88-40-13</td>
<td>2</td>
<td>45</td>
<td>190</td>
<td>72</td>
<td>85</td>
<td>7</td>
<td>17</td>
<td>171</td>
<td>3.10</td>
<td>41</td>
<td>95</td>
<td>5</td>
<td>50</td>
<td>2</td>
<td>75</td>
<td>2</td>
<td>19</td>
<td>0.16</td>
<td>0.009</td>
<td>6</td>
<td>10</td>
<td>0.26</td>
<td>0.16</td>
<td>0.13</td>
<td>3</td>
<td>0.67</td>
<td>0.01</td>
<td>0.13</td>
</tr>
<tr>
<td>88-40-13</td>
<td>2</td>
<td>40</td>
<td>1550</td>
<td>11666</td>
<td>301</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>14</td>
<td>729</td>
<td>6711</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>0.05</td>
<td>0.012</td>
<td>2</td>
<td>25</td>
<td>0.06</td>
<td>0.12</td>
<td>0.02</td>
<td>2</td>
<td>0.14</td>
<td>0.01</td>
<td>0.07</td>
<td>1</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>88-40-20</td>
<td>2</td>
<td>35</td>
<td>46</td>
<td>111</td>
<td>6.5</td>
<td>48</td>
<td>17</td>
<td>1179</td>
<td>3.16</td>
<td>63</td>
<td>5</td>
<td>HD</td>
<td>4</td>
<td>215</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>77</td>
<td>3.83</td>
<td>0.086</td>
<td>6</td>
<td>69</td>
<td>1.90</td>
<td>0.28</td>
<td>0</td>
<td>4</td>
<td>1.01</td>
<td>0.01</td>
</tr>
<tr>
<td>88-40-21</td>
<td>2</td>
<td>25</td>
<td>142</td>
<td>340</td>
<td>38.3</td>
<td>27</td>
<td>5</td>
<td>1122</td>
<td>2.12</td>
<td>183</td>
<td>5</td>
<td>HD</td>
<td>4</td>
<td>136</td>
<td>2</td>
<td>6</td>
<td>25</td>
<td>32</td>
<td>0.006</td>
<td>0.035</td>
<td>6</td>
<td>69</td>
<td>1.30</td>
<td>0.19</td>
<td>0</td>
<td>4</td>
<td>0.96</td>
<td>0.01</td>
</tr>
<tr>
<td>88-40-21</td>
<td>4</td>
<td>3</td>
<td>55</td>
<td>108</td>
<td>1.1</td>
<td>14</td>
<td>2</td>
<td>991</td>
<td>1.01</td>
<td>48</td>
<td>5</td>
<td>HD</td>
<td>5</td>
<td>54</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>0.16</td>
<td>0.011</td>
<td>5</td>
<td>6</td>
<td>0.55</td>
<td>0.11</td>
<td>0</td>
<td>4</td>
<td>0.47</td>
<td>0.01</td>
<td>0.49</td>
</tr>
<tr>
<td>88-40-22</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>23</td>
<td>4.3</td>
<td>2</td>
<td>17</td>
<td>177</td>
<td>0.16</td>
<td>21</td>
<td>5</td>
<td>HD</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>16</td>
<td>0.01</td>
<td>0.001</td>
<td>2</td>
<td>4</td>
<td>0.04</td>
<td>0.03</td>
<td>0</td>
<td>10</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>88-40-24</td>
<td>14</td>
<td>8</td>
<td>67</td>
<td>68</td>
<td>13.8</td>
<td>14</td>
<td>2</td>
<td>423</td>
<td>2.14</td>
<td>210</td>
<td>6</td>
<td>HD</td>
<td>5</td>
<td>59</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>50</td>
<td>0.58</td>
<td>0.075</td>
<td>10</td>
<td>15</td>
<td>1.10</td>
<td>0.21</td>
<td>4</td>
<td>12</td>
<td>1.04</td>
<td>0.01</td>
</tr>
<tr>
<td>88-40-25</td>
<td>1</td>
<td>1716</td>
<td>3209</td>
<td>368</td>
<td>210.8</td>
<td>4</td>
<td>1</td>
<td>98</td>
<td>0.12</td>
<td>1904</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>27</td>
<td>2364</td>
<td>2</td>
<td>3</td>
<td>0.16</td>
<td>0.005</td>
<td>2</td>
<td>5</td>
<td>0.04</td>
<td>0.01</td>
<td>3</td>
<td>0.05</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>88-40-26</td>
<td>5</td>
<td>13</td>
<td>43</td>
<td>194</td>
<td>14.6</td>
<td>28</td>
<td>5</td>
<td>532</td>
<td>2.01</td>
<td>162</td>
<td>5</td>
<td>HD</td>
<td>3</td>
<td>24</td>
<td>2</td>
<td>12</td>
<td>35</td>
<td>0.07</td>
<td>0.007</td>
<td>5</td>
<td>19</td>
<td>0.50</td>
<td>0.25</td>
<td>0</td>
<td>6</td>
<td>0.06</td>
<td>0.13</td>
<td>2</td>
</tr>
<tr>
<td>88-40-27</td>
<td>3</td>
<td>155</td>
<td>1169</td>
<td>1257</td>
<td>266.1</td>
<td>10</td>
<td>2</td>
<td>202</td>
<td>1.06</td>
<td>8513</td>
<td>5</td>
<td>HD</td>
<td>1</td>
<td>9</td>
<td>26</td>
<td>115</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>0.16</td>
<td>0.016</td>
<td>2</td>
<td>5</td>
<td>0.99</td>
<td>0.11</td>
<td>0</td>
<td>11</td>
<td>0.16</td>
</tr>
<tr>
<td>88-40-28</td>
<td>3</td>
<td>7</td>
<td>47</td>
<td>111</td>
<td>5.8</td>
<td>24</td>
<td>4</td>
<td>325</td>
<td>1.96</td>
<td>218</td>
<td>5</td>
<td>HD</td>
<td>4</td>
<td>35</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>26</td>
<td>0.64</td>
<td>0.001</td>
<td>6</td>
<td>16</td>
<td>0.01</td>
<td>0.00</td>
<td>4</td>
<td>0.00</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>88-40-29</td>
<td>2</td>
<td>10</td>
<td>126</td>
<td>165</td>
<td>3.5</td>
<td>29</td>
<td>7</td>
<td>1415</td>
<td>3.30</td>
<td>58</td>
<td>5</td>
<td>HD</td>
<td>6</td>
<td>137</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>47</td>
<td>3.33</td>
<td>0.052</td>
<td>11</td>
<td>27</td>
<td>1.07</td>
<td>0.21</td>
<td>0</td>
<td>14</td>
<td>2.19</td>
<td>0.01</td>
</tr>
<tr>
<td>88-40-30</td>
<td>1</td>
<td>55</td>
<td>7</td>
<td>48</td>
<td>0.7</td>
<td>64</td>
<td>4</td>
<td>2134</td>
<td>1.72</td>
<td>122</td>
<td>5</td>
<td>HD</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>50</td>
<td>0.51</td>
<td>0.011</td>
<td>6</td>
<td>23</td>
<td>0.58</td>
<td>0.15</td>
<td>0</td>
<td>7</td>
<td>0.91</td>
<td>0.01</td>
</tr>
<tr>
<td>88-40-31</td>
<td>3</td>
<td>32</td>
<td>8</td>
<td>79</td>
<td>1.7</td>
<td>43</td>
<td>18</td>
<td>704</td>
<td>3.21</td>
<td>9</td>
<td>HD</td>
<td>4</td>
<td>49</td>
<td>1</td>
<td>3</td>
<td>52</td>
<td>0.19</td>
<td>0.066</td>
<td>13</td>
<td>13</td>
<td>1.50</td>
<td>0.28</td>
<td>5</td>
<td>3.06</td>
<td>0.02</td>
<td>0.04</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

STD Co/Ad-R 17 57 39 132 6.7 68 28 1050 3.55 41 23 7 17 48 17 14 56 0.48 0.990 33 55 0.17 135 0.06 32 1.93 0.36 0.16 12 480

V. ASSAY REQUIRED FOR CORRECT RESULT.
GEOCHEMICAL ANALYSIS CERTIFICATE

ICF - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR Mn Fe Ca P La Ce Mg Ba Ti B W AND LIMITED FOR Na K AND Al. Au DETECTION LIMIT BY ICP IS 1 PPM.
- SAMPLE TYPE: SOIL
- ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ASSAYER: D.TOEY OR C.LEONG, CERTIFIED B.C. ASSAYERS

SKUKUM GOLD INC. PROJECT-4D File # 88-2052

<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Cu (PPM)</th>
<th>Pb (PPM)</th>
<th>Zn (PPM)</th>
<th>Ag (PPM)</th>
<th>As (PPM)</th>
<th>Au (PPB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-4D-9S-55</td>
<td>28</td>
<td>30</td>
<td>68</td>
<td>1.6</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3:1-2 HCl-HNO3-H2O AT 55 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR Mn Fe Ca P La Cr Mg Ba Ti Bi W AND LIMITED FOR Na K AND Al. Au DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: P1-P7 SOIL PB SLIT PB ROCK

AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

ASSAYER: D. TOYE OR C. LEONG, CERTIFIED B.C. ASSAYERS

SKUKUM GOLD INC. PROJECT-4D File # 88-1964 Page 1

<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Cu PPM</th>
<th>Pb PPM</th>
<th>Zn PPM</th>
<th>Ag PPM</th>
<th>As PPM</th>
<th>Au* PPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-4D-4S-1</td>
<td>55</td>
<td>15</td>
<td>132</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-2</td>
<td>33</td>
<td>34</td>
<td>148</td>
<td>.1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>88-4D-4S-3</td>
<td>42</td>
<td>12</td>
<td>117</td>
<td>.1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-4S-4</td>
<td>44</td>
<td>10</td>
<td>110</td>
<td>.1</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>88-4D-4S-5</td>
<td>40</td>
<td>9</td>
<td>108</td>
<td>.1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-4S-6</td>
<td>32</td>
<td>8</td>
<td>105</td>
<td>.1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>88-4D-4S-7</td>
<td>25</td>
<td>19</td>
<td>100</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4S-8</td>
<td>24</td>
<td>22</td>
<td>71</td>
<td>.4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-9</td>
<td>7</td>
<td>27</td>
<td>94</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-10</td>
<td>1</td>
<td>12</td>
<td>73</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-11</td>
<td>25</td>
<td>78</td>
<td>113</td>
<td>.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4S-12</td>
<td>28</td>
<td>58</td>
<td>130</td>
<td>.4</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>88-4D-4S-13</td>
<td>16</td>
<td>34</td>
<td>119</td>
<td>.1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>88-4D-4S-14</td>
<td>19</td>
<td>75</td>
<td>124</td>
<td>.2</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>88-4D-4S-15</td>
<td>43</td>
<td>86</td>
<td>140</td>
<td>.6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-4S-16</td>
<td>20</td>
<td>68</td>
<td>109</td>
<td>1.0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>88-4D-4S-17</td>
<td>5</td>
<td>65</td>
<td>92</td>
<td>.2</td>
<td>2</td>
<td>78</td>
</tr>
<tr>
<td>88-4D-4S-18</td>
<td>17</td>
<td>83</td>
<td>151</td>
<td>.1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-4S-19</td>
<td>18</td>
<td>152</td>
<td>302</td>
<td>.1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-20</td>
<td>17</td>
<td>52</td>
<td>115</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-21</td>
<td>8</td>
<td>4</td>
<td>65</td>
<td>.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4S-22</td>
<td>15</td>
<td>9</td>
<td>98</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-23</td>
<td>18</td>
<td>9</td>
<td>99</td>
<td>.1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-4S-24</td>
<td>15</td>
<td>5</td>
<td>98</td>
<td>.2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-25</td>
<td>18</td>
<td>4</td>
<td>116</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-26</td>
<td>17</td>
<td>16</td>
<td>105</td>
<td>.1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4S-27</td>
<td>41</td>
<td>18</td>
<td>72</td>
<td>.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4S-28</td>
<td>825</td>
<td>14</td>
<td>99</td>
<td>1.9</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-4S-29</td>
<td>34</td>
<td>16</td>
<td>126</td>
<td>.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-30</td>
<td>119</td>
<td>16</td>
<td>123</td>
<td>.4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-31</td>
<td>21</td>
<td>7</td>
<td>135</td>
<td>.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4S-32</td>
<td>25</td>
<td>50</td>
<td>96</td>
<td>.4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-33</td>
<td>23</td>
<td>18</td>
<td>98</td>
<td>.4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-4S-34</td>
<td>20</td>
<td>12</td>
<td>74</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-35</td>
<td>18</td>
<td>3</td>
<td>95</td>
<td>.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-36</td>
<td>25</td>
<td>17</td>
<td>72</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

STD C/AU-S 59 36 132 6.7 39 50
<table>
<thead>
<tr>
<th>SAMPLE#</th>
<th>Cu PPM</th>
<th>Pb PPM</th>
<th>Zn PPM</th>
<th>Ag PPM</th>
<th>As PPM</th>
<th>Au* PBB</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-4D-4S-37</td>
<td>20</td>
<td>24</td>
<td>86</td>
<td>.3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4S-38</td>
<td>16</td>
<td>26</td>
<td>90</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-1</td>
<td>33</td>
<td>40</td>
<td>125</td>
<td>.7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-5S-2</td>
<td>31</td>
<td>26</td>
<td>78</td>
<td>.5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-5S-3</td>
<td>34</td>
<td>22</td>
<td>70</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-4</td>
<td>33</td>
<td>30</td>
<td>83</td>
<td>.2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-5S-5</td>
<td>27</td>
<td>31</td>
<td>79</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-6</td>
<td>62</td>
<td>179</td>
<td>108</td>
<td>.8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>88-4D-5S-7</td>
<td>26</td>
<td>62</td>
<td>116</td>
<td>.4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-8</td>
<td>20</td>
<td>42</td>
<td>75</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-9</td>
<td>17</td>
<td>27</td>
<td>81</td>
<td>.1</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>88-4D-5S-10</td>
<td>29</td>
<td>26</td>
<td>83</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-11</td>
<td>39</td>
<td>26</td>
<td>100</td>
<td>.3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-5S-12</td>
<td>37</td>
<td>45</td>
<td>117</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-13</td>
<td>67</td>
<td>127</td>
<td>198</td>
<td>.1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-5S-14</td>
<td>49</td>
<td>93</td>
<td>107</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-15</td>
<td>35</td>
<td>29</td>
<td>103</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-16</td>
<td>28</td>
<td>26</td>
<td>76</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-17</td>
<td>28</td>
<td>58</td>
<td>98</td>
<td>.2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-5S-18</td>
<td>31</td>
<td>27</td>
<td>81</td>
<td>.1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-5S-19</td>
<td>28</td>
<td>12</td>
<td>75</td>
<td>.2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>88-4D-5S-20</td>
<td>35</td>
<td>19</td>
<td>87</td>
<td>.2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-21</td>
<td>32</td>
<td>25</td>
<td>85</td>
<td>.1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-5S-22</td>
<td>58</td>
<td>36</td>
<td>106</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-23</td>
<td>42</td>
<td>27</td>
<td>107</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-24</td>
<td>51</td>
<td>29</td>
<td>95</td>
<td>.4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-5S-25</td>
<td>35</td>
<td>31</td>
<td>100</td>
<td>.2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-26</td>
<td>44</td>
<td>15</td>
<td>121</td>
<td>.2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>88-4D-5S-27</td>
<td>25</td>
<td>89</td>
<td>618</td>
<td>.3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-5S-28</td>
<td>15</td>
<td>95</td>
<td>227</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-5S-29</td>
<td>37</td>
<td>13</td>
<td>82</td>
<td>.3</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-5S-30</td>
<td>18</td>
<td>15</td>
<td>56</td>
<td>.1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-31</td>
<td>27</td>
<td>18</td>
<td>95</td>
<td>.2</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-5S-32</td>
<td>31</td>
<td>28</td>
<td>91</td>
<td>.3</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>88-4D-5S-33</td>
<td>45</td>
<td>139</td>
<td>131</td>
<td>.7</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>88-4D-5S-34</td>
<td>67</td>
<td>382</td>
<td>388</td>
<td>29.6</td>
<td>450</td>
<td>24</td>
</tr>
<tr>
<td>STD C/AU-S</td>
<td>59</td>
<td>41</td>
<td>133</td>
<td>7.3</td>
<td>41</td>
<td>52</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Cu</td>
<td>Pb</td>
<td>Zn</td>
<td>Ag</td>
<td>As</td>
<td>Au*</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>88-4D-5S-35</td>
<td>361</td>
<td>34</td>
<td>129</td>
<td>1.4</td>
<td>126</td>
<td>14</td>
</tr>
<tr>
<td>88-4D-5S-36</td>
<td>146</td>
<td>64</td>
<td>287</td>
<td>8.4</td>
<td>107</td>
<td>7</td>
</tr>
<tr>
<td>88-4D-5S-37</td>
<td>490</td>
<td>269</td>
<td>338</td>
<td>176</td>
<td>829</td>
<td>770</td>
</tr>
<tr>
<td>88-4D-5S-38</td>
<td>152</td>
<td>73</td>
<td>237</td>
<td>8.0</td>
<td>184</td>
<td>60</td>
</tr>
<tr>
<td>88-4D-5S-39</td>
<td>196</td>
<td>77</td>
<td>238</td>
<td>2.8</td>
<td>191</td>
<td>40</td>
</tr>
<tr>
<td>88-4D-5S-40</td>
<td>143</td>
<td>63</td>
<td>230</td>
<td>2.1</td>
<td>161</td>
<td>29</td>
</tr>
<tr>
<td>88-4D-5S-41</td>
<td>122</td>
<td>32</td>
<td>222</td>
<td>3.6</td>
<td>144</td>
<td>15</td>
</tr>
<tr>
<td>88-4D-5S-42</td>
<td>187</td>
<td>34</td>
<td>306</td>
<td>2.6</td>
<td>168</td>
<td>28</td>
</tr>
<tr>
<td>88-4D-5S-43</td>
<td>138</td>
<td>27</td>
<td>288</td>
<td>1.5</td>
<td>118</td>
<td>31</td>
</tr>
<tr>
<td>88-4D-5S-44</td>
<td>55</td>
<td>36</td>
<td>166</td>
<td>11</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5S-45</td>
<td>64</td>
<td>36</td>
<td>152</td>
<td>1.1</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-5S-46</td>
<td>75</td>
<td>26</td>
<td>126</td>
<td>.7</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>88-4D-9S-1</td>
<td>21</td>
<td>34</td>
<td>130</td>
<td>.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-2</td>
<td>17</td>
<td>23</td>
<td>98</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-3</td>
<td>20</td>
<td>16</td>
<td>115</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-4</td>
<td>22</td>
<td>16</td>
<td>97</td>
<td>.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-5</td>
<td>28</td>
<td>23</td>
<td>101</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-6</td>
<td>15</td>
<td>65</td>
<td>154</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-7</td>
<td>37</td>
<td>9</td>
<td>73</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-8</td>
<td>24</td>
<td>15</td>
<td>82</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-9</td>
<td>27</td>
<td>23</td>
<td>80</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-10</td>
<td>21</td>
<td>20</td>
<td>77</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-11</td>
<td>19</td>
<td>21</td>
<td>88</td>
<td>.6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-12</td>
<td>22</td>
<td>16</td>
<td>83</td>
<td>.2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-9S-13</td>
<td>33</td>
<td>14</td>
<td>72</td>
<td>.4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-14</td>
<td>24</td>
<td>24</td>
<td>86</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-15</td>
<td>27</td>
<td>16</td>
<td>60</td>
<td>.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-16</td>
<td>28</td>
<td>8</td>
<td>66</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-17</td>
<td>57</td>
<td>46</td>
<td>151</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-18</td>
<td>20</td>
<td>57</td>
<td>256</td>
<td>.2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-19</td>
<td>24</td>
<td>41</td>
<td>151</td>
<td>.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-20</td>
<td>49</td>
<td>41</td>
<td>146</td>
<td>2.5</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>88-4D-9S-21</td>
<td>22</td>
<td>24</td>
<td>127</td>
<td>.5</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-22</td>
<td>11</td>
<td>49</td>
<td>325</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-23</td>
<td>10</td>
<td>62</td>
<td>213</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-24</td>
<td>9</td>
<td>98</td>
<td>319</td>
<td>.1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>STD C/AU-8</td>
<td>61</td>
<td>41</td>
<td>138</td>
<td>6.8</td>
<td>42</td>
<td>50</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Cu PPM</td>
<td>Pb PPM</td>
<td>Zn PPM</td>
<td>Ag PPM</td>
<td>As PPM</td>
<td>Au* PPM</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>88-4D-9S-25</td>
<td>10</td>
<td>100</td>
<td>211</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-26</td>
<td>10</td>
<td>74</td>
<td>170</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-27</td>
<td>9</td>
<td>41</td>
<td>161</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-28</td>
<td>16</td>
<td>99</td>
<td>219</td>
<td>.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-29</td>
<td>11</td>
<td>37</td>
<td>128</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-30</td>
<td>12</td>
<td>39</td>
<td>102</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-31</td>
<td>17</td>
<td>31</td>
<td>117</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-32</td>
<td>11</td>
<td>29</td>
<td>98</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-33</td>
<td>12</td>
<td>36</td>
<td>137</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-34</td>
<td>38</td>
<td>19</td>
<td>78</td>
<td>.3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-35</td>
<td>54</td>
<td>23</td>
<td>75</td>
<td>.3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-36</td>
<td>37</td>
<td>13</td>
<td>65</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-37</td>
<td>50</td>
<td>15</td>
<td>78</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-38</td>
<td>31</td>
<td>31</td>
<td>70</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-39</td>
<td>39</td>
<td>8</td>
<td>68</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-40</td>
<td>36</td>
<td>17</td>
<td>69</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-41</td>
<td>58</td>
<td>31</td>
<td>95</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-42</td>
<td>67</td>
<td>19</td>
<td>78</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-43</td>
<td>28</td>
<td>13</td>
<td>75</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-44</td>
<td>36</td>
<td>31</td>
<td>95</td>
<td>.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-45</td>
<td>30</td>
<td>17</td>
<td>80</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-46</td>
<td>24</td>
<td>19</td>
<td>81</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-47</td>
<td>20</td>
<td>26</td>
<td>81</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-48</td>
<td>24</td>
<td>24</td>
<td>92</td>
<td>.1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-49</td>
<td>16</td>
<td>21</td>
<td>75</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-50</td>
<td>13</td>
<td>37</td>
<td>58</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-51</td>
<td>14</td>
<td>25</td>
<td>76</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-52</td>
<td>18</td>
<td>26</td>
<td>68</td>
<td>.1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-53</td>
<td>14</td>
<td>20</td>
<td>73</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-54</td>
<td>16</td>
<td>25</td>
<td>76</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-55</td>
<td>14</td>
<td>28</td>
<td>83</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-56</td>
<td>13</td>
<td>34</td>
<td>68</td>
<td>.4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-56A</td>
<td>14</td>
<td>40</td>
<td>77</td>
<td>1.4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-57</td>
<td>29</td>
<td>65</td>
<td>95</td>
<td>1.7</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>88-4D-9S-58</td>
<td>15</td>
<td>24</td>
<td>86</td>
<td>.3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-59</td>
<td>19</td>
<td>23</td>
<td>79</td>
<td>.3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>STD C/AU-S</td>
<td>60</td>
<td>36</td>
<td>132</td>
<td>6.6</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Cu PPM</td>
<td>Pb PPM</td>
<td>Zn PPM</td>
<td>Ag PPM</td>
<td>As PPM</td>
<td>Au* PPB</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>88-4D-9S-60</td>
<td>16</td>
<td>21</td>
<td>84</td>
<td>.4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-61</td>
<td>16</td>
<td>16</td>
<td>82</td>
<td>.6</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-62</td>
<td>19</td>
<td>22</td>
<td>89</td>
<td>.3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-63</td>
<td>17</td>
<td>29</td>
<td>92</td>
<td>.6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-64</td>
<td>17</td>
<td>36</td>
<td>88</td>
<td>.5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-65</td>
<td>32</td>
<td>44</td>
<td>112</td>
<td>.7</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>88-4D-9S-66</td>
<td>33</td>
<td>39</td>
<td>112</td>
<td>.2</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>88-4D-9S-67</td>
<td>18</td>
<td>26</td>
<td>104</td>
<td>.5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-68</td>
<td>13</td>
<td>20</td>
<td>127</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-69</td>
<td>20</td>
<td>22</td>
<td>117</td>
<td>.1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-70</td>
<td>27</td>
<td>12</td>
<td>132</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-71</td>
<td>27</td>
<td>12</td>
<td>104</td>
<td>.4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-72</td>
<td>18</td>
<td>22</td>
<td>119</td>
<td>.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-73</td>
<td>22</td>
<td>19</td>
<td>94</td>
<td>.3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-74</td>
<td>29</td>
<td>29</td>
<td>103</td>
<td>.4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-75</td>
<td>18</td>
<td>17</td>
<td>103</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-76</td>
<td>42</td>
<td>22</td>
<td>130</td>
<td>.4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-77</td>
<td>22</td>
<td>34</td>
<td>179</td>
<td>.1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-78</td>
<td>18</td>
<td>16</td>
<td>163</td>
<td>.6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-79</td>
<td>52</td>
<td>19</td>
<td>118</td>
<td>.3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-80</td>
<td>17</td>
<td>23</td>
<td>107</td>
<td>.4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-81</td>
<td>15</td>
<td>22</td>
<td>110</td>
<td>.3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-9S-82</td>
<td>14</td>
<td>27</td>
<td>186</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-83</td>
<td>25</td>
<td>16</td>
<td>118</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-84</td>
<td>15</td>
<td>33</td>
<td>113</td>
<td>.3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-9S-85</td>
<td>21</td>
<td>25</td>
<td>118</td>
<td>.3</td>
<td>4</td>
<td>71</td>
</tr>
<tr>
<td>88-4D-9S-86</td>
<td>39</td>
<td>23</td>
<td>110</td>
<td>.6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-87</td>
<td>17</td>
<td>30</td>
<td>120</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-88</td>
<td>13</td>
<td>29</td>
<td>162</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-89</td>
<td>24</td>
<td>24</td>
<td>115</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-90</td>
<td>18</td>
<td>33</td>
<td>133</td>
<td>.3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-91</td>
<td>31</td>
<td>44</td>
<td>143</td>
<td>.1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-92</td>
<td>22</td>
<td>37</td>
<td>175</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-93</td>
<td>12</td>
<td>38</td>
<td>173</td>
<td>.3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>88-4D-9S-94</td>
<td>28</td>
<td>157</td>
<td>345</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-95</td>
<td>24</td>
<td>29</td>
<td>139</td>
<td>.3</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>STD C/AU-S</td>
<td>60</td>
<td>36</td>
<td>132</td>
<td>6.5</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Cu</td>
<td>Pb</td>
<td>Zn</td>
<td>Ag</td>
<td>As</td>
<td>Au*</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
<td>PPM</td>
</tr>
<tr>
<td>88-4D-9S-96</td>
<td>33</td>
<td>36</td>
<td>121</td>
<td>.1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-9S-97</td>
<td>27</td>
<td>16</td>
<td>92</td>
<td>.2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-98</td>
<td>45</td>
<td>64</td>
<td>131</td>
<td>.1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-99</td>
<td>23</td>
<td>51</td>
<td>144</td>
<td>.1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-100</td>
<td>9</td>
<td>51</td>
<td>140</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-101</td>
<td>18</td>
<td>93</td>
<td>159</td>
<td>.1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-102</td>
<td>19</td>
<td>57</td>
<td>137</td>
<td>.1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-103</td>
<td>38</td>
<td>36</td>
<td>130</td>
<td>.2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-9S-104</td>
<td>64</td>
<td>57</td>
<td>116</td>
<td>.5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-105</td>
<td>82</td>
<td>80</td>
<td>145</td>
<td>.3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-106</td>
<td>46</td>
<td>44</td>
<td>125</td>
<td>.3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-9S-107</td>
<td>40</td>
<td>33</td>
<td>129</td>
<td>.1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-108</td>
<td>46</td>
<td>49</td>
<td>138</td>
<td>.2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>88-4D-9S-109</td>
<td>44</td>
<td>54</td>
<td>130</td>
<td>.1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-110</td>
<td>26</td>
<td>77</td>
<td>169</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9S-111</td>
<td>18</td>
<td>60</td>
<td>153</td>
<td>.1</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>88-4D-9S-112</td>
<td>24</td>
<td>38</td>
<td>125</td>
<td>.4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-10S-1</td>
<td>16</td>
<td>59</td>
<td>202</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-2</td>
<td>9</td>
<td>80</td>
<td>311</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-10S-3</td>
<td>26</td>
<td>156</td>
<td>450</td>
<td>.2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-4</td>
<td>8</td>
<td>38</td>
<td>146</td>
<td>.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-5</td>
<td>7</td>
<td>45</td>
<td>102</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-6</td>
<td>10</td>
<td>38</td>
<td>121</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-7</td>
<td>15</td>
<td>80</td>
<td>154</td>
<td>.6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>88-4D-10S-8</td>
<td>31</td>
<td>152</td>
<td>294</td>
<td>.9</td>
<td>19</td>
<td>210</td>
</tr>
<tr>
<td>88-4D-10S-9</td>
<td>56</td>
<td>181</td>
<td>310</td>
<td>2.2</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>88-4D-10S-10</td>
<td>57</td>
<td>47</td>
<td>157</td>
<td>.3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-11</td>
<td>31</td>
<td>55</td>
<td>122</td>
<td>.1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-10S-12</td>
<td>38</td>
<td>37</td>
<td>98</td>
<td>.5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-13</td>
<td>35</td>
<td>70</td>
<td>104</td>
<td>.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-14</td>
<td>15</td>
<td>16</td>
<td>66</td>
<td>.3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-15</td>
<td>55</td>
<td>48</td>
<td>71</td>
<td>.2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-10S-16</td>
<td>46</td>
<td>53</td>
<td>73</td>
<td>.1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-10S-17</td>
<td>32</td>
<td>59</td>
<td>86</td>
<td>.3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-18</td>
<td>12</td>
<td>38</td>
<td>88</td>
<td>.1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-10S-19</td>
<td>33</td>
<td>27</td>
<td>70</td>
<td>.4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>STD C/AU-S</td>
<td>61</td>
<td>39</td>
<td>133</td>
<td>6.7</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Cu PPM</td>
<td>Pb PPM</td>
<td>Zn PPM</td>
<td>Ag PPM</td>
<td>As PPM</td>
<td>Au* PPB</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>88-4D-10S-20</td>
<td>31</td>
<td>20</td>
<td>110</td>
<td>.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-10S-21</td>
<td>42</td>
<td>15</td>
<td>74</td>
<td>.4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-22</td>
<td>97</td>
<td>15</td>
<td>83</td>
<td>.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-23</td>
<td>92</td>
<td>17</td>
<td>85</td>
<td>.5</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>88-4D-10S-24</td>
<td>45</td>
<td>10</td>
<td>76</td>
<td>.1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-10S-25</td>
<td>40</td>
<td>16</td>
<td>87</td>
<td>.1</td>
<td>2</td>
<td>265</td>
</tr>
<tr>
<td>88-4D-10S-26</td>
<td>46</td>
<td>26</td>
<td>80</td>
<td>.1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-10S-27</td>
<td>20</td>
<td>10</td>
<td>72</td>
<td>.1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-28</td>
<td>52</td>
<td>26</td>
<td>72</td>
<td>.2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-10S-29</td>
<td>65</td>
<td>21</td>
<td>67</td>
<td>.1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>88-4D-10S-30</td>
<td>42</td>
<td>16</td>
<td>81</td>
<td>.5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-31</td>
<td>52</td>
<td>13</td>
<td>80</td>
<td>.4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-10S-32</td>
<td>32</td>
<td>19</td>
<td>87</td>
<td>.4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>88-4D-10S-33</td>
<td>46</td>
<td>18</td>
<td>84</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-34</td>
<td>28</td>
<td>13</td>
<td>69</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-35</td>
<td>25</td>
<td>8</td>
<td>59</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-10S-37</td>
<td>36</td>
<td>9</td>
<td>90</td>
<td>.1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-38</td>
<td>28</td>
<td>24</td>
<td>89</td>
<td>.2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-39</td>
<td>30</td>
<td>12</td>
<td>69</td>
<td>.1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-10S-40</td>
<td>26</td>
<td>16</td>
<td>59</td>
<td>.1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>STD C/AU-S</td>
<td>57</td>
<td>37</td>
<td>132</td>
<td>7.1</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Cu</td>
<td>Pb</td>
<td>Zn</td>
<td>Ag</td>
<td>As</td>
<td>Au*</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>88-4D-5L-1</td>
<td>48</td>
<td>27</td>
<td>105</td>
<td>.1</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>88-4D-9L-1</td>
<td>42</td>
<td>14</td>
<td>78</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SAMPLE#</td>
<td>Cu PPM</td>
<td>Pb PPM</td>
<td>Zn PPM</td>
<td>Ag PPM</td>
<td>As PPM</td>
<td>Au* PPM</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>88-4D-4R-1</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>.7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4R-2</td>
<td>4</td>
<td>11</td>
<td>13</td>
<td>1.5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-4R-3</td>
<td>3547</td>
<td>46</td>
<td>37</td>
<td>12.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4R-4</td>
<td>26</td>
<td>19</td>
<td>151</td>
<td>.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4R-5</td>
<td>13</td>
<td>9</td>
<td>23</td>
<td>.3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>88-4D-4R-6</td>
<td>26</td>
<td>6</td>
<td>8</td>
<td>.2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4R-7</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-4R-8</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4R-9</td>
<td>4875</td>
<td>244</td>
<td>106</td>
<td>7.6</td>
<td>72</td>
<td>15</td>
</tr>
<tr>
<td>88-4D-4R-10</td>
<td>6376</td>
<td>240</td>
<td>188</td>
<td>13.8</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>88-4D-4R-11</td>
<td>10199</td>
<td>104</td>
<td>150</td>
<td>42.3</td>
<td>5</td>
<td>74</td>
</tr>
<tr>
<td>88-4D-4R-12</td>
<td>356</td>
<td>2</td>
<td>37</td>
<td>.9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4R-13</td>
<td>87</td>
<td>16</td>
<td>74</td>
<td>.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-4R-14</td>
<td>1254</td>
<td>36</td>
<td>89</td>
<td>6.2</td>
<td>114</td>
<td>220</td>
</tr>
<tr>
<td>88-4D-4R-15</td>
<td>411</td>
<td>229</td>
<td>65</td>
<td>.6</td>
<td>26</td>
<td>18</td>
</tr>
<tr>
<td>88-4D-4R-16</td>
<td>28</td>
<td>6</td>
<td>13</td>
<td>.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>88-4D-4R-17</td>
<td>13</td>
<td>2</td>
<td>28</td>
<td>.1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>88-4D-5R-1</td>
<td>14</td>
<td>22</td>
<td>56</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5R-2</td>
<td>6</td>
<td>4</td>
<td>31</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5R-3</td>
<td>26</td>
<td>29</td>
<td>85</td>
<td>.5</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5R-4</td>
<td>56</td>
<td>59</td>
<td>51</td>
<td>14.0</td>
<td>1012</td>
<td>33</td>
</tr>
<tr>
<td>88-4D-5R-5</td>
<td>150</td>
<td>849</td>
<td>146</td>
<td>5.7</td>
<td>140</td>
<td>14</td>
</tr>
<tr>
<td>88-4D-5R-6</td>
<td>241</td>
<td>33</td>
<td>171</td>
<td>8.1</td>
<td>155</td>
<td>20</td>
</tr>
<tr>
<td>88-4D-5R-7</td>
<td>149</td>
<td>18</td>
<td>138</td>
<td>3.9</td>
<td>76</td>
<td>9</td>
</tr>
<tr>
<td>88-4D-5R-8</td>
<td>3</td>
<td>7</td>
<td>31</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-5R-9</td>
<td>10</td>
<td>4</td>
<td>61</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9R-3</td>
<td>9</td>
<td>2</td>
<td>69</td>
<td>.3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9R-4</td>
<td>4</td>
<td>17</td>
<td>44</td>
<td>.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9R-5</td>
<td>5</td>
<td>21</td>
<td>37</td>
<td>.1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>88-4D-9R-6</td>
<td>8</td>
<td>27</td>
<td>13</td>
<td>.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>88-4D-10R-1</td>
<td>1</td>
<td>10</td>
<td>15</td>
<td>.6</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>88-4D-5F-1</td>
<td>9</td>
<td>7</td>
<td>20</td>
<td>.1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>88-4D-5F-2</td>
<td>33</td>
<td>61</td>
<td>8</td>
<td>.1</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>STD C/AU-R</td>
<td>57</td>
<td>39</td>
<td>131</td>
<td>7.1</td>
<td>40</td>
<td>520</td>
</tr>
</tbody>
</table>
APPENDIX 3:
STATISTICAL SUMMARY
To: Skukum Gold Inc
Project: 4A,4B,4C,4D,4E,4F,4G

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>SAMPLE NAME</th>
<th>VALUE</th>
<th>SAM. REMOVED</th>
<th>NEW TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu,Zn</td>
<td>none</td>
<td>none</td>
<td>0</td>
<td>1867</td>
</tr>
<tr>
<td>Pb</td>
<td>88-4E-10S11</td>
<td>15358</td>
<td>2</td>
<td>1865</td>
</tr>
<tr>
<td></td>
<td>88-4A-10S104</td>
<td>8373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>88-4A-10S104</td>
<td>45358</td>
<td>1</td>
<td>1866</td>
</tr>
<tr>
<td>Au*</td>
<td>88-4D-5S37</td>
<td>770</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-5A-9S-11</td>
<td>660</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-4E-12S28</td>
<td>620</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-4F-11S8</td>
<td>475</td>
<td>4</td>
<td>1863</td>
</tr>
<tr>
<td>Ag</td>
<td>88-4D-5S37</td>
<td>176.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-4D-4S45</td>
<td>142.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-4D-4S46</td>
<td>118.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-4D-4S44</td>
<td>114.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-4D-4S42</td>
<td>93.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-4A-10S104</td>
<td>84.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88-4D-4S43</td>
<td>57.0</td>
<td>7</td>
<td>1860</td>
</tr>
</tbody>
</table>

As per our phone discussion on October 14, 1988, the preceding samples were considered "non-typical" and thus were removed from the data list. Even though the sample had a high value in one element, it was still included in the data in other elements unless otherwise stated. For Cu and Zn there were no samples that needed to be removed. In Pb, two really high samples were removed. In Ag, samples over 40 PPM were removed. In As, one really high sample was removed. In Au* samples over 400 PPM were removed. I hope the resulting statistical work is more suitable for your work.

Sincerely yours,

Michael Choi
To: Skukum Gold Inc
Project: 4A, 4B, 4C, 4D, 4E, 4F, 4G

<table>
<thead>
<tr>
<th>FILE NUMBER</th>
<th># PAGES</th>
<th>#SOIL SAMPLES</th>
<th>#SILT SAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-1778</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>88-1858</td>
<td>1-9</td>
<td>278</td>
<td>24</td>
</tr>
<tr>
<td>88-1964</td>
<td>1-8</td>
<td>236</td>
<td>2</td>
</tr>
<tr>
<td>88-2051</td>
<td>1-7</td>
<td>189</td>
<td>5</td>
</tr>
<tr>
<td>88-2052</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>88-2132</td>
<td>1-9</td>
<td>270</td>
<td>5</td>
</tr>
<tr>
<td>88-2266</td>
<td>1-4</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>88-2267</td>
<td>1-2</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>88-2413</td>
<td>1-5</td>
<td>123</td>
<td>3</td>
</tr>
<tr>
<td>88-2414</td>
<td>1-3</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>88-2601</td>
<td>1-2</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>88-4439</td>
<td>1-5</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>88-4440</td>
<td>1-4</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>88-4440</td>
<td>1-2</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL SOIL SAMPLES = 1867
TOTAL SILT SAMPLES = 44

As requested on October 12, 1988, the proceeding files were used as a basis for statistical work. The soil and silt samples were separated and done separately. The following elements were used as data points:

Cu, Pb, Zn, Ag, As and Au*

Sincerely yours,

Michael Choi
SKUKUM GOLD (S (SOIL) SERIES)

Cu (PPM)

1. 3 (20)
2. 6 (76)
3. 9 (220)
4. 12 (272)
5. 15 (231)
6. 18 (208)
7. 21 (144)
8. 24 (114)
9. 27 (84)
10. 30 (69)
11. 33 (68)
12. 36 (40)
13. 39 (40)
14. 42 (30)
15. 45 (24)
16. 48 (25)
17. 51 (15)
18. 54 (15)
19. 57 (15)
20. 60 (11)
21. 63 (10)
22. 66 (11)
23. 69 (10)
24. 72 (11)
25. 75 (8)
26. 78 (2)
27. 81 (3)
28. 84 (6)
29. 87 (1)
30. 90 (2)
31. 93 (3)
32. Over (79)

<table>
<thead>
<tr>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>375</td>
</tr>
</tbody>
</table>

- **1867 Samples**
- **Maximum:** 2543
- **Minimum:** 1
- **Mean:** 30
- **Median:** 17
- **Standard Deviation:** 75
SKUKUM GOLD (SOIL) SERIES

Cu (PPM)

<table>
<thead>
<tr>
<th>Cu Value</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>492</td>
</tr>
<tr>
<td>18</td>
<td>439</td>
</tr>
<tr>
<td>24</td>
<td>258</td>
</tr>
<tr>
<td>30</td>
<td>153</td>
</tr>
<tr>
<td>36</td>
<td>108</td>
</tr>
<tr>
<td>42</td>
<td>70</td>
</tr>
<tr>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>54</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>26</td>
</tr>
<tr>
<td>66</td>
<td>21</td>
</tr>
<tr>
<td>72</td>
<td>21</td>
</tr>
<tr>
<td>78</td>
<td>10</td>
</tr>
<tr>
<td>84</td>
<td>9</td>
</tr>
<tr>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>96</td>
<td>3</td>
</tr>
<tr>
<td>102</td>
<td>5</td>
</tr>
<tr>
<td>108</td>
<td>3</td>
</tr>
<tr>
<td>114</td>
<td>6</td>
</tr>
<tr>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>126</td>
<td>12</td>
</tr>
<tr>
<td>132</td>
<td>2</td>
</tr>
<tr>
<td>138</td>
<td>5</td>
</tr>
<tr>
<td>144</td>
<td>7</td>
</tr>
<tr>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>156</td>
<td>4</td>
</tr>
<tr>
<td>162</td>
<td>1</td>
</tr>
<tr>
<td>168</td>
<td>2</td>
</tr>
<tr>
<td>174</td>
<td>1</td>
</tr>
<tr>
<td>180</td>
<td>2</td>
</tr>
<tr>
<td>Over</td>
<td>23</td>
</tr>
</tbody>
</table>

1867 Samples

- Maximum: 2543
- Minimum: 1
- Mean: 30
- Median: 17
- Standard Deviation: 75
SKUKUM GOLD (S (SOIL) SERIES)

Pb (PPM)

<table>
<thead>
<tr>
<th>Pb</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>82</td>
</tr>
<tr>
<td>20</td>
<td>172</td>
</tr>
<tr>
<td>25</td>
<td>201</td>
</tr>
<tr>
<td>30</td>
<td>180</td>
</tr>
<tr>
<td>35</td>
<td>158</td>
</tr>
<tr>
<td>40</td>
<td>157</td>
</tr>
<tr>
<td>45</td>
<td>138</td>
</tr>
<tr>
<td>50</td>
<td>125</td>
</tr>
<tr>
<td>55</td>
<td>92</td>
</tr>
<tr>
<td>60</td>
<td>78</td>
</tr>
<tr>
<td>65</td>
<td>78</td>
</tr>
<tr>
<td>70</td>
<td>53</td>
</tr>
<tr>
<td>75</td>
<td>36</td>
</tr>
<tr>
<td>80</td>
<td>36</td>
</tr>
<tr>
<td>85</td>
<td>21</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
</tr>
<tr>
<td>95</td>
<td>21</td>
</tr>
<tr>
<td>100</td>
<td>16</td>
</tr>
<tr>
<td>105</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>15</td>
</tr>
<tr>
<td>115</td>
<td>9</td>
</tr>
<tr>
<td>120</td>
<td>7</td>
</tr>
<tr>
<td>125</td>
<td>7</td>
</tr>
<tr>
<td>130</td>
<td>10</td>
</tr>
<tr>
<td>135</td>
<td>7</td>
</tr>
<tr>
<td>140</td>
<td>4</td>
</tr>
<tr>
<td>145</td>
<td>8</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
</tr>
<tr>
<td>Over</td>
<td>80</td>
</tr>
</tbody>
</table>
SKUKUM GOLD (S (SOIL) SERIES)

Pb (PPM)

10 (42)
20 (254)
30 (381)
40 (315)
50 (283)
60 (170)
70 (131)
80 (72)
90 (41)
100 (37)
110 (21)
120 (16)
130 (17)
140 (11)
150 (14)
160 (6)
170 (5)
180 (4)
190 (2)
200 (6)
210 (3)
220 (2)
230 (1)
240 (2)
250 (1)
260 (0)
270 (2)
280 (1)
290 (0)
300 (3)
Over (42)

Number of Samples

1865 Samples

Maximum: 2646
Minimum: 2
Mean: 62
Median: 38
Standard Deviation: 132
SKUKUM GOLD (S (SOIL) SERIES)

<table>
<thead>
<tr>
<th>Zn (PPM)</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 (3)</td>
<td></td>
</tr>
<tr>
<td>45 (7)</td>
<td></td>
</tr>
<tr>
<td>60 (36)</td>
<td></td>
</tr>
<tr>
<td>75 (92)</td>
<td></td>
</tr>
<tr>
<td>90 (170)</td>
<td></td>
</tr>
<tr>
<td>105 (233)</td>
<td></td>
</tr>
<tr>
<td>120 (278)</td>
<td></td>
</tr>
<tr>
<td>135 (259)</td>
<td></td>
</tr>
<tr>
<td>150 (193)</td>
<td></td>
</tr>
<tr>
<td>165 (153)</td>
<td></td>
</tr>
<tr>
<td>180 (110)</td>
<td></td>
</tr>
<tr>
<td>195 (73)</td>
<td></td>
</tr>
<tr>
<td>210 (42)</td>
<td></td>
</tr>
<tr>
<td>225 (38)</td>
<td></td>
</tr>
<tr>
<td>240 (30)</td>
<td></td>
</tr>
<tr>
<td>255 (21)</td>
<td></td>
</tr>
<tr>
<td>270 (17)</td>
<td></td>
</tr>
<tr>
<td>285 (13)</td>
<td></td>
</tr>
<tr>
<td>300 (14)</td>
<td></td>
</tr>
<tr>
<td>315 (12)</td>
<td></td>
</tr>
<tr>
<td>330 (7)</td>
<td></td>
</tr>
<tr>
<td>345 (11)</td>
<td></td>
</tr>
<tr>
<td>360 (5)</td>
<td></td>
</tr>
<tr>
<td>375 (3)</td>
<td></td>
</tr>
<tr>
<td>390 (2)</td>
<td></td>
</tr>
<tr>
<td>405 (6)</td>
<td></td>
</tr>
<tr>
<td>420 (4)</td>
<td></td>
</tr>
<tr>
<td>435 (3)</td>
<td></td>
</tr>
<tr>
<td>450 (3)</td>
<td></td>
</tr>
<tr>
<td>465 (1)</td>
<td></td>
</tr>
<tr>
<td>480 (4)</td>
<td></td>
</tr>
<tr>
<td>Over (24)</td>
<td></td>
</tr>
</tbody>
</table>

1867 Samples

- **Maximum:** 2206
- **Minimum:** 28
- **Mean:** 149
- **Median:** 127
- **Standard Deviation:** 112
SKUKUM GOLD (S (SOIL) SERIES)

Ag (PPM)

<table>
<thead>
<tr>
<th>Concentration (PPM)</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 (515)</td>
<td></td>
</tr>
<tr>
<td>0.2 (294)</td>
<td></td>
</tr>
<tr>
<td>0.3 (276)</td>
<td></td>
</tr>
<tr>
<td>0.4 (195)</td>
<td></td>
</tr>
<tr>
<td>0.5 (149)</td>
<td></td>
</tr>
<tr>
<td>0.6 (107)</td>
<td></td>
</tr>
<tr>
<td>0.7 (70)</td>
<td></td>
</tr>
<tr>
<td>0.8 (37)</td>
<td></td>
</tr>
<tr>
<td>0.9 (40)</td>
<td></td>
</tr>
<tr>
<td>1.0 (36)</td>
<td></td>
</tr>
<tr>
<td>1.1 (13)</td>
<td></td>
</tr>
<tr>
<td>1.2 (8)</td>
<td></td>
</tr>
<tr>
<td>1.3 (15)</td>
<td></td>
</tr>
<tr>
<td>1.4 (13)</td>
<td></td>
</tr>
<tr>
<td>1.5 (13)</td>
<td></td>
</tr>
<tr>
<td>1.6 (6)</td>
<td></td>
</tr>
<tr>
<td>1.7 (5)</td>
<td></td>
</tr>
<tr>
<td>1.8 (6)</td>
<td></td>
</tr>
<tr>
<td>1.9 (2)</td>
<td></td>
</tr>
<tr>
<td>2.0 (4)</td>
<td></td>
</tr>
<tr>
<td>2.1 (3)</td>
<td></td>
</tr>
<tr>
<td>2.2 (3)</td>
<td></td>
</tr>
<tr>
<td>2.3 (0)</td>
<td></td>
</tr>
<tr>
<td>2.4 (0)</td>
<td></td>
</tr>
<tr>
<td>2.5 (3)</td>
<td></td>
</tr>
<tr>
<td>2.6 (3)</td>
<td></td>
</tr>
<tr>
<td>2.7 (2)</td>
<td></td>
</tr>
<tr>
<td>2.8 (2)</td>
<td></td>
</tr>
<tr>
<td>2.9 (0)</td>
<td></td>
</tr>
<tr>
<td>Over (40)</td>
<td></td>
</tr>
</tbody>
</table>

1860 Samples

Maximum: 36.8
Minimum: 0.1
Mean: 0.6
Median: 0.3
Standard Deviation: 2.0
<table>
<thead>
<tr>
<th>As (PPM)</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (711)</td>
<td></td>
</tr>
<tr>
<td>10 (390)</td>
<td></td>
</tr>
<tr>
<td>15 (213)</td>
<td></td>
</tr>
<tr>
<td>20 (158)</td>
<td></td>
</tr>
<tr>
<td>25 (87)</td>
<td></td>
</tr>
<tr>
<td>30 (49)</td>
<td></td>
</tr>
<tr>
<td>35 (40)</td>
<td></td>
</tr>
<tr>
<td>40 (22)</td>
<td></td>
</tr>
<tr>
<td>45 (32)</td>
<td></td>
</tr>
<tr>
<td>50 (13)</td>
<td></td>
</tr>
<tr>
<td>55 (16)</td>
<td></td>
</tr>
<tr>
<td>60 (9)</td>
<td></td>
</tr>
<tr>
<td>65 (8)</td>
<td></td>
</tr>
<tr>
<td>70 (4)</td>
<td></td>
</tr>
<tr>
<td>75 (6)</td>
<td></td>
</tr>
<tr>
<td>80 (9)</td>
<td></td>
</tr>
<tr>
<td>85 (9)</td>
<td></td>
</tr>
<tr>
<td>90 (2)</td>
<td></td>
</tr>
<tr>
<td>95 (4)</td>
<td></td>
</tr>
<tr>
<td>100 (7)</td>
<td></td>
</tr>
<tr>
<td>105 (7)</td>
<td></td>
</tr>
<tr>
<td>110 (6)</td>
<td></td>
</tr>
<tr>
<td>115 (6)</td>
<td></td>
</tr>
<tr>
<td>120 (2)</td>
<td></td>
</tr>
<tr>
<td>125 (3)</td>
<td></td>
</tr>
<tr>
<td>130 (1)</td>
<td></td>
</tr>
<tr>
<td>135 (4)</td>
<td></td>
</tr>
<tr>
<td>140 (2)</td>
<td></td>
</tr>
<tr>
<td>145 (1)</td>
<td></td>
</tr>
<tr>
<td>150 (3)</td>
<td></td>
</tr>
<tr>
<td>Over (42)</td>
<td></td>
</tr>
</tbody>
</table>

1966 Samples

- Maximum: 4268
- Minimum: 2
- Mean: 35
- Median: 8
- Standard Deviation: 215
SKUKUM GOLD (S SOIL) SERIES

AU* (PPB)

<table>
<thead>
<tr>
<th>Value</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1056</td>
</tr>
<tr>
<td>2</td>
<td>285</td>
</tr>
<tr>
<td>3</td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>Over</td>
<td>56</td>
</tr>
</tbody>
</table>

1863 Samples

Maximum: 390
Minimum: 1
Mean: 6
Median: 1
Standard Deviation: 24
SKUKUM GOLD (L (SILT) SERIES)

Cu (PPM)

- 6 (9)
- 8 (6)
- 10 (3)
- 12 (2)
- 14 (4)
- 16 (6)
- 18 (0)
- 20 (1)
- 22 (1)
- 24 (1)
- 26 (0)
- 28 (2)
- 30 (0)
- 32 (0)
- 34 (1)
- 36 (2)
- 38 (0)
- 40 (0)
- 42 (1)
- 44 (0)
- 46 (0)
- 48 (1)
- 50 (0)
- 52 (1)
- 54 (0)
- 56 (1)
- 58 (0)
- 60 (0)
- 62 (0)
- 64 (0)
- 66 (0)
- Over (2)

Number of Samples

- 44 Samples
- Maximum: 78
- Minimum: 5
- Mean: 20
- Median: 13
- Standard Deviation: 17
SKUKUM GOLD (L (SILT) SERIES)

Pb
(PPM)

6 (1)
9 (2)
12 (5)
15 (8)
18 (4)
21 (1)
24 (2)
27 (2)
30 (1)
33 (1)
36 (3)
39 (1)
42 (2)
45 (2)
48 (1)
51 (1)
54 (1)
57 (0)
60 (1)
63 (1)
66 (1)
69 (1)
72 (0)
75 (1)
78 (0)
81 (0)
84 (0)
87 (0)
90 (0)
93 (0)
96 (0)
Over (1)

Number of Samples

44 Samples Maximum: 98 Mean: 30
Minimum: 6 Median: 23
Standard Deviation: 21
SKUKUM GOLD (L (SILT) SERIES)

Zn (PPM)

- 50 (3)
- 60 (8)
- 70 (3)
- 80 (4)
- 90 (4)
- 100 (0)
- 110 (3)
- 120 (1)
- 130 (3)
- 140 (5)
- 150 (1)
- 160 (1)
- 170 (1)
- 180 (1)
- 190 (2)
- 200 (0)
- 210 (1)
- 220 (0)
- 230 (1)
- 240 (0)
- 250 (1)
- 260 (0)
- 270 (0)
- 280 (0)
- 290 (0)
- 300 (0)
- 310 (0)
- 320 (0)
- 330 (0)
- 340 (0)
- 350 (1)

44 Samples Maximum: 342 Mean: 112
Minimum: 49 Median: 90
Standard Deviation: 62
SKUKUM GOLD (L (SILT) SERIES)

Ag (PPM)

0.1 (13)
0.2 (4)
0.3 (6)
0.4 (2)
0.5 (3)
0.6 (4)
0.7 (1)
0.8 (2)
0.9 (2)
1.0 (1)
1.1 (3)
1.2 (0)
1.3 (1)
1.4 (0)
1.5 (0)
1.6 (0)
1.7 (1)
1.8 (0)
1.9 (1)
2.0 (0)
2.1 (0)
2.2 (0)
2.3 (0)
2.4 (0)
2.5 (0)
2.6 (0)
2.7 (0)
2.8 (0)
2.9 (0)

Number of Samples

44 Samples
Maximum: 1.9
Minimum: 0.1
Mean: 0.5
Median: 0.3
Standard Deviation: 0.4
SKUKUM GOLD (L (SILI) SERIES)

As (PPM)

<table>
<thead>
<tr>
<th>Number</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
</tr>
</tbody>
</table>

44 Samples Maximum: 30 Mean: 7
Minimum: 2 Median: 3
Standard Deviation: 8
SKUKUM GOLD (L (SILT) SERIES)

AU* (PPB)

<table>
<thead>
<tr>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (28)</td>
</tr>
<tr>
<td>2 (9)</td>
</tr>
<tr>
<td>3 (3)</td>
</tr>
<tr>
<td>4 (0)</td>
</tr>
<tr>
<td>5 (0)</td>
</tr>
<tr>
<td>6 (2)</td>
</tr>
<tr>
<td>7 (0)</td>
</tr>
<tr>
<td>8 (0)</td>
</tr>
<tr>
<td>9 (0)</td>
</tr>
<tr>
<td>10 (0)</td>
</tr>
<tr>
<td>11 (0)</td>
</tr>
<tr>
<td>12 (0)</td>
</tr>
<tr>
<td>13 (2)</td>
</tr>
<tr>
<td>14 (0)</td>
</tr>
<tr>
<td>15 (0)</td>
</tr>
<tr>
<td>16 (0)</td>
</tr>
<tr>
<td>17 (0)</td>
</tr>
<tr>
<td>18 (0)</td>
</tr>
<tr>
<td>19 (0)</td>
</tr>
<tr>
<td>20 (0)</td>
</tr>
</tbody>
</table>

44 Samples Maximum: 13 Mean: 2
Minimum: 1 Median: 1
Standard Deviation: 3