GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

N.T.S: 115 I/3

Latitude: 62°04' Longitude: 137°19'

Whitehorse Mining District

August 25 to September 2, 1986

For: Kerr Addison Mines Ltd.
703-1112 W. Pender St.
Vancouver, B.C. V6E 2S1

Author: J. Pautler
November 1986.
This report has been examined by the Geological Evaluation Unit under Section 53 (4) Yukon Quartz Mining Act and is allowed as representation work in the amount of $6,000.00.

Regional Manager, Exploration and Geological Services for Commissioner of Yukon Territory.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>Location and Access</td>
<td>2</td>
</tr>
<tr>
<td>Legal Description</td>
<td>2</td>
</tr>
<tr>
<td>Topography and Vegetation</td>
<td>2</td>
</tr>
<tr>
<td>History</td>
<td>2</td>
</tr>
<tr>
<td>1986 Program</td>
<td>4</td>
</tr>
<tr>
<td>GEOLOGY</td>
<td></td>
</tr>
<tr>
<td>Regional</td>
<td>4</td>
</tr>
<tr>
<td>Property</td>
<td>4</td>
</tr>
<tr>
<td>Structure</td>
<td>7</td>
</tr>
<tr>
<td>Mineralization and Alteration</td>
<td>7</td>
</tr>
<tr>
<td>GEOCHEMISTRY</td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td>10</td>
</tr>
<tr>
<td>Results</td>
<td>10</td>
</tr>
<tr>
<td>Geophysics</td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td>14</td>
</tr>
<tr>
<td>Results</td>
<td>14</td>
</tr>
<tr>
<td>Correlation</td>
<td>14</td>
</tr>
<tr>
<td>Conclusion and Recommendations</td>
<td>15</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Figures
1. Compilation Map 1:5,000 Back Pocket
2. Location Map 1:1,000,000 3
3. Claim Map 1:50,000 5
4. Geology 1:5,000 Back Pocket
5. East Trenches; Geology 1:1000 8
6. East Trenches; Geochemistry 1:1000 9
7. Sample Locations 1:5,000 Back Pocket
8. Geochemistry Au 1:5,000 Back Pocket
9. Geochemistry Ag 1:5,000 Back Pocket
10. Geochemistry As 1:5,000 Back Pocket
11. Geochemistry Sb 1:5,000 Back Pocket
12. Soil Profiles 1:10 12
13. Soil Profiles 1:10 13
14. VLF Profiles 1:5,000 Back Pocket
15. Contoured Fraser Filter Data 1:5,000 Back Pocket

Appendices
I. Selected References
II Sample Descriptions and Geochemistry
III Geophysical Data
IV Statement of Expenses
V Statement of Qualifications
ONLY CLAIMS

SUMMARY

The ONLY 1-30 claims are located 10 km north of the Mt. Nansen Mine which is 65 km from Carmacks, Y.T. by road. Carmacks is 175 km north of Whitehorse.

The ONLY was staked in 1985 to cover the LONELY Cu porphyry showing which comprises a poorly exposed altered and sheared body of rhyolite feldspar and quartz, feldspar porphyry with quartz stringers, pyrrhotite, pyrite and minor malachite and chalcopyrite.

In 1986 a soil and VLF survey was conducted over the LONELY showing in order to define an anomalous zone or major structure. Geological mapping was carried out at a scale of 1:5,000.

The LONELY is underlain by the rhyolite porphyry body which includes some flow rocks. It is bounded on the north by andesite to dacite plagioclase porphyry, on the east by rhyodacite to andesite porphyritic tuffs and on the south by rhyolitic pyroclastic rocks, all of which belong to the Cretaceous Mt. Nansen Group volcanics. A related hornblende granodiorite intrusion underlies the extreme western and southern part of the ONLY property.

The rhyolite is commonly clay and carbonate altered and locally sericitized and silicified. Quartz stringers and veinlets from 1mm to 2cm wide are abundant and carry values up to 1650 ppb Au and 3.4 ppm Ag with associated anomalous As and Sb. Ag values up to 14.8 ppm occur within the altered rhyolite. An average of 15 samples from the LONELY showing was 423 ppb Au. The samples included a large proportion of host rock although the Au and Ag appear to be directly derived from the quartz.

The soil survey outlined 5 anomalies based on the correlation of anomalous Au, Ag, As and Sb values. The highest soil values obtained were 150 ppb Au, 5.51 ppm Ag, 350 ppm As and 9.6 ppm Sb.

The VLF survey outlined two major structures. One trends northerly along the west side of the ridge but does not directly follow the ridge top. The second trends northwesterly along the west side of the hill.
Several of the soil anomalies correspond to the two major VLF structures and to a few minor north trending VLF anomalies. Three main zones of interest were delineated on this basis and a fourth zone was added on the basis of the VLF, and anomalous Au in rock and soil.

A caterpillar trenching program is proposed for the 1987 season to investigate the four zones of interest in order to determine if a quartz stockwork with significant Au values exists. Cat availability and accessibility is good with the Mt. Nansen camp only 5 km away.

Location and Access: (Figure 2)

The ONLY claims, N.T.S. map sheet 115 I/3, are located 10 km northwest of the Mt. Nansen Mine which is 65 km west of Carmacks, Y.T. by road. Carmacks is 175 km north of Whitehorse via the Klondike Highway. Latitude and longitude of property centre are 62o04'; 137o19'. The closest helicopter base is located at Carmacks.

Legal Description: (Figure 3)

The ONLY property consists of 30 contiguous claims with record numbers YA 93535 - YA 93564. All claims were recorded on September 12, 1985 and two years work was filed on September 12, 1986. The nature of this report is to discuss the work filed.

Topography and Vegetation (Photo 1)

The ONLY claims lie within the Dawson Range, southwestern Yukon. The property is largely covered by spruce forest and buckbrush with very little outcrop. The central, south and eastern sections consist of fairly open swampland. Elevations range from 3600' to 4800'. The area of interest, (Lonely showing), is located on a low north trending ridge on the western half of the property. Felsenmeer is exposed here along old bulldozer trails and shallow trenches.

History:

The Lonely Cu porphyry showing was staked in 1974 by J. Dickson who explored in this area circa 1970 with bulldozer trenching, (Northern Cordillera Mineral Inventory). The old showing was briefly examined by Kerr Addison Mines Ltd. in 1984 and 1985 yielding values up to 1650 ppb Au, 14.8 ppm Ag from quartz stringers hosted by an altered rhyolite porphyry body. The ONLY claims were staked on September 11, 1985 to cover the Lonely showing following increased activity in the Mt. Nansen camp.
1986 Program:

Twenty-one man days were spent on the ONLY property between August 25 and September 2, 1986. The program involved the implementation of a soil and VLF survey over a 1.2 km x 1.2 km grid covering the old Lonely showing with the prospect of defining a major structure. Geological mapping was conducted on the grid and across the property at a scale of 1:5,000. Rock chips were examined from the soil holes in order to aid in mapping.

GEOLOGY

Regional:

The ONLY is located in an area of Cretaceous Mt. Nansen volcanism. The volcanics are underlain by a Cretaceous granodiorite intrusion, (Casino granodiorite), which appears to be the source of the volcanics. The granodiorite intrudes Paleozoic metamorphic rocks of the Yukon Group Basement Complex. Prominent northeast and northnorthwest to northerly trending faults are evident in the area. The structural style of the district has been described as block faulting contemporaneous with porphyry intrusion. For a more thorough description refer to Tempelman-Kluit, 1974, 1984 and Grexton and Pautler, 1985.

The economic picture for precious metals in the area is good with feasibility studies currently being done on Chevron's Mt. Nansen Mine property, 10 km southeast of the ONLY. The old Esansee Mine, 5 km to the northeast, is also being re-examined by Archer Cathro and Associates. Trenching is being conducted on Gordon Dickson's JBill claims 3 km east of the ONLY. Numerous other precious metal exploration ventures are also underway in the area.

Property: (Figures 4, 5)

The ONLY is primarily underlain by intermediate to felsic volcanic rocks of the Cretaceous Mt. Nansen Group. The volcanic rocks overlie a hornblende and/or biotite granodiorite to quartz diorite intrusion which is exposed in the extreme west to southwestern part of the property. Gradations between the intermediate volcanic and intrusive rocks suggest a genetic relationship.
FIG. 3

ONLY CLAIMS (1-30)

METERS

KERR ADDISON MINES LTD

ONLY CLAIMS

CLAIM MAP

SCALE - 1:50,000
DATE - SEPTEMBER, 1986
DRAWN BY - P.H.
DATA - J.P., L.G.
NTS - 115 I/3
REVISED -
PHOTO 1: View of Lonely showing from the north. (The main road along the north trending ridge is shown).
The volcanic rocks primarily consist of andesite to dacite plagioclase porphyry and rhyodacite to andesite feldspar porphyritic tuffs. These are intruded by a rhyolite feldspar porphyry to quartz feldspar porphyry plug on the western half of the property. The rhyolite grades to extrusive equivalents with flow banding in the upper regions of the plug. A small area of rhyolite to rhyodacite tuff and lapilli tuff is exposed in the southern part of the rhyolite porphyry body. Related rhyolite feldspar porphyry to quartz feldspar porphyry dykes cut the older units.

Late stage hornblende granodiorite dykes cut all the above units and minor hornblende syenite dykes were also observed in the eastern part of the claims. Possible late stage andesite feldspar porphyry dykes cut the rhyolite porphyry plug (not observed in outcrop - may be xenoliths?).

Structure:

Prominent northnorthwest trending air photo lineations follow the creeks on the west and east sides of the rhyolite porphyry pluton. The western lineation corresponds to a VLF anomaly, (this report), along its extent. The western lineation also corresponds to a possible displacement in the base of the Mt. Nansen volcanics.

Mineralization and Alteration:

The Lonely showing comprises a 0.9 x 1.0 km at least altered body of rhyolite porphyry that has weathered to a prominent gossan on the western half of the ONLY property. The rhyolite is commonly clay and carbonate altered, variably silicified and locally sheared, brecciated and sericite altered. Fine disseminated pyrite and/or pyrrhotite is widespread and trace malachite and chalcopyrite were observed in two localities. The intermediate porphyries proximal to and within the rhyolite body are sometimes weakly silicified and contain fine pyrite and/or pyrrhotite.

Quartz stringers, up to 6cm wide but more commonly 1mm to 2cm wide, occur throughout the exposed rhyolite porphyry body. Unfortunately exposure is poor except along bulldozed trails and along the ridge top. However quartz stringers were also observed in soil holes. The stringers appear to be related to shear and weakly brecciated zones within the rhyolite, suggesting possible structural control. The VLF survey was conducted to delineate these structures. Similar mineralization was noted in the east ONLY trenches. However it appears to be related to rhyolite quartz feldspar porphyry dykes.

It is quite possible that the rhyolite body is a volcanic pipe as evidence by flow rocks in the upper regions, brecciation and possible andesite xenoliths? within the pluton. This interpretation is favourable for potential mineralization because of the available pore space in pipes.
LEGEND

- **R** - Rhyolite
- **RD** - Rhyodacite
- **D** - Dacite
- **S** - Syenite
- **p** - Porphyry
- **t** - Tuff
- **a** - Altered
- **cl.** - Clay
- **s.** - Silicified
- **ser.** - Sericite
- **-** - Geological contact.
- **** - Rusty, altered zones.
- --- - Colour contact.

FIG. 5

METERS

KERR ADDISON MINES LTD

ONLY CLAIMS

EAST TRENCHES

GEOLOGY

SCALE - 1:1000
DATE - SEPTEMBER, 1986
DRAWN BY - P.H.
DATA - J.P.
NTS - 115 I / 3

- **RD.** - Rhyodacite
- **D.p.t.** - Dolerite
- **R. f.p. dy.** - Rusty Felsic Porphyry Dyke
- **R. f.p. dyes or a. RD. p.t.** - Rusty Felsic Porphyry Dyes or a. Rhyodacite Dolerite
- **mixed float, patchy r. orange**
- **zones (a. R. dyes or a. RD. p.t., w. sil.)**
- **heavily carbonate as massive crystals.**
- **heavy carbonate as massive crystals.**
- **mixed float, patchy r. orange zones (a. R. dyes or a. RD. p.t., w. sil.)**
- **D. p.t.** - Dolerite
- **R. f.p. dyes or a. RD. p.t.** - Rusty Felsic Porphyry Dyes or a. Rhyodacite Dolerite
- **hb. S.** - Hematite
- **R.f.p., Mn. str.a.** - Rustic Felsic Porphyry, Manganese Strata
- **R. sil.** - Rustic Silicified
- **D. p.t.** - Dolerite

Trench 1

Trench 2

scattered R. f.p. ± a. zones.

(mixing at this end of trench.)
LEGEND

△ JIR Rock sample YO-6 JIR (float).

• JIS Soil sample YO-6 JIS

Ag - ppm, As - ppm, Sb - ppm, Au - ppb
0.1, 12, 2.2, <5

NOTE - Relationship between trenches may not be exact.
Geochemistry (Figures 6-13)

PROCEDURE:

A total of 32 rock, 414 soil and five silt samples were collected from the property. All samples were sent to Chemex Labs Ltd, North Vancouver, B.C. and analyzed for Au, Ag, As and Sb using standard atomic absorption procedures, Au being first pre-concentrated by fire assay. Sample locations are shown in Figure 7.

The rock samples were generally of the grab type. Quartz stringer samples included a large proportion of host rock because of the narrow stringer widths.

Soil samples were collected at 25m spacings along lines 100m apart over a 1.2 km x 1.2 km grid. A thick ash layer and the presence of swamp at the lower elevations hampered the sampling. A pebbly horizon beneath the ash layer was preferentially sampled. Four soil profiles were collected and analyzed to determine the geochemical usefulness of the horizons present. Results are shown in Figures 12 and 13. It generally indicates that the pebbly layer beneath the ash is indeed the best horizon to sample. Unfortunately this horizon is exposed on the ONLY at depths of 30cm to >60cm.

Results:

Rock:

Anomalous Au values up to 1650 ppb are related to quartz stringers in the rhyolite porphyry plug. One third of the 30 quartz stringer samples collected ran >100 ppb Au with an average of 418 ppb. One of these samples (6D1R-425 ppb Au) consists of quartz float within the andesite porphyry unit but may be hosted by a rhyolite dyke. No other samples in the intermediate volcanics were anomalous.

Only four samples of rhyolite lacking quartz stringers were anomalous in Au or Ag. 450 ppb Au,(6J2R), was returned from silicified and sericite altered rhyolite feldspar porphyry dykes, with Mn in stringers and vugs, in Trench 1, East ONLY. Clay altered rhyolite porphyry with rusty seams from the Lonely ran 270 ppb Au, (6D7R). Values of 14.8 ppm (Y1W-J8R) and 7.0 ppm (6J4R) Ag were obtained from silicified and clay altered rhyolite porphyry from the Lonely and East ONLY trenches respectively. Ag values are otherwise <3.5 ppm with any anomalous values (>2.0 ppm) generally being associated with quartz stringers.

Anomalous As and Sb values are usually (though not always) associated with or occur peripheral to the anomalous Au and or Ag values.
Soil

Although the contoured soil data yields rather 'spotty' anomalies especially in Au, correlations between elements do exist.

The As and Sb anomalies correlate quite well, with Au occurring peripheral to them. (This was also a regional observation between Au and Sb anomalies - Arscott et al., 1984). Ag anomalies are generally peripheral to As, Sb and Au. However all appear to correlate in the vicinity of L44N/20+50W and extend northwesterly. (Anomaly 1).

Ag-As anomalies correlate better than Ag-Sb which only correlate as two As-Sb-Ag anomalies. One occurs just west of the lower road, (Anomaly 2), and weaker values coincide near the west end of L50N, (Anomaly 3). Anomaly 2 incorporates the highest Ag value in soil (5.51 ppm) and contains weak Au anomalies. The highest Au value of 150 ppb occurs slightly downslope of this anomaly and value of 1100 ppb Au in rock was obtained proximal to Anomaly 2. An As-Ag anomaly occurs in the vicinity of L20W/39N (Anomaly 4). Au anomalies occur peripheral to it.

A Ag anomaly roughly corresponds to an Au anomaly in the vicinity of L43N/24W, (Anomaly 5).
Sample No./Assays

L 45+50 N / 19+80 W

- **L 45+50 N / 20 CW**
 - 0.8, 10, 0.5, <5
- **L 45+50 N / 20 AW**
 - 0.6, 1, 0.3, <5
- **L 45+50 N / 20 BW**
 - 0.7, 10, 0.4, <5
- **L 45+50 N / 20 DW**
 - 2.5, 38, 0.8, <5
- **L 45+50 N / 20 EW**
 - 5.0, 170, 3.8, 60

Sample No./Assays

L 47 N / 19+75 W

- **L 47 N / 19+75 CW**
 - 0.1, 3, 0.3, <5
- **L 47 N / 19+75 AW**
 - 0.1, 1, 0.3, <5
- **L 47 N / 19+75 BW**
 - 0.1, 5, 0.2, <5
- **L 47 N / 19+75 W**
 - 0.1, 15, 0.3, 15

Organic material
Organic rich
Burnt layer
White ash
Medium brown fine clayey silt
Medium orange-brown strongly clayey silt.
Pebble clayey silt with angular rock chips.

Organic material
Sandy mud
Burnt layer
White ash
Orange silt, light weight (lower ash)
Orange-brown fine sandy silt with angular rock chips.

FIG. 12

| Ag (ppm), As (ppm), Sb (ppm), Au (ppb) |

KERR ADDISON MINES LTD

ONLY CLAIMS

SOIL PROFILES

<table>
<thead>
<tr>
<th>SCALE - 1:10</th>
<th>DATE - OCT., 1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAWN BY - P.H.</td>
<td>DATA - J.P.</td>
</tr>
<tr>
<td>NTS-115 T/3</td>
<td>REVISED-</td>
</tr>
</tbody>
</table>
Sample No. / Assays

L40N/20W

- **L40N/20 AW**: 0.2, 1, 0.1, <5
- **L40N/20 BW**: 0.6, 10, 0.3, <5
- **L40N/20 W**: 0.5, 1, 0.4, <5

- Organic material.
- White ash.
- Medium orange-brown sandy silt.
- Medium orange-brown pebbly sandy silt with angular rock chip.

L40N/22+25W

- **L40N/22+25 CW**: 0.2, 1, 0.3, <5
- **L40N/22+25 AW**: 0.3, 1, 0.2, <5
- **L40N/22+25 BW**: 0.5, 3, 0.3, <5
- **L40N/22+25 W**: 0.4, 5, 0.6, <5

- Organic material.
- Fine sandy silt.
- White ash.
- Orange-brown sandy silt (lower ash).
- Medium orange-brown pebbly silt.

Ag(ppm), As(ppm), Sb(ppm), Au(ppb).

KERR ADDISON MINES LTD

ONLY CLAIMS

SOIL PROFILES

<table>
<thead>
<tr>
<th>Scale</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:10</td>
<td>Oct., 1986</td>
</tr>
</tbody>
</table>

Drawn by: P.H. | **Data:** J.P.
NTS-115 I/3 | **Revised:**

FIG. 13

![Soil Profiles Diagram]
PROCEDURE:

VLF readings, using an E.M.16 instrument, Serial No.52, were taken at 25m intervals on lines spaced 100 m apart over a 1.2x1.2 km grid. Interim readings were taken in the vicinity of in Phase crossovers. Readings were taken using the Seattle station which lies in a direction of about 070° to the grid lines. The null reading was taken with the instrument facing easterly. The baseline run using Cutler, Maine which lies to the east of the grid and readings were taken with the instrument facing northerly.

Results

The VLF survey outlined two major structures. One trends northerly along the west side of the ridge but does not directly follow the ridge top. The second trends northwesterly along the west side of the hill. The north trend appears to be an offshoot of the northwest trend. Other scattered and discontinuous north trending anomalies of lower magnitude are also evident.

Correlation:(Figure 1)

The northern portion of the northwest trending VLF anomaly and another small north trending anomaly coincides with the northerly fault along the west side of the Lonély showing. The remainder of the northwest anomaly roughly corresponds to the granodiorite/rhyolite contact.

The baseline VLF picked up the contact of the rhyolite porphyry body with the andesite porphyries to the north.

The north VLF anomaly broadens in the central grid area corresponding to Soil Anomaly 1 which incorporates Au, Ag, As and Sb highs. Anomalous Au from quartz stringers hosted by locally sheared and altered rhyolite porphyry also occur in this area. Consequently Anomaly 1 is of highest priority.

Soil Anomaly 5 (Ag and Au) and Anomaly 3 (weak Ag-As-Sb) lie along the northwest VLF trend. Anomaly 5 occurs in the vicinity of a splay off the northwest VLF trend and is therefore of higher priority than Anomaly 3.

Soil Anomaly 2 (Ag-As-Sb-weak Au) incorporates the highest Ag value in soil, is proximal to an 1100 pb Au value in rock and occurs within 100m of the highest Au in soil anomaly which corresponds to a weak north to northnortheast trending VLF anomaly. Consequently Anomaly 2 is also of high priority.
Another weak north trending VLF anomaly corresponds to Soil Anomaly 4 which includes As-Ag anomalies with peripheral Au. This area is of lower priority.

At the crossroads of the main, west and east roads, several Au in soil anomalies generally correspond to the southern end of the north trending VLF anomaly. The highest Au value in rock also occurs in this vicinity.

CONCLUSION AND RECOMMENDATIONS:

It is possible that quartz veining or a quartz stockwork with significant Au values occurs on the ONLY property. Anomalous Au values of up to 1650 ppb have been obtained from narrow quartz stringers hosted by an altered and locally sheared plug of rhyolite porphyry with common pyrite and pyrrhotite mineralization. Stringer samples include a large proportion of host rock consequently higher concentrations of Au are present in the quartz. Two major VLF structures have been delineated, as well as other minor trends, with corresponding Au, Ag, As and Sb soil anomalies.

Since the ONLY is easily accessible from the Mt. Nansen camp 10 km away and a caterpillar is generally available here, a program of caterpillar trenching is proposed to follow up the anomalies on the ONLY. Blasting methods of trenching have proved to be inefficient in similar felsenmeer covered areas. This program can be done in conjunction with cat. trenching proposed on the near by DIC and VIC properties.

Caterpillar trenching is recommended for the 1987 program on the ONLY in the vicinity of the following anomalies listed in order of importance:

1) Anomaly 1
2) Anomaly 2
3) Anomaly 5
4) in the vicinity of the crossroads of the main, west and east roads.
APPENDIX I

Selected References:

Tempelman-Kluit, D.J. 1984: Geology, Laberge (105E) and Carmacks (115 I), Yukon Territory; G.S.C. O.F. 1101.
APPENDIX II

Sample Descriptions and Geochemistry
GEOCHEMICAL DATA SHEET - ROCK GEOCHEM SAMPLING

Project: Y-12

Line:

Sample Number | **Location** | **Rock Type** | **Alteration** | **Mineralization** | **Strike/Dip** | **Additional Remarks** | **Apparent Width** | **True Width** | **Au** | **Ag** |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YO - 6181</td>
<td>EAST ONLY</td>
<td>Q. str/RFP</td>
<td>Ser, clq, ilt,</td>
<td></td>
<td>1 piece</td>
<td>- cubic doesn't fit</td>
<td>1.5 mm</td>
<td>65</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>(2) 63J</td>
<td>TRENCH 1</td>
<td>RFP</td>
<td>W, Sil, Mn in</td>
<td></td>
<td></td>
<td></td>
<td>450</td>
<td>570</td>
<td>620</td>
<td>09</td>
</tr>
<tr>
<td>(3) 63R</td>
<td>east only</td>
<td>Heavy carbon</td>
<td></td>
<td></td>
<td></td>
<td>- cu bic does not fit</td>
<td>65</td>
<td>27</td>
<td>4.6</td>
<td>0.1</td>
</tr>
<tr>
<td>(4) 694</td>
<td>TRENCH 2</td>
<td>RFP</td>
<td>W, Sil, S, Slm</td>
<td></td>
<td></td>
<td>- weakly brecciated</td>
<td>25</td>
<td>200</td>
<td>13.4</td>
<td>7.0</td>
</tr>
<tr>
<td>(6) 635</td>
<td>Lonley</td>
<td>Q. str/Rfp</td>
<td>W, Sil, Mn</td>
<td>Malachite</td>
<td></td>
<td></td>
<td>1-2 mm</td>
<td>25</td>
<td>24</td>
<td>1.2</td>
</tr>
<tr>
<td>(10) 639R</td>
<td>Lonley</td>
<td>Q. str/Rfp</td>
<td>W, Sil, Vv Min.</td>
<td></td>
<td></td>
<td>- v. few Q str.</td>
<td>1-4 mm</td>
<td>35</td>
<td>15</td>
<td>0.4</td>
</tr>
<tr>
<td>(11) 639R</td>
<td>Lonley</td>
<td>Q. str/Rfp</td>
<td>W, Sil, Vv Min.</td>
<td></td>
<td></td>
<td></td>
<td>1-4 mm</td>
<td>60</td>
<td>410</td>
<td>0.8</td>
</tr>
<tr>
<td>(12) 630R</td>
<td>Q. str/Rfp</td>
<td>S, Sil, W</td>
<td>Cal. blebs,</td>
<td>Wpy, Hem ?</td>
<td></td>
<td></td>
<td>65</td>
<td>570</td>
<td>620</td>
<td>09</td>
</tr>
<tr>
<td>(13) 631R</td>
<td>Q. str/Rfp</td>
<td>W, Sil, Mn</td>
<td>Malachite</td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>27</td>
<td>4.6</td>
<td>0.1</td>
</tr>
<tr>
<td>(14) 634R</td>
<td>Q. str/Rfp</td>
<td>W, Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>27</td>
<td>4.6</td>
<td>0.1</td>
</tr>
<tr>
<td>(15) 635R</td>
<td>Q. str/Rfp</td>
<td>W, Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>27</td>
<td>4.6</td>
<td>0.1</td>
</tr>
<tr>
<td>(16) 636R</td>
<td>Lonley</td>
<td>Q. str/Rfp</td>
<td>W, Mn</td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>27</td>
<td>4.6</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Notes:
- Au, Ag, As, Sb, and Pb assaying provided.
- Line and sample number are dated August 28, 1986.
- Project Y-12 only.
- Sample and location are kept consistent through each row.
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>LOCATION</th>
<th>ROCK TYPE</th>
<th>ALTERATION</th>
<th>MINERALIZATION</th>
<th>STRIKE/DIP</th>
<th>ADDITIONAL REMARKS</th>
<th>APPARENT WIDTH</th>
<th>TRUE WIDTH</th>
<th>ASSAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Road</td>
<td>R - q str</td>
<td>w</td>
<td>v. w. r. along</td>
<td></td>
<td>- white to v. w. creamy cryptocrystalline</td>
<td>3 rocks 1/2 cm</td>
<td>10 pebbles</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>Road</td>
<td>RqFp - q str</td>
<td>w-m r</td>
<td>- white, cryptocrystalline</td>
<td></td>
<td>8 cobbles 1.5 cm</td>
<td>50</td>
<td>160</td>
<td>0.2 0.8</td>
</tr>
<tr>
<td>3</td>
<td>Road</td>
<td>RqFp - q str</td>
<td>w-m r</td>
<td>- white, cryptocrystalline</td>
<td></td>
<td>2 cobbles 2 mm</td>
<td>50</td>
<td>35 0.1</td>
<td>0.9 0.9</td>
</tr>
<tr>
<td>4</td>
<td>Road</td>
<td>RqFp - q str</td>
<td>w-m r</td>
<td>- white, cryptocrystalline</td>
<td></td>
<td>2 cobbles 2 mm</td>
<td>50</td>
<td>35 0</td>
<td>0.1 0.9</td>
</tr>
<tr>
<td>5</td>
<td>L45N/20W</td>
<td>RqFp - q str</td>
<td>w-s. sil</td>
<td>- white, cryptocrystalline</td>
<td></td>
<td>2 mm</td>
<td>230</td>
<td>60 0.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L45N/20W</td>
<td>RqFp - q str</td>
<td>w-s. sil</td>
<td>- white, cryptocrystalline</td>
<td></td>
<td>2 mm</td>
<td>50</td>
<td>0.2 1.8</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L45N/20W</td>
<td>RqFp - q str</td>
<td>w-s. sil</td>
<td>- white, cryptocrystalline</td>
<td></td>
<td>2 mm</td>
<td>25</td>
<td>0.3 0.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>L45N/20W</td>
<td>RqFp - q str</td>
<td>w-s. sil</td>
<td>- white, cryptocrystalline</td>
<td></td>
<td>2 mm</td>
<td>110</td>
<td>0.3 0.2</td>
<td></td>
</tr>
<tr>
<td>SAMPLE No.</td>
<td>LOCATION</td>
<td>TYPE</td>
<td>DESCRIPTION - REMARKS</td>
<td>RESULTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0-6D1R</td>
<td>N.20W/52</td>
<td>Grab</td>
<td>g., wh.-gy., sugary, w. vuggy, w. r. 3 pcs., max 6cm. scattered over 10m</td>
<td>Ag: 2.0 As: 150 Sb: 320 Au: 425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6D2R</td>
<td>N.20W/51</td>
<td>Grab</td>
<td>Rp., m. cl. a., m. r., m. Mn stained</td>
<td>0.1 50 44 <5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6D3R</td>
<td>N.20W/46</td>
<td>Comp.</td>
<td>Rp? s. cl. a. rubble from shear zone in trench floor. Rubble present over width of about 1m.</td>
<td>0.2 80 7.2 <5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6D4R</td>
<td>N.20W/46</td>
<td>Grab</td>
<td>R? s. sil., gy., 5% f. g. pyrrhotite. 2 pcs. To 6cm.</td>
<td>0.1 2 0.8 <5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6D5R</td>
<td>N.20W/46</td>
<td>Grab</td>
<td>R flow, s. ser.-cl. a., w. r., somewhat heavy. From abundant F. H.</td>
<td>0.1 33 18 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6D6R</td>
<td>N.20W/46</td>
<td>Grab</td>
<td>Rp., m. cl. a., m. r., w. brecciated.</td>
<td>0.3 36 2.6 <5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6D7R</td>
<td>See map</td>
<td>Grab</td>
<td>Rp? s. r. seams, s. cl. a.</td>
<td>13 90 10 270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6D8R</td>
<td>N.20W/45</td>
<td>Grab</td>
<td>R, gy., s. sil, 9. stnqts to 3mm. 3-4 pcs. Max. 10cm</td>
<td>0.8 160 1.0 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>HOST</td>
<td>DESCRIPTION</td>
<td>Ag</td>
<td>As</td>
<td>Sb</td>
<td>Au</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------</td>
<td>--</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YL-5J2R</td>
<td>Andesite</td>
<td>weak silicification, bleached, 3-4% Po, same as Y1W-J4R, 100 m</td>
<td>390</td>
<td>14.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3R</td>
<td>Rhyolite feldspar porphyry</td>
<td>weak silicification, weak sericitization, minor patchy quartz & silicification</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J5R</td>
<td>Rhyolite feldspar porphyry</td>
<td>weak-moderate silicification, clay altered, Mn stain, quartz stringers up to 3-4 mm wide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J6R</td>
<td>Rhyolite feldspar porphyry</td>
<td>drusy quartz stringers 5 mm to 1.5 cm wide, weak Mn stringers, moderately silicified</td>
<td>2.6</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J7R</td>
<td>Rhyolite feldspar porphyry</td>
<td>quartz stringers, silicified</td>
<td>120</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J8R</td>
<td>Rhyolite feldspar porphyry</td>
<td>quartz stringers 0.5-1.5 cm wide, weak Mn stringers, clay altered, silicified</td>
<td>2.3</td>
<td>220</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J9R</td>
<td>Biotite Granodiorite or Dacite porphyry</td>
<td>weakly silicified, trace cp, py, (po), very rusty surface, very fine grained</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J10R</td>
<td>Rhyolite quartz feldspar porphyry</td>
<td>quartz stringers up to 7 mm wide, (drusy), silicified</td>
<td></td>
<td></td>
<td></td>
<td>1650</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J11R</td>
<td>Rhyolite-Rhyolite quartz feldspar porphyry</td>
<td>pyrite, rusty, or very silicified andesite?</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J12R</td>
<td>Rhyolite</td>
<td>few quartz stringers, up to 3 mm wide</td>
<td>2.1</td>
<td>1200</td>
<td>11.4</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE</td>
<td>HOST</td>
<td>DESCRIPTION</td>
<td>Ag ppm</td>
<td>As ppm</td>
<td>Sb ppm</td>
<td>Au ppb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>quartz-sericite?</td>
<td>white, moderately clay altered matrix, strong to intensely altered feldspar phenocryst, weak sericite?</td>
<td>2.6</td>
<td>75</td>
<td>13.0</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1W-J3R</td>
<td>Rhyolite feldspar porphyry</td>
<td>intensely clay altered, strongly rusty, dyke? 20 m wide</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J6R</td>
<td>Rhyolite</td>
<td>strong to intense finely silicified, intense clay alteration of feldspars very strong flow texture, 20-25 m wide</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J7R</td>
<td>Rhyolite feldspar porphyry</td>
<td>moderate-strong silicification, clay altered</td>
<td>14.8</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J8R</td>
<td>Rhyolite</td>
<td>J7R, less silicified, 10 m</td>
<td>77</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J9R</td>
<td>Rhyolite quartz feldspar porphyry</td>
<td>weak-strong clay alteration, fine quartz stringers, rusty</td>
<td>83</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J10R</td>
<td>Rhyolite feldspar porphyry</td>
<td>small dusty quartz veins, mm - 1cm, Mn stain</td>
<td>2.8</td>
<td>190</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>DESCRIPTION</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Yo45q</td>
<td></td>
<td>S</td>
<td>20</td>
<td></td>
<td>m yell.</td>
<td>dry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21+50</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>n silty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21+75</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td>s silty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 w</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td>m m cyber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22+35</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td>m cyber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22+50</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>m cyber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22+75</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>m loan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 w</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>m silty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 450</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td>w br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 750</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>s silty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24+50</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td>s br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24+25</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td>s br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24+75</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td>s cyber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25+25</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td>s cyber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25+50</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td>m m cyber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25+75</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td>m m cyber</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>YO-L50N/26W</td>
<td>S</td>
<td>25</td>
<td>M br.</td>
<td>Stony loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36+35</td>
<td>n</td>
<td>20</td>
<td>n</td>
<td>Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36+50</td>
<td>n</td>
<td>30</td>
<td>Dk br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36+75</td>
<td>n</td>
<td>20</td>
<td>Black</td>
<td>Sandy mat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-L49N/14W</td>
<td>S</td>
<td>20</td>
<td>M br.</td>
<td>Sandy clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14+35</td>
<td>25</td>
<td>n</td>
<td>Stony clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14+50</td>
<td>40</td>
<td>n</td>
<td>Silky sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15W</td>
<td>25</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15+35</td>
<td>25</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15+50</td>
<td>10</td>
<td>n</td>
<td>Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15+75</td>
<td>20</td>
<td>n</td>
<td>Sandy clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16W</td>
<td>20</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16+35</td>
<td>15</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10+50</td>
<td>25</td>
<td>n</td>
<td>Stony sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16+75</td>
<td>20</td>
<td>Yellow-Stony br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Y0-49N/17W</td>
<td>S</td>
<td>20</td>
<td>mbr</td>
<td>Stay silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17+25</td>
<td></td>
<td>35</td>
<td>11</td>
<td>Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17+50</td>
<td></td>
<td>35</td>
<td>11</td>
<td>Sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17+75</td>
<td></td>
<td>30</td>
<td>11</td>
<td>Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18W</td>
<td></td>
<td>20</td>
<td>11</td>
<td>Savy sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18+25</td>
<td></td>
<td>25</td>
<td>11</td>
<td>Yellow br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18+50</td>
<td></td>
<td>40</td>
<td>11</td>
<td>Yellow br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18+75</td>
<td></td>
<td>40</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19W</td>
<td></td>
<td>25</td>
<td>11</td>
<td>Sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19+25</td>
<td></td>
<td>30</td>
<td>11</td>
<td>Yellow br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19+50</td>
<td></td>
<td>30</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19+75</td>
<td></td>
<td>35</td>
<td>11</td>
<td>Loamy sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20W</td>
<td></td>
<td>20</td>
<td>11</td>
<td>Yellow br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20+25</td>
<td></td>
<td>15</td>
<td>11</td>
<td>Stay sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20+50</td>
<td></td>
<td>25</td>
<td>11</td>
<td>Mbr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20+75</td>
<td></td>
<td>30</td>
<td>11</td>
<td>Mbr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yukon 1986 soil & talus samples

Property/Target No. ONLY

Assays:
- Au
- Ag
- As
- Sb

Sample data includes location, soil vs talus, depth, horizon, colour, particle size, organic, slope, rock type, comments, and assays.
<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>LOCATION</th>
<th>Soil vs. Talus</th>
<th>Depth (cm)</th>
<th>Colour</th>
<th>Particle Size</th>
<th>Organic</th>
<th>Slope</th>
<th>Rock Type</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-47N/21W</td>
<td>S</td>
<td>30</td>
<td>Yellow Br</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11+25 | 20 | Yellow Br | | | | | | | - mixed with overlying chocolate, silty clay
| 11+50 | 20 | n | | | | | | | |
| 11+75 | 25 | Silty Clay | | | | | | | bid/subcrop Ap
| 22W | 30 | Silty Sand | | | | | | | - few stones but too well sorted to be good sample
| 22+25 | 30 | n | | | | | | | |
| 22+50 | 30 | n | | | | | | | |
| 22+75 | 40 | n | | | | | | | |
| 23W | 25 | Silt | | | | | | | |
| 23+25 | 40 | Medium Br | Stony Sand | | | | | | |
| 23+75 | 35 | n | | | | | | | |
| 24W | 35 | n | | | | | | | |
| 24+25 | 35 | n | Stony Shaly Clay | | | | | | |
| 24+50 | 25 | n | Stony Loam | | | | | | |
| 24+75 | 20 | n | Sandy Clay | | | | | | |
| 25W | 35 | n | Silty Sand | | | | | | | 30 0.1 2 0.2
| | | | | | | | | | 50 0.1 2 0.2
| | | | | | | | | | 0.1
| | | | | | | | | | 0.1 0.5
| | | | | | | | | | 2 0.4
| | | | | | | | | | 2 0.3
| | | | | | | | | | 15 2 0.2
| | | | | | | | | | 45 1 0.4
| | | | | | | | | | 3 0.2
| | | | | | | | | | 5 2 0.5
<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>LOCATION</th>
<th>Soil/Talus</th>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Colour</th>
<th>Particle Size</th>
<th>Organic</th>
<th>Slope</th>
<th>Rock Type</th>
<th>COMMENTS</th>
<th>ASSAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-1.49W</td>
<td>5</td>
<td>23</td>
<td>dk-br</td>
<td>S2</td>
<td>clay</td>
<td>clay loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>25+35</td>
<td>30</td>
<td>m-br</td>
<td>m-br</td>
<td>S2</td>
<td>stone</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>35+75</td>
<td>35</td>
<td>m-br</td>
<td>clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>26W</td>
<td>25</td>
<td>m-dk-br</td>
<td>clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Rock Type</td>
<td>ASSAYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>-----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>YO-L48 W</td>
<td>L48 W</td>
<td>S 35 B</td>
<td>n-dk</td>
<td>Grily</td>
<td>L-M</td>
<td>VW</td>
<td>2565 W - GDI-RdSp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 W</td>
<td>L55 W</td>
<td>S 30 B</td>
<td>n-dk</td>
<td>Grily</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2525 W</td>
<td>Ash</td>
<td>S 20 B</td>
<td>li-m</td>
<td>silt</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 W</td>
<td>Ash</td>
<td>S 43</td>
<td>m-brn</td>
<td>silty</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2475 W</td>
<td>Ash</td>
<td>S 44</td>
<td>m-brn</td>
<td>silty</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2445 W</td>
<td>Ash</td>
<td>S 29</td>
<td>m-brn</td>
<td>silty</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2475 W</td>
<td>Ash</td>
<td>S 30</td>
<td>m-brn</td>
<td>silty</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3320 W</td>
<td>S 28</td>
<td>L B</td>
<td>li-m</td>
<td>sandy</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2350 W</td>
<td>S 41</td>
<td>L B</td>
<td>li-m</td>
<td>sandy</td>
<td>L-M</td>
<td>VW</td>
<td>2385 CLAIM Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 W</td>
<td>S 40</td>
<td>L B</td>
<td>li-m</td>
<td>sandy</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2250 W</td>
<td>S 40</td>
<td>L B</td>
<td>li-m</td>
<td>sandy</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 W</td>
<td>S 10</td>
<td>L B</td>
<td>li-m</td>
<td>sandy</td>
<td>L-M</td>
<td>VW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>YD-L48N/322W</td>
<td>S 40 6</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td>-</td>
<td>10 0.1 1 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/22W</td>
<td>S 38 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.1 4 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2175W</td>
<td>S 42 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>30 0.2 7 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2150W</td>
<td>S 42 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.1 7 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2125W</td>
<td>S 40 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.4 5 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/21W</td>
<td>S 30 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.2 1 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2075W</td>
<td>S 29 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.3 3 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2050W</td>
<td>S 30 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.1 2 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2025W</td>
<td>S 30 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.2 2 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/20W</td>
<td>S 25 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.3 3 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/1975W</td>
<td>NOT TAKEN</td>
<td></td>
</tr>
<tr>
<td>/1350W</td>
<td>S 35 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.3 4 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/1190W</td>
<td>S 43 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.2 9 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/115W</td>
<td>S 45 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.4 4 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/1875W</td>
<td>S 45 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.1 4 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/1900W</td>
<td>S 45 B</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>A1</td>
<td></td>
<td>15 0.1 3 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>YO-48 W/1875 W</td>
<td>S 30 B</td>
<td>m brn</td>
<td>Gritty, Sandy, Silt</td>
<td>O</td>
<td>L-E</td>
<td>Dsp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- Dis sp magm, sample almost talus fines</td>
<td>0.1</td>
</tr>
<tr>
<td>18 W</td>
<td>S 30 B</td>
<td></td>
<td></td>
<td>Silt</td>
<td></td>
<td>Afp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- non magm, talus</td>
<td>0.1</td>
</tr>
<tr>
<td>1775 W</td>
<td>S 32 B</td>
<td></td>
<td></td>
<td>Sandy, Silt</td>
<td></td>
<td>Bsp-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- v 1766 Afp</td>
<td>0.1</td>
</tr>
<tr>
<td>1750 W</td>
<td>S 40 B</td>
<td>m brn</td>
<td></td>
<td>Silt</td>
<td></td>
<td>Afp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- Afp v fresh</td>
<td>0.1</td>
</tr>
<tr>
<td>1725 W</td>
<td>Swamp</td>
<td>Afp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 W</td>
<td>S 43 B</td>
<td>L brn</td>
<td></td>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1675 W</td>
<td>S 48 B</td>
<td>m brn</td>
<td></td>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1650 W</td>
<td>S 32 B</td>
<td>m brn</td>
<td></td>
<td>Yellow, Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1625 W</td>
<td>S 40 B</td>
<td></td>
<td></td>
<td>Silt</td>
<td></td>
<td>Afp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- W magn</td>
<td>0.1</td>
</tr>
<tr>
<td>16 W</td>
<td>S 35 B</td>
<td></td>
<td></td>
<td>Silt</td>
<td></td>
<td>Afp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- Afp</td>
<td>0.2</td>
</tr>
<tr>
<td>1575 W</td>
<td>S 40 B</td>
<td></td>
<td></td>
<td>Silt</td>
<td></td>
<td>Afp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- Afp</td>
<td>0.1</td>
</tr>
<tr>
<td>1550 W</td>
<td>S 40 B</td>
<td></td>
<td></td>
<td>Silt</td>
<td></td>
<td>Afp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- with Ash</td>
<td>0.1</td>
</tr>
<tr>
<td>1525 W</td>
<td>S 40 B</td>
<td>m brn</td>
<td></td>
<td>Silt</td>
<td></td>
<td>Afp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>15 W</td>
<td>S 62 B</td>
<td>m brn</td>
<td></td>
<td>Sandy, Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>1475 W</td>
<td>S 45 B</td>
<td>m brn</td>
<td></td>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>1450 W</td>
<td>S 42 B</td>
<td></td>
<td></td>
<td>Silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil & Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>47N/14+75W</td>
<td>S</td>
<td>55</td>
<td>B</td>
<td>buff</td>
<td>f. silt</td>
<td>few</td>
<td>flat</td>
<td>poor soil; no chips</td>
<td></td>
<td>25</td>
<td>0.1</td>
</tr>
<tr>
<td>15W</td>
<td>30</td>
<td>m. brown</td>
<td>m. sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>15+35W</td>
<td>40</td>
<td>m. buff</td>
<td>m. sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>15+50</td>
<td>35</td>
<td>m. brown</td>
<td>f. sand-silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>15+75</td>
<td>35</td>
<td>m. buff brown</td>
<td>m. silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>16W</td>
<td>30</td>
<td>m. brown</td>
<td>m. clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>16+25</td>
<td>30</td>
<td>m. or brown</td>
<td>m. clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>16+50</td>
<td>40</td>
<td>m. buff brown</td>
<td>f. sand-silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>16+85</td>
<td>40</td>
<td>m. buff brown</td>
<td>m. sand-silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>17+95</td>
<td>30</td>
<td>buff brown</td>
<td>m. sand-silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>17+50</td>
<td>40</td>
<td>m. brown</td>
<td>m. silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>18W</td>
<td>55</td>
<td>m. buff brown</td>
<td>m. silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>18+25</td>
<td>45</td>
<td>m. or brown</td>
<td>m. silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>18+50</td>
<td>40</td>
<td>m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>18+75</td>
<td>55</td>
<td>m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>19W</td>
<td>45</td>
<td>m. brown</td>
<td>f. silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil Vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon Colour</td>
<td>Particle Size</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L47N/19+25W</td>
<td>S</td>
<td>45</td>
<td>B</td>
<td>Orange brown</td>
<td>M-Sand</td>
<td>Ap</td>
<td></td>
<td><5 0.6 23 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19+50</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.3 10 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19+75</td>
<td></td>
<td>50</td>
<td></td>
<td>F-Sand-Silt</td>
<td></td>
<td>Ap</td>
<td>outside of main</td>
<td>15 0.1 15 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26W</td>
<td></td>
<td>40</td>
<td></td>
<td>Muff Brown</td>
<td>F-Sand-Silt</td>
<td></td>
<td></td>
<td><5 0.3 5 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30+0</td>
<td></td>
<td>35</td>
<td></td>
<td>Orange Brown</td>
<td>F-Sand-Silt</td>
<td>Ap</td>
<td></td>
<td><5 0.4 4 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30+50</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.1 25 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30+75</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>Ap</td>
<td>below ash</td>
<td>25 0.2 5 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21W</td>
<td></td>
<td>42</td>
<td></td>
<td>M-br.</td>
<td></td>
<td>Ap</td>
<td></td>
<td><5 0.3 19 1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31+25</td>
<td></td>
<td>40</td>
<td></td>
<td>M-Sand</td>
<td></td>
<td>Ap</td>
<td></td>
<td>15 0.1 10 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31+50</td>
<td></td>
<td>35</td>
<td></td>
<td>M-F Sand</td>
<td></td>
<td></td>
<td>good, lots rock chips</td>
<td><5 0.1 19 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31+75</td>
<td></td>
<td>45</td>
<td></td>
<td>Hufn M-Sand</td>
<td></td>
<td></td>
<td></td>
<td><5 0.1 4 0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22W</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.3 6 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22+25</td>
<td></td>
<td>40</td>
<td></td>
<td>M-Brown</td>
<td></td>
<td>Ap</td>
<td>some rock chips</td>
<td>40 0.1 3 0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22+75</td>
<td></td>
<td>45</td>
<td></td>
<td>Hufn</td>
<td></td>
<td></td>
<td></td>
<td><5 0.1 2 0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23+25</td>
<td></td>
<td>30</td>
<td></td>
<td>M-Brown</td>
<td></td>
<td>Ap</td>
<td>lots rock chips</td>
<td><5 0.1 1 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23+50</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 0.1 17 0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23+75W</td>
<td></td>
<td>45</td>
<td></td>
<td>M-Org Brown</td>
<td></td>
<td></td>
<td>above ash? ?</td>
<td><5 0.3 25 1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil / Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>L47N/24W</td>
<td>S</td>
<td>65</td>
<td>15</td>
<td>buff</td>
<td>sand</td>
<td>few</td>
<td>gen</td>
<td>Ap</td>
<td>at side of creek</td>
<td></td>
<td>20 0.1 5 0.2</td>
</tr>
<tr>
<td>24+50</td>
<td></td>
<td>45</td>
<td>15</td>
<td>tan</td>
<td>clay-sand</td>
<td>n</td>
<td>n</td>
<td></td>
<td>lots angular rock chips</td>
<td></td>
<td>45 0.1 5 0.2</td>
</tr>
<tr>
<td>24+75</td>
<td></td>
<td>40</td>
<td>15</td>
<td>tan</td>
<td>sand</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td>45 0.1 3 0.1</td>
</tr>
<tr>
<td>25+50</td>
<td></td>
<td>35</td>
<td>15</td>
<td>buff</td>
<td>sand</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td>45 0.1 1 0.2</td>
</tr>
<tr>
<td>25+75</td>
<td></td>
<td>45</td>
<td>15</td>
<td>tan</td>
<td>clay-sand</td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td>45 0.1 3 0.1</td>
</tr>
<tr>
<td>35+50</td>
<td></td>
<td>30</td>
<td>15</td>
<td>tan</td>
<td>brown</td>
<td>n</td>
<td>n</td>
<td>flat</td>
<td>Ap - cut&shear</td>
<td></td>
<td>45 0.1 6 0.3</td>
</tr>
<tr>
<td>35+75</td>
<td></td>
<td>40</td>
<td>n</td>
<td>sandy</td>
<td>silt</td>
<td>lots</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td>45 0.2 5 0.2</td>
</tr>
<tr>
<td>46W</td>
<td></td>
<td>45</td>
<td>n</td>
<td>sandy</td>
<td>silt</td>
<td>silt</td>
<td>n</td>
<td>few</td>
<td>-</td>
<td></td>
<td>45 0.1 1 0.1</td>
</tr>
<tr>
<td>L46N/15+75</td>
<td>S</td>
<td>25</td>
<td>15</td>
<td>tan</td>
<td>clay-sand</td>
<td>n</td>
<td>n</td>
<td>Ap</td>
<td>fair</td>
<td></td>
<td>45 0.1 5 0.4</td>
</tr>
<tr>
<td>16W</td>
<td></td>
<td>40</td>
<td>?</td>
<td>m. br.</td>
<td>sand</td>
<td>n</td>
<td>n</td>
<td></td>
<td>poor - few rk chips</td>
<td></td>
<td>45 0.1 3 0.2</td>
</tr>
<tr>
<td>16+35</td>
<td></td>
<td>30</td>
<td>?</td>
<td>m. br.</td>
<td>sand</td>
<td>n</td>
<td>n</td>
<td></td>
<td>poor</td>
<td></td>
<td>45 0.1 5 0.2</td>
</tr>
<tr>
<td>16+50</td>
<td></td>
<td>50</td>
<td>15</td>
<td>tan</td>
<td>sand-silt</td>
<td>n</td>
<td>n</td>
<td></td>
<td>poor</td>
<td></td>
<td>45 0.2 10 0.6</td>
</tr>
<tr>
<td>16+85</td>
<td></td>
<td>35</td>
<td>tan</td>
<td>m. brown</td>
<td>sand</td>
<td>n</td>
<td>n</td>
<td>Ap</td>
<td>road cut, good</td>
<td></td>
<td>45 0.1 9 0.8</td>
</tr>
<tr>
<td>17W</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>n</td>
<td></td>
<td>flor</td>
<td></td>
<td>45 0.1 10 0.5</td>
</tr>
<tr>
<td>17+35</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td>45 0.1 10 0.6</td>
</tr>
<tr>
<td>17+50</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>n</td>
<td></td>
<td></td>
<td></td>
<td>45 0.1 35 1.0</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Description</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>-------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>L46N/17+75W</td>
<td>S</td>
<td>30</td>
<td>? m. br.</td>
<td>m. sand</td>
<td>few mod</td>
<td>—</td>
<td>fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18W</td>
<td></td>
<td>30</td>
<td>B</td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18+25W</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>good</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18+50W</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18+70W</td>
<td></td>
<td>30</td>
<td></td>
<td>cr. br.</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19W</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19+25</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>Ap fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19+50</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19+70</td>
<td></td>
<td>15</td>
<td></td>
<td>cr. br.</td>
<td></td>
<td>Ap</td>
<td>good</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20W</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>Ap</td>
<td>Pcff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20+25</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30+50</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30+70</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31W</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21+25</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21+75</td>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>44 - 75w</td>
<td>S 45</td>
<td>m or br</td>
<td>f sand</td>
<td>few</td>
<td>kaol</td>
<td>fair</td>
<td>below ash</td>
<td><5 0.3 43 2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 - 50</td>
<td>S 45</td>
<td>m or f</td>
<td>silt</td>
<td>mod.</td>
<td>-</td>
<td>u</td>
<td>"</td>
<td><5 0.2 60 2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 - 75</td>
<td>S 45</td>
<td>m or f</td>
<td>silt</td>
<td>mod.</td>
<td>Ap</td>
<td>poor</td>
<td>"</td>
<td><5 0.3 38 1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 75</td>
<td>S 45</td>
<td>m or f</td>
<td>silt</td>
<td>mod.</td>
<td>Ap</td>
<td>fair</td>
<td>"</td>
<td><5 0.2 10 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 - 75</td>
<td>S 45</td>
<td>m or f</td>
<td>silt</td>
<td>mod.</td>
<td>Ap</td>
<td>fair</td>
<td>"</td>
<td><5 0.2 12 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 - 05</td>
<td>S 35</td>
<td>m or f</td>
<td>silt</td>
<td>"</td>
<td>-</td>
<td>u</td>
<td>"</td>
<td><5 0.3 19 0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 - 50</td>
<td>S 50</td>
<td>m or f</td>
<td>silt</td>
<td>"</td>
<td>-</td>
<td>u</td>
<td>"</td>
<td><5 0.3 25 1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 - 75</td>
<td>S 55</td>
<td>m or f</td>
<td>silt</td>
<td>mod.</td>
<td>-</td>
<td>fair</td>
<td>"</td>
<td><5 0.2 9 0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 - 50</td>
<td>S 50</td>
<td>m or f</td>
<td>silt</td>
<td>"</td>
<td>-</td>
<td>Ap</td>
<td>poor</td>
<td><5 0.1 19 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 - 25</td>
<td>S 50</td>
<td>m or f</td>
<td>silt</td>
<td>"</td>
<td>-</td>
<td>Ap</td>
<td>"</td>
<td>25 0.1 9 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 - 150</td>
<td>S 40</td>
<td>m or f</td>
<td>silt</td>
<td>"</td>
<td>-</td>
<td>Ap</td>
<td>"</td>
<td><5 0.1 12 0.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 - 75</td>
<td>S 50</td>
<td>m or f</td>
<td>silt</td>
<td>"</td>
<td>-</td>
<td>Ap</td>
<td>"</td>
<td>25 0.1 5 0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 - 05w</td>
<td>S 30</td>
<td>m or f</td>
<td>silt</td>
<td>"</td>
<td>-</td>
<td>Ap</td>
<td>good</td>
<td><5 0.1 2 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil Type</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-L45N/25W</td>
<td>S 35 B m Brn</td>
<td>Frthy silt</td>
<td>0 0</td>
<td>Apf</td>
<td>26W, 2575 to 2525 W - N. samples taken Creek debris & swampy</td>
<td>25 0.2 12 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2475W</td>
<td>S 40 B m Brn</td>
<td>Sandy Silt</td>
<td>Y W</td>
<td>Apf</td>
<td>as surrounded pebbles (Glacial?)</td>
<td>10 0.2 16 0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2450W</td>
<td>S 35 bA, Lm Brn</td>
<td>L-M</td>
<td>0</td>
<td>Apf</td>
<td>-</td>
<td>25 0.4 22 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/24125W</td>
<td>S 28 B m Brn</td>
<td>Frthy Sandy Silt</td>
<td>0</td>
<td>Apf</td>
<td>-</td>
<td>60 0.9 60 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/24 W</td>
<td>S 40 B m Brn</td>
<td>Grirty Sandy Silt</td>
<td>0</td>
<td>Apf</td>
<td>- Rsp, Int w v; Apf (Glacial?)</td>
<td>25 0.2 24 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/23350W</td>
<td>S 40 B m Brn</td>
<td>Silt</td>
<td>0</td>
<td>R</td>
<td></td>
<td>25 0.3 12 0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2325W</td>
<td>S 32 bB, Lc Brn</td>
<td>Sandy Silt</td>
<td>L-M</td>
<td>W</td>
<td>W</td>
<td>Rsp</td>
<td>15 1.2 290 2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2250W</td>
<td>S 30 Lm Brn</td>
<td>Grirty Silt</td>
<td>L W</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2225W</td>
<td>S 32 bB, Lc Brn</td>
<td>Silt</td>
<td>0</td>
<td>W</td>
<td></td>
<td>Rsp</td>
<td>15 0.8 35 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/22 W</td>
<td>S 28 Lm Brn</td>
<td>Grirty Silt</td>
<td>0</td>
<td>R</td>
<td>- some z w c10</td>
<td></td>
<td>10 2.4 100 0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2175W</td>
<td>S 32 Lm Brn</td>
<td>V L</td>
<td>R</td>
<td>Rsp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2150W</td>
<td>S 40 B m Brn</td>
<td>Silt</td>
<td>0</td>
<td>R</td>
<td>- pebbles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2125W</td>
<td>S 40 Lm Brn</td>
<td>Silt</td>
<td>0</td>
<td>R</td>
<td></td>
<td>55 0.7 70 1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/21 W</td>
<td>S 10 Lm Brn</td>
<td>Silt</td>
<td>0</td>
<td>R</td>
<td>Res - Sp maybe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
YUKON 1986 SOIL & TALUS SAMPLES

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>LOCATION</th>
<th>Soil vs Talus</th>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Colour</th>
<th>Particle Size</th>
<th>Organic</th>
<th>Slop</th>
<th>Rock Type</th>
<th>COMMENTS</th>
<th>ASSAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0-145N/207W</td>
<td>S 40 B m Brn</td>
<td>Silt</td>
<td>5</td>
<td>v w</td>
<td>R</td>
<td>- pallets</td>
<td>10</td>
<td>0.7</td>
<td>60</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>/2050W</td>
<td>S 30 B m Brn</td>
<td>Silt</td>
<td>5</td>
<td>v w</td>
<td>R</td>
<td>- pallets</td>
<td>25</td>
<td>4.9</td>
<td>78</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>/2025W</td>
<td>S 30 B t C Brn</td>
<td>Grizzly Silt</td>
<td>0</td>
<td>v w</td>
<td>R</td>
<td>- 2003 Road</td>
<td>80</td>
<td>0.8</td>
<td>160</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>/1975W</td>
<td>S 35 B m Brn</td>
<td>Silt</td>
<td>0</td>
<td>v w</td>
<td>R</td>
<td>- R(?)</td>
<td>5</td>
<td>0.7</td>
<td>12</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>/1950W</td>
<td>S 40 B m Brn</td>
<td>Grizzly Silt</td>
<td>0</td>
<td>v w</td>
<td>R</td>
<td>- R(?)</td>
<td>25</td>
<td>0.3</td>
<td>38</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>/1925W</td>
<td>S 42 B m Brn</td>
<td>Silt</td>
<td>0</td>
<td>v w</td>
<td>R</td>
<td>- R(?)</td>
<td>5</td>
<td>0.2</td>
<td>29</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>/18W</td>
<td>S 42 B m Brn</td>
<td>m-Brn</td>
<td>0</td>
<td>m E</td>
<td>R</td>
<td>- Int, R pebbles, s Ash?</td>
<td>25</td>
<td>1.0</td>
<td>90</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>/1875W</td>
<td>S 45 B m Brn</td>
<td>Silt</td>
<td>0</td>
<td>m E</td>
<td>R</td>
<td>- Int, R pebbles, s Ash?</td>
<td>55</td>
<td>0.5</td>
<td>32</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>/1825W</td>
<td>S 45 B m Brn</td>
<td>Grizzly Silt</td>
<td>0</td>
<td>m E</td>
<td>R</td>
<td>- Int, R well rounded Glacial?</td>
<td>5</td>
<td>0.5</td>
<td>150</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>/19W</td>
<td>S 30 HAI B dk-vek Brn</td>
<td>Silt</td>
<td>0</td>
<td>M-S</td>
<td>R</td>
<td>- Int, R well rounded Glacial?</td>
<td>10</td>
<td>2.3</td>
<td>120</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>/1775W</td>
<td>S 30 B m Brn</td>
<td>Silt</td>
<td>0</td>
<td>w w</td>
<td>Afp</td>
<td>- local?</td>
<td>10</td>
<td>0.1</td>
<td>60</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>/1750W</td>
<td>S 32 B Brn</td>
<td>Silt</td>
<td>0</td>
<td>w w</td>
<td>Afp</td>
<td>- 1704 W Road</td>
<td>20</td>
<td>1.7</td>
<td>130</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>/1725W</td>
<td>S 32. B m Brn</td>
<td>Grizzly Silt</td>
<td>0</td>
<td>w w</td>
<td>R</td>
<td>- 1704 W Road</td>
<td>10</td>
<td>1.0</td>
<td>70</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>/1675W</td>
<td>S 48 B H-I Brn</td>
<td>Silt</td>
<td>0</td>
<td>w w</td>
<td>R</td>
<td>- 1704 W Road</td>
<td>35</td>
<td>0.1</td>
<td>4</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil Type</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>----------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>YO-L45N/1625W</td>
<td>S 40 B</td>
<td>yellow sand</td>
<td>L-M</td>
<td>YW E</td>
<td>bottom of A, top of Ash?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0 0.1 6 0.6</td>
<td></td>
</tr>
<tr>
<td>16 W</td>
<td>S 40 B</td>
<td></td>
<td></td>
<td>O</td>
<td>numerous rounded pebbles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0 0.1 6 0.2</td>
<td></td>
</tr>
<tr>
<td>1575 W to 14W No samples taken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Swamp, Glacial? Rock Deposits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-L44N/26W to 2525W</td>
<td>NO samples taken</td>
<td></td>
<td></td>
<td></td>
<td>- 2525 W Creek Midpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B 2505W</td>
<td>S 32 B</td>
<td>clayey silt</td>
<td>O</td>
<td>W</td>
<td>25 W to 25 W No Samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0 0.6 13.0 1.6</td>
<td></td>
</tr>
<tr>
<td>1227W</td>
<td>S 30 B</td>
<td>sandy silt</td>
<td>O</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0 2.8 33 1.0</td>
<td></td>
</tr>
<tr>
<td>1235W</td>
<td>S 35 B</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0 0.5 25 1.0</td>
<td></td>
</tr>
<tr>
<td>1235W</td>
<td>S 28 B</td>
<td>white sand</td>
<td>O</td>
<td>W</td>
<td>some fine quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40.0 4.4 24 1.2</td>
<td></td>
</tr>
<tr>
<td>1238W</td>
<td>S 35 F</td>
<td>clayey silt</td>
<td>V</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0 0.4 27 0.8</td>
<td></td>
</tr>
<tr>
<td>2227W</td>
<td>S 35 B</td>
<td></td>
<td></td>
<td>V</td>
<td>No results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2230W</td>
<td>S 40 B</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0 0.6 12 0.6</td>
<td></td>
</tr>
<tr>
<td>2225W</td>
<td>S 30 B</td>
<td>sandy silt</td>
<td>O</td>
<td>V</td>
<td>- 22 W, 2175 W, no samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30.0 0.9 90 3.2</td>
<td></td>
</tr>
<tr>
<td>2155W</td>
<td>S 30 B</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.0 0.5 60 1.0</td>
<td></td>
</tr>
<tr>
<td>2125W</td>
<td>Ash</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0 0.6 6 0.2</td>
<td></td>
</tr>
<tr>
<td>21W</td>
<td>S 28 B</td>
<td></td>
<td></td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.0 0.3 4 0.1</td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Tiltas</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>L44N/16+75W</td>
<td>S</td>
<td>50</td>
<td>dk br</td>
<td>Simply muck</td>
<td>lots</td>
<td>-</td>
<td>part of ash?</td>
<td>0.5</td>
<td>2.4</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>17+35W</td>
<td>10</td>
<td>br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>3.6</td>
</tr>
<tr>
<td>17+50W</td>
<td>45</td>
<td>m br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>27</td>
<td>1.0</td>
</tr>
<tr>
<td>45</td>
<td>m br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>220</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>17+75W</td>
<td>30</td>
<td>br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>60</td>
</tr>
<tr>
<td>18W</td>
<td>35</td>
<td>m br</td>
<td>few</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>good</td>
<td>0.2</td>
<td>25</td>
</tr>
<tr>
<td>18+35W</td>
<td>45</td>
<td>m br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>130</td>
</tr>
<tr>
<td>18+50</td>
<td>45</td>
<td>m br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>38</td>
</tr>
<tr>
<td>19W</td>
<td>45</td>
<td>m br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>27</td>
</tr>
<tr>
<td>19+25</td>
<td>15</td>
<td>m br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>60</td>
</tr>
<tr>
<td>19+50</td>
<td>30</td>
<td>m br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>17</td>
</tr>
<tr>
<td>19+75</td>
<td>30</td>
<td>m br</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
<td>15</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>COLOUR</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Y0-L411W/2077W</td>
<td>S</td>
<td>4/8</td>
<td>in</td>
<td>Fm</td>
<td>Clay</td>
<td>0</td>
<td>W</td>
<td>-</td>
<td></td>
<td></td>
<td><5 0.5 4 0.2</td>
</tr>
<tr>
<td>17+50W</td>
<td>S</td>
<td>23</td>
<td>B</td>
<td>in</td>
<td>Fm</td>
<td>Clay</td>
<td>0</td>
<td>E</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y0-L43W/17+55W</td>
<td>S</td>
<td>40</td>
<td>B</td>
<td>m</td>
<td>Br</td>
<td>Sandy</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17+50W</td>
<td>S</td>
<td>45</td>
<td>B</td>
<td>br</td>
<td>W</td>
<td>Br</td>
<td>Sandy</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17+75</td>
<td>S</td>
<td>47</td>
<td>B</td>
<td>br</td>
<td>W</td>
<td>Br</td>
<td>Sandy</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18W</td>
<td>S</td>
<td>50</td>
<td>B</td>
<td>Br</td>
<td>W</td>
<td>Br</td>
<td>Sandy</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18+55</td>
<td>S</td>
<td>40</td>
<td>B</td>
<td>black</td>
<td>II</td>
<td>Lots</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18+50</td>
<td>S</td>
<td>45</td>
<td>B</td>
<td>Br</td>
<td>W</td>
<td>Br</td>
<td>Sandy</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>18+75</td>
<td>S</td>
<td>45</td>
<td>B</td>
<td>Br</td>
<td>W</td>
<td>Br</td>
<td>Sandy</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19W</td>
<td>S</td>
<td>30</td>
<td>B</td>
<td>Br</td>
<td>W</td>
<td>Br</td>
<td>Clay</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19+50</td>
<td>S</td>
<td>35</td>
<td>B</td>
<td>Br</td>
<td>W</td>
<td>Br</td>
<td>Sandy</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19+75</td>
<td>S</td>
<td>30</td>
<td>B</td>
<td>Br</td>
<td>W</td>
<td>Br</td>
<td>Clay</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>20W</td>
<td>S</td>
<td>30</td>
<td>B</td>
<td>Br</td>
<td>W</td>
<td>Br</td>
<td>Sandy</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil & Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>YO-L 43 N/2025 W</td>
<td></td>
</tr>
<tr>
<td>/12050</td>
<td>S 30</td>
<td>B</td>
<td>m-w. brown</td>
<td>silt</td>
<td>O</td>
<td>w.m.</td>
<td>Rfp</td>
<td></td>
<td></td>
<td>No Sample, Road</td>
<td></td>
</tr>
<tr>
<td>/2075</td>
<td>S 30</td>
<td>B</td>
<td>m brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>/21W</td>
<td>Ash 35</td>
<td>Top B</td>
<td>grey brown</td>
<td>sand</td>
<td>silt</td>
<td></td>
<td>w. W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2125</td>
<td>Ash 40</td>
<td>-</td>
<td>m grey</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>/2150</td>
<td>S 26</td>
<td>B</td>
<td>m brown</td>
<td>silt</td>
<td>O</td>
<td>w.m.</td>
<td>Rfp</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>/2175</td>
<td>S 28</td>
<td>B</td>
<td>m-dk. brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>some Ash</td>
<td>10</td>
</tr>
<tr>
<td>/22W</td>
<td>S 30</td>
<td>B</td>
<td>m brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>/2225</td>
<td>S 32</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2250</td>
<td>S 32</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/2275</td>
<td>S 43</td>
<td>B</td>
<td>m-brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/23W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No Sample</td>
<td></td>
</tr>
<tr>
<td>/2325</td>
<td>S 28</td>
<td>Top B</td>
<td>mdk. sandy</td>
<td>sand</td>
<td>silt</td>
<td>O</td>
<td>w.m.</td>
<td></td>
<td></td>
<td>s Ash content</td>
<td>25</td>
</tr>
<tr>
<td>/2350</td>
<td></td>
</tr>
<tr>
<td>/2375</td>
<td>S 40</td>
<td>-</td>
<td>m-brown</td>
<td>silty sand</td>
<td>O</td>
<td>w.m.</td>
<td></td>
<td></td>
<td>s Ash content</td>
<td>25</td>
<td>1.3</td>
</tr>
<tr>
<td>/24W</td>
<td>S 35</td>
<td>-</td>
<td>m-brown</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ash</td>
<td>25</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Y0-L43N/2435W</td>
<td>S 30</td>
<td>Bot. A</td>
<td>m brown</td>
<td>silt</td>
<td>L-M</td>
<td>Vw W</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td><0.5 1.0 20 0.3</td>
</tr>
<tr>
<td>12450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No Sample</td>
<td></td>
</tr>
<tr>
<td>12475</td>
<td>S 30</td>
<td>Bot. A</td>
<td>m brown</td>
<td>silt</td>
<td>M</td>
<td>Vw W</td>
<td>-</td>
<td></td>
<td></td>
<td>some Ash</td>
<td><0.5 3.5 60 0.8</td>
</tr>
<tr>
<td>125 W</td>
<td>S 30</td>
<td>B</td>
<td>m brown</td>
<td>sandy silt</td>
<td>O</td>
<td>Bank R.F.P</td>
<td>-</td>
<td></td>
<td></td>
<td>No Samples</td>
<td><0.5 0.3 16 0.5</td>
</tr>
<tr>
<td>12525</td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>L49N/17+50W</td>
<td>S</td>
<td>50</td>
<td>60+8sh</td>
<td>m. br.</td>
<td>Sandy</td>
<td>Few med.</td>
<td>Flat</td>
<td>-</td>
<td>LRP</td>
<td>Iron chips</td>
<td><5 0.4 7 0.3</td>
</tr>
<tr>
<td>17+75W</td>
<td>B</td>
<td>25</td>
<td>60+8sh</td>
<td>m. br.</td>
<td>Clayey</td>
<td>Some grit</td>
<td>Flat</td>
<td>-</td>
<td>RRP</td>
<td>Few from road</td>
<td>15 0.7 17 0.2</td>
</tr>
<tr>
<td>18W</td>
<td></td>
<td>35</td>
<td>60+8sh</td>
<td>m. br.</td>
<td>Clayey</td>
<td>None</td>
<td>Flat</td>
<td>-</td>
<td>RRP</td>
<td></td>
<td>10 0.5 17 0.2</td>
</tr>
<tr>
<td>18+25</td>
<td>B</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 0.6 23 0.3</td>
</tr>
<tr>
<td>18+50</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 0.6 60 0.3</td>
</tr>
<tr>
<td>18+75</td>
<td></td>
<td>30</td>
<td>60+8sh</td>
<td>m. br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 0.4 29 0.2</td>
</tr>
<tr>
<td>19W</td>
<td></td>
<td>35</td>
<td>60+8sh</td>
<td>m. br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.5 9 0.1</td>
</tr>
<tr>
<td>19+25</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 0.6 33 0.1</td>
</tr>
<tr>
<td>19+50</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.6 16 0.1</td>
</tr>
<tr>
<td>19+75</td>
<td></td>
<td>40</td>
<td>60+8sh</td>
<td>m. br.</td>
<td>Clayey</td>
<td>Silt</td>
<td>Flat</td>
<td>few et chips</td>
<td></td>
<td>40 0.6 25 0.2</td>
<td></td>
</tr>
<tr>
<td>20W</td>
<td></td>
<td>35</td>
<td>60+8sh</td>
<td>m. br.</td>
<td></td>
<td>Few mad.</td>
<td>Flat</td>
<td>-</td>
<td>RRP</td>
<td></td>
<td><5 0.3 4 0.1</td>
</tr>
<tr>
<td>20+25</td>
<td></td>
<td>45</td>
<td>60+8sh</td>
<td>m. br.</td>
<td></td>
<td></td>
<td>Flat</td>
<td>-</td>
<td>RRP</td>
<td></td>
<td><5 0.4 3 0.1</td>
</tr>
<tr>
<td>20+50</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flat</td>
<td>-</td>
<td>RRP</td>
<td></td>
<td><5 0.4 3 0.1</td>
</tr>
<tr>
<td>20+75</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>Sandy silt</td>
<td>Flat</td>
<td>-</td>
<td>RRP</td>
<td></td>
<td><5 0.4 2 0.1</td>
</tr>
<tr>
<td>21W</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>silt</td>
<td>Flat</td>
<td>-</td>
<td>RRP</td>
<td></td>
<td><5 0.4 5 0.1</td>
</tr>
<tr>
<td>21+25</td>
<td></td>
<td>50</td>
<td>60+8sh</td>
<td>m. br.</td>
<td>Silt</td>
<td></td>
<td>Flat</td>
<td>-</td>
<td>RRP</td>
<td></td>
<td>10 0.2 5 0.1</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>LY2N / 21-50W</td>
<td>S</td>
<td>40</td>
<td>65B</td>
<td>mor, br.</td>
<td>silt</td>
<td>v.
 R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Au</td>
</tr>
<tr>
<td>21-75</td>
<td></td>
<td>45</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>22W</td>
<td></td>
<td>35-40</td>
<td>65B</td>
<td></td>
<td>clayey silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>22+25</td>
<td></td>
<td>45</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>22+50</td>
<td></td>
<td>35-45</td>
<td>65B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>22+75</td>
<td></td>
<td>40</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>23W</td>
<td></td>
<td>40</td>
<td>B</td>
<td></td>
<td>buff., m. br.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>23+25</td>
<td></td>
<td>40</td>
<td>65B</td>
<td></td>
<td>clayey silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>23+50</td>
<td></td>
<td>40</td>
<td>B</td>
<td></td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>23+75</td>
<td></td>
<td>35</td>
<td>?</td>
<td></td>
<td>clayey silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>24W</td>
<td></td>
<td>35</td>
<td>B</td>
<td></td>
<td>m. sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>24+25</td>
<td></td>
<td>45</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>25+25W (x25 W?)</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>26W</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td>sand/silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope Type</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>L41N/18+25W</td>
<td>5</td>
<td>chernozem</td>
<td>35</td>
<td>B</td>
<td>m. br.</td>
<td>w. sandy silt</td>
<td>few</td>
<td>grade</td>
<td>Rgbe</td>
<td></td>
<td><5 0.2 5 0.2</td>
</tr>
<tr>
<td>18+50</td>
<td>45</td>
<td>clay loam</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>w. clayey silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.5 17 0.4</td>
</tr>
<tr>
<td>18+75</td>
<td>45</td>
<td>sandy loam</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>w. sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.9 16 0.4</td>
</tr>
<tr>
<td>19W</td>
<td>25</td>
<td>loamy sand</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>clayey silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.2 16 0.4</td>
</tr>
<tr>
<td>19+25</td>
<td>40</td>
<td>sandy loam</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>w. clayey silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.3 15 0.4</td>
</tr>
<tr>
<td>19+50</td>
<td>40</td>
<td>loamy sand</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>w. sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.3 15 0.3</td>
</tr>
<tr>
<td>19+75</td>
<td>30</td>
<td>loamy sand</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.4 12 0.3</td>
</tr>
<tr>
<td>20W</td>
<td>35</td>
<td>loamy sand</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 0.5 3 0.1</td>
</tr>
<tr>
<td>20+25</td>
<td>45</td>
<td>sandy loam</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 0.6 15 0.3</td>
</tr>
<tr>
<td>20+50</td>
<td>35</td>
<td>loamy sand</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 0.6 60 0.5</td>
</tr>
<tr>
<td>20+75</td>
<td>20</td>
<td>sandy loam</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5 0.6 9 0.3</td>
</tr>
<tr>
<td>21W</td>
<td>20</td>
<td>sandy loam</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 0.2 17 0.3</td>
</tr>
<tr>
<td>21+25</td>
<td>45</td>
<td>loamy sand</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 0.4 17 0.4</td>
</tr>
<tr>
<td>21+50</td>
<td>40</td>
<td>sandy loam</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60 0.4 17 0.4</td>
</tr>
<tr>
<td>21+75</td>
<td>40</td>
<td>sandy loam</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55 0.5 100 1.6</td>
</tr>
<tr>
<td>22W</td>
<td>50</td>
<td>loamy sand</td>
<td>15-30</td>
<td>B?</td>
<td>m. br.</td>
<td>sandy silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 0.7 7 0.5</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth [m]</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>L 40.H / 18 + 50.W</td>
<td>≤ 40</td>
<td>?</td>
<td>1st br.</td>
<td>sand</td>
<td>few</td>
<td>yolk</td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>18 + 75.W</td>
<td>35</td>
<td>B</td>
<td>2nd br.</td>
<td>pebbly sand</td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>19 W</td>
<td>35</td>
<td>h</td>
<td>2nd br.</td>
<td>sand</td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>19 + 25.W</td>
<td>45</td>
<td>?</td>
<td>sand</td>
<td></td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>19 + 50</td>
<td>30</td>
<td>b</td>
<td>2nd br.</td>
<td>pebbly sand</td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>19 + 75</td>
<td>40</td>
<td>B</td>
<td>m. or br.</td>
<td>sand</td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>20 W</td>
<td>30</td>
<td>h</td>
<td>m. or br.</td>
<td>pebbly sand</td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>20 + 50</td>
<td>35</td>
<td>B</td>
<td>h</td>
<td>sand</td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>20 + 75</td>
<td>30</td>
<td>h</td>
<td>pebbly sand</td>
<td></td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>21 W</td>
<td>40</td>
<td>h</td>
<td>pebbly sand</td>
<td></td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>21 + 25</td>
<td>35</td>
<td>b</td>
<td>w clayey silt</td>
<td>flat R</td>
<td>road bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>21 + 50</td>
<td>55</td>
<td>B</td>
<td>2nd br.</td>
<td>w sandy silt</td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>21 + 75</td>
<td>45</td>
<td>B</td>
<td>2nd br.</td>
<td>sand</td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>22 W</td>
<td>55</td>
<td>h</td>
<td>pebbly silt</td>
<td></td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>22 + 25</td>
<td>50</td>
<td>?</td>
<td>pebbly sand</td>
<td></td>
<td></td>
<td></td>
<td>R.f/p</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic Matter</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>241N/22+35W</td>
<td>8</td>
<td>30</td>
<td>B</td>
<td>Mor. Sandy Silt</td>
<td>Very Few</td>
<td>N</td>
<td>Rsp</td>
<td>From side of road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22+50</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>Rsp</td>
<td>From road</td>
<td></td>
</tr>
<tr>
<td>22+75</td>
<td>15</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>Rsp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23+25</td>
<td>50</td>
<td>B</td>
<td>Mor. Sandy Silt</td>
<td>Mod</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23+75</td>
<td>30</td>
<td>B</td>
<td>Mor. Sandy Silt</td>
<td>Hb</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24W</td>
<td>45</td>
<td>B</td>
<td>Mor. Sandy Silt</td>
<td>X</td>
<td>Rsp</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24+25</td>
<td>35</td>
<td>B</td>
<td>Mor. Sandy Silt</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24+50</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>24+75</td>
<td>35</td>
<td>Mor. Sandy Silt</td>
<td>Few</td>
<td>Few Flat</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>25+75</td>
<td>30</td>
<td>Mor. Sandy Silt</td>
<td>Few</td>
<td>Few Flat</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>26W</td>
<td>35</td>
<td>Mor. Sandy Silt</td>
<td>Few</td>
<td>Few Flat</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

ASSAYS

<table>
<thead>
<tr>
<th>Au</th>
<th>Ag</th>
<th>As</th>
<th>Sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.4</td>
<td>47</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>80</td>
<td>1.4</td>
</tr>
<tr>
<td>85</td>
<td>0.2</td>
<td>30</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>0.4</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.3</td>
<td>36</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
<td>14</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>27</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>0.6</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>0.5</td>
<td>32</td>
<td>1.2</td>
</tr>
<tr>
<td>40</td>
<td>0.9</td>
<td>24</td>
<td>1.2</td>
</tr>
<tr>
<td>15</td>
<td>0.1</td>
<td>9</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>0.2</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Depth (cm)</td>
<td>Colour</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>L40N / 23+75W</td>
<td>5</td>
<td>35</td>
<td>6/8</td>
</tr>
<tr>
<td>23+25</td>
<td>45</td>
<td>6+</td>
<td>mb. with sand</td>
</tr>
<tr>
<td>23+50</td>
<td>40</td>
<td>4</td>
<td>mb. or br silt</td>
</tr>
<tr>
<td>23+75</td>
<td>50</td>
<td>7</td>
<td>mb. or br</td>
</tr>
<tr>
<td>24W</td>
<td>40</td>
<td>4</td>
<td>sandy silt</td>
</tr>
<tr>
<td>24+25</td>
<td>40</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24+50</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24+75</td>
<td>45</td>
<td>4</td>
<td>mb. or br sand</td>
</tr>
<tr>
<td>26W</td>
<td>35</td>
<td>4</td>
<td>dk br. or silty mud</td>
</tr>
</tbody>
</table>
YUKON 1986 SOIL & TALUS SAMPLES

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>LOCATION</th>
<th>Soil vs Talus</th>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Colour</th>
<th>Particle Size</th>
<th>Organic</th>
<th>Slope</th>
<th>Rock Type</th>
<th>COMMENTS</th>
<th>ASSAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yo-L39Y/19W</td>
<td></td>
<td></td>
<td>35</td>
<td>B</td>
<td>m</td>
<td>sandy silt</td>
<td>few</td>
<td></td>
<td>Rfp</td>
<td></td>
<td><5 0.6 71 1.2</td>
</tr>
<tr>
<td>19+25</td>
<td></td>
<td></td>
<td>35</td>
<td>B</td>
<td>m+</td>
<td>sandy silt</td>
<td>few</td>
<td></td>
<td>Rfp</td>
<td></td>
<td><5 0.5 9 0.1</td>
</tr>
<tr>
<td>19+50</td>
<td></td>
<td></td>
<td>30</td>
<td>B</td>
<td>m</td>
<td>sandy silt</td>
<td>few</td>
<td></td>
<td>Rfp</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>19+75</td>
<td></td>
<td></td>
<td>40</td>
<td>B</td>
<td>m+</td>
<td>buff sand</td>
<td>1:1 V:1 H</td>
<td></td>
<td></td>
<td>10</td>
<td>1.3 90 0.5</td>
</tr>
<tr>
<td>20W</td>
<td></td>
<td></td>
<td>40</td>
<td>B</td>
<td>m</td>
<td>clayey silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td>Rfp</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>20+25</td>
<td></td>
<td></td>
<td>35</td>
<td>B</td>
<td>m+</td>
<td>sandy silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td></td>
<td>10</td>
<td>1.3 350 1.7</td>
</tr>
<tr>
<td>20+50</td>
<td></td>
<td></td>
<td>35</td>
<td>B</td>
<td>m+</td>
<td>sandy silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td>Rfp</td>
<td></td>
<td><5 0.3 145 0.9</td>
</tr>
<tr>
<td>20+75</td>
<td></td>
<td></td>
<td>35</td>
<td>B</td>
<td>m</td>
<td>clayey silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td></td>
<td>50</td>
<td>0.4 30 0.8</td>
</tr>
<tr>
<td>21W</td>
<td></td>
<td></td>
<td>35</td>
<td>B</td>
<td>m</td>
<td>clayey silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td>Rfp</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>21+25</td>
<td></td>
<td></td>
<td>50</td>
<td>B</td>
<td>H</td>
<td>silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td></td>
<td>35</td>
<td>0.3 9 0.3</td>
</tr>
<tr>
<td>21+50</td>
<td></td>
<td></td>
<td>45</td>
<td>B</td>
<td>m+</td>
<td>sandy silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td>Rfp</td>
<td>on road</td>
<td><5</td>
</tr>
<tr>
<td>21+75</td>
<td></td>
<td></td>
<td>25</td>
<td>B</td>
<td>m</td>
<td>clayey sand</td>
<td>1:1 V:1 H</td>
<td></td>
<td>Rfp</td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>33W</td>
<td></td>
<td></td>
<td>35</td>
<td>B</td>
<td>m+</td>
<td>sandy silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td></td>
<td>50</td>
<td>0.6 14 1.0</td>
</tr>
<tr>
<td>33+25</td>
<td></td>
<td></td>
<td>45</td>
<td>B</td>
<td>m+</td>
<td>sandy silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td></td>
<td></td>
<td><5 0.5 11 0.9</td>
</tr>
<tr>
<td>22+75</td>
<td></td>
<td></td>
<td>45</td>
<td>B</td>
<td>m</td>
<td>sandy silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td></td>
<td>50</td>
<td>0.2 9 0.8</td>
</tr>
<tr>
<td>23W</td>
<td></td>
<td></td>
<td>40</td>
<td>B</td>
<td>m</td>
<td>sandy silt</td>
<td>1:1 V:1 H</td>
<td></td>
<td></td>
<td></td>
<td><5 0.2 17 1.2</td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil vs Talus</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>L39N/23+25W</td>
<td>S</td>
<td>30</td>
<td>mor br</td>
<td>mar c</td>
<td>Silty clay</td>
<td>V. few</td>
<td>grade</td>
<td>Raff</td>
<td></td>
<td><5 0.6 63 28</td>
<td></td>
</tr>
<tr>
<td>23+50</td>
<td>B</td>
<td>30</td>
<td>mus earth</td>
<td>sand</td>
<td>few</td>
<td>grade</td>
<td></td>
<td></td>
<td><5 0.2 15 0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23+75</td>
<td>B</td>
<td>40</td>
<td>mus br</td>
<td>sandy</td>
<td>silk</td>
<td>mod</td>
<td>-</td>
<td></td>
<td><5 0.2 11 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24W</td>
<td>B</td>
<td>35</td>
<td>mus br</td>
<td>clayey sand</td>
<td>few</td>
<td>Raff</td>
<td></td>
<td><5 0.3 32 2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24+25</td>
<td>B</td>
<td>35</td>
<td>mus br</td>
<td>sand</td>
<td>silk</td>
<td></td>
<td>R</td>
<td><5 0.1 33 2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24+50</td>
<td>B</td>
<td>35</td>
<td>mus br</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td><5 0.1 14 0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25W</td>
<td>B</td>
<td>50</td>
<td>mus br</td>
<td>mud flat</td>
<td>-</td>
<td></td>
<td></td>
<td><5 0.1 29 0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26W</td>
<td>B</td>
<td>15</td>
<td>mus br</td>
<td>mud flat</td>
<td>well sorted</td>
<td>Stream sed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE #</td>
<td>LOCATION</td>
<td>Soil</td>
<td>Depth (cm)</td>
<td>Horizon</td>
<td>Colour</td>
<td>Particle Size</td>
<td>Organic</td>
<td>Slope</td>
<td>Rock Type</td>
<td>COMMENTS</td>
<td>ASSAYS</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Yo-8420w/39+50 N</td>
<td></td>
<td>S</td>
<td>30</td>
<td>60+ B</td>
<td>mor. br</td>
<td>w. clayey sand</td>
<td>few</td>
<td>gentle</td>
<td>Ralp</td>
<td></td>
<td>10 0.6</td>
</tr>
<tr>
<td>40+50</td>
<td></td>
<td></td>
<td>30</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>41+50</td>
<td></td>
<td></td>
<td>30</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>43+50</td>
<td></td>
<td></td>
<td>35</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>44+50</td>
<td></td>
<td></td>
<td>30</td>
<td>60+ B</td>
<td>mor. br</td>
<td>w. sandy clay</td>
<td></td>
<td>gentle</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>45+50</td>
<td></td>
<td></td>
<td>30</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>46+50</td>
<td></td>
<td></td>
<td>10</td>
<td>60+ B</td>
<td>mor. br</td>
<td>w. sandy clay</td>
<td></td>
<td>gentle</td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>47+50</td>
<td></td>
<td></td>
<td>25</td>
<td>60+ B</td>
<td>mor. br</td>
<td>w. sandy clay</td>
<td></td>
<td>gentle</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>48+50</td>
<td></td>
<td></td>
<td>25</td>
<td>60+ B</td>
<td>mor. br</td>
<td>w. sandy clay</td>
<td></td>
<td>gentle</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>49+50</td>
<td></td>
<td></td>
<td>25</td>
<td>60+ B</td>
<td>mor. br</td>
<td>w. sandy clay</td>
<td></td>
<td>gentle</td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>50w</td>
<td></td>
<td></td>
<td>25</td>
<td>60+ B</td>
<td>mor. br</td>
<td>w. sandy clay</td>
<td></td>
<td>gentle</td>
<td></td>
<td></td>
<td><5</td>
</tr>
<tr>
<td>50+50</td>
<td></td>
<td></td>
<td>20</td>
<td>60+ B</td>
<td>mor. br</td>
<td>w. sandy clay</td>
<td></td>
<td>gentle</td>
<td></td>
<td></td>
<td><5</td>
</tr>
</tbody>
</table>
APPENDIX III

Geophysical Data
EM SURVEY DATA (1986)
ONLY M.C.

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L39N/14000W</td>
<td>-6</td>
<td>+2</td>
<td>L39N/24500W</td>
<td>-10</td>
<td>-8</td>
</tr>
<tr>
<td>1425 W</td>
<td>-2</td>
<td>+1</td>
<td>2475 W</td>
<td>+2</td>
<td>-2</td>
</tr>
<tr>
<td>1450 W</td>
<td>-5</td>
<td>-3</td>
<td>25 W</td>
<td>+12</td>
<td>-6</td>
</tr>
<tr>
<td>1475 W</td>
<td>-3</td>
<td>+1</td>
<td>2550 W</td>
<td>+13</td>
<td>-8</td>
</tr>
<tr>
<td>15 W</td>
<td>-7</td>
<td>+2</td>
<td>2575 W</td>
<td>+16</td>
<td>-13</td>
</tr>
<tr>
<td>1525 W</td>
<td>-14</td>
<td>+2</td>
<td>26 W</td>
<td>+12</td>
<td>-15</td>
</tr>
<tr>
<td>1550 W</td>
<td>-14</td>
<td>+1</td>
<td>2625 W</td>
<td>+9</td>
<td>-12</td>
</tr>
<tr>
<td>1575 W</td>
<td>-10</td>
<td>+3</td>
<td>2637.5 W</td>
<td>-5</td>
<td>-15</td>
</tr>
<tr>
<td>16 W</td>
<td>-6</td>
<td>+1</td>
<td>2650 W</td>
<td>-4</td>
<td>-12</td>
</tr>
<tr>
<td>1625 W</td>
<td>-6</td>
<td>+2</td>
<td>2662.5 W</td>
<td>-4</td>
<td>-10</td>
</tr>
<tr>
<td>1650 W</td>
<td>-8</td>
<td>+3</td>
<td>2675 W</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>1675 W</td>
<td>-7</td>
<td>+3</td>
<td>2687.5 W</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>17 W</td>
<td>-8</td>
<td>+7</td>
<td>27 W</td>
<td>-2</td>
<td>+4</td>
</tr>
<tr>
<td>1725 W</td>
<td>-14</td>
<td>+7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750 W</td>
<td>-8</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1775 W</td>
<td>-9</td>
<td>+8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 W</td>
<td>-8</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1825 W</td>
<td>-7</td>
<td>+6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1850 W</td>
<td>-3</td>
<td>+7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1875 W</td>
<td>-3</td>
<td>+6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 W</td>
<td>-4</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1925 W</td>
<td>-1</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950 W</td>
<td>+3</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975 W</td>
<td>+3</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 W</td>
<td>+3</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025 W</td>
<td>-2</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050 W</td>
<td>-3</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2075 W</td>
<td>-5</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 W</td>
<td>-5</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2125 W</td>
<td>-2</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2150 W</td>
<td>-6</td>
<td>+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2175 W</td>
<td>-4</td>
<td>+6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 W</td>
<td>-15</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2225 W</td>
<td>-12</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2250 W</td>
<td>-22</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2275 W</td>
<td>-41</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 W</td>
<td>-42</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2325 W</td>
<td>-35</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2350 W</td>
<td>-37</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2375 W</td>
<td>-27</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 W</td>
<td>-13</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2425 W</td>
<td>-13</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/9
<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L40N/20+75W</td>
<td>-2</td>
<td>+3</td>
<td>L41N/17+25W</td>
<td>-5</td>
<td>+4</td>
</tr>
<tr>
<td>21 W</td>
<td>-4</td>
<td>+2</td>
<td>1750 W</td>
<td>-4</td>
<td>+3</td>
</tr>
<tr>
<td>21.25 W</td>
<td>-8</td>
<td>-0</td>
<td>1775 W</td>
<td>-4</td>
<td>+2</td>
</tr>
<tr>
<td>21.5 W</td>
<td>-10</td>
<td>-1</td>
<td>1787.5 W</td>
<td>-1</td>
<td>+4</td>
</tr>
<tr>
<td>21.75 W</td>
<td>-10</td>
<td>+1</td>
<td>18 W</td>
<td>+1</td>
<td>+5</td>
</tr>
<tr>
<td>22 W</td>
<td>-17</td>
<td>-2</td>
<td>1812.5 W</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>22.25 W</td>
<td>-20</td>
<td>-2</td>
<td>1835 W</td>
<td>+5</td>
<td>+8</td>
</tr>
<tr>
<td>22.5 W</td>
<td>-19</td>
<td>-1</td>
<td>1850 W</td>
<td>+6</td>
<td>+5</td>
</tr>
<tr>
<td>22.75 W</td>
<td>-24</td>
<td>+2</td>
<td>1875 W</td>
<td>+4</td>
<td>+6</td>
</tr>
<tr>
<td>23 W</td>
<td>-41</td>
<td>-2</td>
<td>1925 W</td>
<td>+5</td>
<td>+5</td>
</tr>
<tr>
<td>23.25 W</td>
<td>-50</td>
<td>-1</td>
<td>1950 W</td>
<td>+7</td>
<td>+4</td>
</tr>
<tr>
<td>23.5 W</td>
<td>-50</td>
<td>-4</td>
<td>1975 W</td>
<td>+7</td>
<td>+4</td>
</tr>
<tr>
<td>23.75 W</td>
<td>-44</td>
<td>-3</td>
<td>20 W</td>
<td>+9</td>
<td>+4</td>
</tr>
<tr>
<td>24 W</td>
<td>-30</td>
<td>+2</td>
<td>2025 W</td>
<td>+3</td>
<td>+1</td>
</tr>
<tr>
<td>24.25 W</td>
<td>-22</td>
<td>+2</td>
<td>2050 W</td>
<td>+1</td>
<td>+3</td>
</tr>
<tr>
<td>24.5 W</td>
<td>-19</td>
<td>-9</td>
<td>2075 W</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>24.75 W</td>
<td>-12</td>
<td>-7</td>
<td>21 W</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>24.9 W</td>
<td>-6</td>
<td>-27</td>
<td>2125 W</td>
<td>+3</td>
<td>+7</td>
</tr>
<tr>
<td>25 W</td>
<td>-2</td>
<td>-6</td>
<td>2150 W</td>
<td>-14</td>
<td>-1</td>
</tr>
<tr>
<td>25.25 W</td>
<td>+9</td>
<td>-9</td>
<td>2175 W</td>
<td>-14</td>
<td>-5</td>
</tr>
<tr>
<td>25.5 W</td>
<td>+14</td>
<td>-10</td>
<td>22 W</td>
<td>-16</td>
<td>-2</td>
</tr>
<tr>
<td>25 W</td>
<td>+18</td>
<td>-14</td>
<td>2225 W</td>
<td>-14</td>
<td>-2</td>
</tr>
<tr>
<td>26 W</td>
<td>+17</td>
<td>-15</td>
<td>2250 W</td>
<td>-14</td>
<td>-6</td>
</tr>
<tr>
<td>26.25 W</td>
<td>+18</td>
<td>-13</td>
<td>2275 W</td>
<td>-12</td>
<td>-2</td>
</tr>
<tr>
<td>26.5 W</td>
<td>+12</td>
<td>-11</td>
<td>23 W</td>
<td>-13</td>
<td>-3</td>
</tr>
<tr>
<td>26.75 W</td>
<td>-4</td>
<td>-10</td>
<td>23.25 W</td>
<td>-24</td>
<td>+3</td>
</tr>
<tr>
<td>27 W</td>
<td>-3</td>
<td>-4</td>
<td>2350 W</td>
<td>-50</td>
<td>-4</td>
</tr>
<tr>
<td>L41N/14+00 W</td>
<td>-2</td>
<td>+1</td>
<td>2375 W</td>
<td>-58</td>
<td>-3</td>
</tr>
<tr>
<td>14 W</td>
<td>-6</td>
<td>-1</td>
<td>24 W</td>
<td>-47</td>
<td>0</td>
</tr>
<tr>
<td>14.25 W</td>
<td>-6</td>
<td>+1</td>
<td>2425 W</td>
<td>-20</td>
<td>+6</td>
</tr>
<tr>
<td>14.5 W</td>
<td>-8</td>
<td>+2</td>
<td>2450 W</td>
<td>-32</td>
<td>-4</td>
</tr>
<tr>
<td>14.75 W</td>
<td>-8</td>
<td>+2</td>
<td>2475 W</td>
<td>-25</td>
<td>-2</td>
</tr>
<tr>
<td>15 W</td>
<td>-12</td>
<td>0</td>
<td>25 W</td>
<td>-18</td>
<td>-2</td>
</tr>
<tr>
<td>15.25 W</td>
<td>-9</td>
<td>+1</td>
<td>2525 W</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>15.5 W</td>
<td>-8</td>
<td>+1</td>
<td>2550 W</td>
<td>+7</td>
<td>-3</td>
</tr>
<tr>
<td>15.75 W</td>
<td>-9</td>
<td>+1</td>
<td>2575 W</td>
<td>+4</td>
<td>-8</td>
</tr>
<tr>
<td>16 W</td>
<td>-6</td>
<td>+4</td>
<td>26 W</td>
<td>+1</td>
<td>-11</td>
</tr>
<tr>
<td>16.25 W</td>
<td>-7</td>
<td>+4</td>
<td>2625 W</td>
<td>+1</td>
<td>-11</td>
</tr>
<tr>
<td>16.5 W</td>
<td>-7</td>
<td>+4</td>
<td>2637.5 W</td>
<td>+2</td>
<td>-10</td>
</tr>
<tr>
<td>16.75 W</td>
<td>-6</td>
<td>+4</td>
<td>2650 W</td>
<td>0</td>
<td>-10</td>
</tr>
<tr>
<td>17 W</td>
<td>-4</td>
<td>+3</td>
<td>2662.5 W</td>
<td>-1</td>
<td>-6</td>
</tr>
<tr>
<td>2675 W</td>
<td>-4</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station</td>
<td>In Phase</td>
<td>Quad.</td>
<td>Station</td>
<td>In Phase</td>
<td>Quad.</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>-------</td>
<td>---------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>L42N/13+87.5W</td>
<td>-4</td>
<td>-2</td>
<td>L42N/23W</td>
<td>-19</td>
<td>-7</td>
</tr>
<tr>
<td>14W</td>
<td>-2</td>
<td>-1</td>
<td>2325W</td>
<td>-20</td>
<td>-4</td>
</tr>
<tr>
<td>1425W</td>
<td>-11</td>
<td>0</td>
<td>2350W</td>
<td>-24</td>
<td>5</td>
</tr>
<tr>
<td>1450W</td>
<td>-11</td>
<td>0</td>
<td>2375W</td>
<td>-37</td>
<td>1</td>
</tr>
<tr>
<td>1475W</td>
<td>-8</td>
<td>1</td>
<td>24W</td>
<td>-50</td>
<td>0</td>
</tr>
<tr>
<td>15W</td>
<td>-7</td>
<td>4</td>
<td>2425W</td>
<td>-36</td>
<td>2</td>
</tr>
<tr>
<td>1525W</td>
<td>-8</td>
<td>3</td>
<td>2450W</td>
<td>-30</td>
<td>2</td>
</tr>
<tr>
<td>1550W</td>
<td>-8</td>
<td>0</td>
<td>2475W</td>
<td>-24</td>
<td>2</td>
</tr>
<tr>
<td>1575W</td>
<td>-9</td>
<td>0</td>
<td>25W</td>
<td>-22</td>
<td>2</td>
</tr>
<tr>
<td>16W</td>
<td>-10</td>
<td>4</td>
<td>2525W</td>
<td>-10</td>
<td>1</td>
</tr>
<tr>
<td>1625W</td>
<td>-11</td>
<td>1</td>
<td>2550W</td>
<td>-6</td>
<td>3</td>
</tr>
<tr>
<td>1650W</td>
<td>-14</td>
<td>5</td>
<td>2575W</td>
<td>-8</td>
<td>4</td>
</tr>
<tr>
<td>1675W</td>
<td>-19</td>
<td>8</td>
<td>26W</td>
<td>-9</td>
<td>7</td>
</tr>
<tr>
<td>17W</td>
<td>-22</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1725W</td>
<td>-25</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750W</td>
<td>-17</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1775W</td>
<td>-9</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18W</td>
<td>+1</td>
<td>+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1812.5W</td>
<td>+2</td>
<td>+6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1825W</td>
<td>+14</td>
<td>+6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1850W</td>
<td>+13</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1875W</td>
<td>+12</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19W</td>
<td>+13</td>
<td>+6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1925W</td>
<td>+15</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950W</td>
<td>+12</td>
<td>+6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975W</td>
<td>+14</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20W</td>
<td>+14</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012.5W</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025W</td>
<td>0</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2037.5W</td>
<td>+1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050W</td>
<td>-4</td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2075W</td>
<td>+2</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2087.5W</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21W</td>
<td>+4</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2112.5W</td>
<td>-2</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2125W</td>
<td>-3</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2150W</td>
<td>-15</td>
<td>-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2175W</td>
<td>-21</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22W</td>
<td>-17</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2225W</td>
<td>-14</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2250W</td>
<td>-17</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2275W</td>
<td>-21</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Line 42 Redone because of weak signal - difficult to null 14W to 1975W; ** Indicates results which are plotted
EM SURVEY DATA (1986)
ONLY M.C.

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L43N / 14 W</td>
<td>-8</td>
<td>+1</td>
</tr>
<tr>
<td>1452 W</td>
<td>-9</td>
<td>0</td>
</tr>
<tr>
<td>1450 W</td>
<td>-6</td>
<td>+4</td>
</tr>
<tr>
<td>1475 W</td>
<td>-10</td>
<td>+4</td>
</tr>
<tr>
<td>15 W</td>
<td>-11</td>
<td>+1</td>
</tr>
<tr>
<td>1525 W</td>
<td>-6</td>
<td>+1</td>
</tr>
<tr>
<td>1550 W</td>
<td>-9</td>
<td>0</td>
</tr>
<tr>
<td>1575 W</td>
<td>-8</td>
<td>-1</td>
</tr>
<tr>
<td>1587.5 W</td>
<td>-8</td>
<td>0</td>
</tr>
<tr>
<td>16 W</td>
<td>-6</td>
<td>+2</td>
</tr>
<tr>
<td>1625 W</td>
<td>-6</td>
<td>+3</td>
</tr>
<tr>
<td>1650 W</td>
<td>-8</td>
<td>+8</td>
</tr>
<tr>
<td>1675 W</td>
<td>-4</td>
<td>+8</td>
</tr>
<tr>
<td>16 W</td>
<td>-2</td>
<td>+5</td>
</tr>
<tr>
<td>1725 W</td>
<td>-4</td>
<td>+8</td>
</tr>
<tr>
<td>1750 W</td>
<td>-3</td>
<td>+4</td>
</tr>
<tr>
<td>1775 W</td>
<td>-3</td>
<td>+5</td>
</tr>
<tr>
<td>1787.5 W</td>
<td>+2</td>
<td>+4</td>
</tr>
<tr>
<td>18 W</td>
<td>+5</td>
<td>+5</td>
</tr>
<tr>
<td>1812.5 W</td>
<td>+6</td>
<td>+4</td>
</tr>
<tr>
<td>1825 W</td>
<td>+6</td>
<td>+5</td>
</tr>
<tr>
<td>1850 W</td>
<td>+8</td>
<td>+5</td>
</tr>
<tr>
<td>1875 W</td>
<td>+13</td>
<td>+6</td>
</tr>
<tr>
<td>19 W</td>
<td>+11</td>
<td>+6</td>
</tr>
<tr>
<td>1925 W</td>
<td>+7</td>
<td>+4</td>
</tr>
<tr>
<td>1950 W</td>
<td>+9</td>
<td>+5</td>
</tr>
<tr>
<td>1975 W</td>
<td>+9</td>
<td>+7</td>
</tr>
<tr>
<td>20 W</td>
<td>+6</td>
<td>+5</td>
</tr>
<tr>
<td>2025 W</td>
<td>+4</td>
<td>+3</td>
</tr>
<tr>
<td>2037.5 W</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>2050 W</td>
<td>-1</td>
<td>+4</td>
</tr>
<tr>
<td>2067.5 W</td>
<td>-1</td>
<td>+2</td>
</tr>
<tr>
<td>2075 W</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>2087.5 W</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>21 W</td>
<td>+3</td>
<td>+2</td>
</tr>
<tr>
<td>2112.5 W</td>
<td>0</td>
<td>+4</td>
</tr>
<tr>
<td>2125 W</td>
<td>-13</td>
<td>-4</td>
</tr>
<tr>
<td>2150 W</td>
<td>-28</td>
<td>-9</td>
</tr>
<tr>
<td>2175 W</td>
<td>-31</td>
<td>-12</td>
</tr>
<tr>
<td>21 W</td>
<td>-24</td>
<td>-3</td>
</tr>
<tr>
<td>2225 W</td>
<td>-19</td>
<td>-5</td>
</tr>
<tr>
<td>2250 W</td>
<td>-7</td>
<td>-1</td>
</tr>
<tr>
<td>L43N / 22 + 75 W</td>
<td>-7</td>
<td>-1</td>
</tr>
<tr>
<td>23 W</td>
<td>-11</td>
<td>-4</td>
</tr>
<tr>
<td>2325 W</td>
<td>-24</td>
<td>-8</td>
</tr>
<tr>
<td>2350 W</td>
<td>-18</td>
<td>-3</td>
</tr>
<tr>
<td>2375 W</td>
<td>-18</td>
<td>-2</td>
</tr>
<tr>
<td>24 W</td>
<td>-15</td>
<td>+4</td>
</tr>
<tr>
<td>2425 W</td>
<td>-24</td>
<td>+6</td>
</tr>
<tr>
<td>2450 W</td>
<td>-41</td>
<td>0</td>
</tr>
<tr>
<td>2475 W</td>
<td>-38</td>
<td>+2</td>
</tr>
<tr>
<td>25 W</td>
<td>-30</td>
<td>+4</td>
</tr>
<tr>
<td>2525 W</td>
<td>-7</td>
<td>+3</td>
</tr>
<tr>
<td>2550 W</td>
<td>-8</td>
<td>+3</td>
</tr>
<tr>
<td>2575 W</td>
<td>-8</td>
<td>+2</td>
</tr>
<tr>
<td>26 W</td>
<td>-13</td>
<td>+2</td>
</tr>
<tr>
<td>L44N / 14 W</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1425 W</td>
<td>-5</td>
<td>+1</td>
</tr>
<tr>
<td>1450 W</td>
<td>-4</td>
<td>+1</td>
</tr>
<tr>
<td>1475 W</td>
<td>-5</td>
<td>+2</td>
</tr>
<tr>
<td>15 W</td>
<td>-6</td>
<td>+1</td>
</tr>
<tr>
<td>1525 W</td>
<td>-6</td>
<td>-1</td>
</tr>
<tr>
<td>1550 W</td>
<td>-7</td>
<td>0</td>
</tr>
<tr>
<td>1575 W</td>
<td>-3</td>
<td>+1</td>
</tr>
<tr>
<td>1575 W</td>
<td>0</td>
<td>+4</td>
</tr>
<tr>
<td>1625 W</td>
<td>+1</td>
<td>+7</td>
</tr>
<tr>
<td>1650 W</td>
<td>-3</td>
<td>+2</td>
</tr>
<tr>
<td>1675 W</td>
<td>-6</td>
<td>+5</td>
</tr>
<tr>
<td>17 W</td>
<td>-6</td>
<td>+8</td>
</tr>
<tr>
<td>1725 W</td>
<td>-2</td>
<td>+4</td>
</tr>
<tr>
<td>1737.5 W</td>
<td>-3</td>
<td>+5</td>
</tr>
<tr>
<td>1750 W</td>
<td>+1</td>
<td>+4</td>
</tr>
<tr>
<td>1775 W</td>
<td>+2</td>
<td>+4</td>
</tr>
<tr>
<td>18 W</td>
<td>+7</td>
<td>+6</td>
</tr>
<tr>
<td>1825 W</td>
<td>+5</td>
<td>+2</td>
</tr>
<tr>
<td>1850 W</td>
<td>+14</td>
<td>+3</td>
</tr>
<tr>
<td>1875 W</td>
<td>+15</td>
<td>+4</td>
</tr>
<tr>
<td>19 W</td>
<td>+12</td>
<td>+2</td>
</tr>
<tr>
<td>1925 W</td>
<td>+11</td>
<td>+4</td>
</tr>
<tr>
<td>1950 W</td>
<td>+8</td>
<td>+1</td>
</tr>
<tr>
<td>20 W</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>2025 W</td>
<td>+4</td>
<td>+3</td>
</tr>
<tr>
<td>2037.5 W</td>
<td>+1</td>
<td>+2</td>
</tr>
<tr>
<td>2050 W</td>
<td>-1</td>
<td>+4</td>
</tr>
<tr>
<td>2067.5 W</td>
<td>-1</td>
<td>+2</td>
</tr>
<tr>
<td>2075 W</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>2087.5 W</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>21 W</td>
<td>+3</td>
<td>+2</td>
</tr>
<tr>
<td>2112.5 W</td>
<td>0</td>
<td>+4</td>
</tr>
<tr>
<td>2125 W</td>
<td>-13</td>
<td>-4</td>
</tr>
<tr>
<td>2150 W</td>
<td>-28</td>
<td>-9</td>
</tr>
<tr>
<td>2175 W</td>
<td>-31</td>
<td>-12</td>
</tr>
<tr>
<td>21 W</td>
<td>-24</td>
<td>-3</td>
</tr>
<tr>
<td>2225 W</td>
<td>-19</td>
<td>-5</td>
</tr>
<tr>
<td>2250 W</td>
<td>-7</td>
<td>-1</td>
</tr>
<tr>
<td>Station</td>
<td>In Phase</td>
<td>Quad.</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>L44N/20+12.5W</td>
<td>-4</td>
<td>+1</td>
</tr>
<tr>
<td>2025W</td>
<td>-8</td>
<td>-3</td>
</tr>
<tr>
<td>2050W</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>2075W</td>
<td>-9</td>
<td>-4</td>
</tr>
<tr>
<td>2097.5W</td>
<td>-6</td>
<td>-4</td>
</tr>
<tr>
<td>21W</td>
<td>-7</td>
<td>+4</td>
</tr>
<tr>
<td>2112.5W</td>
<td>-12</td>
<td>+2</td>
</tr>
<tr>
<td>2125W</td>
<td>-34</td>
<td>-9</td>
</tr>
<tr>
<td>2150W</td>
<td>-31</td>
<td>-11</td>
</tr>
<tr>
<td>2175W</td>
<td>-28</td>
<td>-9</td>
</tr>
<tr>
<td>22W</td>
<td>-24</td>
<td>-9</td>
</tr>
<tr>
<td>2225W</td>
<td>-20</td>
<td>-10</td>
</tr>
<tr>
<td>2250W</td>
<td>-14</td>
<td>-4</td>
</tr>
<tr>
<td>2275W</td>
<td>-17</td>
<td>-6</td>
</tr>
<tr>
<td>23W</td>
<td>-14</td>
<td>-6</td>
</tr>
<tr>
<td>2325W</td>
<td>-17</td>
<td>-6</td>
</tr>
<tr>
<td>2350W</td>
<td>-18</td>
<td>-8</td>
</tr>
<tr>
<td>2375W</td>
<td>-23</td>
<td>-12</td>
</tr>
<tr>
<td>24W</td>
<td>-18</td>
<td>-3</td>
</tr>
<tr>
<td>2412.5W</td>
<td>-19</td>
<td>-4</td>
</tr>
<tr>
<td>2425W</td>
<td>-19</td>
<td>+2</td>
</tr>
<tr>
<td>2450W</td>
<td>-13</td>
<td>+6</td>
</tr>
<tr>
<td>2475W</td>
<td>-20</td>
<td>+4</td>
</tr>
<tr>
<td>2485.5W</td>
<td>-18</td>
<td>+5</td>
</tr>
<tr>
<td>25W</td>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>2525W</td>
<td>no definite null</td>
<td></td>
</tr>
<tr>
<td>2550W</td>
<td>-5</td>
<td>0</td>
</tr>
<tr>
<td>2575W</td>
<td>-15</td>
<td>+2</td>
</tr>
<tr>
<td>26W</td>
<td>-15</td>
<td>+2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L45N/17W</td>
<td>-7</td>
<td>+3</td>
</tr>
<tr>
<td>1725W</td>
<td>-6</td>
<td>+4</td>
</tr>
<tr>
<td>1750W</td>
<td>-2</td>
<td>+5</td>
</tr>
<tr>
<td>1762.5W</td>
<td>+4</td>
<td>+5</td>
</tr>
<tr>
<td>1775W</td>
<td>+5</td>
<td>+5</td>
</tr>
<tr>
<td>18W</td>
<td>+4</td>
<td>+4</td>
</tr>
<tr>
<td>1825W</td>
<td>+12</td>
<td>+2</td>
</tr>
<tr>
<td>1850W</td>
<td>+15</td>
<td>+4</td>
</tr>
<tr>
<td>1875W</td>
<td>+18</td>
<td>+4</td>
</tr>
<tr>
<td>19W</td>
<td>+18</td>
<td>+5</td>
</tr>
<tr>
<td>1925W</td>
<td>+11</td>
<td>+7</td>
</tr>
<tr>
<td>1950W</td>
<td>+8</td>
<td>+6</td>
</tr>
<tr>
<td>1975W</td>
<td>+3</td>
<td>+2</td>
</tr>
<tr>
<td>1987.5W</td>
<td>+1</td>
<td>-2</td>
</tr>
<tr>
<td>20W</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>2012.5W</td>
<td>-2</td>
<td>+2</td>
</tr>
<tr>
<td>2025W</td>
<td>-4</td>
<td>+2</td>
</tr>
<tr>
<td>2037.5W</td>
<td>-5</td>
<td>-1</td>
</tr>
<tr>
<td>2050W</td>
<td>-10</td>
<td>-5</td>
</tr>
<tr>
<td>2075W</td>
<td>-18</td>
<td>-4</td>
</tr>
<tr>
<td>21W</td>
<td>-34</td>
<td>-8</td>
</tr>
<tr>
<td>2125W</td>
<td>-36</td>
<td>-8</td>
</tr>
<tr>
<td>2150W</td>
<td>-28</td>
<td>-11</td>
</tr>
<tr>
<td>2175W</td>
<td>-27</td>
<td>-11</td>
</tr>
<tr>
<td>22W</td>
<td>-27</td>
<td>-5</td>
</tr>
<tr>
<td>2225W</td>
<td>-27</td>
<td>-8</td>
</tr>
<tr>
<td>2250W</td>
<td>-25</td>
<td>-12</td>
</tr>
<tr>
<td>2275W</td>
<td>-15</td>
<td>-10</td>
</tr>
<tr>
<td>23W</td>
<td>-12</td>
<td>-8</td>
</tr>
<tr>
<td>235W</td>
<td>-16</td>
<td>-9</td>
</tr>
<tr>
<td>2375W</td>
<td>-23</td>
<td>-10</td>
</tr>
<tr>
<td>2375W</td>
<td>-20</td>
<td>-9</td>
</tr>
<tr>
<td>24W</td>
<td>-17</td>
<td>-2</td>
</tr>
<tr>
<td>2412.5W</td>
<td>-15</td>
<td>-3</td>
</tr>
<tr>
<td>2425W</td>
<td>-20</td>
<td>-5</td>
</tr>
<tr>
<td>2450W</td>
<td>-22</td>
<td>-7</td>
</tr>
<tr>
<td>2475W</td>
<td>-17</td>
<td>-5</td>
</tr>
<tr>
<td>25W</td>
<td>-23</td>
<td>-7</td>
</tr>
<tr>
<td>2525W</td>
<td>-20</td>
<td>-4</td>
</tr>
<tr>
<td>2550W</td>
<td>-27</td>
<td>-8</td>
</tr>
<tr>
<td>2575W</td>
<td>-28</td>
<td>-4</td>
</tr>
</tbody>
</table>

26W -25 -4
EM Survey Data (1986)

Only M.C.

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 46N/14W</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>1425W</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>1450W</td>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td>1475W</td>
<td>-3</td>
<td>+1</td>
</tr>
<tr>
<td>15W</td>
<td>+1</td>
<td>+3</td>
</tr>
<tr>
<td>1525W</td>
<td>+3</td>
<td>+6</td>
</tr>
<tr>
<td>1550W</td>
<td>+1</td>
<td>+7</td>
</tr>
<tr>
<td>1575W</td>
<td>+1</td>
<td>+9</td>
</tr>
<tr>
<td>16W</td>
<td>-6</td>
<td>+8</td>
</tr>
<tr>
<td>1625W</td>
<td>-6</td>
<td>+9</td>
</tr>
<tr>
<td>1650W</td>
<td>-7</td>
<td>+6</td>
</tr>
<tr>
<td>1675W</td>
<td>-9</td>
<td>+4</td>
</tr>
<tr>
<td>17W</td>
<td>-9</td>
<td>+6</td>
</tr>
<tr>
<td>1725W</td>
<td>-3</td>
<td>+2</td>
</tr>
<tr>
<td>1737.5W</td>
<td>-1</td>
<td>+4</td>
</tr>
<tr>
<td>1750W</td>
<td>+4</td>
<td>+6</td>
</tr>
<tr>
<td>1775W</td>
<td>+10</td>
<td>+7</td>
</tr>
<tr>
<td>18W</td>
<td>+11</td>
<td>+4</td>
</tr>
<tr>
<td>1825W</td>
<td>+11</td>
<td>+1</td>
</tr>
<tr>
<td>1850W</td>
<td>+16</td>
<td>+3</td>
</tr>
<tr>
<td>1875W</td>
<td>+16</td>
<td>+2</td>
</tr>
<tr>
<td>19W</td>
<td>+10</td>
<td>+1</td>
</tr>
<tr>
<td>1925W</td>
<td>+10</td>
<td>+2</td>
</tr>
<tr>
<td>1950W</td>
<td>+9</td>
<td>0</td>
</tr>
<tr>
<td>1975W</td>
<td>+2</td>
<td>-1</td>
</tr>
<tr>
<td>20W</td>
<td>-4</td>
<td>-6</td>
</tr>
<tr>
<td>2025W</td>
<td>-5</td>
<td>-9</td>
</tr>
<tr>
<td>2050W</td>
<td>-8</td>
<td>-6</td>
</tr>
<tr>
<td>2075W</td>
<td>-21</td>
<td>-4</td>
</tr>
<tr>
<td>21W</td>
<td>-30</td>
<td>-9</td>
</tr>
<tr>
<td>2125W</td>
<td>-35</td>
<td>-5</td>
</tr>
<tr>
<td>2150W</td>
<td>-72</td>
<td>-4</td>
</tr>
<tr>
<td>2175W</td>
<td>-31</td>
<td>-9</td>
</tr>
<tr>
<td>22W</td>
<td>-30</td>
<td>-11</td>
</tr>
<tr>
<td>2225W</td>
<td>-30</td>
<td>-11</td>
</tr>
<tr>
<td>2250W</td>
<td>-23</td>
<td>-4</td>
</tr>
<tr>
<td>2275W</td>
<td>-23</td>
<td>-4</td>
</tr>
<tr>
<td>23W</td>
<td>-26</td>
<td>-8</td>
</tr>
<tr>
<td>2325W</td>
<td>-20</td>
<td>-2</td>
</tr>
<tr>
<td>2350W</td>
<td>-14</td>
<td>-2</td>
</tr>
<tr>
<td>2375W</td>
<td>-10</td>
<td>-3</td>
</tr>
<tr>
<td>24W</td>
<td>-12</td>
<td>-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 46N/24+25W</td>
<td>-25</td>
<td>-13</td>
</tr>
<tr>
<td>2450W</td>
<td>-16</td>
<td>-12</td>
</tr>
<tr>
<td>2475W</td>
<td>-25</td>
<td>-12</td>
</tr>
<tr>
<td>25W</td>
<td>-15</td>
<td>-10</td>
</tr>
<tr>
<td>2525W</td>
<td>-18</td>
<td>-7</td>
</tr>
<tr>
<td>2550W</td>
<td>-22</td>
<td>-2</td>
</tr>
<tr>
<td>2575W</td>
<td>-23</td>
<td>-4</td>
</tr>
<tr>
<td>26W</td>
<td>-20</td>
<td>+3</td>
</tr>
<tr>
<td>2625W</td>
<td>-18</td>
<td>+5</td>
</tr>
<tr>
<td>2650W</td>
<td>-12</td>
<td>+2</td>
</tr>
<tr>
<td>2675W</td>
<td>-6</td>
<td>+4</td>
</tr>
<tr>
<td>27W</td>
<td>-4</td>
<td>+3</td>
</tr>
<tr>
<td>2725W</td>
<td>-4</td>
<td>+3</td>
</tr>
<tr>
<td>2750W</td>
<td>-5</td>
<td>+4</td>
</tr>
</tbody>
</table>

L 47N/14W	-4	+1
1425W	-3	+4
1450W	-1	+2
1475W	+1	+2
15W	+4	+4
1525W	+6	+7
1550W	+7	+9
1575W	+3	+9
16W	+1	+8
1625W	+2	+8
1650W	+2	+7
1675W	+3	+9
17W	+2	+8
1725W	+1	+8
1737.5W	+2	+7
1750W	+1	+7
1775W	+9	+8
18W	+6	+4
1825W	-1	+6
1850W	+2	+9
1875W	+3	+8
19W	+1	+4
1925W	+2	+12
1950W	+2	+10
1975W	+3	+16
20W	-6	+1
2025W	-9	+4
2050W	-6	+3
2075W	-4	+2
21W	-9	+1
2125W	-6	+4
2150W	-2	+5
2175W	-3	+6
22W	-8	+5
2225W	-11	+4
2250W	-4	+1
2275W	-10	+1
23W	-8	-15
2325W	-2	-15
2350W	-2	-12
2375W	-3	-13
24W	-4	-19
EM Survey Data (1986)

Only M.C.

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 47N / 20 + 50 W</td>
<td>-4</td>
<td>-8</td>
</tr>
<tr>
<td>20 W</td>
<td>-7</td>
<td>-5</td>
</tr>
<tr>
<td>20 W</td>
<td>-16</td>
<td>-2</td>
</tr>
<tr>
<td>2125 W</td>
<td>-20</td>
<td>-8</td>
</tr>
<tr>
<td>2150 W</td>
<td>-30</td>
<td>-6</td>
</tr>
<tr>
<td>2175 W</td>
<td>-28</td>
<td>-4</td>
</tr>
<tr>
<td>22 W</td>
<td>-20</td>
<td>12</td>
</tr>
<tr>
<td>2225 W</td>
<td>-17</td>
<td>-3</td>
</tr>
<tr>
<td>2250 W</td>
<td>-23</td>
<td>-10</td>
</tr>
<tr>
<td>2275 W</td>
<td>-27</td>
<td>-9</td>
</tr>
<tr>
<td>23 W</td>
<td>-26</td>
<td>-6</td>
</tr>
<tr>
<td>2325 W</td>
<td>-25</td>
<td>-5</td>
</tr>
<tr>
<td>2350 W</td>
<td>-23</td>
<td>-2</td>
</tr>
<tr>
<td>2375 W</td>
<td>-15</td>
<td>3</td>
</tr>
<tr>
<td>24 W</td>
<td>-20</td>
<td>-2</td>
</tr>
<tr>
<td>2425 W</td>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>2450 W</td>
<td>-15</td>
<td>-3</td>
</tr>
<tr>
<td>2475 W</td>
<td>-11</td>
<td>-6</td>
</tr>
<tr>
<td>25 W</td>
<td>-9</td>
<td>-9</td>
</tr>
<tr>
<td>2525 W</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>2550 W</td>
<td>-4</td>
<td>-1</td>
</tr>
<tr>
<td>2575 W</td>
<td>-20</td>
<td>-1</td>
</tr>
<tr>
<td>26 W</td>
<td>-20</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 48N / 18 + 50 W</td>
<td>+15</td>
<td>5</td>
</tr>
<tr>
<td>1875 W</td>
<td>+7</td>
<td>1</td>
</tr>
<tr>
<td>19 W</td>
<td>+7</td>
<td>+1</td>
</tr>
<tr>
<td>1925 W</td>
<td>-4</td>
<td>-7</td>
</tr>
<tr>
<td>1950 W</td>
<td>-6</td>
<td>-7</td>
</tr>
<tr>
<td>1975 W</td>
<td>-5</td>
<td>-4</td>
</tr>
<tr>
<td>20 W</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>2025 W</td>
<td>-2</td>
<td>-8</td>
</tr>
<tr>
<td>2050 W</td>
<td>-6</td>
<td>-12</td>
</tr>
<tr>
<td>2075 W</td>
<td>-5</td>
<td>-7</td>
</tr>
<tr>
<td>21 W</td>
<td>-10</td>
<td>-9</td>
</tr>
<tr>
<td>2125 W</td>
<td>-24</td>
<td>-12</td>
</tr>
<tr>
<td>2150 W</td>
<td>-30</td>
<td>-5</td>
</tr>
<tr>
<td>2175 W</td>
<td>-30</td>
<td>-8</td>
</tr>
<tr>
<td>22 W</td>
<td>-39</td>
<td>-5</td>
</tr>
<tr>
<td>2225 W</td>
<td>-30</td>
<td>-4</td>
</tr>
<tr>
<td>2250 W</td>
<td>-22</td>
<td>-2</td>
</tr>
<tr>
<td>2275 W</td>
<td>-24</td>
<td>-2</td>
</tr>
<tr>
<td>23 W</td>
<td>-29</td>
<td>-5</td>
</tr>
<tr>
<td>2325 W</td>
<td>-32</td>
<td>-6</td>
</tr>
<tr>
<td>2350 W</td>
<td>-30</td>
<td>-1</td>
</tr>
<tr>
<td>2375 W</td>
<td>-30</td>
<td>2</td>
</tr>
<tr>
<td>24 W</td>
<td>-41</td>
<td>-3</td>
</tr>
<tr>
<td>2425 W</td>
<td>-39</td>
<td>0</td>
</tr>
<tr>
<td>2450 W</td>
<td>-24</td>
<td>-1</td>
</tr>
<tr>
<td>2475 W</td>
<td>-20</td>
<td>-2</td>
</tr>
<tr>
<td>25 W</td>
<td>-12</td>
<td>0</td>
</tr>
<tr>
<td>2525 W</td>
<td>-7</td>
<td>-3</td>
</tr>
<tr>
<td>2550 W</td>
<td>-8</td>
<td>-5</td>
</tr>
<tr>
<td>2575 W</td>
<td>-8</td>
<td>-2</td>
</tr>
<tr>
<td>26 W</td>
<td>-20</td>
<td>-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 49 N / 14 W</td>
<td>+8</td>
<td>-1</td>
</tr>
<tr>
<td>1425 W</td>
<td>+8</td>
<td>0</td>
</tr>
<tr>
<td>1450 W</td>
<td>+12</td>
<td>-3</td>
</tr>
<tr>
<td>1475 W</td>
<td>+13</td>
<td>-2</td>
</tr>
<tr>
<td>15 W</td>
<td>+16</td>
<td>-2</td>
</tr>
<tr>
<td>1525 W</td>
<td>+8</td>
<td>+1</td>
</tr>
<tr>
<td>1550 W</td>
<td>+6</td>
<td>+2</td>
</tr>
<tr>
<td>1575 W</td>
<td>+6</td>
<td>+2</td>
</tr>
<tr>
<td>16 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>1625 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>1650 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>1675 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>17 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>1725 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>1750 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>1775 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>18 W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>1825 W</td>
<td>+7</td>
<td>+2</td>
</tr>
</tbody>
</table>
EM SURVEY DATA (1986)
ONLY M.C.

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L49N/16450W</td>
<td>+13</td>
<td>+8</td>
<td>L50N/1875W</td>
<td>+11</td>
<td>+3</td>
</tr>
<tr>
<td>1675W</td>
<td>+12</td>
<td>+3</td>
<td>27W</td>
<td>-13</td>
<td>+8</td>
</tr>
<tr>
<td>17W</td>
<td>+15</td>
<td>+7</td>
<td>18W</td>
<td>+7</td>
<td>+2</td>
</tr>
<tr>
<td>1725W</td>
<td>+17</td>
<td>+11</td>
<td>1825W</td>
<td>+5</td>
<td>+2</td>
</tr>
<tr>
<td>1750W</td>
<td>+15</td>
<td>+8</td>
<td>1850W</td>
<td>+5</td>
<td>+3</td>
</tr>
<tr>
<td>1775W</td>
<td>+10</td>
<td>+8</td>
<td>1875W</td>
<td>+6</td>
<td>+5</td>
</tr>
<tr>
<td>18W</td>
<td>+7</td>
<td>+2</td>
<td>19W</td>
<td>+3</td>
<td>-2</td>
</tr>
<tr>
<td>1925W</td>
<td>+10</td>
<td>-2</td>
<td>1925W</td>
<td>+10</td>
<td>-2</td>
</tr>
<tr>
<td>1950W</td>
<td>+3</td>
<td>-2</td>
<td>1975W</td>
<td>+7</td>
<td>0</td>
</tr>
<tr>
<td>1975W</td>
<td>-11</td>
<td>-8</td>
<td>20W</td>
<td>+4</td>
<td>0</td>
</tr>
<tr>
<td>20W</td>
<td>+2</td>
<td>-2</td>
<td>2025W</td>
<td>-2</td>
<td>-6</td>
</tr>
<tr>
<td>2050W</td>
<td>-15</td>
<td>-7</td>
<td>2075W</td>
<td>-17</td>
<td>-6</td>
</tr>
<tr>
<td>21W</td>
<td>-35</td>
<td>-10</td>
<td>2125W</td>
<td>-12</td>
<td>-12</td>
</tr>
<tr>
<td>2125W</td>
<td>-42</td>
<td>-21</td>
<td>2150W</td>
<td>-24</td>
<td>-10</td>
</tr>
<tr>
<td>2150W</td>
<td>-45</td>
<td>-24</td>
<td>2175W</td>
<td>-35</td>
<td>-4</td>
</tr>
<tr>
<td>22W</td>
<td>-25</td>
<td>-12</td>
<td>2225W</td>
<td>-20</td>
<td>-8</td>
</tr>
<tr>
<td>2225W</td>
<td>-28</td>
<td>-8</td>
<td>2250W</td>
<td>-27</td>
<td>-4</td>
</tr>
<tr>
<td>2250W</td>
<td>-30</td>
<td>-4</td>
<td>2275W</td>
<td>-35</td>
<td>-4</td>
</tr>
<tr>
<td>23W</td>
<td>-35</td>
<td>-4</td>
<td>2325W</td>
<td>-37</td>
<td>-4</td>
</tr>
<tr>
<td>2325W</td>
<td>-34</td>
<td>-3</td>
<td>2350W</td>
<td>-38</td>
<td>-6</td>
</tr>
<tr>
<td>2350W</td>
<td>-38</td>
<td>-5</td>
<td>24W</td>
<td>-28</td>
<td>-2</td>
</tr>
<tr>
<td>2375W</td>
<td>-38</td>
<td>-2</td>
<td>2425W</td>
<td>-28</td>
<td>-12</td>
</tr>
<tr>
<td>24W</td>
<td>-38</td>
<td>-1</td>
<td>2450W</td>
<td>-28</td>
<td>-12</td>
</tr>
<tr>
<td>2425W</td>
<td>-32</td>
<td>+1</td>
<td>2475W</td>
<td>-28</td>
<td>-12</td>
</tr>
<tr>
<td>2450W</td>
<td>-35</td>
<td>-1</td>
<td>25W</td>
<td>-20</td>
<td>-3</td>
</tr>
<tr>
<td>2475W</td>
<td>-35</td>
<td>-2</td>
<td>2525W</td>
<td>-20</td>
<td>-3</td>
</tr>
<tr>
<td>25W</td>
<td>-30</td>
<td>-1</td>
<td>2550W</td>
<td>-15</td>
<td>0</td>
</tr>
<tr>
<td>2525W</td>
<td>-18</td>
<td>+1</td>
<td>2575W</td>
<td>-15</td>
<td>-1</td>
</tr>
<tr>
<td>2550W</td>
<td>-15</td>
<td>0</td>
<td>26W</td>
<td>-10</td>
<td>-3</td>
</tr>
<tr>
<td>2575W</td>
<td>-15</td>
<td>-1</td>
<td>2625W</td>
<td>-14</td>
<td>-2</td>
</tr>
<tr>
<td>26W</td>
<td>-10</td>
<td>-3</td>
<td>2650W</td>
<td>-25</td>
<td>-1</td>
</tr>
<tr>
<td>2625W</td>
<td>-14</td>
<td>-2</td>
<td>2675W</td>
<td>-22</td>
<td>0</td>
</tr>
<tr>
<td>2675W</td>
<td>-25</td>
<td>-1</td>
<td>27W</td>
<td>-12</td>
<td>+13</td>
</tr>
</tbody>
</table>
EM SURVEY DATA (1986)
ONLY M.C.

<table>
<thead>
<tr>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
<th>Station</th>
<th>In Phase</th>
<th>Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL20 W/39N</td>
<td>+14</td>
<td>-4</td>
<td>BL20 W/47+50N</td>
<td>+10</td>
<td>+14</td>
</tr>
<tr>
<td>39.25 N</td>
<td>+12</td>
<td>-3</td>
<td>47.75 N</td>
<td>+14</td>
<td>+8</td>
</tr>
<tr>
<td>39.50 N</td>
<td>+14</td>
<td>-2</td>
<td>48 N</td>
<td>+8</td>
<td>+5</td>
</tr>
<tr>
<td>39.62.5 N</td>
<td>+11</td>
<td>-2</td>
<td>48.25 N</td>
<td>+14</td>
<td>+4</td>
</tr>
<tr>
<td>39.75 N</td>
<td>+12</td>
<td>+1</td>
<td>48.50 N</td>
<td>+14</td>
<td>+10</td>
</tr>
<tr>
<td>40 N</td>
<td>+11</td>
<td>+1</td>
<td>48.75 N</td>
<td>+26</td>
<td>+8</td>
</tr>
<tr>
<td>40.25 N</td>
<td>+7</td>
<td>+2</td>
<td>49 N</td>
<td>+36</td>
<td>+14</td>
</tr>
<tr>
<td>40.50 N</td>
<td>+9</td>
<td>+3</td>
<td>49.25 N</td>
<td>+35</td>
<td>+14</td>
</tr>
<tr>
<td>40.75 N</td>
<td>+6</td>
<td>+2</td>
<td>49.50 N</td>
<td>+31</td>
<td>+12</td>
</tr>
<tr>
<td>41 N</td>
<td>+10</td>
<td>+2</td>
<td>49.75 N</td>
<td>+26</td>
<td>+8</td>
</tr>
<tr>
<td>41.25 N</td>
<td>+6</td>
<td>+2</td>
<td>50 N</td>
<td>+22</td>
<td>+4</td>
</tr>
<tr>
<td>41.50 N</td>
<td>+9</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.75 N</td>
<td>+12</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42 N</td>
<td>+12</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.25 N</td>
<td>+16</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.50 N</td>
<td>+14</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.75 N</td>
<td>+18</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 N</td>
<td>+12</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.25 N</td>
<td>+18</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.50 N</td>
<td>+18</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.62.5 N</td>
<td>+11</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.75 N</td>
<td>+16</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 N</td>
<td>+20</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.25 N</td>
<td>+20</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.50 N</td>
<td>+17</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.75 N</td>
<td>+16</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.25 N</td>
<td>+14</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.50 N</td>
<td>+16</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.75 N</td>
<td>+14</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 N</td>
<td>+14</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.25 N</td>
<td>+7</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.50 N</td>
<td>+4</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.75 N</td>
<td>+6</td>
<td>+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 N</td>
<td>-8</td>
<td>+4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.25 N</td>
<td>-8</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.50 N</td>
<td>-6</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.75 N</td>
<td>-6</td>
<td>+5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.12.5</td>
<td>-1</td>
<td>+7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.25 N</td>
<td>+8</td>
<td>+11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Survey Details:
- **Instrument**: EM 16 No 52
- **Operator**: L. Grexton
- **Station**: Cutler Maine (BL20W)
- **Seattle**: (L39N to 50N)
- **Direction**: Lines run E to W with initial null roughly NW
- **Baseline**: run S to N with initial null roughly E
- **Spacing**: Readings max 25 m along lines with some 12.5 m detail readings in between
- **Lines**: 100 m apart

Note: Cutler Maine signal weak

For original data see Fieldbook "Grexton Y06 1986 Book 3"
APPENDIX IV

Statement of Expenses

Geologist Ladner, B.C.
Geologist Vancouver, B.C.
Project Geologist Vancouver, B.C.
21 man days @ $125/man day + 10%
21 man days @ $125/man day + 10% $2888.00

Groceries: 21 man days @ $16/man day
21 man days @ $16/man day $336.00

Camp Supplies: 21 man days @ $15/man day
21 man days @ $15/man day $315.00

Field Supplies: 21 man days @ $15/man day
(flagging, topofil, sample bags, etc.)
(flagging, topofil, sample bags, etc.) $315.00

Expeditor: 9 days @ $400/month
9 days @ $400/month $120.00

Truck: 9 days @ $33/day
9 days @ $33/day $297.00

Geochemical Analyses:
32 rocks @ $21 each $672.00
419 soils @ $16 each $6704.00
$7376.00

Air Charter: Trans North Helicopters Ltd.
Aug 25 1.0 hours
Aug 28 0.3 hours
Sept 3 1.0 hours
2.3 hours @ $585/hour $1345.00

Maps: 1,500 enlargement
1,500 enlargement $50.00

TOTAL $13,042.00
APPENDIX V

Statement of Qualifications

I, Jean Marie Pautler, graduated from Laurentian University, Sudbury, Ontario in May, 1980 with an Honours Bachelor of Science degree in geology. I have worked as a geologist in the Canadian Cordillera over the past seven years.

I was actively involved in the 1986 field program on the ONLY property.

Jean M. Pautler
Geologist.