EIP 86 - 001

DIAMOND DRILLING REPORT

RUTH 1-4 CLAIMS (YA 93146 - YA 93149)

NTS 105 D 11 W (60°41'20"N, 135°21'45"E)

by

A. HUREAU

for

E. KREFT

4 JUNE 86 to 19 AUG. 86

091899
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY AND RECOMMENDATIONS</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LOCATION, ACCESS AND TOPOGRAPHY</td>
<td>1</td>
</tr>
<tr>
<td>OWNERSHIP</td>
<td>2</td>
</tr>
<tr>
<td>HISTORY</td>
<td>2</td>
</tr>
<tr>
<td>GENERAL GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>LOCAL GEOLOGY</td>
<td></td>
</tr>
<tr>
<td>Lewes River Group</td>
<td>4</td>
</tr>
<tr>
<td>Coast Intrusions</td>
<td>4</td>
</tr>
<tr>
<td>Skarn Zone</td>
<td>4</td>
</tr>
<tr>
<td>Faults</td>
<td>4</td>
</tr>
<tr>
<td>GEOPHYSICAL RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>DRILLING RESULTS 1986</td>
<td>5</td>
</tr>
<tr>
<td>TRENCHING</td>
<td>6</td>
</tr>
<tr>
<td>CLAIMS LIST</td>
<td></td>
</tr>
<tr>
<td>1986 DRILL HOLE DATA</td>
<td></td>
</tr>
<tr>
<td>PERSONNEL LIST</td>
<td></td>
</tr>
<tr>
<td>CLAIMS LIST APPENDIX A</td>
<td></td>
</tr>
<tr>
<td>1986 DRILL HOLE DATA APPENDIX B</td>
<td></td>
</tr>
<tr>
<td>PERSONNEL LIST APPENDIX C</td>
<td></td>
</tr>
<tr>
<td>CLAIMS LIST</td>
<td>APPENDIX A</td>
</tr>
<tr>
<td>1986 DRILL HOLE DATA</td>
<td>APPENDIX B</td>
</tr>
<tr>
<td>PERSONNEL LIST</td>
<td>APPENDIX C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF PLANS & SECTIONS</th>
<th>SCALE</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLAIM LOCATION PLAN</td>
<td>1"=\frac{1}{2}mi</td>
<td>1</td>
</tr>
<tr>
<td>GEOLOGY PLAN</td>
<td>1"=100'</td>
<td>2</td>
</tr>
<tr>
<td>DRILL SECTIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>900 E</td>
<td>1"=40'</td>
<td></td>
</tr>
<tr>
<td>1000 E</td>
<td>1"=40'</td>
<td></td>
</tr>
<tr>
<td>K 86-03</td>
<td>1"=40'</td>
<td></td>
</tr>
<tr>
<td>K 86-04</td>
<td>1"=40'</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY AND RECOMMENDATIONS

Four holes with an aggregate footage of 1494' were drilled in June and July '86 on the Jackson Creek property 8 miles west of Whitehorse. Drilling was done to follow up gold mineralization in skarn intersected in previous drilling, Vis. 1.3' @ 2.55 opt (15' @ 0.29) in KT 7, 1976 and 3' @ 0.356 opt in ML, 1983. Holes K 86-01, 02, 03 drilled below and east of the above intersections encountered only low gold values in the skarn. Previous drilling in 1975-1976 west of KT 7 also failed to intersect significant gold values. The zone of gold mineralization is now considered to be too small to warrant further work.

The wide skarn zone (160') intersected in K 86-03, 350' east of KT 7 proves the continuity of the skarn zone to the east and the favourable sediments-intrusive contact east of K 86-03 for two miles to Franklin Lake is largely overburden covered and remains relatively unexplored. Detailed magnetometer and soil sampling surveys on this contact may detect anomalies resulting from mineralization in the skarn.

A mapping and sampling program sponsored by DINA, currently in progress, may also reveal areas requiring further work west of the zone drilled.

Hole K 86-04, drilled to test a small magnetic anomaly, failed to intersect magnetic skarn. The skarn zone is small and apparently does not persist to the depth of the hole.

Trenching was done east of KT-7 to reveal the extent and attitude of dykes before locating K 86-03. Trenching was also carried out to reveal bedrock in an area 500' NW of K 86-04 where grab samples ran 0.04 gold and to 14 oz silver. The owner plans to drill this showing with a Winkie drill.

INTRODUCTION

Copper, gold, silver bearing calc-silicate and magnetite skarn zones occur north of Jackson Creek at the contact of Upper Triassic Lewes River clastic sediments and carbonates with quartz-monzonite and granodiorite of the Eocene suite of volcano-plutonic rocks, at the east margin of the Coast Plutonic Complex.

The skarn zones at Jackson Creek, are outside the Whitehorse Copper Belt, which is along the contact of the mid-Cretaceous Whitehorse Batholith with Lewes River rocks, similar to those at Jackson Creek. The mineralogy and setting of the skarn zones are similar.

LOCATION, ACCESS AND TOPOGRAPHY

The main showings are located on the north side of Jackson Creek at 60°41'20"N, 135°21'45"W on NTS sheet 105 D 11W, 8 miles west of Whitehorse.
Slopes on the hillside are in the order of 30° rising from 3300' in the valley floor to 5454' above the main showings which are at an elevation of 4100'.

From June to November the showings are accessible by a fairly good four wheel drive road from the west end of Franklin Lake two miles east. A cat trail was put in along the valley floor to a point on the creek south of the showings, to provide access to a water pump used for drilling. A four wheel drive road from west of Franklin Lake along the north side of the mountain put in by Zelon Inc. and E. Kreft in 1981 provides access to showings on the west end of the property.

OWNERSHIP
Twenty eight claims are held by E. Kreft (Takhini Hot Springs). A list of claims is attached as Appendix A.

HISTORY
The showings were found by E. Kreft and S. Takacs in 1970-71. New Jersey Zinc optioned the property in 1972 and completed a program of geological mapping, a magnetometer survey and six diamond drill holes with an aggregate footage of 1459'. N. J. Z. geologists apparently assumed that the dip of the mineralized zones was at a shallow angle to the north i.e. conformable to that of the sediments above the showings; their holes failed to intersect any significant skarn or mineralization and the option was dropped.

Whitehorse Copper Mines optioned the property in late 1974 and in 1975 extended the geological mapping and magnetometer surveys, trenched one of the larger magnetic anomalies, improved access roads and drilled six holes with an aggregate footage of 1401'. All holes except KT 5 (drilled 700' east of the most easterly showings) and KT 6 (not completed) intersected generally low grade copper mineralization skarn in the order of 40 to 80' thick while hole KT 3 on sect 8E intersected 20.1' at 5.6% Cu 7.9 oz/ton Ag and 0.03 oz/ton Au. Hole KT 4, drilled to intersect the high grade mineralization 100' down dip, intersected 60' of magnetite skarn with low copper and gold values.

Four holes (aggregate of 1550') were drilled by Whitehorse Copper Mines in 1976. KT6A and KT7 were drilled to test along strike the mineralization intersected in KT3. KT6A 100'W of KT3 intersected 28' of weakly mineralized skarn. KT7, 100'E of KT3 intersected high gold and bismuth values with assays of 1.3' @ 2.55 oz/ton Au and 5.8% Bi (re assay 3.90 oz/ton Au) or 15' @ 0.29 oz/ton Au. The high grade zone like that in KT3 was at a vertical depth of 110' and was 180' horizontally from the hill slope below the showings. The high gold values were in actinolite skarn in a grey metallic mineral believed to be bismuthinite.
At the completion of the '76 program it was decided by WCM that the potential tonnage was too small and the option was dropped.

The property was optioned by Zelon in 1981. Zelon carried out a soil sampling program on the north side of the mountain and put in a four wheel drive road to reach showings at the west end of the property. Zelon failed to meet other obligations stated in the agreement and the option was terminated.

The property was optioned by M. Nichiporek who drilled three holes (aggregate 285'). Hole M1 intersected 3' @ .356 opt Au 40' above that in KT7. The option was subsequently dropped.

The 1986 drilling program by the owner was designed to explore the known gold mineralization down dip and to the east and to drill previously untested showings. Four holes (1494') were completed extending the skarn zones but intersected only low gold values. Logs and sections showing drilling results accompany this report.

A list of holes is attached as Appendix B.

A list of persons who worked on the property is attached as Appendix C.

A study of the property initiated by DINA in 1986 is currently in progress.

GENERAL GEOLOGY

The property is located in the northwest margin of the Intermontaine Belt of the Canadian Cordillera in the western part of the Whitehorse Trough. The Western belt of the Whitehorse Trough consists of an island arc assemblage of mafic volcanic and volcano-sedimentary rocks grading upward and basinward into greywacke, siltstone and minor conglomerate capped by carbonate reef complexes. The island arc assemblage is overlain by a successor basin assemblage of Jurassic-Cretaceous conglomerate, greywacke, siltstone and sandstone (Laberge group).

The volcano-sedimentary rocks of the Whitehorse Trough are intruded by quartz diorite plutons of mid Cretaceous to Eocene ages which are part of the Coast Intrusive Complex. Calc silicate and magnetite skarn zones occur near the contact of Lewes River carbonate rocks with these intrusions.

Triassic and Jurassic volcano-sedimentary rocks, Coast Intrusions and skarn zones are all cut by dykes related to Coast Intrusions and Quaternary Miles Canyon Basalt.
LOCAL GEOLOGY

Lewes River Group
Siltstone greywacke and fragmental rocks (unit 4 on map) are overlain by several hundred feet of white and grey limestone, dolomitic limestone and black carbonaceous limestone (Unit 5 on map). The carbonate units are irregular and form discontinuous lenses which grade out into interbedded siltstone tuff and calcareous siltstone. The carbonate units are overlain by greywacke, sandstone and conglomerate which are probably correlative with Laberge rocks. In the area of the main showings, where drilling was done, the clastic rocks underlying the carbonate units appear to be in an asymmetrical antiform with the upper limb dipping at approximately 30° to the NE and the lower limb being near vertical.

Coast Intrusions
Lewes River rocks are intruded by an Eocene (55 My) quartz monzonite grandiorite pluton. It is coarse grained leucocratic, weakly porphyritic and shows only weak argillic alteration near the contact. Drilling in the area of the showings indicates that the pluton there dips from 30° to 065°NE.

An irregular plug of rusty weathering dark grey diorite intrudes the sediments above the main showings. It contains approximately 2% pyrrhotite with traces of CP. This intrusion (unit 8 on maps) is considered to be a phase of the Jackson Creek pluton.

Skarn Zones
Erratic skarn zones to 100' thick (garnet, epidote, actinolite, diopside and magnetite with minor serpentine) occur at the carbonate-intrusive, carbonate-siltstone and siltstone intrusive contacts. The siltstone-greywacke is locally skarnified and is locally recrystallized to diotitic texture. Copper mineralization (Chalcopyrite, bornite with magnetite and pyrrhotite) distribution within the skarns is erratic with the best copper gold and silver intersections associated with actinolite-diopside, magnetite skarn. Oxidation of the sulphide and magnetite zones extends only a few feet below surface.

Little work has been done on the large skarn zones at the west end of the property. The calc-silicate skarns there contain little copper mineralization. The occurrence of erythrite has been reported there by the owners. The contact between the west showings and the main showings is well exposed and little mineralization has been found along it.

Faults
Several north and northeast trending gullies probably reflect faults. In a gully on the south side of Jackson Creek limestone and dolomite on the east side of the creek are in fault contact with siltstone and greywacke on the west side of the creek for nearly a mile.

Only minor faults were encountered in drilling. Ground conditions were good.
GEOPHYSICAL RESULTS

Magnetic surveys in 1975 using a vertical field Sharp MF. 1 magnetometer outlined the magnetite bearing skarns. Both the quartz-monzonite and diorite intrusions have a higher magnetic intensity than the limestone and clastic rocks so that the intrusive contacts can be delineated easily. Since some of the better grade copper-gold mineralization was associated with skarn that has little magnetite and the near massive magnetite skarns were generally low grade, a magnetometer survey, using a proton mag, may better delineate the trends of weakly magnetic skarn zones to assist in drilling. The diorite above the showings is variably magnetic and while the MF-1 survey generally outlines the intrusive a proton mag survey would probably define the contacts more accurately.

The G.S.C. aeromagnetic map 105-0-11 gives a general outline of the Jackson Creek intrusion. Chalcopyrite has been reported (G. Morriso on) in the sediments near the south east end of this intrusion south of Jackson Creek and in float in a creek draining this area (E. Kreft).

A test survey in 1976 over the high grade intersection in KT3 (20' @ 5.6% Cu) using a Crone "Shootback" instrument gave a very weak anomalous response. EM16 surveys northwest of Franklin Lake yielded several anomalies the strongest of which gave a very low response using EM 16 and Crone instruments. Trenching of the anomaly uncovered pyritic greywacke at bedrock.

1986 DRILLING RESULTS

K86-01 (Sect. 1000E) passed from hornfelsed pyroclastics to skarn at 91' indicating a steep dip to the north for the original limestone-pyroclastics contacts. The hole was in skarn and dykes to the intrusive contact at 326'. A graphite rich skarn zone at 115' is believed to correlate with the zone of gold mineralization on sect. 900E. All gold assays were low. Bismuth content with which the gold was associated in KT7 was also low. Minor copper, scheelite and zinc were present.

K86-02 (Sect. 900E) was drilled under KT7. Little skarn was encountered and gold values were low. The hole was in a dyke for approximately 43' in the projected skarn zone. The intrusive was reached without intersecting the FW pyroclastics.

K86-03 was drilled 350' east of KT7 and intersected a wide (160') skarn zone consisting mainly of garnet-epidote. The FW pyroclastics were not intersected and were probably cut off by the intrusive. They have been mapped near the intrusive contact 2000' east and where in contact there with carbonates would provide a favourable locus for mineralization.
K86-04 drilled to test a small magnetic anomaly passed through limestone, hornfels and numerous dykes before entering a strongly altered intrusive. The source of the anomaly apparently does not persist to the depth of the hole.

TRENCHING
Trenching was done east of KT7 (Fig.2) to reveal the extent and attitude of post ore dykes before hole K 86-03 could be located. Trenching was also done to expose bedrock 500' NW of K86-04 where grab samples assayed 0.04 Au and to 14 opt Ag. The proposed hole to test this zone was postponed and the owner plans to drill the showing with a Winkie drill.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>REID, R. E.</td>
<td>1975</td>
<td>Kreft-Takacs - Summary Report Whitehorse Copper Mines</td>
</tr>
<tr>
<td>SINCLAIR ET AL</td>
<td>1976</td>
<td>M. I. R. Yukon Territory</td>
</tr>
<tr>
<td>TENNEY, D.</td>
<td>1976</td>
<td>Whitehorse Copper Mines Company Correspondence</td>
</tr>
<tr>
<td>WHEELER, J. O.</td>
<td>1953</td>
<td>Whitehorse Map Area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. S. C. Mem. 312</td>
</tr>
</tbody>
</table>
LUNAR 1-8
GEAR 1, 2, 4, 6
RUTH 1, 2, 3, 4
ROY 2, 4, 6, 15, 16
FAULT 1, 2
FALCON 1, 2
RAVEN 1, 2
BEAVER

Y60602 to Y60609
Y91133, 34, 36, 38
YA93146, 47, 48, 49
Y60595, 97, 99, Y78496, 97
YA94119, 20
YA 93376, 77
YA 93396, YA 93397
YA 24118
APPENDIX B

DRILL HOLE SUMMARY

<table>
<thead>
<tr>
<th>HOLE #</th>
<th>N</th>
<th>E</th>
<th>EL</th>
<th>AZ</th>
<th>DIP</th>
<th>SIZE</th>
<th>OB</th>
<th>DEPTH</th>
<th>DEPTH</th>
<th>START/COMPLETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>K86-01</td>
<td>098</td>
<td>987</td>
<td>4059</td>
<td>039°</td>
<td>-70°</td>
<td>NQ</td>
<td>10'</td>
<td>334'</td>
<td>14/17 June/86</td>
<td></td>
</tr>
<tr>
<td>K86-02</td>
<td>259</td>
<td>900</td>
<td>4152</td>
<td>219°</td>
<td>-70°</td>
<td>NQ</td>
<td>13.5'</td>
<td>442'</td>
<td>18/22 June/86</td>
<td></td>
</tr>
<tr>
<td>K86-03</td>
<td>435</td>
<td>1130</td>
<td>4222</td>
<td>197°</td>
<td>-60°</td>
<td>NQ</td>
<td>16'</td>
<td>369'</td>
<td>24/29 June/86</td>
<td></td>
</tr>
<tr>
<td>K86-04</td>
<td>330</td>
<td>330</td>
<td>4183</td>
<td>301°</td>
<td>-70°</td>
<td>NQ</td>
<td>14'</td>
<td>349'</td>
<td>30 June/5 July/86</td>
<td></td>
</tr>
</tbody>
</table>

Total - 1494'

Drilling Contractor: D. McKenna
Kluane Drilling
65 - 100 Lewes Blvd.
Whitehorse, Y. T.

Tractor Contractor: A. Fekete
112 Park Lane
Whitehorse, Y. T.
The following personnel worked on the property during the June/July 86 drilling program:

Jacques Duchaine
B. Kreft
E. Kreft
A. Hureau
Takhini Hot Springs
Takhini Hot Springs
Takhini Hot Springs
32 Stewart Rd. Whitehorse

D. McKenna
J. Kelly
N. Grimley
A. Fekete
Drilling Contractor
Driller
Driller
Tractor Contractor
65-100 Lewes Blvd., Whitehorse
65-100 Lewes Blvd., Whitehorse
65-100 Lewes Blvd., Whitehorse
112 Park Lane, Whitehorse

Report Preparation – A. Hureau – 6 days
STATEMENT OF QUALIFICATIONS

ANDREW HUREAU

ADDRESS: 32 Stewart Road
 Whitehorse, Y. T.
 Y1A 3S3

EDUCATION: BSc. Geology 1961

EMPLOYMENT: Employed 23 years in Mining and Exploration Geology including 12 years on Whitehorse Copper Belt. Currently employed as Senior Geologist with Terra Mines Ltd. Edmonton, Alberta.

REGISTRATION: Fellow of Geological Association of Canada

A. Hureau
14/Aug./86
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Hole No.</th>
<th>Footage From</th>
<th>Footage To</th>
<th>Length</th>
<th>Rec.</th>
<th>%Cu</th>
<th>Au(oz/t)</th>
<th>Ag(oz/t)</th>
<th>Bi(%)</th>
<th>%Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>952.10</td>
<td>1586-01</td>
<td>9.05</td>
<td>9.16</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td><0.001</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>15.0</td>
<td>9.16</td>
<td>9.60</td>
<td>4.4</td>
<td>4.4</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>9.60-10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>10.0</td>
<td>10.60</td>
<td>10.60</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>10.60</td>
<td>11.34</td>
<td>11.3</td>
<td>7.2</td>
<td>7.2</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td></td>
<td>113.4</td>
<td>115.0</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td></td>
<td>115.0</td>
<td>116.1</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td></td>
<td>116.2</td>
<td>118.0</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
<td>0.08</td>
<td>0.07</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>2.19</td>
<td></td>
<td>118.0</td>
<td>124.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
<td>0.03</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td></td>
<td>124.0</td>
<td>134.0</td>
<td>6.3</td>
<td>6.3</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>2.21</td>
<td></td>
<td>130.3</td>
<td>134.5</td>
<td>2.3</td>
<td>2.3</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>2.22</td>
<td></td>
<td>132.5</td>
<td>135.8</td>
<td>3.3</td>
<td>3.3</td>
<td></td>
<td>0.01</td>
<td>0.24</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>2.23</td>
<td></td>
<td>148.3</td>
<td>154.0</td>
<td>5.7</td>
<td>5.7</td>
<td></td>
<td><0.001</td>
<td>0.03</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>2.24</td>
<td></td>
<td>154.0</td>
<td>160.0</td>
<td>6.0</td>
<td>6.0</td>
<td></td>
<td><0.001</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>2.25</td>
<td></td>
<td>160.0</td>
<td>166.4</td>
<td>6.4</td>
<td>6.4</td>
<td></td>
<td><0.001</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>2.26</td>
<td></td>
<td>171.0</td>
<td>175.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td>0.02</td>
<td>0.03</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>2.27</td>
<td></td>
<td>175.0</td>
<td>179.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
<td><0.001</td>
<td>0.03</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>2.28</td>
<td></td>
<td>177.3</td>
<td>181.0</td>
<td>3.7</td>
<td>3.7</td>
<td></td>
<td>0.09</td>
<td><0.001</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td>2.29</td>
<td></td>
<td>183.0</td>
<td>187.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td>0.03</td>
<td><0.001</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>2.30</td>
<td></td>
<td>188.0</td>
<td>193.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td>0.03</td>
<td><0.001</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>2.31</td>
<td></td>
<td>188.0</td>
<td>193.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.32</td>
<td></td>
<td>195.0</td>
<td>200.5</td>
<td>5.5</td>
<td>5.5</td>
<td></td>
<td>0.15</td>
<td>0.01</td>
<td>0.18</td>
<td>0.05</td>
</tr>
<tr>
<td>2.33</td>
<td></td>
<td>200.5</td>
<td>203.3</td>
<td>2.8</td>
<td>2.8</td>
<td>0.37</td>
<td>0.05</td>
<td>0.58</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>2.34</td>
<td></td>
<td>203.3</td>
<td>206.2</td>
<td>2.9</td>
<td>2.9</td>
<td></td>
<td><0.001</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>2.35</td>
<td></td>
<td>224.5</td>
<td>229.3</td>
<td>4.7</td>
<td>4.7</td>
<td></td>
<td>0.003</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.36</td>
<td></td>
<td>231.3</td>
<td>235.7</td>
<td>4.4</td>
<td>4.4</td>
<td></td>
<td><0.001</td>
<td>0.03</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>2.37</td>
<td></td>
<td>235.7</td>
<td>239.5</td>
<td>3.8</td>
<td>3.8</td>
<td></td>
<td>0.01</td>
<td><0.001</td>
<td><0.001</td>
<td>0.01</td>
</tr>
<tr>
<td>2.38</td>
<td></td>
<td>265.8</td>
<td>270.2</td>
<td>4.4</td>
<td>4.4</td>
<td></td>
<td><0.001</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>2.39</td>
<td></td>
<td>311.6</td>
<td>323.0</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.40</td>
<td></td>
<td>323.0</td>
<td>328.2</td>
<td>5.2</td>
<td>5.2</td>
<td></td>
<td><0.001</td>
<td>0.02</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>C9.5</td>
<td></td>
<td>325.7</td>
<td>330.7</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td><0.001</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>
PROPERTY
E KREJ

<table>
<thead>
<tr>
<th>FOOTAGE</th>
<th>ROCK CLASSIFICATION</th>
<th>MINERALIZATION</th>
<th>ASSAY DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
<td>TYPE</td>
</tr>
<tr>
<td>0</td>
<td>11</td>
<td></td>
<td>Bubbe - Casing</td>
</tr>
<tr>
<td>11</td>
<td>17.2</td>
<td>4</td>
<td>Tuff - 1t g qt gyp bornfels</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>py in struc & blebs</td>
</tr>
<tr>
<td>17.2</td>
<td>20.8</td>
<td>9</td>
<td>dyke - med gr latite bre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>phenocr 7mm altd to 22mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ca Sts to 2mm, Occ Spec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 Sts py, Contact along core</td>
</tr>
<tr>
<td>20.8</td>
<td>91.6</td>
<td>4</td>
<td>Tuff - qy brn bornfels tuff</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silt to sand size particles, argatal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to sub dac geol to 3mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95' bedding ineq 0-30'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>discrete py -po with magnet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>throu ut, bleah qy qm along</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exacts,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53' qd bedding (Sts - Sds) 20'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48' - 65' blct Exacts to Stms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>py, po</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63' - 77' bedding 40' - 50'</td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>Epis, Diap, GEN, SERV, Ut/Sil, Alter, Trame, Crystalline, Discoating, Veins, Fracturing, Paleation, Grain Size, Texture</td>
<td>TYPE</td>
</tr>
<tr>
<td>91.6</td>
<td>111.6</td>
<td>3 g/a, m/Ss, dominantly garnet, Sharr, buff to red brown, streak to 1cm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1cm Zoned, replacing pyrite, occ.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spec's mag, coarse banding 2/10° 50°</td>
<td></td>
</tr>
<tr>
<td>116° - 60°</td>
<td></td>
<td>occ Spec py, 2 shrunk fillet py mag = 14%</td>
<td></td>
</tr>
<tr>
<td>Extr.</td>
<td>50°</td>
<td>91.6 - 92.1</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>3</td>
<td>91.6 - 96.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>96.0 - 101.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101.0 - 104.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>104.0 - 113.9</td>
<td></td>
</tr>
<tr>
<td>91.6</td>
<td>117</td>
<td>3 g/a, m/Ss, Sharr, red grey, bin,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spec's band & pitchs 5% garnet, streak to 1cm, 1cm Zoned</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>115 - 116.7, 5% soft black mineral</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>w th grey metallic streak, in band/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graphite, poss bi, ph Sulphide, does not appear</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lustres enough to be bismuthinite</td>
<td></td>
</tr>
<tr>
<td>116.2</td>
<td>116.6</td>
<td>90% mag, 116.6, Spec cp, mag 5</td>
<td></td>
</tr>
<tr>
<td>Most of Exc: 115.5°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample No.</td>
<td>Width</td>
<td>Recov.</td>
<td>%Cu</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>1664.4</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>117.0</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>218.0</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

FOOTAGE

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Samples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>120</td>
<td>3</td>
<td>Crystalline, Shearing, Veins, Fracturing, Foliation, Grain Size, Texture</td>
</tr>
<tr>
<td>120</td>
<td>129.7</td>
<td>3</td>
<td>Crystalline, Shearing, Veins, Fracturing, Foliation, Grain Size, Texture</td>
</tr>
<tr>
<td>129.7</td>
<td>130.3</td>
<td>3</td>
<td>Crystalline, Shearing, Veins, Fracturing, Foliation, Grain Size, Texture</td>
</tr>
<tr>
<td>130.3</td>
<td>132.5</td>
<td>3</td>
<td>Crystalline, Shearing, Veins, Fracturing, Foliation, Grain Size, Texture</td>
</tr>
<tr>
<td>132.5</td>
<td>135.8</td>
<td>3</td>
<td>Crystalline, Shearing, Veins, Fracturing, Foliation, Grain Size, Texture</td>
</tr>
<tr>
<td>135.8</td>
<td>140.3</td>
<td>5</td>
<td>Limestone, py, bladed (55°) bry, pyritic (17%) bry 138.7-139.5, c</td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>TYPE</td>
<td>% Cu</td>
</tr>
<tr>
<td>148.3</td>
<td>166.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166.2</td>
<td>171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>177.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>177.3</td>
<td>180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOOTAGE

- **148.3 to 166.2 M. J. S. Sharph grn blk luding 26°-40°
 - lower c+ 40° clust & breccia cp & py
 - to 150' (10 cu) occ. spec cp in
 - remainder, radia ting act. et al.
 - 150' py in frac fillings & occ
 - euhectid grains from 150'
 - Samples: 148.3 - 150.0
 - 150.0 - 160.0
 - 160.0 - 166.2

- **166.2 to 171**
 - 6.5 cm stalling lower c+ gradational

- **171 to 175**
 - 5/15 cm, qz marble with buds & patches, may & serp, 1.5" bud
 - w 20% cp @ 173° luding 20°
 - @ 172.5' patch cp w blk sph.
 - & may w coarse stalling cp
 - Samples: 171 - 175
 - 2.26 4.0 4.0

- **175 to 177.3**
 - M. J. S. Sharph grn blk, patches & specs cp, po (0.25% cu) lower c+ cp
 - Gradational
 - Sample: 175 - 177.3
 - 2.27 2.3 2.3

- **177.3 to 180**
 - 5/15 partially Sharphified grns, occ. specs cp, patches, py @ 181' sample
 - 177.3 - 180.0
 - 180.0 - 188.0

- **188.0**
 - sample
 - 229 6.0 6.0

MINERALIZATION

- **FOOTAGE**
 - 148.3 to 166.2
 - 166.2 to 171
 - 171 to 175
 - 175 to 177.3
 - 177.3 to 180

ASSAY DATA

- **TYPE**
 - % Cu
 - Sample No.
 - Width
 - Recover.
 - % Fe
 - MoI
 - Au/Ag
 - Incol
<table>
<thead>
<tr>
<th>FOOTAGE</th>
<th>ROCK CLASSIFICATION</th>
<th>MINERALIZATION</th>
<th>ASSAY DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
<td>TYPE</td>
</tr>
<tr>
<td>188</td>
<td>199.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>199.3</td>
<td>200.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200.5</td>
<td>203.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203.3</td>
<td>206.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206.2</td>
<td>224.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOOTAGE
- 188 - 189.3
- 199.3 - 200.5
- 200.5 - 203.3
- 203.3 - 206.2
- 206.2 - 224.5

ROCK CLASSIFICATION
- Epid, Diop, Cdrp, Sera, Ortv/Sil, Adam, Tram, Chlc,
- Crystalline, Shading, Veins, Fracturing, Fission, Grain Size, Texture

MINERALIZATION
- CP

ASSAY DATA
- Sample 188 - 189.3
- Sample 199.3 - 195.0
- Sample 200.5 - 203.3
- Sample 203.3 - 206.2

- % Cu
- % Fe
- Moly
- Au/Ag
<table>
<thead>
<tr>
<th>FOOTAGE</th>
<th>ROCK CLASSIFICATION</th>
<th>MINERALIZATION</th>
<th>ASSAY DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TYPE</td>
<td>%</td>
</tr>
<tr>
<td>224.5 - 229.2</td>
<td>3 g/m, sec. Sherau, buna/gray bind. mag.</td>
<td>4</td>
<td>C95235</td>
</tr>
<tr>
<td></td>
<td>in inner patches & buds no placer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silicates, Strongly Chloritized & lower</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C+</td>
<td>Sample 224.5 - 229.2</td>
<td></td>
</tr>
<tr>
<td>229.2 - 231.3</td>
<td>70</td>
<td>Granodiorite dune, a1 +d (epidote ch.)</td>
<td>40</td>
</tr>
<tr>
<td>231.3 - 235.7</td>
<td>3 ds //m pale to dr qrn. Sherau w</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>occ specs mag., lower C+ 30°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235.7 - 242.5</td>
<td>3 m/++ca. Sherau bina & qrn, binding 30-60°</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interstitial Ca., Buna Sub-metamorphic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main in buna Sphalerite?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broken & lower C+ Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>242.5 - 265.8</td>
<td>5</td>
<td>Limestone witu - qrn. occ. buds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strips serp binding 30°, rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spec. mag. Lower C+ 35°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>265.8 - 270.2</td>
<td>3</td>
<td>M, Sd. Starna bina - qrn, 125-500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Starna C+ 35° - 40°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270.2 - 321.9</td>
<td>4</td>
<td>Caution dune, buna qrn 10% Cu ore.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chalcedony Sess. or. Fe3, Phenocysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To 3 myr. 2% Chalcedony Matrix phenocysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15% Chilled C+ (Super) 40°, lower 80°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footage</td>
<td>Rock Classification</td>
<td>Mineralization</td>
<td>Assay Data</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>From 321.4</td>
<td>To 323</td>
<td>3 m / 5d</td>
<td>B/k - qrn. 5mm. No. 516. Sched.</td>
</tr>
<tr>
<td>From 323</td>
<td>To 325.8</td>
<td>3.5d / m</td>
<td>Sched. dt - 1 + qrn. 1cc</td>
</tr>
<tr>
<td>From 325.8</td>
<td>To 334</td>
<td>7 b</td>
<td>Granodiorite = to 10% Chloritoid</td>
</tr>
<tr>
<td>334</td>
<td>Hole stopped</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample No.</td>
<td>Hole No.</td>
<td>Footage</td>
<td>Length</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>C 95241</td>
<td>HBE-07</td>
<td>278</td>
<td>282</td>
</tr>
<tr>
<td>C 95242</td>
<td></td>
<td>280.7</td>
<td>282.3</td>
</tr>
<tr>
<td>C 95243</td>
<td></td>
<td>326.5</td>
<td>329</td>
</tr>
<tr>
<td>C 95244</td>
<td></td>
<td>329</td>
<td>331.1</td>
</tr>
<tr>
<td>C 95245</td>
<td></td>
<td>372.7</td>
<td>377</td>
</tr>
<tr>
<td>PROPERTY</td>
<td>KREFT - TAYLOR CREEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claim No.</td>
<td>AA1 + 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section No.</td>
<td>960 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plon No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>SURFACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>2/1/67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strike</td>
<td>5 (219°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dip</td>
<td>-70°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>4152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lot</td>
<td>2594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hole No.</td>
<td>K86-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>442'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logged By</td>
<td>A. Hureau</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOOTAGE</th>
<th>ROCK CLASSIFICATION</th>
<th>MINERALIZATION</th>
<th>ASSAY DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td>Type</td>
<td>Sample</td>
</tr>
<tr>
<td>0</td>
<td>13.5</td>
<td>OB</td>
<td>Overburden - Casing</td>
</tr>
<tr>
<td>13.5</td>
<td>15.5</td>
<td>5</td>
<td>Limestone, wh, qv, rare pitch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Serp, acc, wispy, segregated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Graphitic patches, Y broken to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.5', broken 81-83'</td>
</tr>
<tr>
<td>15.5</td>
<td>155</td>
<td>9</td>
<td>Dyne - dK qrn, Chrysotile, basic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dyne C+5 35°</td>
</tr>
<tr>
<td>15.5</td>
<td>234</td>
<td>5</td>
<td>Limestone - wh, qv, dappled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xtaline, loc, leque, ending</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20°, acc, Graphitic Sticks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>& patches</td>
</tr>
<tr>
<td>234</td>
<td>239</td>
<td>35-5</td>
<td>Shear qv, qrn, bnding 10°</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Graphitic laminations from 237'</td>
</tr>
<tr>
<td>239</td>
<td>275</td>
<td>5</td>
<td>Limestone wh, qv, reutilized</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stn's - Serp + Graphitic from</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>247' qrn 50'-206 3' Serp &</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lower C+ @ 55°</td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>TYPE</td>
<td>%</td>
</tr>
<tr>
<td>275.3</td>
<td>277.1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>277.0</td>
<td>278.5</td>
<td>5/35</td>
<td>1/2</td>
</tr>
<tr>
<td>278.5</td>
<td>280.2</td>
<td>3</td>
<td>d/s</td>
</tr>
<tr>
<td>280.2</td>
<td>282.3</td>
<td>3</td>
<td>mas/15</td>
</tr>
<tr>
<td>282.3</td>
<td>309.5</td>
<td>5/35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309.5</td>
<td>312.8</td>
<td>15</td>
<td>Grey on reutilized limestone</td>
</tr>
<tr>
<td>312.8</td>
<td>325.7</td>
<td>9</td>
<td>dune = pyr qy lime 10% Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole No. 546-22 Page No. 2.
<table>
<thead>
<tr>
<th>FOOTAGE</th>
<th>ROCK CLASSIFICATION</th>
<th>MINERALIZATION</th>
<th>ASSAY DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td></td>
<td>TYPE</td>
</tr>
<tr>
<td>325.7</td>
<td>326</td>
<td>39</td>
<td>Sharm - pale brown red garnet</td>
</tr>
<tr>
<td>326</td>
<td>326.5</td>
<td>5</td>
<td>limestone w/ qz</td>
</tr>
<tr>
<td>326.5</td>
<td>331.1</td>
<td>30</td>
<td>Sharm - green act + xels radiating to 2 cm act patch more interstitial Ca, tr dissem py (Cu)</td>
</tr>
<tr>
<td>331.1</td>
<td>341.3</td>
<td>5</td>
<td>limestone w/ qz & 333° pitch altd dyne (dyne C+ along core)</td>
</tr>
<tr>
<td>341.3</td>
<td>372.2</td>
<td>9</td>
<td>dyne qz grn altd as above C+ 55° 30° from 35° rusty tr dissem py, phenos largely chloritized</td>
</tr>
<tr>
<td>372.2</td>
<td>374</td>
<td>3</td>
<td>et grn wih rusty Sharm acicular tuens (w/3) to 2cm acc spec mag</td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>From 373' To 414'</td>
<td>Granodiorite Highly Altered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section with 40% of Feldspar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To 7' Alterd with Feldspar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With light green serpentine 10% - 20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seesawing - Chl.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 404' - 408.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 414' To 442'</td>
<td>Fresh Mode biotite 4-10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granodiorite to Quartz Monzonite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Fels + 7% to 2 cm Occ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incl Sg har + Fels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>442' Hole Stopped</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exploration Assay Data

Property: Napsit-Jackson Creek
Date: 12/8/86
Page No.:

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Hole No.</th>
<th>Footage From</th>
<th>Footage To</th>
<th>Length</th>
<th>Rec.</th>
<th>%Cu</th>
<th>Au</th>
<th>Ag</th>
<th>%Cu M</th>
<th>%Cu F</th>
<th>%EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>95246</td>
<td>H86-03</td>
<td>90</td>
<td>95</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>95</td>
<td>100</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247A</td>
<td></td>
<td>112.1</td>
<td>116.1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247B</td>
<td></td>
<td>116.1</td>
<td>119.9</td>
<td>2.8</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247C</td>
<td></td>
<td>119.4</td>
<td>122.0</td>
<td>2.6</td>
<td>4.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>248</td>
<td></td>
<td>193.1</td>
<td>194.4</td>
<td>1.3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>249</td>
<td></td>
<td>199.7</td>
<td>199.9</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>199.9</td>
<td>203.5</td>
<td>3.6</td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251</td>
<td></td>
<td>202.5</td>
<td>207</td>
<td>4.5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>252</td>
<td></td>
<td>207</td>
<td>212</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253</td>
<td></td>
<td>212</td>
<td>217</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254</td>
<td></td>
<td>217</td>
<td>227</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td></td>
<td>227</td>
<td>237</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
<td>237</td>
<td>237</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>257</td>
<td></td>
<td>237</td>
<td>247</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td></td>
<td>247</td>
<td>247</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>259</td>
<td></td>
<td>247</td>
<td>267</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td>267</td>
<td>267</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>261</td>
<td></td>
<td>267</td>
<td>267</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>262</td>
<td></td>
<td>267</td>
<td>305.5</td>
<td>8.5</td>
<td>8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263</td>
<td></td>
<td>305.5</td>
<td>315.5</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>264</td>
<td></td>
<td>315.5</td>
<td>317.5</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>265</td>
<td></td>
<td>317.5</td>
<td>322.5</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266</td>
<td></td>
<td>322.5</td>
<td>327.5</td>
<td>6.5</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td></td>
<td>327.5</td>
<td>344.0</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>268</td>
<td></td>
<td>344.0</td>
<td>352.0</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td></td>
<td>352.0</td>
<td>506.6</td>
<td>8.6</td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td></td>
<td>TYPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>open overburden</td>
<td>% Sample No</td>
<td>Width</td>
<td>%Cu</td>
<td>%Fe</td>
<td>Moly</td>
<td>Au/Ag</td>
<td>Inoz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>38</td>
<td>5% Rumble, mainly fragments of workable rusty weathered limestone, w. occ. freq. gray porphyric quartz and pyrite, semisbrecic, blue-gray to black conch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>47</td>
<td>4% 1+1da gray green hornfelsic diorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>57</td>
<td>4% Tuff gray brown, freq. frags to 3mm, rare bouding 40°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>68</td>
<td>3% Bouding, freq. diorite, 68 and granite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>69.5</td>
<td>4% 1+1da gray green, horn feldspar class 1 diorite, rem. bouding 30°-60°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.5</td>
<td>70</td>
<td>5% Bluish green, rusty marble</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>TYPE</td>
<td>%</td>
<td>Sample No.</td>
<td>Width</td>
<td>Recov.</td>
<td>%Cu</td>
<td>%Fe</td>
<td>MoLy</td>
<td>Au/Ag</td>
<td>Total</td>
</tr>
<tr>
<td>90.5</td>
<td>104.5</td>
<td></td>
</tr>
<tr>
<td>104.5</td>
<td>113</td>
<td>Sf+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>128.4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128.4</td>
<td>197.1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193.1</td>
<td>199.0</td>
<td>3a/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199.0</td>
<td>199.3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOOTAGE: From 90.5 to 199.3

ROCK CLASSIFICATION: Epid, Dio, Gnr (Gnr), Dsc/SIl, Actme, Treme, Chio, Crystalline, Shearing, Veins, Fracturing, Foliation, Grain Size, Texture

MINERALIZATION: Epid, Diop, Garn, Serp, Ort/Sil, Actme, Trem, Chio

ASSAY DATA: Sample No., Width, Recov., %Cu, %Fe, MoLy, Au/Ag, Total
<table>
<thead>
<tr>
<th>FOOTAGE</th>
<th>ROCK CLASSIFICATION</th>
<th>MINERALIZATION</th>
<th>ASSAY DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>199.3</td>
<td>199.9</td>
<td>Type</td>
<td>%</td>
</tr>
<tr>
<td>3 ap, m/s</td>
<td>qg, quin, C a rich shwn, patches</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>199.9</td>
<td>mag w. blen py Sample 199.9</td>
<td></td>
</tr>
<tr>
<td>203.5</td>
<td>39.5</td>
<td>blen graupitic shwn w. 10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>199.4</td>
<td>relic. Serpentined epidoc. garnet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>203.5</td>
<td>brecciated to 0.5 mm. Occup. 2 to 7 mm. Sample 199.4</td>
<td></td>
</tr>
<tr>
<td>207.2</td>
<td>2.27</td>
<td>3 q5, m/l5 py. bin. partially Shearified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.27</td>
<td>3 q5, m/l5 py. bin. partially Shearified</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>237'</td>
<td>3 age 15 partially Shearified limestone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>237'</td>
<td>'as above but with no mag and increasing red bin garnet, occ. spec</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>243.4</td>
<td>9/des qal py. bin. Garnet shwn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>243.4</td>
<td>9/des qal py. bin. Garnet shwn</td>
<td></td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>TYPE</td>
<td>%</td>
</tr>
<tr>
<td>248.5</td>
<td>248.9</td>
<td>b1h - grn Shmr 50°</td>
<td></td>
</tr>
<tr>
<td>248.9</td>
<td>268</td>
<td>q/lav ca. red brn Shmr w. Intens.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>occurrences + blebs serp, chl.</td>
<td></td>
</tr>
<tr>
<td>No. 56</td>
<td>Sample 2. 47 - 157</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.57 - 2.67</td>
<td></td>
</tr>
<tr>
<td>268</td>
<td>268.5</td>
<td>brown, 1 cm. Shmr</td>
<td></td>
</tr>
<tr>
<td>268.5</td>
<td>305.5</td>
<td>pale - clar grn mottled Shmr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>w/ Intersitial Cal. From</td>
<td></td>
</tr>
<tr>
<td>305.5</td>
<td>to 305.5</td>
<td>patches in diorite</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 ft. sclc at lower c.t.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Samples 2. 67 - 2.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.77 - 2.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.87 - 2.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.97 - 3.055</td>
<td></td>
</tr>
<tr>
<td>315.5</td>
<td>317.5</td>
<td>qarm. qy. b1h Shmr w. moly dysm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in Shmr 10% no. 56 sect</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample 3. 55 - 3.15</td>
<td></td>
</tr>
<tr>
<td>317.5</td>
<td>317.6</td>
<td>q/lav ca. pale - dark grn Shmr w.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5% interstitial Cal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lumpy sect w. patches py + 5% py</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>patches 3.41 - 3.51. 1. Rusty breccia sect</td>
<td></td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>TYPE</td>
<td>%</td>
</tr>
<tr>
<td>360.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360.3 -</td>
<td>Sharp 8 55°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>363.5</td>
<td>Samples 311.5 - 317.5</td>
<td>695:69</td>
<td>10</td>
</tr>
<tr>
<td>317.5 -</td>
<td>327.5</td>
<td>66</td>
<td>6.5</td>
</tr>
<tr>
<td>327.5 -</td>
<td>334.0</td>
<td>67</td>
<td>10</td>
</tr>
<tr>
<td>334 -</td>
<td>344</td>
<td>68</td>
<td>8</td>
</tr>
<tr>
<td>344 -</td>
<td>352</td>
<td>69</td>
<td>8.6</td>
</tr>
<tr>
<td>352 -</td>
<td>360.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360.6</td>
<td>Fresh hornblende granodiorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>White rounded Fe15 +Fe13 to 2cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>369</td>
<td>Hole stopped</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hole No. K86-03 Page No. 5
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Hole No.</th>
<th>Footage</th>
<th>Length</th>
<th>Rec.</th>
<th>%Cu</th>
<th>%Au</th>
<th>%Ag</th>
<th>Pb</th>
<th>Zn</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>C95272</td>
<td>186-04</td>
<td>105</td>
<td>110</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C95273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C95274</td>
<td>267-274</td>
<td>274</td>
<td>279</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>08 Over burden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-33</td>
<td>5 Wn-Qu dol 15 oca dm qu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pyritic (2%) sulfate beds (17.5'-30')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22'-23' w dm qu Serp on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fracts: Sil & lower Ct + 50'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-50</td>
<td>4/3 Harapels, qg, qgr, brn well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>laminated Harapelsed Sulfate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sects Sulfurified to garnet, diopside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>epidote, bouding Changes from</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30'-40' to 65'-75' Ct + 47', lower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ct w less Sulfurided Sects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gradational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54-95.3</td>
<td>4 Tuff - vat brn paq grn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pumc classes, brecced along Fracts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to paq qm. From 75' Ct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to 5 cm. From 90' qgr/wm. & 5mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cvds. qgrs + 05mm. from 99.5'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rounded perpyritic grs to 5cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ooc. Ct recuits thru out - Ct + 72'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5' Cv. qm 30' discom + ooc. grs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOOTAGE</td>
<td>ROCK CLASSIFICATION</td>
<td>MINERALIZATION</td>
<td>ASSAY DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>To</td>
<td>TYPE</td>
<td>%</td>
<td>Sample No.</td>
<td>Width</td>
<td>Recovery</td>
<td>% Cu</td>
<td>% Fe</td>
<td>Moly</td>
<td>Au/Ag</td>
</tr>
<tr>
<td>95.3</td>
<td>110.5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. gr. andesite dyke, 3% min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andesitic porphyry, chi spar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(altd. porphyry), 10% to 3% dissemin by</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rusty e. miner c+ 30° w 1cm ca.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample 105-110</td>
<td></td>
<td>5</td>
<td>C95273</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110.5</td>
<td>132.1</td>
<td>4</td>
<td></td>
<td>Tuff, pale grey, surrounded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to angular fels. clasts & f. room</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frag. in grey matrix, clasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gen 1-3mm oc. 5mm. To 11/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gy. grn. harz. , dissemin f. Gy 1/2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.7</td>
<td>133.5</td>
<td>9</td>
<td></td>
<td>Gy. dr. fl. dyke, chloritized</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porphyry, fels. clasts to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2mm. Ej. 12.5. fels. garnet w py.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gy. dissemin f. on fels. turn. to 5mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ca. veins in frag. altd. wallrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core gen. broken bubble 15'-to end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133.5</td>
<td>153.5</td>
<td>4</td>
<td></td>
<td>Silliciated, pale grey tuff, gen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ophitic. oc. sects w. clasts to 5mm. C. 12.5. fels. garnet w po.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gy. dissemin f. on fels. turn. to 5mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ca. veins in frag. altd. wallrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Core gen. broken bubble 15'-to end</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154.9</td>
<td>154.9</td>
<td>9</td>
<td></td>
<td>Dr. gr. grn. dyke as above. Cover c+30°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HOLE 256-22 Page No. 3

FOOTAGE | NICK CLASSIFICATION | MINERALIZATION | ASSAY DATA
From | To | | |
--- | --- | | ---
154 | 173.2 | 4 | Pale grey silicified tuff as above.
2 | | 6" rubble preceded by gr. 0.7" bleached gr. 3-5% K2O
173.2 | 185 | 9 | Gr. gr. dyke as above, 6' broken.
174-185' | | Dissempy 1/2% tourques.
185 | 194.9 | 4 | Gr. tuff 6' thick, 30' of gr. to 5mm in opalitic matrix.
From 185' only relics of gr. to remaining.
9a | 193.5 | 195 | Pink gr. dyke.
9b | 195.5-199.5 | Basic dyke diabase on 49
3 | | Cave 1 broken 199' to end.
196.5 | 217 | 9b | Gr. gr. basic dyke as above.
In 10% chloritised prourites.
2 | | 19 broken 204-206.5' = 217'
217 | 225 | 4 | Gr. tuff an debris to 1m. 2gr. 3-5mm, 10%.
In gr. sillitite matrix. Finer grained toward lower 6.5', chert slices.
Ends to 1m @ 219'.
2 | | 222' - 223' rubble.
<table>
<thead>
<tr>
<th>FOOTAGE</th>
<th>ROCK CLASSIFICATION</th>
<th>MINERALIZATION</th>
<th>ASSAY DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
<td>TYPE</td>
<td>%</td>
</tr>
<tr>
<td>266.4</td>
<td>267.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>267.5</td>
<td>294</td>
<td>7b</td>
<td>Clay,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>slightly gneissic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>gneiss, twisted on fractures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ser. chloritized quartz, Streaks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 bds. Clay alteration, 276-280 C.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(w. remnant gneiss, Fresh) e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>216' gradation front (Mess. 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sample</td>
</tr>
<tr>
<td>294</td>
<td>311</td>
<td>7b</td>
<td>Moderately altered, Cal on fractures, incl. rounded Fe hornblasts</td>
</tr>
<tr>
<td>311</td>
<td>311.9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>311.9</td>
<td>349</td>
<td>7c</td>
<td>4 bds. granite, moderately altered</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mica + ser. chloritized ore Streaks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fractures, Clay on ore Fract 4 Feirs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>may be secondary + ore S. quartz pitchs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fresh from 360'</td>
</tr>
<tr>
<td>398.2</td>
<td></td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>