ASSESSMENT REPORT

EYE 1-16 CLAIMS
YA92600 - 92615
Lakeview Mountain
N.T.S. 105-D-6
Whitehorse Mining District
Latitude 60°27' North
Longitude 135°03' West

By
Graham S. Davidson, P.Geol.
August 1986
TABLE OF CONTENTS

INTRODUCTION ... Page 1
LOCATION AND ACCESS ... Page 1
PHYSIOGRAPHY, CLIMATE, VEGETATION, CLAIMS Page 1
REGIONAL GEOLOGY .. Page 2
HISTORY OF EXPLORATION .. Page 4
RECENT EXPLORATION .. Page 5
PROPERTY GEOLOGY .. Page 6
EXPLORATION - 1986 .. Page 6
DISCUSSION AND RECOMMENDATIONS Page 7

List of Figures

Figure 1: Location Map ... Following page 1
Figure 2: Claim Plan .. Following page 1
Figure 3: Rock and Soil Sample Locations and
Ag-Pb-Zn Anomaly .. Following page 9

List of Tables

Table 1: Table of Formations .. Page 3
Table 2: Rock and Soil Values and Descriptions Page 7

Appendices

Appendix I: Statement of Qualifications
Appendix II: Statement of Costs
Appendix III: List of References
Appendix IV: Du Pont Geochemistry
INTRODUCTION

The EYE claims cover an anomalous Ag-Pb-Zn zone initially discovered by Du Pont of Canada during a regional sampling program conducted in 1981. The property was staked by G. Harris in July 1985 after Du Pont withdrew from the Yukon and allowed these claims to lapse.

This report, prepared at the request of Glen Harris, summarizes the geology, physiography and exploration history of the property. The writer is familiar with the district and visited the EYE claims in July 1985.

LOCATION AND ACCESS

The claims are located 30 km south of Whitehorse on a broad, flat topped hill beside Lakeview Mountain in southwestern Yukon. The property is accessible via the Alaska and Carcross highways and the Wheaton River-Mount Skukum all-season gravel road. A four-wheel-drive road extends off the Wheaton River-Mount Skukum road along the north side of the Watson River to within 3 km of the property; the property can then be reached on foot or by utilizing ATC vehicles.

PHYSIOGRAPHY, CLIMATE, VEGETATION, CLAIMS

The claims lie between 1500 m and 1100 m covering a broad hilltop and south-facing slope. Several small creeks drain the hillside and ponds on the upland surface would provide an adequate water source for drilling. Outcrop is limited to the steepest slopes and overall covers <1% of the property.

Southwestern Yukon has a dry sub-arctic climate with temperatures varying between extremes of -50°C in winter and +25°C in summer. Precipitation averages 35 cm per year. Mineral exploration is practical from early June to October.

Vegetation on the claims consists of sub-alpine grasses and "buck-brush" on upper areas while spruce and alder are prevalent on lower slopes.

The EYE 1-16 mineral claims (YA 92600-92615) are owned by G. Harris of Whitehorse as recorded at the Whitehorse District mining recorder's office in compliance with the Yukon Quartz Mining Act.
Figure 2: Claim Plan

EYE 1-20 CLAIMS

NTS: 105 D-6 Scale: 1:31,680
REGIONAL GEOLOGY

The Wheaton River/Bennett Lake district overlies the boundary between two terranes: (1) the Whitehorse Trough, consisting of Mesozoic and Paleozoic, folded metavolcanic and metasedimentary rocks, and (2) a younger volcanic and intrusive suite consisting of intrusive rocks of the Cretaceous Coast Plutonic Complex and Early Tertiary volcanic rocks of the Skukum Group.

The Whitehorse Trough features a complex assemblage of deformed volcanic and sedimentary rocks consisting of the Triassic Lewes River Group, the Lower Jurassic Laberge Group, the Jurassic Tantalus Group and the Jurassic or Cretaceous Hutshi Group. The Lewes River Group consists of andesite, basalt and pyroclastic flows, and foliated marine sedimentary rocks. A narrow but continuous unit of limestone, limestone breccia and quartzite has been traced in a northwesterly direction from the west side of Mount Stevens across Tally Ho Mountain and Gold Hill to the Hodnett Lakes. Interbedded schists occur with the limestone and volcanic rocks of the Lewes River Group. A narrow band of Tantalus Group conglomerates and Laberge Group siltstones outcrops on Folle Mountain and Idaho Hill; however, rocks of these groups primarily outcrop north and east of the Wheaton River/Bennett Lake district. Hutshi Group volcanic rocks occur on Montana Mountain and Gray Ridge. They are thought to be contemporaneous with Mount Nansen volcanics in central Yukon.

Cretaceous granitic rocks of the Coast Plutonic Complex are the most common in the district; typically, they consist of fresh quartz monzonite or quartz diorite. Pendants and masses of Yukon Group quartz-mica schist, gneisses and crystalline limestone occur in the granitic intrusives. The Yukon Group is of early Paleozoic and Precambrian age.

A younger series of andesite and rhyolite flows, tuffs and agglomerates mapped as the Tertiary Mount Skukum Group intrude and overlie granitic rocks, forming volcanic complexes at Mount Skukum and Mt. Macauley. Also, Skukum Group rhyolite and granite porphyry dykes and plugs intrude Lewes River Group rocks and Cretaceous granodiorites throughout the Wheaton River area.

The geology of the Wheaton River region was initially mapped by D. D. Cairnes of the G.S.C., published in Memoir #31 (1912) and later by J. Wheeler published in Memoir #312 (1961). A reinterpretation of the regional geology formed part of the metallogenic map published as Open File E.G.S. 1979-6 (G. W. Morrison) by the Department of Indian Affairs and Northern Development.
<table>
<thead>
<tr>
<th>Period</th>
<th>Group/Formation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATERNARY</td>
<td>Q</td>
<td>Alluvium; glacial and fluvial deposits.</td>
</tr>
<tr>
<td>QUATERNARY (?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miles Canyon Volcanics</td>
<td></td>
<td>Basalt; minor pyroclastics.</td>
</tr>
<tr>
<td>LATE CRETACEOUS/EARLY TERTIARY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shukum Group</td>
<td>Tsp</td>
<td>Stocks, plugs and dykes of quartz and feldspar porphyry with aphanitic rhyolitic matrix. Some granite porphyry; some intermediate plugs and dykes.</td>
</tr>
<tr>
<td></td>
<td>Tva</td>
<td>Rhyolite and tephra breccias, tuffs and flows; some felsic plugs and dykes (Tsp).</td>
</tr>
<tr>
<td></td>
<td>Tvb</td>
<td>Andesite and basalt tuffs, flows and breccias; minor greywacke at base.</td>
</tr>
<tr>
<td>MID-CRETACEOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coast Plutonic Complex</td>
<td>Kgd</td>
<td>Medium to coarse grained homogeneous biotite-hornblende granodiorite and quartz monzonite. Includes undifferentiated Tsp and Tva.</td>
</tr>
<tr>
<td>JURASSIC/CRETACEOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hutshi Group (?)</td>
<td></td>
<td>Andesite, rhyolite flows and pyroclastic equivalents.</td>
</tr>
<tr>
<td>JURASSIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tantalus Group</td>
<td></td>
<td>Mainly conglomerate</td>
</tr>
<tr>
<td>LOWER JURASSIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laberge Group</td>
<td></td>
<td>Greywacke, arkose, quartzite, siltstone, argillite and conglomerate.</td>
</tr>
<tr>
<td>TRIASSIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lewis River Group</td>
<td>unc</td>
<td>Fine to medium grained limestone, quartzite and some marble.</td>
</tr>
<tr>
<td></td>
<td>unwp</td>
<td>Greywacke, siltstone, argillite and minor conglomerate.</td>
</tr>
<tr>
<td></td>
<td>unvb</td>
<td>Basalt and andesite flows and flow breccias; augite and/or feldspar porphyry locally.</td>
</tr>
<tr>
<td>PROTEROZOIC AND PALEOZOIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Yukon Group"</td>
<td>FIPc</td>
<td>Marble, crystalline limestone, minor graphitic limestone, skarn.</td>
</tr>
<tr>
<td></td>
<td>FIPSbg</td>
<td>Quartzite and quartz-chlorite schist, quartzite, minor amphibolite, feldspathic gneiss.</td>
</tr>
</tbody>
</table>

(Note: Symbols from Morrison (1979))
Mesozoic and Paleozoic sedimentary and volcanic rocks of the Whitehorse Trough Terrane are deformed and generally metamorphosed to at least lower green schist facies. These units trend north to northwest and are internally complex.

Structurally, the area features major faults, primarily along river valleys, associated with movement in the Coast Plutonic Complex and with early Tertiary volcanism at Mount Skukum, Mount Macauley and Montana Mountain(?). The Skukum Group volcanic rocks are equivalent to the Sloko Group of northern British Columbia and the Mount Nansen Group of central Yukon. Late stage features of Skukum Group volcanism include dacite, rhyolite and granite porphyry dykes, emplaced in fracture and fault zones around the volcanic complexes, and quartz or quartz carbonate veining with significant precious and base metal mineralization.

HISTORY OF EXPLORATION

The Wheaton River/Lake Bennett district was first explored by prospectors travelling along the major lakes and rivers of southwestern Yukon in the early 1890's. The original claims recorded in the district were those of prospectors Corwin and Rickman who, in 1893, located antimony showings on Carbon Hill and gold-silver bearing quartz veins at an undisclosed site. The untimely deaths of the two men occurred before revealing the location of the high grade quartz showings.

The Klondike Gold Rush brought a great influx of people to the Yukon, many of whom crossed Lake Bennett en route to Dawson City. Some of these individuals strayed into the Wheaton Valley, locating claims in the Schnabel Creek drainage in 1903.

More intensive exploration began in 1906 after the discovery of free gold and gold-silver tellurides on Gold Hill by D. Hodnett and J. Stagar, and the rediscovery of the Corwin-Rickman antimony-silver showings on Carbon and Chieftain Hills. Wagon roads were built along the Wheaton River, Thompson Creek and Stevens Creek to provide access to numerous adits and pits on Gold Hill, Mineral Hill, Mount Stevens, Wheaton Mountain and Mount Anderson. Limited mining of high grade gold and silver bearing ore occurred on the Gold Reef vein at the northeast end of Gold Hill and on the Becker-Cochran (WHIRLWIND) property on the west face of Mount Anderson. Adits and shafts on Mount Stevens and Wheaton Mountain were probably exploratory; no record of ore production exists.

The Tally Ho Mine on Tally Ho Mountain was the most significant operation during the early years of activity in the area. In 1918, a shipment of 14 tons of hand-sorted ore grading 2.35 oz/ton gold, 5.1 oz/ton silver and 7% lead was smelted at Tacoma. Underground development was continued at various times between 1909 and 1938; additional ore shipments were sent to Juneau but details no longer exist. On Montana Mountain, Colonel Conrad and associates developed several gold and silver bearing quartz veins on the slope above Windy Arm (Tagish Lake). A small mill on the shore of Windy Arm processed ore extracted from the Venus, Montana and
Big Thing quartz veins between 1906 and 1920.

From the mid-1920's to the late 1960's, little exploration of significance took place. By 1970, many of the old showings were restaked as an increase in the value of base and precious metals rekindled the interest of mining companies and prospectors. The Venus and Arctic mines operated on Montana Mountain between 1969 and 1971. The Venus Mine was briefly rehabilitated during 1980-1981 and a new mill was installed at the southern end of Windy Arm.

In 1981, Agip Canada Ltd. discovered a gold bearing vein structure on Mount Skukum and proceeded to define a commercially viable ore-body consisting of 165,000 tons grading 0.73 oz gold and 0.63 oz silver per ton by 1984. Mount Skukum Gold Mines Ltd., through a joint venture agreement with Agip, has developed the ore-body and constructed a 300 ton-per-day mill. Production is expected to commence in March 1986.

The discovery of gold on Mount Skukum has intensified exploration activities in the Wheaton district and initiated a methodical staking rush in which all of the known showings and most of the surrounding area has been staked. Presently, large claim blocks are held by Erickson Gold Mines Ltd., United Keno Hill Mines, Omni Resources Inc., Tally-Ho Exploration Ltd., Shakwak Exploration Co. Ltd., Island Mining and Exploration Ltd., Kerr Addison Mines Ltd., Berglynn Resources Inc., Carmac Resources Ltd. and Noranda Exploration Co. Ltd.

RECENT EXPLORATION

Du Pont of Canada collected the initial anomalous stream sediment sample (206 ppm Pb, 1200 ppm Zn) during a regional sampling program in May 1981. Follow-up work later in the season consisted of a further 95 soil, 9 rock and 10 stream sediment samples. A broad silver-lead-zinc anomaly was outlined at the head of a small creek with peak values of 20,000 ppm Pb, 3570 ppm Zn and 12 ppm Ag. The EVIEW 1-16 claims were located over this anomaly by Du Pont in June 1981.

In 1982, 200 additional soil samples were collected and geological mapping determined that the Ag-Pb-Zn soil anomaly related to the contact between siltstones of the Laberge Group and rhyolite of the Hutshi Group. The anomalous zone was identified over a 1,100 m length with widths from 100 m to 300 m. Figure 3 shows the Du Pont geochemistry.

The contact is described as "a 1-3 m wide zone of gossanous and silicified rock that may represent a shear zone. Pyrite is pervasive throughout the volcanic rocks (1-10%) and is found in the siltstone in amounts from trace to 20% as the contact is approached. Sugary, vuggy boxwork quartz containing 5% disseminated pyrite, visible galena and 10-15% cubic boxwork is found in the gossan zone. Two rock samples from this zone contained
anomalous values up to 6600 ppm Pb, 990 ppm Zn and 176 ppm Ag." (D.I.A.N.D., 1982, Y.E.G., p. 117.)

Du Pont's geologist recommended trenching the anomaly; however, no further work was completed and the claims lapsed in 1985.

PROPERTY GEOLOGY

The EYE claims are underlain by siltstone of Lower Jurassic Labarge Group and felsic volcanic rocks of the Cretaceous Hutshi Group intruded by Late Cretaceous Coast Intrusion granodiorite. Sills of rhyolite and dacite porphyry occur in the finely bedded black to green limy siltstone.

Structurally, the property sits on the boundary between the Whitehorse Trough and the Coast Intrusive Complex. Northerly and northeasterly trending faults traverse the EYE claims. A northerly trending fault (apparent on the air photo) cuts the mineralized zone along the siltstone rhyolite contact and in part underlies the Ag-Pb-Zn soil anomaly. The fault contact exposed in one small pit 100 meters southeast of the pond is the brecciated shear described by Du Pont. It contains oxidized massive sulphide, quartz, rhyolite and siltstone fragments over at least a 2 meter width. The massive sulphide consists primarily of fine to coarse crystalline pyrite with arsenopyrite, galena, sphalerite and minor chalcopyrite. Most of the mineralized samples collected in 1986 were from this small pit.

EXPLORATION - 1986

In June and July 1986, G. Harris accompanied by B. Harris and the writer undertook grid reconstruction and prospecting on the EYE property. Also, the writer accompanied geologists from Noranda Exploration Co. Ltd. and Kerr Addison on property inspections in June 1986.

Grid reconstruction consisted of picketing 600 meters of baseline and 2200 meters of crosslines at 50 meter intervals. Little of the 1982 Du Pont grid remained, necessitating the use of compass and hip chain on the crosslines.

Five rock and soil samples were collected by the writer from the Ag-Pb-Zn zone and from a gossan on the western edge of the claims. Figure 3 shows the rock and soil sample sites and preliminary geology. Table 2 contains values and description of rock and soil samples collected by Noranda Exploration Co. Ltd. (June, 1986) and G. Davidson (June, 1986).
DISCUSSION AND RECOMMENDATIONS

Du Pont of Canada has outlined an Ag-Pb-Zn anomaly related to the contact (shear zone) between siltstone and rhyolite over a distance of at least 1100 meters. Exploration in June and early July 1986 consisted of re-sampling in and around the shear zone. The heavily weathered mineralized shear zone consistently returns Ag values between 39.0 and 150.0 ppm over widths up to 2 meters. Sporadic weakly anomalous gold values have also been obtained on the property.

TABLE 2
Rock and Soil Samples - 1986
Collected by G. Davidson

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>Au</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2-86-3</td>
<td>230</td>
<td>1420</td>
<td>1180</td>
<td>44.0</td>
<td>35</td>
<td>5' chip grab sample of oxidized sulphide breccia from shear zone</td>
</tr>
<tr>
<td>R2-86-4</td>
<td>460</td>
<td>1490</td>
<td>8800</td>
<td>39.0</td>
<td>20</td>
<td>Grab sample of oxidized sulphide breccia from shear zone</td>
</tr>
<tr>
<td>R2-86-4A</td>
<td>19</td>
<td>2000</td>
<td>2200</td>
<td>4.7</td>
<td><5</td>
<td>Limestone breccia sample containing open vugs and minor galena and sphalerite</td>
</tr>
<tr>
<td>R2-86-5</td>
<td>16</td>
<td>66</td>
<td>260</td>
<td>1.1</td>
<td><5</td>
<td>Rusty fractured rhyolite containing pyrite and sphalerite from grid 8+00N, 0+75E</td>
</tr>
<tr>
<td>S1-86-6 (soil)</td>
<td>62</td>
<td>2600</td>
<td>460</td>
<td>3.6</td>
<td>50</td>
<td>Sample taken from rusty zone located at the west end of the property on the claim line</td>
</tr>
</tbody>
</table>
TABLE 2 (continued)

NORANDA VANCOUVER LABORATORY

PROPERTY/LOCATION: EYE CLAIMS

![Barcode Image](image)

Project No.: 1394
Material: RX
Remarks:

<table>
<thead>
<tr>
<th>T.T. No.</th>
<th>SAMPLE No.</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
<th>Ag</th>
<th>As</th>
<th>Sb</th>
<th>ppB</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>81353</td>
<td>20</td>
<td>1600</td>
<td>2000</td>
<td>1.4</td>
<td>12</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>146</td>
<td>81354</td>
<td>12</td>
<td>1900</td>
<td>220</td>
<td>0.4</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>147</td>
<td>81355</td>
<td>460</td>
<td>4400</td>
<td>3400</td>
<td>3.8</td>
<td>20</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>148</td>
<td>81356</td>
<td>380</td>
<td>3200</td>
<td>3000</td>
<td>150.0</td>
<td>24</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>149</td>
<td>81357</td>
<td>12</td>
<td>3000</td>
<td>1400</td>
<td>40.0</td>
<td>40</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>150 CHECK NL-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>81358</td>
<td>28</td>
<td>72</td>
<td>72</td>
<td>1.6</td>
<td>64</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>152</td>
<td>81359</td>
<td>8</td>
<td>300</td>
<td>36</td>
<td>0.6</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>153</td>
<td>81360</td>
<td>12</td>
<td>84</td>
<td>180</td>
<td>0.8</td>
<td>12</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>154</td>
<td>81361</td>
<td>8</td>
<td>170</td>
<td>4</td>
<td>0.2</td>
<td>40</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>155</td>
<td>81362</td>
<td>52</td>
<td>60</td>
<td>32</td>
<td>0.4</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

Values in PPM, except where noted.

Description of Rock Samples Collected by Noranda (1986)

Sample No:

81353 Laminated to thinly bedded light green limy siltstone, 1% fine to medium grained galena; pyrite on fractures and disseminated grains.

81354 Brecciated, limy altered rock, possible skarn.

81355 25% euhedral coarse grained pyrite in a light green carbonaceous tuff(?) volcanic.

81356 Completely weathered material from gossan, vuggy, original rock described above.

81357 Breccia from shear zone, 20% sulphides in rock.

81358 White bleached feldspar porphyry with pyrite.

81359 Fine grained siliceous tuff (sucrose) with pyrite; limonite, rusty along fractures.

81360 Weathered bleached vuggy feldspar porphyry with veins of pyrite.
Rock Descriptions (continued)

Sample No:

81361
Green laminated limy siltstone with some skarny looking lenses and disseminated pyrite.

81362
Laminated to finely bedded graphitic argillite, minor pyrite.

The Ag-Pb-Zn zone should be trenched, preferably using a backhoe, to uncover unoxidized material. Geophysical, geological and geochemical surveys should be completed to determine the along-strike extent of the mineralized shear zone.

The following program is recommended:

<table>
<thead>
<tr>
<th>Phase I</th>
<th>Backhoe or bulldozer trenching</th>
<th>$10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geological investigation</td>
<td>$3,000</td>
</tr>
<tr>
<td></td>
<td>Geochemistry and trench sampling</td>
<td>$5,000</td>
</tr>
<tr>
<td></td>
<td>Geophysical survey (VLF and Mag. 10 km)</td>
<td>$3,000</td>
</tr>
<tr>
<td></td>
<td>Camp, equipment and vehicle costs</td>
<td>$2,000</td>
</tr>
<tr>
<td></td>
<td>Report, typing and drafting</td>
<td>$2,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL PHASE I</td>
<td>$25,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase II</th>
<th>(Contingent upon results of Phase I)</th>
<th>$50,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diamond drilling</td>
<td>$50,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL PHASES I AND II</th>
<th>$75,000</th>
</tr>
</thead>
</table>
FIGURE 3:
EYE CLAIMS
Rock and soil sample locations and Ag-Pb-Zn anomaly

NTS: 105 D-6 Scale: 1:5,000
APPENDIX I

STATEMENT OF QUALIFICATIONS

I, GRAHAM DAVIDSON, of the City of Whitehorse in the Yukon Territory, hereby certify:

THAT I am a consulting professional geologist.

THAT I am a graduate of the University of Western Ontario (H.B.Sc. Geology, 1981).

THAT I am registered as a Professional Geologist by the Association of Professional Engineers, Geologists and Geophysicists of Alberta (No: 42308).

THAT I have been engaged in mineral exploration on a full and part time basis for seven years, of which five have been in northwestern British Columbia, the Yukon Territory and the Northwest Territories.

SIGNED at Whitehorse, Yukon Territory, this 17 day of August 1986.

G. S. DAVIDSON, P.Geol.
APPENDIX II

STATEMENT OF COSTS

June 1 - July 4, 1986:

PERSONNEL:

G. Davidson (geologist): 3 days @ $200/day $600.00
B. Harris (prospector): 1 day @ $150/day 150.00

EXPENSES:

Truck: 1 day @ $50/day 50.00
Mileage: 75 km @ .35¢/km 26.25
Gas 20.00
Geochemical analysis: 4 rock, 1 soil sample (G.D.) 72.75
10 rock samples (Noranda) 120.00
1 bundle pickets 20.00

REPORT:

Typing, drafting, preparation 300.00

TOTAL $1,359.00

==========
APPENDIX III

LIST OF REFERENCES

Yukon Exploration and Geology, 1982: Department of Indian and Northern Affairs, Geology Department, p 117.
APPENDIX IV

DU PONT GEOCHEMISTRY